

WWWWWW BBRROOWWSSIINNGG UUSSIINNGG AA TTRRAANNSSCCOODDIINNGG PPRROOXXYY

By

AAbbdduullbbaasseett AA.. GGaaddddaahh

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements for the

degree of

MMaasstteerr ooff CCoommppuutteerr SScciieennccee

Ottawa-Carleton Institute for Computer Science

School of Computer Science

 Carleton University

 Ottawa, Ontario

December 2000

 Copyright

 2000, Abdulbaset A. Gaddah

The undersigned recommend to the Faculty of Graduate Studies and Research
acceptance of the thesis

WWWWWW BBRROOWWSSIINNGG UUSSIINNGG AA TTRRAANNSSCCOODDIINNGG PPRROOXXYY

Submitted by Abdulbaset Gaddah, High Diploma,
in partial fulfillment of the requirements for the

degree of Master of Computer Science

________________________________ ________________________________
Dr. Thomas Kunz, Dr. Roshdy H. M. Hafez,
Thesis Co-supervisor Thesis Co-supervisor

__

Dr. Frank Dehne, Director of School of Computer Science

Carleton University

December 2000

 i

AABBSSTTRRAACCTT

With advances in wireless networking technology and portable information appliances, a

new paradigm of computing, called mobile or nomadic computing, has generated much

attention in recent years. This new platform will make it possible for users who carry

portable devices to browse WWW information regardless of their physical location or

movement behavior. Such a new environment, however, faces many technical challenges

such as limited wireless bandwidth and high error rate. In addition, mobile devices widely

differ with respect to display size, color depth, processing power, battery life, and the

ability to handle different data formats. Since images usually present the highest rate of

WWW traffic, image transcoding could greatly reduce web page retrieval latency and

match both the device and channel capabilities. This thesis presents a proxy transcoding

process that enhances image transmission to a variety of mobile hosts. The central idea in

our work is to place a transcoding proxy between the generic WWW servers and the

diversity of client devices in order to adapt to a greatly changing bandwidth on the proxy-

client link and to manage the heterogeneity of small-screened mobile devices. The proxy

utilizes transcoding functions based on the available bandwidth and the device

characteristics to achieve the smallest file size and acceptable quality.

 ii

AACCKKNNOOWWLLEEDDGGMMEENNTT

I have had the great fortune to be supervised by Dr. Thomas Kunz. Together we have held

hands to build an energy that has made this thesis possible. I would like to take this

opportunity to express gratitude to him for his practical guidance, continuous support, and

helpful contributions. My thanks and appreciations also go to Dr. Roshdy Hafez for his

helpful suggestions and valuable ideas in completing my thesis.

 I would like to acknowledge the financial support of Nortel Company, National

Science and Engineering Research Council (NSERC), and Carleton University. Many

thanks go to all members of the Canadian Bureau of International Education (CBIE)

especially to the program manager Anna Mastelloto for her generous help and directions.

 I am very grateful to Pamela Lawes for her hospitality and assistance in English

Language matters. A special thanks goes to all my colleagues for many useful discussions

we have had on the subject.

 I wish to thank my family, especially my mother, for their support, inspiration,

encouragement, and love always.

 Above all, I praise Allah (God) who gave me the capability to achieve the objective

of my study and made things easier for me.

 iii

 Most surely in the creation of the heavens and the earth and the alternation of the

night and the day, and the ships that run in the sea with that which profits men, and the

water that Allah sends down from the cloud, then gives life with it to the earth after its

death and spreads in it all (kinds of) animals, and the changing of the winds and the

clouds made subservient between the heaven and the earth, there are signs for a people

who understand. (Quran 2.164)

 iv

TTAABBLLEE OOFF CCOONNTTEENNTTSS

CHAPTER 1: INTRODUCTION ...1

1.1 Motivation..1

1.2 Classic Client-Server Model...4

1.3 Thesis Objectives ...6

1.4 Thesis Contributions ..7

1.5 Thesis Organization..8

CHAPTER 2: THE CHALLENGES OF MOBILE COMPUTING..........................10

2.1 Wireless Communications Network ...10

2.1.1 Limited Bandwidth..11

2.1.2 High Bandwidth Variability...12

2.1.3 High Error Rate..13

2.1.4 Heterogeneity..13

2.1.5 Security Risks..14

2.1.6 Mobile Host Protocols...15

2.1.7 Frequent Disconnections...15

2.1.8 Mobility...16

2.1.9 Mobile Computer Capabilities ..16

2.2 WWW Browsing Through a Proxy Server...17

2.2.1 Proxy Based Approach..18

2.2.2 End-to-end Approach..19

2.2.3 Application Partitioning Approach ...20

 v

CHAPTER 3: BACKGROUND AND RELATED WORK..22

3.1 Wireless Networks ...22

3.1.1 Wireless Technology Overview ...23

3.1.2 Cellular Network Topology...26

3.1.3 Web Browsing (WWW)..28

3.2 Related Work ...28

3.2.1 Hybrid Network- and Application-level Approaches.......................................29

3.2.2 Transcoding Proxies ...32

3.2.3 Partitioning of Application Complexity...37

3.3 Summary..40

CHAPTER 4: EXPERIMENTAL ENVIRONMENT...43

4.1 Objectives ..43

4.2 Image Collection..44

4.3 An Overview of GIF and JPEG File Formats ...47

4.3.1 GIF File Format..48

4.3.2 JPEG File Format ...51

4.4 Static Image Characteristics ...53

4.4.1 Image File Size..54

4.4.2 Number of Colors..55

4.4.3 Spatial Geometry Size ...57

4.5 Image Transcoding Characteristics...58

4.5.1 Reducing the Spatial Geometry...59

4.5.2 Reducing the Number of Unique Colors..62

4.5.3 Changing the Image Format ...64

4.5.4 Changing the JPEG Compression Metric ...68

4.6 Key Observations ...70

4.6.1 Effect of Imaging Software..70

4.6.2 Sequence Order of Transcoding Operations ...72

 vi

4.7 Summary..73

CHAPTER 5: N IMAGE TRANSCODING PROXY ...75

5.1 Introduction..75

5.2 Image Transcoding...77

5.2.1 Transcoding Functions..78

5.3 System Architecture ...82

5.3.1 The Prime Components of the Transcoding Proxy Architecture......................83

5.3.2 Content Analyzer...85

5.3.3 Input Parameters...86

5.3.4 Transcoding Scenario..88

5.3.5 Cache Scenario ...90

5.4 The Algorithm of the Transcoding Proxy...92

5.5 Summary..101

CHAPTER 6: EXPERIMENTATION AND EVALUATION..................................103

6.1 Experimental Setup and Results ...103

6.2 Transcoding Performance...113

6.3 Scalability Concerns ...116

CHAPTER 7: CONCLUSIONS AND FUTURE WORK...119

7.1 Conclusions ..120

7.2 Future Work ...122

BIBLIOGRAPHY..126

 vii

LLIISSTT OOFF FFIIGGUURREESS

Figure 1.1: A Classic Client-Server Model ..4

Figure 1.2: A System Environment for Transcoding Proxy..5

Figure 2.1: WWW Browsing Through a Proxy Server...18

Figure 3.1: Schematic Arrangement of Cells in a Cellular Wireless Network26

Figure 3.2: Network Topology of a Cellular Wireless Network ...27

Figure 3.3: TCP Connections for WWW ...28

Figure 4.1: File Type and File Size Distributions for Selected WWW Users45

Figure 4.2: Background Transparency ...50

Figure 4.3: GIF and JPEG Image File Size Distribution...53

Figure 4.4: Distribution of Number of Unique Colors in GIF Images55

Figure 4.5: Image Spatial Size Distribution – GIF Images ...56

Figure 4.6: Image Spatial Size Distribution – JPEG Images ..57

Figure 4.7: Reducing The Spatial Geometry by a Factor 2 Along Each Axis...........................59

Figure 4.8: Reducing The Spatial Geometry by a Factor 4 Along Each Axis...........................60

Figure 4.9: Reducing the Number of Unique Colors in GIF Images ..62

Figure 4.10: Converting a TrueColor JPEG Image to a GrayScale JPEG Image63

Figure 4.11: Converting From GIF to JPEG Format ..65

Figure 4.12: Converting From GIF (#Colors > 250) to JPEG Format66

Figure 4.13: Converting From JPEG to GIF Format ..67

Figure 4.14: Changing JPEG Image Quality Factor ...68

Figure 4.15: Saving Identical Images with Different Image Processing Software71

Figure 5.1: Image Customization ...77

Figure 5.2: The Image Transcoding Proxy Architecture...82

 viii

Figure 5.3: Cache Scenario ..91

Figure 5.4: The Transcoding Proxy Algorithm (Main Body) ...94

Figure 5.5: GIF Transcoder Routine ...95

Figure 5.6: GIF to JPEG Conversion Routine ..96

Figure 5.7: Color Reduction Routine ...97

Figure 5.8: Thumbnail Scaling Routine ..98

Figure 5.9: Quality Reduction Routine ...99

Figure 5.10: Image Scaling Routine ...100

Figure 6.1: The General Experimental Testbed Setup ..104

Figure 6.2: Response on a Resource Rich Client..106

Figure 6.3: Response on a Resource Poor Client..106

Figure 6.4: The Delivery Time for the Web Pages with and without Transcoding.................108

Figure 6.5: Page Access Time..110

Figure 6.6: Transcoding Time Consumed on a Resource Poor, Medium, and High Client111

Figure 6.7: The Achieved Compression Ratio ..112

Figure 6.8: The Transcoded Image of Soda Hall ..112

Figure 6.9: End-to-end Latency for Images with and without Transcoding............................116

Figure 6.10: Image Transcoding Latency Versus the Number of Simultaneous Users on a

Single Proxy...118

 ix

LLIISSTT OOFF TTAABBLLEESS

Table 1.1: Physical Variation Among Clients ..2

Table 1.2: Typical Network Variation..2

Table 2.1: Samples of Wireless and Wired Networks Bandwidths11

Table 4.1: Image Category Distribution...58

Table 4.2: Saving Identical Image Using Different Software ...70

Table 4.3: Creating Identical Image with Different Image Processing Software72

Table 4.4: Sequence Order of Transcoding Operations ..73

Table 6.1: The Cost of Transcoding Popular Web Sites ...107

Table 6.2: The Amount of Data Needs to Be Transmitted After Transcoding................110

Table 6.3: Transcoding Latency and New Sizes (as Percent of Original)114

 1

C h a p t e r 1

IINNTTRROODDUUCCTTIIOONN

1.1 Motivation

With the recent developmental activity in wireless networks, mobile devices, and web

technologies, the number of people who use mobile computers to access their business

information through the web has rapidly increased. Today, users want to have information

at their fingertips wherever they go. These users need speedy access to data. It is

frustrating for them to wait for hours to download web pages containing multimedia data

over a wireless channel. The small portable computers such as palmtops, smart cell

phones, or laptops cannot even handle most of the data. Moreover, Internet clients vary in

many aspects, including screen size, color depth, processing power, and ability to handle

specific data formats, e.g., GIF, PostScript, or MPEG. They often communicate over

wireless links, which are characterized by lower bandwidths, higher error rates, higher

costs, and more frequent disconnections [25]. As shown in Tables 1.1 and 1.2, each type

of variation often spans orders of magnitude. Further, as was discussed in [17,19,21], the

 2

web (more explicitly, the HTTP protocol) is designed to operate in wired, high bandwidth

environments, and does not act particularly well when the access point has poor

resources. HTTP implementations are usually layered on top of TCP. Both HTTP and

TCP suffer from a number of performance problems [90] that render wireless access to

the WWW painfully slow. The reasons behind these problems, for example low/variable

bandwidth or disconnections [19,10], are quite well known in the mobile environment.

Client Device Bandwidth (bps) Memory Display Size Display Color Bits/Pixel

Typical PDA 14.4K low/2M 320 x 200 b/w 2

HHC 28.8K 4M 640 x 480 gray 8

Typ. Laptop 56K 16M 800 x 600 RGB 8

Midrange PC 56K 32M 1024 x 768 RGB 16

Workstation 10M 128M 1280 x 1024 RGB 24

Table 1.1: Physical Variation Among Clients

Network Bandwidth (bps) Round-Trip Time

Local Ethernet 10-100 M 0.5 – 2.0 ms

ISDN 128 K 10 – 20 ms

Wireline Modem 14.4 – 56 K 350 ms

Cellular/CDPD 9.6 – 19.2 K 0.1 – 0.5 s

Table 1.2: Typical Network Variation

 3

 These problems are further compounded by the current model of web information

access, where the user has to navigate the information space to find the required

information. Transmitting a lot of useless data across the wireless channel in the browsing

process thus wastes valuable bandwidth. A continuous connection is also needed during

the information retrieval process. Disconnections frequently occur due to the handoff

process or shadowed areas and typically require that the information be fetched again.

More generally, the problem is a lack of a continuous mechanism - i.e. not allowing the

mobile user to disconnect during the information retrieval. Moreover, web servers have

no knowledge about the client’s resources and assume that it can handle any data sent by

them. For example, a user may retrieve data from the server on a machine that does not

have the capability of handling this type of format, and thus will not be able to use it. This

results in useless consumption of available bandwidth and waste of time while

transferring data across the wireless network. The mobile client also expends battery

resources in receiving this data. With the ever-increasing use of different types of

multimedia content on the web, this capability mismatch phenomenon represents a

growing problem.

 4

1.2 Classic Client-Server Model

In the traditional client-server information system as shown in Figure 1.1, a server is any

machine that holds a complete copy of one or more database. The server usually has high

bandwidth connectivity. A mobile client is connected to a base station and is able to

access data residing on any server via a low bandwidth wireless link. Classic client-server

systems assume that the location of client and server hosts is fixed and the bandwidth

among them does not fluctuate. As a result, the functionality between client and server is

statically partitioned. Under the highly variable computing environment conditions that

characterize mobile computing, it is believed that the existing client-server model is not

capable of providing adequate support for the mobile wireless computing environment.

Figure 1.1: A Classic Client-Server Model

 One way of bridging the gap between a resource-rich web server and a resource-

poor mobile client is to interpose a system which transforms the contents on the web into

 5

a suitable format for the mobile user. Hence, the need for middleware, which adapts to the

mobile environment, leverages the best of what is available on the web and does not pose

any additional work on the mobile client.

Figure 1.2: A System Environment for Transcoding Proxy

 We have devised such middleware based on a solution that allows users of mobile

computers to adjust the way in which their data from the web is retrieved. The

middleware dynamically transcodes the data to suit the receiver equipment and available

bandwidth. We achieve this by introducing a transcoding proxy system. As illustrated in

Figure 1.2, transcoding proxy acts as an intermediary between World Wide Web servers

and a variety of Web-enabled client devices that are connected over communication links

with widely varying characteristics. The proxy is a powerful machine in the (wired side of

the) wireless access network that filters and compresses the data stream originating from

the server to suit the current wireless bandwidth and device capability. This processing of

 6

the data stream (compression, filtering, conversion, etc.) is commonly referred to as

transcoding. Most of the systems follow a “split-TCP” approach, where data is

downloaded completely to the proxy, transcoded there, and then forwarded to a mobile

host.

 The idea of using proxy servers to improve Web browsing is not new [3], and some

implementations do exist [2,7]. The contribution of this thesis is to propose an easy-to-

use, portable and effective transcoding proxy architecture, supporting a dynamic

adaptation model for image transcoding in a modular and extensible way.

1.3 Thesis Objectives

Several interesting ideas have been introduced to improve the performance and usability

of World Wide-Web browsing in wireless environments. These ideas have considered

both hardware and software. Our main interest was to find a dynamically adaptive

approach that could reduce the download time at the client end. Surveys done on web

traffic within the last two years have consistently confirmed that images present a large

percentage of the webpage transmission load. Hence, reducing image file size would

improve transmitting files across low speed wireless channels. In this thesis, our major

aim was designing and developing an adaptive system for transcoding images in the

Internet in order to improve their delivery speed to a variety of client devices with a wide

range of communication and display capabilities. This system would be placed between

clients and servers, performing several operations on images such as lossy compression,

 7

scaling, color reduction, etc. on behalf of clients. We refer to this system as transcoding

proxy. We believe that this approach will increase the performance of WWW browsing

and reduce the data retrieval latency as well.

1.4 Thesis Contributions

Our work has the following contributions:

 In order to improve the accessibility of images in the Internet, we have developed

and implemented a transcoding proxy system that analyzes, manipulates and transcodes

images on the fly. Without requiring modifications to Web servers and browsers, the

transcoding proxy enables the following: (1) Dramatic reduction in Web download times

over low bandwidth links via data transcoding. (2) Reduction of per-byte costs over

tariffed links via data transcoding. (3) Tailoring of images for the multitude of small,

weakly connected but Web-enabled mobile devices that are now available. The

transcoding proxy is designed to adapt to dynamically changing bandwidth and display

limitations, see Section 5.3.

 One of the most common techniques for reducing data retrieval latency on WWW is

caching. We have investigated several proxy caching techniques in order to discover the

most suitable method for our transcoding proxy. Some caching techniques only cache the

transformed images and discard the original images as the case in [28, 73]. This policy

can save some time since the transformation operations will not be applied over and over.

This technique, however, assumes that both of the client and server are stationary and the

 8

bandwidth between them is fixed which is not the case with the mobile environment. In

addition, the device characteristics, bandwidth, and user preference must all be considered

in order to match the device and channel capabilities. As each client has a different

recourse limitation, sending the same transcoded image to all clients will not supply each

client with his requirements. Therefore, we have suggested a caching policy suitable for

current web traffic. Caching both the original and the transcoded images at the proxy side

is beneficial since the transcoding operations will be performed only when necessary. In

Section 5.3.5, we describe the caching technique.

 A paper entitled “Image Transcoding for Proxy Internet Wireless Access” was

published [89].

1.5 Thesis Organization

This thesis is divided into seven chapters including this chapter:

CChhaapptteerr 11:: IInnttrroodduuccttiioonn - This chapter introduces several motivations and briefly

outlines our work.

CChhaapptteerr 22:: TThhee cchhaalllleennggeess ooff mmoobbiillee ccoommppuuttiinngg - Several challenges and problems

associated with the wireless computing environment are described in more detail.

CChhaapptteerr 33:: RRee llaatteedd wwoorrkk - It mainly illustrates related work. In particular, it reveals the

work has been done to use client-proxy-server as an infrastructure for tackling mobile

environment constrains.

 9

CChhaapptteerr 44:: EExxppeerriimmeennttaall eennvviirroonnmmeenntt – This chapter describes image collection setup

and characteristics of the images and the results of performing various transcoding

operations on the images. Also, several key observations discovered during the

experiments will be described.

CChhaapptteerr 55:: AAnn iimmaaggee ttrraannssccooddiinngg pprrooxxyy - The transcoding proxy infrastructure is

presented and transcoding functions and policies are explored. It also describes the

various methods of transcoding data that we have used.

CChhaapptteerr 66:: EExxppeerriimmeennttaattiioonn aanndd eevvaalluuaattiioonn - The results of our experiments are

presented and discussed in this chapter.

CChhaapptteerr 77:: CCoonncclluuss iioonn aanndd ffuuttuurree wwoorrkk - It contains a brief summary, which is drawn

from our work and some possible areas of future work are indicated.

 10

CC hh aa pp tt ee rr 22

TTHHEE CCHHAALLLLEENNGGEESS OOFF MMOOBBIILLEE CCOOMMPPUUTTIINNGG

2.1 Wireless Communications Network

Mobile computers may move through different areas that provide a wide variety of

operating qualities. As a natural behavior, they may be physically attached to a high speed

or better (wired) connection at one moment and to a low speed or restricted (wireless)

connection at the next moment. Most applications and services have been designed under

the assumption that the terminals are stationary and are connected to fixed networks.

Consequently, these applications react poorly to sudden, drastic changes in network

resources. Furthermore, it is much more difficult to achieve wireless communication than

wired communication due to variations in propagation conditions and to excessive noise

and interference. As a result, wireless connections are of lower quality than wired

connections: low bandwidths, bandwidth variability, high error rates, disconnections, etc.

Wireless connections can also be lost due to user mobility. Users may cross to different

radio cellular areas or enter areas of high interference.

 11

 The first section of this chapter covers the major problems and design challenges in

wireless communications: limited bandwidth, greater variation in available bandwidth,

high error rate, heterogeneity, frequent signal fading, mobility, and mobile computers

capabilities. The discussion reveals various approaches that have been proposed to handle

some of the indicated issues. The second section introduces the well-known client-proxy-

server model, which is anticipated to be a suitable solution for the mobile environment

challenges.

Wireless Network Bandwidth Wired Network Bandwidth

Infrared Communication 1 Mbps Ethernet 10 Mbps

Radio Communication 2 Mbps FDDI 100 Mbps

Cellular Phone 9 - 14 Kbps ATM 155 Mbps

Table 2.1: Samples of Wireless and Wired Networks Bandwidths

2.1.1 Limited Bandwidth

Wireless networks deliver lower bandwidth than wired networks as shown in Table 2.1.

There are no clear anticipations that these values will be increased significantly in the

near future. In contrast, increasing traffic loads could even reduce these values. Unlike

stationary computers, mobile computer designs should be more concerned about

bandwidth consumption in order to improve their performance. As a rule of thumb,

network bandwidth is split among the users sharing the same cell [11]. Subsequently, the

bandwidth decreases whenever a new user joins the cell.

 12

 One way of improving network capacity is by installing more wireless cells to

service a user population. It could be done by: overlap cells on different wavelengths, or

reduce transmission ranges so that more cells fit in a given area. Also, certain software

techniques such as compression and filtering techniques [26] can effectively conserve

bandwidth. File pre-fetching is another technique [91], which can be used to smooth out

the data flow to the mobile computer for applications having bursty traffic. Adaptive

communication protocols have been proposed to compensate for the slow speed of some

existing mobile communication links and to save the communications cost by reducing

link usage. Schemes for aggregating network bandwidth have been suggested to combine

several wireless link signals so as to provide higher bandwidth for a period of time to

certain receivers.

2.1.2 High Bandwidth Variability

The wide variation in network bandwidth is another problem that mobile computing

suffers from compared to stationary computers. Bandwidth can dynamically change from

one to four orders of magnitude between being plugged in versus using wireless access.

This can be caused by switching from wired to wireless access. Due to such variability,

adaptation has become an essential factor in communication protocols and systems

software for mobile computing. An application can approach this variability by adapting

to the currently available resources, providing the user with a variable level of detail or

quality. As an example of adaptation in systems software, a generalization of the Coda

[39] architecture called Odyssey [35] has been suggested to support the capability of

 13

“application-aware adaptation” of mobile clients.

2.1.3 High Error Rate

In contrast to wired links, the bit-error rate on wireless links is much higher. As a mobile

computer migrates from one place to another, different levels of quality of service (QoS)

will be provided by diversity of networks. Also, higher bit-error rates might result from a

combination of factors such as multi-path fading, terrain and environmental factors, and

interference from other transmissions [5]. Wireless links have a bit-error rate of 10-3,

while wired links enjoy bit-error rates between 10-9 and 10-6. Error recovery schemes for

data transmission over wireless channels are routinely used [20].

2.1.4 Heterogeneity

As a mobile unit moves to a different location, it may come across different network

environments, qualities, and services. It may also need to use different access protocols.

The majority of wireless network services use different modulation and transmission

methods; therefore, users must have a different proprietary modem to tap into each

service. Such problem of interoperability can affect the scale of mobility. Another

problem with heterogeneous networks concerns access cost. Most wireless network

services charge a flat fee for their service, which usually covers a fixed number of

messages. Additional charges are levied on per packet or per message basis. In contrast,

the cost for sending data over cellular is based on connection time instead [6]. Since

different services have different access costs, the cost of a query to a centralized database

 14

may depend on the user location. A query asked when a user is connected to a wireless

LAN may incur a different cost from one posed when the user is connected to a wireless

WAN. Therefore, new methods for dynamic and distributed query optimization will have

to be developed to handle varying access costs. Mobile computers also may need to

switch their air interface devices when moving from indoors to outdoors. For example,

the infrared devices cannot be used outside because sunlight drowns out the signal. Even

if only radio frequency transmission is used, the interface may still need to change access

protocols for different networks.

2.1.5 Security Risks

Wireless communication is susceptible to high error rates and transmission interference or

interception. Transmission interception may cause security risks. Therefore, there is a

need for security measures, which can be achieved via encryption and authentication

methods implemented in either software or specialized hardware. An example of such

security software is MIT's Kerberos [9]. Kerberos is a trusted third-party authentication

service. It can authenticate users without revealing their passwords on the network and

create encryption keys that can be shared among mutually suspicious parties. It also

allows a mobile unit to authenticate itself in a new domain. However, its security is not

perfect and is susceptible to off-line password guessing attacks (since Kerberos still relies

on well-chosen passwords and their secrecy) and replay attacks (an attacker retransmitting

packets intercepted from the network) within a timeout period.

 15

2.1.6 Mobile Host Protocols

In order to deal explicitly with the concept of computers that move, new communication

protocols are needed. The current assumptions made in protocols for the fixed network

may no longer be valid due to the effects of mobility. The developments of protocols for

locating a mobile host are currently under way. There have been several proposals for

mobile host protocols that are compatible with the TCP/IP protocol suite, of which the

best features are incorporated into a proposed standardization document called Internet

Draft [40]. These protocols attempt to make the operation and performance of a mobile

host indistinguishable from that of a fixed host. This goal translates into two essential

requirements: operational transparency and performance transparency above IP.

Operational transparency means not having to reinitialize the system or individual

applications after relocation has taken place. One of the factors required to ensure

performance transparency is optimal routing of packets to and from mobile hosts. The

assumptions made in traffic management for the fixed network need to be rethought and

revised since, for instance, backing off or slowly adjusting the transmission rate when

congestion is assumed is not the correct behavior in a mobile network.

2.1.7 Frequent Disconnections

In connecting a mobile computer to a network via radio or infrared links, the connection

suffers from periods of disconnection, called fading. In order to ensure proper operation

in spite of signal fading, two potential approaches have been explored to mask the

 16

interruption intervals. One approach is to make the mobile computer more autonomous

(i.e. less dependent on the network) by using such methods as file caching or pre-fetching.

Another approach is to decouple the mobile computer and the network so that they can

operate asynchronously. These techniques, therefore, have the potential to mask some

network failures.

2.1.8 Mobility

As people move, their mobile computers will use different network access points, or

‘addresses’, which consequently increases the volatility of some information. Today’s

networking is not designed for dynamically changing addresses. Once an address for a

host name is known to a system, it is typically cached with a long expiration time and

with no way to invalidate out-of-date entries. In the Internet Protocol (IP), for example, a

host IP name is inextricably bound with its network address – moving to a new location

means acquiring a new IP name. Human intervention is often required to coordinate the

use of addresses. There are four basic mechanisms [12-15] for determining the current

address of a mobile computer, which are the building blocks of the current ‘mobile-IP’

schemes.

2.1.9 Mobile Computer Capabilities

Small size and weight of a mobile computer means limited memory size, small storage

capacity, and a small user interface. Various methods have been suggested to cope with

the problems of limited memory and storage capacity including compressing file systems,

 17

compressing virtual memory pages, and accessing remote storage over the network. The

small user interface affects both data entry (keyboard) and data display (screen size). The

physical limitations of the mobile terminals require new types of interfaces, which do not

rely on keyboard and screen size. Moreover, power is consumed mostly by the screen

backlighting, the central processing unit (CPU), the memory, the hard disk, the display,

and the keyboard. Since battery technology is fairly mature and the lifetime of a battery is

not expected to increase very much over the next decade, low power consumption makes

energy conservation a key issue in both hardware and software. The current memory

technology for portable computers is dynamic RAM (DRAM) with power consumption

of 0.5 watts for a bank of 4M. Flash EEPROM, a low power, non-volatile, dense storage

technology, is considered as a potentially cheaper alternative. Flash memory has a read

latency close to that of DRAM and a write latency close to that of disk, and can only

withstand a limited number of writes over its lifetime. However, the power required for

flash memory access is 20 times more than when it is idle.

2.2 WWW Browsing Through a Proxy Server

There is a large body of work that addresses the problem of capability mismatch for

multimedia content in wireless web access. The client-proxy-server model [1,3],

typically, has been used as general-purpose solution. The proxy transcodes multimedia

formats, most often images, according to some predefined rules, usually in some manner

that trades quality for bandwidth. This section will illustrate three approaches that have

 18

been proposed to tackle some of the issues described in the previous section. Application

partitioning, proxy based, and end-to-end approaches will be briefly described. Figure 2.1

captures the proxy server architecture for these approaches.

Figure 2.1: WWW Browsing Through a Proxy Server

2.2.1 Proxy Based Approach

Many proxy-based systems [1,26,30] have been developed to provide web access to

mobile users. Typically a proxy server can be interposed between clients and servers to

become the “workplace” in which different kinds of computation can be performed on

behalf of clients. Figure 2.1 shows that the proxy has the capability of filtering and

processing clients’ requests and all the corresponding answers from the servers. In

general, the software architecture of the proxy is modular and extensible, and this implies

that it can integrate different and additional functions to meet specific user needs.

Transformation Aggregation Caching Customization (TACC) model [8] takes a step

towards a more general proxy architecture. This proxy architecture reduces the bandwidth

 19

demands on the infrastructure through lossy compression and allows legacy and other

nonstandard (including thin) clients to inter-operate with existing servers. The TACC

model also supports application adaptation, which enables the proxy agents to react to the

environment changes on behalf of mobile clients. This approach avoids inserting

adaptation machinery at each origin server. From the client’s perspective, the proxy is

simply a server that gets the data from someplace else. The TACC model contains a

variety of building blocks, or workers. Each worker is responsible for a particular task

such as scaling/dithering images, format conversion, filtering, etc. Workers are built in

such manner that they can easily chain or contact each other.

2.2.2 End-to-end Approach

With the growth of the wirelessly connected user community and the advent of mobile

type devices, the transformation needed by the client, and hence the computational

resources needed by the proxy to affect it, increase significantly. This has led to the

argument that a purely proxy based approach will become gradually non-scalable. There

is also a debate as to whether proxy based solutions are really needed to provide

networking services to mobile client. The alternative solution, which was presented firstly

by [16], is to make the server itself provide data in a format that suits mobile access. This

typically represents an instance of end-to-end approach, which is well known in

networking and system literature. In web context, multiple versions of web pages with

different resolutions or formats kept at servers represent an end-to-end approach. The

 20

end-to-end approach is predicated upon the client being able to express its preferences for

particular resolutions to the server. Once the client sends the preferred representations as

part of the request, the server can automatically send the right representation. For

example, an image file may be made available in different resolutions by the content

provider on the server. When the request is made the server sends the image file, which

has the resolution appropriate to the present QoS and client parameters. This implies that

the preferred format is included in the request.

 Since it is not certain that every server will be able to provide data in the format and

resolution that the client needs, it is obvious that we may still need some proxy

functionalities such as disconnection management, multimedia transcoding, protocol

translation, caching, etc. Thus, the theme of incorporating both end-to-end and proxy-

based approaches, using each as appropriate, was proposed by [17,18,22] to support web

access from mobile platforms. Some tasks, such as complex transcoding, which require

significant computational resources, are best done in an end-to-end manner, while the

proxy can handle other tasks. For example, if the server is not able to provide the

multimedia content at a resolution appropriate for the client, the proxy monitors and

transcodes the server response.

2.2.3 Application Partitioning Approach

The concept of application partitioning has been proposed by [23,24,27] to match the

capabilities of mobile hosts and the wireless links. The core mechanism of this approach

 21

is based on dividing the application’s functionality statically between the mobile host and

the wired network. This is similar to a client/server architecture, but with slightly different

characteristics than are typical for that model. In the application partitioning approach, the

application’s objects are usually split between the client and proxy server, rather than

between the client and the server. The guideline for this approach has been to allow the

client to perform those tasks with lightweights, and move as much as possible of the

heavy weight tasks to the proxy server. For example, sending HTML document to thin

clients would be too cumbersome for them, but sending screen-sized bitmaps is not

cumbersome. As shown in Figure 2.1, the proxy server acts as middleware between client

and servers, performing aggressive computation such as data filtration on behalf of the

client, and then sends the output result back to the client. This way enables thin clients to

offload some of their work onto powerful machine and to access existing content with no

server modifications.

 22

CC hh aa pp tt ee rr 33

BBAACCKKGGRROOUUNNDD AANNDD RREELLAATTEEDD WWOORRKK

This chapter starts with a section that briefly surveys today’s state of wireless data

technology. An overview about wireless technology, cellular network topology, and web

browsing will be given in Section 3.1. The second section will mainly describe a variety

of related work aimed at handling some of the problems identified previously. We have

organized the related work into three categories: hybrid network- and application-level

approaches, transcoding proxies, and partitioning of application complexity.

3.1 Wireless Networks

The use of radio waves to communicate information has been known for over a century

now due to pioneering work by inventors like Marconi, De Forest, and Armstrong. Since

Marconi’s demonstration of Trans-Atlantic radio communication in 1901, the field has

grown by leaps and bounds to where it is today.

 The past three decades have seen numerous research and commercial efforts in

 23

building and deploying systems to transmit digital data over wireless media. In the late

1960s and early 1970s, the ALOHA project led by Norm Abramson at the University of

Hawaii investigated packet-switched networks over fixed-site radio link [52]. The

contention resolution protocols developed in ALOHANET laid the framework for later

Carrier Sense Multiple Access (CSMA) protocols for channel access. In 1972, the U.S.

Defense Advanced Research Project Agency (DARPA) launched the Packet Radio

Program and its successor program on Survivable Adaptive Networks (SURAN) to study

issues in packet radio networks such as channel access, link protocols, and routing [55,

60]. However, despite this work, wireless data communication remained largely a

laboratory curiosity for several years.

 In the 1990s, this has changed dramatically. Advances in hardware technology have

enabled cheap and portable wireless devices for data communication. This, coupled with

the rapid expansion of the Internet and the World Wide Web, has resulted in a variety of

wireless technologies becoming commercially available.

3.1.1 Wireless Technology Overview

Wireless data networks typically operate in the Radio Frequency (RF) (3 KHz to 300

GHz) or Infrared (IR) (1000 GHz to 30000 GHz) frequency range. IR offers high speeds

over limited distances. Experimental research IR networks offer up to 50 Mbps over a few

meters [53], while commercial, IR-based wireless LANs have maximum bandwidths

between 1 and 10 Mbps today. The IR frequency range is very close to that of visible

 24

light, which precludes transmission through walls or floors. Thus, while its range is more

constrained than its RF counterparts, it offers a much higher degree of frequency reuse.

The existence of impenetrable objects and reflections often causes IR dead spots in

rooms, which in turn causes packet loss. The Infrared Data Association (IrDA) [63] has

standardized the lower layer protocols and interfaces for IR devices, which is almost

certain to be a part of every portable computer and handheld device in the future.

Commercial IR-based LAN products available today include IBM’s Infrared wireless

LAN and InfraLAN.

 RF can usually penetrate walls, which makes it an ideal technology for total

seamless coverage. However, compared to IR, RF devices typically suffer from higher

levels of interference and noise, which degrade the received signal and cause bit-errors.

Because a large number of users in the same frequency band can degrade overall usability

and performance, the use of different wireless frequencies is governed by strict spectrum

management regulations. In the United States the FCC regulate the use of radio

frequencies. Other countries have similar organizations. Typically, licenses are required

to operate RF devices in most frequency bands.

 For several years, the application of RF to data communication exploited

narrowband technology. Here, the input signal is modulated over a constant frequency

wave, called the carrier wave, and the resultant signal is transmitted through the sender’s

antenna. When it reaches the receiver (often tainted by interference or noise), the receiver

picks up this signal through its antenna, demodulates it, filters out the carrier frequency,

 25

and attempts to estimate the signal that was transmitted based on certain decoding rules.

An error could occur in the decoding process if the level of noise or interference is too

high-this manifests itself in the form of corrupted bits, which higher-level data protocols

or applications must handle.

 One of the major problems with narrowband systems that make it vulnerable to

interference is its lack of frequency diversity, since the entire carrier is concentrated in a

single frequency. Spread spectrum [64] is a technique to combat this problem. Here, the

transmitted signal is spread over a broad frequency band, which makes it more robust to

interference or jamming and more secure against eavesdropping. There are two common

kinds of spread spectrum techniques: direct-sequence and frequency-hopping. In direct-

sequence spread spectrum, the input signal is transmitted simultaneously over a broad

range according to a pre-assigned code. In frequency-hopping spread spectrum, the

transmitter sends data on one narrowband frequency for a short amount of time, then

jumps to another narrowband frequency, using a pseudo-random hopping sequence. The

receiver synchronizes with the sender’s hopping sequence and tunes in to those

frequencies to receive and decode the signal. While frequency-hopping is more robust to

sources of interference than direct-sequence spread-spectrum, maximum data rates are

typically lower. Thus, it is not as suitable for high-speed wireless access as for slower,

wide-area links.

 Examples of RF-based wireless LAN products include Solectek’s AirLAN,

Aironet’s ARLAN [66], Motorola’s Altair Plus-II, Proxim’s RangeLAN products [65],

 26

and Lucent Technologies’ WaveLAN [70]. Most of these operate in the unlicensed

Industrial, Scientific and Medical (ISM) bands at 915 MHz and 2.4 GHz that have been

set aside by the FCC for experimental purposes.

 Examples of wide-area RF networks include Metricom’s Ricochet network [67] that

operates in the 915 MHz band and uses frequency-hopping spread spectrum technology,

the Cellular Digital Packet Data (CDPD) network [69], and the GSM data service [68].

Peak link bandwidth in these outdoor networks today are typically between 10 and 100

Kbps, while future systems are likely to be in the 100-500 Kbps range (e.g., Metricom’s

proposed “Autobahn” network [71]).

Figure 3.1: Schematic Arrangement of Cells in a Cellular Wireless Network

3.1.2 Cellular Network Topology

Many wireless and mobile networks are organized in a cellular topology. These

topologies are composed of a wired, packet-switched, backbone network and a wireless

 27

network. The wireless network is organized into geographically defined cells, with a

control point called a base station (BS) in each of the cells, as shown schematically in

Figure 3.1.

 These base stations are also directly connected to the wired network, routing packets

between the wireless and the backbone network as shown in Figure 3.2. A mobile host

(MH) receives data from a fixed host (FH) in the Internet routed via the BS of the cell it is

currently in. As the MH moves between wireless cells, the task of forwarding data

between the wired network and the mobile host must be transferred to the new cell’s BS.

This involves updating routing information in the wired infrastructure to reflect

movement, and is known as a handoff [56,57,59]. The IETF standard for mobility is the

Mobile IP protocol [54]. It is important for several applications and higher-level protocols

that handoffs be as seamless as possible, incurring low latencies and causing little or no

packet loss [58,59]. Numerous schemes have been proposed in the literature and several

systems have been deployed to achieve these goals [e.g., 58,61,62].

Figure 3.2: Network Topology of a Cellular Wireless Network

 28

3.1.3 Web Browsing (WWW)

HTTP [72] is a network protocol used to deliver virtually all files and other data on the

World Wide Web such as HTML and image files. The Web client communicates with a

Web server using one or more TCP connections (Figure 3.3). HTTP normally establishes

its first TCP connection and retrieves the HTML document identified by a URL. After the

document is retrieved this TCP connection is terminated. What happens next depends on

the client browser. Typically, the client browser will extract the embedded HTML

document entities from this document and retrieve them based on extracted URL’s.

Figure 3.3: TCP Connections for WWW

3.2 Related Work

 A considerable amount of recent efforts has focused on the area of information access

from mobile platforms, using different methodologies. The client-proxy-server model that

aims to overcome the challenges faced in the mobile computing scenario has been used

by the most popular projects including our project. Several techniques at the network

level have been used to shield clients from the effect of poor (especially wireless)

 29

networks [4]. At the application level, data transcoding mostly using proxy server has

become more common. This section describes some well-known projects for the purpose

of improving wireless network access from mobile computers.

3.2.1 Hybrid Network- and Application-level Approaches

To the best of our knowledge, there are at least two projects that follow the policy of

combining network-level optimizations with some application-level content filtering.

 The Mowgli [33] system consists of two mediators, the Mowgli WWW Agent and

Proxy located on the mobile host and the mobile-connection host respectively. They

communicate with each other through the Mowgli HTTP protocol, which reduces the

number of round-trips between client and server. A specialized transport service, the

Mowgli Data Channel Service is used for reliable communication between the mobile-

connection host and the mobile host. Mowgli WWW reduces the data transfer over the

wireless link in three ways: data compression, caching, and intelligent filtering. Mowgli

WWW supports contenttype specific as well as generic data compression, using the

splay-prefix algorithm [36] as the generic compression algorithm. Contenttype specific

compression means that each particular document type (e.g. text, image data, audio data)

can be assigned a different compression algorithm that performs best on that type of data.

Generic compression is applied to all document objects that have not been assigned a

contenttype specific compression method. Currently, the only supported contenttype

specific algorithm is GIF to JPEG conversion, which strictly is not a data compression

algorithm. However, GIF to JPEG conversion often provide good results, because the

 30

JPEG format uses a lossy compression algorithm that sacrifices color information in favor

of smaller size. In Mowgli WWW the user is given the opportunity to specify a maximum

size for retrieved text documents as well as embedded images. Since the size distribution

of WWW documents is heavy-tailed [37], a small percentage of them are quite large. By

specifying maximum sizes for document objects the user effectively “cuts the tail” of the

distribution and gives the system an upper limit for how long a document retrieval may

take. Large embedded images that exceed the size limit are not transferred to the mobile

node. The Mowgli WWW Agent replaces them with a generic image to inform the user

that the images were not received.

 A drawback of this work is that Mowgli cannot dynamically adapt its behavior to

changing network conditions. Also, their system replaces standard communication

protocols with specialized communication protocols, which prevents the user from

installing the same protocol software on fixed and mobile computers. In particular, this

problem occurs when the user wants to operate a mobile computer as a fixed host as well.

In addition, Mowgli’s protocol-level lossless compression stands in contrast to our

document model’s semantic lossy compression.

 Bruce Zenel’s “dual proxy” architecture [26] can be realized as a proxy server

situated between a client on the mobile host and a server on a fixed host, which are

separated by an area of restricted network resource. This system also provides both low-

level and high-level filters. The low-level filters operate at the socket API level and

require modifications to the mobile device’s network stack. The high-level filters can use

 31

application-specific semantics to filter data before it is sent to a client. The action of filters

may range from simple discard/forward to arbitrarily complex processing. Filters may be

pre-existing or dynamically downloaded from an associated mobile host application. The

mobile hosts are using IP to communicate with the fixed hosts along with Mobile IP [45]

to handle IP routing. In Mobile IP, a Mobile Support Router (MSR) is an IP router with

the extra capability of running a special protocol that keeps it and other MSRs informed

of the current location of mobile hosts. Packets from fixed hosts, destined for a particular

mobile host, are routed via standard IP to an MSR that advertises itself as the reachability

point for the mobile host. The packets are then encapsulated, tunneled to the MSR that is

serving as the default gateway for the mobile host, decapsulated, and finally sent to the

mobile host using regular IP. The proxy is made up of three cooperative components:

High Level Proxy, Low Level Proxy, and Event Manager. The High Level Proxy allows

filters for application layer protocols (e.g. MPEG, SMTP, HTML) to be downloaded

dynamically from mobile host applications. The Low Level Proxy is used to create and

install filters for the transport and network layers (e.g. UDP, ICMP, RPC). The Event

Manager provides a control interface for the filters running within the High and Low

Level Proxies.

 The disadvantage of [26] is that the high level filter is part of the application rather

than a middleware component, which complicates its reuse by other applications and

makes it awkward to support legacy applications. This approach also does not consider

the problem of proxy handoff process.

 32

3.2.2 Transcoding Proxies

A number of research efforts have focused on using transcoding proxies to compress and

filter the Internet content in order to improve data transmission over wireless link.

 The GloMop [1,29] project intends to ameliorate the resource inequality between

fixed and mobile computers through the use of application layer proxies. A proxy residing

on the wired side of a network uses application specific information to tailor the filtering

of data destined for the mobile host. Filtering is in the form of distillation, which can be

envisioned as a highly lossy, real-time, datatype-specific compression. This process

preserves most of the semantic information to make a document useful while reducing the

size in order to facilitate cheaper transmission and rendering on the mobile host. The

proxy can convert each semantic type (only text and images so far) to a common

intermediate representation (a subset of HTML for text, and PPM [31] for images), distill

the intermediate representation, and convert it to a different target representation for the

client if desired. GloMop implements an image distiller called gifmunch, which performs

distillation and refinement for GIF [32] images. The image distiller is constructed largely

from source code in the NetPBM Toolkit [31]. Currently the distiller picks a color palette

based on the known capabilities of the client (which identifies itself when it first connects

to the proxy and establishes a session), and optimizes for a particular target size in bytes

of the distilled representation by predicting compression. Prediction is done by observing

the expansion when converting the original image to the PPM intermediate format, and

multiplying this by an encoding-specific “expansion ratio” based on the effective bits per

 33

pixel achieved in past runs using the same target encoding. GloMop also implements a

rich-text distiller, which performs lossy compression of PostScript-encoded text. The

distiller replaces PostScript formatting information with HTML markup tags or with a

custom rich-text format that preserves the position information of the words.

 Although the model of this system provides a reasonable set of guidelines for

thinking about partitioning it does not address the disconnection problem at all. Currently,

there are some thoughts to integrate Rover into their model to provide a rich abstraction

for dealing with disconnection operations.

 The Mowser [34,38] project follows the client-proxy-server model, which is similar

to our work. Mowser allows mobile users to specify their viewing preferences, based on

the network connection and available resources, and performs active transcoding of

HTTP streams accordingly. The viewing preferences stored for each MH include a

starting point, color capability, video resolution, sound capability, etc. The preferences

can be modified by the MH whenever the network connections or available resources are

changed. When the proxy receives a request from the MH, it looks up the preferences

stored with the IP address of the MH and processes the request accordingly. If no

preferences had been assigned by the MH, default preferences are considered. For a MH

like the PalmPilot, which can handle only text and images, the proxy greatly reduces the

data transfer by selectively GETing the files. That is, when the proxy receives a GET

request from a PDA, it sends a HEAD request to the WWW server to get information

about the content type of the file, and then GETs the file only if the PDA can handle it.

 34

For example, if the proxy finds an image tag in the HTTP stream received from the

server, the proxy will read the URL of the image file to be fetched and first sends a

HEAD request to the server. The proxy checks the content-type and content-length

information received from the server to decide whether to transcode or not transcode the

image. Typically, if the content-length is small enough to be handled on the MH,

unmodified image will be sent to the MH. But if the image is larger than what can be

handled by the MH, it is reduced in size or color as requested by the MH. The image files

are scaled down in size, or the number of colors is reduced, or both without sacrificing

semantics. The content-type information is used to decide the transformations that the

image file has to go through. All images are converted to portable pixmap format for

processing and then converted back to GIF format for displaying. Also, the original URL

in the image tag is replaced with the URL of the modified image stored locally by the

proxy and sent to the MH. This makes the MH GET the modified image file from the

proxy. With PDAs, the proxy might have to reduce images to 2-bit gray scale and thumb

size.

 In this work, the proxy does not use all the preferences set by the user to limit or

transform the data before serving the MH. Furthermore, the proxy adds a preference

overhead due to two reasons. Firstly, it is written in Perl and uses netpbm for the

processing of image files. The speed could be increased by writing optimize C code and

image conversion routines. Secondly, messages go all the way up to the application layer

in the proxy even if data just needs to be written from one socket to another.

 35

 The InfoPyramid [41] model presents a general framework for handling the Internet

content. It typically allows specialized methods to be plugged-in for analyzing, filtering,

translating, and manipulating the Internet content. InfoPyramid develops a conceptually

redundant representation of the Internet content that aggregates multiple versions of the

content along the dimensions of modality (video, image, text, and audio) and fidelity

(which includes summarized and compressed versions) [42]. The translation and

summarization methods generate the alternate versions of the content as needed. The

translation methods convert the content between modalities, such as text to audio, or

video to images. On the other hand, the summarization methods generate versions within

the same modality, but with different fidelity, such as compressing the images,

summarizing text, and extracting and re-animating the key-frames from video. The

transcoding system retrieves, analyzes, and ingests the Internet content into an

InfoPyramid representation. A policy engine gathers the capabilities of the client, the

network conditions and the transcoding preferences of the user and publisher to define the

transcoding options for the client. The system then generates and selects the output

versions of the content to be delivered to the client device. The InfoPyramid system

provides the mechanism for assigning content value scores to the alternate versions of the

content. In some cases, the content value scores are derived automatically by measuring

the loss in fidelity that results from translating or summarizing the content. Otherwise, the

content value scores can be tied directly to the methods that manipulate the content. The

content value scores comprise only part of the information that can be used in the content

 36

selection process. Both the publisher and user may have preferences for how the content

is transcoded.

 The system load on proxies is not considered in their model. Decisions are mainly

based on current link conditions and client device capabilities. Moreover, object mobility

and proxy migration issues are not addressed in their design. Similar to the other

approaches described, their system does not provide any further information about how

the system supports the case of multi-user access.

 The Class-based Proxy [73] system proposes to group the displays of popular

mobile computers into seven classes according to the size and color. The class-based

proxy server then distills and saves image file according to the class. The system provides

two modes; the class mode in which the user can easily choose the display configuration,

and the expert mode in which users can customize their own display configuration. For

example, the device of 256 x 24 display is used in a special environment of automobile,

and thus it is configured in the expert mode. In the class mode of HTTP 1.0, classes are

implemented using the port without changing the protocol. The port number must be set

up along with the IP address when the proxy server is configured in a web browser. The

use of port number makes it possible to use the class-based proxy server without

modifying the web browser in HTTP 1.0 environment and easily identify the class. For

instance, the port number 8885 is used as the port number of proxy server and web

browser of a mobile computer of class 5. It can easily expand the proxy server by

assigning a new class number when mobile computers of new display characteristics

 37

appear. In class mode of HTTP 1.1, the information on the mobile computer can be

transferred to the class-based proxy by using the CC/PP of HTTP 1.1 without using the

port number. In expert mode, users define the display size and other options. The user

first logins to the server using the login name, and then sets up the environment

parameters used for distillation. Cache is also assigned to each user.

 Their system suffers from the drawback that image distillation is typically based on

the display characteristic. The system does not consider the network constrains or the user

preference. For example, Image distillation would not take place when the display size is

800x600 or larger even if the bandwidth was low. The system uses the CC/PP, which is

one of the HTTP 1.1 features, to transfer the user profile. Because the profile of the class-

based proxy is written in XML/PDF, both the web server and web browser should be able

to process XML.

3.2.3 Partitioning of Application Complexity

Another line of work has focused on the idea of portioning applications between a thin or

poorly-connected client and more powerful server.

 The Wit [43,44] project uses application partitioning to increase an application's

utilization of dynamic resources. The Wit typically partitions mobile applications between

a client running threaded Tcl on an HP palmtop, and a workstation-based proxy process.

This partitioning is realized as the assignment of application data and functionality to both

mobile and stationary machines. Applications running on Wit may: execute entirely on

 38

the palmtop, be partitioned between the palmtop and a LAN workstation, or execute

entirely in the wired network, using Wit only for simple terminal I/O operations.

Partitioned elements are known as hyperobjects, which may be migrated or replicated

across the wireless link. These objects are designed to be linked to each other in ways that

expose application structure to the system in a uniform, manageable way. The system

then manages these objects using caching, prefetching and data reduction. In general, the

Wit system is divided into network-proxy and palmtop components. Palmtops are usually

connected to the LAN via ParcTab transceivers and gateway processes. Each palmtop is

represented in the wired network by a network-proxy process on a workstation. Messages

are forwarded from a gateway to the Wit proxy for the sending palmtop. The Wit proxy

may handle the message, or may pass it along to an application. Applications always

communicate with the palmtop via the proxy, which insulates them from the

complications of palmtop mobility.

 The Rover [47] toolkit offers mobile communication support based on the idea of

mobile objects. In the Rover Toolkit, relocatable dynamic objects and queued remote

procedure calls are provided in order to better support application mobility. A relocatable

dynamic object (RDO) is an object (code and data) with a well-defined interface that can

dynamically be moved between a client and server to reduce client-server communication

requirements. Queued remote procedure call (RPC) is a communication mechanism that

permits RPCs to be queued for later transmission and execution, allowing the caller to

continue processing even when a host is disconnected. For example, simple GUI code can

 39

be migrated to the mobile, where it will use queued RPC to communicate with the rest of

the application running on a server. Applications are designed to consist of a set of RDOs

that move between client and server depending on the state of the mobile host. The Rover

system provides an execution environment for code associated with RDOs and handles

the transport of RDOs between the client and server (via queued RPC). The system also

contains extra functionality such as an object cache in order to make mobile applications

more efficient.

 One of the drawbacks of such a system is that mobile applications must be designed

from scratch using a new programming model. They take the approach that bandwidth

can be conserved by intelligently partitioning the application, in contrast to our design in

which conservation is achieved by filtering protocols. It is unclear whether this is a

practical solution. Application partitioning may lead to a more optimal solution, while

protocol filtering (if done properly) is guaranteed to be more optimal than the base case.

In addition, application partitioning may lead to security and fault tolerance problems if

code and data originally designed to reside at the client is moved to the server in order to

conserve bandwidth.

 In [46,48], software architecture for supporting mobile applications has been

proposed. The mechanism of this system is based on two notions: service proxies and

object graphs. In their design, an application is partitioned into two pieces, one piece runs

on a mobile computer, and another piece runs on a stationary computer somewhere within

the wired infrastructure. These sides are connected by wireless networks that may be

 40

replaced on the fly. The piece on a stationary computer is called a service proxy. The

service proxy filters or caches data from servers before transmitting the data to the piece

on a mobile computer. These two pieces are constructed by composing small object

graphs whose composition can be dynamically reconfigured by adding or removing

replaceable devices.

 Their work mainly focuses on constructing an infrastructure to allow these object

graphs to be created and reconfigured in a dynamic way depending on state information

obtained from the mobile host. Mobile host interference is required to trigger the handoff

process. The running application usually suspends for long periods of time, from the

mobile host triggering the handoff process to the end of the migration process. This work

is also limited in that it does not address object graph management (i.e., initial setup of

object graphs and their possible movement).

3.3 Summary

Mobile users have special requirements that should be taken into account when designing

applications and communications architecture. We have discussed a number of

performance problems with the mobile computing environment in general. We have also

described several projects that have proposed a variety of solutions to improve the

performance of mobile access information. As can be seen from the previous work, some

proxy servers do not have any information on the hardware specification of mobile hosts;

the image file is typically distilled without full consideration on the client device

 41

capabilities. The main aim in their work is to adapt the web content to bandwidth

variations by selecting a suitable compression scheme. On the other hand, the work has

been done by [73] emphasize fully about the hardware specification of mobile computers.

Their system adjusts the image file according to the size and color property of the mobile

device display. Other transcoding proxies [1,29,74] typically consider a few client devices

and employ static content adaptation strategies. A common policy is to distill all images

by a fixed factor. Thus, these transcoding proxies fail to dynamically address the variation

in the resource requirements of different web documents. The sole purpose of the service

is to improve response times for clients connected over slow links such as modems. The

set of client devices will also grow more diverse. Certain resources, such as effective

network bandwidth, costs and patience of the users can be different for similar client

devices. The static adaptation policies used by these systems do not handle well this

variability in web content and client resources. Accordingly, there has yet to be a system

that combines display catachrestic, network bandwidth, and user preference in order to

provide a general dynamic filtering architecture. The contribution of my thesis is the

design and realization of such a system, and an evaluation of its usefulness. In our proxy

transcoding system, adaptation to the changes in the network resources, user preferences

and device characteristics are left to the proxy server. The proxy intercepts client device’s

requests for web pages, fetches the requested content, adapts it and sends the adapted

version to the client. This content adaptation is often termed “transcoding”. In our

system, images are customized based on three parameters: display characteristics,

 42

available bandwidth, and user preferences. The system selects a number of different

transcoding operations that provide the “best value” within the constraints of a client’s

resources. The mobile host subsequently gains the benefit of transcoding images in

speeding image delivery as the customized images are often much smaller than the

original images. The caching mechanism of our system can also increase the performance

of image delivery. Caching the original and the transcoded versions of image files can

reduce the process time of the proxy server and improve the response times.

 43

CC hh aa pp tt ee rr 44

EEXXPPEERRIIMMEENNTTAALL EENNVVIIRROONNMMEENNTT

4.1 Objectives

Transcoding is a powerful technique employed by network proxies to dynamically

customize multimedia objects for prevailing network conditions and individual client

characteristics. Transcoding can be performed along a number of different dimensions

and the specific transcoding technique used depends on the type of multimedia object.

The scope of this thesis is limited to only one type of multimedia objects, which is image

multimedia. Understanding the nature of typical Internet images and their transcoding

characteristics was one of our research goals that would enable us to develop a powerful

transcoding technique. We focused our attention on transcoding that customize an image

for file size savings. Gaining such kind of knowledge allows the service to choose

potential transcoding techniques that offer benefits for a wide variety of images. It also

allows the service to avoid choosing transcoding techniques that might appear promising

but are not effective for their target workload. We designed our experiments to answer the

 44

following questions: Firstly, what are the characteristics of the images accessed on the

Internet today? Secondly, how do various image transcoding techniques perform for these

images? We are concerned mainly with transcoding that yield file size savings. Hence we

define a transcoding that saves at least 50% of the file size for 50% of the images as a

productive transcoding.

 This chapter is organized as follows: Section 4.2 describes our image collection

setup. Section 4.3 provides a brief overview of the GIF and JPEG file format. Section 4.4

and 4.5 describe the characteristics of the images and the results of performing various

transcoding on the images, respectively. Section 4.6 describes several key observations

discovered during our experiments. In Section 4.7, a brief summary will be provided.

4.2 Image Collection

A workload of typical images accessed on the web is crucial for drawing realistic

conclusions about the effectiveness of a transcoding operation. However, most of

standard access trace collections from server and network proxy web traces [80, 81] do

not accurately reflect the data stream requested and experienced by users. For our study,

we were much interested to trace the data stream that captures the user perspective to

attain accurate access trace statistics. In other words, we need the actual images that a user

is downloading. So we can measure the applicability of transcoding to the actual images

and not to some synthetic images that were generated to be of the same size as the images

available in an access trace. We therefore collected caches of nine users for a period of

 45

five weeks to trace the most frequent file types and sizes used in web pages when

accessing the Internet. Then we applied a very simple batch program on the collected

caches for classifying files based on their type and size. Users had a widely different

range of interest and browsed a very heterogeneous collection of web sites. For each user

we confirmed that the most frequently used file types are GIF and JPEG images.

Figure 4.1: File Type and File Size Distributions for Selected WWW Users

 Figure 4.1 demonstrates our findings across all users and shows that GIF and JPEG

represent 62.24% and 29.24% respectively of the user traffic. Other file formats,

including PNG, make up the rest of the (8.52%) requests. GIF and JPEG images

comprised 50.43% and 32.56% of the image bytes transferred, respectively. Interestingly,

 46

while most of the images are GIF’s, bytes transferred are more evenly distributed between

GIF’s and JPEG’s.

 For our experiments, we downloaded a working set of “typical” inline images, using

Gozilla [82]. In order to use Gozilla to collect images, one has to provide it with the

URLs of the web sites of our interest. It then scans each web site and stores any GIF or

JEPG images in a specific directory if that web site has any. We provided Gozilla with

more than 200 URLs of different web sites such as education, sport, food, and stock. In a

first step, we amassed about 1500 GIF and JPEG images. To ensure that our results are

not biased, we explored whether the set of images corresponds to the distribution of

images found on the WWW. We were looking for information that would give us some

idea about the representative usage samples of the web, focusing on the average file size

of images on the typical web page. After collecting such data, several interesting

observations were drawn. First, the smaller files were requested with greater frequency

than larger files. Second, it has been found that images are the most requested items and

account for the most traffic, which we had confirmed as well. Third, images have an

average size of 14KB, 19KB, and 21KB from the client, proxy, and server side

respectively. The differences in these numbers confirmed our assumption that server-side

characteristics do not necessarily reflect the client-side views. Fourth, the most popular

domains accessed via the Internet were equally split between educational and commercial

domains at 30% each. Based on these observations, we found that the average size of the

collected images was greater than the one mentioned in the papers. Therefore, we

 47

downloaded 2050 smaller images in order to better approximate these web page

characterizations. We therefore ended up with a collection of 1555 GIF images and 1995

JPEG images, totaling 27 Mbytes and 85 Mbytes respectively, collected from a diversity

of web sites for our experiments. Not counting repeated accesses to the same image, we

have found that the majority of the images in our collection (65% of GIFs and 58% of

JPEGs) are from the .com domain.

 For our experiments, it was necessary to identify an appropriate image processing

software to perform various transcoding operations on the collected images. Currently, we

only consider two types of images, GIF and JPEG, which are the most commonly used

over the Internet as shown by the collected statistical. We reviewed and tested a number

of image processing software [77, 84, 85]. We selected ImageMagick [77], which is well

documented and was relatively straightforward to install and execute. Furthermore,

ImageMagick supports large number of functionalities and image formats. It also can

work easily under different platforms (i.e., Unix, Linux, Windows, Vms, Macintosh).

4.3 An Overview of GIF and JPEG File Formats

Whenever you serve the web and an image pops up on your screen, it can be with very

high probability, one of only two types: GIF or JPEG. Furthermore, most of the popular

web browsers support these types of graphic file formats. In fact, even after many years of

use on the WWW, GIF and JPEG images are poorly understood by many. There has been

confusion about these formats in terms of their intended purpose. In this section, we will

 48

see the differences between these formats, and why these two image file formats are the

perfect complement to one another for publishing on the World Wide Web. For GIFs, we

will discuss color depth and its effect on file size and image quality. Also, we will discuss

some of the unique features of the GIF format. For JPEGs, we will see the relationship

between the amount of JPEG compression applied to an image and the amount of file size

reduction. Progressive JPEGs also will be discussed.

4.3.1 GIF File Format

GIF [32] stands for Graphic Interchange Format, and was originally developed by the

Compuserve Information Service in 1987 as an efficient means to transmit images across

data networks. GIF images can contain a maximum of 256 colors (8-bit), which are stored

in a color palette or color table within the image file. Each color in the GIF color table is

described in terms of Red, Green and Blue (RGB) values, with each value having a range

of 0 to 255. To date, there are two versions of the GIF format, versions 87a and 89a,

which were released in 1987 and 1989 respectively. Both versions contain support for

LZW [49] file compression, interlacing, 256-color palettes and multiple image storage.

Version 89a added background transparency and a few other additions such as delay

times and image replacement parameters, which made the multiple image storage features

more useful for animation. The version or format specified when saving a GIF image is

critical. Loading a GIF89a file and saving it as a GIF87a may result in the loss of

transparency and perhaps other important data as well. The GIF format includes some key

 49

features, which makes it a unique and valuable format for the World Wide Web. These

features include file compression, color depth, transparency, interlacing and storage of

multiple images within a single file.

 The GIF file format uses a variant of the Lempel-Ziv Welch compression algorithm

(LZW [49]) that squeezes out inefficiencies in the data storage without causing a loss of

any data (lossless compression) or distortion of the image. The LZW compression scheme

is most efficient at compressing images with large fields of homogeneous color. It is not

very good at compressing complex pictures with lots of grainy texture. LZW file

compression merely compacts the image data by identifying and storing patterns found in

the image. As these patterns are repeated elsewhere in the original image, only the index

number of the pattern is stored in the compressed file, thus achieving the data

compression. When the GIF image file is decompressed, the pattern index numbers are

replaced with the original patterns stored in the translation table.

 The variable GIF color depth is strongly associated with the image's file size and

visual quality. It takes a certain number of bits to represent a specific color in a GIF

image's color table. The more colors there are in the table, the greater the number of data

bits which are required to represent each color, and therefore, the larger the file size.

Reducing the color depth of any GIF image will reduce the file size, but the image quality

may suffer. We cannot precisely predict the reduction in file size due to changes in

compression efficiency and the fact that some of the file's header information is not

affected by the reduction in color depth.

 50

 Transparency is the feature of the GIF89a format which allows for the specification

of one of the colors in the palette to be ignored while processing the image for a display

device. As shown in Figure 4.2, when the specified transparency index is encountered, the

corresponding pixel of the display device is not modified and processing goes on to the

next pixel. Using transparency, users can create images that seem to merge with or

overlay the existing background, giving the illusion that the graphic is not rectangular: the

parts of the rectangle that you do not need are simply made transparent.

Figure 4.2: Background Transparency

 The conventional (non-interlaced) GIF graphic downloads one line of pixels at a

time. Web viewers, like Netscape, display each line of the image as it gradually builds on

the screen. In interlaced GIF files the image data is stored in a format that allows Web

viewers to begin to build a low-resolution version of the full-sized GIF picture on the

screen while the file is still downloading. The "fuzzy-to-sharp" animated effect of

interlacing is visually appealing, but the most important benefit of interlacing is that it

gives the reader a quick preview of the full area of the picture. In fact, interlaced graphics

are not faster-loading than non-interlaced graphics. They just look as if they download

 51

faster because the rough preview comes up faster.

 Although not intended for animation, the GIF89a specification did add a few

enhancements to the file header, which allows browsers to display multiple GIF images in

a timed and/or looped sequence. Although the GIF87a specification also allowed multiple

data streams (images) to be contained within a single file, there was insufficient image

control capability to do much of anything with it. GIF89a's addition of delay times

between image displays and some control over the removal method for the previous

image made for a more complete system for animation.

4.3.2 JPEG File Format

Joint Photographic Experts Group (JPEG [50]) is another graphics file format commonly

used on the Web, which is designed for minimizing graphics file sizes. JPEG is actually

just a compression algorithm, not a file format. The files commonly called JPEG on the

Net are really stored in format called JFIF (JPEG File Interchange Format [51]). JPEGs

work well on continuous tone images like photographs or natural artwork; not so well on

sharp-edged or flat-color art like lettering, simple cartoons, or line drawings. JPEGs

support 24-bits of color depth or 16.7 million colors. A new form of JPEG file called

"progressive JPEG" gives JPEG graphics the same gradually-built display seen in

interlaced GIFs. Progressive JPEGs are transmitted and displayed in a sequence of

overlays, with each overlay becoming progressively higher in quality. This feature helps

speed up the appearance of an image by sacrificing the initial quality. JPEG uses a very

 52

sophisticated mathematical technique called a discrete cosine transform (DCT) to produce

a sliding scale of graphics compression. Thus users can choose the degree of compression

they wish to apply to an image in JPEG format, but in doing so they are also choosing the

image quality. The more one squeezes a picture with JPEG compression, the more one

degrades its image quality. A small amount of compression has a negligible effect on the

image quality, yet a substantial effect on file size. As we increase the amount of

compression, the reduction in file size is less pronounced, yet the deterioration in image

quality becomes more and more noticeable. JPEG can achieve extremely high

compression ratios, squeezing graphics down to as much as 100 times smaller than the

original file. This is possible because the JPEG algorithm discards "unnecessary" data as

it compresses the image, and is thus called a "lossy" image technique.

 Most JPEG compressors allow the user to specify a range of values for the scaling

factor, by specifying a compression metric called Quality Factor. This Quality Factor is

an artifact of JPEG compression. Different software implementations use different values

for Quality Factor. Quality Factors are not standardized across JPEG implementations.

The IJG Library [88] and ImageMagick Library [77] use a 0-100 scale, while Apple

formerly used a scale running from 0 to 4. Recent Apple software uses a 0-100 scale that

is different from the IJG scale. Paint Shop Pro’s scale uses a 100-0 scale, where lower

numbers imply higher quality. Adobe Photoshop gives discrete maximum/high/medium/

low choices.

 53

4.4 Static Image Characteristics

In order to understand the characteristics of images accessed on the Internet today, we

first analyzed the static characteristics of the images. Static image characteristics such as

image geometry, file size, color, etc. give a sense of the possible axes along which

transcoding can take place. In the next section, we will analyze the transcoding

characteristics for the images. We placed emphasis on the characteristics of transcoding

operations that make sense for our image collection based on these static image

characteristics.

Figure 4.3: GIF and JPEG Image File Size Distribution

 54

4.4.1 Image File Size

First we analyzed the file sizes of the images in our workload. We plot the image file size

distribution as a cumulative distribution in Figure 4.3. From this Figure, we note that most

(about 94%) of the GIF images are smaller than 50 Kbytes. By contrast, about 60% of the

JPEG images are smaller than 50 Kbytes. Since GIF images may be animations where a

number of individual images are packed into a single GIF image file, we analyzed the

number of animations in GIF images. We found that about 8% of the GIF images contain

more than one animation frame. 1% of the GIF images had more than 10 animation

sequences per image. An obvious way to deal with large GIF files composed of numerous

animations is to reduce or eliminate all but one of the individual animation frames.

 Traditional human factors research [86] has shown that the response time for

accessing a resource should be in the 1 to 10 second range for information to be useful. If

the response time is longer than this range, the users tend to lose interest and go on to

other things. For our work, we choose a response time of 5 seconds as our preferred

latency. We estimate the file size limit for images to be served within 5 seconds in the

Internet. Users at least use a 9600-baud modem to connect to the Internet. We compute

the image size that can be served within a latency of 5 seconds over 9600-baud modem to

be 5.9 KB. Images with file size equal or less than 5 KB take less than 5 seconds to

download. For many Internet usage scenarios, it is therefore less interesting to transcode

images less than 5 KB in size. We conclude that typically transcoding is not necessary for

images that are less than 5 KB.

 55

Figure 4.4: Distribution of Number of Unique Colors in GIF Images

4.4.2 Number of Colors

Next we analyzed the number of unique colors in an image. GIF compression is

optimized for line drawings with a small number of colors. Hence, reducing the number

of colors is a potential transcoding operation for GIF images. For the GIF images, we plot

the number of unique colors in each image as a cumulative distribution in Figure 4.4. GIF

specifies the number of bits required per pixel in an image in its screen descriptors. This

restricts the number of unique color map choices to a power of 2, which is evidenced in

the clustering of the number of unique colors (Figure 4.4). Also Figure 4.4 shows that

about 20% of the GIF images have 256 unique colors, suggesting that these images may

 56

be photographs (which are better suited to JPEG compression). On the other hand, the

number of unique colors in an image compressed using a lossy compression technique

such as JPEG not only depends on the image, but also on the precision of the decoder.

Integer round-off errors introduced by the decoder add imprecision in the decoded color

values. The exact number of colors does not provide much information about the original

image and hence the number of unique colors for JPEG images is not explored here.

JPEG is optimized for photographs and defines two color modes, TrueColor and

GrayScale. For the images in our collection, about 2% of the JPEG images were

GrayScale.

Figure 4.5: Image Spatial Size Distribution – GIF Images

 57

4.4.3 Spatial Geometry Size

Scaling images is a popular transcoding operation. For scaling to be useful, the original

images themselves should be originally above a threshold minimum dimension. Hence,

we analyzed the spatial geometry characteristic of this set of Internet images. For the

images in our collection, the spatial size of the images (width vs height) for GIF and

JPEG images are plotted in Figure 4.5 and Figure 4.6 respectively. From Figure 4.5, we

note that a significant proportion of GIF images are small (less than 180x180 pixels).

Also, many GIF images are wider than taller.

Figure 4.6: Image Spatial Size Distribution – JPEG Images

 58

 From Figure 4.6, we note that JPEG images dimensions are larger than GIF images

dimensions. We used Bitmap Information Tool [87] to classify images types. For our

collection, the distribution of images in the various categories is tabulated in Table 4.1.

From Table 4.1, we note that about 37% of GIF images and 20% of the JPEG images are

for categories other than true images.

Image Type GIF Images (%) JPEG Images (%)

Bullets 5.94 0.60

Lines 4.92 3.26

Icons 15.55 11.85

Banners 10.80 3.40

True Images 62.79 80.89

Table 4.1: Image Category Distribution

4.5 Image Transcoding Characteristics

In the previous section, we analyzed the static characteristics of images accessed on the

Internet. In this section, we will analyze the transcoding characteristics of these images.

For our study, we utilized ImageMagick [77] for transcoding the collected Images. We

explored transcoding that reduce the spatial geometry (frequently referred to as scaling),

the number of unique colors in an image, the JPEG compression metric as well as

transcoding that change the image formats.

 59

4.5.1 Reducing the Spatial Geometry

First we analyzed a transcoding operation that reduces the spatial size of an image,

frequently referred to as scaling. For our experiments, we reduced the spatial geometry of

all the images by a factor of 2 and 4 along each axis (which translates to 50% and 25% of

the original image pixels). The resulting image file size as a percentage of the original

image file size is plotted as a cumulative distribution in Figure 4.7 and Figure 4.8,

respectively.

Figure 4.7: Reducing The Spatial Geometry by a Factor 2 Along Each Axis

 From Figure 4.7 we note that about 79% of the JPEG images lost at least 50% of the

image size for a transcoding that reduces the image geometry by a factor of 2 on each

 60

axis. However, for the GIF images about 19% of the images actually increased in size

compared to the original image (image transcodes to a size that is more than 100% of the

original image size). About 60% of the GIF images saved at least 50% of the original

image file size.

Figure 4.8: Reducing The Spatial Geometry by a Factor 4 Along Each Axis

 Transcoding that reduce the spatial geometry by a factor of 4 along each axis are

shown in Figure 4.8. We note that about 87% of the GIF images and 90% of the JPEG

images lost at least 50% of the original image file size.

 A few GIF images (19% of the GIF images for a transcoding that reduces the image

by a factor of 2 along each axis) transcode to a size that is larger than the original image

 61

file size. GIF [32] uses a variation of the LZW [49] compression algorithm to reduce the

number of bits required to store frequently occurring color map values. In the GIF

algorithm, pixels can be represented by 3 to 12 bits depending on the frequency of

occurrence. A transcoding that reduces the spatial geometry tends to increase the number

of unique colors in an image as original color values are replaced by a new average color

value. Since it takes more bits to represent less frequent pixels, introducing less frequent

color values with low occurrence frequency leads to an increase in the output image size;

against our goal for transcoding an image to reduce its size. The following example will

illustrate this problem clearly. One of the GIF images in our collection of geometry

360x150 (file size 3509 bytes and 12 unique colors) was transcoded to a GIF image of

geometry 180x75. The new image was 4005 bytes and had 132 unique colors. The

popular color (which will be represented by 3 bits) occurred 90.88% of the time in the

original image, while it only occurred 85% of the time in the transcoded image.

Subsequently, reducing the number of unique colors in the transcoded image to 12

produced an output image of size 2476 bytes. The images have to be transcoded to a

sufficiently small spatial size to overcome this effect. This phenomenon can be observed

by the increase in the number of images that show space saving between a transcoding

that reduces the spatial geometry by a factor of 2 (60% in Figure 4.6) and a transcoding

that reduces the spatial geometry by a factor of 4 (87% in Figure 4.7). Another way that

overcomes this problem is to reduce the number of unique colors to the original number

after scaling an image. Reducing the image spatial geometry (both by a factor of 2 and 4

 62

along each axis) is a productive transcoding for JPEG and GIF images as at least 50% of

the images lost at least 50% of the file size. However, in the case of GIF images, reducing

the image spatial geometry by a factor of 2 along each axis need to be followed by a color

reduction operation to return the number of unique colors in an image to the original

value as explained previously.

Figure 4.9: Reducing the Number of Unique Colors in GIF Images

4.5.2 Reducing the Number of Unique Colors

Next we analyzed transcoding operations that reduce the number of unique colors in an

image. For the GIF images in our collection, we reduced the number of unique colors for

 63

all the images to 50% and 25% of their original values. The resulting image file size as a

percentage of the original image file size is plotted as a cumulative distribution in Figure

4.9.

 From Figure 4.9 we note that for a transcoding that reduces the number of unique

colors to 50% and 25% of the original unique colors, about 8% and 38% of the images

lost 50% of the original image file size, respectively. Reducing the number of unique

colors in a GIF image by 50% does not appear to save much in file size whereas reducing

by 25% provides better results. However, this type of transcoding does not increase the

output file size like the previous operation. This phenomenon of color value distribution

change affecting the LZW compression was noted earlier in Section 4.5.1.

Figure 4.10: Converting a TrueColor JPEG Image to a GrayScale JPEG Image

 64

 From Figure 4.10, we note that about 12% of the JPEG images lost 50% of the

image file size. Since less than 12% of images lost 50% in image file size, converting

JPEG TrueColor images to GrayScale images does not appear to be a productive

transcoding operation, especially since its cost in terms of time is high compared to other

operations. In addition, a few of images transcoded to a size that is larger than the original

image file size as shown in Figure 4.10. For JPEG images, it is clear that converting from

TrueColor to GrayScle is not helpful; therefore, we decided to discard this type of

transcoding from our system. As for GIF images, reducing the number of unique colors

in an image by 25% or less may guarantee a significant reduction in file size.

4.5.3 Changing the Image Format

Next we explored a transcoding that changes the format of the images themselves, GIF to

JPEG and JPEG to GIF format. Even though JPEG compression is better suited for full

color photographs and GIF format is better suited for line drawings, transcoding among

the formats is a popular image transcoding operation [1] and hence we explored its

characteristics.

 One variable in converting from a lossless compression technique such as GIF to a

lossy compression algorithm such as JPEG is the choice of the compression metric for the

JPEG images. For our experiments, we transcoded the GIF images to JPEG images of

Quality Factor values of 25, 50 and 75. The resulting image file size as a percentage of

the original image file size is plotted as a cumulative distribution in Figure 4.11. We note

 65

that transcoding to JPEG images of Quality Factor values of 25, 50 and 75 provide at least

50% saving in size for 70%, 55% and 40% of the GIF images respectively. Hence

transcoding GIF images to JPEG images is considered as a productive transcoding for

GIF images as at least 50% of the images save at least 50% in file size.

Figure 4.11: Converting From GIF to JPEG Format

 From Figure 4.11, we also note that transcoding GIF images to JPEG images of

Quality Factor values of 25, 50 and 75 can lead to an increase in the image file size for

13%, 20% and 27% of the GIF images respectively. Since an increase in file size is

against our goal for performing a transcoding, such a transcoding needs to be checked

whenever it is applied. So if this type of transcoding produces larger file size than the

 66

original file size the format conversion should be discarded.

 GIF images are better optimized for line drawings with few colors. On the other

hand, JPEG is optimized for photographs. Hence a GIF image with many colors might be

expected be better compressed as a JPEG image. To test this hypothesis, we analyzed the

transcoding characteristics of transcoding GIF images with over 250 unique colors to

JPEG images. The resulting image file size as a percentage of the original image file size

is plotted as a cumulative distribution in Figure 4.12.

Figure 4.12: Converting From GIF (#Colors > 250) to JPEG Format

 From Figure 4.12, we note that such a transcoding to JPEG images of Quality

Factor values of 25, 50 and 75 provides at least 50% saving in size for 99%, 95% and

 67

84% of the GIF images respectively. Hence transcoding GIF images with number of

unique colors greater than 250 to JPEG images is considered as a productive transcoding

for GIF images as at least 50% of the images save at least 50% in file size. Usually, the

GIF images that contain a high number of unique colors are nature art views. This type of

images is better compressed as a JPEG image. This might explain the effectiveness of

such a transcoding operation. However, there are a few images which increased in their

output file size. Even though the number of unique colors is over 250, the images are still

overwhelmingly line drawings and hence are better encoded as GIF images.

Figure 4.13: Converting From JPEG to GIF Format

 Next we analyzed the transcoding from JPEG to GIF images. Conversion from

 68

JPEG to GIF is straightforward. The resulting image file size as a percentage of the

original image file size is plotted as a cumulative distribution in Figure 4.13. From Figure

4.13, we note that transcoding JPEG to GIF images is not a productive transcoding and is

not recommended to be applied. Most images (98%) are larger than the original JPEG

images.

Figure 4.14: Changing JPEG Image Quality Factor

4.5.4 Changing the JPEG Compression Metric

Next we explored transcoding that change the level of "lossiness" in an image. Lossy

compression techniques such as JPEG define a way to control the amount of lossiness

using a compression metric. The compression metric utilizes quantization tables such that

 69

images lose least perceptible artifacts first. Hence, changing the compression metric is

intuitively a good transcoding metric for JPEG images.

 For our experiments, we reduce the image Quality Factors to 25%, 50% and 75% of

the original image Quality Factor values. The resulting image file size as a percentage of

the original image file size is plotted as a cumulative distribution in Figure 4.14. From

Figure 4.14, we note that for a transcoding that reduces the image Quality Factor to 25%,

93% of the JPEG images lost 50% of the file size. For a transcoding that reduces the

image Quality Factor value to 50%, we note that 66% of the JPEG images lost 50% of file

size. Finally, for a transcoding that reduces the image Quality Factor value to 75% we

note that 5% of the JPEG images lost at least 50% of file size. Hence, we conclude that

reducing the image Quality Factor to 25% and 50% are a productive image transcoding.

 In summary, we note that the JPEG compression metric is a productive transcoding

operation for JPEG images. In addition, for JPEG images, reducing the spatial geometry

(scaling) is a productive transcoding. On the other hand, the only productive transcoding

for GIF images are converting GIF images to JPEG images, a transcoding that reduces the

spatial geometry by a factor of 4 along each axis and reducing the number of unique

colors by 25%. None of the other image transcoding techniques explored provides

significant savings for GIF images.

 70

4.6 Key Observations

4.6.1 Effect of Imaging Software

After applying different operations on all images, we observed several things. First, with

some images, the compression ratio value was very high. It sometimes exceeds 90%, even

with effect operations such as blur, which was not expected to reduce the file size of

images. At this point, some suspicions arose regarding the compression ratio rate for all

images. We wondered if there is hidden factors that cause this huge reduction or is it the

images characteristics that dictates the reduction size. Thus, we did several investigations

to find out the following: Firstly, were we getting the right compression ratio? Secondly,

if not, what is the factor that causes such huge reduction?

 Out of curiosity, we used ImageMagick to open an image file and resaved it without

performing any operation. The resulting compression ratio was the same as the one we

got by applying blur. To explore this further, we used different image processing software

just to open and save an image. The result is shown in Table 4.2.

The Original Image ImageMagick Paint Shop Pro Microsoft Photo Editor

664 Bytes 132 Bytes 159 Bytes 911 Bytes

Table 4.2: Saving Identical Image Using Different Software

 The result in Table 4.2 indicates that each image processing software uses different

techniques for storing images. This is why we got three different file sizes. Subsequently,

 71

our compression ratios may not be correct since most of the images over the Internet are

created by different software products. For example, if we create the same image using

the three programs listed above, we would get three different compression ratios. Since

the compression ratio value is very important aspect in our experiment, it was mandatory

for us to eliminate this factor in order to get more accurate results.

 The same results hold for JPEG images. The way in which an image has been

originally created or scanned is an important factor of the image file size i.e. the software

used for creating or scanning the image could affect its file size. To verify this, we

performed a simple test (Figure 4.15), saving the same image using different image

processing software. As shown in Figure 4.15, the file size depends on the software used.

This test has been applied on 4 different images. Another test (Table 4.3) creates the same

image using different software, also resulting in different image file sizes.

Figure 4.15: Saving Identical Images with Different Image Processing Software

 72

Image Name Paint Shop Pro ImageMagick MS Photo Editor

Test 7781 Bytes 7531 Bytes 9024 Bytes

Table 4.3: Creating Identical Image with Different Image Processing Software

 Yet another test was performed to scan the same picture using different scanners.

This also resulted in different file sizes. To eliminate the software factor and obtain a

more predictable compression ratio, the same software should create all images under

test. While this will not reflect the reality on the Internet, we choose to ignore the

variability introduced by various software packets for the time being. We therefore

resaved all experimental images by using ImageMagick. By doing this, we eliminate this

factor and the resulting compression ratio will be more predictable. The results reported in

the earlier sections are all based on these resaved images.

 By sorting all images with their information in ascending order by the compression

ratio parameter, we observed that images coming from the same web site have similar

compression ratios. This clearly seems to indicate that the designer who designs the web

site uses the same software for creating all images on that web site. Subsequently, when

we applied the same operation on these images we got similar compression ratios. The

software used for creating an image is clearly one of the factors that impact the

compression ratio.

4.6.2 Sequence Order of Transcoding Operations

After determining the most effective transcoding operations, we performed them in

 73

different sequences to see whether the reduction in file size would be the same or not. By

doing so, we can decide in which order we should perform these operations in order to get

the best reduction. For instance, we applied scaling, color reduction, and convert from

GIF to JPEG operations in different order. Based on the results that we got after applying

the operations in these order, it turns out that the reduction in file size is the same for each

group. Thus, it does at first sight not matter in which order we perform the operations.

Table 4.4 shows the results of applying these operations in different order on one image.

The file size of the original image is 48.15 KB.

Sequence
A-1

Sequence
A-2

Sequence
B-1

Sequence
B-2

Sequence
C-1

Sequence
C-2

Scaling Color
Reduction

GIF to
JPEG

Scaling Color
Reduction

Scaling

Color
Reduction Scaling Scaling GIF to

JPEG Scaling Color
Reduction

GIF to
JPEG

GIF to
JPEG

- - - -

9.57 KB 9.57 KB 8.50 KB 8.50 KB 10.79KB 10.79 KB

Table 4.4: Sequence Order of Transcoding Operations

 For transcoding JPEG images, we apply two operations “scaling and quality

reduction”. Based on our tests, applying these two operations in different order produce

similar result in file size reduction. Hence, we concluded that applying a set of operations

in different order does not have an effect on file size reduction.

 74

4.7 Summary

In order to answer the question whether transcoding operations will be worthwhile, we

need to understand the nature of typical Internet images and their transcoding

characteristics. We focused our attention on transcoding that customize an image for file

size savings. We analyzed a large number of GIF and JPEG images collected from

different Web sites such as education, sports, food, news, stock, etc. We analyzed the

characteristics of the collected images and showed that most of the GIF images (about

94%) are smaller than 50 KBs. About 37% of these GIF images appear to be bullets,

icons, lines, or banners. We found that about 8% of the GIF images contain more than one

animation frame. 1% of the GIF images had more than 10 animation sequences per

image. On average JPEG images are larger than GIF images, 40% of the JPEG images are

larger than 50 KBs. About 20% of these JPEG images appear to be bullets, icons, lines, or

banners. Our evaluation of image transcoding showed that there is significant opportunity

for sophisticated transcoding of JPEG images. We showed that for JPEG images, the

JPEG compression metric and a transcoding that reduces the spatial geometry are

productive transcoding operations. Since the compression metric loses visually

imperceptible information first, it is a good transcoding that reduces image file size,

sacrificing as little visual information as possible. We also showed that transcoding

techniques for GIF images such as color reduction, conversion from GIF to JPEG format,

and scaling have the potential of actually decreasing the original image file size.

 75

C h a p t e r 5

AANN IIMMAAGGEE TTRRAANNSSCCOODDIINNGG PPRROOXXYY

5.1 Introduction

There is a growing diversity of client devices that have access to the Internet. Small

handheld computers are one example of Internet client devices that become more crucial

in our daily lives. A handheld device equipped with a browser and a wireless connection

can provide an opportunity to connect to the Internet at any time from anywhere. Such

capabilities will increase the usability of PDAs tremendously by providing access to

numerous information services; for example travel guides, entertainment advice, the latest

news, flight schedules, even driving directions. Unfortunately, the devices that have

limited communication, slow CPU, small storage, and small display size cannot handle

much of the content on the Internet. Screen size and bandwidth limitations in particular

require special attention, because they most directly affect the user’s experience. For

example, a recent study [75] on the effect of screen size and low bandwidth on

completing browsing-related tasks shows that users with small display and low bandwidth

 76

follow links less frequently than their counterparts who were furnished with larger

displays and higher bandwidth, and that their success rate was lower. Accordingly,

universal access to multimedia content has become increasingly important. Research on

proxy servers for mobile computers has been conducted in recent years. These proxy

servers distill image files aiming at only one hardware platform. Therefore, they cannot

efficiently support various kinds of mobile computers of different display size, resolution,

and network bandwidth. Another problem is that they do not have information about the

resource of mobile computers. Consequently, the proxy server distills images into a fixed

magnitude regardless of the size of the requesting PDA display and available bandwidth;

and then transmits the same distilled image to every mobile device. Transmitting the same

distilled image to a diversity of client devices that have different size screen, resolution,

and network bandwidth is clearly suboptimal. Moreover, the current proxy servers for

mobile computers assign a cache to each mobile user in order to distill images according

to the specification predefined by the users. This mechanism prevents the users from

sharing the image data saved in their caches, which leads to low efficiency. In order to

improve the utility of and the image delivery to a wide range of client devices, we

propose an image transcoding proxy for distilling inline images. The transcoding proxy is

designed to take into account the bandwidth and display limitations while at the same

time maintains the best possible quality of the delivered images. The system uses the

mobile device characteristics as input parameters and automatically adapts to a

dynamically changing bandwidth on the proxy-client link. Our implementation has

 77

revealed that the proposed image transcoding proxy significantly improves the

transmission speed of the existing proxy servers through customized distillation, and

provides mobile computer users with a webpage at comparable speed and quality to

desktop PCs. The efficiency and scalability can also be enhanced by caching both the

original and the transcoded image files. This technique enables many client devices with

the same characteristics and communication limitations to share the transcoded images if

they are available in the cache without going through transformation operations.

Otherwise the transformation would be necessary.

Workstation Midrange PC Laptop HHC PDA

Dimension: 150 x 190 113 x 143 75 x 95 60 x 76 39 x 49

File Size: 19 KB 11 KB 5.7 KB 2.3 KB 0.2 KB

Color: 24-bit RGB 24-bit RGB 256 colors 4-bit gray B/W

Figure 5.1: Image Customization

5.2 Image Transcoding

Our experiments in chapter four and several surveys done on web traffic have consistently

confirmed that GIF and JPEG images present the highest percentage of the Internet

 78

content. Accordingly, it would be beneficial to process these image formats, on the fly,

before transmitting them to mobile hosts. Image scaling, color reduction, type conversion,

or lossy compression could greatly reduce the web page download time and match images

to the device and network constraints. Some display or bandwidth situations may require

the handheld device to receive a thumbnail of the desired image. As shown in Figure 5.1,

the images are customized along the dimensions of image size, quality, and color in order

to adapt them to the client devices. This kind of data stream customization is commonly

known as “image transcoding”.

5.2.1 Transcoding Functions

Our transcoding proxy provides a set of transcoding functions. It might be necessary to

perform one or all of them to cope with a range of bandwidths and display size

limitations. Actually, the system processes GIF and JPEG images with a different set of

transcoding functions. For example, reducing the quality is not applicable to GIF images

while it is one of the effective operations that reduce the JPEG image file size. In this

section, we will introduce the transcoding functions that are mainly used by our

transcoding proxy.

Image Scaling

Scaling is defined as reducing the size of the image by reducing the dimension parameters

(width and height) of the image. There are two situations in which it makes sense to scale

an image. A scaled image can easily be an order of magnitude smaller than the original

 79

image. This will be helpful in a situation where the bandwidth constraints of the exchange

demand a smaller file size for transmission. The transfer of the scaled image can take

advantage of its smaller file size and, at the displaying end of mobile hosts there is no

apparent degradation in image quality. Another situation where we might want to scale

an image is where the mobile host’s display size is smaller than the requested image. In

this case, a scaling operation can fit the image on a small screen. Under some

circumstances, more aggressive scaling could be achieved by scaling an image to a

thumbnail.

Type Conversion

Transformation of an image from one format (such as GIF) to another (such as JPEG)

may be useful in some circumstances. As we mentioned in chapter four, GIF and JPEG

are designed to accommodate different type of graphics. GIF is usually best for images

with sharp-edged areas of flat color. Examples include line drawings, simple icons,

buttons, and cartoon pictures. JPEG is usually best for images that involve smooth color

gradients; typical examples are photos and naturalistic artwork. Therefore, converting

images to the correct format most often reduces file size without sacrificing image

quality. Converting from GIF to JPEG is the type conversion we most often follow in our

system. However, in some situations, where the mobile host does not support JPEG

images, we convert any JPEG image to GIF image, and transcode it aggressively.

 80

Color Reduction

As shown in the previous chapter, reducing color depth of any GIF image can

significantly reduce the image file size. Most popular graphics programs can count and

display the number of unique colors actually used in a GIF image. When the number of

colors used is significantly less than the current color depth, then a color depth reduction

can occur which will reduce the file size without having any effect on the quality of the

image. In other words, it makes no sense whatsoever to have a GIF image that contains a

256-color palette (8-bit) if the number of colors used in the image is only 120. In such a

case, the color depth should be reduced to 128 colors (7-bit). Reducing color depth and

the number of colors in GIF images might be necessary when we deal with a mobile host

device that supports very few numbers of colors. Consider the following example. A

mobile host that supports only 16 colors (4-bit) requests a GIF image that contains 256

colors (8-bit). It is clearly inappropriate to send this image without reducing the color

depth and the number of colors. Reducing color from 256 colors (8-bit) to 16 colors (4-

bit) will reduce the file size to roughly half of the original. Otherwise, more data will be

transferred over the wireless link and the color reduction will happen when the image is

rendered, so we get the same image but transferred more data. But what happens when we

actually reduce the number of colors used in the image? Well, the image quality may

suffer.

Image Compression

There are basically two types of compression methods: lossy and lossless. Lossy

 81

compression creates smaller files by discarding some information about the original

image. It removes details and color changes it deems too small for the human eye to

differentiate. Lossless compression, on the other hand, never discards any information

about the original file. These two types of compression techniques are interchangeably

used by the transcoding proxy depending on the available situation. An obvious ideal

situation is one where the image can be transferred as the author had intended; the

bandwidth and display constraints of the situation allow the image to be sent ‘as is’ or to

be compressed using a lossless technique. If the bandwidth and display constraints

demand a smaller image file size for transfer then it may be necessary to use a more

efficient compression technique i.e., one that involves loss of information, such as lossy

compression.

JPEG Compression Metric

With JPEG images, we can easily specify the amount of “lossiness” using metrics such as

the compression metric (also referred to as the JPEG Quality Factor by Independent JPEG

Group [50]). The Quality Factor value can be adjusted based on the current condition of

the network bandwidth. If the available bandwidth is low then reducing the Quality Factor

value will produce a small file size. As we mentioned in the previous chapter, reducing

Quality Factor is a trade-of between image quality and file size. Aggressively reducing

Quality Factor to reduce size can result in an image of such low quality that it becomes

useless. Therefore, we should not go beyond the threshold that is obtained from [83].

 82

5.3 System Architecture

The key to applications in a mobile, wireless, very heterogeneous environment is the

proxy architecture, which uses a proxy as a smart intermediary between traditional servers

and heterogeneous mobile clients. The fundamental driver for this architecture is the

inability of (nearly all) servers to handle the incredible variation in software, hardware

and networking capabilities of mobile clients. Through various forms of data

transformation, the proxy can dynamically translate between the needs of clients and the

formats and abilities of the servers. The basic architecture of the transcoding proxy is

shown in Figure 5.2.

Figure 5.2: The Image Transcoding Proxy Architecture

 A client communicates exclusively with the proxy, which is the main component of

our system architecture. Our proxy is located logically between the client and the server.

 83

As in any heterogeneous network environment, the proxy should be placed near the

boundary between strong and weak connectivity, e.g., at the base station of a wireless

mobile network. The proxy’s role is to retrieve content from Internet servers on the

client’s behalf, determine the high-level types of the various components (e.g., images,

text), and determine which distillation engines must be employed. When the proxy calls a

distiller, it passes on information such as the client display characteristics, available

network bandwidth, and user preferences. Based on these parameters, different

transcoding modules are employed to generate versions of the content that best meet the

client capability. Finally, the proxy sends the transformed versions of the content to the

client. A cache that stores these client specific versions of content is used to enhance

response times. In the following sections, we describe these processes in detail.

5.3.1 The Prime Components of the Transcoding Proxy Architecture

The transcoding proxy is constructed by integrating a transcoding subsystem into an

HTTP proxy [28]. The transcoding subsystem consists of two primary components: the

policy engine and the transcoding unit. The transcoding unit is responsible for modifying

the data streams (i.e., HTML documents and GIF [32] images) that are being sent back as

responses to the client Web browser. The decision concerning about what transcoding

module (i.e., the transcoding function along with its parameters) to use and how much to

transcode is made by the policy engine based on a number of situations, including: the

current available bandwidth on the client-proxy link, the characteristics of the client

 84

display capabilities, and the user preferences concerning the preferred rendering of the

data. One example of the user preferences is the quality factor of images. The user can

easily interact with the transcoding proxy to dynamically change the tradeoff between

image qualities and download time. The user basically provides a constant value range

from 1 to 100, which is then supplied to the transcoding proxy’s policy engine.

Eventually, the constant value is translated onto a transcoding parameter that is passed to

the data transcoding unit. The policy engine typically generates a collection of

transcoding vectors, which control the amount and forms of transformation performed by

the transcoding unit. For instance, the scaling vector determines how much an image is

scaled down. Also, the number of colors or the color depth in an image can be reduced, or

a colored image may be converted to a grayscale image. Based on the policy engine’s

decision, the transcoding unit may perform one or a combination of transcoding

operations. To make the transcoding mechanism more efficient, the policy engine should

consider every situation mentioned previously to determine under what circumstances

transcoding is able to improve the response time. Image transcoding normally introduces

some delay, which must be balanced by the reduction in transmission time due to

compression. However, as presented in [76], when the bandwidth of the proxy-client link

increases, there comes a point at which it is no longer beneficial to transcode since the

reduction in response time due to aggressive compression decreases as a function of the

bottleneck link’s bandwidth, while the transcoding time remains constant.

 85

5.3.2 Content Analyzer

The authored content is analyzed to extract information that will be useful in transcoding

and modification. Each content item is analyzed to determine the characteristics of data

(e.g., byte size of the images, image dimensions, image types). From this content analysis

the following information is determined:

• Content size in bytes. For images, this is simply the size of the file.

• Image dimension (height and width).

• The color depth and the number of colors in an image.

• Image type, purpose, and format.

• Detect particular content items such as JavaScript, Java applets, VBScripts.

 The semantics of the content items are determined in the context of the entire

document. We currently analyze images to determine their type, purpose, and format.

Images can be of several types ranging from black and white graphics to color photos and

a combination of color graphics and photos. So far, we did not come up with a technique

that tells us whether the image is simple graphics or photos. The only information that the

content analyzer can provide about the image type is monochrome, grayscale, or true

color. We also detect the purpose of the image on the page. For example, we detect if an

image is related to the content or if it is just advertising image. Furthermore, the image

format (e.g., GIF, JPEG, PNG) is determined in order to select the right decoder and

encoder. We detect the format and the type of an image by using functions of an image

 86

processing toolkit [77]. As for image purpose, it is detected by parsing the HTML

document tags such as (background, i.e., <body backgr=…> or advertising, i.e., <body

adv=…>). This analysis allows us to improve image transcoding by selecting policies

according to image type, purpose, and format.

5.3.3 Input Parameters

Our system considers only three types of input parameters: display characteristics,

network bandwidth, and user preferences. These parameters are provided to the policy

engine in order to generate a set of transcoding parameters that determine the amount and

type of image transformation need to be done by the transcoding unit. Currently, the

system considers the following input parameters:

1. Display.

a) Size: width and height in pixels.

b) Screen type: color/monochrome.

c) Color depth: the number of colors supported by the display.

2. Network bandwidth.

Currently, the system is told the effective network bandwidth to the client. In the future,

we plan to incorporate some mechanisms for sensing the actual bandwidth to the client.

3.User preferences

a) Capabilities for displaying images: Yes/No.

b) Image quality factor: (from 1 to 100).

 87

c) Support animation: Yes/No.

d) Support JavaScript, Java applet, VBScript: Yes/No

e) Thumbnail image: Yes/No

f) Remove background and substitute advertising images: Yes/No

g) Compresses HTML documents: Yes/No.

 There are a number of mechanisms that can determine the client device capabilities

and resources. The User-Agent fields in the HTTP request header contain information

about the browser and often the operating system. Windows-CE devices also specify the

screen size, color depth and processor. Standardization efforts are under way to allow

these request fields to contain more information about the client device. Many sites

require users to login, or place cookies at the user allowing client capabilities to be

retrieved from stored profiles. The client may also specify their capabilities explicitly

through forms or applets. Our system follows a traditional approach for getting all these

sources of information about a mobile host. Basically, the user provides all this

information to the proxy server, which stores it according to the mobile host IP address.

Since we have not reached the stage that enables us to sense the network bandwidth, the

system is also provided externally with the available bandwidth parameter. In case the

user does not provide any of this information, default information, which is resident

within the proxy server, will be supplied to the policy engine.

 88

5.3.4 Transcoding Scenario

Once the mobile host sets a specific proxy server as its proxy, all communication between

the mobile host and the WWW servers is directed through this proxy. The setting can be

made easily by assigning the IP address of the machine that runs the proxy to the mobile

host browser. When the web browser of the mobile host is executed, the mobile host

sends its profile to the proxy server, which is stored with the IP address of the mobile

host. A default profile is used if the mobile host had set no values. When the proxy

receives a request from the mobile host, it verifies first that the requested web page is in

the cache. If not, the request is forwarded to the appropriate WWW server and the proxy

waits for a response. When the proxy receives the response from the WWW server, it

looks up the user profile stored with the IP address of the mobile host and feeds the policy

engine with the user profile to generate the most suitable transcoding parameters. The

transcoding unit then receives the transcoding parameters from the policy engine to

perform the necessary transformation and ultimately delivers the transcoded images to the

mobile computer. The transcoded image files and the original files are stored in the cache.

If the image file exists in the cache, we verify first that the available transcoded version is

appropriate for the mobile computer. If this is the case, then the image file will be

transmitted directly to the mobile computer. Otherwise, the original image is retrieved

from the cache and processed based on the user profile before being delivered to the

mobile host.

 89

Transcoding Image Files

While receiving an HTML page from a WWW server the HTML token parser parses it to

extract references to inline images. The cache controller checks the images against its

cache index and automatically starts prefetching those images that are not found in the

cache. A cache entry is created for each image. The content analyzer checks the content-

type and content-length information received from the server. If the content-length is

small enough to be handled on the mobile host, the image file is sent to the mobile host

unmodified. But if the image is larger than what can be handled by the mobile host, it is

processed according to the transcoding vectors. As for the content-type information, it is

used to determine the transformations that the image file has to go through. To display

images on some thin devices, the proxy might need to reduce an images’ color depth to 2-

bit monochrome and thumbnail size. Also, advertisement and background images might

be removed or substituted with text if the bandwidth is low. The original URL in the

image tag is replaced with the URL of the modified image stored locally by the proxy and

sent to the mobile host.

Transcoding HTML

We can reduce the transmission time by parsing HTML tags on the proxy side. We can

eliminate all the tags that the mobile host does not support, or is not capable of handling.

The user can easily decide not to receive any Java applets, JavaScripts, VBScripts,

background images, or advertisement images. When such a preference is set, the HTML

document to be transmitted is parsed and all the tags that reference any unwanted file is

 90

eliminated before sending the document to the mobile host. This is specifically suitable

for PDAs, which have very small disk space and low speed CPUs. For such severely

resource constrained mobile hosts, the set of tags that it can handle may be so small that it

is advantageous to strip of all unwanted tags at the proxy and encode the remaining tags

using a few bits. Furthermore, the user can enable or disable an option for compressing

HTML document to GZIP [78, 79] stream before being sent to the mobile host. This type

of compression can reduce the HTML file size up to 70%.

5.3.5 Cache Scenario

When a mobile host requests a particular Web page, the proxy first checks the Web

page’s URL against the cache index. This check can produce one of two answers: missing

or present. When the Web page is missing, the proxy forwards the request to the WWW

server, waits for the response, creates a new entry in the cache index, and places the Web

page in a directory. When a customized Web page is delivered to the client, the

customized content is also stored in the cache. The cache associates the customized

content with the parameters used for customization, thus effectively associating it with the

specific client capabilities for which the content was customized. As we mentioned

previously, the client capabilities are stored under a client IP address on the proxy side.

Also, we have both the original and the customized content in the cache. When the Web

page exists in the cache, the proxy first compares the capabilities of the client currently

requesting the Web page with the parameters used for transcoding the images in the

 91

requested Web page. If the current client capabilities match the parameters used for

transformation, a customized copy for the requested Web page is delivered from the

cache to the client. Otherwise a new customized version is generated from the original

copy in the cache.

Figure 5.3: Cache Scenario

 The cache implements the usual checks on the temporal validity of the documents.

Since, for a busy site, the number of requests for a document is typically much larger than

the number of different client devices, the cache can result in significant improvements in

response times. Temporal variations in resources of the client, such as bandwidth, display

capabilities, CPU resources, storage, etc., will reduce the cache-hit ratio. To effectively

handle this, the cost of performing customization versus the variation in the resources will

 92

need to be considered. As we shall see in the next chapter, the cost of performing

customization is relatively low. Therefore, our system currently will perform

customization if the resources for the requesting client differ from the cached versions.

Figure 5.3 illustrates the cache scenario mentioned above.

5.4 The Algorithm of the Transcoding Proxy

In this section, we discuss the set of practical transcoding policies that we have

implemented in our transcoding proxy system. These policies were developed

incrementally by feeding back the lessons we learned throughout the development and

evaluation of our transcoding proxy. The implemented policies adapt the transcoding to

the client’s device capability, user preferences, and current network bandwidth, but do not

currently perform prediction of the image transcoding delay and output byte size.

 Our current set of transcoding policies is summarized in several pseudocode figures,

as we shall see. In Figure 5.4, our transcoding proxy first gets the IP address of the current

client device and detects its profile as shown in line 1. Based on the IP address, the proxy

will next check in line 2 to see if the user profile is available at the proxy. If this is the

case the proxy will read the user profile (line 4); otherwise, a default profile will be read

by the proxy (line 6). In line 7, the proxy checks whether the requested image is in the

cache directory or not. If the image is in the cache, the proxy will retrieve the transcoded

version and compare in line 9 the current and the previous client profile. If they are

similar then the transcoded image will be sent to the client without transcoding.

 93

Otherwise, the original image will be retrieved in line 12 by the proxy to go through the

processing routines. If the requested image is not available in the cache then the image

will be retrieved from the web server and stored in the cache (line 14 and 15). The proxy

in line 16 checks the size of the requested image to see if the image is sufficiently large

for transcoding. Images smaller than a threshold of 5KB are deemed to be not worth the

savings in download time brought about by compression and hence are not transcoded.

This threshold was obtained from our experiments in the previous chapter. Thus, if an

image is less than the threshold the proxy will store the image in cache and send a copy to

the client (line 25). Next, in line 17, our transcoding policy makes a distinction based on

the input image format, such that input GIF images are transcoded differently than input

JPEG images. If the input image is in GIF format, the proxy in line 18 invokes a special

routine (see Figure 5.5) for transcoding this type of graphic file format. Similarly, if the

input image format is in JPEG format, then in line 20 the transcoder for JPEG file format

is invoked. In line 18 and 20, the image is transcoded according to the user profile

received from the user. Stamping the transcoded image with the user ID (line 21) can

guide the proxy to the user profile that has been used to customize this image. This can

help the proxy to compare clients’ capabilities and make its decision about whether to

send the transcoded version. Ultimately, the proxy stores the transcoded image in the

cache (line 22) and sends a copy to the user (line 23).

 94

IP_Address = Get_User_IP_Address(); Line 1

Status = Get_User_Profile(IP_Address); 2

if (Status_Is_True) 3

 Read_User_Profile(IP_Address); 4

else 5

 Read_Default_Profile(); 6

if (Requested_Image_Is_In_Cache_Directory) 7

 Retrieve_Transcoded_Image_From_Cache_Directory; 8

 if (Current_And_Previous_User_Profiles_Are_Equal) 9

 Send_Transcoded_Image; exit; 10

 else 11

 Retrieve_Original_Image_From_Cache_Directory; 12

else 13

 Retrieve_Image_From_WWW_Server 14

 Store_Original_Image_In_Cache_Directory; 15

if (Input_Image_File_Size > 5_KBytes) 16

 if (File_Format_Is_GIF) 17

 Output_Image = GIF_Transcoder (Input_Image, User_Profile); 18

 else /* input is JPEG */ 19

 Output_Image = JPEG_Transcoder (Input_Image, User_Profile); 20

 Stamp_Transcoded_Image_With_User_ID; 21

 Store_Transcoded_Image_In_Cache_Directory; 22

 Send_Transcoded_Image_To_User; 23

else 24

 Send_Original_Image_To_User; exit; 25

Figure 5.4: The Transcoding Proxy Algorithm (Main Body)

 95

Status = Is_Animated_GIF (Image_File); Line 1

if (Status_Is_False) 2

 Convert_From_GIF_To_JPEG_Format (Image_File); 3

 if (Is_It_JPEG_Image) /* the output file is JPEG */ 4

 JPEG_Transcoder_Routine (Image_File); exit; 5

if (Status_Is_True AND User_Requested_to_Freeze_Animation) 6

 Remove_All_Frames_Except_The_First_One; 7

if (User_Requested_Thumbnail_Image) 8

 Thumbnail_Scaling_Routine (Image_File); 9

else 10

 Image_Scaling_Routine (Image_File); 11

Color_Reduction_Routine (Image_File); 12

Return_Transcoded_Image_To_Main_Body; exit; 13

Figure 5.5: GIF Transcoder Routine

 Figure 5.5 illustrates the routine that is used to transcode GIF images. As shown in

Figure 5.5, the routine first checks in line 2 to see if the image is animated or not. If the

image is not animated, then the image in line 3 will be sent to a conversion routine (GIF

to JPEG). Next, in line 4, we need to verify that the conversion to JPEG format is

successful and the output file is JPEG. In some cases, the conversion may actually result

in expansion of the image file size. In this case, the conversion routine returns the original

image (GIF) rather than the converted image (JPEG). If the conversion is successful, then

 96

the converted image (JPEG) in line 5 will be sent to the JPEG transcoder routine for

further processing. If the image is animated or the conversion does not succeed, the

routine will jump to line 6 directly. In line 6, if the image is animated and the user

requests to freeze the animation then in line 7 all the image frames will be removed

excluding the first one which will be distilled based on the user profile. The user also

might ask for scaling the image to thumbnail; thus, if this is the case, the program will

move to the thumbnail scaling routine in line 9 (see Figure 5.8). Otherwise, the image will

be scaled based on the display dimension and current bandwidth (line 11). The color

reduction function is called in line 12 (see Figure 5.7). Finally the transcoded image is

returned to the main body which transfers the image to the client.

if (Client_Device_Support_JPEG_Images) Line 1

 Convert_GIF_To_JPEG_Format; 2

 if (Output_Byte_Size > Input_Byte_Size) 3

 Send_Original_Image; /* return GIF image */ 4

 else 5

 Send_Transcoded_Image; /* return JPEG image */ 6

end 7

Figure 5.6: GIF to JPEG Conversion Routine

 In Figure 5.6, we check in line 1 if the client devices support JPEG images or not. If

this is the case then the conversion will take place in line 2. Otherwise, the conversion

 97

will not be applied and the control will be back to the Gif transcoder routine. If the

conversion takes place then the output file will be checked to make sure it is smaller than

the original file (line 3). If the output file size is smaller then the input file size the

transformed image will be send (line 6); otherwise the original will be sent (line 4).

if (Image_Is_Monochrome) exit; Line 1

if (Client_Display_Is_Monochrome) 2

 Convert_Image_To_Monochrome; exit; 3

if (Number_Of_Unique_Colors_In_Image < Min) exit; 4

Colors = Current_Bandwidth / Maximum_Bandwidth * ImageColors; 5

if (Colors > DeviceColors) 6

 Colors = DeviceColors; 7

else if (Colors < Threshold) 8

 Colors = Threshold; 9

Reduce_Image_Colors(Colors); 10

Figure 5.7: Color Reduction Routine

 Figure 5.7 shows the color reduction routine. First we make sure that the image is

not monochrome (line 1). If the image is monochrome then the routine will exit quietly.

In line 2, we check if the client display is monochrome. If it is true then the image will be

converted to monochrome (line 3). If the number of unique colors in an image is less than

the threshold, the color reduction routine will not be invoked, as shown in line 4. The

formula in line 5 generates a new number of unique colors in an image based on the

 98

available bandwidth. If the generated number is greater than the number of unique colors

supported by client devices the number of colors will be reduced to the number of unique

colors supported by client devices (line 6 and 7). If the previous condition is false then the

generated number will be checked against the threshold (line 8). If it is less than the

threshold then the color number in line 9 will be the threshold. Finally, reducing number

of unique colors in an image is applied in line 10.

if (Image_Width > 50 OR Image_Height > 50) Line 1

 Width_Factor = 50 / Image_Width; 2

 Height_Factor = 50 / Image_Height; 3

 if (Width_Factor < Height_Factor) 4

 Resize_Factor = Width_Factor; 5

 else 6

 Resize_Factor = Height_Factor; 7

 X_Dim = Image_Width * Resize_Factor; 8

 Y_Dim = Image_Height * Resize_Factor; 9

 ScaleImage (X_Dim, Y_Dim); 10

end 11

Figure 5.8: Thumbnail Scaling Routine

 Figure 5.8 illustrates thumbnail scaling routine which is used to scale images with

width or height above 50 pixels. In line 1, the width and height of the image will be

checked. If one of them greater than 50 then the image will be scaled to a thumbnail size.

Line 2 and 3 calculate the width and height factor respectively. Lines 4-7 compute the

 99

resizing factor to use for resizing the image. In lines 8 and 9, the new dimension is

generated based on the resizing factor. Finally, the image in line 10 will be resized.

if (Is_Quality_Factor_Assigned_By_User) Line 1

 Quality = QualityFactor; 2

else 3

 Quality = Current_Bandwidth / Maximum_Bandwidth * InitialQuality; 4

if (Quality < Threshold) 5

 Quality = Threshold; 6

Reduce_Image_Quality(Quality); 7

Figure 5.9: Quality Reduction Routine

 Figure 5.9 shows the quality factor reduction routine. The first line checks whether

the user assigned a value to the desired quality variable. If this is true the image quality

will be reduced to this value. If not, the formula in line 4 will generate a quality factor

based on the available bandwidth. In line 5, the quality factor will be tested against the

threshold. If the quality factor is less than the threshold then it will be reset to the

threshold value. Finally, the quality factor of the image will be reduced (line 7).

 100

if (Image_Width > 4 OR Image_Height > 4) Line 1

 Bandwidth_Factor = Current_Bandwidth / Maximum_Bandwith; 2

 X_Display_Factor = Current_Display_Width / Max_Display_Width; 3

 Y_Display_Factor = Current_Display_Height / Max_Display_Height; 4

 if (X_Display_Factor < Y_Display_Factor) 5

 Display_Factor = X_Display_Factor; 6

 else Display_Factor = Y_Display_Factor; 7

 if (Bandwidth_Factor = 1 AND Display_Factor = 1) exit; 8

 if (Bandwidth_Factor < Display_Factor) 9

 Resize_Factor = Bandwidth_Factor; 10

 else Resize_Factor = Display_Factor; 11

 X_Dim = Image_Width * Resize_Factor; 12

 Y_Dim = Image_Height * Resize_Factor; 13

 ScaleImage (X_Dim, Y_Dim); 14

end 15

Figure 5.10: Image Scaling Routine

 Figure 5.10 illustrates the image scaling routine. It just scales the images with width

or height above 4 pixels. The first line checks the image dimensions. If one of the

dimension is greater than 4 then the image will be scaled; otherwise, the resizing will not

be applied. Line 2 calculates the bandwidth factor whereas lines 3-7 calculate the display

factor. In line 8, if both factors equal 1 then resizing will not be necessary. Otherwise, the

resizing factor will be the smaller factor between bandwidth and display factors as shown

in lines 9-11. The new dimension of the image is generated in line 12 and 13. Finally, the

image will be scaled based on the new dimension in line 14.

 101

5.5 Summary

The vision of simple and ubiquitous information access requires solutions for an efficient

integration of mobile devices within the WWW infrastructure. The main problems are the

restricted resources of the mobile computing devices and the narrow bandwidth and

unreliability of the wireless link. We have presented a system concept to support web

browsing from mobile platforms with a wide range of communication, processing, and

display capabilities. Our system follows the client-proxy-server model, which is the basis

of most mobile applications and uses the proxy to provide an active transcoding

mechanism. Proxies are mostly used for forwarding data between the mobile client and

the stationary server. The idea of using transcoding at the proxy side is not new. Many

proxy systems have been developed to provide web access to mobile users. However,

these proxy servers are usually not aware of how much an image file needs to be distilled.

They typically transmit the images distilled into a fixed factor regardless of the display

capabilities, bandwidth limitations, or the user preferences. Moreover, since the cached

data are kept separately for each user, they cannot be shared among the users of the same

profile. In our system, we extend the notion of transcoding mechanism to be dynamically

adaptive. We have proposed a system for adapting Internet content “images” called image

transcoding proxy. This system adapts inline images to client devices with diverse

capabilities. Therefore, the system enables universal access to the Internet by allowing

different types of devices, and people with different abilities, to receive content “images”

adapted to a form suitable for them. In the system framework, content adaptation is

 102

analogous to compressing data streams to meet resource constraints imposed by the client

device. However, unlike traditional compression, the user preferences are considered and

the constraints are not limited to bits or bandwidth, but also include resources such as

screen size, color and hardware and software capabilities.

 The transcoding proxy system consists of three components: content analyzer,

policy engine, and transcoding unit. The content analyzer is responsible for analyzing the

images and classifying them into image type, purpose, and format categories. The policy

engine then utilizes three sets of input parameters, device characteristics, bandwidth, and

user preferences, to generate the transcoding vectors, which are passed to the transcoding

unit to manipulate, transcode, and adapt the images. The transcoding unit can perform

only one or all of the transcoding operations including: image scaling, color reduction,

type conversion, lossless or lossy compression. The system also stores in the cache two

version of each image: the original and the transcoded image. The proxy thus does not

need to transcode the same image file requested previously by a client that has the same

capabilities. In addition to transcoding images, the system also provides the options of

removing active content such as background and advertising images, Java applet,

JaveScript, VBScript. The mobile user might also ask for compressing the HTML

document before transmitting it. The mobile client can select any or all of these options

depending on the limitations of its device or the browser capabilities and network

bandwidth. The users can change the options when the resources change. This makes our

proxy very adaptable to serve the varying needs of the user.

 103

CC hh aa pp tt ee rr 66

EEXXPPEERRIIMMEENNTTAATTIIOONN AANNDD EEVVAALLUUAATTIIOONN

In this chapter we will describe and evaluate different scenarios for image transcoding.

The main goal of this chapter is to support our claim that in the majority of cases, image

transformation is very effective in reducing the end-to-end latency. We achieve this by

demonstrating that transcoding performance on today’s desktop workstations is

sufficiently fast. The time to produce a useful transcoded image is small enough to be

more than made up for by the savings in transmission time for the transcoded image

relative to the original. In Section 6.1, we describe the experimental equipment we are

using for the test and the general experimental setup and results. In Section 6.2, the

transcoding performance of different image transcoding scenarios is discussed and

evaluated. In Section 6.3, the system scalability is evaluated.

6.1 Experimental Setup and Results

To test our transcoding proxy system, two different client machines were used. One was a

 104

PDA device with poor resources and the other one was a desktop machine with rich

resources. As for our transcoding proxy, it was running on a powerful PC machine with

550 MHz Pentium III, 128 MB memory, and 10 Mbps Ethernet card. The installed

operating system was Linux 2.0.x kernel (RedHat 6.0). Server 1 to N could be any type of

servers that our proxy communicates with to retrieve the requested data. The PDA used

was a SHARP HC-4500, which has a display of 640x240 pixels with 256 colors and is

connected to the proxy over a wireless network ‘CDPD’ with low bandwidth ‘9.6Kbps’.

As for the desktop machine, it was a PC of 1024x768 pixels and linked to the proxy over

Local Ethernet network with high bandwidth ‘10Mbps’. During our experiments, we

simulated the two types of link between client devices and proxy to quantify the

transmission time. The general experimental testbed setup is shown in Figure 6.1.

Figure 6.1: The General Experimental Testbed Setup

 105

 A test page was created with three images and some text. One image was animated

GIF, another image was advertisement image and the other was non-animated GIF. The

clients declared different preferences to the proxy, and accessed the same web page. For

the wired host with riches resources, the proxy sent the web page with very slightly

transformation. Therefore, the client received all components of the web page. For the

wireless host with poor resources, the preferences set indicated that animated images are

not supported and advertisement and background images are not desired due to the poor

resources. Hence, the client received the web page without background image and the

advertisement image was substituted with a text to save some bandwidth. As for animated

and non-animated images, a small version of the first frame of the animated image and

non-animated image were sent to the client. The transcoding proxy scales the images by

the ratio of the horizontal width of the PDA display to that of a reference display of

1024x768 pixels. Measurements using the time command indicate that the process of

transcoding the images and transferring the entire web page to the mobile client took

about 3.5 seconds. As for the wired host, it took about 2 seconds to deal with many

animated frames beside the other images. The different resulting pages are illustrated in

Figures 6.2 and 6.3 respectively.

 106

Figure 6.2: Response on a Resource Rich Client

Figure 6.3: Response on a Resource Poor Client

 107

Computational Cost

To get a clearer sense of the cost involved in doing image transcoding at the proxy, we

measured the time required by the proxy to provide a client with a variety of web pages

from different popular web sites such as CNN, OttawaCitizen, NewsWeek, Carleton U.,

and Ottawa U. Measurements were made for these web pages which had varying amounts

of images. Table 6.1 shows these results.

Site Name # of Transcoded
Image

Transcoding
Time (sec)

Average of
Compression Ratio

Royal Bank 23 0.35 85.25%

OttawaCitizen 7 0.31 82.58%

CNN 5 0.08 87.18%

Carleton U. 21 0.57 86.99%

U. of Ottawa 14 0.49 89.96%

Yahoo 1 0.03 85.11%

NewsWeek 14 0.5 88.23%

Table 6.1: The Cost of Transcoding Popular Web Sites

 Figure 6.4 shows the time taken for transmitting and processing the web pages in

Table 6.1. Since our transcoding proxy is designed to have a relatively high bandwidth

between the content server and the proxy we have ignored the delay between proxy and

server. Here we measured only the delay between the proxy and client. The measurement

in Figure 6.4 was taken for PDA client which connected to the proxy over CDPD network

with low bandwidth ‘9.6Kbps’. The first bar of each category reveals the transmission

times (including the processing time at the proxy) for different size web pages. The PDA

 108

receives the web pages through the proxy which transcodes and caches the web pages,

and sends the transcoded data to the PDA. The second bar is the transmission time

without transcoding. As we can see from Table 6.1, the delay introduced by the

transcoding proxy is too little to be significantly perceived by the user. In the case of “far”

documents, which require a long download time, this additional delay represents only a

very small fraction of the global download time. In the case of “near” documents, which

can be downloaded efficiently, the delay introduced by the transcoding proxy can be as

high as 80% but, in any case, is still small enough not to influence the user browsing

activity.

Figure 6.4: The Delivery Time for the Web Pages with and without Transcoding

 The previous evaluation in Figure 6.4 does not take into account the presence of the

proxy cache that can significantly speed up the browsing activity. In addition, it does not

consider the location of the web server whether it is “far” or “near”. The benefits in terms

 109

of response time (from the click to the full visualization of the page) of the cache are

shown in Figure 6.5, depending on the number of objects enclosed in the document. We

recall that, in the HTTP protocol, each object within a page requires a separated TCP

session. This factor, rather than the plain document size, influences the response time.

Here the PDA client was connected to the proxy over wireline modem. The seven web

pages were fetched using a 14.4Kb/s modem. In order to get clear view of the

improvement in access time due to caching, we measured the download time for the same

web pages when they fetched from a web server within our city and outside of our city

(Italy). The first bar of each set in Figure 6.5 shows the download time for the pages from

a web server in Italy without using the cache system. The second bar shows the download

time for the same pages from a local web server (in Canada) without using the cache

system. The third bar shows the pages access time using the proxy cache system. In proxy

cache case, we assumed that the transcoded images were available in the cache. So we

ignored the transcoding delay in our measurement. Thus, the proxy cache case illustrates

the minimum time needed to access these web pages. Table 6.2 shows the amount of data

that needs to be transmitted in the three cases. As can be seen, the proxy cache notably

improves the access time to pages, especially in the case of access to far (i.e., out of our

city) sites. Moreover, it achieves a significant improvement in the access times also in

case of accesses to very local sites (i.e., within our city).

 110

Figure 6.5: Page Access Time

Site Name Total Size Before
Transcoding (Bytes)

Total Size After
Transcoding (Bytes)

Percentage of
Original Size

Royal Bank 47120 6375 13.53%

OttawaCitizen 32638 4985 15.27%

CNN 7847 1004 12.79%

Carleton U. 88911 10699 12.03%

U. of Ottawa 55597 5044 9.07%

Yahoo 5776 860 14.89%

NewsWeek 84308 7000 8.30%

Table 6.2: The Amount of Data Needs to Be Transmitted After Transcoding

 In order to evaluate the cost of the transcoding process accurately, we conducted

experiments in three different network bandwidth situations using three different clients.

For the test, we set up the configuration of the three mobile clients to poor, medium, and

high resources. So the transcoding process can act differently in each case. Each client

 111

accesses the same web page individually with different configurations. Transcoding

measurements were made for 50 pages that had different numbers of images, some of

which required no transcoding. The time taken to trancode the images in each web page is

measured for each client. Figure 6.6 shows the result of this experimental. About 90% of

the images required less than 0.2 seconds to process the images. Recall that the

transcoding process was performed on a Linux machine with 128 MB memory and 550

MHz Pentium III. Figure 6.7 illustrates the compression ratio achieved by transcoding the

images. About 90% of the images achieved more than 70%. Comparing the transcoding

time with the achieved compression ratio can give a clear idea about the cost of our

transcoding process.

Figure 6.6: Transcoding Time Consumed on a Resource Poor, Medium, and High Client

 112

Figure 6.7: The Achieved Compression Ratio

Figure 6.8: The Transcoded Image of Soda Hall

 113

6.2 Transcoding Performance

As mentioned in Chapter 5, we have implemented an image transcoder, which

implements transformation routines for GIF and JPEG images. It consists largely of

source code from the ImageMagick Toolkit [77]. Figure 6.8 shows the result of running

our transcoder on a large color GIF image of the Berkeley Computer Science Division’s

home building, Soda Hall. The image in Figure 6.8 measures 320x200 pixels and uses

only 16 colors, making it suitable for display on a low-end notebook computer. The

image occupies 11 K bytes at 320x200 pixels in 16 colors, compared with 492 K bytes,

880x610 pixels and 249 colors in the original (not shown). Transcoding took less than one

second on a lightly loaded PC 550 MHz Pentium III. We achieved this result by applying

two operations, scaling and color reduction. We compared our result with the result

achieved by the gifmunch distiller described in [8]. Distilling the same image using

gifmunch produces an output file size that occupies 17K bytes at 320x200 pixels in 16

levels of gray. This distillation took about six seconds on a SPARCstation 20/71. It is

clear that our transcoder achieved better reduction in less time. In addition, we can

achieve more reduction in file size by converting the image to JPEG format and reducing

its quality. In this case, the file size will be 8 K bytes instead of 11 K bytes and the

transcoding latency is still less than one second. The quality of the image produced by our

transcoder and the gifmunch distiller is similar.

 114

Original Image (GIF) Scaling
Scaling and Map to

16 Colors

Scaling, Convert to
JPEG and Reduce
Quality Factor to

25

Size
KB

Col-
ors

Dim-
ension

File
Size (%)

Time
(sec)

File
Size (%)

Time
(sec)

File
Size (%)

Time
(sec)

492 249 879x609 13.7 0.15 4.5 0.55 1.6 0.46

234 252 487x760 13.9 0.14 6.6 0.48 3.8 0.38

128 256 640x512 17 0.08 8 0.31 1.6 0.22

94 256 396x481 15.8 0.05 4.9 0.21 1.9 0.15

Table 6.3: Transcoding Latency and New Sizes (as Percent of Original)

 Table 6.3 shows the latencies of transcoding a number of GIF images with three

different sets of transformation parameters, and the resulting size reductions. Again the

measurements were taken on a lightly loaded PC 550 MHz Pentium III running Linux

6.0. The three sets of transformation parameters were chosen as representative values for

addressing the three categories of variation: image scaling to 35%, color reduction to 16

colors, and format conversion to JPEG plus quality reduction. The table data reveals three

trends of interest:

• There appears to be a linear relationship between the file size and the transcoding

latency time. The bigger the image file sizes, the longer it takes to transcode. This

kind of relationship makes sense since the transcoder touches every pixel in the

image. (compare rows 3-6)

 115

• Performing two transcoding operations actually takes longer time than performing

one operation. In the second column, the four images were scaled down to 35%. In the

third column, the four images were scaled down and the number of colors in the

images was fixed at 16. For all four images, the time required to scale and reduce the

color to 16 was greater than the time required to scale down the images. However, in

the fourth column, adding format conversion to the previous two operations did not

introduce longer latency as we suspect. In other words, the additional work of

transcoding to JPEG adds virtually no latency to the overall transcoding process

(compare columns 2-4).

• There is consistency between file size reduction and the number of operations applied

on the image. The more operations we apply the larger reduction we achieve. In other

words, applying two operations effects file size more than applying one operation and

applying three effects file size more than applying two and so on. This type of

consistency does not exist in the gifmunch distiller.

 The graph in Figure 6.9 depicts end-to-end client latency for retrieving the original

and each of three transcoded versions of a selection of GIF images: the four sets of bars

correspond to the four images in Table 6.3. The end-to-end latency was measured for the

images with and without transcoding. Each group of bars represents one image with three

levels of transcoding; the bottom bar represents no transcoding at all. The y-axis number

is the transcoded size in kilobytes (so the bottom bar gives the original size). The images

were fetched using a 14.4Kb/s modem through a PPP gateway, via a process that runs

 116

each image through the ImageMagick toolkit. Each bar is segmented to show the

transcoding latency and transmission latency separately. Clearly, even though transcoding

adds latency at the proxy, it can result in greatly reduced end-to-end latency.

Figure 6.9: End-to-end Latency for Images with and without Transcoding

6.3 Scalability Concerns

The previous sections have demonstrated that modern workstations are sufficiently fast

that transcoding time is often small compared to time saved in transmission of a

transcoded image. Our transcoding proxy is implemented as a multi-threaded program.

The Connection thread listens for client requests at an advertised port. For servicing a

 117

client request, a Proxy object is created for each open TCP connection between the client

and the proxy. Hence, the number of Proxy objects in existence at any time is equal to the

number of open TCP connections between the client and the proxy. Multiple transcoding

operations therefore can be serviced in parallel on behalf of a potentially large set of

clients. To explore how well our system scales to large numbers of clients, we

investigated the load placed on our proxy by a number of clients. For the purposes of this

testing, our proxy was running on a single 550-MHz Pentium III workstation that serviced

all image customization requests. We used the gettimeofday function to measure the

transcoding latency perceived by the users and the number of simultaneous image

customizations currently in progress on the same machine. Image customization is a

CPU-bound task, since the process of image reduction and requantization requires a

transcoder to “touch” all of the pixels in an image many times. We observed that the

latency of transcoding was a linearly increasing function of the number of simultaneous

operations, with a slope approximately proportional to the size of the original GIF (in

bytes). Because N transcoders shared the workstation’s CPU equally, each transcoding

operation took N times as long to complete. Figure 6.10 shows the average latency of

image transcoding perceived by a user as a function of the number of users supported by a

single workstation. At approximately 20 users, requests arrive faster than they are

serviced, and beyond this point, transcoding latency is unbounded for the single

workstation. Nevertheless, this result suggests that even using today’s desktop hardware,

information access patterns (at least for the Web) allow multiple users to be served by one

 118

compute server in a proxy installation. As we suggest in the future work, the actual work

of transcoding can be off-loaded to other nodes in a network of workstations. By doing

so, the scalability of the system will be improved.

Figure 6.10: Image Transcoding Latency Versus the Number of
Simultaneous Users on a Single Proxy

 119

CC hh aa pp tt ee rr 77

CCOONNCCLLUUSSIIOONNSS AANNDD FFUUTTUURREE WWOORRKK

Information access from different mobile platforms is becoming increasingly important.

This trend is being driven by two factors: the increasing power and capability of mobile

devices, and more readily available wireless networking technologies. The former is

bringing low-cost, portable hardware with multimedia capability into broad use. The latter

provides the means with which these small devices can access a broad wealth of shared

data. This dissertation has shown that these mobile clients must adapt to changes in their

environments, and that this adaptation is best provided through a transcoding proxy,

which is placed between the client and the web server. The transcoding proxy is the vital

implemented system to demonstrate the feasibility of multimedia image adaptation, and

the evaluation of this prototype confirms the importance of this approach to reduce web

page retrieval latency on WWW. This chapter begins in Section 7.1 with a brief summary

of the contributions made in the thesis. This work has also uncovered many avenues of

further inquiry; these are presented in Section 7.2.

 120

7.1 Conclusions

The modern portable computers and wireless connections have created a new

fundamental technology for a vision of information access for anyone, anytime,

anywhere. However, the new platform for mobile information access faces several

challenges that are mainly caused by the limited resources (e.g. display, battery, memory

size, processing power) of mobile devices and low bandwidth of wireless environment.

Due to these shortcomings, new concepts are needed to provide efficient access to World

Wide Web information within a mobile environment. Therefore, technologies that can

adapt Internet content to diversity of client devices and variability of network bandwidth

will become critical in the coming pervasive computing era.

 On many different network and application levels, a number of efforts have been

done to enhance the performance and usability of Web browsing in wireless

environments. The most common solutions that have been proposed for improving the

accessibility of information from mobile platforms are based on the client-proxy-server

model. In this model, a proxy is located between a highly resource-rich web server at one

side and a highly resource-poor mobile client at the other side. The main role of the proxy

is to filter and compress the multimedia content originating from the web server. Even

though all these proxies provide solutions to enhance mobile WWW access, they do not

address dynamic adaptation of WWW content for different mobile clients. Furthermore,

they do not answer the question of how already existing WWW content can be adapted

for a presentation on resource limited mobile computing devices. As a typical scenario,

 121

the proxy does not have any knowledge about the capability of mobile computers or

network bandwidth status. Consequently, the proxy server distills Internet content into

fixed factor regardless to the requesting mobile host display capabilities or the available

bandwidth, and delivers the same distilled content to all mobile hosts. With this type of

mechanism, it would be difficult for proxies to support a diversity of mobile computers

with different characteristics and channel constraints.

 To achieve a general solution, we have proposed a transcoding proxy process that is

placed on a proxy between client and server. This middleware provides several

transcoding services, which can dynamically adapt inline images to the current context of

the mobile host. This context includes the mobile device, the user’s preferences, and the

current available bandwidth of data transfer between the mobile host and proxy server.

The proposed transcoding proxy is aiming to achieve the smallest image file size for

quick transmission while at the same time maintaining the best possible quality of the

delivered images. Therefore, image processing (e.g., image scaling, color reduction, type

conversion) may be necessary to match the images with the devices and channels

constraints. In order to carry out the adaptation, we built a collection of adaptation rules.

The rules define the transformation or modification of images depending on the context

parameters. These parameters have an influence on the action of a rule, which is defined

by a Boolean expression. When the expression is evaluated and the condition is fulfilled

the actions of a rule are executed. For example, the Boolean expression “is the image

animated and is the freezing animation parameter equal true” is evaluated before the

 122

action of removing all the image frames excluding the first one takes place as shown in

Figure 5.5. An action correlates to one internal or external program that is responsible for

a certain adaptation process. These kinds of programs are called transcoding function.

The system can also reduce the download time by caching two versions of images: the

original and the transcoded. By doing so, it is unnecessary to transcode the same image

file requested previously by a client that has the same capabilities. In addition to image

transcoding, the system provides options to eliminate active component (i.e. Java applet,

JaveScript, VBScript) that the mobile host cannot support. In some critical situations,

compressing HTML document and removing background and advertising images might

be beneficial to reduce the download time. The achieved results have revealed that an

adaptive image transcoding proxy is a good solution and a step in the right direction to

adapt arbitrary inline images according to the properties of the end device, user

preferences, and available bandwidth.

7.2 Future Work

This dissertation has opened many avenues to very interesting research topics, for which

the transcoding proxy can serve as a starting point. Improvements can be made to several

parts of the transcoding proxy system in order to facilitate information access from

various mobile platforms. Some of these are modest in scope, while others are more

ambitious. This section explores each of these missing parts in turn, and reveals some

new investigation areas.

 123

 As we have mentioned previously, we do not have an appropriate mechanism to

detect the available bandwidth during run-time. Bandwidth is one of the most important

parameters that our system utilizes to determine data transcoding policy. Currently, we

feed our system with the bandwidth information externally. This usually requires the user

to interfere and change the bandwidth value from time to another. Therefore, we suggest

automating this policy by building a monitor that can sense the bandwidth and provide it

to the system without user interference.

 Our system has considered only a single type of media (image), not composite

multimedia documents. Other types of media such as video, sound, and text might need to

be addressed for allowing universal access to various types of information. It would be

very interesting to explore how several transcoding proxies, each responsible for

transcoding one type of media, can be added to our system. Furthermore, reorganizing the

complete elements of a webpage to fit in a small screen device is a new challenging area

that needs to be investigated.

 Estimating the cost of transcoding operations is a very important task that needs to

be achieved before applying any operation. Similarly, estimating the output file size is

worth consideration. We have not addressed these two tasks that could enhance the

system performance. The estimation values of the cost of transcoding operations and the

output file size should be considered as new parameters to the system in the future

development. These parameters could greatly assist the system to make the right decision

“to transcode or not to transcode”.

 124

 In the current design, the transcoding proxy has been developed as a single proxy

that can handle all requests from many users. We assumed that a few users might deal

with the transcoding proxy at the same time. Thus, we have not investigated the case

when the transcoding proxy is overloaded by many users. A study could be attempted to

address how the workload of the current proxy can be shifted to a neighbor proxy in order

to balance the current proxy load.

 Since one proxy is not enough to serve all requests mobile users may attach to

different proxies in the same or different cells. Therefore, a mechanism for transferring

the mobile client information such as user preferences and device characteristics from one

proxy to another is needed to ensure that service is not interrupted by reconfiguring

operation when mobile client moves from one cell to another. Also, installing the proxy

software on different proxy machines is another issue need to be addressed.

 In the future work, we still need to consider the end-to-end security issue. One of

the security issues is to establish trust between the proxy and the mobile host. It is

necessary to have an authentication protocol that can be used to authenticate proxy

service to the clients and to authenticate the client in the proxy to the servers. By doing so,

we allow an untrusted proxy to interact with the clients, giving the clients full

authenticated (and optionally encrypted) access to the proxy services but relieving them

of a significant amount of authentication processing.

 While our transcoding proxy makes a convincing case for data adaptation, it is only

a starting point in addressing the general problem of mobile data access. Users should

 125

become actively involved in adaptation decisions, and the notion of adaptation should be

extended to computational processes as well as data structures. The very process of

building adaptive systems is in its infancy. However, our system should serve well as a

base from which to explore the previously mentioned problems.

 126

BBIIBBLLIIOOGGRRAAPPHHYY

[1] A. Fox and E. A. Brewer, ‘Reducing WWW Latency and Bandwidth Requirements by

Real-time Distillations’, In Proc. Fifth International WWW Conference, May 1996.

[2] S. Jacobs, M. Gebhardt, S. Kethers and W. Rzasa, ‘Filling HTML Forms

Simultaneously: CoWeb – Architecture and Functionality’, Computer Networks &

ISDN Systems, 28 (7-11), 1385-1395, 1996.

http://www5conf.inria.fr/fich_html/papers/P43/Overview.html.

[3] C. Brooks, M. S. Mazer, S. Meeks and J. Miller, ‘Application Specific Proxy Servers

as HTTP Stream Transducers’, In Proc. WWW-4, Bosten, May 1996.

http://www.w3.org/pub/Conferences/WWW4/Papers/56Application-Specific

[4] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H. Katz,

‘A Comparison of Mechanism for Improving TCP Performance over wireless links’,

In Proc. of the 1996 ACM SIGCOMM Conference, Stanford, CA, USA, Aug 1996.

[5] R. Yavatkar and N. Bhagawat, ‘Improving End-to-End Performance of TCP Over

MobileIinternetworks’, in Proceedings of the Workshop on Mobile Computing

Systems and Applications, Dec. 1994.

[6] Henning Koch, Lars Krombholz, and Oliver Theel, ‘A Brief Introduction intoTthe

World of Mobile Computing’, Technical report THD-BS-1993-03, May 21, 1993,

Department of Computer Science, University of Darmstadt.

 127

[7] U. Gall and F. J. Hauck, ‘Promondia: A Java-based Framework for Real-time Group

Communication in The Web’, Proc. 6th International WWW Conference, Santa Clara,

CA, April 1997. http://decweb.ethz.ch/WWW6/Technical/Paper100/paper100.html.

[8] E. A. Brewer, R. H. Katz, Y. Chawathe, A. Fox, S.D. Gribble, T. Hodes, G. Nguyen,

T. Henderson, E. Amir, H. Balakrishnan, V. Padmanabhan, and S. Seshan, ‘A

network Architecture for Heterogeneous Mobile Computing’, IEEE Personal

Communications Magazine, 5(5): 8-24, 1998.

[9] B. Clifford Neuman, ‘Protection and Security Issues for Future Systems’, In

Workshop on Operating Systems of the 90s and Beyond, Springer-Verlag Lecture

Notes in Computer Science #563, pages 184-201, July 1991.

[10] M. Satyanarayanan, ‘Fundamental Challenges in Mobile Computing’, Fifteenth

ACM Symposium on Principles of Distributed Computing, May 96, Philadelphia, PA

[11] Balakrishnan H., S. Seshan, and R. H. Katz, ‘Improving Reliable Transport and

Handoff Performance in Cellular Wireless Networks’, ACM Wireless Networks,

December 1995, http://wind.lcs.mit.edu/~hari/papers

[12] T. Imielinski and B. R. Badrinath, ‘Data Management for Mobile Computing’,

SIGMOD Record, 22(1): 34-39, March 1993.

[13] John Ioannisdis, Dan Duchamp, and Gerald Q. Maguire Jr, ‘IP-based Protocols for

Mobile Internetworking’, In Proceedings of SIGCOMM ’91 Symposium, pages 235-

245, Sept 1991.

[14] Chaoying Ma, ‘On Building Very Large Naming Systems’, In 5th SIGOPS Workshop

on Models and Paradigms for Distributed Systems Structuring, 5 pages, Sept 1992.

 128

[15] Fumio Teraoka and M. Tokoro, ‘Host Migration Transparency in IP Networks: The

VIP Approach’, Computer Communication Review, 23 (1): 45-65, Jan 1993.

[16] S. Seshan, M. Stemm, and R. Katz, ‘Spand: Shared Passive Network Performance

Discovery’, In Proc. 1st Usenix Symposium on Internet Technologies and Systems

(USITS ’97, 1997)

[17] A. Joshi, R. Weerasinghe, S. P. McDermott, B. K. Tan, G. Benhardt, and

S.Weerawarna, ‘Mowser: Mobile Platforms and Web Browsers’, Bulletin of the

IEEE Technical Committee on Operating Systems and Application Environments,

8(1), 1996.

[18] A. Joshi, S. Weerawarana, and E. N. Houstis, ‘Disconnected Browsing of Distributed

Information’, In Proc. Seventh IEEE Intl. Workshop on Research Issues in Data

Engineering, pages 101-108. IEEE, April 1997.

[19] A. Joshi, S. Weerawarna, and E. N. Houstis, ‘On Disconnected Browsing of

Distributed Information’, In Proceedings of the seventh International workshop on

Research Issues on Data Engineering, pages 101-107. IEEE Press, 1997.

[20] G. Benelli, ‘Error Recovery for ATM Transmission Over Wireless Channels’, In

Electronics Letters 1995 Aug 3 Vol. 31 No. 16 Pages 1325-1326

[21] R. Katz, ‘Adaptation and Mobility in Wireless Information Systems’, IEEE Personal

Communications, 1(1):6-17, 1994.

[22] R. Kavasseri, T. Keating, M. Wittman, A. Joshi, and S. Weerawarna, ‘Web

Intelligent Query – Disconnected Web Browsing using Cooperative Techniques’, In

Proc. 1st. IFCIS Intl. Conf. On Cooperative Information Systems, pages 167-174.

IEEE press, 1996.

 129

[23] S. Gessler and A. Kotulla, ‘PDAs as Mobile WWW Browsers’, In Third International

WWW Conference, Darmstadt, Germany, 1995.

[24] J. F. Bartlett, ‘Experience with A Wireless World Wide Web Client’, Tech. Rep.,

Western Research Laboratory, Palo Alto, CA, Mar. 1995.

[25] Friday A. J., G. S. Blair, K. W. J. Cheverst, and N. Davies, ‘Extensions to ANSAware

for Advanced Mobile Applications’, In Proc. International Conference on Distributed

Platforms, Dresden, February 27 -- March 1, 1996,

http://www.comp.lancs.ac.uk/computing/research/mpg/most/reports/icdp.adrian.ps

[26] Zenel B., ‘A Proxy Based Filtering Mechanism for the Mobile Environment’, Thesis

Proposal, Departement of Computer Science, Columbia University, June 1997

http://www.mcl.cs.columbia.edu/~baz

[27] T. Watson, ‘Application Design for Wireless Computing’, In Proc. Workshop on

Mobile Computing Systems and Applications, pages 91--94. ACM/IEEE, Dec 1994.

[28] Rabbit HTTP proxy: http://www.nada.kth.se/projects/prup98/web_proxy

[29] A. Fox, S.D. Gribble, Y. Chawathe and E. Breuer, ‘Adapting to Network and Client

Variation Using Infrastructure Proxies: Lessons and Perspectives’, IEEE Personal

Communications, 5(4): 10--19, Aug. 1998.

[30] M. Liljeberg, M. Kojo, and K. Raatikainen, ‘Enhanced Services for WWW in Mobile

WAN Environment’, 1996.

 http://www.cs.Helsinki.FI/research/mowgli/mowgli-papers.html

[31] J. Poskanzer, ‘NetPBM Release 7’,

ftp://wuarchive.wustl.edu/graphics/graphics/packages/NetPBM/

 130

[32] Graphics Interchange Format Version 89a (GIF). CompuServe Incorporated,

Columbus, Ohio, July 1990.

[33] M. Liljeberg, H. Helin, M. Kojo, and K. Raatikainen, ‘Enhanced Services for World-

Wide Web in Mobile WAN Environment’, Report C-1996-28 April 1996.

[34] A. Joshi, R. Weerasinghe, S. P. McDermott, B. K. Tan, G. Benhardt and S.

Weerawarna, ‘Mowser: Mobile Platforms and Web Browsers’, Bulletin of the IEEE

Technical Committee onOperating Systems and Application Environments Vol 8, no.

1, 1996.

[35] B. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn and K. Walker,

‘Agile Application-Aware Adaptation for Mobility’, Proceedings of the 16th ACM

Symposium on Operating System Principles, October 1997, St. Malo, France

[36] D. W. Jones, ‘Application of Splay Trees to Compressions’, Communications of the

ACM, 31(8), August 1988.

[37] M. Crovella and A. Bestavros, ‘Explaining World Wide Web Traffic Self-similarity’,

Technical Report 95-15, Boston University, Computer Science Department, Aug 95.

[38] Mowser – A Web Browser for Mobile Platforms

http://www.cs.purdue.edu/research/cse/mobile/mowser.html

[39] M. Satyanarayanan, ‘Mobile Information Access’

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/coda/Web/docdir/ieeepcs95.pdf

[40] Ubiquitous Computing: The home page of Ubicomp or the Ubiquitous Computing

Project at Xerox PARC.

 131

[41] J. R. Smith, R. Mohan and C. S. Li, ‘Transcoding Internet Content for

Heterogeneous Client Devices’, Proceedings of the IEEE International Symposium

on Circuits and Systems (ISCAS), Special session on Next Generation Internet, June

1998.

[42] C. – S. Li, R Mohan, and J. R. Smith, ‘Multimedia Content Description in The

InfoPyramid’, In IEEE Proceedings of the International Conference on Acoustics,

Speech, Signal Processing (ICASSP), Seattle, WA, May 1998. Special session on

Signal Processing in Modern Multimedia Standards.

[43] T. Watson, ‘Wit: An Infrastructure for Wireless Palmtop Computing’, Technical

Report CSE-94-11-08, University of Washington, Nov 1994.

[44] T. Watson, ‘Effective Wireless Communication Through Application Partitioning’,

In Proc. Fifth Workshop on Hot Topics in Operating Systems, pages 24--27. IEEE,

May 1995.

[45] J. Ioannidis, D. Duchamp, and G. Q. Maguire, Jr, ‘ IPbased Protocols for Mobile

Internetworking’, In Proc. SIGCOMM 91 Conf., pages 235--245. ACM, Sep 1991.

[46] A. Hokimoto, K. Kurihara, and T. Nakajima, ‘An Approach for Constructing Mobile

Applications using Service Proxies’, To Appear in Proc. of The 16th International

Conference on Distributed Computing Systems, May 1996.

 [47] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K. Gifford, and F. Kaashoek,

‘Rover: A Toolkit for Mobile Information Access’, In Proc. Fifteenth ACM

Symposium on Operating Systems Principles, pages 156--171. ACM, Dec 1995.

[48] Hokimoto A., and T. Nakajima, Robust Host Mobility Supports for Adaptive Mobile

Applications, http://mmmc.jaist.ac.jp:8000/

 132

[49] Welch, T. A., ‘A Technique for High Performance Data Compression’, IEEE

Computer, Volume 17, Number 6, June 1984. See also the Graphics FAQ - GIF

legality: http://www.faqs.org/faqs/graphics/

[50] Extensive information about the JPEG graphic file format, including progressive

JPEGs. JPEG FAQ: http://www.fags.org/faqs/jpeg-fag/part1

[51] Hamilton, E.,’JPEG File Interchange Format’, Milpital, CA: C-Cube Microsystems,

1992.

 [52] N. Abramson, ‘The ALOHA system – Another Alternative for Computer

Communications’, In Fall joint Computer Conference, AFIPS Conference

Proceedings, volume 37, pages 281-285, 1970.

[53] J. Kahn and J. R. Barry, ‘Wireless Infrared Communications’, In Proc. of the IEEE,

February 1997.

[54] C. Perkins, ‘IP Mobility Support RFC’, Oct 1996. RFC-2002.

[55] J. Jubin and J. Tarnow, ‘The DARPA Packet Radio Network Protocols’, In Proc. of

the IEEE, 75(1):21-32, January 1987.

[56] S. Seshan, ‘Low Latency Handoffs in Cellular Data Networks’, PhD thesis,

University of California at Berkeley, December 1995.

[57] J. Ioannidis, D. Duchamp, and G. Q. Maguire, ‘IP-based Protocols for Mobile

Internetworking’, In Proc. ACM SIGCOMM ’91, pages 235-245, 1991.

[58] S. Seshan, H. Balakrishnan, and R. H. Katz, ‘Handoffs in Cellular Wireless

Networks: The Daedalus Implementation and Experience’, Kluwer Journal on

Wireless Personal Communications, January 1997.

 133

[59] R. Caceres and L. Iftode, ‘Improving the Performance of Reliable Transport

Protocols in Mobile Computing Environments’, IEEE Journal on Selected Areas in

Communications, 13(5), Jun 1995.

[60] B. Leiner, D. Nielson, and F. Tobagi, ‘Issues in Packet Radio Network Design’, In

Proc. of the IEEE, 75(1):6-20, January 1987.

[61] R. Caceres and V. N. Padmanabhan, ‘Fast and Scalable Handoffs in Wireless

Internetworks’, In Proc. 1st ACM Conference on Mobile Computing and Networking,

November 1996.

[62] R. Ghai and S. Singh, ‘An Architecture and Communications Protocol for

Picocellular Networks’, IEEE Personal Communications Magazine, 1(3): 36-46, 94.

[63] Infrared Data Association. IrDA Serial Infrared (SIR) Physical Layer Link

Specification (IrPHY) 1.1. Infrared Data Association, 1995.

[64] R. Scholtz, M. Simon, J. Omura, and B. Levitt, ‘Spread Spectrum Communications

Handbook’, McGraw-Hill, 1994.

[65] Proxim–Wireless LAN Networking Products Based on Spread Spectrum

Technology. http://www.proxim.com, 1998.

[66] Aironet Wireless Communications Home Page: http://www.aironet.com, 1998.

[67] Metricom, Inc. http://www.metricom.com and http://www.ricochet.net, 1998.

[68] M. Mouly and M. B. Pautet, ‘The GSM System for Mobile Communications’, Cell &

System, 1992.

[69] R. Quick and K. Balachandran, ‘Overview of the Cellular Digital Packet Data

(CDPD) System’, In Proc. of the PIMRC, pages 338-343, 1993.

 134

[70] The WaveLAN Home page: http://www.wavelan.com, 1998.

[71] M. Ritter, ‘The Metricom Autobahn Architecture’, Personal Communication, 1997.

[72] R. Fileding, J. Gettys, J. Mogul, H. Frystyk, T. Berners, ‘RFC 2068: Hypertext

Transfer Protocol’, January 1997 available at: http://sunsite.auc.dk/RFC/rfc/rfc2068.

[73] Jongkuk Lee, Myungchul Kim, Hee Yong Youn, Yusik Hahm, and Dongman Lee,

‘Class-based Proxy Server for Mobile Computers’, Workshop on Wireless Networks

and Mobile Computing, pages 559—566, IEEE, 2000.

[74] Intel: Quick Web. http://www.intel.com/quickweb/index.htm.

[75] Kawachiya, K. and Ishikawa, H., ‘Improving Web Interaction on Small Displays’, in

Proceedings of 8th International WWW Conference, 5159, 1999.

[76] J. Smith, R. Mohan and C. Li, ‘Content-based Transcoding of Images in the

Internet’, Proc. Int’l. Conf. Image Processing, 1998.

[77] ImageMagick: a robust toolkit for reading, writing, and manipulating images in

many image formats: http://www.wizards.dupont.com/cristy/ImageMagick.html

[78] J. A. Storer, ‘Data Compression: Methods and Theory’, Computer Science Press,

Rockville, Maryland, 1998.

[79] Network Working Group; RFC 1950, ‘ZLIB Compressed Data Format

Specification’, Version 3.3, 1996.

[80] Peter Danzig, Jeff Mogul, Vern Paxson, and Mike Schwartz, ‘Internet Traffic

Archive’, http://ita.ee.lbl.gov/

 135

[81] Jeff Mogul and Tom M. Kroeger, ‘Digital’s Web Proxy Traces’,

ftp.digital.com/pup/DEC/traces/proxy/webtraces.html, 1996.

[82] GOZILLA software: http://www.free-download.com/shareware-demo/gozilla.htm

[83] Mohmed El-Shantanawy, ‘Accessing The WWW Over Low-BW Access Networks’, In

Progress Thesis (M.C.S.) - Carleton University, 2000.

[84] X11 graphics programs and libraries:

http://hpux.ee.ualberta.ca/hppd/hpux/X11/Graphics/alpha.html

[85] Pythia: ftp://daedalus.cs.berkeley.edu/pub/glomop/

[86] Jakob Nielsen, ‘Usability Engineering’, Academic Press, Boston, MA, 1993.

(hardcover), 0-12-518406-9 (paperback).

[87] Bitmap Information Tool: http://www.coli.uni-sb.de/~haase/pkg/

[88] T. Lane, P. Gladstone, L.Ortiz, J. Boucher, L. Crocker, J. Minguillon, G. Phillips, D.

Rossi, and G. Weijers, ‘The Independent JPEG Group’s JPEG Software Release 6b’

ftp.uu.net/graphics/jpeg/jpegsrc.v6b.tar.gz

[89] M. El Shentenawy, A. Gaddah, Q. Guo, T. Kunz and R. Hafez, ‘Image Transcoding

for Proxy Internet Wireless Access’, Wireless 2000, Calgary, July 2000.

[90] H. Balakrishnan, S. Seshan, E. Emir, and R. H. Katz, ‘Improving TCP/IP

Performance Over Wireless Networks’, in First Annual Conference in Mobile

Computing and Networking, ACM, 1995.

[91] H. Lei and D. Duchamp, ‘Transparent File Prefetching’, Submitted for publication,

March 1995.

