
Benchmark for MANET
(BENCHManet)

User Manual

April 2005

Mohamed M. Abou El Saoud
moaz@sce.carleton.ca

Department of Systems & Computer Engineering
Carleton University

1 Required Files

The package, BENCHManet.zip, contains the benchmark we have developed

along with some useful scripts. The files and directories included in the package

are:

(1) slpRunScenario.bat
(2) slpRunAll.bat
(3) slp_tools/slpMotion/
(4) slp_tools/slpTraces/
(5) slp_tools/slpAnalysis/
(6) slp_tools/install
(7) slp_tools/MobileModels/
(8) slp_tools/slpSimulationSetup.bat
(9) slp_tools/tr2Excel.bat
(10) slp_tools/combineAnalysis.bat
(11) slp_tools/eval.awk
(12) slp_tools/original_common.tcl
(13) slp_tools/cache_common.tcl
(14) slp_tools/conf.tcl
(15) slp_tools/event.tcl
(16) slp_tools/rescue.tcl
(17) slp_tools/pursuit.tcl
(18) slp_tools/pan.tcl
(19) slp_tools/mesh.tcl
(20) slp_tools/vr.tcl
(21) slp_tools/vp.tcl

1



(22) slp_tools/march.tcl
(23) slp_tools/combat.tcl

The files (14)-(23) contain network configuration parameters particular to

each of the 10 scenarios constituting BENCHManet. In order to generate appro-

priate movement patterns and setup the directory structures, the script in (8) is

run. This script in turn uses the implementations of the mobility models in (7)

provided by [1], [2], and [3]) to generate movement files for each of the sce-

narios in BENCHManet; these models must be first compiled by invoking (6).

The movement files generated are stored in (3). The core simulation drivers

are found in (12) and (13); the former is used when the original SLPManet

is desired, while the later is used for the modified SLPManet which supports

extended caching. NS-2 output traces are stored in (4). Script (11) analyzes

trace files. To combine the trace analysis of all tests in a benchmark run, the

script in (9) is invoked. To combine the results of several benchmark runs, the

script in (10) is invoked. Analysis results are stored in (5).

The scripts in (1) and (2) automate the whole simulation and analysis

process; the first automates running the procedure of simulating a particular

scenario test, while the latter automates running the entire benchmark.

2 Installation Steps

1. Copy the package BENCHManet.zip, to ns-2.27/.

2. Unpack the package: unzip BENCHManet.zip.

3. Compile the mobility models by typing ./install under slp tools/.

2



3 Running Simulations

3.1 To Run a Particular Scenario

Run the script:

./slpRunScenario.bat scenario runDirectory seed <-cache>

The script automates the process of simulating scenario. runDirectory

is the name of the sample. seed is used to set the seed of the random number

generators. If the -cache option is specified, the modified version of SLPManet

that allows extended caching is used instead of the original SLPManet. The

script in turn invokes other scripts to set up directory structures, generate new

movement files (if not already existing) and run the simulation for the given

scenario.

For instance, in order to run the conference scenario with the original

SLPManet, setting a seed of 2, one would type:

./slpRunScenario.bat conf run0 2 -cache

The movement file will be stored in:

slp tools/slpMotion/run0/conf.motion

The trace file will be stored in:

slp tools/slpTraces/run0/original/conf.tr

To analyze the generated output trace file, run:

awk -f slp tools/eval.awk slp tools/slpTraces/run0/original/conf.tr

3.2 To Run the Entire Benchmark

Run the script:

./slpRunAll.bat runDirectory seed <-cache>

The script is used to run all scenarios in the benchmark. runDirectory is

the name of the sample run. seed is used to set the seed of the random number

3



generators. If the -cache option is specified, the modified version of SLPManet

that allows extended caching is used instead of the original SLPManet. The

script in turn invokes other scripts to setup directory structures, generate new

movement files (if not already existing), run the simulations, and analyze trace

files.

For instance, in order to run the benchmark, with a seed of 2, and enabling

caching, one would type:

./slpRunAll.bat runAll0 2 -cache

The movement files will be stored in:

slp tools/slpMotion/runAll0/<scenario name>.motion

The trace files will be stored in:

slp tools/slpTraces/runAll0/cache/<scenario name>.tr

The summary of analysis of all scenarios will be stored in:

slp tools/slpAnalysis/runAll0 cache.txt

Note that the script in (8), which is invoked by slpRunScenario.bat

and slpRunAll.bat, randomly generates a new set of movement files for

every new runDirectory. If the simulation was run for an already existing

runDirectory, then a set of movement files must have already been previ-

ously generated for this sample run, and are hence used in the simulation.

The seed only controls the random generators used in the NS-2 simula-

tion. Random generators were used to randomly assign agents to nodes, and to

generate random exponential inter-arrival times for user requests.

If you wish to run several samples of the benchmark, and then merge the

analysis files into a single file, run:

./combineAnalysis.bat <-cache>

The script combines all the benchmark summary files:

4



slp tools/slpAnalysis/* original.txt

and produces

slp tools/slpAnalysis/original results.txt.

If the -cache option was specified, it will similarly merge all the cache analysis

summary files and produces cache results.txt.

4 Understanding the Analysis Output

The output of the trace file analysis is organized in rows, each of which represents

the analysis of a simulation sample run of a given scenario. Each row contains

16 columns, whose headers are described below:

1. scenario: Name of the scenario test (e.g. conf).

2. Rqsts: Total number of discovery transactions.

3. tRplys: Total number of successful discovery transactions.

4. uRplys: Portion of discovery transactions satisfied by new Service Replys

(SrvRplys).

5. Cached: Portion of discovery transactions satisfied through cache hits.

6. Succ: Overall Discovery Success Percentage.

7. minLat: The minimum latency consumption of all successful discovery

transactions (in seconds).

8. maxLat: The maximum latency consumption of all successful discovery

transactions (in seconds).

9. avgLat: The average latency consumption of all successful discovery

transactions (in seconds).

5



10. stdLat: The standard deviation in latency consumption of all successful

service discovery transactions (in seconds).

11. minBW: The minimum bandwidth consumption of all successful discovery

transactions (in bytes).

12. maxBW: The maximum bandwidth consumption of all successful discovery

transactions (in bytes).

13. avgBW: The average bandwidth consumption of all successful discovery

transactions (in bytes).

14. stdBW: The standard deviation in bandwidth consumption of all success-

ful service discovery transactions (in bytes).

15. aggBW: Aggregate bandwidth consumption by the entire discovery process

(in bytes).

16. wasBW: Total wasted bandwidth due to unsuccessful discovery transac-

tions (in bytes).

6



References

[1] T. Camp, J. Boleng, and V. Davies, “A survey of Mobility Models for

Ad Hoc Network Research,” Wireless Communication & Mobile Computing

(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends

and Applications, vol. 2(5), pp. 483–502, 2002.

[2] W. Navidi and T. Camp, “Stationary Distributions for the Random Way-

point Mobility Model,” IEEE Transactions on Mobile Computing, vol. 3(1),

pp. 99–108, January/March 2004.

[3] W. Navidi, T. Camp, and N. Bauer, “Improving the Accuracy of Random

Waypoint Simulations Through Steady-State Initialization,” in Proceedings

of the 15th International Conference on Modeling and Simulation (MS ’04),

pp. 319–326, March 2004.

7


