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 Abstract.  
 
This thesis addresses the study of a network time synchronization (NTS) algorithm for 

wireless Ad Hoc networks (WAHNs), and the design and analysis of a medium access 

control (MAC) paradigm referred to as code-based scheduling. 

We present a novel network time-synchronization algorithm referred to as Clock-

sampling Mutual Network Synchronization (CSMNS) that shows excellent scalability, 

accuracy and low implementation complexity. CSMNS is evaluated analytically and 

numerically in single-hop and multi-hop scenarios. The performance of CSMNS is also 

compared to the performance of the timing synchronization function (TSF) of the IEEE 

802.11 standard of which, to the best of our knowledge we are the first to provide 

performance results in a multi-hop scenario. CSMNS has the ability to make the time 

difference among the clocks in the network converge to a common and small value by 

utilizing the timing information carried on beacons originated in any point of the 

network. CSMSN also reduces the need for constant refreshment of the timing 

information. 

A MAC strategy we call code-based scheduling is proposed that utilizes the code-

words of codes traditionally used for channel coding purposes. We use a novel approach 

that utilizes coding theory concepts to devise a scheduling strategy that allows for the 

possibility to guarantee a minimum level of performance in the nodes of a WAHN. 

General principles of code-based scheduling are investigated and particular examples 

based on Reed-Solomon and Hermitian codes are evaluated analytically and numerically 

in terms of their average, minimum and maximum delay and throughput performance. 
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Additionally, a metric that can be used to identify better codes for the purpose of code-

based scheduling is identified. 

The average performance of a large family of code-based scheduling protocols is 

analytically compared to the one obtained by slotted-ALOHA. A code-selection 

algorithm is proposed that can improve the average throughput of code-based scheduling 

when the number of nodes in the network is larger than the number of code-words 

available. Finally a hybrid code-based contention-based scheduling protocol is discussed 

and evaluated, which combines the performance guarantee advantage of a code-based 

scheduling approach with the better average performance of contention-based scheduling 

protocols with feedback. 
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Chapter 1 

 

Introduction 
 

In this work we study the feasibility of achieving network time synchronization (NTS) 

for wireless Ad Hoc networks. Additionally, we present a novel Medium Access Control 

(MAC) protocol for Wireless Ad Hoc networks. Novel NTS and MAC approaches are 

proposed and evaluated that are referred to as Clock-sampling Mutual Network 

Synchronization (CSMNS) and Code-based scheduling respectively. This chapter 

presents the fundamental concepts, motivation, objectives, and contributions of this work. 

 

1.1 Wireless Ad Hoc Networks 

 

A wireless Ad Hoc network is a distributed communication network comprised of 

geographically separated radio terminal units or nodes (mobile or fixed) that participate 

in the creation, management and data forwarding operations of the network over a 

wireless transmission medium.  A wireless Ad Hoc network is autonomous and operates 

by the shared responsibility of the entities that provide the communication service itself; 

all or part of the nodes implement the required tasks to be host, router and transmission 

medium interface. In this respect, a wireless Ad Hoc network differs from a cellular radio 

network in that its functionality is not strongly dependent on the use of a centralized and 

fixed infrastructure. In terms of network architecture, we visualize a wireless Ad Hoc 
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network as a general concept that can encapsulate networks with no infrastructure or 

networks with some degree of infrastructure support (i.e., clustered networks). 

Furthermore, a wireless Ad Hoc network is not necessarily an isolated entity since it can 

be attached to existing network infrastructure (e.g., a multi-hop network with gateways to 

the Internet). The same gain in flexibility offered by a wireless Ad Hoc network 

introduces many degrees of freedom that can be challenge to tackle. The lack of a 

centralized infrastructure and the broadcasting nature of the wireless medium make it 

difficult to schedule transmissions, route the information through the network, connect to 

other existing networks, maintain efficient medium utilization, guarantee some level of 

quality of service (QoS), and perform network discovery among others. Furthermore, the 

specific applications towards which some Ad Hoc networks are tailored makes the 

relatively simple and general layered design of a communication system based on the 

OSI/ISO model a sub-optimum one, therefore cross-layer designs have been proposed 

that further increase the design complexity of a wireless Ad Hoc network. 

Some of the most interesting advantages of Wireless Ad Hoc networks are the 

possibility of multi-hop mode of communication, the lack of a fixed and centralized 

infrastructure, and the capability of self-organization. These advantages made them 

initially attractive for battlefield and disaster relief scenarios in which the deployment of 

a fixed infrastructure can be costly, risky, and time-consuming. However, more 

applications have emerged recently due, in a large extent, to the field of wireless sensor 

networks. Wireless sensor networks are wireless Ad Hoc networks in which the nodes 

comprising the network have the capability to interact with the surrounding medium for 

distributed monitoring or control purposes. Each node is a collection of processor(s), 
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memory, and I/O units (e.g., radio interface, sensing/actuating elements, and mobility 

components) that is able to coordinate efforts with other nodes in the network in order to 

perform a specific task. Each node could operate in an unattended manner or with the 

minimum intervention of an operator. Sensor network applications are numerous, 

including monitoring of physical, chemical or environmental phenomena over hostile, 

remote and/or large geographical areas, distributed data extraction, and control and 

actuation (e.g., switching on/off of geographically separated devices in response to 

manual commands or sensed phenomena) among others. Recent advances in 

microelectronics and micromechanical systems (MEMS) have opened the venue for very 

exciting applications using small and low-cost nodes for Wireless Micro-sensor Networks 

[1]. In general, wireless Ad Hoc networks have been recognized as an important 

application enabler, not only for the military, but also for civil, industrial and scientific 

applications. 

The first part of this thesis addresses the problem of time synchronizing the nodes in a 

wireless Ad Hoc network. The nodes must be able to generate, in a distributed way, a 

variable T that takes progressive values as time evolves. The variable T in each node of 

the network is called a time-process and the whole set of variables T generated 

independently (i.e., one per node) must show the same value within some error tolerance 

at any given time. That is, a procedure exists throughout the network such that for any 

)(tTi  and )(tT j with ji ≠ , etTtT ji ≤− )()( , where e  is as close to zero as needed, and 

)(tTi  denotes the time process of the ith clock. In colloquial terms, each node has a clock 

that shows approximately the same time as the rest of the clocks embedded in every node 

of the network. The process T does not necessarily have to follow real time or be 
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implemented with physical clocks as will be explained in more detail in Chapter 2. Figure 

1.1 depicts a view of a wireless Ad Hoc network with time-synchronized nodes and their 

time processes.   
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Figure 1.1 Time-processes in a Wireless Ad Hoc network in which nodes are time-synchronized 

 

The identification of NTS as an important functionality of a network has been 

recognized since early times. NTS is used in almost any practical communication 

network. Cellular radio standards, such as the Global System for Mobile 

Communications (GSM) utilizes NTS to coordinate the transmissions between the mobile 

terminals and the base stations. The Code Division Multiple Access (CDMA) IS-95 

standard utilizes NTS to maintain the orthogonality between the Walsh functions used to 

separate the traffic flows in the forward link, and for inter-base station synchronization 

among others. Within the realm of wireless metropolitan, local, and personal area 

networks, the IEEE 802.11 standard [2] in its “Ad Hoc” and infrastructure modes utilizes 

NTS for power management procedures aimed at reducing energy consumption and 
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increasing battery life. The IEEE 802.16 [3] as well as the IEEE 802.15 [4], [5] standards 

depend on an NTS function for the creation of a time-slotted medium access control 

protocol (i.e., a synchronous MAC).  

NTS can enable many existing and yet to be discovered protocols and applications. 

Some of these are: 

1. A synchronous MAC protocol that can deliver the information with some level of 

QoS support. In particular, NTS can allow the utilization of the wireless medium by 

multiple nodes in a time division multiple access (TDMA) manner. A TDMA scheme 

is more suitable than a contention or random-based scheduling approach to guarantee 

some level of delay and throughput performance in the transmission of information. It 

is interesting to note that many synchronous MAC protocols proposed in the research 

literature assume NTS is available through the Global Positioning System (GPS). 

However, depending on GPS signals is, in most cases, less flexible and more costly 

due to the need of additional hardware and clear-sky line-of-sight. MAC protocols, 

such as those based on combinations of any of the three traditional ones (i.e., CDMA, 

TDMA, and FDMA) could depend on an NTS function, as well as contention-based 

approaches that make use of slotted-time (e.g., slotted-ALOHA, Packet Reservation 

Multiple Access-PRMA [6]-[10]).   

2. Energy saving through techniques that involve sleep/wake-up modes of operation, or 

through the reduction of communication overhead. It is known that most of the 

energy consumed by a node is due to the energy consumed by the RF section of the 

radio transmitter. Therefore, techniques that avoid the frequent need for the 

transmission/reception of information while maintaining a good performance are 
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highly desirable. For instance, in sensor networks it is possible to accomplish this if a 

node can predict the state of neighboring nodes with some gradient information and a 

common time measure. In particular, a node can have information of the rate of 

change of the phenomenon observed by its neighbor node and predict the value of the 

measured variable (as seen by the neighbor node) if a common time process exists 

between the two nodes. In other words, transmission of information can be replaced 

by local computation.  

3. Data aggregation is an important paradigm in which the collection of distributed 

information (distributed in space and time) is ultimately presented in a concise and 

accessible manner to the final user. To make sense out of the distributed information 

it is important that a common time process exists in order to identify the proper order 

of events detected or monitored in the network. Data aggregation depends on NTS to 

avoid duplicates, and to be able to identify true updates made by the distributed nodes 

of the network. 

4. Security protocols that, for instance, detect and defend against wormhole attacks 

through temporal leashes [11]. In a wormhole attack an attacker receives packets in 

one point of the network and tunnels them, via a dedicated link, to another attacker 

located in a different position in the network. The receiving-end attacker will re-play 

the packets transmitted at the other end causing a disruption of the normal operation 

of the network, and in particular, the routing protocol. A temporal leash uses 

timestamp information sent in every packet to estimate the time a packet has traveled. 

The receiving node performs a time comparison between the received timestamp and 

its own time therefore creating the need for a tight NTS function.  
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5. Sequential tasks in which some nodes respond or interact with other nodes based on 

a specific interval of time (e.g., interactive toys, sequential procedures in an industrial 

plant, wireless control). 

How to achieve NTS in a wireless Ad Hoc network represents the first part of this 

thesis. The second part tries to answer the question on how to effectively access the 

wireless medium once the network is synchronized. 

 

1.2 Network Time Synchronization 

  

Time measurement has intrigued researchers for a long time. The first accurate clocks 

started to appear in the 17th century after the scientific work pioneered by Galileo and 

expanded by Christian Huygens [12]. These scientists helped develop a better clock 

based on their theories of the motion of pendulums. An important use of clocks was for 

determining the longitude of ships at sea, for which a sextant and an accurate clock was 

needed. Furthermore, people needed to agree on the time their clocks were showing, 

therefore means to synchronize multiple and independent clocks to a central clock were 

essential. This is when the Greenwich Mean Time (GMT) was born in the 19th century. 

More recent advances in the area of clocks and time measurement have replaced GMT 

time (based on a physical clock located in Greenwich) with the Coordinated Universal 

Time (UTC) that is based on more accurate time measurements collected from different 

atomic clocks throughout the world. Relatively recent advances in the area of clocks 

include the development of the atomic clocks that are used in the GPS satellite system 

and the digital telephone communication network [13], the development of the quartz-
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crystal oscillator, and more recently the development of a chip-scale atomic clock that 

could potentially bring atomic clock precision to everyday-life devices such as cell-

phones and computers [14]. 

NTS has the goal of aligning or equalizing the individual time processes of a network 

of clocks separated in space. In order to achieve NTS it is necessary to establish links of 

communication between the clocks comprising the network. Those links could be wired 

or, more importantly for our study, wireless links. 

There are two commonly known approaches for clock synchronization based on the 

network used to distribute the timing information [15], centralized and decentralized. The 

centralized synchronization approach is also known as master-slave and it is the most 

common method encountered in practice in civilian applications. There are one or more 

accurate clocks (the master(s)) to which all the rest of the clocks listen and adjust their 

frequency and phases accordingly. The decentralized synchronization approach is also 

known as mutual synchronization, in this approach there is no master clock, but instead 

all clocks cooperate to achieve synchronization in a distributed manner. In mutual 

synchronization, the clock of a node tries to achieve synchronization by reducing its 

phase or timing error with respect to a weighted average of the other clocks’ phases. This 

method finds wide acceptance in military networks. 

In practice it is necessary to exchange timing information among the different clocks 

in the network. There are several approaches for doing this including: 

1. Burst position measurement,�

2. Continuous correlation of timing signals and, �

3. Clock-sampling�
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In the burst position method each node schedules the periodic transmission of a burst 

or pulse. At each receiving node the positions of the incoming bursts are compared with 

the position of the local burst and the difference is used to correct the local clock period 

according to a many-to-one mapping. This mapping usually takes the form of a weighted 

average of the errors. The transmission of pulses has the disadvantage of requiring a large 

bandwidth, and possibly a dedicated channel.  

In the continuous correlation method each node continuously transmits a signal that is 

tracked at the receiving node. At each receiving node the sequence is compared with a 

replica generated by the local clock and a sliding correlation is performed in order to 

compute the phase offset. For instance, a clock can drive a pseudo-noise (PN) sequence 

generator, and this sequence can be transmitted to other nodes. As in previous cases a 

many-to-one mapping is needed to extract the correction term used to adjust the local 

clock. 

In the clock-sampling method each node reads the time of its clock and transmits it to 

other neighboring nodes explicitly. At each receiving node the timing errors are 

computed as the difference between the local and neighbor nodes' clocks. The errors are 

used in a many-to-one mapping rule to determine the correction applied to the local 

clock. The main advantage of the clock-sampling technique is its relative simplicity. For 

example, the Timing Synchronization Function in the IEEE 802.11 standard is a clock-

sampling method. In all these methods the timing information exchanged can be 

corrupted during the time it travels from transmitter to receiver. Some of the most 

detrimental factors include link delay, signal fading, signal delay spread, and collision of 

timing messages due to the broadcasting nature of the wireless medium. 
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Another important classification of NTS can be based on the method used to achieve 

synchronization. A virtual NTS approach does not exert explicit control over a physical 

clock, but rather lets the clocks in the network run freely. Synchronization is achieved by 

comparing timestamps and using mathematical expressions that incorporate knowledge 

of the clock’s characteristics (e.g., maximum drift and skew of the clocks – see Chapter 

2). Virtual NTS approaches have been proposed primarily for the correct estimation of 

the ordering of events in a computer network. More will be discussed about virtual NTS 

in Chapter 2. A Physical NTS approach exerts control over the physical clocks and tries 

to explicitly adjust their time based on a time-error measurement. Table 1.1 summarizes 

the advantages and disadvantages of some NTS approaches.  

 

1.3 Medium Access Control 

 

The efficient schedule of the transmissions in a Wireless Ad Hoc network is a 

challenging task. This challenge arises due to the lack of a centralized infrastructure and 

the broadcasting nature of the wireless medium. The most popular scheduling schemes 

are those derived from the ALOHA protocol, such as the Carrier Sense Multiple Access 

/Collision Avoidance (CSMA/CA) protocol used in the IEEE 802.11 standard. It is well 

known that the family of ALOHA protocols offer good performance for a small number 

of nodes transmitting bursty traffic over a shared channel. However, ALOHA-like 

protocols suffer from lack of any performance guarantee and instability. Stabilization 

techniques, such as the Pseudo-Bayesian algorithm [16] are not the main focus of this 

work, but rather we are more interested in providing some level of performance guarantee  



11 

  

Table 1.1 Summary of advantages and disadvantages of some NTS approaches 

NTS approach Advantages Disadvantages 

 

 

 

 

 

 

Master-slave 

o Simplicity 

o Stability 

o Hierarchical and 

centralized with 

single point of failure 

o Not suitable for 

distributed networks 

and applications (i.e., 

becomes the weakest 

link)  

o Accuracy decreases 

as slaves are farther 

away from the master 

(e.g., multi-hop or 

multiple master 

hierarchies)  

 

 

 

Mutual Synchronization 

o Non-hierarchical 

architecture (all nodes 

have the same 

influence), suitable for 

distributed networks 

o Accuracy does not 

degrade on a multi-hop 

network 

o Complexity 

o Stability issues due 

to close-loops 

o Accuracy depends on 

link delays when not 

negligible 

Virtual o Simplicity in some 

cases 

o Potential trade-off of 

transmission overhead 

for local computation 

o Depends on 

knowledge of clock 

parameters and 

assumptions 

o Loose accuracies  

Physical o Accuracy o Complexity of 

implementation. 
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through the scheduling procedure. It is necessary to have more structure in the scheduling 

approach if real-time or priority applications are to be supported with some minimum 

performance guarantees. A way to add structure is by allowing the transmissions to 

happen during known boundaries or slots. This technique is employed in the slotted-

ALOHA protocol. However, a high degree of randomness is still present in the way 

nodes access the medium, therefore no delay guarantees can be offered. On the other 

hand, a highly structured scheduling protocol usually suffers from being inflexible and 

difficult to manage in a distributed way. 

An example of a structured scheduling protocol is classic time division multiple 

access (TDMA). In classic TDMA every node is assigned a unique time-slot in which to 

transmit; in this way collisions are completely avoided and the packet delay becomes 

highly deterministic. However, the throughput and delay efficiency of such a scheme is 

questionable due to the poor re-utilization of slots (i.e., nodes far enough from each other 

may utilize the same slot to transmit without causing interference). Other more intelligent 

TDMA schemes have been proposed that try to be more efficient. There are several 

requirements that can be imposed in order to design an efficient method for multiple 

nodes to access the transmission medium, some of the most important in the context of 

wireless Ad Hoc networks include: 1) Minimization of primary and secondary collisions, 

2) Maximization of slot re-utilization, and 3) Minimization of overhead. A primary 

collision occurs when two nodes within interference range of each other transmit in the 

same time-slot; in a primary collision the set of intended receivers of the two 

transmissions necessarily include one or both of the transmitting nodes. This is assuming 

a node cannot transmit and receive at the same time. 
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Figure 1.2 Examples of primary (a) and secondary (b) collisions 

 

A secondary collision occurs when two nodes, not necessarily within interference 

range of each other, transmit in the same time-slot, interfering with an ongoing reception 

in a third node that is located within interference range of both transmitting nodes; in a 

secondary collision the node in which the collision happened may or may not be the 

intended receiver of the two transmitters. 

Figure 1.2 depicts some scenarios in which primary (2.a) and secondary (2.b) 

collisions occur. The dotted circles surrounding the nodes represent the transmission 

range of a node, and the x inside a node identifies the location of the collision. A collision 

is usually assumed to destroy the information at the given receiver.  However, in practice,  



14 

  

the receiver might be able to capture the information if the information is received with 

sufficient power above a given noise and interference threshold. In this work we assume 

no capture. Ideally, in order to avoid collisions entirely, any two transmitting nodes must 

use different time-slots if at least one of the two intended receivers is within interference 

range of both transmitting nodes in question. Conversely, if the intended receivers of the 

two transmitting nodes are out of the interference range of the corresponding non-

intended (interfering) transmitting node, then the two transmitting nodes can transmit in 

the same slot. For instance, in the primary collisions of Figure 1.2a, all transmitting nodes 

must use different time-slots because the intended receivers are either one or both of the 

transmitting nodes themselves, which in turn are within transmission range of each other. 

In the secondary collisions of Figure 1.2b, the example on top and the last two involve at 

least one intended receiver that is within interference range of the two transmitting nodes, 

therefore all transmitting nodes must use different time-slots. However, in the second 

example from top to bottom, the two nodes transmitting in the horizontal direction can 

transmit in the same time-slot because their intended receivers are out of interference 

range from the corresponding interfering transmitter (i.e., for simplicity assume that the 

transmission and interference ranges are equal to the radius of the circles shown). Note 

from the previous discussion that slots can be re-used even by nodes within transmission 

range of one another. However, the amount of overhead information needed to achieve 

slot-reutilization could be substantial if it is explicitly sought. 

The maximization of slot-reutilization is an important factor since it translates into the 

minimization of the frame size (i.e., number of slots per frame), which in turn translates 

into reduced transmission delays and increased bandwidth availability for a given node. 
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Consider for instance the network of Figure 1.3, in which nodes that are not linked by a 

line do not interfere with one another. A classic-TDMA scheme will assign a different 

slot to every node, and the resulting frame size will be of 6 slots. However, it is possible 

to achieve the same collision-free scenario of classic-TDMA by using a frame with 3 

slots, reducing to half the time it takes a node to successfully remove a packet from its 

transmitting queue. However, it is clear that achieving slot-reutilization implies some 

way of distributing the information of what slots a given node will use. The latter is not a 

trivial task particularly if the topology of the network changes frequently due to node 

mobility. 

1 2 3 4 5 6

1 2 3 1 2 3

frame

1 2 34 5 6 1

frame

2 31 1

1 2 3 4 5 6

1 2 3 1 2 3

frame

1 2 34 5 6 1

frame

2 31 1

1 2 3 4 5 6

1 2 3 1 2 3

frame

1 2 34 5 6 1

frame

2 31 1

1 2 3 4 5 6

1 2 3 1 2 3

frame

1 2 34 5 6 1

frame

2 31 1
 

Figure 1.3 Example of slot-reutilization 

 
In order to assign slots in a WAHN we could adopt one of two approaches: 1) a 

topology dependent or 2) a topology transparent approach. A topology dependent 

approach will gather and distribute topological information necessary to realize 

successful broadcasting and/or unicasting transmissions. A topology dependent 

scheduling approach will adapt to any change in topology, either in a predictive or 

reactive way to attain the desired scheduling objective. We argue that a topology 

dependent approach will necessarily incur excessive overhead due to the lack of an 

accurate approach to predict the state of a highly dynamic wireless Ad Hoc network. 

However, a topology dependent approach could be a good candidate in situations in 
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which the network dynamics are slow. A topology transparent approach, on the other 

hand, will try to schedule the slots with no topological information at all. However, it is 

generally accepted that a topology transparent approach can make use of global network 

information such as the number or density of nodes in the network. A simple topology 

transparent approach would, for instance, assign time-slots randomly to all nodes wishing 

to transmit in a given time-slot (i.e., slotted-ALOHA). The MAC approach proposed in 

this work is topology-transparent. 

 

1.4 Research Objectives 

 

The main objective of this work is two investigate and propose new network time 

synchronization and MAC mechanisms for wireless Ad Hoc networks in order to provide 

quality of service guarantees to time-constrained applications. The specific goals are: 

 

1. To design a WAHN Time Synchronization algorithm with the following 

characteristics: 

a. Accurate: Enough accuracy to allow for a time-slotted MAC protocol (i.e., few 

µsec accuracy) 

b. Scalable: Support of hundreds of nodes is desirable for future WAHNs. 

c. Non-hierarchical and autonomous: Every node must have the same influence 

over the NTS performance, and the information needed to achieve NTS should be 

derived from the network itself, 
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d. Convergent: Different to other NTS approaches (e.g., the TSF of IEEE 802.11, 

and classical mutual network synchronization), the error among the time-

processes in the network should converge or approach zero as time evolves. 

e. Distributed: The NTS approach should be fault tolerant without central points of 

failure.  

f. Low overhead: The achievement of NTS should not be costly in terms of 

overhead. An NTS approach should not affect substantially the performance of 

the network in terms of its main task (i.e., data communication) 

g. Simple: The approach needs to be simple enough to allow for its implementation 

using most of the existing lower-layer technology, such as IEEE 802.11 or IEEE 

802.15.4. While mutual synchronization is deemed a complex and costly 

approach, the reality is that to the best of our knowledge there is no study that 

tries to reduce this complexity even if it means degradation in performance. 

 

2. To design a WAHN MAC strategy that is: 

a. Resilient to topology changes: A topology-transparent scheduling approach is 

preferred due to its lower overhead potential, 

b. Guarantee performance for priority (e.g., control/signaling channel) or real-time 

applications, 

c. Fair: The use of the wireless medium for the transmission of information should 

be fair among equivalent nodes.  

d. Efficient: A good reutilization of slots to ensure a good average delay and 

throughput performance.  
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1.5 Research Contributions 

 

The main contributions of this work are: 

 

1. The discovery of an NTS algorithm referred to as CSMNS that satisfies all the 

requirements specified in Section 1.4 and the introduction of the important concept of 

convergence in the context of NTS algorithms for wireless Ad Hoc networks. To the 

best of our knowledge, we were also the first to present performance results of the 

IEEE 802.11 TSF in a multi-hop scenario, 

2. A generalized view of the theory of topology-transparent scheduling protocols [17] 

through the incorporation of coding theory concepts into the MAC problem. We are 

the first to compare the use of Reed-Solomon and Hermitian codes in the context of 

scheduling of transmissions for wireless Ad Hoc networks. Furthermore, we were the 

first to explicitly identify the relative minimum distance of a code as a parameter that 

can be used to compare the performance of different codes to access the medium with 

some minimum level of success. We analytically compare a contention-based 

scheduling protocol (i.e., slotted-ALOHA) with a code-based scheduling protocol 

along with the description and evaluation of an algorithm used to improve the average 

throughput performance of code-based scheduling protocols referred to as the code-

selection algorithm. Additionally, we introduced a hybrid code-contention based 

scheduling approach that combines the benefits of a contention-based scheduling 

protocol and a code-based scheduling protocol. 
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The outline of this thesis is as follows: Chapter 2 discusses NTS, mathematical 

models and previous work in the area. Chapter 3 describes, analyses, and evaluates the 

proposed NTS algorithm (CSMNS). Chapter 4 discusses topology-transparent scheduling 

protocols. The proposed code-based scheduling is presented in Chapter 5. Finally, 

Chapter 6 presents the final conclusion and discussion of this work along with some 

guidelines for future work. 
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Chapter 2 

 

Network Time Synchronization 
 

This chapter addresses the topic of Network Time Synchronization (NTS) in the context 

of Wireless Ad Hoc Networks. We start with the definition and mathematical model of a 

discrete NTS approach. We continue with the description and discussion of some 

important related work on NTS, followed by a description and analysis of the Timing 

Synchronization Function (TSF) of the IEEE 802.11 standard.  

 

2.1 Mathematical Model of Network Time Synchronization 

 

The NTS method proposed in this work makes use of physical clocks to define the time-

process generated in every node of the network. The use of physical clocks does not 

imply interest in obtaining a precise measure of time in terms of Coordinated Universal 

Time (UTC). It is sufficient for our purposes to obtain time synchronization within some 

error accuracy regardless of the absolute value shown by the time-processes.  

Furthermore, the proposed NTS approach is more suitable for a multi-hop wireless 

network either mobile or static or a single-hop infrastructure-less network. We start by 

defining and characterizing the fundamental building block of any NTS approach. 
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2.1.1 Mathematical Model of a Clock 

A clock is a time measurement device. It is a system comprised of an oscillator and an 

accumulator or counter. The oscillator’s task is to generate periodic events and the 

counter adds-up these events in order to obtain the measured time in the form of 

timestamps. For instance, the oscillator can produce a sinusoidal waveform at its output; 

and the zero-crossing events of this sinusoidal waveform can be detected and used by the 

counter to increment the value of its output, which ultimately has the form of a 

timestamp. The absolute value shown by the counter output is unimportant as long as it 

follows a consistent rule throughout the entire network of interest. The synchronization 

with UTC necessarily implies the need for connecting to an external network, such as 

GPS or the Internet. 

It is clear that the core functionality of a physical clock is its oscillator. The 

performance of the oscillator in generating accurate periodic events will ultimately 

determine how accurate the clock is. Therefore, it is traditional to start modeling the 

clock by looking at the output of an oscillator. The output of an oscillator can be modeled 

with the mathematical expression of a real periodic waveform. A function )(tf  is a real-

periodic waveform with nominal period oT  if 

 

))(()( teTtftf po ++= .          

 

Where )(tep  is an error due to the imperfections of the oscillator, and it is, in general, a 

function of time. The specific amplitude values of the oscillator are unimportant for our 
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model. However, it is clear that the possible functions )(tf  do not include the trivial case 

of a constant function in time (i.e., ,)( ktf ≠ where k is a constant value). The clock 

imperfections are due to ambient conditions such as temperature, relative humidity, 

pressure, and imperfections in the methods and materials used in the construction of the 

oscillator. The errors in the generation of a true-periodic waveform are characterized by 

the phase differences between the waveform generated by the oscillator under test, and a 

reference-oscillator. If the reference-oscillator is taken to be a perfect oscillator with 

frequency 0)( wtw =  (and phase twt 0)( =θ ), then the phase difference is usually modeled 

as [18, 19] 

 

)(
2

1
)( 2

00 tDttwt eee ξ+++Φ=Φ ,       (2.1) 

 

The phase error is measured using a phase detector that subtracts the phases of the 

oscillating waveform under test and the waveform produced by the reference-oscillator. 

)(teΦ  is the phase error as a function of real time, 0eΦ  is the initial phase error, 0ew  is the 

fixed frequency offset of the oscillator with respect to the nominal frequency 0w , D is the 

frequency drift coefficient, and )(tξ is a random process that models the short-term phase 

variations of the oscillator. In synchronization parlance the D coefficient contributes to 

the frequency wander of the oscillating waveform with respect to a reference, and the 

)(tξ term contributes to its jitter. The )(tξ term is a random process that has been 

characterized with a power-law spectra [19]. In other words, the Fourier transform of the 

phase errors between an oscillator and its reference has been found to be of the form bf , 
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where b identifies the power of the process. If b = 0, the process is a white noise process. 

All accurate clocks♣ exhibit this random behavior. However, for most applications, these 

jittering disturbances can be neglected. 

Equation (2.1) shows that the phase difference between the perfect reference-

oscillators and the test-oscillator have a systematic component and a random component 

( )(tξ ). The systematic component is comprised of a constant, a linear, and a quadratic 

increasing set of functions. 

An ideal oscillator will have a zero frequency drift (i.e., D = 0 Hz/day), and no short-

term variations ( )(tξ = 0), assuming the initial phase ( 0eΦ ) and frequency offset ( 0ew ) 

errors can be corrected. The frequency error between the test and reference oscillators can 

be found by differentiating (2.1), and is given by 

 

)()( 0 tDtwtw ee ξ
�

++=          (2.2) 

 

As time progresses the frequency of the test-oscillator drifts linearly from the 

frequency of the reference oscillator. It is possible however to estimate the drift 

coefficient and adjust the phase of the oscillator accordingly, but no estimation is perfect 

and therefore drifting of the frequency will eventually dominate the frequency error of 

the clock. Equation (2.1) is still an imperfect model since the oscillator’s frequency and 

                                                 
♣ In this work an accurate oscillator is considered to be one based on quartz crystals up to atomic standards 
with frequency accuracies in the order of tens of ppm (parts per million). The IEEE 802.11 and the IEEE 
802.15.4 standards, for instance, specify a clock-accuracy for their Pseudo-Noise (PN) sequence generator 

not greater than 
�

25ppm and 
�

40ppm respectively [2], [5]. Clocks in personal computers utilize quartz-
crystal oscillators with frequency accuracies in the range of 10 to 100ppm. 
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phase also depend on ambient variables such as temperature, humidity, and pressure. For 

these reasons, it is common practice to adjust the clock timing process utilizing a 

combination of several methods such as drift coefficient estimation, temperature 

compensation, and time refresh coming from one or several reference-clocks. Using 

(2.2), the frequency of the oscillator is 

 

)()( 00 tDtwwtw e ξ&+++= .        (2.3) 

 

If (2.3) is integrated in time we obtain the phase of the oscillator 

 

( ) )0()0()(
2

)()( 2

0

0000 Φ+−+++=+++=Φ ∫ ξξξ tt
D

twtwdttDtwwt
t

ee

�

.  (2.4) 

 

Where )0(Φ  is the initial phase and the rest of the parameters were defined before. 

Ideally, a perfect clock’s phase would be 

 

twtideal 0)( =Φ .         (2.5) 

 

Therefore dividing the phase in (2.4) by the nominal frequency of the oscillator we obtain 

the measured time of the clock modeled according to (2.1) 
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where )0()0()0( ξ−Φ=Θ . 

The measured time T(t) is a random process with systematic and random components. 

Several important terms that characterize the performance of a clock are defined based on 

the time process T(t). 

The offset of a clock a with respect to a clock b (or reference time t) is )()( tTtT ba −  

(or ttTa −)( ). The skew is the difference between the rate of change of time of two 

clocks, )()( tTtT ba

��
−  (or 1)( −tTa

�
), where dt

tdTtT )()( =
�

, and the drift is defined as 

)()( tTtT ba

����
− (or )(tTa

��
). Taking (2.6), and assuming that 0)( =tξ  and 0)0( =Θ , we obtain 

the following for two clocks a and b with the same nominal frequency 
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Drift = 



 −

0w

DD ba .          (2.9) 
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The offset in Equation (2.7) indicates the difference, in units of time, of the two time 

processes as real time evolves, skew (2.8) can be interpreted as the rate of change of 

offset in units of time over time, and drift (2.9) is the rate of change of skew in units of 

frequency over time. A more general equation modeling a clock will include multiple 

derivatives of the offset beyond the second derivative (see, for instance, [15]), but this 

accurate analysis is beyond our interest. We assume the drift D and random component 

)(tξ  are equal to zero in our simulations and analysis. Therefore each time process can be 

represented as a straight line with a specific slope and initial value (i.e., only initial 

setting error and skew is considered non-negligible in our model). The latter is a 

reasonable assumption since we are not dealing with the precise measurement of time, 

but rather the relative time synchronization of clocks in a network. The most common 

scenario for a crystal oscillator used in telecommunication radios is to be at an 

approximately constant frequency offset from its nominal frequency (e.g., accuracy in the 

range 10-100 ppm [12]), therefore, the time process will be approximately a linear 

function of reference time. 

Clocks are ultimately discrete machines. Therefore the model of the discrete time-

process with respect to real-time t is given by 

 

)0()()( TnTtnTT pp +⋅= β .        (2.10) 
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Where pT  is the sampling period in real-time, pp nTnTt =)( , and β  is the skew of the 

clock with respect to real-time. Equation (2.10) defines a discrete straight line that can be 

represented as in Figure 1.1. 

Two perfectly synchronized clocks have an offset equal to zero. In practice however, 

this is difficult to achieve because, among other things, the drift and the skew of the 

clocks are difficult to estimate. If the skew and the drift of a time-process given by (2.6) 

could be estimated then it would be a matter of compensating for those values in the final 

timestamp reported by the clock.  

A fundamental implementation principle used to achieve synchronization is that of 

the creation of links that can be used to exchange timing information among the clocks. 

Each clock can use the timing information from a reference clock, or from any other 

clock to adjust its time. The presence of links connecting clocks creates what is referred 

to as a network of clocks. 

 

2.1.2 Mathematical Model of a Discrete Network Time Synchronization 

Algorithm 

 

In a network of clocks, each clock that is part of a NTS approach follows a pre-

determined rule to adjust its time process according to information coming from one or 

more clocks in the network. Assume a network of N clocks connected with links. The 

topology of the network is unknown in general. The ith clock in the network will have a 

time process iT  that can be expressed in a general discrete form as 
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))()(),()((}))({max( nnnngnnT iiiikk
ik

i TUTU ⋅⋅=+∆+
≠

+ τ  

]1,,1,0[ −∈∀ Ni �  and ),1,0[ �=n .       (2.11) 

 

For notation simplicity we have normalized n (the adjust-time) in (2.11). However, note 

that the time-process progresses with the ticks of the ith clock between two consecutive 

adjusting points. That is, the normalized sampling time n corresponds to the intervals of 

time at which a time-adjustment is made and not to the actual ticks of the clock, which 

could be smaller. )(g  is the control law that implements the adjusting rule through the 

information embedded in the local and received timestamps, )(nT  is the N-1x1 column-

vector of timestamps from all the clocks in the network (except the one at the ith clock) at 

the time they are received at the ith clock. )(niT  is the N-1x1 column-vector of local 

timestamps at the specific instants in time at which the other clock timestamps are 

received according to the ith clock. )(niU  is a diagonal N-1xN-1 matrix with elements 

that are either one or zero and that specifies what timestamps are actually received by the 

ith clock.  The function )(g  maps an N-1 dimensional space into a real value (i.e., a 

many-to-one mapping) that represents the new time-stamp of the ith clock immediately 

after the last timestamp is received (i.e., })({max ikk
ik

nn τ+∆+
≠

+ ). Note that Equation 

(2.11) characterizes those NTS approaches that exchange timing information in discrete 

steps. That is, the clock(s) exchange their timestamp at specific periodic intervals rather 

than in a continuous manner. The latter is the case in the approach we propose, and also 

in many practical NTS approaches (e.g., the IEEE 802.11 TSF). The start of every 

timing-exchange interval signals the start of a window of time during which the clock(s) 
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will transmit their timestamp, this is what )(nk∆ for any ]1,,1,0[ −∈ Nk K  in (2.11) 

models. The link delay between the ith and kth clock is denoted as kiτ . The vector )(nT  is 

 

)(nT =  

tr
iNNNiiiiiiiii nnTnnTnnTnnT ])()(,,)()(,)()(,,)()([ 111111111000 −−−+++−−− −∆+−∆+−∆+−∆+ ττττ �� .  

 

The vector )(niT  is  

 

tr
iNNiiiiiiiiiiii nnTnnTnnTnnTn )])((,),)((,))((,),)(([)( 11111100 −−++−− −∆+−∆+−∆+−∆+= ττττ ��T

 

The matrix )(niU  can take different forms depending on the procedure used to 

exchange the timing information, the network topology, and the link impairments (e.g., 

noise, interference, fading, physical break of the link etc.). For instance, assuming a 

master-slave approach with a star-like topology and highly reliable links as shown in 

Figure 2.1a, the )(niU matrix becomes independent of adjust-time 

 

11

111110 }1,1,1,,1,0{},0,,0,1,0,0,0,,0{

−−

−+−+−

=

−+−∈∀=

xNNj
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.  

           (2.12) 
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Figure 2.1 NTS approaches with different time-exchange network topologies 

 

Where the sub-indexes used in every element of )(niU  in (2.12) identify the clock that 

sent the timestamp (the jth node is assumed to be the master). A more interesting example 

is a mutual NTS approach in which every node is connected to every other node using 

non-reliable links (e.g., wireless links), see Figure 2.1b. In this case, )(niU  is 

 

}1,,1,0{},,,,,,{)( 1110 −∈∀= −+− Nidiagn Niii KKK µµµµU .   (2.13) 

 

Where )(nkµ , ]1,,1,0[ −∈ Nk K  is a random process that takes a discrete value of either 

one or zero depending on the presence of a link. The value taken by )(nkµ  depends on 

the impairments of the link connecting the kth and the ith clock ( ik ≠ ), on the detection 

and decoding strategy used to recover from errors in the link, and on the medium access 

procedure used to send the timestamps. 
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In Chapter 3 we use a )(niU  similar to (2.13) to solve the system of Equations (2.11) 

for CSMNS.  The matrix )(niU  can, in general, change at every adjusting step and have 

random components due to factors explained above. 

The )(g  control law plays a key role in determining the efficiency of the NTS 

approach. Ideally, the error vector ]1,,1,0[,)()()( −∈∀−= NinnnE ii KTT  should 

decrease to zero as n increases. That is 0)( →
∞→n

i nE . However, this objective can be relaxed 

as ξδ ≤−
∞→n

i nE )(  for given values of δ andξ . An NTS approach that achieves the former 

is referred to as a convergent NTS approach and one that achieves the latter is called a 

marginally convergent NTS approach. A possible form of )(g  is given by 

 

))()(()()()()()())()(),()(( nnnnnnnnnnng iiiiiii TTUGTUKTUTU −⋅⋅+⋅⋅=⋅⋅ . (2.14) 

 

Where )(nK and )(nG are the control N-1xN-1 matrices. CSMNS utilizes a control law 

with the form of (2.14). The mathematical analysis of a system comprised of equations 

(2.11), (2.13), and (2.14) is complicated. However, solving these set of equations 

numerically can provide a good insight into the behavior of the NTS approach as will be 

shown in Chapter 3. 
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2.2 Network Time Synchronization Protocols 

 

In this section we start by presenting seminal work on NTS in the context of distributed 

systems, next, we will describe in some detail mutual network synchronization in a 

continuous-time domain. Towards the end of this section we will briefly describe some 

related NTS approaches recently proposed for Wireless Ad Hoc Networks, and in 

particular, Hu and Servetto’s NTS protocol [20], and the Reference Broadcast 

Synchronization (RBS) approach [21]. 

Some NTS approaches use the client-server paradigm. A client node requests the time 

from a time-server periodically, or at any point in time it is deemed necessary to adjust its 

clock. The time-server returns the time of its clock and the local node corrects its clock 

based on the difference between the received timestamp and its local time. The delay of 

the link joining the server and the client must be compensated for if it is not negligible, 

additionally, the time between obtaining the timestamp to the time of the timestamp 

transmission at the server’s side might be an important source of inaccuracies. The client-

server NTS approach is depicted in Figure 2.2. The client requests the time from the 

time-server at local time 
scT . The time-server receives the request at 

rsT . At time '

ssT  the 

time-server obtains the time from its clock and transmits it at time ''

ssT . Note that the 

time-server may or may not be synchronized to UTC. However, this is usually the case, 

therefore the server time-process )(tTs  is approximately equal to “real time” t (i.e., 

))( ttTs ≈ . Once the server-clock is sampled, it is possible to take two approaches 

regarding the value of the timestamp sent (
sentST ). In one approach, 

sampledsent SS TT = , in  
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Figure 2.2 Client-server NTS approach. 

 

which case the timestamp carries a value that shows an error of '''

ss ss TTe −= with respect 

to the actual time shown in the server-clock (assuming the reading of the clock and the 

creation of the timestamp packet takes negligible time). That is, if the time shown in the 

server-clock is )( ''

sss TT  at the time of transmission, then )()( '''''

ssssent ssssS TTTTT −−= . In the 

second approach, the server makes an attempt to estimate the error ,e  and transmits a 

timestamp with the value set to eTT
sampledsent SS ˆ+= . The latter estimation might be difficult 

to perform, particularly if the server contends against other nodes for the transmission of 

the timestamp information (a packet with the timestamp value). However, as we will see 

later in this chapter, the combination of a mutual network synchronization approach with 

part of the procedure implemented in the TSF of the IEEE 802.11 standard make the 

accurate estimation of e  a possibility. Other factors that need to be taken into account for 

the estimation of e  are the time it takes to prepare a packet for transmission. However, 

this can be highly deterministic and in most cases negligible. 
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The client receives the timestamp at time 
rcT  and adjusts its clock based on the 

timestamp received and local timestamp. The link delay must be compensated for if it is 

deemed considerable for the application or tasks running in the network. A simple 

approach is to take link delay as
2

sr cc
l

TT −
=τ  and either find the average of many 

request-response attempts, or use the one with minimum value. Note that the accuracy of 

this procedure depends on how fast the server is able to respond. In other words, the 

accuracy of the link delay estimation increases as the processing time 

rsp ssS TTT −= '' decreases. Finally, the client will set its clock to lSsent
T τ+ . In case enough 

processing power exists in the server and the processing time 
pST can be estimated, it is 

possible to transmit 
pST (or its individual components: ,''

ssT  and
rsT ) along with sentST  to 

the client node. The latter can be used to estimate the link delay as 

 

2
psr Scc

l

TTT −−
=τ .           (2.15) 

 

The client-method approach is utilized in the Network Time Protocol (NTP) used in 

the Internet. NTP is a hierarchical master-slave NTS approach. The first server is 

synchronized to UTC, and the rest of the time-servers are synchronized in a hierarchical-

tree structure. Link delay estimation is similar to the one modeled in (2.15) between 

servers. 

A different point of view in the area of network synchronization was introduced by 

Lamport [22]. The fundamental ideas of Lamport are used in the TSF (see Section 2.3), 



36 

  

hence their importance for our work. Network synchronization is viewed as a means to 

find the relative order between events in processes that are separated in space. The 

concept of what event happened before another is studied. The distributed system is 

divided into separate processes that execute some tasks; each individual process is 

comprised of a set of events that are generated in sequence. An event can be, for instance, 

the execution of an instruction or a sub-program, an interruption, or the sending and 

receiving of a message. Figure 2.3 shows a possible depiction of this distributed system 

as presented in [22]. 
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Figure 2.3  A distributed system of processes 

 

Each vertical line represents a process with events in it depicted as dots. The message 

transfer between processes is denoted with dotted lines. Later times are higher than 

earlier ones. The important point is to have a concise and correct view of the relative 

order of the events throughout the system. Logical clocks that do not have an actual 

timing mechanism can replace physical clocks. 

An event a is said to happen before an event b, denoted as a → b, if some of the 

following relations are satisfied: 1) If a and b belong to the same process, and a comes 
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before b, 2) If a is the sending of a message and b is the receipt of the same message, 3) 

If a → b and b → c then a → c. Two distinct events are concurrent if a →/ b and b →/ a. An 

event “happens before” another one if it is possible to move forward (in upstream 

direction) from one to the other along the processes and the message lines in a diagram 

like the one shown in Figure 2.3. If two events are not connected this way they are said to 

be concurrent; concurrency implies also that the two events in question cannot affect one 

another. Note that the latter does not necessarily imply that the two events happen at the 

same point in time. In Figure 2.3, for instance, p2 and q2 are said to be concurrent even 

though they do not happen at the same time. However, from a practical standpoint what 

matters is that neither one of those two events can affect one another (regardless of when 

they exactly happened) since there is no connection that can take us forward from p2 to q2 

or vice versa. In brief, two events are called concurrent if they may occur in any order, or 

simultaneously, without changing the outcome. 

The concept of the relative order of events suggests the possibility of achieving 

consistency in the way an observer, located in one process, sees the order of events in the 

entire system without the use of physical clocks. Consequently, Lamport defines a logical 

clock iC  for each process iP  to be a function that assigns a number )(aCi  to an event 

iPa ∈ . The actual implementation of the function iC  can be done with counters rather 

than physical clocks. 

The correctness of such a system of clocks is achieved if for any event a and b: a → b 

implies )()( bCaC < . More specifically, two conditions are given: C.1) If a and b belong 

to the same process, then )()( bCaC ii < , and C.2) If a is the sending of a message at iP , 

and b is the receipt of the same message at jP  then )()( bCaC ji < . A system is 
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synchronized if it satisfies C.1 and C.2 according to this view. In order to satisfy C.1 it is 

only necessary that for each process iP , iC must be incremented between any two 

successive events. In order to satisfy C.2 the message sent will carry the timestamp 

)(aCT is = , and upon receiving a message, the process jP  sets jC  to a value greater than 

or equal to its present value and greater than sT . A similar procedure is performed by the 

TSF in which the local time is adjusted only if the received timestamp has a later value 

than the local time at the moment the timestamp is received. Another procedure related to 

the idea of ordering the events in a distributed system, but adapted to Wireless Ad Hoc 

networks, is presented in [23]. The protocol for synchronization in [23] is concerned with 

the relative ordering of events. However, it is a reactive protocol in which the timing 

information is extracted only when needed. If a node a sends a timestamp to indicate the 

detection of a particular phenomenon (an event) to node b, then node b will transform the 

timestamp received to its local time. In this work we are not interested in finding 

procedures that do not use physical clocks to order events. The use of physical clocks 

implies the need to correct the deviations studied in Section 2.1.1. However, one of our 

main goals is to be able to construct a slotted time for the transmission of information, 

therefore the NTS approach must have a fine granularity and regularity rather than being 

event-driven or dependent on certain irregular or asynchronous events to trigger the need 

for a “time” value. The study of synchronization from the event-driven point of view is 

important, however, because it is necessary for data aggregation in wireless sensor 

networks among other things. 

The algorithm proposed in this work is a mutual NTS approach. One of the first 

published works in this area was by Gersho and Karafin [24] who analyzed a system that 
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synchronized the frequencies and phases of a set of geographically separated oscillators 

connected by communication links. Mutual NTS is an approach that uses the internal 

timing information of the network to achieve network synchronization. Equation (2.11) 

along with the matrix in (2.13) and the depiction in Figure 2.1b show a way of 

representing mutual NTS in a discrete-time domain. Stability of a mutual network 

synchronization scheme is proved in [24] through a mathematical analysis based on 

classical control theory in a continuous-time domain. Geographically separated 

oscillators are directly controlled in a distributed manner through a multiple-input phase-

locked-loop (PLL) approach. Each input of the multiple-input PLL located in every 

oscillator receives the timing information exchanged with neighbor oscillators utilizing 

the available links. Figure 2.4 shows the phase averaging system located in every node of 

the system analyzed. The transmission delay of a link joining the ith and kth nodes is 

denoted as ikτ . The free-running frequency of the VFO is if ; the control signal )(tri  

affects the actual frequency of the oscillator ( )(tiθ& ) as 

 

  )()( trft iii +=θ& .         (2.16) 

 

The phases of the neighboring nodes are received and compared to the local phase 

( )(tiθ ), averaged and filtered to finally obtain a regulated waveform at the output of the 

VFO. The control signal can be written as 

 

∑
=

−−=
N

k

iikkikii tttathtr
1

))()((*)()( θθ .      (2.17) 
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Figure 2.4 Multiple-input PLL in every node of the system in [24] 

 

Where * is the convolution operation. Substituting (2.17) in (2.16) assuming ∑
=

=
N

k
ika

1

1 , 

and taking the Laplace transform of the resulting expression yields 

 

∑
=

− Θ−Θ+=−Θ
N

k

ii
s

kiki
i

ii ssHesasH
s

f
ss ik

1

)()()()()0()( τθ .    (2.18) 

 

Taking )0()( i
i

i s
f

sV θ+= , and reordering (2.18) yields 
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The set of N equations in (2.19) can be written in matrix form if the following 

matrices are defined: NxNs)(B  with ikth element given by, iks
ik
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i
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NxNs)(C  is a diagonal matrix with 
)(

1
)(

sHs
sc

i
ii +

= , 1)( NxsΘ with )()(1 ss ii Θ=Θ , and 

1)( NxsV with )()(1 sVsV ii = . Then 

 

)()()()()( sssss VCΘBΘ +=  �  )()()]([)( 1 ssss VCBIΘ −−= .   (2.20) 

 

The matrix )()]([ 1 ss CBI −− is the transfer function of the system. Taking ∑
=

=
N

k
ika

1

1 , 

and 0)0( >= iiH λ  the authors in [24] found that the condition for this system to achieve 

stability is that the network must be connected and that 

 

1
)(

)(
<

+ sHs

sH

i

i , ],,1[ Ni �∈∀ .       (2.21) 

 

The steady-state frequency at the output of every oscillator will stabilize to a value 

that is proportional to the average of all the individual free-running frequencies. 

One important parameter for the stability of the approach is the latency of the 

communication links. Link latency affects the validity of the timing information 

exchanged among the oscillators and ways to estimate and compensate for it are required 

in case it is not negligible.  

As an example of the previous approach, assume a fully connected network of N 

oscillators with a filter ii KsH =)( (i.e., a proportional controller). In that case NxNs)(B  

and NxNs)(C  are given by 
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The ith row of NxNs)(B  is 
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Assume that )1/(1 −= Naik , ],,1[, Nki �∈∀  for ki ≠ , and 0=iia , such that ∑
=

=
N

k
ika

1

1. 

The stability of this system depends on the existence of the inverse of )]([ sBI −  as can be 

observed from the transfer function )()]([ 1 ss CBI −− . Note that the )]([ sBI −  matrix is 

diagonally dominant. In a diagonally dominant matrix the sum of the magnitudes of the 

off-diagonal elements of any row is smaller than the magnitude of the same-row element 

located in the main diagonal of the matrix. That is, if NxNC  is a diagonally dominant 

matrix then ],,1[, Nicc
ki

ikii �∈∀>∑
≠

. A diagonally dominant matrix is non-singular (see 

[24] for this proof), therefore we conclude that )()]([ 1 ss CBI −−  exists and the system is 

stable in the sense that a bounded input will produce a bounded output. Note that the 

condition (2.21) is necessary to ensure )]([ sBI −  is a diagonally dominant matrix. 

Furthermore, a simple proportional controller can always satisfy the condition in (2.21). 

A proportional controller, however, is not the most ideal solution since the system will 

constantly need to receive timing information at its inputs in order to keep the phases of 

the different oscillators aligned. This is due to the skew factor explained in Section 2.1.1. 
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A possible solution is to incorporate a mechanism that estimates the skew difference 

among the oscillators in the network if the continuous transmission of a timing signal is 

to be avoided or minimized. 

Note that it is not always possible to guarantee the connectivity of the network at all 

times in a wireless network. However, it is assumed throughout this work that network 

connectivity is present at the time the nodes exchange their timing information. Stability 

does not necessarily imply convergence. However, convergence is shown to be 

achievable in [24], and in our particular approach in Chapter 3. In the particular example 

above, convergence is guaranteed as long as the free-running frequencies of the 

oscillators (the inputs to the system) are all equal. 

Our work differs from [24] in that there is no direct physical control of the clocks or 

oscillators in every node, which translates into an implementation advantage since there 

is no need to have access to the physical (PHY) layer of the system. CSMNS is a discrete 

NTS algorithm that utilizes the clock-sampling technique (Section 1.2.1) to exchange 

timing information in combination with a mutual network synchronization approach. 

Furthermore, we introduce simple mechanisms that can be used to enhance the 

synchronization performance in a wireless Ad Hoc network by taking advantage of the 

flat hierarchical architecture of a mutual NTS approach. 

The previous mutual synchronization ideas can be used as part of an NTS approach in 

which the nodes of the network synchronize to a number of fixed reference nodes. Figure 

2.5 shows this approach, which we call multi-reference broadcast synchronization. Every 

reference node (nodes a-d) sends its timing (phase) information, which is used by every 

node in the network to synchronize. Each reference node will mutually synchronize to the 
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other reference nodes. The whole network is covered by the combined broadcast of all 

the reference nodes. Each reference node could be fixed or mobile and connected to an 

“unlimited” source of energy (e.g., an automobile or airplane).  

 

    

a b

d c

a b

d c
 

Figure 2.5 A mutual NTS with fixed broadcasting nodes 

 

Additionally, the reference nodes can be connected through reliable communication 

links with one another. A network formed in this way is a clustered network. The 

advantage over a purely master-slave approach is that of resilience to node and link 

failures. In case of a link failure, a given reference node can always extract the timing 

information from the other remaining reference nodes automatically and without 

performing any specific procedures since there is no hierarchical structure. In case of a 

node failure due to, for instance, an attack or a malfunction, the rest of the reference 

nodes can detect this condition and simply increase their power to compensate for the 

signal lost. Note that, from the non-reference nodes point of view, the synchronization is 

a master-slave approach. Furthermore, the reference nodes can be used for information 

multicasting or broadcasting in addition to the synchronization purpose. CSMNS differs 
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from the latter approach in that the same nodes that are part of the network are 

responsible for their own synchronization. However, an approach like the one in Figure 

2.5 can be a useful alternative in some scenarios. 

A mutual network synchronization approach is proposed for a wireless Ad Hoc 

network of automobiles in [25]. However, no study is made of the performance of this 

approach in a multi-hop network, and the timing information is exchanged using very 

short pulses that can occupy a large bandwidth. Additionally, this implies the use of 

special circuitry and tight restrictions on the Rx-Tx and Tx-Rx turn-around times of the 

radios if a half-duplex scheme is used, otherwise, full-duplex radios are needed to 

simultaneously listen and send the continuous train of pulses.  

Hu and Servetto [20] proposed a scheme for sensor networks in which a centrally 

located sensor initializes the NTS approach by sending pulses that are relayed by 

neighboring nodes in a form of hierarchical flooding. This approach inherits the PHY 

layer requirements from the earlier work in [24] and [25] through the use of a continuous 

train of pulses. Moreover, it is a hierarchical approach since it depends more on the 

central sensor than on any other sensor of the network. In particular, it is unclear how to 

select and discover the centrally located sensor, or how to replace it in case it fails or its 

battery power is drained beyond a point where it can no longer transmits pulses. In most 

future Wireless Sensor Networks the deployment of the sensors will not be engineered, 

therefore the relative location of the sensors will be random. Consequently, those 

approaches that do not rely on specific nodes located in strategic places will be preferred. 

Additionally, methods that do not rely on the continuous transmission of information will 

have the advantage of being more energy conscious.  
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The Reference Broadcast Synchronization (RBS) scheme is proposed with multi-hop 

support in [21]. RBS achieves the synchronization of multi-hop neighborhoods through 

the exchange of messages with an intermediate node (i.e., a node in between broadcasting 

neighborhoods). The purpose is to obtain a logical ordering of events rather than 

achieving real synchronization of the clocks in a multi-hop scenario. In RBS, the network 

is divided into broadcasting neighborhoods in which a single “reference node” sends 

packets that are used to achieve local synchronization (i.e., the reference node’s 

neighborhood). One of the fundamental ideas introduced by the creators of RBS is that of 

receiver-based synchronization. A receiver-based synchronization approach exploits the 

fact that packets sent by the reference node (or master clock) arrive at approximately the 

same time in every node of its neighborhood. After the packet is sent, the receiving nodes 

exchange the times at which everyone received it in order to achieve synchronization. In 

particular, assume there are N nodes in the neighborhood served by a reference node. If 

we use similar notation to the one in Figure 2.2, the ith node receives the reference packet 

(not necessarily carrying a timestamp) at i
Cr

T  according to its local clock. Each node 

transmits its 
rCT  to the other nodes. Therefore, every node has information of its offset 

with respect to the rest of the nodes. A possible way to compute a corrected value of time 

could be given by 

 

,}{max)( ijTnT j
Cj

i r
≠=  and ],...,1[, Nji ∈∀       (2.22) 

 

Note that averaging the differences between the set of 
rCT  times could result in clocks 

moving backward, which is not a desirable property when the synchronization is used to 
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order events in a distributed system. The important fact, according to the authors, is that 

the time-uncertainties on the server side, explained at the beginning of this section in the 

context of client-server NTS approaches, are eliminated. Specifically, the exact time of 

the timestamp transmission on the server is unimportant as long as all the receiving nodes 

receive the packet at the same time. However, certain problems remain in RBS. 

Firstly, RBS is a hierarchical approach since it depends on a reference node for the 

successful operation of the approach. A hierarchical approach might be suitable for 

networks in which the nodes barely move relative to one another. However, it is not the 

most suitable approach for highly dynamic wireless Ad Hoc networks with mobility. An 

important limitation is the overhead created by the need of the receiving nodes to 

exchange their 
rCT times. In a neighborhood of N nodes this overhead can be in the order 

of )( 2NO . Additionally, it is not clear how to synchronize the reference node to the rest 

of the network if needed.  

The fundamental problem attacked by RBS through a receiving-based 

synchronization method can be approached in a different way. Our approach is to exploit 

the fact that the timing information in a mutually synchronized network is not derived 

from a central or reference clock. It is unimportant which node sent the timestamp in a 

mutual NTS approach since the timing information is extracted from all the clocks in the 

network. Assuming all the nodes contend to send their timestamps in a contention time-

window, it is obvious that in a hierarchical approach the most important node (e.g., the 

reference node) will not know exactly when its timestamp will get transmitted during this 

contention window. This is the major source of uncertainty attacked by RBS. However, 

in a hierarchically flat approach, what is important is when the node plans to transmit its 



48 

  

timestamp rather than when it is transmitted. If a node is unsuccessful in its attempt to 

send its timestamp at the planned time (because the medium was busy), it can simply 

refrain from doing so and let other nodes transmit, in this way the timestamp transmission 

uncertainty can be considerably reduced or eliminated. Note that the latter procedure is 

used by the TSF in the IEEE 802.11 standard. However, the TSF does not use a mutual 

synchronization approach, therefore the latter procedure does more harm than good as 

will be explained in more detail in the next section. Other numerous NTS approaches 

have been proposed for Wireless Ad Hoc and sensor networks, see for instance [26]-[36].  

 

2.3 The IEEE 802.11 Timing Synchronization Function 

 

The TSF of the IEEE 802.11 standard is a network synchronization algorithm that utilizes 

the clock-sampling method to exchange timing information. The main goal of the TSF is 

to synchronize the time shown by the physical clocks in the network, referred to as timers 

in the standard, in order to support the power management operation in all PHY layer 

versions, and the channel hopping procedure in the frequency hopping spread spectrum 

PHY layer. The TSF utilizes many of the ideas presented in [22]. In particular, it tries to 

fulfill the same principle of clock correctness introduced in [22] through the use of 

physical clocks and timestamp messages. 

In this section we present a description and analysis of the TSF when the network is 

configured to operate in an Independent Basic Service Set (IBSS) mode, commonly 

known as “Ad Hoc” mode. The Ad Hoc mode of IEEE 802.11 defines a wireless local 

area network (LAN) of stations (nodes) that do not share a central point of management 
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or control. An IBSS is an infrastructureless wireless LAN in which every node can 

communicate with one another in a single-hop manner through the wireless medium. The 

IEEE standard also defines an infrastructure mode in which there is a central entity called 

the access point that is responsible, among other things, of the forwarding of data packets 

from one node to another. If a node wants to send a message to another node, it has to do 

so through the access point. We focus our attention exclusively on the NTS method used 

in the Ad Hoc mode, and call it simply the TSF. 

The TSF method is described as follows, 

 

1. Each node sends a beacon periodically at a Target Beacon Transmission Time (TBTT) 

with period aBeaconPeriod (e.g., 0.1 sec [2]). At each TBTT each node shall: 

2. Suspend the back-off timer of any pending non-beacon transmission. 

3. Calculate a random delay uniformly distributed in the range between zero and  

aSlotTimeminaCW ⋅⋅2 . Table 2.1 shows the values of minaCW  and aSlotTime  for 

the IEEE 802.11 standard with different PHY layer versions (i.e., Frequency 

Hopping, Direct Sequence Spread Spectrum, and Orthogonal Frequency Division 

Multiplexing). 

4. Wait for the period of random delay before transmitting the beacon. 

5. Cancel the remaining random delay and the pending beacon transmission, if a beacon 

arrives before the random delay timer has expired. 

6. Send a beacon if the random delay has expired and no beacon arrived during the 

delay period. A beacon will be transmitted only if the medium is sensed to be idle. 
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Table 2.1 Beacon contention window parameters used in IEEE 802.11 

Parameter FHSS DSSS OFDM 

minaCW  15 31 15 
aSlotTime  50 20 20 

 

 

Upon reception of a beacon a node will adjust the received timestamp to take into 

account its physical layer delay. The receiving node will set its clock to the value of the 

adjusted timestamp if it is later than the local timestamp. The TSF clock is a 64 bit 

counter with 1 µsec resolution. Figure 2.6 depicts a time-diagram of the TSF. Every 

station (node) contends to transmit its timestamp beacon within a contention window that 

starts at a TBTT. If the medium is busy a node defers its beacon transmission for the next 

TBTT, and it transmits its beacon if the medium is idle and it has not received a beacon 

from another node.  

An approximate analysis of TSF in the single-hop case was first attempted in [37]. 

The probability of sending one beacon successfully regardless of the node that sent it 

( anyP ), and the probability of sending a beacon successfully by a given node ( givenP ) were 

found under the assumption that perfect synchronization has been achieved. That is, the 

beacon contention window of every node starts at the same time for all the nodes in the 

network. However, the analysis proves the inefficiency of TSF to scale even to moderate 

number of nodes.    
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Figure 2.6 Time-diagram of the TSF 

 

The reason for the lack of scalability of the TSF is blamed on the beacon collisions, 

which make givenP  small as the number of nodes in the network increases. Figure 2.7 

shows givenP  versus the number of nodes in a network. The parameters used in Figure 2.7 

correspond to those used in an IEEE 802.11 FHSS network (see Table 2.1). The beacon 

transmission takes 11 slots (i.e., 550 µsecs). As seen in Figure 2.7, for a network of 20 

nodes the probability of a given node to transmit its beacon is approximately 0.05. This is 

equivalent to stating that the probability of receiving a beacon from the node with the 

fastest clock is 0.05 when the number of nodes in the network is equal to 20. The low 

probability of sending a beacon successfully by the node with the fastest clock translates 

into severe a-synchronism when the clocks of the network drift with respect to one 

another. This affects power management, and the channel hoping procedure in the IEEE  
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Figure 2.7 givenP  for the IEEE 802.11 TSF 

 

802.11 standard, furthermore, it proves the lack of scalability of the TSF algorithm. At 

the core of this problem is the fact that the TSF depends, more than anything else, on the 

successful transmission of beacons by the node with the fastest clock in the network. 

However, the TSF does not make any attempts to ensure that this happens. 

The authors in [37] realized the latter and proposed to simply give more priority to 

the node with the fastest clock. However, finding the fastest clock is not a trivial task, 

particularly in highly dynamic networks where nodes continuously leave and join the 

network.   

A simple way to try to improve the TSF is to allow beacon transmissions even after 

successfully receiving a beacon (hereafter called secondary beacon transmissions). That 

is, modify steps 5 and 6 above in the description of TSF in order to allow a node to 

transmit its beacon even after successfully receiving one. This approach is not the most 

ideal however, since we are likely improving the TSF at the expense of increasing overall 

network energy consumption and overhead. Energy consumption will be increased since 
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more beacons will be transmitted on average, and overhead increases since it is more 

likely that the contention window will be extended further by the secondary beacon 

transmissions. A larger beacon contention window implies smaller bandwidth for actual 

data transmission. However, this method might prove to be useful in cases in which even 

a little improvement in synchronization would be worth the cost.  

We call the previous procedure the modified TSF and it is analyzed next extending 

the analysis in [37]. It is assumed that collision of beacons is the only cause for errors in 

their reception, and that a collision, even if it is partial, causes the destruction of the 

beacon. The probability of a given station to transmit its beacon in the modified TSF 

( givenP̂ ) is given by 

 

),,(ˆ
1

1
),(ˆ

0

kWnP
W

WnP
W

k

k
givengiven ∑

=+
= .       (2.23) 

 

Where ),,(ˆ kWnP k
given  is the conditional probability that the given node successfully 

transmits a beacon given that it is scheduled to transmit in slot k; 1+W  is the contention 

window size (there are 1+W  slots labeled 0 through W ), and n is the number of nodes in 

the network. ),,(ˆ kWnP k
given  can be computed based on the same events outlined in [37] 

plus an additional one allowing one node to transmit even after a successful beacon 

reception. ),,(ˆ kWnP k
given  is given by 
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 (2.24) 

 

The boundary conditions of (2.24) are ),,0(ˆ kWP k
given  = ),0,(ˆ knP k

given  = ( ),,(ˆ kWnP k
given  

kW <∀ ) = 0, which express the fact that ),,(ˆ kWnP k
given  is equal to zero in the extreme 

cases in which the number of nodes is zero, the contention window size is zero and the 

contention window size is smaller than the slot chosen for transmission respectively. 

)!(!

!

xnx

n

x

n

−⋅
=

�

�����  is the binomial coefficient. A beacon is assumed to take b slots to 

transmit.  Additionally, bW >  is implicitly assumed, otherwise there will not be enough 

time to transmit even a single beacon. Equation (2) is the union of three disjoint events 

characterized by the relative position of the kth slot and the number of nodes in the 

network. Three different scenarios cover all possibilities. The first expression in (2) 

considers the case when 1,, =≥∀< nbkornbk , the second expression when 2, =≥ nbk , 

and the third expression when 3, ≥≥ nbk .  

In the first expression 
1

1
),,(ˆ

−��
����

+
−=

n
k

given W

kW
kWnP  because the successful transmission 

of the given node (starting at the kth slot) for nbk ∀< , depends on the probability that all 
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remaining 1−n  nodes will transmit after the kth slot, otherwise the transmission of the 

other node(s) will cover the kth slot due to the fact that a beacon transmission takes b 

slots. If bk ≥  and 1=n , then 1),,(ˆ =kWnP k
given , which is also characterized in the same 

expression. 

If bk ≥  and 2=n , then it is required that a single successful transmission, or no 

transmissions occurred before the kth slot for the transmission of the given node to be 

successful. Note that the former event is only valid in the extended TSF since normally a 

node will defer its beacon transmission for the next TBTT if a beacon is received before. 

The second expression in (2) considers these two events.  
1

1

−������
+
− n

W

kW
 is the probability 

that the rest of the nodes will transmit after the kth slot, or in other words, that the given 

node is successful because no beacon transmission occurred before. 

∑−
= �

��
	
 �

−−−−−⋅
�
����

+

bk

i

k
given bikbiWnP

W
0

),,1(ˆ
1

1
 is the probability that the given node is 

successful transmitting after a single successful transmission that occurred at slot ki < . 

Slot i must be in the range between zero and bk − , otherwise it will cover the kth slot, 

therefore bki −≤ . The latter explains the limits of the summation in the second 

expression. The expression inside the summation is comprised of two terms, the 

probability of picking slot i (i.e., ������
+1

1

W
) and the probability of successful transmission 

of the given node expressed in a recursive way. That is, after subtracting the previous 

successful transmission at slot i and taking into account the time it takes to transmit a 

beacon (i.e., ),,1(ˆ bikbiWnP k
given −−−−− ). 
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The third term is for bk ≥  and 3≥n . In this case the given node is successful if there 

are no transmissions before the kth slot (i.e., 
1

1

−������
+
− n

W

kW
), or if exactly x beacon 

transmissions occurred in slot bki −≤ , where ),11( −≤≤ nx  and that exactly y nodes 

)10( xny −−≤≤  are scheduled to transmit in slots 1+i  through 1−+ bi .  The nodes 

scheduled to transmit during the latter interval will defer their transmissions for the next 

TBTT due to the beacon transmission that started at slot i (errorless carrier sensing is 

assumed). Therefore before the kth slot, a total of yx +  nodes are scheduled to transmit, 

but none of the actual transmissions cover the kth slot. It is clear that collisions will occur 

if 1>x , but the given node will transmit successfully as long as these transmissions do 

not cover the kth slot. The second term of the third expression has an analogous 

explanation to the second term of the second expression. Note that the second expression 

is a special case of the third when 1=x , 0=y , and 2=n .  

Equation (2.23) is plotted in Figure 2.8 along with givenP  of the TSF and simulation 

points of the procedure performed by the modified TSF. The simulation points were 

obtained after 30 minutes of real-time simulation using Matlab. As can be seen, the 

difference between Equation (2.23) and the simulated results is negligible. The first thing 

to notice about the modified TSF is that, as expected, it achieves a better probability of 

beacon transmission than TSF, however, it still suffers from severe degradation when the 

number of nodes in the network increases.  
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Figure 2.8 givenP  of the TSF and the modified TSF 

 

Therefore, although to a lesser degree, the modified TSF suffers from the same 

scalability problems of the original TSF. One could try to further improve the modified 

TSF and allow secondary beacon transmissions only from those nodes that had a larger 

local timestamp than the timestamp received. We performed simulations of this approach 

in a network of 10 and 20 nodes in which the fastest clock drift at +25ppm (i.e., gains 2.5 

µsecs with respect to real time every aBeaconPeriod = 0.1 secs), and the rest of the 

clocks drift at –25ppm, with the FHSS parameters.  

Figure 2.9 shows the cumulative distribution function (c.d.f) of the maximum time 

difference among the nodes using this new modified TSF. The new modified TSF 

achieves better performance since the maximum time difference is smaller; however, it is 

still unsatisfactory because the small accuracy is gained at the expense of more beacon 

transmissions. 
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Figure 2.9 c.d.f of the accuracy in the TSF and new modified TSF with 10 and 20 nodes  

 

Note that the accuracy of the modified TSF with 20 nodes is roughly the same as the 

original TSF with 10 nodes (Figure 2.9). This is approximately what we observe in 

Figure 2.8 if a horizontal line is drawn from the point of 10 nodes in the TSF curve, to the 

intersecting point with the curve of the modified TSF. 

The probability anyP , defined earlier, can give an indication of the potential 

improvement of a mutual NTS algorithm over a more hierarchical approach such as the 

TSF. Figure 2.10 shows an analytical result of anyP  obtained in [37] over our own 

simulation result for two different PHY layers (i.e., DSSS and FHSS). Also shown is 

givenP . Figure 2.10 suggests that a mutual network synchronization algorithm based on all 

the beacons transmitted in the IEEE 802.11 standard can greatly improve over the TSF. 

That is, if the timing information embedded in every beacon transmitted is used, then the 

performance improvement would be substantial since the probability of any beacon to be  
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Figure 2.10 anyP  and givenP  for the TSF 

 

successfully received is much larger than the one for a specific beacon (e.g., coming from 

the fastest clock). For instance, with 100 nodes and DSSS PHY layer parameters, the 

probability of sending a beacon by any node is approximately 80%, while givenP  is almost 

zero. This points out that our efforts should be focused on non-hierarchical NTS 

approaches that exploit the information carried by every beacon transmitted. 

Another important drawback of the TSF is that it is marginally convergent. It requires 

that the nodes transmit their beacons regularly as long the network exists. The TSF does 

not incorporate any learning mechanism that can be used to adaptively enlarge the time 

difference between two TBTTs, even if the nodes are static and the wireless links have 

good reliability. To see this, we have performed simulations of the TSF in a multi-hop 

network with a regular-structure topology. The topology of the nodes is shown in Figure 

2.11. It is a square-grid in which the number of nodes in the network is 2nN = . The lines  
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Figure 2.11 Topology used for the multi-hop simulation 

 

joining the nodes represent the transmission ranges of the nodes. The transmission range 

is taken to be half the detection range. The latter means that a receiving node is only able 

to decode a beacon properly if it is received within the transmission range of the 

transmitting node (not counting wireless medium impairments and collisions). However,  

a collision can happen if a third node transmits within the detection range of the receiving 

node. 

The simulations were performed assuming no capture and clock models given by 

(2.10). The no-capture assumption implies that a receiver is not able to properly discern 

between two overlapping beacons in time, both beacons are considered lost. A constant 

1% beacon error rate is assumed to model wireless medium impairments. That is, a 

beacon might not be counted as properly received with 1% probability, even if it did not 

collide with other beacon(s). Mobility of the nodes and more realistic wireless medium 

impairments (i.e., small-scale and large scale fading) are not considered in the 

simulations since it is not our main goal to obtain absolute measures of performance, but 

rather insights into fundamental limitations and advantages. More detrimental conditions 

in the wireless medium can only make the performance of any NTS approach worse. The 
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time it takes to transmit a beacon was taken to be 11 slots, and aBeaconPeriod = 0.1 secs. 

The clocks are modeled using (2.10) with skews that take either a value of -25ppm, or 

+25ppm.  The hidden and exposed node problems are taken into account in the 

simulation. An exposed node will defer its beacon transmission if another node transmits 

within its detection range; a hidden node will cause a collision, if it is within transmission 

range of a receiving node, but out of the detection range of the corresponding 

transmitting node. The total simulated time is 30 minutes. 

Figure 2.12 shows the c.d.f of the maximum time difference ( maxT ) in an 5=n , or 

5x5 network, where })()({maxmax jTiTT
ji

−=
≠∀

. Node 1 has the fastest clock with a skew 

equal to +25ppm, and the rest of the nodes skew at -25ppm. The purpose of the latter is to 

observe the performance of the TSF when there is a single faster clock and the remaining 

clocks are all slower, this is a worst case scenario for the TSF. The maximum value of 

maxT  is approximately 900 µsecs, with a sample average of 360 µsecs. 
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    Figure 2.12 maxT  c.d.f for the TSF in a 5x5 network topology 
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A snapshot of the time difference between nodes 1 and 7, and nodes 1 and 25 is 

shown in Figure 2.13 for the first 100 secs of simulation. Note that even under no 

mobility the TSF requires the continuous exchange of beacons in order to keep the nodes 

synchronized. 
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Figure 2.13 Time difference between nodes 1-7 and nodes 1-25 during 30 

 minutes of real-time (TSF) 

 

When a node receives a timestamp with a later time than its own local time the time 

difference with respect to the fastest clock decreases, this is observed when the curve 

drops in Figure 2.13. However, the difference will start to increase again as long as the 

given node does not receive a later timestamp. The 1-7 time difference is smaller due to 

the closer proximity of node 7 to node 1. Node 1 is the node with the fastest clock, and 

therefore the most important node from the TSF point of view. Two important 

conclusions can be drawn from these results. First, the TSF is marginally convergent, and 

second it does have the potential to synchronize multi-hop networks albeit with an 

average accuracy in the order of hundreds of micro-seconds at best. To the best of our 
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knowledge, this is the first published result of the TSF performance in a multi-hop 

scenario [38]. 

 

2.4 Summary 

 

In this chapter we have presented concepts on network time synchronization that are 

needed to motivate and understand our proposed network synchronization algorithm. We 

have focused on the mutual network synchronization concept and the IEEE 802.11 TSF. 

The former is the fundamental idea behind our proposed algorithm, and the latter is a 

standardized network synchronization algorithm that will be use in the next chapter as 

benchmark for comparison. 

Based on the previous analysis, we conclude that a synchronization algorithm that 

truly improves over the TSF should: 

 

1. Abandon the idea of giving the responsibility of network synchronization to a node 

with particular characteristics (e.g., fastest clock, node with more degree in the 

network, centrally located etc). This will improve the chances of spreading the timing 

information, increase the robustness of the algorithm to network dynamics, and 

increase the speed of convergence of the algorithm. 

2. Take full advantage of the exchanged timestamps in order to have a larger probability 

of spreading the timing information over the network. 

3. A NTS approach should be convergent, in the sense that the maximum time error 

between any pair of clocks in the network should try to approach zero as much as the 
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resolution of the clocks and the dynamics of the network allow. A convergent NTS 

approach will help in the implementation of a mechanism that adapts the amount of 

overhead needed to achieve synchronization in an opportunistic manner. For instance, 

the period necessary to transmit a beacon can be made inversely proportional to the 

time error between the clocks.  

The latter goals should be achieved with small increase in energy expenditure and 

overhead over the already standardized algorithm. We show that the algorithm presented 

in the next chapter achieves all these goals plus the ones presented in Section 1.4. 
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Chapter 3 

 

Clock Sampling Mutual Network Synchronization 
 

This chapter presents the proposed NTS method referred to as Clock Sampling Mutual 

Network Synchronization (CSMNS). To the best of our knowledge, CSMNS is the only 

NTS approach proposed for wireless Ad Hoc networks that leverages on the concept of 

mutual network synchronization. First, the basic model of CSMNS is presented and the 

equations are numerically solved for a single-hop scenario in a fully connected network. 

Second, a generalization of CSMNS is presented, with the purpose of reducing overhead, 

referred to as CSMNS Rotating Master Node (CSMNS-RMN). Simulation results of the 

CSMNS algorithm and variants are presented at the end of this chapter in multi-hop and 

single-hop scenarios along with a discussion of the results and the network architectures 

for which CSMNS is deemed to be more suitable.  

 

3.1 The CSMNS Algorithm: Description and Analysis 

 

The CSMNS algorithm is based on the mutual network synchronization approach 

presented in Chapter 2. The CSMNS algorithm can be described as follows: 
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1. We define a controlled clock and a real clock in each node. The real clock could be 

the same timer used in the TSF (64 bits @ 1µsec resolution). The controlled clock 

reads from the real clock and adjusts the value read by a correction factor we denote 

as s. Synchronization information for any purposes (e.g., management, security, MAC 

support, space-time event relationships etc) is taken from the controlled clock. We see 

s as a control parameter that adjusts the speed of the controlled clock. If s = 1, the 

controlled clock is no different from the real clock except for a negligible difference 

caused by the processing time of s. Figure 3.1 shows the relationship between the 

controlled and real clocks. Without loss of generality we assume that the physical 

layer and processing delays are taken into account and the controlled timestamp has 

been adjusted accordingly if necessary. A node must scan beacons for some period 

of time in order to acquire synchronization before joining the network. The node 

listens for beacons and sets the timestamps of the controlled and real clocks to the 

value of the timestamp received. The value of s is set to 1 at initialization. The 

requirement to acquire some information at the beginning of a session when a node 

enters a network is common for other protocols and other types of networks, such as 

routing protocol information in wireless Ad Hoc networks or system information 

parameters in cellular radio networks. It is, for instance, a requirement in the IEEE 

802.16a standard [3] to acquire coarse synchronization at initialization. We assume 

that initial coarse synchronization of the nodes has been achieved before the main 

algorithm is run. 

2. All nodes contend at specific intervals of time in order to send their beacons with 

their controlled timestamps. 
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Figure 3.1 High level view of CSMNS (The numbers shown are from IEEE 802.11) 

 

3. If the ith node successfully receives a beacon, it will adjust s based on the error ie  

computed as the difference between the received timestamp and the ith node 

controlled timestamp. The value of s for the ith node at the nth TBTT is then 

computed. A more detailed description follows. 

 

Assume a network of N nodes, each with a clock that, in general, has a different skew 

and initial time. This will result in a set of N equations of the following form 

 

}...,,2,1{),0()( NiTttT iii =+= β .     (3.1) 

 

The goal is to synchronize all the clocks in such a way that after some time ,ct  

.,)()( jiTttTttT cjci ≠∀∆≤>−>  where ct  is the convergence time of the NTS 

algorithm and T∆  is the tolerable time-error. The different iβ  in (3.1) make all the time 

processes )(tTi  diverge as ∞→t . The main goal of CSMNS is to minimize the relative 
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drifts of the time processes in (3.1). This is achieved by multiplying every time process 

by a correction factor );(tsi  transforming (3.1) into 

 

}...,,2,1{),0()()()( NiTtsttstT iiiii =+= β .      (3.2) 

 

The correction factor can be computed in every node based on the difference between the 

timestamp of a received beacon and the timestamp of the local node.  

Node i contends to send its time process )(tTi  ( ]...,,2,1[ Ni ∈∀ ) in periodic beacon 

transmissions in the same way as the IEEE 802.11 TSF. )(tsi can be written in the 

following discrete form 

 

)1(

))1()1((
)1()( _

−
−−−

+−=
nTT

nTTnTT
KnTsnTs

i

itimestamprx
pii .    (3.3) 

 

Where T is the sampling period (e.g., equal to aBeaconPeriod in the TSF), pK  is the 

proportional gain, and timestamprxT _  is the timestamp of the node that successfully 

transmitted the beacon. The proportional gain pK , if chosen appropriately, can average 

the time processes of all the clocks in the network to achieve synchronization. 

Substituting (3.2) into (3.3) and normalizing the sample time yields 
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)0()1()1(

))0()1()1()0()1()1((
)1()(

iiii

iiiijjjj
pii Tnsns

TnsnsTnsns
Knsns

−+−
−−−−−+−

+−=
β

ββ
.   (3.4) 

 

The j and i sub-indexes identify the nodes that transmitted and received the beacon 

respectively. Note that )1()( −= nsns jj . Equation (3.4) is a non-linear stochastic 

difference equation that can be solved numerically in )(nsi  given the initial conditions 

1)0( =is  and )0(iT . Note that the control-law of CSMNS is similar to a proportional 

controller that tracks the different time processes in the network. Recall that a 

proportional controller meets one of the conditions for stability established in [24] for a 

mutual NTS approach. anyP , as defined in Section 2.3, is needed in order to determine 

whether any node successfully transmitted a beacon or not. That is, node j is randomly 

selected based on anyP . A binary random process with probability of success equal to anyP  

is first used to determine whether a successful beacon transmissions occurs, and then one 

of the nodes is selected randomly. Using the analytical result of anyP  [37], we averaged 

one thousand solutions of (3.4), and found the estimate of the ensemble average of the 

maximum time difference ( maxT , see Section 2.3). Figure 3.2 shows }{ maxTE  in a network 

with IEEE 802.11 FHSS PHY layer parameters. )0(iT is uniformly distributed in the 

range [0,100], and the skews iβ  are also uniformly distributed in the range  T
e61

25± . 

Note the increase in convergence time with the increase in the number of nodes. The 

same initial transient behavior is observed in the simulations presented in the next 

section. 
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Figure 3.2 }max{TE of the basic-CSMNS algorithm for different network sizes 
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Figure 3.3 }max{TE  of the basic-CSMNS algorithm for different pK  

 

The effect of pK on the convergence of the algorithm was also obtained. Figure 3.3 

shows }{ maxTE for 5.01.0 ≤≤ pK  in a FHSS network of 100 nodes. The algorithm presents 

its fastest convergence time at approximately 5.0=pK . At 1.0<pK the solution seems to 

become unbounded. A more formal stability analysis is complicated due to the random 
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behavior of the system imparted by the beacon access mechanism. The values of pK  for 

which responses that seemed unbounded were observed depends, among other things, on 

the initial conditions, with a smaller initial condition contributing to a bounded response. 

Small initial conditions can in practice be guaranteed if any node synchronizes to the time 

of the network before fully participating in the network activities, by for instance, 

adjusting its clock based on the beacons received from neighboring nodes. An error will 

always be present, which explains the reason we added an initial random time-offset 

( )0(iT ) in the previous results. 

Note that if an updated value of s is smaller than the previous value, the new 

controlled timestamp will be smaller than the previous timestamp during a short period of 

time. In some applications this is not desirable. A solution to this problem is to increase 

the real timestamp before performing the multiplication by the new smaller value of s. 

Assume the value of s is updated from olds  to a new smaller value news  just after 

receiving a new beacon. The time span that needs to elapse before the controlled 

timestamp shows a greater than or equal value to the previous one is given by 

 

old

i

new

i

s

T

s

T
T −≥interval .             (3.5) 

 

Where iT  is the value of the timestamp in the controlled clock when news  is computed.  

The first ratio in (3.5) is the value that the real timestamp must have in order to obtain the 

same controlled timestamp after being multiplied by news , and the second ratio is the 

value of the real timestamp right before the change to news . Therefore, Equation (3.5) is 
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the time that has to elapse before the controlled timestamp reaches its original value. 

Using Equation (3.3) we have 

 

( )
i

itimestamprxp
oldnew T

TTK
ss

−
+= _ ,        (3.6) 

 

Substituting (3.6) in (3.5) and after some algebra we obtain 

 

( )
oldnew

itimestamprxp

ss

TTK
T

−−
≥ _

interval .             (3.7) 

Note that ⇒< oldnew ss timestamprxi TT _> , which implies that intervalT  in (3.7) is positive. 

Also, using 1≈≈ oldnew ss , (3.7) can be simplified to 

 

( )itimestamprxp TTKT −−≥ _interval .            (3.8) 

 

The time during which the controlled timestamp goes backward in time is 

proportional to the time difference between the received timestamp and the controlled 

timestamp. It is shown through simulations at the end of this section that the time 

difference in (3.8) can be in the order of few micro-seconds at steady state. If the real 

timestamp is adjusted to newi sT /  before the real timestamp is multiplied by news , then no 

backward leaps in time will be observed. However, it is necessary to wait if the 

difference ( )itimestamprx TT −_  is small relative to the speed at which the computation can be 

made. 
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As a simple example of CSMNS, assume two clocks; clock 1 deviates +0.5 time units 

for every real-time unit (i.e., ttT )5.01()(1 += ), and clock 2 deviates −0.5 time units for 

every real-time unit (i.e., ttT )5.01()(2 −= ), also assume zero initial conditions for both 

clocks. Figure 3.4a shows the behavior of the TSF assuming the faster clock (clock 1) 

always transmits a beacon successfully at every opportunity. Figure 3.4b uses the rule in 

(3.3) to update the slope of the slower clock (clock 2), that is 

 

T

TT
Kss rx

oldnew

−
+= ,         (3.9) 

 

where K is the proportional gain used to adjust the speed of convergence. rxT  is the 

timestamp embedded in the received beacon and T is the timestamp of the receiving 

node. news  is used to obtain a new virtual time ).()( 22 tTstT new=  Figure 3.4b shows the 

first adjustments followed by the slower clock using 8.0=K  and an initial value of 1=s  

in both clocks. Figure 3.5 is the continuation of Figure 3.4b until the 20th adjustment. 

Note that after the 2nd adjustment the time difference between the two clocks increases 

momentarily until convergence is finally achieved with better accuracy than the TSF in 

Figure 3.4a. Figure 3.5 also shows some of the values of the parameter s computed by the 

slower clock in every adjustment. Also observed in Figures 3.4a,b is the fact that the TSF 

response is oscillatory (3.4a), while the CSMNS response converges as time progresses 

(3.4b). 
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Figure 3.4 Numerical comparison between the TSF and CSMNS 

 
 

 

 

 

 

 

 

Figure 3.5 Time difference between the clocks in Figure 3.4b 

 

The latter procedure along with Equation (3.9) forms the basis of the proposed NTS 

algorithm. However, the procedure in Figures 3.4b and 3.5 assume that one of the nodes 

always transmits a beacon successfully in every TBTT, this is obviously a simplistic 

assumption only meant for a didactic explanation of the idea behind the approach. This 

assumption is not made when obtaining the results in Figures 3.2 and 3.3. 
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3.2 CSMNS-Rotating Master Node 

 

A non-hierarchical approach has the advantage that not all nodes need to contend for 

beacon transmission in every TBTT. It is sufficient if only a sub-set of all the nodes 

contend at any given time. In this case all nodes still have equal opportunity to transmit, 

but rather in a larger time-span. The following method takes advantage of this feature: 

Assume each node has a counter iC  with maximum value max
iC . In every TBTT, all 

the nodes perform the following operations independently and in a distributed way: 

 

1. }0,1max{ −= ii CC  

2. If 0=iC , contend to send the beacon following the same procedure of the IEEE 

802.11 TSF, otherwise (i.e., 0>iC ), wait until the next TBTT and return to Step 1 

without attempting to transmit a beacon 

3. If a beacon is successfully received before the local node sends its beacon (assuming 

0=iC ), then set max
ii CC = , adjust the correction factor based on the time-stamp 

received, wait for the next TBTT, and return to Step 1 

4. If a beacon is successfully received and 0>iC , adjust the correction factor based on 

the time-stamp received and wait for next TBTT, return to Step 1. 
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Every node will contend to send its time-stamp )(tTi embedded in a beacon if 0=iC  and 

no beacon has been received from any other node in the present contention window. If 

0>iC , or 0=iC  and node i receives a beacon before it is able to send its own, then 

node i will not contend to send its beacon in the present contention window. For a while, 

a group of nodes in the same locality will be listening to beacons coming from the single 

node, which was the winner of the previous contention. We call the latter the Rotating 

Master (RM) node. The RM node holds the master status temporarily until a new 

contention randomly replaces it by another node. In this way, all nodes have the 

opportunity to be a RM node for a number of TBTTs. CSMNS-RMN reduces the number 

of beacons transmitted with respect to the basic CSMNS approach and the TSF. This 

translates into energy savings and beacon collision reduction. 

An example of CSMNS-RMN is illustrated in Table 3.1. There are 4 nodes in the 

same neighborhood. At TBTT = 1, nodes 1 and 4 contend to send their beacons 

 

Table 3.1 CSMNS-RMN example with 4 nodes in a single-hop scenario 

 

 

 

 

 

 

TBTTs

1C

2C

3C

4C 34012340

00001234

23400123

12340000

87654321

34012340

00001234

23400123

12340000

87654321iC
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( 041 == CC ), node 1 wins and becomes the RM node. Node 4 sets its counter to 

5max =C  as soon as it receives the beacon from node 1 at TBTT = 1; at TBTT = 2, 

4154 =−=C . At TBTT = 4, node 2’s counter reaches zero, and it contends to send its 

beacon against node 1. Node 2 wins the contention, but does not win RM status since 

node 3 also contends in the next TBTT. It is straightforward to see what the procedure is 

about afterwards. Note that on average, fewer nodes are contending in every TBTT. The 

initial values of the counters where chosen different for every node; if the values are the 

same, all the nodes will contend at the same TBTTs, and a RM node will be determined 

after probably some collisions, then, after maxC  TBTTs all nodes will contend again to try 

to become the next RM node. The previous description does not take into account the 

wireless medium impairments, which can cause a beacon to be destroyed even when 

there are no collisions. CSMNS–RMN with iCi ∀= ,1max  reduces to the basic CSMNS 

approach. Therefore, CSMNS-RMN is a more general approach than CSMNS. 

 

3.3 Numerical Performance Evaluation of CSMNS-RMN 

 

We performed simulations of CSMNS-RMN in Matlab. The simulations were 

performed under the same assumptions presented in Section 2.3 for the simulation of the 

TSF in a grid-topology network. Figure 3.6 shows maxT  for 100 nodes in a single-hop 

network using CSMNS, with 3.0=pK  and initial offsets randomly chosen in [0, 100].   
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Figure 3.6 Average )(max nT using CSMNS with 3.0=pK , and 100 nodes in a single-hop network. 

 

Figure 3.6 shows the ensemble average of fifty separate simulations. The dotted curves 

represent the 95% confidence interval over the mean estimation. Note that it 

approximately follows the same transient behavior shown in Figure 3.2.  

Figures 3.7 and 3.8 show a sample of maxT  in a 10x10 and a 15x15 network 

respectively using CSMNS-RMN. Figure 3.8 corresponds to a network that is nine times 

the size of the one used to obtain the TSF result in Figures 2.12 and 2.13. This shows 

promising scalability and accuracy performance for CSMNS. In Figure 3.7 the time of 

convergence defined as 10)(max ≤≡ cc tTt  µsecs is approximately 250 secs using 

10max =C  and ,5.0=pK  147 secs for 2max =C , ,5.0=pK  and 80 secs for 2max =C  

and 8.0=pK . Decreasing maxC  tends to improve the convergence time at the cost of 

increasing the overhead. 
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Figure 3.7  Samples of maxT  in a 10x10 network with different maxC  and pK  
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Figure 3.8 Sample of maxT in a 15x15 network ( 10max =C  and 5.0=pK ) 

 

An increase in the proportional gain pK  reduces the convergence time as well, but 

the algorithm becomes more susceptible to instability as previously discussed. The time 

of convergence in Figure 3.8 is 600 secs. Note that the clocks in the entire network start 

asynchronous to one another, which is a worst-case scenario. In practice, networks are 



80 

  

not created at once with the mutual participation of all the nodes in the network. 

However, even in that case CSMNS achieves synchronization. Additionally, the initial 

condition of Figures 3.7 and 3.8 are chosen randomly in the wider range [0, 200]. 

Figure 3.9 shows the ensemble average of maxT  after performing fifty separate 

simulations in a 5x5 network with 10max =C  and 5.0=pK . The dotted curves show the 

95% confidence interval. As can be observed, convergence is achieved after a transition 

that lasts only few seconds. The final accuracy of the procedure depends on the 

granularity of the clock (taken as 1 µsecs in the simulations) and also in the accuracy of 

the estimation of delays between the PHY and the MAC layers. The mobility and 

wireless medium impairments in the network also affect the performance of CSMNS 

since the network must remain connected for the nodes to exchange their timestamps.  
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Figure 3.9 }{ maxTE in a 5x5 network using CSMNS 
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Figure 3.10 shows a simulation result of a sample time difference between specific pairs 

of nodes when the 5x5 network is disconnected, separating the network in two equal-

sized subnets. Nodes 1 and 7 are part of the first subnet, and nodes 19 and 25 are part of 

the second subnet (see the inset of Figure 2.12). The disconnection occurs at 200 secs, 

causing the divergence of the time differences between nodes belonging to different 

subnets. However the nodes belonging to the same subnet keep synchronous to one 

another. The network is reconnected after 200 secs and both subnet-times converge again. 
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Figure 3.10 Time difference between some nodes during a network disconnection 

 

The time synchronization in CSMNS is relative to the time skews of the clocks in the 

network. CSMNS does not try to synchronize with respect to UTC or any other external 

time reference. Figure 3.11 shows the time processes of 4 clocks in a 2x2 network. Nodes 

1 and 4 deviate at +25ppm with respect to real time, and nodes 2 and 3 deviate at -25ppm. 

The initial time offset of all clocks is zero. After a transition period of approximately 90 

secs all clocks are synchronous to one another. However, the common time process 
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deviates with respect to real time (its slope is different than zero). Figure 3.12 shows the s 

parameters of all the nodes corresponding to Figure 3.11. After the transition period the s 

parameters of all the nodes settled showing the  necessary  correction  needed  to equalize  
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Figure 3.11 Time difference with respect to real time in a 2x2 network 
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Figure 3.12 Parameter s corresponding to Figure 3.11 
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all the time processes. Nodes 2 and 3 need a larger s factor to compensate for their 

negative skew, and nodes 1 and 4 need a smaller s factor to compensate for their positive 

skew. The random way in which beacons access the medium, plus the offset of the 

proportional control-law with respect to the ideal, makes the system deviate from real 

time even when there is symmetry in the clock skews as in the previous example. 

Figure 3.13 shows the final time deviation in parts per million (ppm) observed in a 

2x1 network in which the clocks deviate with different skews. Each point in Figure 3.13 

corresponds to a separate simulation and the time deviation observed at steady state. The 

ensemble average of the case in which Node 1 skews at +25ppm and Node 2 at -25ppm is 

-0.7 ppm, while the case in which Node 1 skews at +25ppm and Node 2 at -5ppm shows 

an ensemble average of 9.8 ppm. As we can see, the final time-deviation of CSMNS with 

respect to real-time is approximately equal to the average of the individual skews 

This is an interesting fact about a mutual NTS approach. In particular, it seems 

possible to build a very accurate clock formed by the mutual synchronization of many 

less-accurate clocks. However, the latter is not the main goal of our work. 

 

3.4 CSMNS with Permission Probabilities 

 

In the original TSF a node will pick a slot from a contention window of 1+W  slots in the 

range ],0[ W  and try to transmit in it if the medium is idle. However, assume that even if 

the medium is idle a node decides to transmit based on the successful outcome of a  



84 

  

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Sample per node per simulation

N
et

w
or

k 
tim

e 
de

vi
at

io
n 

af
te

r 
sy

nc
hr

on
iz

at
io

n 
(p

pm
) Node 1 = 25ppm Node 2 = -25ppm

Mean = -0.7
Node 1 = 25ppm Node 2 = -5ppm
Mean = 9.8

 

Figure 3.13 Network time-deviation with respect to real-time after 

 synchronization is achieved in a 2x1 network 

 

random experiment. That is, the node transmits in the chosen slot if the medium is found 

idle and the outcome of a random experiment (the flip of a coin) is successful. The 

rationale behind this extra procedure is that the beacon collision probability will be 

reduced if some of the nodes give up on their attempts to transmit their beacons, 

particularly when the number of nodes is in the order of tens or hundreds. Reducing the 

beacon collision probability can translate into a larger probability of having any beacon 

transmitted over the air (i.e., anyP ), which in turn can reduce the convergence time of 

CSMNS. Note that the procedure above can enhance both the basic-CSMNS and 

CSMNS-RMN. Therefore, the best scheme will presumably be CSMNS-RMN with 

permission probabilities. In what follows we show what is the improvement attainable by 

using permission probabilities. 

The previous procedure is incorporated into the analysis of anyP  [17]. We extend this 

analysis to take into account the additional experiment described above. In what follows 
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),(ˆ WnPany  is the probability that any beacon is transmitted successfully in a contention 

window of 1+W  slots with permission probability p . 

The probability of the event 1E  that there is no beacon transmission in slot 0, but 

there is a successful beacon transmission in the remaining window (i.e., ],1[ W ) is given 

by the probability that i nodes )0( ni ≤≤  pick slot 0 and the outcome of all their random 

experiments are unsuccessful, and that the remaining nodes (i.e., )( in − ) pick a slot in the 

remaining window with one successful transmission. That is 
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The probability of the event 2E  of a successful beacon transmission in slot 0 is given 

by the probability that j nodes )1( nj ≤≤  pick slot 0 while only one of them has a 

successful outcome from the random experiment and the rest of the )( jn −  nodes pick a 

slot in the remaining window ],1[ W . That is 
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The probability of the event 3E  that there are collisions in slot 0, but a successful 

beacon transmission in the remaining window is given by the probability that i nodes 

)2( ni ≤≤  pick slot 0 and x )2( ix ≤≤  actually transmit, and that j )0( inj −≤≤  nodes 
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pick a slot in the next )1( −b  slots giving up their transmission attempt for the next TBTT 

due to carrier sensing, and that there is a successful transmission in the remaining 

window ],[ Wb . That is for bW >  and 2≥n  
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Therefore ),(ˆ WnPany  is given by 

 

)()()(),(ˆ
321 EPEPEPWnPany ++= ,       (3.13) 

),(ˆ WnPany  is computed for different p  and different number of nodes (network sizes). The 

results are plotted in Figure 3.14.  
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Figure 3.14 ),(ˆ WnPany  for different network sizes and different values of p . 
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Note that ),(),(ˆ WnPWnP anyany =  if 1=p . ),(),(ˆ WnPWnP anyany >  for 3.0>p . The best 

p  depends on the number of nodes and it is smaller for larger networks. The increase in 

the probability of transmitting any beacon is more pronounced when using permission 

probabilities if the number of nodes is large. When the number of nodes is small (in the 

order of few tens) permission probability is actually detrimental since the nodes refrain 

from transmitting, causing a situation referred to as beacon starvation (i.e., not enough 

beacons being transmitted). However, when the number of nodes is large, the action of 

refraining from transmitting beacons decreases the collision probability of the beacons 

while maintaining a good number of beacon transmissions. However, the latter is 

achieved if the permission probability is not too low, as shown in Figure 3.14. Figure 

3.15 shows the benefit of having a permission probability 3.0=p  in a network of 100 

nodes when using permission probabilities over the basic-CSMNS algorithm. 
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Figure 3.15 Effect of permission probability on the transient behavior of a network of 100 nodes 
using the basic-CSMNS algorithm ( 3.0=pK  and aBeaconPeriod = 0.1 secs) 
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The new ),(ˆ WnPany  is used in (3.4) to compute }{ maxTE  in one of the curves with 

FHSS parameters, 3.0=pK  and aBeaconPeriod = 0.1 secs. The convergence time ct  is 

reduced from 12 secs to 4 secs ( ,sec10)(max stTt cc µ≤≡ ) and the over-shoot by 30%. It 

can be seen in Figure 3.14, for instance, that a value of  3.0=p  is beneficial for a 

network between 20 and 140 nodes. However, it is detrimental for a network of 

approximately 10 nodes or less. Therefore, some rough estimation of the number of 

nodes in the network is required if permission probability is implemented for CSMNS. 

 

3.5 Summary 

 

A novel NTS algorithm is presented that is capable of achieving accuracies in the order 

of few micro-seconds in single-hop or multi-hop wireless networks with minimum 

infrastructure. The accuracy, however, is dependent on the estimation of PHY to MAC 

delays, which in most cases can be estimated with good accuracy. CSMNS is a non-

hierarchical, convergent, and scalable NTS approach. One of the interesting advantages 

of CSMNS over previous mutual network synchronization approaches is the possibility 

of implementing it at the MAC layer rather than requiring special PHY layer support. 

This means CSMNS can bring mutual network synchronization advantages into civilian 

applications. Furthermore, the CSMNS approach can be integrated with a time-slotted 

MAC protocol if a beacon contention window is included in the frame á la IEEE 802.11. 

An initial beacon contention time-window can be allocated in the frame, and the rest can 

be utilized for synchronous time-slotted data transmissions. Finally, CSMNS is a NTS 
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approach specifically designed for a wireless multi-hop network or an infrastructure-less 

single-hop wireless network. Both of which can be comprised of mobile or static nodes. 

We also present extensions of the basic CSMNS approach that have the potential to 

increase accuracy and reduce the protocol overhead even further. Optimization in terms 

of the particular application of the network (e.g., sensor networks, traditional data 

transmission networks) can be studied as part of our future research. To the best of our 

knowledge CSMNS represents the first attempt to adapt the mutual network 

synchronization approach to the constraints and needs of civilian applications. 
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Chapter 4 

 

Topology-transparent Scheduling Protocols 
 

This chapter presents the most important results in the area of Topology-transparent 

scheduling protocols proposed for Wireless Ad Hoc Networks. In particular the works by 

Chlamtac and Farago [17], Ju and Li [39] and Syrotiuk et al., [40] are discussed as an 

introduction to our proposed Code-based scheduling protocols. First, an introduction and 

motivation are given followed by a description of the topology-transparent scheduling 

studies made by the authors above. Finally, a summary with some concluding remarks is 

presented. 

 

4.1 Introduction 

 

The most popular scheduling schemes for Wireless Ad Hoc networks are those who find 

their roots in the ALOHA protocol, such as the CSMA/CA protocol used, for instance, in 

the IEEE 802.11 and IEEE 802.15.4 standards. It is well known that the family of 

ALOHA protocols offer good performance for nodes transmitting best-effort traffic in a 

shared channel, however, they suffer from instability and lack of any performance 

guarantee due to their random nature. If real-time or priority applications are to be 

supported with some minimum performance guarantees it is imperative to add more 

structure to the scheduling approach.  A possible way to add  structure is by allowing  the  
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transmissions to happen during known time boundaries or time-slots. The slotted-

ALOHA protocol is one possible enhancement of the ALOHA protocol that uses this 

technique, however, a high degree of randomness is still inherent in the procedure and 

therefore no guarantees are possible. A highly structured scheduling protocol on the other 

hand usually suffers from being inflexible and difficult to manage in a distributed way. A 

traditional example of a structured scheduling protocol is classic time division multiple 

access (TDMA). In classic TDMA every node is assigned, a-priori, a unique slot 

(channel) in which to transmit, in this way collisions are avoided and the packet delay 

becomes highly deterministic at the data link layer level. However, the throughput and 

delay efficiency of such a scheme is questionable due to the lack of a time-slot re-

utilization technique that takes advantage of the spatial separation between the nodes. 

The need for network time-synchronization in a wireless Ad Hoc network is a non-trivial 

factor that also needs to be taken into account when implementing such structured 

scheduling approaches. Furthermore, additional signal overhead might be needed to 

ensure the unique time-slot assignment per node. Other, more elaborated, TDMA 

schemes have been proposed. However, the overhead cost to cope with topology changes 

is usually non-negligible. 

More recently, an approach referred to as topology-transparent scheduling was 

proposed in [17] for a multi-hop packet radio network based on polynomials over a 

Galois field. Each user is assigned a different polynomial with degree k and coefficients 

in GF(q), which it uses to select a slot in a frame. The difference between two 

polynomials also results in a polynomial of degree less than or equal to k, therefore the 

number of roots of the difference between two polynomials will be bounded by k as well. 
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This translates into the fact that the maximum number of common points between any 

two different polynomials will be k. Additionally, if one has information on the 

maximum number of interferers that any node could have in the network at any given 

time, it could be possible to guarantee a minimum of performance as long as the 

scheduling is performed following the unique polynomial evaluation. The latter concepts 

will be made clearer in the upcoming sections. 

The scheduling of channels using polynomials in a Galois field seems to have been 

originated in the early works in [41] and more notably [42]. Solomon [42] proposed an 

optimal solution for the hit problem in a frequency hopping multiple access (FHMA) 

system that resembles the construction and arguments made in [17]. A hit is nothing more 

than a collision between two or more transmitters at a common receiver caused by the use 

of the same channel. Solomon’s idea was to use maximum distance separable (MDS) 

sequences over a Galois field in order to minimize the hit probability. A well-known set 

of sequences with MDS properties can be constructed by a generalization of the method 

used in [17] and constitute the code-words of a Reed-Solomon (RS) code. In fact, the 

scheduling procedure designed in [17] corresponds to the code-words of a singly 

extended RS code. RS codes can be extended, augmented, truncated, and shortened. 

Therefore, the proposed procedure in [17] can be seen as a specific case of a more 

general scheduling approach based on RS codes. 

A more recent work [40] identifies a generalization to the procedure in [17] based on 

Orthogonal Arrays (OAs). A large number of different code constructions produce OAs, 

including the RS, BCH, and Reed Muller code constructions among many others. We 

argue that, in principle, any linear or non-linear q-ary code can be used as a scheduling 
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sequence. Additionally, all the possible modifications a code can undergo (e.g., 

truncation, augmentation, extension, shortening) represent an obvious generalization over 

the same code construction. It is important at this stage, however, to find code 

constructions and techniques that can offer improved performance and simpler 

implementation of the topology-transparent scheduling protocols based on codes. A way 

to achieve the latter is the subject of the next chapter.  

 

4.2 Topology-transparent Scheduling Protocols 

 

Chlamtac and Farago [17] were the first to propose a topology-transparent scheduling 

algorithm based on the evaluation of polynomials over a Galois field in the context of 

multi-hop packet radio networks. They state that their algorithm can be used for any 

multiple channel access protocol (e.g., time, code or frequency-division multiple access). 

However, for brevity they refer to the TDMA case. The network is viewed as an 

undirected graph G(V,E) with N nodes, where V is the set of nodes ( NV = ), and E is the 

set of edges or links. The degree of a node v  ( )deg(v ) is the number of neighbors of 

node ,v  and the maximum degree maxD  is the global maximum degree in the 

network 





∈
)deg(maxi.e., v

Vv
. Time is slotted, and a frame is comprised of L slots. A frame 

F is seen as a set of slots: },...,,{ 110 −= LsssF . The scheduling assignment of node v is 

then given by a set FSv ∈ , where vS  is the set of slots in which node v can transmit.  

The objectives of their algorithm are as follows: 
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1. For each node v, each neighbor u of v, and each neighbor vu ≠'  of u, there should be 

at least one slot vSs ∈  such that uSs ∉ and 'u
Ss ∉ . They claim this will allow node v 

to transmit without collisions at least once in every frame. This requirement is 

equivalent to state that at least once in a frame a node will use a slot that is different 

to the ones used by its intended receiver (to avoid primary collision) and the 

neighbors of its intended receiver (to avoid secondary collisions) 

2. The slot assignment depends on global parameters N and maxD only 

3. The frame length L should be significantly smaller than N (i.e., N would be the frame 

size used by a classic-TDMA scheduling approach). 

 

Recall that the destruction of a packet in a given receiver does not necessarily depend 

only on first and second-hop neighbor transmissions since the transmission and 

interference ranges are usually different in real wireless networks. Furthermore, the 

values of N and maxD could prove to be difficult to obtain in a highly dynamic wireless 

environment. However, it is assumed that an upper bound to the actual values is either 

known or enforced. The enforcement of a given degree in a wireless network is beyond 

the scope of our work, and also the work in [17].  

The description of their algorithm follows (for a good exposition of finite field theory 

see [43]). Let GF(q) be a Galois field of order q. Let mpq = , p a prime and +∈≥ Ζ1m  is 

an arbitrary positive integer. Every element in GF(q) is labeled with the integers 0, 1, …, 

q-1. Assign every node v in the network a unique (otherwise arbitrary) vector-identifier 

polynomial ][xVIDv  of degree k with coefficients in GF(q). That is 
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0
1

1][ axaxaxVID k
k

k
kv +++= −

− L ,  where }0,...,1,{for),( −=∈ kkjqGFa j .  

 

Define a frame of size 2qL = slots. Determine the set of slots FSv ∈  for every node in 

the network as follows: 

for every Vv ∈  

;)1:0( 0=−qSv  //initialize the values of the q slots in which v is going to transmit 

for )1:0( −= qi // for every value in the set = {i = 0,1,…,q-1)     

];[)( iVIDiqiS vv += //obtain each slot value by evaluating ][xVIDv  

end 

end 

In the previous algorithm, each unique polynomial is evaluated for every value 

between 0 and q-1 and assigned to the node’s slot assignment set S. Note that an 

alternative way to visualize the frame is as composed of q sub-frames with q slots each, 

as shown in Figure 4.1. In this case node v will evaluate its unique polynomial with the 

sub-frame value in order to obtain the slot number assigned to it in every sub-frame. 

Recall that network time-synchronization is assumed. Requirements 1 and 2 above are 

satisfied by constraining the values of q and k as follows 

 

Nq k ≥+1 ,          (4.1) 

1max +≥ kDq .          (4.2) 
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0 1 2 q-1… 0 1 2 q-1… … 0 1 2 q-1…

0 1 q-1

frame

sub-frames:

]0[vVID= ]1[vVID= ]1[ −= qVIDv

0 1 2 q-1… 0 1 2 q-1… … 0 1 2 q-1…

0 1 q-1

frame

sub-frames:

0 1 2 q-1… 0 1 2 q-1… … 0 1 2 q-1…

0 1 q-1

0 1 2 q-1… 0 1 2 q-1… … 0 1 2 q-1…

0 1 q-1

frame

sub-frames:

]0[vVID= ]1[vVID= ]1[ −= qVIDv  

 

Figure 4.1 Frame structure of the algorithm proposed by Chlamtac and Farago 

 

Inequality (4.1) guarantees that every node in the network will have a unique VID[x] 

polynomial, therefore excluding the possibility of the topology-dependent problem of 

assigning non-interfering polynomials to the nodes in the network. Inequality (4.2) 

ensures requirement 1 above is satisfied assuming only up to two-hop neighbor 

interference. That is, the nodes that can interfere with a transmission from node v to node 

u are assumed to be the neighbors of node u except v, and node u itself. This is equal, in 

the worst case, to the maximum degree of the graph modeling the network (see Figure 

4.2). Any two different polynomials ][][ xVIDxVID uv ≠  of degree k will coincide in the 

 

v
u

max(deg(u

v
u

))=Dmax

v
u

max(deg(u

v
u

))=Dmax

 

 

Figure 4.2 Assumed maximum number of interferers in Chlamtac's algorithm 
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same value after being evaluated at a common point p iff p is a root of the polynomial 

obtained by the difference between both polynomials (i.e., 0][][ =− pVIDpVID uv ). The 

difference between two kth degree polynomials is another polynomial in the same field 

with degree ≤ k, therefore the maximum number of points in which two polynomials 

coincide, and hence the maximum number of slots in which the two nodes collide is 

given by k. 

Combining the two previous conclusions we can state that the maximum number of 

collisions a node can perceive when transmitting to another node is kDmax. It is apparent 

then, that in order to guarantee at least one transmission without collision in every frame 

we have to ensure that q and k satisfy the inequalities (4.1) and (4.2). 

The following algorithm is proposed in [17] in order to find the minimum q subject to 

constrains (4.1) and (4.2). That is, the minimum frame size subject to having at least one 

successful transmission per frame. 

Assume ...., 21 qq  to be the sequence of increasing powers of primes (i.e., 2, 3, 4, 5, 7, 

8, 9…), then 

 

;0=i  

do 

  ;/)1(;;1 maxDqkqqii i −==+=  

until )and1( 1 Nqk k ≥≥ +  
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For instance, if there are N = 100 nodes, and 4max =D , the algorithm above will find       

k = 2 and q = 9, which represents a frame size of )100(slots812 <== qL  slots, and sub-

frame size of 9 slots. In the previous example, any two nodes will collide at most once in 

every frame.  

Ju and Li [39] proposed an optimal topology-transparent scheduling approach based 

on [17] that optimizes an expression representing the minimum throughput of any node in 

a network. The procedure is the same as in [17] and depicted in Figure 4.1. The novelty 

in their work lies in the fact that they found a way to compute values of q and k that 

maximize “minimum throughput” rather than focusing on the minimization of the frame 

size. In this way they generally obtain larger minimum throughput and smaller maximum 

delay than the method proposed in [17]. In particular, recall that maxkD  is the maximum 

number of collisions a node can suffer in a frame, and the number of transmission 

attempts of a node in a frame is q. The authors define minimum throughput ( minG ) as 

 

2
max

min
q

kDq
G

−
=  .         (4.3) 

 

Recall that the size of the frame is 2qL = . That is 

 sizeFrame

degree) (Max.  )collisions of number pairwise (Max.iesopportunit trans. of Number
minG

⋅−

=
 (4.4) 
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They found the maximal minG  for a given value of k following a classical 

optimization procedure over the field of real numbers. The latter is technically an 

approximation due to the fact that the design variables (q and k) admit only integer 

values. Their result is summarized as follows 

 

( ) ( )





−

≤
=

+

+

+

otherwise
N

kDN

kDNif
kD

G

k

k

k

)1/(2
max

)1/(1

max
)1/(1

max
min

2
4

1

max       (4.5) 

 

Their algorithm first computes the value of q, given k and the computed minG  (4.5), 

and proceeds in the same fashion as the algorithm in [17] afterwards. Their algorithm 

consistently shows larger values of minG  and smaller values of maximum delay than [17]. 

Therefore the authors in [39] argue their scheme can guarantee a minimum throughput 

that is larger than Chlamtac’s approach. However, the guarantee must be understood 

within the assumptions made (interference up to second-hop neighborhoods, and 

knowledge of maxD  and N, which were the assumptions made in [17] as well). Ju’s 

approach has the additional advantage that it has smaller delay variability (i.e., delay-

jitter), which is attractive for real-time applications. To see this, define the following 

lower and upper bounds for the delays [39]: 

 

min
2

max

/1)/(

frame) ain  ions transmisssuccessful ofnumber  inimumlength)/(m frame(

GkDqq

DT

=−=

=
,   
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max

min

/1

)frame) ain  ions transmisssuccessful ofnumber  aximumlength)/(m frame(

G

DT

=
=

.  

 

Figure 4.3 qualitatively shows the relative positions of ,minG ,maxG ,minDT and maxDT  

based on the results in [39]. Note that the difference between maximum and minimum 

values of delay is narrower for Ju’s approach. Therefore the delay variability will be 

constrained in a narrower region.  The apparent optimality of Ju’s algorithm will be 

shown to be valid only within a given construction and not in a more global sense since, 

for instance, RS codes always exist that are longer than the given order of the code, 

therefore frames of more than q sub-frames are always possible with the longer code 

keeping the MDS property (i.e., 1min +−= knd ). The work in [40], plus additional work 

in [44] and [45], identify the polynomial construction in [17] as one of the possible 

constructions used for orthogonal arrays (OA). A large number of different code 

constructions produce OAs and others do not [46]. Different constructions may have 

different performance if analyzed separately as shown in Chapter 5. Therefore, a different 

view of the problem is required. 

T
hr

ou
gh

p
ut

Chlamtac’s

Chlamtac’s

Ju’s

Ju’s

D
el

ay

Ju’s

Chlamtac’s

Ju’s

Chlamtac’s

T
hr

ou
gh

p
ut

Chlamtac’s

Chlamtac’s

Ju’s

Ju’s

D
el

ay

Ju’s

Chlamtac’s

Ju’s

Chlamtac’s
 

 

Figure 4.3 Delay jitter expected in Ju's and Chlamtac's approach 
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4.3 Summary 

 

This chapter presented the most relevant studies and ideas in the area of topology-

transparent scheduling protocols. It represents an introduction and motivation to our 

proposed code-based scheduling protocols. We finalize this chapter concluding that 

previous work in this area has not been general enough, and has not provided 

constructive ways to approach the scheduling problem in wireless Ad Hoc network. In 

the context of Wireless Ad Hoc networks, all previous work has been tied to the original 

polynomial construction proposed by Chlamtac and Farago [17], including the 

generalization proposed in [40] based on OAs. The main point is that the construction 

proposed in [17] is not the only possible construction. A more general and constructive 

approach is presented in the next chapter that makes use of the large number of code 

constructions available from the field of coding theory. 
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Chapter 5 

 

Code-base Scheduling Protocols for Wireless Ad Hoc 
Networks 
 

This chapter presents a generalization to the topology-transparent scheduling protocols 

originally proposed in [17] in the context of multi-hop packet radio networks. We re-

introduce the topology-transparent scheduling problem using the terminology of coding 

theory and refer to it as code-based scheduling. We first present our approach and 

compare the throughput and delay performance of scheduling schemes based on two code 

constructions that are known to have some desirable properties, the Reed-Solomon (RS) 

codes, which are maximum distance separable, and the Hermitian codes, which are 

longer than RS codes for a given alphabet size and posses a good minimum relative 

distance ( lengthd /min ) which, as explained in this chapter, is a key metric for the 

realization of better minimum throughput guarantees. We compare the average 

throughput and delay performance between code-based and contention-based protocols 

represented by a code-based scheduling protocol that uses Orthogonal Arrays and the 

slotted-ALOHA protocol respectively. Finally, we investigate the effects of code-word 

selection on the average performance of a code-based scheduling approach, and present a 

hybrid scheduling protocol that combines contention-based and code-based scheduling. 



103 

  

5.1 Introduction 

A code-based scheduling protocol utilizes the different code-words of a structured code 

to select the slots over which the nodes in the network will transmit. A structured code is 

constructed using mathematical techniques aimed at creating a set of code-words with 

some desirable properties. We exclude in this definition the use of code-words formed by 

elements drawn from a finite and discrete random distribution. Code-based scheduling 

protocols are a subset of the topology-transparent scheduling protocols. Note that some 

protocols that do not use structured code-words can also be topology-transparent (e.g., 

slotted-ALOHA), therefore we prefer the term code-based scheduling. The transparency 

of a scheduling protocol implies that the procedure does not depend, and its performance 

does not get affected, by the relative position of the nodes in the network. However, some 

dependency on general network parameters, such as the number of nodes or the 

maximum density of the network, is generally accepted. Examples of structured codes are 

numerous and a possible way to classify them is based on their method of construction. 

Codes constructed using algebraic principles include the popular Reed-Solomon (RS) 

codes and the Hermitian codes; whereas codes constructed with more empirical methods 

include the convolutional and turbo codes. 

A code is denoted as C(n, k, q) where n is the length of the code-words, k is the rank 

of the code, and q is the order of the Galois field over which the code is defined [47].  A 

C(n, k, q) code has kq  code-words of length n in GF (q). The code-words of any code can 

be used to schedule channel-slots (e.g., codes, time or frequency slots) in a multiple 

access system. 
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5.2 Problem Model and Comparative Evaluation of Reed-Solomon 

and Hermitian codes 

 

Assume a code C(n, k, q) of length n, rank k in GF(q). C(n, k, q) has kq  code-words of 

length n in an alphabet formed by the elements of GF(q). The code-words of such code 

can be utilized as scheduling patterns for the nodes of a wireless Ad Hoc network as 

suggested in the previous section. Every node accesses the medium assuming a time-

slotted structure as shown in Figure 5.1. The )x(Ci  in Figure 5.1 represents the xth digit 

of the code-word assigned to node i used to schedule the transmissions in the xth sub-

frame. 
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Figure 5.1 General time-slotted structure of a code-based scheduling protocol 

 

A lower-bound throughput of a node in a network with code-based scheduling can be 

written as 
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nq

Idnn
G maxmin

min

)( −−
= .        (5.1) 

 

Where maxI  is the estimated maximum number of interferers a node can have at any 

given time, mind  is the minimum Hamming distance of the code, q is the order of the 

finite field in which the code is defined, and n is the length of the code. The maximum 

degree maxD , used in previous works (e.g., [17], [39]), has been substituted for the more 

appropriate maxI , in this way nodes more than two-hops away could be considered when 

modeling the interferers of a given node (this is a more realistic situation in a wireless 

medium). An maxI  bound could be achieved with techniques such as power control or any 

other topology control mechanism. However, this is a topic beyond the scope of this 

work. The numerator in (5.1) is the minimum possible number of successful slots in a 

frame of nq slots. minG  is a lower bound since the code-words of any code will be 

separated by a Hamming distance larger than or equal to .mind  

The following inequalities are imposed on the parameters of a code in order to 

guarantee a positive value of Gmin in a network 
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N is the number of nodes in the network. The first inequality in (5.2) guarantees a unique 

code-word for every node in the network, and the second inequality ensures that a node 
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will have at least some successful transmissions (greater than zero) in a frame (see 

equation 5.1). That is, a node should be assigned a number of opportunities to transmit in 

a frame greater than the maximum number of collisions possible (i.e., maxmin )( Idnn −> ) 

if one wishes to have a minimum of performance greater than zero. The third inequality is 

also necessary since the size of a sub-frame needs to be larger than the number of local 

interferers in order to be able to guarantee a minimum of collision-free transmissions. 

One important design goal is to find the order and rank of the specific code for which 

(5.1) is maximized constrained to (5.2). It is necessary however, to know how to compute 

the minimum Hamming distance and length of the code. Additionally, the parameters 

maxI  and N of the network must also be available (i.e., at least upper bounds to these 

parameters are necessary if a minimum throughput is to be guaranteed). Equation (5.1) 

can be re-written as 

 

q

I

n

d

q
G maxmin

min 1
1 


 −−= .        (5.3) 

 

We note that code constructions that produce codes with larger nd /min  ratio for a 

given order q and maxI  will have larger minG  guarantees. In other words, larger minG  are 

possible for codes with larger relative minimum distance. This is the reason an extended 

RS code will guarantee a larger minimum throughput as will be proved shortly. 

Hermitian codes are an example of long codes (i.e., longer than RS codes) that possess a 

good nd /min  ratio. Hermitian codes are constructed using algebraic geometry (AG) 

principles. In particular, Hermitian codes are derived from a Hermitian curve in a finite 
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field. In fact, RS codes can be seen as AG codes over a straight line in a finite field, and 

therefore form a specific case of the more general set of AG codes. AG codes derived 

from many algebraic curves can be constructed, including Elliptic and Hyper-elliptic 

curves. However, Hermitian curves have more points per given order; this is one of the 

reasons that, for some code parameters, the Hermitian codes posses a larger relative 

minimum distance than the RS codes of the same order. First, however, we prove that a 

doubly extended RS code offers larger minimum throughput guarantee than a non-

extended or a singly extended RS code and compute the optimal value of q that 

maximizes (5.1). 

An RS code can always be doubly extended without loosing its maximum distance 

separable (MDS) property [47] (the method of constructing this extension can be found, 

for instance, in [47]). A triple extension of an RS code is also possible without loosing 

the MDS property, however, only when the code has the following parameters 

)2,3,22(),,( mmqkn += or )4,12,22( −+ mm  [47]. The minimum distance of a RS code 

is given by 1min +−= knd , substituting the latter in (5.1) yields 

 

nq

Ikn
G RS max

min

)1( −−
= .         (5.4) 

 

Non-extended, singly-extended, and doubly extended RS codes have ,,1 qqn −= and 

1+q  respectively. Substituting the latter values of n in (5.4) we obtain the minimum 

throughput for each code version, 
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We take the ratios of the minimum throughputs in (5.5) and expand the factors to get 
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Where 1−= kK . Therefore neRSseRSdeRS GGG minminmin >> . The latter implies the fact that the 

results found in [39] are not optimal since larger minG  are possible with the same values 

of k and q. Note that k in this and the following sections represents the rank of the code as 

it is frequently used in the coding theory literature. This is different to the k used in [39], 

which, in that case, represents the maximum degree of the polynomial used to construct 

the codes. The relationship between both is 1]24[ −= kk . Where ]24[k  is the k used in [39]. 

The value of q that maximizes deRSGmin  can be found by solving the following 
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In order to satisfy the second inequality in (5.2), namely 1)( maxmin +−≥ Idnn ⇒ 

11 max +≥+ KIq , we must choose 

 

)1(1 maxmaxmax −+−=∗ KIKIKIq ,       (5.8) 

 

which after substitution in deRSGmin  results in 
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Figure 5.2 plots { }minmax DEG  versus the result obtained in [39] for the case when 

maxKIq ≥  and assuming maxmax ID =  to make the comparison meaningful. Note that a 

doubly extended RS code outperforms the proposed scheme in [39], which is actually the 

performance of an optimal singly extended RS code. However, the difference becomes 

negligible for 10max >KI . That is, as the node density increases in the network, the 

difference between both codes becomes negligible.  

Next, we compare the RS and Hermitian code constructions in terms of minimum 

throughput and maximum and minimum delay. First, we provide a brief description of 

the Hermitian codes. 
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Figure 5.2 max{Gmin} for Ju's result and for a doubly extended RS code 

 

Definition 3.1: Let q be a power of some prime p. The Hermitian curve over )( 2qGF  

is given by the following equation 

 

yyx qq +=+1 .          (5.10) 

 

The number of points (x, y) satisfying (5.10) over )( 2qGF  are 3qn =  not counting 

the point at infinity [48]. Goppa suggested the use of this kind of algebraic curves for the 

construction of long codes [49]. 

Construction of Hermitian codes: Let the points on a Hermitian curve over )( 2qGF , 

except for the point at infinity, be { }nPPP ,,, 21 L . Given an arbitrary positive integer u, 

construct a set of functions denoted )( ∞uPL  as follows 

 

{ }uqsrqyxspanuPL sr ≤++=∞ )1()( ,      (5.11) 
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where {}span  encloses the set of functions that span a given space. 

The Hermitian code-words of ),,( 23 qkqH  can be obtained by evaluating all the 

functions )( ∞∈ uPLf  at the points{ }nPPP ,,, 21 L , where k is the total number of functions 

f  found using (5.11). The main reason why we use Hermitian codes is because they are 

relatively long codes with good minimum distance properties, which suggests a larger 

minimum relative distance than the RS codes. 

Note that the previous construction is very similar to the construction of an RS(n, k, 

q) code if )( ∞uPL  is substituted by { }kxxxspanP ,,,,1 2
L= , which is nothing more than 

all polynomials of degree less than or equal to k. Every such polynomial is evaluated over 

the points on a straight line in )(qGF  (i.e., all the different elements in )(qGF ). 

The minimum distance of a Hermitian code satisfies, in general, the following 

inequality 

 

uqd H −≥ 3
min .           (5.12) 

 

For the following comparisons we find the Hermitian and RS codes that maximize the 

minimum throughput in (5.1) subject to (5.2). Note that the only orders allowed in a 

Hermitian code are of the form 2q , where q is the power of some prime. The minimum 

distance of the Hermitian code, necessary for the evaluation of (5.1), is computed 

according to the following expression 

 

}{min
,

min cw
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H Hweightd
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= . 
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Where cwH  is an arbitrary codeword different to the all zero code-word. Minimum and 

maximum delay (i.e., maxmin , DTDT ) are defined in Section 4.2. For instance, for a 

doubly extended RS code ,minDT and maxDT  take the following form for any value of q 

 

( )
qDT

IkqqqDT

=
−−++=

min

maxmax )1(1/)1(
. 

 

Figures 5.3 and 5.4 show }max{ minG  and maxmin , DTDT  for N = 100 nodes. Note that 

both constructions have roughly the same performance, except at lower densities (or 

smaller number of maximum interferers), in which the doubly extended RS-code (DE-

RS) has a better performance in terms of minimum throughput than the Hermitian code. 

In classic TDMA each node has a unique slot assigned to it out of the N slots in a frame. 

For instance, for a network with 100 nodes, each node has a unique slot in a frame of size 

100 slots. Therefore, the throughput of a node is guarantee to be 1/N and the delay is 

equal to N slots, this is shown in Figures 5.3 and 5.4. Note that the performance of code-

based scheduling approaches falls below classic TDMA as the number of possible 

interferers increases beyond a certain threshold. In general, the performance of code-

based approaches will degrade with respect to classic TDMA as the node density 

increases (taking the reasonable assumption that node density will increase the number of 

interferers a node’s receiver can have). In the limit, when all the nodes are one-hop from 

one another (e.g., an access point or base station serving some nodes, or a single-hop 

wireless local area network) the classic TDMA approach will have better than or equal 

performance than any code-based approach. 
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Figure 5.3 max{Gmin} using DE-RS and Hermitian codes in a network of 100 nodes 
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Figure 5.4 Maximum and minimum delays (in slots) using DE-RS and Hermitian 

 codes in a network of 100 nodes 

 

To see this take the third inequality in (5.2) and substitute 1max −= NI  (the maximum 

number of interferers in a single-hop network of N nodes) then 

 

Nq ≥ .           (5.13) 
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The minimum throughput under this condition is 

 

 
nq

Ndnn
G hops )1)(( min

min

−−−
=− .       (5.14) 

 

Equation (5.14) is maximized for a given n, ,mind  and N when q attains the smallest 

value constrained to (5.13), that is when Nq = , then re-arranging (5.14) after 

substituting Nq =  yields 

 

nN

Ndn

N
G hops )1)((1

}max{ min
min

−−
−=− .       (5.15) 

 

Comparing (5.15) with the throughput of classic TDMA (i.e., 1/N) it is clear that since 

mindn ≥   in any code, we have TDMA
hops GG ≤− }max{ min . 

Figures 5.5 through 5.10 show the }max{ minG  ,minDT and maxDT  for N = 500, 2000, 

and 10000 nodes. As the number of nodes increases, the Hermitian code construction 

offers higher minimum throughput guarantees than the RS code, particularly at lower 

number of maximum interferers. As the number of nodes increases, the maxI  threshold 

below which Hermitian codes offer better performance than RS codes increases. The 

minimum and maximum delay of Hermitian codes tend to be less than the corresponding 

ones for RS codes as the number of nodes increases as well. The previous characteristic 

makes Hermitian codes attractive for large cooperative sensor networks in which  
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Figure 5.5 max{Gmin} using DE-RS and Hermitian codes in a network of 500  nodes 
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Figure 5.6 Maximum and minimum delays (in slots) using DE-RS and Hermitian 

 codes in a network of 500 nodes 
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Figure 5.7 max{Gmin} using DE-RS and Hermitian codes in a network of 2000 nodes 
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Figure 5.8 Maximum and minimum delays (in slots) using DE-RS and Hermitian 

 codes in a network of 2000 nodes 
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Figure 5.9 max{Gmin} using DE-RS and Hermitian codes in a network of 10000 nodes 
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Figure 5.10 Maximum and minimum delays (in slots) using DE-RS and Hermitian codes in a network 

 of 10000 nodes 

 
 

thousands of wirelessly connected sensors are spread over large geographical areas. 

However, the maximum number of interferers of a given network must be clearly 

controlled if some performance advantage is desired. In any case, the control of maxI  is 

advantageous for both constructions. 
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The reason why Hermitian codes possess a larger minimum throughput guarantee for 

certain maxI  values can be explained as follows. Table 5.1 shows the parameters of some 

Hermitian and RS codes as a reference. Let us start by noting that the minimum 

Hamming distance for codes of rank one are the same as the RS codes of the same order, 

however, as the rank of the code increases beyond two, the Hermitian codes show smaller 

min/ dn  ratios as observed in Table 5.1, and this is a crucial factor for the better 

performance of the Hermitian codes in certain regions. Take for instance, the RS and 

Hermitian codes of order q = 16 and rank k = 3. A doubly extended RS code of this 

characteristics will have n = 17, and 151317min =+−=d . The Hermitian code has 

59min =d  with n = 64. Note that the Hermitian code is not MDS with these parameters 

since 1min +−< knd . However, the ratio min/ dn  is smaller for the Hermitian code, and 

this makes minG  larger. The fact that minG  increases with codes with smaller min/ dn  ratio 

can be seen more easily by looking at (5.3). Note that between two codes that have the 

same order (and for a given network with the same maxI ), the code that possesses the 

smaller min/ dn  ratio will have larger minG  and hence it will be a preferred choice (i.e., 

regardless of it being an MDS code or not). The n/d min  ratio is known in error control 

coding terminology as the relative minimum distance of a code. When the number of 

nodes in the network is considerably increased, the rank of the codes will start to increase 

to satisfy the first inequality in (5.2) while maintaining a value of q considerably smaller 

than N (otherwise classic TDMA would have the same or better performance as shown 

before). This is the behavior observed in the codes that maximize minG  in Figures 5.3 

through 5.10 when the number of nodes is increased. 
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Table 5.1 Parameters of some Hermitian and Doubly-extended RS codes 

 (The length n of the DE-RS code is q^2+1 to make comparisons fair) 

q^2 n (Her) k dmin (Her) n/dmin (Her) dmin (RS) n/dmin (RS)
4 8 1 8 1.00 5 1.00
4 8 2 6 1.33 4 1.25
4 8 3 5 1.60 3 1.67
4 8 4 4 2.00 2 2.50
9 27 1 27 1.00 10 1.00
9 27 2 24 1.13 9 1.11
9 27 3 23 1.17 8 1.25
9 27 4 21 1.29 7 1.43
16 64 1 64 1.00 17 1.00
16 64 2 60 1.07 16 1.06
16 64 3 59 1.08 15 1.13
16 64 4 56 1.14 14 1.21  

 

Another important factor, discussed in [39], is how robust the scheduling approach is 

to errors in the estimation of the number of nodes in the network (N) and the maximum 

number of interferers ( maxI ). Figures 5.11 and 5.12 show a sample of the variation in 

minG  as maxI  varies around the designed value for both code constructions. The x-axis in 

Figures 5.11 and 5.12 represent the actual maxI  denoted as RI max  and the design parameter 

(that one that determines the code parameters to used based on the maximization of minG ) 

is denoted as DI max . The Hermitian code offers less sensitivity to a change in the number 

of nodes in the network in Figure 5.11. The reason is that the code used is the Her(125, 3, 

25), which offers a total of 15,625 code-words, on the other hand, the RS code is the 

RS(33, 2, 32) when ND =1000, which offers support for 1,024 users, and RS(60, 2, 59) 

when ND =3000, which offers support for only 3,481 nodes with smaller relative 

minimum distance than the corresponding Her code. When DI max  is increased both codes  
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Figure 5.11 Variation in max{Gmin} as maxI  changes away from the design value 10max =DI  
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Figure 5.12 Variation in max{Gmin} as maxI  changes away from the design value 30max =DI  

 

show similar robustness as seen in Figure 5.12. The codes that maximize minG  in Figure 

5.12 are Her(512, 2, 64) and RS(60, 2, 59). Based on these examples, we cannot 

generalize any findings about the relative robustness of both schemes to changes in the 
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design parameters; the particular code that maximizes minG  should be evaluated in terms 

of  robustness for a particular design condition.  

The advantage of the Hermitian codes (i.e., that of possessing a smaller min/ dn  ratio 

than the RS codes when the rank is higher) could be utilized to increase the number of 

code-words available when the number of nodes increases without the need to increase 

the order of the code. Changing the order (q) of the code translates into a different frame 

size, which means a need to re-distribute all the code-word assignments per node in the 

entire network. If, however, a higher-rank code with an unchanged order is used, the 

original code-words assigned to the old nodes can still be used since they form a subset of 

the new code-set, and therefore, only additional code-word assignments will be needed 

for the newly arriving nodes. The latter is possible only in linear codes and represents a 

considerable practical advantage. Another potential advantage of Hermitian codes is that 

higher-rank codes with good performance could be used to generate an extremely large 

set of code-words (e.g., billions), which in turn means that a node would select randomly 

a code-word from this large set. The possibility of two nodes picking the same code-word 

would be almost zero assuming the number of code-words is much larger than the 

number of nodes. Therefore, this would represent a reduction in the overhead created by 

the assignment of unique code-words to nodes.  

The next section explores the differences between a scheme that does not need the 

overhead of assigning unique slots or channels per node, and a code-based scheduling 

approach based on the Reed-Solomon code construction. Furthermore, average 

throughput performance of these scheduling schemes is investigated. 
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5.3 Comparative Evaluation of Code-based and Contention-based 

Scheduling Protocols  

 

To the best of our knowledge we were the first to present an analytical comparison 

between a contention-based and a code-based scheduling protocol [52]. The comparison 

of two such schemes is important to understand more clearly the real advantages and 

limitations of a code-based approach. To start with, a code-based scheduling protocol has 

the important advantage of being able to guarantee a minimum throughput and packet 

delay performance. A random or contention-based scheduling approach is not able to 

claim such guarantees due to its random nature. However, in order to guarantee the 

minimum performance, a code-based approach requires, among other things, a unique 

assignment of code-words to nodes in the network, which can be a difficult problem in a 

dynamic and distributed wireless Ad Hoc network. In this section, we analytically 

compare the average performance of the slotted-ALOHA protocol with that of the OAs 

used in [40] and with a code-based approach based on RS codes. We describe a 

numerical procedure used to compare the performance of different code-based scheduling 

protocols in arbitrary topologies. We also define more clearly the different expected 

throughput metrics that can be used to evaluate a given code-based scheduling approach. 

An expected throughput of a code-based approach based on OAs was derived in [45] 

for OAs of strengths two and three (i.e., the strength of an OA is analogous to the rank of 

a code). The expected throughput of a given node with i neighbors is defined in [45] as  
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Equation (5.16) is for a frame with n sub-frames and q slots per sub-frame, therefore we 

have a frame of nq slots; w represents the number of slots in which two code-words 

coincide in some specific positions out of the n possible positions (i.e., n is the length of 

the code-word). Given a code-word W, Equation (5.16) finds all the possible code-words 

that collide or coincide with W in w positions, where w takes values between 0 (i.e., no 

collisions at all, or Hamming distance of n) to n (i.e., all elements of the code-word 

collide, or Hamming distance of 0). The term (n-w) is the number of free or successful 

number of slot transmissions (i.e., slots without collision) for a particular value of w, 

which is multiplied by the probability of colliding in w positions, and finally divided by 

the frame size to obtain this expected throughput. w
iC is the number of different ways in 

which i code-words coincide in w specific positions with the given code-word W (the 

union of all coincidences is taken). The result in (5.16) can also be obtained if the given 

code-word W is compared with all the possible groups of i code-words, then the union of 

the coinciding elements of all the i code-words with W is taken to compute the 

throughput. However, the latter procedure is, in certain cases, computationally intensive 

since the number of code-words in a given code can be very large. If, on the other hand, 

w
iC  can be computed, the value of  c

iG  could also be conveniently obtained. The way to 
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compute w
iC  is given in [45], and can be obtained by using the following generating 

function 

 

i

q

i

w
i xCqnkw

k

∑−
=

=
1

0

),,;(φ  .        (5.17)      

 

For the particular case in which k = 2 we have 

 

( )[ ] [ ] )1)(1()1( 111),,2;( kqqwq xxqnw −+−− +−+=φ .      (5.18) 

 

The expected throughput as defined in (5.16) can be found by using Equation (5.17) 

or (5.18) in particular. 

The slotted-ALOHA protocol is a contention-based scheduling protocol that requires 

slot synchronization. Slotted-ALOHA has the advantage of being relatively simple to 

implement when comparing it to a code-based approach, therefore it is interesting to 

compare their average performance.  

Assuming that we have knowledge of the number of neighbors of a given node x♣, we 

can state that the probability of successful transmission of x in slotted-ALOHA is as 

follows 

 

( )is
i ppG −= 1 .          (5.19) 

                                                 
♣ We use the term “number of neighbors” in this section to have some continuity with the language used in 
other related research work. However, a more accurate term would be number of interferers since nodes 
that are not direct one-hop neighbors could interfere as well in a wireless environment. 
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Where p is the transmission probability of a node, and i is the number of neighbors of the 

intended receiver. We can find the optimum value of the transmission probability p by 

differentiating (5.19), equating the result to zero and solving for p as follows 
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Substituting op in (5.19) we obtain 

 

i
s

i ii
G 




+
−

+
=

1

1
1

1

1
.         (5.21) 

 

Equation (5.21) is also the average-best-throughput of slotted-ALOHA assuming 

knowledge of i. Figure 5.13 shows s
iG and c

iG  for a number of neighbors between 1 and 

40. The c
iG  curves shown are for different sub-frame sizes (q values) between 3 and 27 

and for strength two OAs with n = q +1. The OA curves with smaller values of q decay 

more rapidly as the number of neighbors of the given node increases, however they have 

higher expected throughput with fewer number of neighbors (see Figure 5.13). As can be 

observed, the expected throughput of slotted-ALOHA is always larger than or equal to 

the expected throughput of OAs for all the number of neighbors considered. This result, 

however, does not necessarily mean that code-based scheduling approaches have always 

worse than or equal average performance than the classic slotted-ALOHA protocol. 
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Figure 5.13 Expected throughput of OAs of strength two and slotted-ALOHA 

 versus the number of neighbors of a node. 

 

In order to fully compare both approaches, it is necessary to define expected 

throughput in several ways, and in fact, Equation (5.16) is one of the possible ways. In 

particular, we distinguish between sample and ensemble performance metrics. A sample 

performance metric is one that is obtained for a particular or sample network (i.e., a 

network with a specific number of nodes, maximum number of interferers, particular 

code-word assignments used etc), whereas an ensemble performance metric is a more 

general metric that is not directly concerned with the particulars of a given network, but 

on the other hand is focused exclusively on the mechanism under study. 

A sample performance metric is a more meaningful metric in practical situations 

since what ultimately matters is the use of the proposed mechanism over a real network. 

However, an ensemble performance metric can be used to show, in a more general 

scenario and without ties to specific network conditions, the relative advantages or 

limitations between different mechanisms. Having introduced these concepts, we will 

now define some of these metrics by utilizing a simple example. We will describe a 



127 

  

numerical procedure that can be used to compute comparative performance evaluations in 

real networks. 

Consider the network in Figure 5.14. A solid line denotes the possible communication 

links between two nodes. In the examples presented here the transmission range is equal 

to the interference range for simplicity. For instance, a transmission from node 1 to node 

2 can only be interfered by transmissions from node 2 or node 3. However, the method 

presented here can be transparently applied when both ranges are different by considering 

the number of possible interferers, whether they are at transmission or at interfering 

range.   

In Figure 5.14, 2max =I  and 5=N . If one wishes to use a Hermitian code for 

instance, it is found that the best code in terms of maximizing minimum throughput is 

Her(8,2,4), this is a Hermitian code of length 8, rank 2, and order 4. The code-words of 

Her(8,2,4) are shown in Table 5.2, note that 6min =d  (i.e., mind  can be easily computed 

as: code length – max. number of zeros in any non-zero code-word, this is due to the 

linearity of the code). 

 

1 2 3 4 51 2 3 4 5

 

Figure 5.14 Wireless Ad Hoc Network with a line topology 
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Table 5.2 Code-words of Her(8,2,4) 

CW1 0 0 0 0 0 0 0 0
CW2 0 0 1 1 2 2 3 3
CW3 0 0 2 2 3 3 1 1
CW4 0 0 3 3 1 1 2 2
CW5 1 1 1 1 1 1 1 1
CW6 1 1 0 0 3 3 2 2
CW7 1 1 3 3 2 2 0 0
CW8 1 1 2 2 0 0 3 3
CW9 2 2 2 2 2 2 2 2
CW10 2 2 3 3 0 0 1 1
CW11 2 2 0 0 1 1 3 3
CW12 2 2 1 1 3 3 0 0
CW13 3 3 3 3 3 3 3 3
CW14 3 3 2 2 1 1 0 0
CW15 3 3 1 1 0 0 2 2
CW16 3 3 0 0 2 2 1 1  

 

For illustration purposes, assume we assign code-words (CWs) to nodes arbitrarily, but 

otherwise uniquely, as follows: 

 

Node 1 →  CW5 

Node 2 →  CW2 

Node 3 →  CW12         (5.22) 

Node 4 →  CW8 

Node 5 →  CW7 

 

We focus on each node and its possible interferers, and find its success ratio. Node 

1’s transmission gets affected by the transmissions of nodes 2 and 3 (assumed 

interferers). Therefore we investigate the interaction between node 1 and node 2 (1-2), 

and node 1 and node 3 (1-3). 
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Node 1: CW5 →  11111111 

Node 2: CW2 →  00112233 

Node 3: CW12 →  22113300 

Number of (1-2) collisions: 2 in positions 3 and 4 

Number of (1-3) collisions: 2 in positions 3 and 4 

 

Since the two collisions in each pair happen at the same position with respect to 

CW1, the effective number of collisions is 2 (i.e., the union is taken). Therefore node 1 

has 6 out of 8 attempts in which it is successful, and we define node’s 1 sample-average 

success ratio using the code-word assignment combination in (5.22) (the jth combination) 

as 8/61 =jSR . We make the assumption that the nodes always have a packet to transmit. 

Transmissions of node 2 get affected in one direction by node 1, and in the other with 

nodes 3 and 4. Therefore we investigate the sequences in the following two sets of pairs 

{(2-1)}, and {(2-3), (2-4)} separately 

 

Right direction → Number of {(2-1)} collisions: 2 in positions 3 and 4 

Left direction   → Number of (2-3) collisions: 2 in positions 3 and 4 

      Number of (2-4) collisions: 2 in positions 7 and 8 

      Total of left direction: 4 collisions in positions 3, 4, 7, and 8. 

 

We compute the success ratio in each direction and find the sample-average success ratio 

corresponding to the 2nd node and the jth code-word combination assignment in (5.22) to 

be .625.0)8/48/6(
2
12 =+=jSR The latter average is assuming equally likely the 
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probability of node 2 (or any other node) to transmit in any direction, an imbalance in the 

direction probability can influence the value of the sample-average success ratio as 

defined above. However, we assume for simplicity an equally likely direction probability 

in order to have a common benchmark for the performance comparison of different 

codes, topologies, or scenarios. Furthermore, the maxima and minima of performance 

metrics can be computed regardless of the probability of transmitting in a particular 

direction. For instance, the sample maximum and minimum of the success ratio in the 

previous example is 6/8 and 0.5 respectively. Proceeding with our example, the sample-

average success ratio and throughput for all nodes in the network are shown in Table 5.3.   

 

Table 5.3 Sample-average success ratio and sample-average 

 throughput for the nodes in Figure 5.14 using the code-word combination in (5.22) 

Node Sample-average success ratio Sample-average throughput
1 0.750 0.18750
2 0.625 0.15625
3 0.750 0.18750
4 0.750 0.18750
5 0.500 0.12500  

 

We define the sample-average node throughput (ith node and jth codeword 

combination) as qSRG i
j

i
j /= . Note that 125.0min =G  for a Her(8,2,4), and 

. ,min jiGG i
j ∀≥  

The sample-average network throughput is defined as 

 

∑
=

=
N

i

i
j

j
N GG

1

,           (5.23) 
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where N is the number of nodes in the network, and the j index represents the use of a 

particular code-word assignment combination. For our particular example above we get 

844.0=j
NG .  

Intuitively j
NG  is the number of successfully-utilized slots per time-slot unit in the 

entire network using the jth code-word assignment combination. That is, if the 

information carried by a slot is called a packet, j
NG  is the number of packets successfully 

delivered in the entire network in an interval of time equivalent to a slot and using the jth 

code-word assignment combination. j
NG  is equal to one in a classic TDMA scheme 

because a node is assigned a unique slot to transmit in the entire frame of size equal to the 

number of nodes in the network, therefore only one user is allowed to transmit in a given 

slot in the entire network. 

In the following, Nc is the total number of codeword assignment combinations 

considered. The ensemble-average throughput of the network can also be computed as 

 

∑
=

=
cN

j

j
N

c
N G

N
G

1

1
.         (5.24) 

 

The ensemble-average node throughput is 

 

∑
=

=
cN

j

i
j

c

i G
N

G
1

1
,          (5.25) 

 

and the ensemble-average success ratio per node is 
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∑
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.          (5.26) 

 

Note that ∑∑∑
== =

==
N

i

i

N

j

N

i

i
j

c
N GG

N
G

c

11 1

1
.  

 

Other important metrics are the minimum and maximum ensemble-average network 

throughput, which are defined as }{min j
N

j
G  and }{max j

N
j

G respectively. Note that the 

previous definitions are given in a numerical form. The numerical version of the 

definition in (5.16) is given in (5.25) and it is referred to as the ensemble-average 

throughput per node. The latter is a metric that encompasses all, or a sufficiently large 

number of code-word assignment combinations. The sample-average throughput per 

node is the true average throughput obtained in a particular network when a specific 

code-word assignment combination is used. The method presented above can be utilized 

to evaluate specific networks even under a mobility scenario.  

The comparative result shown in Figure 5.13 tells us that slotted-ALOHA has better 

than or equal ensemble-average network throughput (EANT) than the OAs considered. 

OAs of higher strength have similar ensemble-average performance than strength two 

OAs [45]. The comparison with OAs bears a high degree of generality since the code-

words of a great variety of codes can be used as the columns of OAs. Therefore, it is 

crucial to focus on improving the average performance of code-based approaches in order 

to compensate for the additional complexity of distributing unique codes, and ensuring an 

upper bound on the number of interfering nodes.  
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The ensemble-average metric used before hides information that could be used to 

compare both schemes in a more specific scenario. In particular, a real network does not 

always have all the possible code-words assigned to all the nodes in the network, instead, 

only a subset of all the code-words are in use. Take for instance a network of 100 nodes 

and 10max =I , in that case the best DE-RS code in terms of maximizing the minimum 

throughput is RS(12, 2, 11), this code has a total of 121 code-words, of which only 100 

will be used. The situation gets more pronounced when maxI  increases, for instance, for 

20max =I  the best code is RS(38, 2, 37), which has a total of 1369 code-words. 

We compare now the use of SE-RS codes with code-word selection against slotted-

ALOHA. The performance metric used is the sample-average node throughput (SANoT). 

We select the code-words according to the following procedure,  

 

Code-words assigned are identified as iw , where { }1,,,1,0 −= Ni K , and N is the 

number of nodes in the network. Code-words from the code-set (not assigned yet) are 

identified as ,jW  where 1,,1,0 −= kqj K  

1. Set 0=i  and start by picking a code-word jW  randomly for the given node (node 0) 

out of the kq code-words. That is, ,0 xi Ww ==  where x is a uniformly distributed and 

discrete random variable that takes values from the set { }1,,,1,0 −= kqJ K  

2. Set 1+= ii   

3. Pick a code-word jW  for the next node (node i), such that its Hamming distances 

iwW j
d ,  with respect to the already picked code-words satisfies: 
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         (5.27) 

 

4. Set 1+= ii , and repeat 3 until 1−> Ni  

 

The code-word selection procedure above chooses new code-words that have 

maximum average Hamming distance to the code-words already chosen by the nodes in 

the network. 

Table 5.4 shows the singly extended RS code parameters that maximize minG  

constrained to the inequalities in (5.2) for different values of Imax and when 20 nodes are 

active in the network. Figure 5.15 shows a comparison between the SE-RS codes in Table 

5.4 (i.e., n = q) using the code-selection algorithm against slotted-ALOHA (Equation 

(5.21)). The SANoT for a number i of neighbors is computed by selecting a code-word 

for the given node and comparing it with all the possible combinations of i-1 code-words 

(the code-words used by its neighbors). 

The union of the collisions among the i code-words is used to compute the average 

success ratio of the given node, which in turn can be used to compute the SANoT. The 

initial code-word selected by the given node is taken to be all the code-words in the code-

set in succession after which a final SANoT is computed.  SE-RS codes are used to show 

that even when not using the best code-words (extended versions), the code-selection 

algorithm outperforms slotted-ALOHA. 
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Table 5.4 RS codes that maximize Gmin with N =20 nodes 

Imax q k 

2 5 2 

3 7 2 

4 8 2 

5 11 2 

6 13 2 

7 13 2 

8 16 2 

9 19 2 

10 19 2 

11 19 2 

12 19 2 

13 19 2 

14 19 2 

15 19 2 
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Figure 5.15 Average throughput performance using code-word selection and SE-RS codes 

 

The minimum throughput of the codes used in Figure 5.15 is shown in Figure 5.16. 

Note that the minimum throughput shown is the actual value of minimum throughput.  

 

 

 

 

 

 

 

 

 

Figure 5.16 Gmin using code-word selection for codes in Figure 5.15 
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The actual value of minimum throughput is larger than or equal to the lower-bound 

minG  given by Equation (5.4). Both actual and lower-bound minimum throughput are 

shown in Figure 5.16. The performance improvement achieved by using code-word 

selection is more pronounced as the order of the code is increased to cope with larger 

neighborhood sizes. Figures 5.15 and 5.16 also show that codes that maximize (5.1) 

constrained to (5.2) are not necessarily the best in terms of average throughput. However, 

using other code parameters affects the minimum throughput guarantee by decreasing it 

considerably in some cases. The final choice of code parameters, however, will depend 

on the particular application and design requirements at hand.  

An important practical issue that needs to be addressed in a code-based scheduling 

protocol is how to ensure that every node has a unique code-word. For a wireless Ad Hoc 

network this implies that every node should preferably pick its code-word(s) in a 

distributed manner, rather than using the services of a central entity responsible to assign 

the code-words in the entire network. The use of unique node identifiers, such as the 

MAC address or the IP address, has been suggested to accomplish this. Every node, 

based on its unique address, utilizes a Hash function to pick its code-word(s). If every 

node employs the same input sequence to the same encoder, the output sequence of code-

words will be the same in every node, this is assuming every node has the same 

information necessary to specify the parameters of the encoder (i.e., maxI  and N ). The 

node could simply pick its code-word based solely on its unique address. If the code-

selection algorithm is used, then the code-words generated by the encoder will pass 

through the additional selection step given by the code-selection algorithm. The code-

selection algorithm can be made distributed if the initial code-word is, for instance, the 
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first code-word generated by the encoder given a common input sequence. Therefore, the 

code-selection algorithm will be as distributed as another method that does not select the 

code-words as long as all the nodes agree on using the same encoder, the same input 

sequence, and the same initial code-word to start the code-selection algorithm. Figure 

5.17 depicts this idea. 

 

 

 

 

 

 

 

 

Figure 5.17 Code-selection algorithm for WAHNs 

 

Every node has an encoder represented by C(n, k, q), which is the same in every node 

of the network, and the same input sequence in )(qGF  with k digits. The output is a 

sequence of code-words that is equal in every node if all the encoders, initial conditions, 

and inputs are the same throughout the network.  

A slight simplification of the code-selection algorithm can be achieved in order to 

reduce the processing power required to generate all the code-words of a code. The code-

words in the first stage of Figure 5.17 (output of the encoder) can be generated in 

increasing order of their rank. That is, generate first the code-words corresponding to the 
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code with rank one (and the same order), continue with the code-words of rank two, and 

so on until the code-word of the given node is picked. The first set of code-words (the 

ones with rank one) need not be processed further through the code-selection algorithm. 

However, the code-words corresponding to the codes of rank two and higher need to be 

processed to ensure good mutual Hamming distance separation with code-words that 

have been already picked. Note that there is no need to implement the code-selection 

algorithm specified above if the set of code-words are generated in order of their rank. 

The mechanism above can eliminate the need for generating all the code-words in a code 

set.  

 

5.4 Code-Contention-based Scheduling Algorithm 

 

The previous sections highlighted the strengths and weaknesses of a code-based 

scheduling protocol. More remains to be done to further improve code-based scheduling. 

It is clear, however, that one of the key advantages of code-based scheduling is the fact 

that it has the potential to guarantee a minimum of performance regardless of the 

topological details of the network. There have been attempts to combine a code-based 

approach with contention-based approaches such as slotted-ALOHA in [52]. These 

hybrid approaches have resulted in schemes that take advantage of the fact that busy or 

idle slots remain in the same position of the frame if the network topology does not 

change for a considerable period of time. That is, a collision happens in the same slot as 

long as the topology of the network remains unchanged for a period of time and there are 

packets queued for transmission. This is due to the structured or deterministic way in 
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which the nodes access the medium. We would like a node to back-off when 

encountering collisions, or attempt to opportunistically transmit on an idle slot whenever 

the opportunity arises. Backing-off strategies may prove to be beneficial if done in a 

highly loaded system, while opportunistically transmitting in free-slots that are not 

dictated by the code-word may prove to be beneficial in a lightly loaded network (e.g., 

nodes with almost no traffic to transmit). Mechanisms based on receiver feedback and 

channel monitoring can be used to estimate the probability to back-off or attempt to 

transmit in a free-slot. The frame structure of Figure 5.1 can be expanded to include a 

time interval over which the receiving node will send an acknowledgement to the 

transmitting node. The transmitting node could then determine an update of the back-off 

probability based on the success or failure of its transmissions as it is frequently done in 

other distributed contention protocols. If a node monitors the channel and estimates that a 

particular slot is free, it could attempt to transmit in it. However, it is important to realize 

that incorporating contention-based schemes that opportunistically attempt to transmit on 

free-slots that are not dictated explicitly by the code-word, or even back-off only on the 

slots dictated by the code-word itself will increase the average performance of a node at 

the cost of reducing the capability of the scheduling approach to ensure a minimum 

performance guarantee. The minimum distance property among the code-words of a code 

is no longer valid once a node starts randomly trying in different slots. In other words, the 

determinism of the scheduling procedure will not be valid anymore. If a node backs-off 

in a specific slot dictated by its own code-word, the minimum performance can not be 

guaranteed either. A node can back-off in a slot after it encounters a collision and if the 

topology does not change the minimum performance guarantee will be kept. However, in 
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a mobile Ad Hoc wireless network the topology can change and the busy slot can turn 

into a free slot, and in that case the node that backed-off needs to quickly detect this 

situation if it wants to transmit and keep the desired minimum performance. 

In this section we experiment with the latter approach (backing-off in slots dictated 

by the code-word) since we argue that it can effectively increase the average performance 

of a node with less impact on the minimum performance guarantees. First, however, we 

explain how a feedback mechanism can be incorporated into the original code-base 

scheduling procedure for the support of a back-off mechanism. Figure 5.18 shows a 

possible solution. It shows a time-guard between the different frame components in order 

to comply with the Tx-Rx turnaround times of the radios, which are considered half-

duplex, an ACK per slot, and a beacon used for the network synchronization needed to 

construct the TDMA frame. 

 

 

 

 

 

Figure 5.18 Frame structure with ACKs for back-off and beacons for network synchronization 

 

An ACK coming from the intended receiver will be successful if the topology of the 

network does not change in the short period of time between the complete reception of a 

packet and the time it takes to send the corresponding ACK. Figure 5.19 depicts a 

network topology that can be used to explain the latter point. 
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Figure 5.19 An ACK is successful if the packet is successful 

 

Node a sends a packet to node b. Nodes a and b have their own neighbors, and also a 

common neighbor (node x). If node a is successful in the transmission of a packet to node 

b in a given slot, then it means that none of the neighbors of b transmitted a packet 

(including the common nodes) in that slot. Note that the neighbors of node a (excluding 

the common node x) might have transmitted a packet as well. If this packet was 

transmitted to node a, then it was unsuccessful since it collided with the transmission to 

node b, and no ACK will be sent from node a. This will ensure that the ACK coming 

from node b will not collide with an ACK transmission that could have come from node 

a. The other option is for a neighbor of node a to transmit to a node different to node a in 

that same slot. The only possibility for which a packet transmission would be successful 

(ensuring that the packet at node b is received successful as well) is that the neighbor 

node transmits to a node that is not a neighbor of either nodes a or b. If this occurs then 

the ACK from node b to node a will not collide with the ACK from that second-hop node 

to the neighbor of node a. Therefore, as long as a packet is received successfully, the 

ACK will also be received successfully by the sending node. 
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We proceed now with a more detailed description of the code-contention-based 

scheduling algorithm.  

The time-frame is shown in Figure 5.18. We define two ways to schedule the 

transmissions, 1) a pure code-based and 2) a hybrid code-contention-based scheduling 

approach. 

Pure code-based scheduling: In the pure code-based approach each node transmits in 

the slot indicated by the code-word assigned to it regardless of the traffic being 

forwarded. The ith node uses its code-word’s xth digit (i.e., Ci(x)) to select the time-slot in 

sub-frame x (the counting of digits and sub-frames is assumed to start from zero). This is 

the original method without any modification. 

Code-contention-based scheduling: The Code-contention-based scheduling approach is 

referred to as hybrid scheduling in what follows. Hybrid scheduling is simple in 

principle. A transmitting node follows its code-word to transmit its packets and expects 

an ACK for each transmitted packet. In the absence of the ACK from the intended 

receiver the transmitting node will back-off with probability max/1 Ip =  in that slot. That 

is, the access mechanism becomes slotted-ALOHA in those slots in which a node detects 

collisions, and the original code-based scheduling approach in those slots in which all 

transmissions have been successful. The hybrid approach needs to be able to detect 

collisions and also detect situations in which collisions are resolved because interfering 

nodes moved, stopped transmitting packets, or left the network. Therefore the above 

probability p is actually adaptive in a more advanced variation of the hybrid approach. 

However, for the analysis that follows we will assume that the number of interferers in a 

neighborhood is fixed in the period of observation and that nodes always have a packet to 
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transmit. This allows us to take the fixed value of max/1 Ip =  for simplicity and show the 

potential improvement obtained by using the hybrid approach.  

Figure 5.15 shows the average throughput obtained with pure code-based scheduling 

protocol when the code-selection algorithm is used and there are twenty nodes in the 

network. Figure 5.20 shows the average number of slots in which collisions happen 

versus the number of interfering nodes for Figure 5.15. In order to compute the average 

number of unsuccessful slots, the following equation is used, 

 

2qGqU cs ⋅−= ,          (5.28) 

 

 

 

 

 

 

 

 

 

Figure 5.20 Average number of unsuccessful slots versus the number of interferes of Figure 5.15 

 

where U denotes the average number of unsuccessful slots,  q is the order of the code and 

csG  is the throughput of code-based scheduling using code-selection. Figure 5.20 is 

0.05

0.25

0.45

0.65

0.85

1.05

1.25

1.45

1.65

1.85

2.05

2.25

2.45

2.65

2.85

2 3 4 5 6 7 8 9 10 11 12 13 14 15

i (number of interferers)

av
er

ag
e 

nu
m

be
r 

of
 u

ns
uc

ce
ss

fu
l s

lo
ts



145 

  

obtained after the values plotted in Figure 5.15 are used. Having the data on Figure 5.20 

it is possible to find the average throughput of the hybrid approach as follows, 

 

cs
ALOHAs

hybrid G
q

GU
G +

⋅
= −

2
,        (5.29) 

 

where hybridG  is the throughput of the hybrid approach and ALOHASG −  is the throughput of 

slotted-ALOHA given in Equation (5.21). Figure 5.21 plots hybridG  and csG  versus i 

(number of interferers). As can be observed, the improvement is more pronounced when 

the number of interferers is low. Even though the improvement does not seem substantial, 

looking at Figure 5.20 one can infer that the code-based scheduling algorithm is already 

rather efficient since it has a small number of unsuccessful slots for each of the cases 

considered. 

 

5.5 Summary 

 

Code-based scheduling is presented as a generalization to the topology-transparent 

scheduling protocol proposed by Chlamtac and Farago [17]. It is pointed out that any 

code can be used for scheduling purposes, and that focus should be directed towards 

existing or new code constructions that can provide better average and minimum 

performance guarantees. Two code constructions were evaluated. In particular it is found  
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Figure 5.21 Average throughput of the hybrid and pure code-based scheduling approaches 
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context of Time Spread Multiple Access [17]. Code-based scheduling protocols have the 

potential to out-perform contention based scheduling protocols in average and minimum 

guarantee performance through a suitable code-selection procedure.  

It is important to note that code-based scheduling does not have a good performance 

in a single-hop topology as shown in equation (5.15). Furthermore, better alternatives can 

be found if the topology of the network does not change (i.e., the nodes are fixed). 

Therefore, code-based scheduling is more suitable for wireless Ad Hoc networks with 

multi-hop topology and mobility. 

A code-contention-based scheduling algorithm was proposed that further improves the 

average throughput performance of code-based scheduling with code-selection. A node 

implementing code-contention-based scheduling backs-off probabilistically in those slots 

in which collisions are encountered. Even though the performance enhancement obtained 

with code-contention-based scheduling seems marginal we argue that a greater 

enhancement should be observed in real-traffic conditions. Additionally, the minimum 

performance guarantee of code-based scheduling is better maintained by limiting a node 

to transmit in those slots dictated by its code-word(s). Opportunistic techniques that try to 

transmit in any slot of the frame, such as the one proposed in [52] destroy this major 

advantage of code-based scheduling. 
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Chapter 6 

 

Conclusion and Future Work 
 

6.1 Conclusions 

 

We have proposed a novel network synchronization algorithm based on the concept of 

mutual network synchronization and clock-sampling that has the potential of achieving 

accuracies in the order of few micro-seconds for multi-hop or single-hop wireless 

networks with minimum or no infrastructure. The latter is achieved with equal or less 

overhead than the IEEE 802.11 Timing Synchronization Function (TSF). Table 6.1 

summarizes the major differences between Clock-Sampling Mutual Network 

Synchronization (CSMNS) and the TSF.  

Different procedures can be added to CSMNS in order to reduce its overhead thanks 

to its non-hierarchical design. We have proposed two ways to accomplish this, in 

particular, the rotating master node CSMNS, and the randomization of the beacon 

transmissions. Furthermore, we have identified the fact that the non-hierarchical property 

of CSMNS eliminates the beacon transmission uncertainties that plague other network 

synchronization approaches. A very accurate beacon transmission time can be known in 

advance due to the fact that every node has the same influence over the synchronization 

of the network. Additionally, we have analyzed a procedure that could be employed to 

improve the TSF and that we refer to as the modified TSF. 
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Table 6.1 Comparison of CSMNS and TSF 

 TSF CSMNS 

Accuracy (order of) ≈≈≈≈10e-3 ≈≈≈≈10e-6 

Scalability Max. 10-20 nodes Hundreds 

Stability Yes By design 

Complexity Low Low 

Overhead w.r.t the TSF - Less than 

or equal 

Multi-hop capability Yes Yes 

Convergence No Yes 

 

In the modified TSF every node transmits its own beacon even after successfully 

receiving a beacon from another node or if its own timestamp is later than the one 

received. The latter procedure can be used when the overhead caused by the extra beacon 

transmissions are worth the approximately double accuracy achieved compared to TSF. 

However, the procedure inherits the hierarchical and marginally convergent 

characteristics of the TSF that are eliminated when using CSMNS. Both CSMNS and the 

TSF were evaluated in multi-hop and single-hop scenarios. 

We have proposed a new way to look at the MAC scheduling problem based on the 

idea of using codes traditionally employed to correct and/or detect errors in the 

information transmitted over a noisy channel. The realization that any of the large 

number of code constructions available can be used for scheduling in a WAHN 

represents a generalization to the topology-transparent scheduling protocols proposed by 

Chlamtac and Farago for multi-hop packet radio networks [17], and more recently by 
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Syrotiuk et al., using orthogonal arrays (OAs) [40]. In particular, it is realized that the 

coding theorists goal of finding codes with the largest possible distance among its 

constituent code-words in an ever smaller dimensional space is analogous to the goal of 

finding separate yet efficient ways for the nodes of a network to transmit in a multiple 

access system. 

Chlamtac’s protocol construction is identified as being the same as the one used to 

construct a singly-extended Reed-Solomon code. This protocol restricts the frame size to 

be the square of the Galois field dimension used to define the unique polynomials in 

every node. However, the coding theory point of view allows us to realize that it is 

possible to have different frame sizes and hence more flexibility in the design of such 

protocols. In particular, Reed-Solomon codes can always be doubly-extended, shortened, 

and, in some cases, triply-extended, therefore the frame size is not restricted to be the one 

specified above due to the possible variations a given code can have. Furthermore, the 

use of different code variations influences the minimum performance guarantee of the 

scheduling approach as shown in Chapter 5. 

Code-based scheduling represents a more global generalization to topology-

transparent scheduling protocols than the one proposed in [40] and, perhaps more 

importantly, it provides a point of view that highlights the importance of focusing on the 

performance of different code constructions separately. The authors in [40] proposed a 

generalization based on OAs. However, the use of OAs intrinsically diminishes the 

importance of the specific constructions used to create them since many code 

constructions can produce the columns of an OA. Which code is better, and under what 

conditions, is an important question that needs to be answered. Additionally, simple-to-
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construct codes are preferred when implementing these scheduling approaches, 

particularly for distributed systems.  

The fact that any code (e.g., linear, non-linear, variations of the same code, or 

different codes altogether) can be employed for scheduling purposes opens the question 

of what makes a code better than others. In terms of minimum performance guarantee, we 

have found that codes with larger relative minimum distance can guarantee more 

throughput and less delay performance. The latter explains, for instance, why a doubly-

extended Reed-Solomon code has better minimum performance guarantees than a singly-

extended one. In line with the previous result, we gave analytical results on a procedure 

to choose the parameters of a code that improves over the optimal presented in [39].  

We conclude that our quest for good codes must be directed toward code 

constructions with good relative minimum distance properties if better guarantees are 

desired. A family of codes with good relative minimum distance is represented by the 

Algebraic Geometric (AG) codes. We have compared Reed-Solomon codes to codes 

based on Hermitian curves (Hermitian codes) in terms of minimum performance 

guarantee. We have found that Hermitian codes are more suitable than Reed-Solomon 

codes for large and sparse networks. Networks that fall in the latter framework could be, 

for instance, future micro-sensor networks. Contrary to intuition, the maximum distance 

separable (MDS) property of a code does not in itself guarantee a better minimum 

performance. Hermitian codes are not MDS. However, they have better minimum 

performance than the MDS Reed-Solomon codes in some cases due to their larger 

relative minimum distance. 
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Average performance metrics are also of crucial importance in a communications 

network. We analytically compared the average throughput performance of code-based 

scheduling to that of slotted-ALOHA. The latter comparison is important since it is 

expected that the complexity of code-based scheduling over a contention-based 

scheduling approach, such as slotted-ALOHA, will be balanced by a better overall 

performance. Even though code-based scheduling has the unique potential advantage of 

being able to guarantee a minimum performance, it is expected that its average 

performance will also be higher than the one achieved by a contention-based scheduling 

approach. However, this is not the case if the code-words are not chosen appropriately. In 

particular, the average throughput performance of a code-based scheduling protocol can 

fall below the one of slotted-ALOHA if the code-words are not far enough from one 

another in Hamming distance. We have proposed a code-word selection algorithm that 

chooses code-words with good mutual distance separation. Our code-word selection 

algorithm improves the average throughout performance of a code-based scheduling 

protocol over that of slotted-ALOHA when the number of nodes in the network is less 

than the number of code-words available. 

An important issue of code-based scheduling is the fact that every node must have a 

unique code-word(s) assigned in order to guarantee a minimum performance. One way to 

solve this problem in a distributed way is for every node to generate the code-words 

independently based on a common encoder, and a common input sequence to the 

encoder. That is, as long as the encoder and its input is the same in every node of the 

network, the output sequence of the encoder (code-words) will also be the same in every 

node. A node will then pick its code-word based on its unique identifier (such as a MAC 
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or IP address). This has the potential problem that the process to generate all the code-

words would require substantial processing power if the number of code-words is large 

due to a code with a large dimension. However, in most cases the dimension of the code 

will not be in the order of thousands or even hundreds since a network of that dimension 

or density is not yet a reality. The same procedure can be implemented when the code-

selection algorithm is used. Therefore, there is no extra burden added when implementing 

the code-selection algorithm over a random code-word selection as far as the code-

assignment problem is concern. Note that a node can stop generating code-words as soon 

as it finds its own based on its unique identifier. 

 

6.2 Future Work 

 

As for future work in the area of network synchronization, we are studying the 

possibility to adapt the frequency of beacon transmissions according to the dynamics of 

the network in CSMNS. That is, opportunistically decrease the frequency of beacon 

transmissions when the node mobility or the wireless medium impairments decrease, and 

increase it otherwise. This would represent an improvement in the use of the space and 

processing power resources. Additionally, dynamic adjustment of the permission 

probabilities in order to avoid the need for estimating the number of nodes in the network 

will be pursued. Other areas of interest in the area of network synchronization include the 

performance evaluation of the TSF and CSMNS in a mobile environment with a more 

realistic wireless channel. It is expected that both mechanisms will degrade their 

performance due to the higher beacon error rate. However, this problem has not been 
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quantified before and it would be interesting to evaluate which method, if any, is affected 

more by these impairments. Another interesting problem is that of quantifying the time 

needed to acquire initial synchronization due to the fact that in some applications the 

nodes may leave and join the network quite rapidly. 

We have studied in this thesis a particular way of linking coding theory with the 

MAC layer of a communication network. However, more needs to be done in this area. In 

particular, due to the fact that decoding is not needed in code-based scheduling it is 

important to address the problem of finding new unexplored code constructions that can 

provide better access-to-the-medium performance for the nodes of a network, such as 

non-linear code constructions or other linear codes. Codes that are deemed complicated 

in error control coding due to their decoding complexity can, however, be used in code-

based scheduling. Additionally, entirely new code constructions tailored to the code-

based scheduling approach will be explored. Future work could also address how to make 

code-based scheduling less dependent on network synchronization, improve further its 

average performance, make it less dependant on the information it needs, and more 

resilient to uncertainties. While we have evaluated the performance of well-known code 

constructions, we believe it is necessary to pursue more general work in this area. In 

particular, it is important to find an optimum frame size and the optimum code 

parameters and characteristics that can offer the best possible average throughput. A 

possible way of achieving this would be to re-define the format of the frame, and also to 

look for longer codes with large minimum distances (e.g., product codes). 

We are also pursuing a complete network simulation of code-contention-based 

scheduling with more realistic traffic models, mobility, and wireless channel. Code-
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contention-based scheduling will be compared with the CSMA/CA protocol in a 

simulation in which both MAC protocols will be part of a complete protocol stack (i.e., 

physical, network, transport, and application layers). Other ideas for future work include 

the use of directive antennae combined with code-based scheduling to reduce the 

numbers of interferes and improve throughput performance, the study of non-linear codes 

for code-based scheduling, the use of multiple codes in a single node in order to provide 

DiffServ type of service support, and finally the incorporation of low-overhead topology 

information into the code-based scheduling approach. A possible way to achieve this 

would be for a given node to passively observe how busy the medium is in its 

surroundings and adjust the way in which it access the medium, or select the best possible 

code-word based on a estimation of the code-words used by its neighbors. 
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