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Abstract................ 

Wireless fingerprints authenticate transmitters in wireless networks, using attributes of the 

physical wireless signal rather than information being conveyed with that signal.  They can be 

used effectively in an intrusion detection system for networks, where nodes are physically 

vulnerable.  While previous research shows that wireless fingerprints work reliably in a 

laboratory setting, little work has been published showing the feasibility of their implementation 

within a real network.  We present methods for wireless fingerprints using data sampled at the 

demodulation rate.  This eliminates the need for high bandwidth data processing, making them 

feasible from inside a wireless sensor network.  We analyze their classification performance 

empirically for different network conditions and theoretically examine aspects of their secure 

usage in a network. 

To the best of our knowledge, our research is the only published work that uses representative 

wireless networking hardware for wireless fingerprints.  We discriminate between different IEEE 

802.15.4 2.4 GHz Radio Frequency (RF) sources, using the SiLabs IEEE 802.15.4 WSN node 

development platform and the Ettus Labs USRP1 Software-Defined Radio.  The wireless 

fingerprinting method implemented on the SiLabs WSN node discriminates between RF sources 

using differences in the Automatic Gain Control circuitry time response during the initial 

appearance of RF signals.  The results show that different RF sources can be distinguished over 

short transmission distances.  The more sophisticated USRP1 device exploits differences in the 

phase attributes of RF signals using a larger set of demodulated data samples than was available 

with the WSN node.  The USRP1 classifies more accurately over a wider range of network 

conditions: time, transmission distance and also different receiving devices.  Our average 
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classification accuracies are: 99.6% at short range, 95.3% at medium range and 81.9% at long 

range using five SiLabs devices. 

We demonstrate the independence of classification errors made over different RF channels and 

the benefit of using multiple nodes for classification. This suggests that nodes can collaborate to 

increase the reliability of wireless fingerprints, either by comparing their classification decisions 

or by aggregating their fingerprints.  We present a secure group key establishment protocol, 

using wireless fingerprints for authentication, for use in a network containing malicious nodes. 
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1 Chapter: Introduction 

In an 'Aging in Place' [1] application, a distributed monitoring system can be used that 

allows family members or paid care-givers to check the well-being of older adults in their 

own homes.  As the average age of the world's population increases, caring for older 

people in their own homes becomes a necessity.  This application is an example of a 

modern network, where the security and privacy needs of the users is important and must 

be protected because of the personal nature of the data being monitored [2].  In such 

networks, data confidentiality and authenticity are important and details of owner 

occupancy information must be kept secure to avoid their use by malicious third parties 

or even for financial purposes by non-malicious third parties.  Wireless Sensor Networks 

(WSNs) are attractive for such applications because of low hardware cost, small node 

size and limited node power consumption. 

1.1 Wireless Fingerprints 

Wireless fingerprints (WFPs) are a biometric-style authentication mechanism that can be 

used to distinguish legitimate nodes from intruder nodes in WSNs.  Using attributes of 

the RF signal for authentication, previous researchers have adopted the term 'RF 

Fingerprints' to describe such authentication mechanisms.  We prefer the more general 

term of Wireless Fingerprints and we use it to refer to schemes that use any 

characteristics of the wireless signal (e.g. power, timing, or amplitude, phase or 

frequency).  We define Wireless Fingerprints (WFPs) as any digital representation of the 

physical layer attributes of a wireless signal that vary in a characteristic fashion with the 

particular wireless transmitter. 
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Since WFPs are derived from physical-layer attributes of a wireless signal, they are more 

robust than other security methods against the lack of physical security that occurs when 

WSN nodes are placed in a residential setting.  Traditional key-based security 

mechanisms are vulnerable to the recovery of key information by an attacker.  Since 

WSN nodes have limited hardware and software memory protection mechanisms, less 

time is required for brute force key recovery attacks. 

WFPs can be used effectively as part of an intrusion detection system, allowing 

unauthorized nodes to be detected and also for re-establishing trust in compromised 

networks.  The RF interface on the WSN node is always present, so no additional radio or 

electrical interfaces are needed to implement WFPs. 

1.2 Requirements for Wireless Fingerprints in Distributed Networks  

Wireless Local Area Network (WLAN) nodes have large batteries, making centralized 

network designs feasible.  In WSNs, however, nodes have limited battery charge and 

much less power is available for wireless reception and transmission than in 

infrastructure types of networks.  A WFP implementation that does not require a 

transmission of signals to and from a central base station is preferable in WSN networks.  

Our algorithms are fully distributed, requiring no centralized processing or 

communications. 

Previous wireless fingerprint research uses specialized auxiliary test equipment to make 

RF measurements, analyze the RF signals and perform the required discrimination tasks.  

These methods are not feasible for a fully distributed implementation.  Our work 

represents the first published effort to implement WFPs on the WSN nodes themselves.  

We prove feasibility for WFPs on existing WSN node hardware and also demonstrate 
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better classification performance on a software-based platform that is similar to emerging 

current commercial consumer wireless products. 

We implement different WFP algorithms on a Silicon Labs (SiLabs) WSN hardware 

platform and on an Ettus Research Universal Software Radio Peripheral Version 1 

(USRP1) Software-Defined Radio (SDR) hardware platform.  On the WSN node, bit-

level access to Automatic Gain Control (AGC) control logic outputs is used as the input 

for the WFP algorithm.  The AGC input is a signal derived from the amplitude attributes 

of the input signal. 

On the SDR, raw symbol-rate data is used for the WFP algorithm input and our algorithm 

uses phase attributes of this input signal.  Both platforms use a zero-Intermediate 

Frequency (zero-IF) receiver architecture, but the SDR provides access to an 

uninterrupted stream of demodulated data samples.  This makes the SDR ideal for WFP 

algorithm experimentation.  We show that WFP algorithms can be implemented and used 

for receiver discrimination within a WSN network using either of our two reference 

platforms, although we achieve better classification performance using the USRP1 

platform. 

We study whether WFPs remain consistent for different receivers over different channel 

conditions and over time.  If WFP classification errors at different receivers are 

independent under such conditions, multiple nodes can collaborate to improve overall 

WFP classification performance in a distributed network and we verify this 

experimentally.  We modify an existing protocol for deriving a shared group key in a 

distributed network that can contain a minority of malicious nodes, augmenting the 

protocol to use WFPs for authentication. 
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1.3 Thesis Contributions and Organization 

The basic contributions of this thesis are as follows: 

 Implementation of basic Wireless Fingerprints on a real WSN node, showing 

feasibility for discriminating between different RF sources.  The following papers 

document our results in this area: 

o D. A. Knox and T. Kunz, "AGC-based RF Fingerprints in Wireless Sensor 

Networks for Authentication," in IEEE World of Wireless Mobile and 

Multimedia Networks (WoWMoM), Montréal, Canada, 14-17 June 2010 , 

pp. 1-6. [3] 

o D. A. Knox and T. Kunz, "RF Fingerprints for Secure Authentication in 

Single-Hop WSN," in IEEE International Workshop on Security and 

Privacy in Wireless and Mobile Computing Networking and 

Communications, Avignon, France, 2008, pp. 567-573. [4] 

 Analysis and performance characterization of wireless fingerprint algorithms for a 

WSN platform and identification of significant design criteria for the USRP1 

SDR wireless fingerprint algorithm 

 Implementation of a new Wireless Fingerprint algorithm using the USRP1 SDR.  

The following paper documents our results in this area: 

o D. A. Knox and T. Kunz, "Practical RF Fingerprints for Wireless Sensor 

Network Authentication," in 8th International Wireless Communications 

and Mobile Computing Conference, Limassol, CYPRUS, August 2012, 

pp. 531-536. [5] 
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 Presentation of a modified protocol to establish a shared group key in a wireless 

setting, augmenting it to use wireless fingerprints for message authentication.  

The following paper documents our results in this area: 

o D. A. Knox and T. Kunz, "Secure Authentication in Wireless Sensor 

Networks Using RF Fingerprints," in IEEE/IFIP International Conference 

on Embedded and Ubiquitous Computing (EUC '08), Shanghai, China, 17-

20 December, 2008, pp. 230-237. [6] 

In Chapter 2, we review related work from the literature.  In Chapter 3, we review the 

stages of the WFP authentication process and present our approach.  In Chapter 4, we 

present the WFP algorithm which we implemented on the WSN hardware platform.  In 

Chapter 5, we analyze the results obtained with the WSN algorithm and identify the areas 

for further experimental study using the USRP1 WFP algorithm. 

In Chapter 6, we describe the USRP1 SDR platform and present several USRP1 WFP 

algorithms.  In Chapter 7, we analyze the classification performance results that we 

obtained using the USRP1 algorithm variants, selecting one for further analysis over a 

wider range of experimental conditions.  In Chapter 8, using this selected variant of the 

algorithm, we show that WFP templates produced by other nodes can be used to achieve 

similar classification accuracy as when using templates that are generated locally.  We 

also show that, when those other nodes are nearer to the RF source for which that WFP 

template is being created, classification performance can be superior to when using 

templates generated locally from farther away. 

Both of these results have implications for WFPs at a network level.  We present the 

results of a statistical analysis that demonstrates that classification using multiple nodes is 
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worthwhile and that classification errors are independent on two USRP1 platforms.  To 

this end, we also summarize modifications to an existing group key establishment 

protocol that uses WFPs from multiple nodes for the authentication of message content.  

The resulting protocol allows secure establishment or re-establishment of key information 

in a network that can contain malicious nodes.  In the final chapter, we draw conclusions 

and make recommendations for future work. 
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2 Chapter: Related Work 

As wireless networks (WiFi and cellular) and wireless devices, such as personal 

organizers, smartphones, media players, become more ubiquitous and contain more 

personal data, the need for authentication of wireless information sources is growing.  

The Aging in Place [7] application provides an example of this growing need to provide 

wireless devices that can authenticate each other to meet the strong security and privacy 

requirements of its users [2]. 

Key distribution methods are traditionally used to establish security and authenticate 

nodes in WSN networks.  WFPs could allow the authentication of nodes without relying 

on key distribution, but this places severe requirements on their classification accuracy 

performance.  Even with poorer classification performance, WFPs are well-suited for use 

as part of the key establishment process or perhaps even more applicable as part of an 

intrusion detection system, once security has been established.  In this chapter, we justify 

the use of WFPs as a method for establishing and maintaining security in a WSN and 

review the previous WFP research. 

2.1 Establishing and Maintaining Security in Wireless Sensor Networks 

Modern cryptographic security relies only on the security of key information.  Attackers 

are assumed to know the details of all of the other cryptographic processes that use those 

keys [8].  Wireless system security depends on the secure deployment and use of such 

key information.   Authentication of senders of key information is an important part of a 

secure key distribution system [9] or an intrusion detection system [10]. 

Secure methods to provision or re-establish key information through physical access to 

nodes have been proposed [11][12][13].  However, direct physical access to WSN nodes 
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after deployment may not be practical [14].  Even if physical access is possible, 

additional circuitry may be required on the WSN node to allow key information to be 

provisioned.  A WSN node that has been made waterproof by encapsulation in plastic 

requires mechanisms to allow physical access to take place through the encapsulation. 

Wireless interfaces are an attractive method for access in such situations.  Methods to 

populate key information over wireless interfaces have been proposed, but making them 

secure against authentication attacks is difficult [9][15].  Key deployment over the RF 

interface is vulnerable to attacks from malicious nodes that can falsify their identities. 

Researchers have derived innovative key provisioning methods that use the RF wireless 

interface, augmented with a physical mechanism.  One such method requires physical 

contact in parallel with wireless signaling [16] at provisioning time and another uses 

sequenced patterns from Light Emitting Diodes (LEDs) [12].  Creating an isolated RF 

environment, like the one required in [17] is less practical for recovering compromised 

nodes deployed in home applications.  A more recent contribution that does not rely on 

additional physical methods uses the randomness and symmetry of an RF channel to 

establish a shared secret key for private and confidential communications between pairs 

of nodes [18]. 

All of these methods allow security to be boot-strapped without key deployment, prior to 

provisioning or could be used in an intrusion detection system.  However, they still use 

the data being carried by the wireless signal for authentication purposes, making the 

system vulnerable to attacks if this information can be compromised.  As a minimum, 

they are vulnerable to the 'man-in-the-middle' type of attack, where a malicious attacker 

acts as an active wireless bridge between two honest parties [19]. 
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2.2 Identification Methods for Wireless Nodes 

Location information has also been proposed to 'identify' RF sources [20].  The 

disadvantages of such schemes in a WSN “Aging in Place” application are the ease of 

physical access to devices and the need to update 'identities' as devices are moved or RF 

interference conditions change.  With these methods, the requirement to establish and 

maintain the integrity of key information has been substituted for a requirement to 

establish and maintain the integrity of location information.  Other researchers [21] have 

timed node responses to determine their identity. These authors use passive methods to 

avoid alerting a node that it is being profiled. Alternatively, they also show how to use 

adaptive or interactive methods, where more accurate and timely measurements can be 

made at the expense of alerting the node that is being measured. 

The authors in [22] use a ‘passive fingerprinting’ technique, that authenticates a node on 

the basis of the characteristic statistics of sensed variables..  Perhaps the easiest user 

requirement when authenticating wireless nodes is given in the work of [23] where the 

user just needs to shake nodes together to allow them to authenticate each other.  The 

WSN nodes need to be equipped with accelerometers for this process to work, which is a 

minor drawback.  They establish a common source of randomness based on the 

accelerometer readings in the two devices being paired. Unfortunately, the authors 

discovered that the security of their protocol is also very sensitive to the particular way 

that devices are shaken, leading them to require user training for proper shaking. 

Signal strength information (assessed using a Receive Signal Strength Indicator/RSSI) 

has been proposed as an indicator of 'nearness' for trust purposes and refined to use 

Signal Strength Difference in [24].  Signal strength is used as a biometric attribute of the 
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wireless signal and the dependence on the integrity of the transmitted data is removed.  

Unfortunately, signal power can still be adjusted on a per-message basis, making the 

attribute easier to forge. 

However, this research direction is a more promising one for the WSN environment.  

Other information can be derived from the RF signal to provide a reliable biometric 

authentication mechanisms and these are surveyed in [25].  We now review the research 

dedicated to deriving reliable wireless biometric authentication mechanisms. 

2.3 Wireless Fingerprints 

Biometric-based authentication using human fingerprints and other biological processes 

has been an active area for the last twenty years [26]. Here, address uniqueness depends 

on natural variation of complex life-forms and configuration is not an issue but is 

automatic and implicit, relying on the fact that every subject has unique fingerprints.  The 

focus of much of the research work has been on: the classification of ‘noisy’ data, pattern 

matching algorithms and on the secure storage of the biometric data itself. Typically, the 

process [27] for biometric identification is biometric data capture, feature/classifier 

separation and extraction, followed by matching with previously gathered templates from 

a database of biometric features captured earlier of different subjects. 

For human fingerprints and other biometric classifiers like human iris scans, there are 

natural changes over time (e.g. from tissue damage and aging effects). Samples to be 

used for identification may not be perfect themselves (e.g. they could be smudged). For 

human biometric classifiers [28], the classic approach is to establish a large database of 

samples in an ‘enrolment’ stage. During enrolment, the highest quality sample features 



 11 

are extracted and stored in the database. This database is then used later in a verification 

stage for actual matching and identification of subjects. 

In the verification stage, a measured sample is taken and the appropriate features are 

extracted from it. These features are then compared with all templates that are currently 

enrolled in the database and a potential match found. There may be no matches with any 

stored templates in the database. Therefore, confidence thresholds need to be determined 

to ensure that there are no false positives as well as to ensure that there are no false 

negatives when a template is actually in the database but noise effects cause differences. 

Rather than using a database and a verification process for matching, Clancy et. al [29] 

extract biometric features and use them directly to obscure a password for authentication 

purposes.  For example, fingerprint mapping can be used on smart cards. Besides not 

requiring a database, the main advantage of this technique is that no biometric data is 

stored on the smart card. This is useful if the smart card is assumed to be vulnerable and 

subject to tampering (as with our WSN nodes in an ‘Aging in Place’ application). 

Key information is encrypted using extracted fingerprint features to create a ‘fingerprint 

vault’. This is derived from the ‘fuzzy vaults’ proposed earlier by Juels [30].  Problems 

with Juels’ implementation were later identified and fixed by the authors in [31].  Note 

that standard cryptographic methods are not applicable since slight variations in key 

values will map to very different encryptions. As we have stated, practical biometric 

identifiers have noise associated with them for various reasons and ‘fuzzy’ encryption 

attempts to address this. 

Tekbas et. al [32] gives methods to extract features with orthogonal dimensions and a 

method to reduce the size of the data and feature set used for classification. They show 
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that a matched filter to the channel provides the best basis for orthogonalization.  For 

smaller networks with ‘tens of neighbour nodes’, these researchers state that amplitude 

characteristics suffice for classification and that phase ones need not be considered.   

The authors show that both voltage and temperature variations can be calibrated out, 

using a neural classification approach with extensive training sequences. However, they 

were unable to determine deterministic effects of temperature and voltage on the 

classification features.  Different nodes will be more likely to have unique RF 

Fingerprints, given that their voltages or temperatures are different. 

This may also imply a need to re-measure or even adaptively adjust RF Fingerprints in a 

dynamic fashion (as temperature changes and battery voltages fluctuate) and that a 

certain amount of channel noise variation cannot be tuned out, but simply degrades 

classification performance. However, they claim that the classification algorithm can be 

improved by training under noisier conditions and then using those ‘noisy’ parameters 

when the Signal-to-Noise ratio degrades down to similar levels. 

The basic task of the designer and manufacturer of electronic hardware is to make 

devices within tight performance tolerances (e.g. to meet a specification like RF spurious 

emissions).  Despite this, variations in performance still occur. Researchers have 

proposed different methods to exploit these differences for authentication and 

identification purposes. Suh et. al [33] use ‘Physical Unclonable Functions’ based on 

variations in hardware circuits like path delays as a basis for non-volatile key generation. 

The earliest published research that studied biometric authentication mechanisms for 

wireless networking devices was done by [32][34] although similar work was started 

during the Second World War to identify radar installations.  The early WFP researchers 
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and most researchers since used the initial transient portion of the RF waveform to 

provide the identifying information for the wireless signal.  Capturing such transients 

requires sensitive test equipment with a sampling rate of GHz and specialized low-noise 

receiver circuitry [35].  This high-speed sampling and processing logic is not yet present 

on WSN nodes.  To derive consistent WFPs based on such transient data also requires an 

accurate estimation of the starting time for a signal transmission, which is more 

complicated during noisy RF channel conditions or over larger transmission distances. 

WFPs have been proposed for use in networks with fixed architectures like WiFi WLANs 

[10].  The requirement that the central router node can be reached by all nodes requires 

higher transmitter power levels than practical for WSN nodes.  More recently, researchers 

showed the feasibility of distinguishing between different WSN RF sources and also 

proposed the use of WFPs for WSNs [36].  While reasonable classification performance 

is demonstrated, identification is based on measurements made on a high-speed (1GHz) 

sampling oscilloscope, again making such WFPs feasible only from 'outside' the network. 

Brik et al. present a method called PARADIS [37], which derives fingerprints from the 

physical attributes of demodulated baseband data like we do.  They obtained excellent 

classification results with 97-99% classification accuracy for a sample of 138 IEEE 

(Institute for Electrical and Electronic Engineers) 802.11 Network Interface cards in a 

controlled indoor WLAN environment with line-of-sight (LoS) transmission conditions 

to a single router location.  Their data was measured using a Vector Signal Analyzer test 

device co-located with this router.  This device has a sophisticated low-noise receiver 

combined with specialized analysis software and is capable of extremely accurate 

measurements of phase and amplitude. 
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In spite of the differences in measurement equipment from ours, we believe that their 

work is still comparable, based on the demodulated nature of their data input.  However, 

their WFP is significantly more complicated than ours, defined as a 5-tuple quantity 

consisting of: frequency errors, phase errors, magnitude errors, Synchronization (SYNC) 

errors and In-Phase/Quadrature-Phase (I/Q) origin offset errors.  Additionally, the 

resolution bandwidth of their input data is higher than can be expected on less specialized 

hardware. 

Very recently, Rehman et al. [38] have attempted to implement WFPs for resource-

constrained mobile devices.  They use the time-varying properties of amplitude envelopes 

of Bluetooth wireless signals to create their WFPs.  They obtained excellent classification 

performance with their method in a noise-less anechoic chamber.  While they do make 

their measurements with low-noise, high-frequency test equipment, they show that they 

can subsample their data down to lower rates, without degrading performance of their 

WFP significantly. 

Suski et al. [39] examined classification accuracy performance for 802.11a Orthogonal 

Frequency Division Multiplexed (OFDM) RF signals with different Signal-to-Noise 

ratios.  Their objective was to identify the specific manufacturer of a device (e.g. classes 

of device) rather than individual RF sources.  By subtracting ideal waveforms, based on 

simulated results, from measured ones, they create a WFP.  Using this method, they were 

also able to add calibrated noise levels for different SNRs, allowing the generation of 

different fingerprints for different transmission noise conditions.  Using sophisticated test 

equipment, they extract a 36 MHz segment of RF spectrum, sampled at 95MHz as input 

to their WFP algorithm, which is a rate between the 1GHz transient bandwidth used by 
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most of the previous researchers and the 2MHz baseband signal bandwidth used in our 

work.  Other researchers [40] have also attempted RF Fingerprint classification results 

using methods operating near baseband data rates.  However, they use subsequent high-

speed digitization of that data, resulting in WFP measurement bandwidths that are still 

too large to be practical for our purposes. 
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3 Chapter: New Wireless Fingerprint Approach 

To determine WFP information without assistance from other parties, WFP algorithms 

must be implemented within the network nodes.  We restate our general research problem 

as: "Measuring classification accuracy of wireless fingerprints (WFPs) implemented 

inside a wireless network".  We are not aware of any work published in the area of WFP 

measurement inside WSNs.  No experimental implementations of WFPs that use 

representative hardware platforms have been published so far, besides our own work 

[3][5]. 

Our WFP algorithm for the SiLabs WSN hardware platform is based on the properties of 

the Automatic Gain Control circuitry [41][42].  As a representative future WSN node 

platform, we also use the Universal Software Radio Peripheral (USRP1) software-defined 

radio (SDR) [43].  SDRs are used extensively for cognitive radio and for recognition of 

RF modulation schemes [44].  Their emerging use in mobile handsets, which also have 

severe power constraints, also indicates their feasibility for use in WSN node 

architectures.  This chapter gives a high-level overview of our WFP algorithm and an 

explanation of the design choices made during implementation on the two platforms. 

3.1 Wireless Fingerprint Algorithm 

In this section, we present the steps required to measure and use a WFP in a network.  

This provides a framework for the implementations on each platform, which are 

presented in more detail in later sections. 

The WFP measurement process consists of two distinct phases: 

 Training Phase: In this phase, the neighbours of a node are discovered and their 

signals used to create a database of WFP templates.  Each template is a compact 
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representation of the RF signal for a single RF source.  An important requirement 

of the WFP template is that it is unique for each RF source. 

  Classification Phase: In this phase, new signals are matched with the templates 

established during the training phase.  A decision is made about whether the 

signal is likely to have been transmitted by one of the known neighbouring nodes, 

or by a new node which does not yet have a template in the database. 

3.1.1 Training Phase 

In the training phase, each WSN node creates and maintains a database of templates 

containing WFP information for each neighbouring WSN node.  These templates are 

created and maintained based on measurements made via the RF interface.  Initially, the 

WSN node has no entries in the template database.  A neighbour-discovery process is 

typically used to establish communication between nodes in wireless networks.  To 

reduce the amount of power consumed, the WFP template database should be built during 

the neighbour discovery process, with WFP training templates added for nodes as they 

are discovered. 

A re-training phase is required for specific nodes if templates for particular nodes become 

invalid or are determined to be duplicates of other templates. The following conditions 

trigger a re-training phase: 

 Aging, making a previous template obsolete. 

 Corruption of a template with noise (malicious or otherwise) during the training 

process, making the template a poor fit during subsequent classification. 

 Intrusion detection initiating the deletion (and subsequent required re-training) of 

a template. 
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For normal training operation and the rest of the following subsections, a one-to-one 

correspondence is assumed between the node IDs being claimed by a wireless source and 

the WFP templates for those IDs. 

3.1.2 Classification Phase 

In the classification phase, newly-arrived samples are compared with each template in the 

training template database.  We distinguish between the following cases for the WFP-

based classification of new samples: 

 'Matching' case: A single 'close enough' template exists in the database already. 

 'Unsure' case: More than one template is 'close enough' 

 'No Match' case: No templates exist in the database that are close enough.  The 

implicit conclusion is that this is a new RF source. 

The method for estimating the difference between the template and a sample depends on 

the specific WFP classification algorithm.  The dimensions of the specific classifier form 

the basis vectors for both templates and samples.  For our USRP1 work, we use an 

averaged Euclidian distance measure, calculated as the mean square error using different 

basis vectors for the template and for the sample being classified.  The basis vectors 

correspond to the specific chip (single coded phase shift pulse) position in the preamble 

where residual phase errors are being measured (Section 6.2.5). 

For the WSN platform, the basis vectors roughly correspond to the different histogram 

bin indices (Section 5.3) but we do not perform classification with them nor characterize 

classification performance in the same way we do with the more capable USRP1 

platform.  Instead, we collect results for the bin indices and analyze them statistically and 

graphically. 
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For authentication purposes, the WFP-based identity must be reconciled with the identity 

being claimed (or that has been authenticated using other mechanisms) in the message 

that is being carried in the RF signal.  The 'first' time that an identity is claimed, it is 

linked with the corresponding WFP at the receiver in question.  The WFP algorithm must 

detect when there are changes in the WFP portion of these linked entries during 

subsequent transmissions, as part of the intrusion detection system. 

3.1.3 Training and Classification Sample Alignment 

For both the training and classification phases, we need a consistent time reference for 

the received data.  This provides a reference for the establishment of training templates 

and permits the appropriate constituent parts of a template to be applied to the 

corresponding constituent parts of a sample being classified.  Even WFP methods that 

operate in the frequency domain (e.g. ones based on Fast Fourier Transforms/FFTs, 

Power Spectral Densities/PSDs) require this alignment.  Failure to do so results in the 

addition of noise to the WFP templates at the training stage or during the classification 

process. 

The method for aligning templates and samples being classified is different for our two 

platforms.  For the WSN node, we take advantage of the AGC state change that occurs 

when an initial magnitude threshold is crossed to define our starting time.  For the 

USRP1, we frame to the defined signal content existing within the IEEE 802.15.4 

preamble. 

3.2 Wireless Fingerprints Using Non-Transient Data 

On the WSN platform, we focused initially on the samples corresponding to the transient 

portion of the RF signal, since this approach was motivated by the success of previous 
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researchers [10][45].  Because of limitations in our WSN platform architecture, access to 

evenly-spaced sets of samples of data near the transient proved to be impossible with the 

available software and hardware (Section 4.3.1).  Williams et al. [46] show that different 

portions of an RF message (i.e. not just the initial transient) from a cell phone can be 

useful for distinguishing between different cell phone manufacturers.  This drove us to 

look at more than just the transient portion of the RF signal.  With the USRP1 platform, 

we use more of the sampled received data to increase both the accuracy and the 

consistency of our measured WFPs. 

For the WSN nodes, we use the Automatic Gain Control (AGC) control loop circuitry to 

provide the inputs to our WFP algorithm.  This circuitry is designed to operate on the 

preamble data and has full access to all IEEE 802.15.4 preamble symbol information 

[47], without requiring software intervention during the sampling process.  The AGC 

outputs are also updated at reduced rates and, as importantly, these outputs are accessible 

from user software on our experimental platform.  AGC loops are required for normal 

data reception and are present in most WSN receivers. 

The AGC is designed to respond to the amplitude envelope of the newly-arrived signal as 

quickly as possible.  Multiple input samples and averaging are used to stabilize the loop 

response.  This prevents excessive gain changes and further reduces the required 

information processing bandwidth, which makes using the AGC outputs attractive for a 

practical WFP implementation on the WSN platform. 

Our WSN node WFP algorithm is based on the timing characterization of the AGC 

output signals, which varies most strongly with the received signal.  These outputs are 

active during the initial transient portion of the signal, but can also change during the 
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remainder of the preamble period, as the AGC adjusts the gain to provide an input at 

nominal levels.  Further changes are disabled once payload data transmission starts. 

Our USRP1-based method also uses the IEEE 802.15.4 preamble symbols.  These are the 

same demodulated and sampled receiver data samples that are used as the inputs to the 

AGC circuitry.  However, the USRP1 provides direct access to these samples.  Our initial 

measurement results on the USRP1 using the input phase attributes of the demodulated 

data proved more reliable for WFP classification purposes than ones that were based on 

the magnitude attributes.  Therefore, we focused our later research on phase-based 

methods, obtaining good results. 

We did not synchronize the transmitters being characterized with each other, although the 

receiver must still synchronize to each received asynchronous signal.  The clock recovery 

feedback loop used to do this synchronization has been observed to stabilize during the 

first few IEEE 802.15.4 symbol periods of a message, which is consistent with the IEEE 

standard [47].  The algorithms for clock recovery that we use are based on theory 

described in [48], but other methods are also possible [49]. 

The AGC and clock-recovery blocks are present in both platforms and are non-linear 

feedback loops with tunable parameters that have a filtering effect on the input.  We use 

the 'standard' parameter settings for these loops.  This is consistent with our objective of 

using our WFP algorithms in parallel with the 'normal' data reception processes.  We 

believe that we are using 'normal' indoor operating conditions and 'normal' operating 

modes in all of our experiments. 
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3.3 Wireless Fingerprints Using Symbol Rate Information 

Both our WSN AGC-based algorithm and our USRP1 algorithm use the digitized 

preamble symbol samples, which change at a 2Mchip/s rate, making the implementation 

feasible within the network node.  WSN node receivers (and the USRP1) use analog 

high-speed RF circuitry to demodulate received data from the antenna and remove the RF 

carrier (see Section 4.1).  After removal of the carrier and filtering with a nominal 

bandwidth of 83.5 MHz
1
, the demodulated data is sampled with an Analog to Digital 

(A/D) converter.  The sampling rate for this sampling process and for any further 

decimation after this conversion must be high enough to permit the baseband data to be 

recovered without aliasing, requiring further low-pass filtering in the software.  We use a 

4MHz sampling rate, which is twice the transmitter chipping rate for the IEEE 802.15.4 

2.4GHz Offset Quadrature Phase Shift Keying (OQPSK) WSN node transmitters that we 

are testing. 

Once sampled, further signal processing is accomplished digitally.  For example, filtering 

for RF channel effects and AGC functionality are both digital functions on our WSN 

nodes.  Digital processing of full RF information, with a bandwidth of 2x2.4 

GHz=5.8GHz, is not practical on WSN or USRP1 devices. 

On a typical WSN node, the full RF bandwidth is processed using a minimal amount of 

analog electronics.  We believe that using analog electronics for WFPs is impractical for 

both power and space/complexity reasons.  Even processing digital information at the 

                                                 

11
 SAWTEK 855916 SAW filter specification 

2
 The IEEE 802.15.4 specification (Appendix A) gives -20dBm as the maximum input signal level to be 

tolerated and also specifies a minimum RX sensitivity of -85dBm, resulting in this total range. 
3
From left-to-right, the 'double-rate sampled' preamble pattern shown in Figure 18 and the rising vertical 
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raw sampling rate directly after the initial A/D conversion (16-32 MHz) needs to be 

minimized, because of the severe power consumption constraints for WSN nodes. 

Our USRP1-based WFPs can be termed Baseband Wireless Data Fingerprints, in that 

they use sampled, demodulated baseband-rate information directly.  A recent taxonomy 

of physical wireless identification methods [50] would term our approach a 'modulation 

approach', since it operates on demodulated data.  Using this taxonomy, the majority of 

previous 'RF Fingerprint' work would be classified as 'transient data approaches', 

operating directly on the measured RF transient information with the associated large 

information bandwidth requirement.  Digital processing of symbol rate information, with 

a bandwidth of 2MHz in our case, is feasible. 

3.4 Comparison of Platforms 

WFPs can use different physical attributes of an input signal.  Table 1compares the 

physical attributes that are important for the WFP algorithms that we implemented on the 

WSN and USRP1 platforms. 

Table 1: Significance of Input Signal Physical Attributes for Each Platform 

Platform Timing Amplitude  Phase 

WSN Node Critical Critical (AGC input) Unused 

USRP1 Minor Unused Critical 

Because they are based on AGC responses, our SiLabs WSN node WFPs use amplitude-

based input information, with WFP accuracy depending on careful timing of AGC 

outputs.  Because we are using an IEEE 802.15.4 OQPSK transmitter when measuring 

WFPs for both platforms, phase information is a natural selection for algorithm input and 

was used for all of our final USRP1 algorithms (described in Chapter 6 and Chapter 7).  

Phase differences between samples require access to an uninterrupted stream of input 
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samples, not available on our WSN platform. 
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4 Chapter: SiLabs WSN Node Wireless Fingerprint Measurement 

In this chapter, we present the details of our algorithm for measuring WFPs on the SiLabs 

WSN platform.  The algorithm presented here is applicable to any WSN node.  However, 

the methods are tailored to match the hardware and software capabilities of our platform 

and were motivated strongly by the capabilities of the hardware and software. 

The first subsection describes the hardware architecture, on which the algorithm is based.  

The second subsection gives an overview of our WFP algorithm, which is based on the 

characteristic response of Automatic Gain Control (AGC) circuitry.  The third subsection 

describes the software architecture and implementation of our WFP algorithm and other 

implementation details.  The final section contains an analysis of the implementation 

constraints on the WSN platform. 

4.1 SiLabs WSN Node Platform 

Our first experimental platform is a representative IEEE 802.15.4 WSN node 

development platform made by SiLabs (Figure 1).  This WSN node hardware is quite 

typical of other IEEE 802.15.4 WSN node hardware experimental platforms.  WSN node 

hardware consists of the following main blocks: 

 Antenna, attached with a coaxial connector. 

 RF circuitry, to receive signals from the antenna. 

 Embedded microprocessor with Flash (type of non-volatile erase-able) 

memory for the processing of data at higher levels than the physical layer. 

 Oscillators, to power the processor (digital oscillator) and to provide the 'local 

oscillator' signal in the RF demodulator (RF oscillator).  The digital and RF 

oscillators are separate devices for electrical noise control reasons. 
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 External interface logic, based on a Joint Test Access Group (JTAG) standard, 

for user FLASH memory programming, a Universal Serial Bus (USB) interface 

for user ASCII (American Standard Code for Information Exchange) text 

character-based I/O and some push buttons and LEDs. 

The RF circuitry for our WSN node is almost entirely contained in a specialized 

integrated circuit (IC) augmented with a few external passive components.  These 

components are mounted on the WSN Printed Circuit Board (PCB), with a critical layout 

that connects the RF electronics to the antenna in such a way that the electronic matching 

characteristics almost completely eliminate all unwanted signal reflections over the 

frequency range of interest. 

4.2 Automatic Gain Control (AGC)-Based Algorithm 

Our WFP algorithm uses the Automatic Gain Control (AGC) hardware and firmware 

feedback loop circuitry.  The control logic of the AGC adjusts the gain used to amplify 

the input signal, using digital control outputs.  The AGC keeps the Analog/Digital 

Converter (ADC) input at a constant magnitude even when the magnitude of the input 

signal from the antenna changes. 
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DC Power 
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Pushbuttons, 
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thumbwheel
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Processor

Digital 
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Figure 1: SiLabs WSN Node 
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There are two gains stages controlled by the AGC on the SiLabs WSN node receiver 

front-end (Figure 2).  The initial low-noise-amplifier (LNA) has three gain setting values 

and is followed by a Variable Gain Amplifier (VGA) with a higher resolution (128 gain 

settings).  The gain of the I/Q mixers and filters cannot be adjusted. 

LNA and VGA gain settings are adjusted to amplify the incoming signal by different 

amounts, keeping signal levels constant into the ADC.  For long wireless transmission 

distances, a high gain setting is required.  Little or no amplification is required for short 

range transmissions.  The total dynamic range for the IEEE 802.15.4 specification is 

65dB
2
. 

Initially, the AGC uses a larger amplification gain setting (i.e. it starts in a long-range 

mode).  If an input signal is detected, it induces a large amplified signal at the ADC input 

that exceeds a detection threshold.  The AGC loop reduces the amplification gain until 

the ADC input decreases back to the required level. 

This adjustment must be done quickly enough during the fixed portion of the message so 

that the gain settles to the optimum setting prior to the beginning of the user message.  

                                                 

2
 The IEEE 802.15.4 specification (Appendix A) gives -20dBm as the maximum input signal level to be 

tolerated and also specifies a minimum RX sensitivity of -85dBm, resulting in this total range. 

Figure 2: SiLabs WSN Node Receiver Front-End Architecture 
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However, the adjustment must not be too quick, to avoid a situation in which small noise 

fluctuations on the RF channel cause large gain adjustments.  Typical AGC loops are 

second-order feedback control loops, with parameters designed to trade off stability with 

responsiveness and operate over multiple input samples.  After the adjustments during the 

preamble, the AGC does not adjust the gain settings again, until the start of the next 

message. 

The AGC feedback loop is implemented in the firmware of the Texas Instruments 

CC2420 RF Integrated Circuit (IC) [51].  AGC control outputs and status are accessible 

through bit ports on the RF IC and also as registers which can be polled over the serial 

interface between the RF IC and the microcontroller.  The RF IC output lines are 

assumed to activate with low jitter, but fixed latency in the RF IC.  We observed three 

distinct adjustment strategies for setting the gains of the LNA and VGA, corresponding to 

different ranges of total amplification gain. 

We define these three modes as: 

Short range (1m): Little or no gain is required and the LNA gain is adjusted from high-

gain (mode value of 3) quickly through medium gain (mode value of 2) to low-gain 

(mode value of 1).  The VGA gain setting changes from a maximum value (near 7F) to a 

minimum value (near 0). 

Medium range (4m): VGA adjustment is still not required, but the LNA gain changes 

from high-gain (3) to medium-gain (2) mode. 

Long range (10m and greater): The LNA is maintained in high-gain (3) mode and the 

VGA is adjusted by appropriately small amounts. 
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  Our WFP algorithm times AGC gain adjustment events in the three different modes of 

operation as an indicator of the amplitude envelope shape for a particular RF source.  

Accurate processor timing resources, with the resolution of a 96 MHz system clock cycle, 

in the embedded processor are used to measure the time of rising/falling signals of 

connected RF IC output pins (Figure 3).  The output of these timers is used to generate 

interrupts inside the processor, so that the timer values are not over-written with new 

ones before they can be recorded. 

The precise timing of state changes in the AGC logic running in the RF IC is measured 

while the algorithm is operating.  Combining these event time values with the full-

resolution (LNA and second-stage) amplifier gain values obtained from test registers, 

polled over the serial interface, allows AGC performance to be characterized in real time.  

Figure 4 shows AGC adjustments for 90 messages transmitted over a 1m distance by two 

different RF sources ('B' and 'F') to the same receiver ('D').  Each curve represents the 

Figure 3: AGC Monitoring Paths on the SiLabs WSN Node 
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samples for a single message.  Time is shown on the horizontal axis and is normalized 

relative to the start of the message. 

The initial transient period and the first two symbols of the preamble are shown.  The 

vertical axis displays the AGC VGA setting.  The differences observed in the location of 

Figure 4: AGC Adjustment Events for Two Different RF Sources 
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the main falling edge for each gain transition and the slope of that edge motivated the 

algorithm (e.g. transmitter 'F' has steeper gain adjustments and a higher concentration of 

earlier gain transitions than transmitter 'B').  The implementation details of the algorithm 

are discussed in the next subsection. 

4.2.1 WSN WFP Algorithm Pseudo-Code 

The general pseudo-code for our implemented WFP algorithm for the training stage is 

given in Figure 5.  The ‘AGC adjustment’ events in the pseudo-code are the gain 

transitions of signals generated in the RF IC and timed by the processor that we described 

Figure 5: WSN Node WFP Training Algorithm  

Initialization Routines

While (forever) {

/* Main Loop */

While (no incoming signal) { 

/* Sampling Loop */

Poll RF IC VGA gain setting

Check for timestamp updates

Check for incoming signals

}

If (AGC adjustment event occurs) {

Latch the AGC event time

}

Determine the validity of data bytes in received packet

If (data packet valid AND event time within bounds) {

If (training database at capacity AND source is trusted) {

Delete oldest sample from Fingerprint database

Decrement histogram bin for this removed element

}

Determine correct histogram bin based on event time

Increment this histogram bin for the new element

}

else {

Log false trigger event (Intrusion Detection System)

}

}
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in the previous section.  The particular signals used for event timing by the processor will 

change for the three different wireless range conditions. 

WSN nodes have a finite amount of memory, limiting the size of the training database 

that they can store.  Training algorithms for different applications can use different 

criteria to determine which (if any) templates to prune out once the database reaches this 

maximum capacity.  The figure shows a very simple ‘aging’ criterion, deleting the oldest 

template when storing new ones.  

4.2.2 WSN WFP Software Architecture 

The 8051F121 processor on the SiLabs WSN node is programmed using the 'C' 

programming language. 

The code consists of: 

 A series of initialization routines that are executed sequentially (including the 

locking together of the system timers described further below), 

 A main loop which executes forever and transmits information to the monitoring 

Personal Computer (PC) periodically via the Universal Asynchronous 

Receiver/Transmitter (UART) USB interface.  Captured data from the sampling 

loop (see the next bullet) is partially processed in the main loop and then sent to 

the PC via the USB UART interface.  The main loop also prints a periodic 

timestamp status message once every 32 seconds. 

 A sampling loop (within the main loop) that executes continuously, collecting 

information from the RF IC over the Serial Programming (SPI) interface.  The 

sampling loop stores samples on a continuous basis in a circular buffer, until an 

incoming radio signal is detected by the RF IC.  Once an RF signal is received by 
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the RF IC, execution of this inner sampling loop is suspended and control passes 

back to the main loop.  The basic structure of the sampling loop is: 

 SPI access (polled VGA gain values are stored in a First In First Out/FIFO 

data structure, with the oldest values being discarded first), followed by 

 check of the flag set by the Interrupt Service Routine (ISR) that runs when RF 

signals have been detected and their timestamp latched, followed by 

 check of the flag set by the ISR that processes a periodic timestamp initiated 

by the Programmable Counter Array (PrCA) ISR (every 32 seconds). 

 ISRs that handle the different interrupts generated by the hardware resources in 

the 8051F121 in response to external events from dedicated test lines from the RF 

IC (i.e. SFD, FIFO, FIFOP and CCA ) 

Timing of signals is accomplished using the timer and counter resources available on the 

8051F121 processor. 

There are three main ISRs: 

 PrCA_ISR: High-priority interrupt.  This ISR increments the PrCA super-frame 

variable, which is used for the timing of all AGC adjustment events.  This ISR is 

the most complicated routine in the sense that it must handle execution of each of 

the different PrCA resource blocks (e.g. for SFD timing and PrCA super-frame 

‘wakeup’/incrementing). 

 Timer4_ISR: High-priority interrupt (but lower priority than PrCA).  This ISR 

increments the ‘slow timer’ superframe variable used for timestamps. 

 SPI_ISR: Normal-priority interrupt.  This ISR processes activity on the serial SPI 

interface (e.g. when data bytes arrive from the RF IC). 
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4.3 Implementation Constraints 

Our WFP algorithm discrimination is influenced by the embedded processor and the 

specialized RF IC architectures.  We now examine the critical aspects and constraints for 

the architecture of these two devices and the restrictions that their limitations place on the 

WFP algorithm. 

4.3.1 CPU/ Radio IC Communications Bandwidth and Jitter Limitations 

The RF IC is connected to the embedded processor (Central Processing Unit or CPU) via 

a two-wire serial interface.  The link is not fast enough to capture all significant AGC 

gain adjustment events for our WFP algorithm.  Also, the variability in the arrival times 

for data over this interface increases timing variability for those events.  Both of these 

decrease the consistency of WFP measurements, blurring differences between the WFPs 

created for different RF sources. 

The speed of the serial interface can be adjusted up to 10MHz for the RF IC, subject to 

clock divider constraints in the processor, which has to match the selected interface rate.  

We ran the interface at 9.6MHz in our experiments.  In an attempt to decrease the delay 

between measurements, we also experimented with over-clocking (at rates of 16MHz) 

although serial link reliability deteriorated and data errors occurred. 

Because the A/D updates raw I/Q samples in an internal register at a rate of 2Msamples 

per second and each sample is each 8 bits wide, it is not possible to access the continuous 

stream of In-Phase (I) and Quadrature-Phase (Q) samples over the 8Mb/s serial interface.  

At the maximum specified 8MHz rate, combined with the serial addressing protocol and 

formatting overhead present on the serial line, the maximum rate at which data can be 

sent in real time is limited to about 500 ksamples per second (8 bits samples with about 
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100% overhead).  We performed a sub-sampling study (e.g. at a sample rate of 

approximately 500kHz) of the I/Q data, but the variability of our results was too high. 

The jitter arising from the polling of registers over the asynchronous serial interface 

further compounds the delays that arise from the signaling overhead on the link.  The 

serial interface timing is asynchronous to the Receiver sampling clock on the RF IC.  

Information on the RF IC is being sampled using the RF IC clock, requiring a handoff 

buffer to exchange information to the processor, which is running off the digital clock. 

For the baseband data processing path, both the speed performance bottleneck and 

asynchronous timing problem is solved using a data FIFO buffer inside the RF IC.  The 

FIFO buffer allows full capture of all received data bits, without processor involvement 

as each byte is received.  The processor interface to the RF IC is also not required to run 

fast enough to keep up with the real-time storage of received baseband data.  There is no 

requirement to log and process samples simultaneously, so the two processes can be 

performed serially.  

This type of FIFO buffer is not provided for the raw I/Q samples nor for the VGA setting 

history.  The resulting jitter and delay effects on these measurements cannot be avoided 

when polling registers for WFP measurements over the serial interface.  Our solution is to 

use the bit port interrupts between the RF IC and processor, which are captured with 

dedicated and asynchronous interrupt circuitry.  This is not an option for the 7-bit VGA 

settings, but works for the 2-bit LNA settings. 

4.3.2 Timer Resolution 

The accuracy of measurements of the AGC adjustment event time for the WFP algorithm 

depends on the accuracy of the timing resources on the WSN node.  In our 
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implementation, events can be timed with an accuracy of up to 10ns.  This resolution 

corresponds to the fastest digital clock available on the hardware and cannot be optimized 

further.  However, digital clocking is asynchronous to the analog clocks from the RF IC, 

adding jitter in handoffs of data between the two clocking zones.  This jitter results in 

reduced discrimination capability for our WSN WFP algorithm. 

In our implementation, the slow (Timer4) counter and the high-resolution (PrCA) counter 

are used together for accurate time-stamping.  The hardware architecture of the 8051F121 

allows very accurate timing resolution (within one 96 MHz/10 ns clock cycle) and time-

stamping of events.  In spite of this, ambiguities arise because the processor timing is 

asynchronous to that of the RF IC.  For bit outputs of the RF IC, this is less of an issue 

since the error will be on the order of a single clock cycle.  However, as already 

discussed, random jitter is introduced on the measurements made using the clocks of the 

RF IC and reported over the serial interface. 

For analysis and debugging purposes, we capture the arrival times for each new message.  

We are able to correlate PC logging time easily with the measured time inside the 

processor on the WSN node by storing the PC timestamp and the processor timestamp in 

the file.  However, events latched inside the RF IC have a variable timing resolution 

which is not under our control.  Without knowledge of the timing architecture of the RF 

IC, it is difficult to estimate the bounds of timer resolution and error for events that occur 

there and that are reported via register access to the processor using the serial interface. 

4.3.3 CPU Processing 

When an external event causes the AGC to change the LNA gain state, the corresponding 

interrupt service routine on the CPU runs, stores the timer value and then clears the 
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interrupt, ready for the next message.  The processor is not capable of parallel processing, 

so polling and further interrupt activity is paused while the interrupt is handled.  The 

UART Interface on the processor is connected to an RS-232 terminal port and generic 

terminal data logging software on a PC.  The WFP data and timestamp information is 

sent over the UART interface to the PC for logging. 

Such logging is only required for experimental purposes.  In a complete implementation 

of WFPs on the WSN node platform, WFP processing will consist of the creation of 

templates during the training process and the comparison of the newly-arrived data with 

those templates during the classification process.  This replaces the real-time logging task 

in our experimental code, but still requires the node to be 'offline' for a short time.  The 

effect on WFP algorithm discrimination will be potentially missed messages for 

authentication unless WFP-specific data buffering is included. 

4.3.4 Transmission-Range Dependent Gain Adjustment Events 

Gain adjustment events are reported using different signal paths that depend on the 

specific mode for the adjustment (defined in Section 4.2).  When the serial interface is 

used, more noise will be added to our WFP implementation, resulting in fewer observed 

differences between distinct transmitters.  However, if bit ports into the processor are 

used, the algorithm will discriminate better between RF sources. 
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The flow diagram used to determine the ‘AGC adjustment’ event used in the WFP 

algorithm is shown in Figure 6.  Gn-1 and Gn represent the VGA gain setting values 

sampled at 'Data Start' time (tn-1) and 'Preamble End' time (tn) via the serial interface.  The 

values of tB0 and tB1 represent the time of the edge change for the LNA Gain mode bits. 

The bit settings for the different gain modes are specified in Table 2.  While waiting for a 

signal input, the initial AGC LNA gain mode is set to High.  As the signal level rises, the 

gain is adjusted down to Medium and then to Low.  This intermediate change results in 

signal edge changes in both Bit 0 (B0) and Bit 1 (B1). 

Table 2: LNA Gain Modes 

LNA gain Mode B1 B0 

- Unused - 0 0 

Low 0 1 

Medium 1 0 

High 1 1 

LONG

AGC

Mode Value 

Constant?

Medium Gain

Final Mode?

MEDIUM SHORT

B1=1 B0=1 B1=1 B0=0 B1=0 B0=1

Calculate 

normalized

Bit 0 time:

tlength - tB0

Calculate Bit 1 

time minus

Bit 0 time (not 

dependent on 

start time):

tB1 – tB0

Calculate VGA gain 

‘gradient’ during 

signal onset period:

(Gn-Gn-1)/(tn-tn-1)

NoNo

YesYes

Figure 6: Flow Diagram for WSN Node AGC Adjustment Events 



 39 

For a transition from High to Medium, only B0 will change, requiring us to measure the 

time from 'Data Start' to the B0 edge change (tlength).  For long range transmissions, there 

will be no change in the LNA gain mode and only the VGA gain will be adjusted.  For 

our hardware, it is also possible to adjust the point at which these different gain modes 

change (in 2dB steps) as well as the amount of hysteresis for the changes.  We varied 

these thresholds and experimented with different values in an attempt to improve the 

discrimination results, but without much success. 

WFPs could change over time, if nodes are moved or maybe for other reasons.  If so, the 

retraining process could be repeated, where older samples are discarded in favour of 

newer ones.  These newer samples would then be used to recalculate the histograms for 

the different timing range bins, updating the templates for the RF sources in question.  

The disadvantage of using such an 'aging' approach for templates is that an attacker could 

overwhelm a database for a specific claimed ID.  Therefore, a throttling mechanism is 

required for the updates of the template database, which must be co-ordinated with other 

trust systems or intrusion detection mechanisms operating on the WSN. 

4.3.5 Summary 

The sampling process over the serial interface adds enough variability to make detection 

of outlier measurements difficult.  Accurate timing information for signal changes is hard 

to determine on the processor using the serial interface alone.  To reduce time 

measurement jitter and obtain more accurate results, we use dedicated serial lines 

between the two chips instead to activate interrupt-based timer resources on the 

processor. 
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This is accurate to the granularity of a few 96 MHz processor system clock ticks, 

corresponding to the interrupt latency and variation in the processor.  Unfortunately, this 

only applies to the short and medium range cases, where AGC gain adjustments are the 

largest and the measurement uncertainty associated with detection of a signal above the 

noise floor is also at its lowest. 

We collect these results and analyze the differences statistically and graphically.  Using 

our AGC-based method, long-range WFPs can be expected to be poorer than short-range 

ones.  At the limit of wireless transmission range, AGC adjustments are no longer made 

at all and the gain setting is maintained at a maximum level, rendering the algorithm 

useless for these extreme cases (since the gain change will be zero). 

The IEEE 802.15.4 2.4GHz standard specifies the use of Direct Sequence Spread 

Spectrum (DSSS).  With DSSS, the problem is compounded further since the signal 

power is spread out over time using coding techniques, even below the noise floor.  This 

results in very small changes of average power when RF signals first appear at the 

receiver.  In general, WFPs can be expected to degrade as the transmission distance is 

increased and this is especially true with WFPs based on signal amplitude characteristics 

in noisy RF environments, where signal level changes become imperceptibly small. 
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5 Chapter: SiLabs WSN Node Experimental Results 

This chapter presents and analyzes the experimental results obtained on the WSN node, 

showing that discrimination is possible between RF sources.  From this work, we identify 

the main parameters to be studied later for our WFP algorithm implemented on the more 

flexible USRP1 platform. 

5.1 Experiment Design 

The experimental setting is a multi-storey residential dwelling with concrete and plaster 

wall construction.  Measurements are made over a distance of 3m with LoS visibility 

between six transmitter/receiver nodes.  This distance is short enough that the LNA gain 

bits change at the beginning of each received message.  Each node transmits 500 

consecutive messages to all five other receivers, which are logging concurrently.  The 

same locations were used for the transmitters and receivers, but a specific node is not 

always receiving signals in the same position. 

For each message sent, the VGA setting values polled over the serial interface on either 

side of the LNA gain adjustment event are recorded using a PC logging tool, 

concurrently, for all receivers.  The exact times of the changes in the LNA gain mode bits 

are recorded using the PrCA bit timing method described in Section 4.2.  The change in 

VGA gain setting is approximated using a straight line equation derived from the two 

sampled gain values and the measured times of their arrival measured from the serial 

interface message arrival times. 

The midpoint of the VGA gain change on that line is set between the two outermost 

sampled values, and the corresponding time value for the gain change are determined 

using the estimated line equation.  We use the term 'centroid' to identify the time 
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corresponding to the middle of this main gain transition.  We estimate the centroid with a 

straight-line approximation using the sample values and occurrence times on either side.  

Histograms of the time of occurrence of the VGA gain change either side of the LNA 

gain transitions are calculated and plotted. 

5.2 Experimental Results - Discrimination using AGC Information 

The experimental results in this subsection show that there are observable differences in 

the VGA adjustment patterns for different RF sources, but there is also considerable 

variability in the results.  VGA gain adjustments for several messages from the same 

source (node 'B') and same receiver are shown, each with a different colour/ marker 

combination, in Figure 7. 

The 7-bit gain value is initially near its maximum value of 128 before being adjusted to a 

Figure 7: Initial AGC Gain Adjustment 
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new value of about 108, which occurs just before the first preamble byte start, shown by 

the red dotted line.  This adjustment occurs immediately after the RF transient period.  

The AGC continues to make smaller adjustments during the remainder of the preamble. 

The preamble start time is estimated using the measured time of assertion of the status 

signals (e.g. SFD and FIFO) coming from the RF IC with a calculation to subtract the 

known delay for the preamble, SFD and length bytes, as specified in the IEEE 802.15.4 

standard (Appendix A).  Although samples are measured at the 'maximum rate' of the 

serial interface using software tuned for the purpose, we see an average delay/jitter 

between the samples of about 2000 96 MHz clocks (about 20 s) caused by the timing 

constraints described in the previous chapter. 

In Figure 7, the mid-point gain setting for the message samples highlighted with dotted 

red circles is 116.5 (between 108 and 125) and the corresponding centroid value would 

be about 20,200 (measured in units of 96 MHz clock ticks before the start of the 

payload).  The variability in the exact timing of the centroid has a similar 20 s spread to 

the SPI sampling rate interval.  There are only a few samples which occur near the 

centroid, indicating that the gain value transition is adjusted quickly inside the RF IC 

AGC algorithm. 

There is also a different profile to the value of the gain change for some messages, with a 

'peaked' gain response.  An initial increase in gain occurs before the gain finally 

decreases to the new lower stable level.  This level of peaking varies noticeably with 

different RF sources.  We believe that this peaking is due to an interaction between the 

AGC logic and the properties of the specific signal. 
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There also appears to be variation in the starting time of the gain adjustment with 

different receivers.  This is seen in Figure 8, which shows gain setting changes, where the 

bar colour is proportional to the gain setting, organized in a spectrum with blue colours 

representing small gain values and red colours representing larger gain values.  The graph 
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Figure 8: Differences in AGC VGA Adjustments by Receiver 
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shows 60 individual trials for two different receivers ('C' and 'E') listening to the same 

transmitter ('B') over the same nominal RF transmission range.  The time axis in the 

figure is vertical and the trials are separated from each other horizontally. 

Each bar segment represents a change in the polled VGA gain value.  Cross-hatched bars 

represent values which were interpolated because the LNA gain mode bit changed but the 

VGA value did not appear to have changed yet.  The IEEE 802.15.4 byte locations are 

shown on the far right, where 'LEN' represents the length field, 'SFD' the SFD field and 

'PRE' the preamble field in the IEEE 802.15.4 frame (Appendix A). 

At receiving node 'E', large gain adjustments (changes in colour from navy blue to red) 

are often made in the middle of the preamble field, while at node 'C', the large gain 

adjustments are usually completed by the end of the SFD byte.  We theorize that the 

variability in adjustment times depends mostly on the sensitivity of the particular 

receiver, since the profile stays relatively consistent even when the node is tested in 

different static positions. 

5.3 Experimental Results- AGC Gain Transition Histograms 

To simplify the use of WFPs in a network, we would prefer to find differences in gain 

transition times that are specific to the transmitter only and that are independent of the 

receiver.  Failing this, we want to be able to remove any WFP variability that is due to the 

specific receiver.  We now analyze the differences between the discrimination results that 

are due to the receiver.  Because of the variability in the results shown in the previous 

section, we use histograms for this analysis. 

We create histograms for the AGC centroid values like the one shown in Figure 9.  Gain 

adjustment centroids are not uniformly distributed for a specific transmitter/receiver pair.  
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For example, histogram bins centered at 15628 and at 4645 clock periods before the 

payload start in the figure occur more frequently than others. 

The distributions of the main gain transition appear to vary systematically and in a 

characteristic fashion with the RF source, making discrimination between sources 

feasible in a specific receiving device.  However, there is significant variation for each 

transmitter/receiver combination as seen in Figure 10.  The histogram distributions 

remain relatively stable over time, but small changes are observed and the results 

appeared to vary periodically. 

A to C 

Figure 9: Histogram of AGC Gain Transition Centroid 
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Certain transmitter/receiver combinations have centroid histograms that 'resemble' each 

other.  For example, transmissions from node B to E are quite similar to transmissions 

from node F to C in Figure 10.  To improve the resolution of the histograms, we 

incorporate an estimate of the gradient of the gain change at the centroid into the 

histogram binning process.  This gradient is calculated as the difference in the gain values 

divided by the difference in the time values at those gain values.  We define a 'composite 

bin' as a specific combination of gradient and centroid time value (Figure 11). 

Figure 10: AGC Centroid Histograms for Transmitter/Receiver Pairs 
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The composite bin index value is determined as follows: 
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The composite bin histogram values are comparable to the centroid histogram values 

when the gradient values are at their minimum.  At these points, they have a value equal 

to the centroid histogram value, but scaled by the total number of gradient bins. 

We define six active gradient bins, giving a new total of 48 active composite bins.  The 
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Figure 11: AGC Composite Histograms for Transmitter/Receiver Pairs 
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choice of  Cn  and  Gn  depends on the total number of observations being made and the 

number of nodes being classified.  We chose  Gn to be the same as the number of known 

nodes and kept  Cn at the same granularity as was used for our previous centroid-only 

analysis.  Our sample size of nodes being classified is small enough that better guidelines 

than this are difficult.  Too many empty bins would indicate a poor choice of these 

parameters, but ours are good enough. 

The composite binning algorithm can be used in the algorithm pseudo-code of Figure 5, 

instead of the centroid binning.  This results in an increase of the number of total 

histogram bins and approximately squares the overall calculation and storage complexity, 

depending on the specific choices for the number of bins. 

Comparing Figure 10 and Figure 11, the basic outline of the histogram shapes are similar 

for the same transmitter and receiver pairs.  However, the composite histogram bins give 

a finer granularity of characterization than just using the centroid alone.  Essentially, both 

parameters of the straight-line approximation have now been incorporated into the 

binning process.  We could have used the estimated gradient and intercept of the straight-

line approximation itself, but using our time axis is a more stable reference than the gain 

value mid-point, since it does not vary with the RF transmission range conditions. 

We investigated the fitting of cubic splines to the AGC gain setting data points, but the 

results were not significantly better than a simple straight-line approximation.  It is rare 

for more than two 'significant' points in the range of the transient to be available for 

accurate curve parameter estimation and so more than one cubic spline can be fitted to a 

pair of data points.  We do not get much improvement, even if more points are used to 
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constrain the splines further.  Extra points do not vary enough to influence the shape of 

the spline, appearing only as constant gain values either side of the transition. 

In spite of the impediments introduced with the serial interface, our experiments show 

that characteristic responses for distinct transmitting devices are observable.  However, 

these differences are only usable in the form of aggregate statistics, with individual 

measurements varying considerably about the average value.  Ideally, we want to define a 

WFP that discriminates the source of individual messages correctly without having to 

group them in batches for identification. 

5.4 Experimental Results –Stability Over Time 

Next, we analyze the stability over time of the histograms used in the previous section 

Time=t0 Time=t0+20s Time=t0+40s

Time=t0+60s Time=t0+80s

Time=t0+120s Time=t0+160sTime=t0+140s

Time=t0+100s

N
u

m
b

e
r 

o
f 
O

c
c
u

re
n

c
e

s

Number of 98MHz Clocks

Figure 12: Time Sequence Histograms of AGC Gain Change Centroids 
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and show that they vary even over short time intervals.  Figure 12 shows a time sequence 

of histograms for the centroids of the AGC gain transition for a series of transmissions 

from node 'A' to node 'C'.  The axes all have the same scales, allowing qualitative 

comparison and reducing the importance of the exact numerical values. 

Each graph in the sequence is separated by 30000 lines in the log file, which corresponds 

to a time offset of about 20 seconds.  The total duration of the sequence shown is about 

three minutes.  There is a noticeable change in the histogram shape during this time. 

A scatter plot of the gradient (Y axis) and centroid (X axis) information and variation 

over time is shown in Figure 13.  The colour (Z axis) corresponds to the Y intercept of a 

straight line with the specified gradient and centroid. 

Because the gradient and intercept are related with a straight-line approximation, a 

specific colour is always plotted in the same location on the graph, but is included to help 

with comparison.  The data from Nodes 'A', 'B' and 'F' received by node 'C' are shown in 

Figure 13: Scatter Plots of AGC Gain Change Gradients 
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the first, second and third rows, respectively.  Differences in the centroid and gradient 

values can be seen for the different transmitters. 

The statistics of the gradient remain relatively stable over time for a given 

transmitter/receiver pair, but some variation is apparent, especially after 24 hours.  We 

believe that the reason for this variation is related to the asynchronous nature of the 

receiving and transmitting clocks in the network and the relative frequency of the 

oscillators in question. 

In our testing, we used the non-synchronous mode of operation specified in the IEEE 

802.15.4 WSN standard, where the oscillators used for transmission in each WSN node 

run freely and independently of each other.  In the IEEE standard, oscillators are also 

allowed to have slight differences in their nominal frequency (see Appendix B).  Because 

the received RF input is re-timed using a clock derived from this same free-running 

oscillator, the relative clock phase of an input signal and the clock being used to sample 

that signal will change continuously.  The gradual and seemingly periodic time variation 

that we observed in the centroid histograms is probably due to this changing relative 

phase difference.  The phase difference varies very slowly during a message or between 

nearby messages but much more greatly between messages that are further apart in time. 

Another possible cause for the observed measurement variation is changes in the RF 

environment noise level over time.  Without a more detailed knowledge of the AGC 

implementation, determining the precise root cause and improving WFP measurement 

consistency further is difficult. 

We assume that the variation in AGC response for different transmitters is due to the 

variations of the sampled signal amplitude at the receiver, which includes contributions 
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from the RF channel and interaction between the noise performance of the receiver and 

the noise on the RF channel.  These receiver and RF channel-induced variations are 

independent of the transmitter whose signal is being ‘recognized’. 

An AGC circuit is designed precisely to detect signals reliably in the presence of RF 

channel noise, while optimizing response time and stability during the signal detection 

process.  Therefore, WFP consistency for different noise environments is expected to be 

automatically optimized during the AGC design process, which must strike a balance 

between maximizing sensitivity to signal amplitude variation while avoiding false 

triggering adjustments caused by noise. 

From the experiments in this section, we show that different channel conditions and 

internal noise levels and timing affect a given receiver’s AGC response over time.  The 

response for a specific transmitter is not stable over time in a given receiver.  This makes 

the use of our algorithm in a real network for authentication purposes less feasible, 

although the method still has value as part of an intrusion detection system.  In an 

intrusion detection system, guarantees of authenticity are not required and evidence of 

authenticity is still useful. 

We need a mechanism to provide access to the AGC state machine with less jitter than 

occurs with user software polling over an asynchronous serial interface.  For example, 

direct access to the VGA gain setting via signals would be ideal, allowing use of the 

accurate processing timing resources.  As an alternative, a time-stamped handoff buffer 

(similar to the one provided for data) would serve our purposes. 
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5.5 Determination of Parameters for Further Study 

With the knowledge gained from our WSN node experiments, we switch our attention to 

the WFP algorithm for the USRP1 platform.  We need a WFP to be more robust than our 

WSN implementation in order to classify individual messages.  Based on the insights 

gained with our WSN platform, we now define the independent variables for our 

experiments on the USRP1: receiver stability, RF channel stability and time stability. 

5.5.1 Receiver Stability 

For networking purposes, we are interested in whether WFP measurement is affected by 

variations in the receiving device.  If templates are the same at different receivers, then 

direct comparison at a network level is simplified.  If not, then network-level techniques 

are required to reconcile them.  If classification errors made with local templates are 

independent at different receivers, then there is an advantage when nodes collaborate to 

make a decision (see Section 8.5 and Section 8.3).  If errors are highly correlated, using 

multiple nodes to reconcile and improve the reliability of WFP decisions is less effective. 

Filtering receiver-dependent noise requires an understanding of the noise processes inside 

an RF receiver will vary with the methods used for WFP generation.  For example, we 

would like to reduce the amplitude noise in the receiver for our WSN node algorithm, but 

reduce the different sources of receiver phase noise for our USRP1 algorithm.  Because 

the sources of receiver noise have probably been reduced to functional and practical 

levels by the RF device and PCB designers, further reduction is probably impractical.  

However, we can compare the results of two co-located SDR devices or use identical 

receiving locations, when measuring the same RF signals to quantify the noise effects. 
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5.5.2 RF Channel Stability 

We are interested in the effects of RF channel variation and transmission range variation 

on the WFP measurement process.  This has a direct effect on how WFPs can be used at a 

network level and on the restrictions for node mobility.  We use the phase attributes of 

the wireless signal to derive our USRP1-based WFPs.  Therefore, we are concerned with 

RF channels that can distort the phase information of the signal.  In indoor environments, 

large reflecting surfaces cause strong multi-path signal propagation that can distort the 

RF signal phase and our WFP measurements.  Doppler shifts can be created by 

transmitter movement or can result from the different components of the multipath 

propagation of the RF signal, as the RF signal interferes with itself [52].  Measurements 

made over smaller intervals of time should be consistent, however, since there is a 

smaller chance that reflecting objects in the environment move significantly. 

The time-variance of RF channels has been studied and RF channels have been 

characterized in terms of their coherence time and their coherence bandwidth.  An RF 

channel can introduce delay spread into received signals because of the different delays 

taken by the signal, causing signal time dispersion.  Frequency dispersion also causes the 

received signal to have a larger bandwidth than that of the transmitted signal. 

Wireless signals typically have a fast Rayleigh fading characteristic at the receiver, unless 

there is a LoS path, where the distribution changes to a Rician fading model.  A Rician 

fading model is essentially the same as a Rayleigh fading model, with the addition of a 

strong propagation mode corresponding to the LoS transmission path. 
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5.5.3 Time Stability 

Ideally, a WFP would not change over the entire lifetime of a WSN node, allowing it to 

be measured once and then recognized forever afterwards.  However, this is unlikely with 

actual wireless signals.  Short-term time stability is not only easier to characterize, but is 

a more basic requirement for WFPs, since long-term variation can be handled with WFP 

aging and refreshing protocols.  Our WFP algorithm is based on circuitry that is 

functioning in its normal operating region.  Performance here should be stable over time. 
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6 Chapter: USRP1 Wireless Fingerprint Measurement 

In this chapter, we describe the basic architecture of the USRP1 and our WFP algorithm 

design.  Unlike our previous work with the SiLabs WSN nodes, the use of a particular 

device like the USRP1 is not an essential requirement for the algorithm implementation.  

Other SDR platforms (or WSN node platforms that provide adequate contiguous sample 

access) can be used. 

6.1 Ettus Research Inc. USRP1 Platform 

The Ettus Research Universal Software Radio Peripheral (USRP1) [43]  is a public 

Software-Defined Radio (SDR) hardware platform manufactured by Ettus Research that 

was designed to work with a large public Gnu Radio software base [53].  In combination 

with the Ettus Research RFX2400 daughter card [54], this platform has the same zero-IF 

type and speed of RF Receiver front-end design as the WSN nodes that we are using, 

making it a representative platform for future WSN nodes. 

The USB interface has a maximum sample rate of 16MHz and is the main bottleneck for 

real-time radio signal information to and from the PC.  Current WSN node technology 

limits our ability to process and store data above 2MHz rates, as discussed in the previous 

section.  Therefore, we do not exceed the bandwidth of the USB interface with our 

algorithm and the platform does not limit our performance. 

6.1.1 USRP1 Hardware Architecture 

The USRP1 receiver hardware (Figure 14) consists of the following main blocks (see 

Appendix C for further details):  

 Antennas and coaxial connectors and cables, 

 RF daughter card(s), containing all basic elements of a zero-IF RF interface, 
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except the A/D devices.  Different daughter cards are manufactured for the 

USRP1; we use the RFX2400 [55] for compatibility with our WSN nodes.  The 

AGC functionality is also implemented here. 

  

 Analog/Digital (A/D) conversion devices, which convert smoothly-varying real-

world signals into ones that are usable by software algorithms. 

 User-programmable Field-Programmable Gate Array (FPGA), which is 

responsible primarily for connecting the correct antenna signals to the A/Ds and 

for converting the demodulated I/Q data samples into packets suitable for USB 

transfer. 

 USB interface, providing the connection between the USRP1 and the PC. 

 Oscillator for the FPGA and other digital logic. 

RFX2400 (2.4GHZ) 

Daughter Card
USRP1 Main Card

Daughter Card 

ConnectorsAntenna 

Connectors

FPGA

ADC

ADC

USB

Figure 14: USRP1 Hardware Architecture 



 59 

 Personal Computer (PC), which provides the digital signal processing power for 

processing the demodulated data signals.  The personal computer is part of the 

USRP1 hardware, in that only limited amounts of signal processing are possible 

in the FPGA without it.  The PC offers a flexible and powerful software 

development platform, but would be replaced by an embedded microprocessor, 

like the one we described in the previous sections, in a real WSN node. 

 We believe that this architecture is representative of a practical next generation of 

wireless hardware (and software) based on current levels of electronic integration. 

6.1.2 USRP1 Software Architecture 

A GNU Radio software base for the USRP1 has been created over the last ten years.  Our 

version is based on an IEEE 802.15.4 implementation (started by UCLA [56] and further 

modified by researchers at CMU [57]).  The CMU firmware load for the FPGA provides 

a time-stamping capability, which is useful for our experiments.  Our USRP1 algorithm 

uses a filtered version of the decimated and time-stamped symbol-rate data (in I/Q 

format) from the FPGA.  We have extended the CMU implementation C++ code to log 

the data samples into a file.  Our USRP1 client task runs whenever data is available and 

ready for processing from the FPGA.  To identify the specific demodulated data samples 

at the beginning of the RF signal, we buffer the data and timestamp information as it 

arrives, adding a sequence number tag to each data sample and we proceed to demodulate 

the stream of tagged data samples.  The architecture of our software is shown in Figure 

15. 
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In the order that the data is processed, the functional blocks in the software receiving path 

are: 

 Squelcher: The squelcher examines all input data, throwing away noise samples 

(i.e. ones not associated with messages).  The simple magnitude-based method 

used in the existing CMU code is not adequate for long-range data transmissions 

in a DSSS wireless receiver.  At longer ranges, the nature of the DSSS system 

requires a framing algorithm that uses knowledge of the IEEE 802.15.4 

modulation scheme to distinguish signals from noise, so we have replaced the 

CMU implementation with one of our own.  For consistency, we use the same 

phase-based framing algorithm for all of the tested transmission distances for the 

Squelcher

LPF

Demodulator Clock Recovery

Slicer

WFP RAM

Input Buffer

Data Recovery/ Framing

Symbol Sync

Byte Alignment

EEROM ID &

Sequence 

Number 

Extraction

From FPGA

Lookup

Using Tag/

timestamp

PC

Disk

Figure 15: USRP1 Software Architecture 
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USRP1-based WFP algorithm (see the 'Data Recovery and Framing' block).  In 

our implementation, the squelcher disables reception of samples periodically (e.g. 

with a duty cycle of 20s idle time each minute) to allow signal processing of the 

previous set of samples to complete. 

 Low-Pass Channel Filter (LPF): This filter takes the squelcher output and 

performs digital filtering to extract only the baseband information associated with 

a single IEEE 802.15.4 channel from the samples received from the FPGA.  These 

channels are spaced 5MHz apart in the 2.4GHz version of the specification.  An 

identifying tag and timestamp is added to the filtered OQPSK data samples 

(which are still in IQ format) and they are buffered in PC RAM ready for use by 

the WFP algorithm after the message has been processed further. 

 Demodulator: The Demodulator determines the phase difference between the 

successive samples out of the Low-Pass Channel filter, calculating the arc tangent 

of the product of the current sample with the complex conjugate of the preceding 

sample.  The identifying tag and timestamp added in the earlier filtering stage is 

propagated through the block without modification. 

 Clock Recovery: Because an IEEE 802.15.4 system is not necessarily 

synchronous, the transmitter clock and receiver clock alignment will change over 

time (see Appendix B).  This block recovers the clock from the incoming signal 

and adjusts the receiver sampling clock to align with the data that is being 

received.  This block is connected in parallel with the demodulator block to the 

output of the channel filter and adjusts the timing of the receiver in a feedback 

loop using an M/M (Mueller and Müller) algorithm [48]. 
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 Slicer: The Slicer converts the variable positive and negative phase difference 

outputs of the demodulator into digital 1's and 0's, respectively. 

 Data Recovery and Framing: This block extracts the  higher-level data from the 

stream of digital bits out of the slicer and the corresponding tag and timestamp 

information.  This is done as follows: 

o IEEE 802.15.4 Symbol Synchronization: A correlator searches for IEEE 

802.15.4 preamble symbols, each of which is a specific 32-chip pattern of 

phase changes, corresponding to a 4-bit '0' data nibble (see Appendix A). 

o  Byte alignment: A different correlator searches for the specific IEEE 

802.15.4 SFD byte pattern to determine the byte boundaries for the 

recovered symbol nibbles.  Our WFP training and classification algorithms 

uses the first few preamble symbol samples and uses the tag/timestamp 

information on samples after the IEEE 802.15.4 Symbol Synchronization 

stage to determine the corresponding samples in the RAM buffer to be 

copied onto the PC disk. 

o Electrically Erasable Read Only Memory Identifier (EEROM) ID and 

Sequence Number Byte Extraction: More of the data portion of the 

message is decoded for experimental reasons (i.e. to identify the specific 

sources of messages using the transmitted EEROM and Sequence Number 

information).  The duplicated set of 8 EEROM ID bytes and the duplicated 

pair of sequence number bytes are extracted and both of their correct 

replications are verified.  This information is appended to the copied 

sample information on the PC disk. 
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6.2 WFP Algorithm Fundamentals 

Our WFP algorithm operates in parallel with the Clock Recovery loop.  We also require 

no special changes to the standard parameter settings for the loop.  Receiver clock 

adjustments are being made at the same time as the preamble of a message is being 

received.  However, our WFP algorithm uses the samples in the first four of the eight 

preamble symbols for each message, after processing by the Low-Pass Channel Filter. 

Therefore, the input data for our WFP algorithm is being sampled by a received clock 

that is still in the process of being aligned with the transmitted data.  We devise a simple 

feed-forward method that does not interfere with the dynamic behaviour of the Clock 

Recovery loop, but estimates the average phase offset between the transmitter and 

receiver clock.  The WFP algorithm can use this estimated phase offset value in different 

ways.  This section explains the method for phase estimation and other concepts required 

to understand the different variants and operation of our WFP training and classification 

algorithms. 

6.2.1 'Phase Reversal' Chip Positions and the 'Reversal Mean' 

Our WFP algorithm operates on the sampled OQPSK baseband data out of the Low-Pass 

Channel Filter.  Symbols are transmitted at a rate of 2 million chips per second.  By using 

samples collected at a higher rate of 4MHz, all of the transmitted symbols will be 

observed. 

A symbol alignment procedure is required to determine the start of each message 

transmission, which operates by framing on the predefined and fixed preamble pattern 

that precedes each message as defined in the IEEE 802.15.4 standard (see Appendix A).  

In the absence of noise, consecutive phase shifts of the same polarity will yield a 
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recovered baseband data signal at the receiver with exactly the same phase changes 

(scaled by the sampling clock rate).  For example, if the receiver rate is twice that of the 

OQPSK transmitter (i.e. using  phase changes) consecutive receiver phase changes 

of the same polarity will be observed as  phase changes. 

IEEE 802.15.4 OQPSK symbols are made up of 32 pre-defined patterns of phase shifts, 

called chips.  At chip positions where the phase change polarity reverses, the apparent 

sampled phase change can be smaller and this affects our WFP calculations.  The amount 

of the reduction in phase change depends on the degree of alignment of the receive clock 

with the transmit clock as shown in Figure 16. 

 The figure shows five data bits (11001), encoded as  OQPSK phase shifts by the 

transmitter and then later sampled with a receiver clock that is exactly twice this shift 

rate.   The receiver sampling clock edges are shown in dotted green and occur at exactly 

twice the rate of the RF transmitter's symbol/chipping clock edges, which are shown in 

dotted black.  A data bit value of '1' is encoded as a positive  phase shift and a data bit 

value of '0' is encoded as a negative  phase shift. 

Two different cases of transmitter and receiver clock alignment are shown.  The upper 

clock alignment case shows a slightly diminished phase change because of a relatively 

small positive phase offset between the transmitter and receiver.  The lower clock 

alignment case shows the worst-case misalignment corresponding to a relative phase 

offset of  in the receiver and transmitter clock phases.  This results in a sampled 

phase change of zero at the 'reversal' locations.  If the transmitting and receiving clocks 

are perfectly aligned, the interpolated sampled received data (shown in dotted red in the 
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figure) and the transmitted baseband data (shown in solid black in the figure) would be 

identical at these locations. 

 

We term the portions of the preamble sequence, where the consecutive phase change 

polarity reverses, the 'phase reversal' chip positions.  The 'phase reversal' chip positions 

can be used to give an estimate of the Transmitter/Receiver (Tx/Rx) phase offset.  As 

shown in Figure 17, we can use the average value at the 'phase reversal' chip positions, 

Figure 16: Sampled OQPSK Waveform 
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which we term the 'reversal mean' (), to estimate the offset (ΔT) between the 

transmitting and receiving clock phases. 

 

6.2.2 'Internal' Chip Positions 

 In the absence of other phase noise sources, consecutive positive or negative OQPSK 

phase shifts, when sampled non-synchronously at twice the symbol rate, have an average 

Figure 17: Tx/Rx Clock Phase Offset Estimation in Sampled OQPSK 
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phase shift of +π/4 or -π/4, respectively.  We use the term 'internal' chip positions to 

describe the samples at the chip positions in a sequence of consecutive phase changes of 

the same polarity.  This does not include the samples at the edge of the sequence, where 

the polarity reverses. 

The IEEE 802.15.4 preamble zero symbol pattern and the locations of the 'phase reversal' 

and 'internal' chip positions are shown in detail in Figure 18 and Appendix A. 

The 'internal' chip positions are indicated with connecting purple lines at their base in the 

figure.  'Internal' chip positions are used by our WFP algorithms because they are less 

affected by misalignment of the receiving and transmitting clocks.  To identify the 

'Internal' chip positions, we use the Data Recovery and Framing functional block to 

synchronize to the IEEE 802.15.4 symbols. 

REVERSAL CHIP POSITIONS (orange arrows below)
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Phase differences are calculated by subtracting the phase values of successive samples 

from each other (currentprevious values).  The closest matching symbol pattern 

corresponding to the sequence given in Appendix A is determined using the following 

metric: 

(1 _ _ _ _ _ )

(1 _ _ _ _ _ )

number of chips with matching polarity

number of chips with mismatching polarity
Maximum

 
 
 




 

This metric behaves well when the number of matching bits or mismatching bits is zero.  

Rather than merely selecting the longest string with matching bits, it also favours longer 

strings with only a few mismatches, trading the two off in a reasonable way.  Even when 

there are no 'perfect' alignments possible for a given contiguous set of sampled RF 

values, WFPs can still be generated. 

6.2.3 Distribution of Alignment Errors by Chip Position 

Figure 19 shows measured phase difference values for 100 IEEE 802.15.4-compliant 

preamble sequences
3
, transmitted from an RF source (node 'B').  The phase differences in 

the first 36 (or 37) chip positions for each distinct message from the node are shown as a 

column of coloured rectangles.  The message columns are ordered by reversal mean 

along the X axis.  The phase difference value, , is shown on the Y axis as a 

proportionally-coloured rectangle for each chip position, with the earliest (chip position 

0) at the bottom of the figure. 

Blue rectangles indicate negative phase difference values (with a darker blue/purple 

indicating a more negative phase shift than expected).  Green rectangles indicate positive 

phase difference values (with a yellower green indicating a phase difference that is more 

                                                 

3
From left-to-right, the 'double-rate sampled' preamble pattern shown in Figure 18 and the rising vertical 

colour sequence in Figure 19 are identical. 
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positive than expected).  Red/orange values indicate the wrong received polarity relative 

to the expected preamble symbol, given the best alignment, as selected by our metric. 

We define the 'reversal mean' as the average of the 'phase reversal' chip values, adjusted 

by sign.  Messages in the figure are ordered horizontally in order of their reversal mean, 

The large gaps in the figure indicate that the distribution of those phase offsets is not 

completely uniform for the 100 received messages.  Alignment errors tend to occur in the 

'phase reversal' chip positions, where the phase margin is lowest. 

The solid continuous orange line at the bottom of the figure gives the total number of 

alignment errors for each message.  In the figure, there are a maximum of 4 alignment 

errors when the receiver's and transmitter's clocks are at their most misaligned (i.e. when 
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the 'reversal mean' is near zero).  Errors also occur at the other alignment extreme with 

'reversal mean values near . 

The expected phase shift value of ±is represented by the average green or average 

blue colours in the rows corresponding to the 'internal' chip positions.  Colour variation 

can be seen, indicating that the specific phase shift values are not the same at each chip 

position.  The phase shift variation varies as a function of the reversal mean.  The red or 

green rectangles at the very top of the figure (at a ‘chip position’ of about 40) indicate 

whether a particular message has alignment errors or not.  A green colour indicates that 

there are no alignment errors and a red colour indicates the presence of one or more 

alignment errors. 

Using these indicators, perfect alignments can be seen in the figure for reversal mean 

values between 0.24 and 0.76.  The exact transition values vary for different RF sources.  

However, for the RF sources that we have observed, most but not all alignment errors 

occur for reversal mean values at the extremities of the range.  The reductions in phase 

margin are also visible at the reversal chip positions, which is an expected result from our 

earlier analysis in this section. 

The consistency of phase values observed for different 'internal' chip positions in Figure 

19 is much better than for the other chip positions and depends less on the reversal mean 

values.  To improve robustness and to allow classification of samples with a wider range 

of reversal mean values, we use the 'internal' chip positions in our WFP algorithms. 

6.2.4 WFP Algorithm Handling of Symbol Alignment Errors 

Our WFP training and classification processes must be resilient to symbol alignment 

errors that result from the receiver sampling clock phase offset with the transmitter's 
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clock.  In sets of error-free samples with perfect alignments, there is no resulting chip 

position ambiguity since only one perfect alignment can exist without any phase 

mismatches using the IEEE 802.15.4 preamble pattern.  Therefore, we examine the 

effects of ignoring samples with imperfect alignments in both the training and 

classification processes and the results are presented in Section 7.2. 

The disadvantage of rejecting samples with alignment errors is the large potential number 

of rejected samples.  For example, about 50% of the samples received are rejected with 

imperfect alignments for the set of messages received from node 'B' in the trial results 

shown in Figure 19 (e.g. for reversal means less than 0.25 and greater than 0.75).  This 

percentage varies with the transmission conditions and the RF source and also depends 

on the relative phase offsets of the transmitter and receiver.  For our limited set of five 

WSN nodes, the number of perfect alignments received varied from 50% through to 85%, 

depending on the RF source in question. 

Messages could be split up into different smaller cryptographically-linked sub-messages, 

to increase the probability that at least one sub-message with perfect alignment exists.  

Power is wasted with this approach, since each sub-message will have a header that 

would not be required otherwise.  Alternatively, trusted neighbour nodes can also work 

together to classify a node.  If authentication of all messages at every node is a strict 

requirement, then re-transmission may be required or the zero-tolerance approach must 

be relaxed and any resulting reductions in classification accuracy must be accepted. 

The ratio of perfect to imperfect samples can be used as an estimate of the degree of 

phase margin over all possible states of the receiver and transmitter.  We assume that the 

initial relative alignments of the transmitter and receiver clocks are uniformly random 
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with respect to one another between messages.  Based on the specified tolerances of 

oscillators in an IEEE 802.15.4 system, the relative alignment of the two clocks varies 

slightly during a message, but much more significantly between messages (Appendix B). 

6.2.5 Residual Phase Vectors 

A phase residual value is a type of error vector magnitude specific to a PSK system and is 

defined as the measured phase change of the received samples minus the expected phase 

change value (see Figure 20).  This definition requires that received sampled values are 

framed with the preamble pattern so that the correct expected values are subtracted from 

the received data. 

Once the best alignment has been found, the definition of chip positions is complete and 

all of the 'phase reversal' and 'internal' points in the received message sample have been 

identified.  As already explained, the residual phase calculation uses only the 'internal' 

{RPVX}: Residual Phase Vector.  Discrete values in solid dots with virtual waveform in dotted blue.

Preamble

Chip

Position

Phase

{KX}: Preamble phase data (ideal and sampled).

Discrete values for preamble symbols with the same 

consecutive phase as the next symbol in solid black 

dots and those with reversing polarity in solid red 

dots.  Interpolated values in dotted blue lines.

{SX}: Received Waveform phase (analog and sampled).

Actual analog waveform in solid black line with discrete 

values with ‘internal’ chip positions in solid black dots and 

‘phase reversal’ ones in solid red dots.

Figure 20: Phase Residual Data Calculation 
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chip positions, since the phase residuals in the 'phase reversal' chip positions vary too 

much with different transmitter/receiver clock phase offsets. 

We define a residual phase vector (generally termed an ‘error vector’) as the set of the 

residual phase values for all the 'internal' chip positions in a received message.  The 

residual phase vector represents the phase deviation from a perfect signal and is 

independent of the relative phase offset of the receiver and transmitter.  The WFP 

training templates for each distinct RF source are constructed using the residual phase 

vectors. 

Mathematically: 

ˆresidual phase at chip position  =  

ˆ = measured (sampled) phase change at chip position 

expected (sampled) phase change at chip position 

: i  'intern
residual phase vector = RPV = 

i i i

i

i
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6.3 WFP Training Algorithms 

We now propose two algorithms for WFP training using the concepts explained in the 

previous section. 

6.3.1 Fixed Templates (Global Method) 

To form the WFP templates for the Global method, we calculate an average of the 

residual phase vectors for a set of training messages.  To normalize comparison between 

messages of different lengths, the templates are calculated using the same number of 

'internal' chip positions, d.  All residual phase vectors in the set of training messages are 

averaged to produce a single average residual phase value in each chip position. 
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Mathematically: 

Wireless fingerprint template = :  i   'internal' chip positions

min(largest valid 'internal' chip position index, with valid data, in  messages)

i

m

PR

m
d

d m

 
 
 
 
 







 

The result is a single average template for each of the N known RF sources that has been 

calculated over all of the m received messages from that source.  The same value of m is 

used for each RF source. 

We calculate a Global template which is an average of all of the received samples for a 

particular RF source.  Thus, the template will be at the centre of the total variability 

observed over all random alignments and over the duration of the training period.  If the 

phase residual values do not vary with the receiver/transmitter phase alignment for the 

different chip positions, then the Global template is expected to perform well. 

Furthermore, only one value for each bit position needs to be stored for each known ID.  

If storage is a primary concern, Principal Component Analysis (PCA) can be used to 

reduce the dimensions of the stored training template database (see Section 6.3.4 for an 

explanation of PCA).  In this case, all that needs to be stored are the first few PCA 

Principal Components for each known RF source and also the coefficients required to 

map the chip positions into Principal Components. 

6.3.2 Variable Templates Organized by Reversal Mean (Local Method) 

For the Local Method, we divide up the [0,/4] reversal mean interval into J sub-

intervals and attempt to find roughly k entries for each of those sub-intervals, yielding a 

total of kJ residual phase vectors, which are stored in a training database dictionary, 

organized in order of their 'reversal means'.  The WFP training templates are determined 

by first calculating the 'reversal mean' of the new sample being classified.  The template 
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in the training template dictionary with the closest 'reversal mean' value is selected for 

each known RF source and then used in the classification distance calculation.  For better 

noise tolerance, an average of the k  closest templates is used, rather than a single 

message sample. 

The time alignment of the residual phase vector template being used for classification 

should be as close as possible to that of the received message. Higher values of k or more 

sub-intervals give a finer granularity for 'reversal mean' lookup, but require more storage 

and computation.  After determining the relative clock offset between the transmitter and 

the receiver using the methods of Section 6.2.2, we select a set of samples that closely 

resemble the sample to be classified using that offset (i.e. are in the same 'zone' of phase 

marginality).  These templates can be considered to be 'local' neighbours of the sample 

being classified.  Note that multiple neighbours are required to gain some time-averaging 

advantage and also to avoid being overly sensitive to outliers in the training data set. 

By increasing the training group size, k, we are less sensitive to outliers and will get 

better averaging.  However, the cost is decreased locality, where samples that are further 

away (in terms of estimated phase offset) are included in the template.  We determine that 

a neighbourhood size of k=5 messages yielded satisfactory performance in trials 

consisting of 100 (i.e. J=20) samples, using messages with the majority of the messages 

having similar reversal means in most of the trials.  Adding more neighbours improved 

performance only marginally.  With this method, if not enough messages are received for 

a particular range of reversal means, the training period must be extended until coverage 

is adequate. 
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The main disadvantage of this method is that many more samples may need to be 

processed than are used, while waiting for samples to fill 'gaps' in the range of 'reversal 

means' (see Figure 19).  The training stage is assumed to be executed less often than the 

classification stage, so energy expended in the training stage has less of an impact on 

overall power consumption. 

6.3.3 Extending WFP Algorithms with Residual Phase Noise Filtering 

The WFP algorithm input can be pre-filtered to remove input samples which are deemed 

to be too noisy.  We have already discussed the effects of sampling on the apparent phase 

change during the training process.  The RF environment is also noisy (especially the 

2.4GHz ISM band).  Figure 21 shows the combined theoretical effects of RF noise and 

sampling noise on the digital representation of an analog RF signal.  The linear 

superposition of the two sources of noise makes the overall resulting sampled waveform 

more noisy. 

The noise has a component in both the horizontal and vertical directions.  The horizontal 

noise component motivated the design of the Local training method, which uses the 

relative phase offsets between the transmitter and receiver as an input.  The Global 

method compensates by averaging over a large enough sample of samples with different 

phase offsets. 

Misalignment of the receiver's sampling clock with the incoming data signal translates to 

uncertainty on the precise time locations of the measured sample I and Q values, relative 

to the signal detected at time zero (corresponding to the dashed green lines for the 

different i's in the upper part of the figure).  We assume that the RF signal produced by 

an RF transmitter is either constant or changes very slowly, so that noise can be defined 
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as a transient phenomenon.  'Persistent' noise correlated or synchronous with the 

transmission of messages becomes part of the signal being characterized.  Time-

averaging the measurements made over a noisy RF channel will filter out the non-

deterministic and non-constant noise. 

We have implemented the practical noise-filtering approaches of other researchers [58], 

where samples that are too far away from the template mean value are discarded prior to 

being used for training.  We determine a percentage of messages to be discarded, 

rejecting the corresponding number of the samples with the highest variance.  Another 

approach would be to use a fixed threshold for the maximum variance above which 

‘Perfect’ original RF source waveform (repeated below)

Sampled version ‘A’ of ‘Perfect’ waveform (with phase offset ‘Φ1’)

Sampled version ‘B’ of ‘Perfect’ waveform (with phase offset ‘Φ2’)

Sampled version ‘C’ of ‘Perfect’ waveform (with phase offset ‘Φ3’)

Aggregated version of the ‘A’, ‘B’ and ‘C’ sampled waveforms 

(i.e. combining samples ‘A’, ‘B’ and ‘C’ with phase offsets of ‘Φ1’, 

‘Φ2’ and ‘Φ3’, respectively) produces a higher-resolution waveform

‘Imperfect’ received analog RF waveform R1 (sampling offset ‘Φ2’)

Overlaid Superposition of received analog waveforms (R1, R2, R3)

‘Imperfect’ received analog RF waveform R2 (sampling offset ‘Φ3’)

‘Imperfect’ received analog RF waveform R3 (sampling offset ‘Φ1’)

EFFECT OF SAMPLING ON RF FP TRAINING

EFFECT OF NOISE ON RF FP TRAINING

Overlaid Superposition of received waveforms with sample points

(R1 with offset Φ1, R2 with offset Φ2, and R3 with offset Φ3) 

COMBINED EFFECT OF SAMPLING AND NOISE ON RF FP TRAINING

RF FP template derived from received noisy waveforms, R1, R2 

and R3, sampled with the different phase offfsets shown above

Φ1

Φ2

Φ3

1/FS

Figure 21: Combined Effects of Noise and Sampling During the Training Phase 
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messages are discarded.  This method is dependent on the stability of RF channel noise 

conditions.  Finding a fixed common threshold for different nodes is also difficult, if 

certain nodes are inherently noisier than others. 

6.3.4 Extending WFP Algorithms with Principal Components 

Principal Component Analysis (PCA) can be used to reduce the size of the Residual 

Phase Vector. Using Principal Component Analysis (PCA), we can determine which 

preamble chip positions are the most significant in the WFP processes.  The main 

advantage with the method is that less data needs to be stored and used for calculations.  

This is examined in more detail Section 7.5.  PCA is also useful as a tool to visualize and 

compare discrimination performance of different WFP training and classification 

methods (see Section 7.4). 

PCA automatically identifies and uses values with the maximum discriminating power, 

by transforming a set of random variables, which may or may not be correlated with each 

other, into a set of uncorrelated orthogonal random variables, called Principal 

Components (PrC).  Each of these Principal Components can be viewed as an axis onto 

which the measured data is projected linearly.  Each Principal Component is defined to 

explain as much variability as possible, with subsequent components used to explain the 

remaining variability, while also being orthogonal to the previous components. 

The first Principal Component projection axis gives the maximum possible variance in 

the projected data values.  To determine the second Principal Component, this variability 

is removed by subtraction.  Using the resulting data, the second Principal Component is 

defined in a similar greedy fashion to the way that the first was defined.  This procedure 

of identifying and removing the Principal Component dimension with the highest 
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variability is repeated a number of times up to a maximum number of Principal 

Components. 

The maximum number of Principal Components will be no greater than the dimension of 

the original dataset (which is equal to the number of chip coefficients).  However, in most 

cases, the variability in the original dataset can be captured by fewer Principal 

Components than this.  This reduction in the overall dimension of the dataset means that 

only the first few Principal Components need to be calculated to characterize most of the 

observed variability in the data, resulting in computational savings.  The exact amount of 

this reduction depends on the amount of noise in the system and can be expected to vary. 

The Principal Components have no direct correspondence with the physical world, but 

they can be expressed as a linear combination of the original variables.  A loading matrix 

is defined that transforms the set of physically meaningful random variables (i.e. phase 

residual values by chip position) to the new set of Principal Components. 

We extend our two WFP training algorithm variants using PCA as follows: 

1. The specific training algorithm being analyzed is run to establish phase residual 

values in each preamble chip position for each of the distinct IDs. 

2. The training data is centered by subtracting the mean value, taken over all 

symbols and standardized by scaling the values to have a standard deviation of 

one. 

3. A principal component analysis is performed (using an 'R' [59] routine, called 

prcomp) and the loading matrix is determined, to derive the Principal Components 

from the phase residual values at each chip position. 

To classify using Principal Components, the phase residual values are all converted into 
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their PCA representation using the loading matrix and the calculations then proceed in 

the same way as before.  For the Global training algorithm, the template for each known 

RF source is converted into PrC-space.  For the Local training method, the stored samples 

(still based on reversal mean) are each converted into PrC-space and then used in the 

same way as before (but with reduced dimensionality). 

Messages to be classified are converted into their PCA representation using the loading 

matrix and a distance metric is calculated, but the distance calculation is performed over 

all of the Principal Components, rather than over each of the chip positions.  The number 

of chip positions being used must still be standardized for template and message samples 

so that a complete and accurate PCA representation is produced. 

6.4 WFP Classification Algorithm- Distance Calculation 

Once the template database has been created using the training algorithms described in 

Section 6.3, new samples can be classified using the WFP classification algorithm.  

During this phase, the most likely RF source for a new sample is estimated, by 

calculating the classification distance to the template for each known RF source in the 

database.  This distance metric is a mean squared error calculation between the residual 

phase vector of the sample that is to be classified and the residual phase vector for each 

training database template. 

The distance metric is defined as: 

 
 normalized number of chips

2

X chip values 1

 Average X X
X

RPV TRPV


 
 
 
 

Classifier Distance

,

 

where RPV is the Residual Phase Vector of the received sample and TRPV is the 

Template Residual Phase Vector. 
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This calculation is performed over the normalized number of X 'internal' chip positions, 

which should be the same for all known RF sources, based on the proposed training 

algorithms.  The basic classification method selects the template with the lowest 

classification distance to the newly-arrived sample as the most likely RF source. 

To implement the Local training algorithm, we modify the classification algorithm as 

follows: 

 The 'reversal mean' of a newly-arrived sample is determined 

 The training sample with the closest 'reversal mean' is then found for each of the 

N  known IDs and the corresponding template information from the template 

database is used in the distance calculation above.  We modify this basic Local 

method to use the average of the k 'closest' training samples for the template of 

each known ID.  This is shown in Figure 22, where we use k=3.  The samples in 

the dotted red boxes are averaged to produce the template. 

We assume that there are a total of k●J samples stored in the training database.  J is the 

selected bin granularity value and represents the desired number of divisions of the total 

range for the 'reversal mean' indices that are being used for training sample lookup.  

Higher values of J increase the resolution for the Local training algorithm, reducing the 

average distance to the 'closest' k training samples.  This increased resolution comes at 

the expense of increased training sample storage costs. 

However, in a non-synchronous system, it is not possible to control the initial phase 

offset between the Receiver's and Transmitter's clocks.  Therefore, the 'reversal mean' 

values might not be uniformly distributed across the entire range for certain RF sources 
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(e.g. node 'D' in the figure).  To fill in these potential gaps, the training period can be 

extended until there are at least k samples in each of the J bins. 

The noise filtering techniques used in the training phase may not be applicable in the 

classification phase.  We might not want to refuse to classify a fixed percentage of noisy 

signals, as we did in the training process.  Rather, we can attempt to classify each newly-

arrived signal using our training template database and the classification distance that we 

calculate for each known RF source. 

If the two smallest classification distances are too close to each other (i.e. smaller than a 

distinguishability threshold), the classification is determined to be ‘too close to call’ and 

we fail in our attempt.  If the smallest distance is too large (i.e. exceeds a goodness-of-fit 

threshold), the classification decision is that this ID is a new one that does not exist in the 

training template database yet. 

Figure 22: Method 1: Local Training Method Without Binning 
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Figure 23 shows the classification distances between all possible combinations (without 

comparisons of messages with themselves) of 50 messages received from each of a set of 

5 different nodes.  Black points on the scatter plot correspond to points from the same RF 

source, while coloured/shaded points correspond to the distance between samples from 

different RF sources.  The classification distances between each message are plotted 

against the difference of the reversal means of those messages (i.e. samples with the same 

reversal mean have a reversal mean difference of zero). 

The dotted black line is the average classification distance for transmissions from the 

same RF source and the solid red line is the average of the distances between distinct RF 

sources.  Samples with similar phase offset () values tend to have 'nearer' classification 

distances. This is more pronounced for samples transmitted from the same RF source 

Figure 23: Classification Distances for 5 WSN Nodes 
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plotted against the difference of their  values.  This result provided the initial 

motivation for the Local training method based on using samples with similar reversal 

means in the training set. 

6.5 Implementation Issues 

There is only one Gnu Radio implementation of the IEEE 802.15.4 standard available for 

the USRP1.  In its final form, our WFP algorithm disabled most of the higher-layer IEEE 

802.15.4 functions in this software.  We require only the IEEE 802.15.4 data extraction 

and the ability to link the recovered preamble data symbols with the original baseband 

samples that produced them (at the channel filter output).  We now review other 

significant changes that we encountered when implementing and testing our WFP 

algorithms on the USRP1 platform. 

6.5.1 Squelching Threshold Decision 

When nodes are separated by large distances, the changes in the average power for 

received IEEE 802.15.4 signals are small, although still detectable.  For our experiments, 

nuisance triggering (from neighbouring IEEE 802.11g/n sources as well as microwave 

ovens) proved bad enough that our initial simple amplitude-based triggering methods had 

to be migrated over to full-symbol decoding frame detection methods, requiring the radio 

to discard samples and be 'offline' for 20 seconds out of each minute while the PC 

completes the processing backlog. 

Discarding samples in this way is acceptable, since the IEEE 802.15.4 protocol specifies 

contention-free/'beacon mode' mechanisms to ensure that nodes can operate in power-

saving sleep modes most of the time, only waking up periodically at synchronized times 

to exchange information with each other.  If not operating in 'beacon mode', then we 
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would require the same type of hardware buffers for WFP input samples that were 

already identified in Section 4.3, which are similar to the data buffers already provided on 

WSN node devices. 

6.5.2 CPU/ RF Front End Bandwidth 

Higher bandwidths for incoming demodulated data samples are almost certain to improve 

the quality of WFP measurements and also reduce the effects of phase misalignments 

between the RF source's transmission clock and the receiver's sampling clock.  However, 

our central assumption is that WFP processing at near-RF bandwidths is not feasible on 

real nodes.  This limits the increase in complexity and speed that we are prepared to 

tolerate on this interface. 

An alternative to increasing the rate is to control the phase offset between the receiver's 

sampling clock and the transmitter's clock in a more deterministic fashion.  A clock 

recovery function already exists in the receiver (on the WSN node or on the USRP1 

platform) to lock the receiver to the transmitter's symbol frequency.  Rather than adapting 

to the initial alignment of a particular message and discarding misaligned samples, as in 

our USRP1-based method, the processor could control the offset, varying it in a 

deterministic way to build up a composite WFP template with more resolution.  We did 

not perform any experiments that included this proposal, given our objective of 

integrating WFPs unobtrusively into the normal operation of a WSN node in a network. 

6.5.3 Noise Filtering 

Environments have different levels of noise at different times, making it difficult to 

devise a general method for noise filtering.  Our approach of discarding samples that are 
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too far from the WFP mean works well in different noise conditions, but adapts slowly to 

changes in those noise conditions. 

The method described in the previous section, for varying the symbol clock phase offset, 

also allows a receiver to move the WFP detection location into a 'quieter' zone.  This can 

be accomplished with a feedback loop that compares classification performance with the 

controlled phase offset.  A special training period is required where the receiver tunes 

itself, moving the phase offset until WFP classification reaches an optimal value.  

Alternatively, a set of equally spaced candidate offsets can be used and multiple WFPs 

generated at each offset for each detected neighbour.  In this work, we do not interfere 

with the operation of the clock recovery loop. 

6.6 Summary 

We reviewed the hardware and software architectures of the USRP1.  The USRP1 is a 

flexible experimental wireless platform that allows full access to demodulated baseband 

data samples.  However, the USRP1 is still representative of WSN hardware. 

We presented the concepts required to understand the two variants and different 

parameters of our WFP algorithm.  We presented the Global and Local variants and 

explained how to use Principal Components instead of chip coefficients to improve the 

efficiency of the implementation.  In the next chapter, we present the results of our 

experiments to characterize the classification accuracy of these different variants. 
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7 Chapter: USRP1 Experimental Results 

The performance results collected using the USRP1 are presented and analyzed in this 

chapter for two different implemented WFP algorithms.  The analysis and design criteria 

from the previous sections and the measured performance are used in Subsection 7.5 to 

select the best classification and training algorithm, along with a complexity analysis (for 

both processing and memory requirements) to provide insight into the relative 

implementation difficulty of the different algorithms.  Further experiments on the 

selected WFP algorithm are then presented to determine the performance: using different 

receivers, using different RF channels.  The stability of the classification performance 

over time is also measured. 

We adopt a common statistical method that has also been used by other researchers in the 

wireless fingerprinting area.  Measured data samples are randomly sub-divided into 

mutually disjoint subsets of training and classification samples and then the 

discrimination performance is measured.  This avoids favouring schemes that 'tune' to 

specific data sets. 

The training process uses measurements which do not include the samples that are then 

going to be classified.  Therefore, any rejection of samples as outliers is explicit in the 

definition of the training or classification algorithm.  By varying the widths and start time 

of the time windows used for the selection of training and classification samples, the 

stability of the training and classification algorithms can be assessed over time. 

7.1 USRP1 Experiment Design 

The RF measurements are made using an Ettus Research USRP1 SDR platform [43] with 

an RFX2400 [55] daughter board and modified GNU Radio software [53] that runs on a 
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desktop PC running version 10 of the Ubuntu Linux software operating system (see 

Section 6.1.2).  The results stored on the PC disk are post-processed using the different 

algorithms for training and/or classification.  Graphs were produced using the Dislin [60] 

software package. 

We accept the effects of small changes in the receiver and transmitter position variations 

on the WFP measurement process, since this is typical for a standard indoor residential 

environment.  However, we try to keep the RF environment as stable as possible to 

simplify our analysis.  RF measurements are made in a different indoor environment from 

the one used for the earlier WSN experiments.  The house used for the USRP1 

experiments has a cinder block construction and Gypsum walls.  Short, medium and long 

transmission distances of 1.5m, 4m and 10m, respectively, are used for our testing. 

In typical indoor conditions, long-distance testing implies the presence of intervening 

walls and floors, so we perform WFP classification using similar conditions.  While it is 

inevitable that devices can be placed in slightly different transmission positions and/or 

subject to movement, the locations and orientations of transmitters and receivers are fixed 

using marked locations on floors and tables.  The relative positions and orientations of 

the transmitters are kept constant as shown on the left side of Figure 24. 

The receivers are located 0.5m away from the exterior wall of a room at the front of the 

house and are mounted on a wooden platform, standing 0.4m off the floor.  The 

transmitters are mounted on plastic platforms at a distance of 0.9m above the floor and 

secured in place.  The right side of Figure 24 shows the SDRs arranged in ‘Position 1’.  If 

the SDR positions are reversed, the resulting arrangement is called 'Position 2', which is 

important later in Section 7.6.2. 
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To reduce the effects of deep fades,  the Short and Medium testing uses LoS visibility 

between the transmitters and receivers.  There are no intervening walls or other obstacles 

and testing takes place in a room with standard residential furnishings and construction.  

Transmissions are subject to interference from a variety of uncontrolled sources (e.g. 

IEEE 802.11g/n routers, microwave ovens).  For the long-range testing, the five distinct 

WSN RF sources are located in a separate room with tiled construction at the back side of 

the house.  This results in the transmitters being separated from the receivers by two 

intervening Gypsum walls, one of which is covered with ceramic tiles. 

All of our algorithms discard messages that do not contain enough IEEE 802.15.4 

PHysical LaYer (PHY) layer signal content to be considered valid signals.  As already 

discussed, duplicated sequence numbers and duplicated node identification codes are 

included in the content of each message.  Messages which do not have repeated identical 

versions of these data are discarded. 

Figure 24: Physical Configuration of WSN Nodes and SDRs During Testing 
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Each RF source generates a single RF message signal each second and is monitored for 

24 hours, yielding a total of over 86,000 signal transmissions from each RF source in the 

period. With current WSN technology, such a transmission rate is consistent with a 

standard battery lifetime of a few years.  While attempts have been made to maintain the 

different WSN nodes in identical transmitting positions during each experiment, the RF 

channel is not guaranteed to be stationary.  We believe that these conditions are 

consistent with the conditions in a deployed WSN network.  WFP algorithm stability over 

time is verified by comparing classification accuracy for five distinct 1-hour intervals 

spread throughout the 24-hour test period, using a 1-hour training interval at the start of 

the test. 

7.2 Classification Performance 

We measure classification performance using our two proposed methods: Global and 

Local.  For both of these methods, we compare performance using samples both without 

symbol alignment errors and also permitting them (e.g. up to thirty errors in 118 chips).  

We also compare the performance using the modified extensions of both methods using 

residual phase noise filtering and using Residual Phase Vectors based on Principal 

Components instead of chips. 

For each algorithm, we randomly select a set of 100 messages from each of two disjoint 

time intervals.  The first time interval contains the training samples, and the subsequent 

time interval contains the classification samples.  This selection process is done for each 

of 5 different RF WSN node sources (labeled, 'A', 'B', 'C', 'D' and 'E') using the same time 

intervals.  For both algorithms, this selection process is continued in parallel with the 

filtering process for chip alignment errors.  If filtering, we keep track of how many 
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messages are rejected and discarded during the selection process, until enough messages 

with acceptable alignment have been obtained. 

We use a 1:1 training to classification ratio, giving 100 training samples and 100 

classification samples.  While we do not present the results here, the classification 

performance of the Global algorithm was relatively stable to changes for this ratio (e.g. 

similar results were obtained with a ratio of 1:10).  However, the Local algorithm 

improved noticeably as more training samples were used. 

For the classification distance calculations, we use a comparison difference significance 

threshold that is low enough to mitigate the effect of round-off errors.  However, with 

such a low threshold value, the WFP algorithm rarely refuses to make a decision as being 

'too close to call'.  For this reason, we record such results as misclassification errors in 

our statistics and do not analyze them separately.  A 'new' node is identified if a sample is 

too far away from all of the known templates.  We did not test the WFP algorithm's 

ability to detect new nodes, given the relatively small size of our WSN sample set. 

If we plot the distances from the classification samples (on the Y axis) with the training 

samples (on the X axis) as a proportional colour for each of our runs, we see an indicator 

of the overall classification performance at a glance (Figure 25). 

The figure shows data collected at medium range from SDR 'BB' using the Global 

algorithm.  The messages are ordered within each of the five source-specific cells on each 

axis by their estimated  value. Tones towards the blue/dark end of the spectrum 

represent closer classification distances and yellow/red colours represent larger distances.  

A white colour represents a classification distance that is large enough to exceed the 

maximum shading scale value. 
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The classification distance averages from each cell for each classified message (i.e. each 

cell row) are displayed on the right-hand side of the figure in vertical bands.  For the 

Global algorithm, the best performance will be obtained when these vertical bands are 

uniformly dark for when training and classification samples come from identical nodes. 

A 'dominant diagonal' (transposed principal diagonal) of darker colour can be seen for the 

training and classification samples of the same nodes, indicating that the Local training 

algorithm might perform better than the Global training algorithm, since it uses the value 

of . Certain nodes (e.g. nodes ‘A’ and ‘D’) have a more pronounced diagonal than 

others (e.g. node ‘C’). This would imply less of a performance advantage with a Local 

training algorithm for node 'C'.  Darker cells off the dominant diagonal indicate nodes 

Figure 25: Classification Distances For 5 WSN Nodes (Reversal Mean Ordering) 
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that are more easily confused with each other (e.g. node 'C' might be confused with node 

'A' and node ‘E’ might be confused with node 'D'). 

7.2.1 Experimental Results - Training with Local Templates 

Figure 26 and Figure 27 illustrate the classification performance using templates derived 

using the Local training process using measurements made at a range of 4m by SDR 

‘BB’, discarding messages with detected alignment errors.  Data for different RF sources 

are plotted in different colours and marker styles.  The classification performance results 

from 100 trials are shown for each source. 

Figure 26 shows the classification performance if alignment errors are tolerated in the 

classification samples.  A ‘best’ preamble chip alignment is determined using the 

methods already described and the number of discrepancies calculated over all chip 

positions.  We permit up to 30 alignment errors to be tolerated during the classification 

stage but no alignment errors to be tolerated during the training stage. 

With this approach, the Local algorithm performance typically has an average 

classification accuracy between 43% and 47% for the worst-case node ‘C’.  If we change 

the approach and tolerate no alignment errors during classification, the results improve by 

1.4% to 9%, depending on the RF source, as shown in Figure 27 and Table 3.  The table 

shows the average classification accuracy results (and the 95% Confidence Intervals, or 

CIs) for each RF source using the two Local algorithm variants.  Average classification 

performance improves for all nodes, when samples with alignment errors are excluded.  

With rejection, classification performance is almost perfect for nodes ‘A’, ‘B’ and ‘D’. 
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Figure 27: Local Classification – No Alignment Errors Tolerated (Medium Range) 
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Figure 26: Local Classification - Alignment Errors Tolerated (Medium Range) 
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Table 3: Mean Local Training Algorithm Classification Accuracy 

Node ID: A B C D E 

Local Training Method - 

Including message samples with 

alignment errors during 

classification only 

97.65% 

[97.03%, 

98.27%] 

93.86% 

[93.14%, 

94.58%] 

44.98% 

[43.28%, 

46.68%] 

90.96% 

[89.8%, 

92.12%] 

77.37% 

[75.8%, 

78.94%] 

Local Training Method - 
No message samples with 

alignment errors included during 
classification or training 

99% 

[98.36%, 

99.64%] 

98.59% 

[98.26%, 

98.92%] 

49.69% 

[48.15%, 

51.23%] 

99.63% 

[99.44%, 

99.82%] 

85.27% 

[84.09%, 

86.45%] 

7.2.2 Experimental Results - Training with Global Templates 

Figure 28 and Figure 29 illustrate the classification performance using templates that are 

derived using the Global training process.  Figure 28 shows the performance if alignment 

errors are tolerated during classification.  Figure 29 shows the performance if samples 

with one or more preamble chip alignment errors are rejected during classification.  Table 

4 shows the average classification accuracy results (along with 95% CIs) for each RF 

source using the Global algorithm. 

Reviewing the tabulated data in Table 4, the Global algorithm average classification 

performance for nodes ‘C’ and ‘E’ improves when samples with alignment errors are 

rejected at the classification stage.  The average classification accuracy performance 

improves for all RF sources.  We now examine the effects of different rejections 

strategies on the two algorithms in more detail. 

Table 4: Mean Global Training Algorithm Classification Accuracy 

Node ID: A B C D E 

Global Method - 

Including message samples with 

alignment errors during 

classification only 

97.23% 

[96.59%, 

97.87%] 

97.23% 

[96.71%, 

97.75%] 

82.92% 

[81.73%, 

84.11%] 

95.19% 

[94.37%, 

96.01%] 

87.51% 

[85.99%, 

89.03%] 

Global Method - 
No message samples with 

alignment errors included during 
classification or training 

98.69% 

[98.13%, 

99.25%] 

99.57% 

[99.38%, 

99.76%] 

89.47% 

[88.56%, 

90.38%] 

99.78% 

[99.65%, 

99.91%] 

96.37% 

[95.87%, 

96.87%] 
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Figure 29: Global Classification – No Alignment Errors Tolerated (Medium Range) 
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Figure 28: Global Classification – Alignment Errors Tolerated (Medium Range) 
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7.2.3 Experimental Results- Performance Based on Rejection Strategy 

Table 5 shows three cases for each of the WFP algorithm variants: training and 

classification using all received samples.  Misaligned samples are discarded during 

classification only and discarding misaligned samples are discarded during both training 

and classification.  With both of the algorithms, at medium range, RF sources ‘C’ and ‘E’ 

are most often confused with other nodes (nodes ‘A’ and ‘D’, respectively).   

Table 5: Mean Classification Accuracy Comparison 

Node ID: A B C D E 
Overall 

Average 

Global Method - 

Including message samples 

with alignment errors 

during both classification 

and training 

89.85% 

[86.77%, 

92.93%] 

90.93% 

[89.41%, 

92.45%] 

77.82% 

[74.96%, 

80.68%] 

92.8% 

[91.21%, 

94.39%] 

79.96% 

[77.51%, 

82.41%] 

86.27% 

[55.27%, 

100%] 

Global Method - 

Including message samples 

with alignment errors 

during classification only 

97.23% 

[96.59%, 

97.87%] 

97.23% 

[96.71%, 

97.75%] 

82.92% 

[81.73%, 

84.11%] 

95.19% 

[94.37%, 

96.01%] 

87.51% 

[85.99%, 

89.03%] 

92.02% 

[78.93%, 

100%] 

Global Method - 

No message samples with 

alignment errors included 

during classification or 

training 

98.69% 

[98.13%, 

99.25%] 

99.57% 

[99.38%, 

99.76%] 

89.47% 

[88.56%, 

90.38%] 

99.78% 

[99.65%, 

99.91%] 

96.37% 

[95.87%, 

96.87%] 

96.78% 

[89.8%, 

100%] 

Local Method - 

Including message samples 

with alignment errors 

during both classification 

and training 

88.76% 

[87.06%, 

90.46%] 

88.25% 

[86.58%, 

89.92%] 

44.33% 

[42.35%, 

46.31%] 

93.93% 

[92.81%, 

95.05%] 

72.36% 

[70.55%, 

74.17%] 

77.53% 

[55.68%, 

99.37%] 

Local Method - 

Including message samples 

with alignment errors 

during classification only 

97.65% 

[97.03%, 

98.27%] 

93.86% 

[93.14%, 

94.58%] 

44.98% 

[43.28%, 

46.68%] 

90.96% 

[89.8%, 

92.12%] 

77.37% 

[75.8%, 

78.94%] 

80.96% 

[64.95%, 

96.98%] 

Local Method - 
No message samples with 
alignment errors included 

during classification or 
training 

99% 

[98.36%, 

99.64%] 

98.59% 

[98.26%, 

98.92%] 

49.69% 

[48.15%, 

51.23%] 

99.63% 

[99.44%, 

99.82%] 

85.27% 

[84.09%, 

86.45%] 

86.44% 

[74.36%, 

98.51%] 

Nodes ‘A’, ‘B’ and ‘D’ are rarely confused with other nodes.  Using the Global method, 



 98 

the average classification accuracy improves for all RF sources when misaligned samples 

are excluded only during classification.  When misaligned samples are discarded during 

both training and classification, average classification accuracy performance improves 

again for all RF sources. 

The mean classification performance for each RF source improves in a similar fashion 

with the Local method.  However, the variability of classification accuracy does not 

change as much as with the Global algorithm, as can be seen from the width of the 95% 

confidence intervals for the overall average, taken over all RF sources.  The classification 

for nodes 'C' and 'E' remains poor with the Local method, even after samples with 

alignment errors are discarded during both the training and the classification stages.  This 

indicates that there is a shortage of 'close' error-free templates for the specific reversal 

mean values of the messages which are misclassified. 

Although not apparent from the figures, misclassification errors occur more often at 

certain reversal mean values for specific RF sources, where symbol alignment errors are 

also occurring.  This does not mean that all messages from an RF source with a specific 

reversal mean will be misclassified.  However, errors for specific reversal means tend to 

occur 'nearby', in terms of the relative phase offset between the transmitter and receiver. 

We theorize that this is due to specific points in the sampled waveform where there is 

more phase ambiguity or phase marginality in the receiver for a particular RF source.  

Samples received with phase offsets at the extremities where wrap-around occurs (i.e. 

with a relative phase difference of 0 or π/4) are most often misclassified, as might be 

expected.  The Local method is much more sensitive to this deterioration, which might 

explain why the expected performance benefits for an algorithm that selects training 
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samples based on reversal means did not materialize. 

Increasing the number of neighbours or changing their spacing might improve the 

performance of the Local method.  This was attempted with groups of 10 or 15 

neighbours, but did not improve the classification accuracy results and is not presented 

here.  There is no functional difference between the Global and Local methods, if the 

number of neighbour nodes is increased to a very large number, so very large groups 

were not analyzed. 

The Local method could be modified to prune out samples that are in the range of the 

reversal means exhibiting error 'locality' using the rate of occurrence of alignment errors 

nearby.  However, we have also not investigated this further, given our theorized cause 

for the behaviour.  Complexity issues aside, tuning a WFP algorithm to avoid suspected 

areas of phase marginality is problematic, if these areas vary over time or with changes in 

the RF channel. 

7.3 Experimental Results- Performance With Noise-Filtering 

Rejection of outlier samples with high variability may also reject samples with symbol 

alignment errors.  The 2.4GHz version of the IEEE 802.15.4 standard uses Direct 

Sequence Spread Spectrum (DSSS) which reduces the effects of narrow-band noise by 

spreading signals across a wide frequency range.  However, if signals are noisy, we want 

the WFP training and classification algorithms to reject the corresponding samples as 

explained in Section 6.3.3. 

Using a programmable percentage threshold, we discard the most noisy received samples 

in a given time period for each given RF source before starting the training process.  In 

cases where there is little or no noise, this means that potentially valid signals are 
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discarded.  However, the advantage is that such a scheme adapts to noisier channel 

conditions automatically, provided that the programmable percentage used corresponds 

roughly to the actual percentage of noisy traffic. 

Table 6 shows the change in classification performance when noisy samples (i.e. solely 

based on the variance of the phase residual about the mean) are discarded.  The noisiest 

10% samples are discarded during the training process for each ID.  There is a 

statistically significant improvement for the average classification accuracy of node ‘A’ 

with the Local method, but the results are less conclusive for the other RF sources, with 

overlapping CIs.  The Global training method performance is identical for all RF sources 

with the two variants. 

Table 6: Mean Classification Accuracy Discarding Noisy Samples (Medium Range) 

Node ID: A B C D E 

Local Method - No training or 

classification alignment 

errors and no discarding of 

noisy samples 

99% 

[98.36%, 

99.64%] 

98.59% 

[98.26%, 

98.92%] 

49.69% 

[48.15%, 

51.23%] 

99.63% 

[99.44%, 

99.82%] 

85.27% 

[84.09%, 

86.45%] 

Local Method - No training or 

classification alignment 

errors and discarding 10% 

noisiest samples 

99.78% 

[99.64%, 

99.92%] 

98.8% 

[98.5%, 

99.1%] 

51.76% 

[50.2%, 

53.32%] 

99.8% 

[99.68%, 

99.92%] 

87.12% 

[85.95%, 

88.29%] 

Global Method – No training 

or classification alignment 

errors and no discarding of 

noisy samples 

98.69% 

[98.13%, 

99.25%] 

99.57% 

[99.38%, 

99.76%] 

89.47% 

[88.56%, 

90.38%] 

99.78% 

[99.65%, 

99.91%] 

96.37% 

[95.87%, 

96.87%] 

Global Method - No training 

or classification alignment 

errors and discarding 10% 

noisiest samples 

98.69% 

[98.13%, 

99.25%] 

99.57% 

[99.38%, 

99.76%] 

89.47% 

[88.56%, 

90.38%] 

99.78% 

[99.65%, 

99.91%] 

96.37% 

[95.87%, 

96.87%] 

Discarding of noisy samples is performed before their rejection based on alignment, so 

we conclude that the noisiest 10% also have alignment errors for the Global algorithm.  

From these medium-range experiments, the extra calculations to reject samples based on 
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excessive variance improve performance but may not be worth the required power on a 

WSN node for the Global algorithm.  However, this cost/benefit tradeoff depends on the 

application, since discarding based on noise is cheaper computationally than discarding 

based on alignment errors.  We choose to discard noisy samples, so that the Local and 

Global algorithms both perform at their highest level before we select the better of the 

two. 

7.4 Principal Component Analysis-based WFP Algorithm Variant 

Figure 30 shows the first three calculated Principal Component values for randomly 

selected messages received from five different RF sources using the Global training 

algorithm (with up to 30 alignment errors tolerated during the classification process and 

none tolerated during the classification process).  The text labels next to each data point 

on the plot indicate the actual RF source ID letter followed by a unique numerical 

message ID (whose numerical value has no significance).  The colour of the label is 

chosen to simplify the viewer's discrimination between the different RF sources. 

The first Principal Component (PrC1) is displayed on the X axis and the second Principal 

Component (PrC2) is displayed on the Y axis, with the third Principal Component (PrC3) 

being shown as the colour (Z axis) of the square data point.  The figure includes an inset 

bar chart showing the variability that is explained by the different Principal Components.  

The differences in the phase residual data for each ID can be seen as distinct clusters 

using the first two components alone.  The third Principal Components is indicated using 

the colour of the data point in the figure.  Therefore, geometrically-overlapping points on 

the graph are still distinguishable, provided the square colour is different. 

The proportion of the variability that is being explained by each Principal Component 
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(and all of its predecessors) is shown using dark purple bars and the remaining variance 

that is still to be explained is indicated using adjacent red bars.  The proportion of the 

variability converges to a value of 100% with all of the Principal Components and the 

remaining variance converges to a value of zero. 

In our classification experiments at medium range, for both SDRs, the first and second 

Principal Components explained over 65% of the variability for node ‘C’, and over 90% 

of the variability or higher for the other nodes.  From Figure 30, node ‘C’ is most often 

confused with node ‘A’ and this was also apparent from Figure 25.  In the figure, the first 

three Principal Components explain an average of 96.4% of the variability of the sampled 

data, giving a good representation of the classification performance for the five nodes 

1.02

0.60

0.19

-0.23

-0.65

-1.06

-1.48

-1.90

0
.0

9

-0
.2

4

-0
.5

8

-0
.9

1

-1
.2

5

0
.4

3

0
.7

6

1
.1

0

PrC1

P
rC

2

Node A
Node B
Node C

Node D

Node E

Figure 30: PCA Representation of Samples Received From Five Different RF Sources 



 103 

although the classification accuracy for node ‘C’ is still bad. 

The messages that overlap in PrC-space are typically the messages that resemble each 

other and that are misclassified.  The messages visible in the figure that are located 

outside the five main clusters all disappear if no errors are tolerated during classification.  

The classification accuracy performance obtained using PCA-based classifiers for both 

training algorithms is summarized in Table 7. 

The table is based on medium range data and no alignment errors are tolerated in any of 

the training methods.  Note that PrC5 classification accuracy is obtained when using all 

of the first five Principal Components.  As a reference, we include the results obtained 

earlier using the data taken directly from all chip positions. 

The classification performance results with PCA are generally poorer than the results 

obtained using all of the phase residual values in each chip position, especially when 

extending the Global method.  The differences in classification performance are most 

obvious when the sample variance is highest (e.g. with nodes 'C' and 'E'), which might be 

expected given that the Principal Component dimensions are aligned with maximum 

variability of the dataset. 

With both WFP algorithm variants, the classification accuracy mean does not always 

continue to improve as more Principal Components are added, which may indicate 

calculation round-off error for the Global method.  The performance deterioration for 

node ‘C’ with more Principal Components with the Local method is not understood.  To 

optimize the worst-case performance, over all RF sources, the Global training method 

(with no tolerance for alignment errors during the training and classification stages) gives 

the best classification accuracy being over 89% for all WSN RF sources. 
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Table 7: Mean Classification Accuracy Using Principal Components 

 
Node 

ID 
Principal 

Component 
number 

A B C D E 

Method  

Local Training 

Method - No 

Alignment Errors 

using Principal 

Components 

PrC1 
93.68% 

[93.0%, 

94.4%] 

84.2% 

[83.1%, 

85.3%] 

74.63% 

[73.5%, 

75.7%] 

97.8% 

[97.4%, 

98.2%] 

67.76% 

[66.3%, 

69.3%] 

PrC2 
95.96% 

[95.4%, 

96.6%] 

96.16% 

[95.7%, 

96.7%] 

73.35% 

[72.4%, 

74.4%] 

99.14% 

[98.8%, 

99.4%] 

92.68% 

[92.0%, 

93.4%] 

PrC3 
97.1% 

[96.6%, 

97.6%] 

98.84% 

[98.5%, 

99.1%] 

69.92% 

[68.6%, 

71.2%] 

99.8% 

[99.7%, 

99.9%] 

88% 

[87%, 

89%] 

PrC4 
99.59% 

[99.4%, 

99.8%] 

99.08% 

[98.8%, 

99.4%] 

56.47% 

[54.9%, 

58.1%] 

99.8% 

[99.7%, 

99.9%] 

86.78% 

[85.8%, 

87.8%] 

PrC5 
99.59% 

[99.4%, 

99.8%] 

99.06% 

[98.8%, 

99.4%] 

56.31% 

[54.7%, 

57.9%] 

99.8% 

[99.7%, 

99.9%] 

86.74% 

[85.7%, 

87.7%] 

Local Training 

Method - No 

Alignment Errors 

using Chip Positions 

(N/A) 
99.78% 

[99.6%, 

99.9%] 

98.8% 

[98.5%, 

99.1%] 

51.76% 

[50.2%, 

53.3%] 

99.8% 

[99.7%, 

99.9%] 

87.12% 

[86.0%, 

88.3%] 

Global Training 

Method - No 

Alignment Errors 

using Principal 

Components 

PrC1 
88.59% 

[87.7%, 

89.5%] 

83.08% 

[81.8%, 

84.3%] 

74.53% 

[73.3%, 

75.8%] 

92.1% 

[91.3%, 

92.9%] 

70.51% 

[69.0%, 

72.0%] 

PrC2 
93.41% 

[92.7%, 

94.1%] 

98.9% 

[98.6%, 

99.2%] 

78.82% 

[77.8%, 

79.9%] 

99.76% 

[99.6%, 

99.9%] 

91.9% 

[91.2%, 

92.6%] 

PrC3 
95.84% 

[95.1%, 

96.5%] 

99.47% 

[99.3%, 

99.7%] 

81.73% 

[80.7%, 

82.8%] 

99.59% 

[99.4%, 

99.8%] 

93.17% 

[92.5%, 

93.8%] 

PrC4 
97.27% 

[96.5%, 

98.1%] 

99.37% 

[99.1%, 

99.6%] 

88% 

[87%, 

89%] 

99.53% 

[99.3%, 

99.7%] 

92.78% 

[92.1%, 

93.4%] 

PrC5 
97.33% 

[96.5%, 

98.1%] 

99.39% 

[99.2%, 

99.6%] 

87.92% 

[87.0%, 

88.9%] 

99.51% 

[99.3%, 

99.7%] 

92.74% 

[92.1%, 

93.4%] 

Global Training 

Method - No 

Alignment Errors 

using Chip Positions 

(N/A) 
98.69% 

[98.1%, 

99.3%] 

99.57% 

[99.4%, 

99.8%] 

89.47% 

[88.6%, 

90.4%] 

99.78% 

[99.7%, 

99.9%] 

96.37% 

[95.9%, 

96.9%] 
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7.5 WFP Training/Classification Algorithm Complexity Analysis 

We now present a brief complexity analysis for each algorithm considered.  We estimate 

the number of processing operations required for classification and the amount of storage 

necessary for each training algorithm and summarize the results in Table 8 using a 'big O' 

nomenclature with the following parameters: 

 T = number of training samples stored for each RF source ID.  A larger value of T 

gives more lookup granularity.  For the Local training algorithm, T could be 

viewed as a product k●J, where k is the number of 'close' neighbour values to be 

used in the calculation (stored in an ordered list in memory) and J is the effective 

number of reversal mean bins used for the lookup.  For the Global training 

algorithm, T has a value of 1, since a single average template is stored for each RF 

source ID. 

 N =  number of 'known'/encountered RF source IDs 

 b = number of chip positions used for residual phase calculations 

 A=number of processing cycles used to estimate the phase offset using the 

reversal mean.  A is less than O(b), since the reversal mean calculation is 

performed with a subset of the total number of chip samples (i.e. the ones at the 

positive and negative reversal points of the preamble phase shift sequence) 

 C = number of processing cycles used to estimate the phase residual values used 

in a template.  This is assumed to be equivalent to an average calculation based on 

evaluated phase residuals. 
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The Global training algorithm requires considerably less storage for templates, since only 

a single set of parameters is required for each known ID compared with the requirement 

for an indexed and comprehensive database of samples for the Local method.  The Global 

training algorithm also requires fewer lookups and computations during the classification 

process.  For the Local algorithm, multiple ‘neighbouring’ samples are averaged 

dynamically for each known ID, based on the input sample's reversal mean value, to 

derive a classification distance calculation template. The Global algorithm requires no 

such calculation, merely retrieving the single stored template value for each known ID. 

Table 8: Complexity Analysis for Training Algorithms 

Training 

Algorithm 

Training 

Template Storage 
Classification Computations 

Local 

(chip-based) 
O (TNb) 

O (T
2
) for list lookup, O (A) for reversal 

mean calculations and O(kNbC) for N 

distance calculations 

Global 

(chip-based) 
O (Nb) 

O (N) for list lookup, O (NbC) for N 

distance calculations 

Local 

(PCA-based) 
O (TN

2
) 

O (T
2
) for list lookup, O (A) for reversal 

mean calculations, O (Nb) for PrC-space 

conversion and O (kN
2
C) for N distance 

calculations 

Global 

(PCA-based) 
O (N

2
) 

O (k) for list lookup O (N
2
C) for N distance 

calculations 

The PCA-based versions of the algorithms are more efficient in terms of classification 

computation complexity and training storage complexity, when the number of Principal 

Components is significantly less than the number of chip positions being used for training 

and classification.  However, the computation of the templates during training is more 

complicated than the non-PCA extensions of the algorithms since extra calculations are 

required to move each template into PrC-space.   This may be acceptable, given our 

assumption that training is not performed as often as classification.  The calculation of 
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these Principal Components are based on Eigenvalue decomposition, which can be 

reduced to a complexity of O(N
2
) [61] with O(Nb) storage size complexity for the 

loading matrix. 

From Table 5, it can be seen that the Global training method has better discrimination 

accuracy than the Local algorithm and is more feasible for implementation on a WSN.  

This implementation cost is measured both in terms of the number of classification CPU 

cycles and the amount of WSN node memory that is required to store the template 

information.  Based on all of these results, we select the Global algorithm with no 

tolerance for alignment errors during training or classification as our method for further 

analysis.  In the next subsection, we analyze the variations in performance for that 

algorithm alone. 

7.6 Performance Variation 

In this section, the selected Global WFP algorithm classification performance is studied 

using different receiver devices and under different RF channel conditions, and is also 

examined for stability over time. 

7.6.1 Experimental Results- Receiver Effects 

Five transmitting WSN nodes (labeled ‘A’, ‘B’, ‘C’, ‘D’, ‘E’) and two USRP1 SDR 

receiving devices (labeled ‘AA’ and ‘BB’) are used.  The results presented so far use 

SDR 'BB' as the receiving device.  The differences in classification accuracy, when using 

both SDR 'AA' and 'BB', are now analyzed in more detail. 

We measure classification performance differences due to variations in the two receivers 

over different distances.  The Global algorithm is used for classification, rejecting 

messages with alignment errors at both the classification and training stages.  The 
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training and classification samples are randomly selected from data collected over a 24-

hour test period (with the training samples always being selected to occur before the 

classification samples). 

To achieve this, logged data is processed to delete individual transmissions not observed 

by both SDRs.  Since transmissions are not synchronized, collisions can also occur 

during the testing process.  Messages with invalid WSN node EEROM codes or non-

identical sequence numbers are not included in the results.  Classification accuracy 

generally deteriorates with increasing transmission distance for both SDRs. 

 

Figure 31: Mean Classification Accuracy for Two Receivers- Three RF Channels 
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Figure 31 shows the classification accuracy, averaged over all 5 RF sources, for both 

SDRs for the three different transmission distances used in our experiments. From the 

previous results with SDR 'BB' at medium range, we saw that WSN nodes 'C' and 'E' are 

classified more poorly.  The average classification accuracy performance over all 100 

trials for each RF source for both receivers is summarized in Table 9 over the different 

transmission distances. 

Table 9: Mean Classification Accuracy (Simultaneous Reception) 

Transmission 

Range 

WSN 

Node 

SDR ‘AA’ Average 

Classification Accuracy 

(std. dev.) 

SDR ‘BB’ Average 

Classification Accuracy 

(std. dev.) 

Short 

(1.5m LoS) 

A 99.88% [99.78%, 99.98%] 97.43% [96.93%, 97.93%] 

B 99.84% [99.72%, 99.96%] 99.53% [99.27%, 99.79%] 

C 99.94% [99.87%, 100.01%] 99.96% [99.90%, 100.02%] 

D 100% [100%, 100%] 99.87% [99.77%, 99.97%] 

E 99.61% [99.34%, 99.88%] 99.62% [99.35%, 99.89%] 

Average 99.85% [97.98%, 100%] 99.28% [95.61%, 100%] 

Medium 

(4m LoS) 

A 99% [98.73%, 99.27%] 98.69% [98.13%, 99.25%] 

B 99.96% [99.90%, 100.02%] 99.57% [99.38%, 99.76%] 

C 67.49% [66.13%, 68.85%] 89.47% [88.56%, 90.38%] 

D 99.67% [99.52%, 99.82%] 99.78% [99.65%, 99.91%] 

E 95.57% [94.88%, 96.26%] 96.37% [95.87%, 96.87%] 

Average 92.34% [83.32%, 100%] 96.78% [89.8%, 100%] 

Long 

(10m with 

intervening 

walls) 

A 75.89% [74.41%, 77.37%] 66.14% [64.42%, 67.86%] 

B 92.34% [91.60%, 93.08%] 98.29% [97.90%, 98.68%] 

C 74.56% [73.21%, 75.91%] 66.08% [64.46%, 67.70%] 

D 77.63% [76.36%, 78.90%] 94.13% [93.27%, 94.99%] 

E 90.64% [89.72%, 91.56%] 83.51% [82.49%, 84.53%] 

Average 82.21% [66.81%, 97.62%] 81.63% [65.69%, 97.57%] 

The table shows the variation in WFP classification accuracy, for the two different 

receivers, for three different 25-hour tests (each conducted over a different transmission 

distance).  Tests were conducted over the same 25-hour daily interval (from 18:00 on the 

first day to 19:00 on the following day).  We randomly select training samples between 
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18:00 and 23:00 on the first day and randomly select classification samples between 

23:00 on the first day and 4:00 on the following day.  We do this at the same time of day 

for each of the three distances. 

Between receivers, there are differences in the measured samples for the same WSN node 

transmissions and there are also differences between sources.  At medium range, WSN 

node 'C' is classified better at SDR 'BB' than at SDR 'AA'.  At long range, there are 

significant differences between the two SDRs for all WSN nodes.  Strong statements 

about differences in the classification accuracy average, taken over all RF sources, are 

not possible, because of the large 95% CI for the two SDRs.  Figure 32 and Figure 33 

show the classification accuracy results for each individual trial for the medium-range 

and long-range experiments, respectively. 

At short range, classification is close to perfect for all RF sources, with the exception of 

node A at SDR BB with an average classification accuracy of 97%.  There is also larger 

variance about that mean than for any other source node/ SDR combination at this 

transmission range.  In general, larger classification accuracy variability is associated 

with poorer classification accuracy mean performance, which deteriorates as transmission 

distances are increased. 

At medium range, WSN nodes ‘A’, ‘B’ and 'D' are classified almost perfectly by both 

SDRs and both SDRs have more difficulty classifying nodes ‘C’ and ‘E’.  At the longer 

transmission distances, node 'C' classification accuracy is the poorest and the most 

variable for both SDRs.  However, this is not the case at short range. 

The same SDR is not always better at identifying the same source as can be seen by 

comparing the data for the medium and long transmission ranges for node ‘C’ in Table 9.  



 111 

SDR ‘AA’

SDR ‘BB’

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Trial Number

C
la

s
s

if
ic

a
ti

o
n

 S
u

c
c

e
s

s
 P

e
rc

e
n

ta
g

e

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Trial Number

C
la

s
s

if
ic

a
ti

o
n

 S
u

c
c

e
s

s
 P

e
rc

e
n

ta
g

e

0

0%

Figure 32: Simultaneous Classification Performance for Two SDRs (Medium Range) 
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Figure 33: Simultaneous Classification Performance for Two SDRs (Long range) 
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Different gain settings in the USRP1 give similar results; we also used different settings 

of 65dB and 85dB from the nominal 45dB value.  The difference in SDR classification is 

probably due to different levels of phase noise present in the receive signal path of the 

receivers or might be caused by RF channel discrepancies. 

Our knowledge of the hardware and the sample size of two USRP1 receivers is too small 

to make any definitive statements about the first source of variability, but we study the 

differences from the RF channel in the next section.  The RF channel cannot be assumed 

to be identical for the three different tests, since they were each held a day apart.  

However, daily variations from Internet activity or temperature changes are likely to be 

similar. 

Figure 34 shows the results from six random trials, viewed in PrC-space, taken at the 

three different transmission ranges, using both SDRs.  Classification accuracy is similar 

for the two SDRs for each of the different RF sources over distance.  The relative 

classification distances between the different RF sources are not identical at each SDR 

and this can be seen using PCA.  For example, the tighter clustering for node 'D' at SDR 

'BB' at long range is apparent and the classification performance variation for node 'C' at 

medium and long range is also visible for both SDRs. 
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7.6.2 Experimental Results- RF Channel Effects 

The receiving antennas of the two SDRs are arranged with a separation of 26 cm between 

them, corresponding to two 2.4GHZ wavelengths.  This yields uncorrelated 

measurements for the two receivers [62].  The antennas of the WSN nodes are set in a 

vertical position and aligned to be in the same orientations as each other (flat sides 

oriented towards the receivers).  

SDR AA (Medium Range) SDR BB (Medium Range)

SDR AA (Long Range) SDR BB (Long Range)

SDR AA (Short Range) SDR BB (Short Range)

Node A
Node B
Node C

Node D

Node E

Figure 34: Principal Component Analysis (Classification Accuracy Variation) 
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During the experiment, small movements in the positions of the WSN nodes and the SDR 

antenna affected the numbers of transmissions that were simultaneously observed by both 

SDRs.  An attempt was made to make transmission conditions as similar as possible for 

each node, but variability was observed in spite of these efforts.  We accept this variation 

as a practical constraint and assume that such conditions could also exist in a real 

network. 

To determine whether the classification accuracy is affected more by the receiver or by 

the RF channel, we repeat the long-range 25-hour experiment using the spatially-diverse 

SDR antenna spacing.  Rather than co-locate the antennas to create an identical RF 

channel, each SDR was positioned in the same location previously occupied by the other 

SDR, which we term 'Position 2'.  We attempt to keep wiring and all other surrounding 

objects in the same positions as with the original 'Position 1' (see Figure 24).  The same 

nominal gain setting (45 dB) is used for all transmission ranges. 

While it is unlikely that the RF environments are exactly identical for the two positions, 

they should be very similar.  The two SDRs have the same metal enclosure and their 

antenna positions were set up to be as similar as possible.  The RF sources were also 

maintained in their previous position, although a slight lateral movement of about 1cm 

was required for the RF source mounting platform to ensure approximately the same 

arrival rate of messages from all RF sources at both SDR receivers. 

Table 10 shows the average classification accuracy for each SDR in each of the two 

locations for each RF source.  Classification accuracy deteriorates for nodes ‘B’ and ‘E’ 

on both SDRs in Position 2.  Node ‘C’ is recognized more consistently by both SDRs in 

Position 2.  Node ‘A’ and ‘D’ classification are less affected by the change in position. 



 116 

The upper portion of Figure 35 plots the same long-range data in bar chart form.  The 

lower portion of Figure 35 plots the differences between the classification accuracies, 

grouped in two different ways.  One set of bars (in green and red) plots the differences in 

average classification accuracy between the two SDRs at a specific position.  The other 

set of bars (in blue and yellow) plots the difference in average classification accuracy 

between the two positions, for each SDR. 

Table 10: Mean Classification Accuracy for Different Locations (Long Range) 

Original Position (Position 1) N

o

d

e 

New Reversed Position (Position 2) 

SDR AA 

Classification 

SDR BB 

Classification 
Mean 

SDR AA 

Classification 

SDR BB 

Classification 
Mean 

75.89% 

[74.41%, 

77.37%] 

66.14% 

[64.42%, 

67.86%] 

71.02% 

[64.10%, 

77.94%] 
A 

74.10% 

[72.63%, 

75.57%] 

59.08% 

[57.35%, 

60.81%] 

66.59% 

[59.70%, 

73.48%] 

92.34% 

[91.60%, 

93.08%] 

98.29% 

[97.90%, 

98.68%] 

95.32% 

[92.77%, 

97.87%] 
B 

76.55% 

[75.23%, 

77.87%] 

90.08% 

[89.13%, 

91.03%] 

83.32% 

[78.37%, 

88.27%] 

74.56% 

[73.21%, 

75.91%] 

66.08% 

[64.46%, 

67.70%] 

70.32% 

[63.90%, 

76.74%] 
C 

98.61% 

[98.31%, 

98.91%] 

97.92% 

[97.51%, 

98.33%] 

98.27% 

[96.73%, 

99.81%] 

77.63% 

[76.36%, 

78.90%] 

94.13% 

[93.27%, 

94.99%] 

85.88% 

[81.22%, 

90.54%] 
D 

69.30% 

[68.01%, 

70.59%] 

97.35% 

[96.80%, 

97.90%] 

83.33% 

[79.06%, 

87.60%] 

90.64% 

[89.72%, 

91.56%] 

83.51% 

[82.49%, 

84.53%] 

87.08% 

[82.9%, 

91.26%] 
E 

55.43% 

[53.76%, 

57.10%] 

46.57% 

[45.26%, 

47.88%] 

51.00% 

[44.53%, 

57.47%] 

Looking at the lower portion of the figure, we see that the receiver and the RF channel 

both have an effect on classification performance.  The difference in classification 

accuracy, either for a different receiver or at a different location, depends on the RF 

source in question.  There are still certain RF sources which are classified better by a 

specific SDR, most notably node 'D', which is classified between 17% and 28% better by 

SDR BB than SDR AA, depending on the RF channel being used. 
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Figure 35: Mean Classification Accuracy by Source- Two Receiver Positions 
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For a given SDR, Nodes 'A', 'B' and 'D' are the least sensitive to changes in the RF 

channel.  The 95% confidence intervals include zero for the yellow and blue bars for 

these nodes.  Node ‘C’ and node 'E' classification accuracy are affected by the RF 

channel, with node 'C' almost always being classified better in Position 2 and node 'E' 

almost always being classified better in Position 1.  This is consistent between SDRs, 

indicating that the RF channel is a more significant factor than the SDR for these two RF 

sources. 

7.6.3 Experimental Results- Performance Stability over Time 

The WFP generated by an RF device could vary over time.  For example, the electrical 

oscillators used in these devices often increase their frequency as the crystal inside the 

oscillator gets lighter over time.  Generally, collecting data over months or even years is 

required to observe such changes in electronic performance.  Because of the 

impracticality of these timescales, we do not measure the performance stability for 

electronic device changes that are due to aging.  Subjecting devices to large voltage 

and/or temperature extremes or mechanical shaking can sometimes be used to accelerate 

changes in device performance over time.  However, we cannot afford the potential 

device casualty risks associated with these methods, even if the performance changes 

resulting from them are representative of the ones arising from normal aging. 

RF device performance is also affected by fluctuations in the power supply voltage.  

WSN nodes are often powered by a single battery, whose voltage can change over time.  

The characteristics of this deterioration vary with different battery technologies.  Device 

operation is guaranteed within a specified range of voltages and the RF IC devices used 

on WSN nodes often have internal voltage regulation circuits, to generate stable internal 
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voltages, even when battery voltages vary.  For example, the voltage regulator used in the 

RF device on our WSN node accepts an input supply range of 2.1V to 3.6V.  Therefore, 

performance variation over time with different battery voltages is unlikely. 

In a practical network, the temperature will vary as a function of the time of day.  For 

example, temperatures go up as the sun rises.  Also, there are seasonal changes as the 

average height of the sun changes and as the heating and ventilation patterns in buildings 

change with these conditions.  Temperature changes can affect electronic device 

performance.  For example, colder CMOS technology parts tend to have faster signal rise 

times and shorter propagation delays.  Scientific measurement of the performance of 

devices over different temperature is not straight-forward, especially one with industrial 

temperature ranges (e.g. -40 to 85 degrees Celsius) like ours.  Calibrating the actual 

temperature of the die of an integrated circuit requires the use of thermocouples attached 

directly to the device package and detailed knowledge of the thermal characteristics of 

that package. 

Without measuring classification performance using more controlled conditions, we do 

not make strong claims about the stability of WFPs with temperature variations.  

However, we attempt to reduce such effects while measuring the performance variation 

over time.  We have already analyzed WFP variation with receiver changes in Section 

7.6.1 and with the RF environment in Section 7.6.2. 

The experiments in this section were conducted using the same indoor locations for 

transmitters and receivers over a 25-hour period and we have identified the night time as 

a ‘quiet’ period of relative stability in the RF environment.  While average outdoor 
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temperatures decreased by about five to ten degrees Celsius from their initial value 

during the daylight hours, they remained relatively stable overnight. 

We examine the stability of the WFP classification process as a function of time and use 

the quieter period of the day for the training interval.  Measurements for the five different 

RF sources that we tested were made over three consecutive nights using the three 

transmission distances described already.  All five RF sources were transmitting 

simultaneously.  Classification was studied in successive intervals (Figure 36). 

We use the same statistical cross-validation technique to measure classification 

performance as before, but use disjoint time intervals for the selection of the training and 

classification samples as shown.  We randomly select the training samples from the 

relatively quiet one-hour time period (interval 0) which starts at midnight.  We then 

randomly select classification samples from one of the five subsequent disjoint one-hour 

time intervals and the results are shown in Figure 37. 

The training interval has the same duration as each of the different classification 

intervals, but the classification intervals are offset by two hours from each other.  The 

classification accuracy averages for each RF source in each time interval are shown in 

Figure 38.  The Y axis displays the classification success percentage rate average, 

calculated over the 100 trials and the X axis is broken into subsections for each RF source 

m
s
g

m
s
g

m
s
g

m
s
g

m
s
g

Time

Training

Interval 0

Classification 

Interval 1

m
s
g

m
s
g

m
s
g

m
s
g

m
s
g

m
s
g

m
s
g

m
s
g

m
s
g

Classification 

Interval 2

Classification 

Interval 3

Classification 

Interval 4

m
s
g

00:00 08:0003:0002:00 06:00 11:0001:00 05:00 09:00 12:00

m
s
g

m
s
g

m
s
g

Classification 

Interval 5

14:00 15:00
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Figure 37: Classification Accuracy During Different Time Intervals (Medium Range) 
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with the results from each classification interval shown for both receiving SDRs.  

SDR AA is shown with the five blue/green bars on the left in each cell.  SDR BB is 

shown with the five pink/orange bars on the right.  The vertical line at the top of each bar 

is a 95% confidence interval centered at the mean value. 

Average classification accuracy varies less than 1% for all nodes during the measurement 

period, except for nodes 'C' and 'E', with worst case degradations of 2.5% and 7.7%, 

respectively.  For node 'E', the 7.7% degradation occurs during the fourth interval at SDR 

AA.  SDR BB is also affected at the same time, but to a smaller degree, which indicates 

some kind of change in the RF source or RF channel that affects that RF source (the 

classification of other nodes is stable).  In the final interval, average classification 

accuracy recovers at both SDRs for node ‘E’.  In general, the variation in classification 

accuracy for any given node/SDR combination is very consistent. 

Figure 38: Mean WFP Classification Accuracy Over Time (Medium Range) 
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7.7 Summary of Results 

In this chapter, we presented the classification accuracy results for our USRP1-based 

WFP algorithm.  We determined that the best performance is obtained using the Global 

algorithm, rejecting samples with alignment errors during both training and classification.  

The Local WFP algorithm has generally poorer performance.  Computations and storage 

are both more expensive. 

In our testing at medium range, the noisiest 10% of samples also contain alignment 

errors.  Our selected WFP algorithm rejects these same samples, so removing them has 

no effect on the classification performance.  Noise filtering is a computationally-

inexpensive pre-processing step before the WFP algorithm.  Therefore, it can still be used 

to reduce the number of samples being processed for training or classification. 

We used Principal Component Analysis as a basis for WFP classification, with poorer 

results than either of the other two methods.  However, this technique is useful for the 

visualization of classification results.  PCA can reduce WFP algorithm calculation 

complexity, when large numbers of chip coefficients are being used with small numbers 

of templates. 

Specific RF sources are classified more accurately on specific receivers and others are 

classified more accurately over specific RF channels.  Generally, the difference in the 

relative classification performance of receivers for a specific RF source remains stable 

over different RF channels, implying that this receiver performance advantage is affected 

more by an interaction between the receiver and the transmitter than by variations in the 

RF channel.  We observed other nodes where the receiver relative performance advantage 

changed more strongly with the RF channel. 
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For a given source/receiver pair and RF channel, our WFP algorithm classifies 

consistently over time, with an average classification accuracy variation which is always 

less than 8% (and usually less than 2%) in a 12-hour measurement period.  Note that the 

RF channel propagation characteristics during our experiment are controlled (i.e. no 

intentional transmitter or receiver movement), but radio interference conditions are not 

controlled at all.  We conclude that our WFP algorithm has stable classification 

performance for a given pair of stationary transmitter and receiver devices, 

communicating over a realistic RF channel. 
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8 Chapter: Wireless Fingerprints at the Network Layer 

With human fingerprints, it is useful to be able to identify the fingerprint of an individual 

based on measurements made in different countries under different conditions of 

temperature, humidity, etc. by different police forces.  Similarly, in a wireless network, if 

a WFP is stable or changes predictably under different RF conditions and with different 

receiving devices, identification using WFPs is facilitated. 

We present the results of an experimental study that uses templates generated by a 

different node than the one which is classifying a particular RF source.  We show that 

classification performance is comparable to the case when using templates that are 

generated directly on the classifying node.  If the templates generated by the non-

classifying node are generated over a shorter distance to the RF source, classification 

performance is shown to be better than when using templates that are generated locally 

over a longer range. 

Provided node classification results are significantly different and independent of each 

other, WFP classification decisions can be aggregated over multiple nodes (perhaps 

weighted by proximity to the source node) to improve overall classification accuracy.  

Further, the WFP templates themselves might be aggregate-able, although investigation 

of detailed algorithms to achieve this is left for future work. 

We present a statistical analysis of the relative WFP misclassification error performance 

between different USRP1 receivers, when classifying the same messages from each of 

the five WSN RF sources.  We analyze the USRP1 WFP classification errors for 

independence.  We also present the results of a statistical analysis of paired message data 

to measure the value of producing WFPs on different nodes. 
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We can use WFPs to establish security in a network.  A small amount of high-level 

research has been performed showing how RF Fingerprints might be used in Intrusion 

Detection systems [10][36].  In Section 8.6, we present a new method to derive a shared 

secret key that is valid for a group of nodes in a neighbourhood that contain both honest 

and malicious nodes [6].  The WFP is used to provide an authentication service and is 

incorporated tightly into the execution of the protocol.  In this way, the message source 

and the message contents are tied together during protocol execution. 

8.1 Experimental Results- WFP Template Alternative (Different Receiver) 

Table 11: Mean Classification Accuracy With Partner Training Data (Long Range) 

Training 

Data 
AA BB BB AA 

Classification 

Data 
AA BB AA BB 

A 
75.89% 

[74.41%, 77.37%] 

66.14% 

[64.42%, 67.86%] 

71.64% 

[70%, 73.28%] 

70.95% 

[69.69%, 72.21%] 

B 
92.34% 

[91.6%, 93.08%] 

98.29% 

[97.9%, 98.68%] 

94.79% 

[94.06%, 95.52%] 

97.22% 

[96.75%, 97.69%] 

C 
74.56% 

[73.21%, 75.91%] 

66.08% 

[64.46%, 67.7%] 

75.04% 

[73.59%, 76.49%] 

67.05% 

[65.55%, 68.55%] 

D 
77.63% 

[76.36%, 78.9%] 

94.13% 

[93.27%, 94.99%] 

78.68% 

[77.53%, 79.83%] 

91.78% 

[90.9%, 92.66%] 

E 
90.64% 

[89.72%, 91.56%] 

83.51%  

82.49%, 84.53%] 

87.95% 

[86.89%, 89.01%] 

87.23% 

[86.22%, 88.24%] 

Overall 

Average 

82.21% 

[66.81%, 97.62%] 

81.63% 

[65.69%, 97.57%] 

81.62% 

[65.44%, 97.80%] 

82.85% 

[68.78%, 96.91%] 

Table 11 tabulates the average classification accuracy results for a 25-hour long-range 

experiment, in which each SDR classifies incoming samples using the templates 

generated by another SDR.  This experiment indicates that different receiving nodes may 

be able to share WFP template information or collaborate using their WFP template 

information across a network.  The same time intervals are used for training and 



 127 

classification by both SDRs with the receivers arranged in Position 1.  The same methods 

are used for random sample selection as in the previous experiments. 

The upper portion of Figure 39 shows the tabulated results and the lower portion of the 

figure shows some pertinent sets of differences in the different cells, along with their 

95% confidence intervals.  The red/green bar set in the lower portion shows the 

difference between SDR AA and SDR BB classification accuracy when both SDRs are 

using templates generated by SDR AA or SDR BB, respectively.  The blue/yellow bar set 

shows the change in classification accuracy at the same SDR (either SDR AA or SDR 

BB, respectively), when switching from templates generated by SDR AA to using 

templates generated by SDR BB. 

Each SDR is better at recognizing specific RF sources, but overall average classification 

accuracy performance is similar, whether templates are generated by the same SDR or 

not.  Confidence intervals for some RF sources overlap when the same classification data 

is used.  Because there are only two SDRs, the 95% CIs in the lower portion of the figure 

are large, making comparison harder.  The CIs for all the different classifier/trainer 

combinations include zero. 

Classification accuracy for a specific RF source is similar for each SDR, regardless of 

which training data is used.  The average values of the red/green and the blue/yellow bars 

do not have the same polarity for all RF sources, but have the same polarity and similar 

magnitude for a particular RF source.  No polarity difference is statistically significant, 

with the 95% confidence intervals including the zero difference value in all cases, 

although Node ‘D' is often classified more accurately (average of 15% better) by SDR 

BB than by SDR AA (significant at a 90% confidence level).. 



 128 
 

Figure 39: Classification Using Training Templates from Another Receiver (Long Range) 
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8.2 Experimental Results- WFP Template Alternative (Different 

Transmission Distances) 

We have shown that WFP templates from another node at a similar range can be used for 

classification with little change in performance.  We have also shown that average WFP 

classification accuracy deteriorates with distance.  We now demonstrate improvement of 

average classification accuracy at long range by using WFP templates generated at short 

range.  We also show that these short-range templates can be generated by a receiver 

which is different from the one doing the classification. 

Using the previous data generated during the short range and long range testing, we 

measure the average classification accuracy for messages received over long range using 

templates generated at both short and long range.  There are 8 possible permutations: 

training range (as short or long), training SDR (as AA or BB), classification SDR (as AA 

or BB). 

The average classification accuracy for each of these 8 permutations for each RF source 

is graphed in Figure 40 for each RF source.  The average of the average classification 

accuracy for all RF sources is also shown in the figure along with a 95% CI for each of 

the 8 permutations.  The left-most group of four bars, for each RF source, corresponds to 

the use of long-range training data.  The right-most group of four bars corresponds to the 

use of short-range training data.  The left-most green/blue pair of bars and the right-most 

green/blue pair of bars corresponds to SDR AA classification, with long-range and short-

range training data, respectively. 
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For all RF sources, with both SDR AA and SDR BB, short-range templates either 

maintain or improve classification accuracy, most notably with nodes 'A', 'B' and 'D'.  The 

classification accuracy for nodes 'C' and 'E' is approximately the same or slightly worse 

for the same classifying SDR, when short-range templates are used to classify the long-

range data.  SDR BB is significantly better than SDR AA at classifying node 'D', which 

was already observed, but classification improves at both SDRs when using short-range 

training data from either SDR. 

The results from the previous two sections show that a particular RF source can be more 

accurately classified by a particular SDR and/or can have an RF channel that is more 

Figure 40: Mean Classification Accuracy (Template Variations) 
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conducive to accurate classification.  Variations in classification accuracy over time 

could also explain these differences, since the experiments for different transmission 

distances were performed on different days.  However, classification accuracy results are 

generally stable over time (see Section 7.6.3), so we consider this less likely. 

All of the previous results increase our confidence that generating and using WFPs 

collaboratively in a network is both feasible and that the resulting classification accuracy 

is potentially stable enough to be useful.  For example, nodes could be characterized at 

close range by a selection of other existing nodes during the deployment process.  In the 

next section, we use statistical analysis techniques to provide further evidence of the 

feasibility of using WFPs at a network level. 

8.3 USRP1 Classification Error Independence 

A WFP algorithm which discriminates well between incoming signals, on a single node, 

can be extended to allow collaboration with other nodes in a network.  Perhaps the WFP 

that is generated can be improved by collaboration or perhaps WFP classification results 

can be shared to improve accuracy.  This chapter analyzes two basic characteristics that 

allow our WFP algorithm to be improved by executing it in a broader networking 

context. 

So far, we have shown the feasibility of our training and classification algorithms for 

WFPs.  We have shown that WFP templates for an RF source can be used by another 

node, to give similar classification performance.  Using such a template, we have also 

shown that the classification performance can be improved with a template that was 

established over a shorter transmission distance from the RF source. 

The network-level aspects of WFPs that we consider are: 
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 (Spatial consistency): WFP measurements should be consistent across the 

network, if we want to aggregate them directly using multiple nodes.  This means 

that different receivers using different RF channels should be able to make WFP 

measurements for an RF signal that can be reconciled as being from the same 

source.  Changes in the RF channel over time or with interfering RF sources can 

distort the WFP, but the RF measurement system must be able to filter out such 

noise or else operate properly in the presence of such noise.  As an alternative to 

providing fully spatially consistent WFPs for aggregation, nodes can aggregate 

their link-layer classification decisions. 

 (Temporal consistency): WFP measurements should be stable across the network 

over time.  This means that measurements made at different times for the same 

RF source by the same receiver over the same RF channel can be reconciled as 

being from that source.  This is important because of the time scales involved and 

potential forwarding delays for traffic at the network level.  WFPs that ‘wander' 

slowly as a function of time might be acceptable, provided that they wander 

slowly enough to allow a networked database to evolve and keep track of the 

changes. 

 (Error Independence): WFP classification errors should be independent across the 

network, if multiple nodes are collaborating to derive better aggregate WFP 

classification decisions.  If errors at different WSN nodes are strongly correlated 

with each other, then the incremental improvement in WFP classification 

accuracy using a group of WSNs node will not outweigh the communication and 

co-ordination costs associated with the required sharing of information between 
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them.  If the requirements of spatial and temporal consistency are met, the WFP 

itself can be aggregated across a network by multiple nodes and error 

independence is less important than the quality or accuracy of the WFPs being 

generated by each node.  If errors are independent for different receivers, 

measurements made at different sites could be combined to improve the overall 

reliability of the WFP using group voting schemes (ignoring the presence of 

malicious parties in those groups) or other ensemble classification methods; see 

[63] for a recent review of different ensemble learning methods. 

We have presented results for spatial and temporal consistency gathered on the USRP1 

platform.  We next study the independence of classification decision errors.  The WFPs 

themselves might be aggregate-able, where multiple trusted nodes could combine their 

results derive a better template than possible from measurements made at a single site.  

Although we have not investigated this further, one method might be to create an average 

or a median of WFP templates taken from the group of trusted sites, which are closest to 

the RF source in question. 

To measure the classification error independence of WFPs, we need a definition of 

independence and a formal test for independence.  Probability theory defines events as 

being independent if the occurrence of one event does not affect the probability of the 

occurrence of the other event (i.e. the events have no influence on each other).  More 

formally, the joint probability of two independent events can be found by multiplying the 

individual probabilities of the events together. 

If different wireless nodes make classification errors independently of one another and 

authenticate a specific RF source with the same probability over time for a particular 
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transmission range, then the probability that m out of N nodes successfully authenticate 

that source is given by the binomial distribution.  If a simple voting scheme is used and 

we assume all participants are honest, the probability tends to a value of 1 and does so 

very quickly for larger values of N and for better individual WFP classification 

performance (i.e. greater than 0.5). 

In WSNs, the number of neighbours is of the order of 10 nodes (or less).  Using an 

example of a group of 7 nodes, the nodes will fail to reach the correct group consensus 

13% of the time if nodes have individual probabilities for correct WFP authentication of 

0.7 each.  However, the probability of the same group size failure drops to 0.3% if nodes 

can distinguish with an individual probability of 0.9.  Larger group sizes do not require 

individual performance to be as high (see Table 12) but are less likely in WSNs. 

Table 12: Probability of Correct Authentication by a Group (Independent Error Case) 

 Probability 

(correct 

WFP) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

Group size 
 

3 0.648 0.718 0.784 0.844 0.896 0.939 0.972 0.993 

5 0.683 0.765 0.837 0.896 0.942 0.973 0.991 0.999 

7 0.710 0.800 0.874 0.929 0.967 0.988 0.997 1.000 

9 0.733 0.828 0.901 0.951 0.980 0.994 0.999 1.000 

11 0.753 0.851 0.922 0.966 0.988 0.997 1.000 1.000 

If a message is rejected because of poor alignment, the result is a similar binomial 

distribution, but using a smaller set of collaborating nodes.  This reduces the probability 

of successful classification using node majority, by reducing the group size in Table 12 

by a factor equal to the rejection probability. 

If all nodes are required to participate in the aggregation algorithm (e.g. when the 

trustworthiness of participants is unknown), the probability of successful classification of 
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a message is very low.  In this case, the probability of a correct WFP in Table 12 

becomes the product of the probability of the message being accepted for classification 

multiplied by the probability of correct classification at a node.  Both of these two 

probabilities must be greater than 0.5 to get an accurate aggregate classification decision 

with overall probability of greater than 0.5. 

If we use the version of the Global algorithm that does not reject misaligned messages 

during classification, we observe an average degradation of 5% in classification accuracy 

for a transmission distance of 4m (see Table 5).  The effect of a 5% level of degradation 

is to shift the location being used in Table 12 by one column to the left. 

Table 13: Example- Classification Accuracy Using Decision Collaboration 

 
Method 

Global Method 

(Alignment 

Errors Tolerated) 

Global Method 

(No Alignment 

Errors Tolerated) 

Parameters 

 

Sample 

Rejection 

Rate 

Group Size 

Node WFP 

Classification 

Probability   

0.45 7 0.65 71.8% 71% 

0.45 7 0.75 84.4% 87.4% 

0.45 11 0.65 76.5% 75.3% 

0.45 11 0.75 89.6% 92.2% 

For example, consider the cases shown in Table 13 of a network with either 7 or 11 

nodes, all transmitting over medium range, with an acceptance rate of 45% for messages 

at each node and a probability of accurate classification at a node of either 0.65 or 0.75.  

Depending on the values chosen for the group size and WFP classification probability, 

the Global method that tolerates alignment errors is less or more accurate than the version 

which does not tolerate any alignment errors during classification.  The selection of the 
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best variant depends on the specific network parameters.  Similarly, if WFP degradation 

is lower than 5% or rejection rates are higher, this selection will also change. 

Another alternative is to split messages up into sub-messages, provided that the increased 

messaging overhead can be tolerated in the network.  The probability that a message with 

perfect alignment is received using such a scheme is also binomial and shown in Table 

14, assuming that message segment acceptance decisions can be considered to be 

independent and random.  For example, with the same assumptions, if a message is 

broken up into 7 segments and the probability of message acceptance on each trial is 

45%, then the chance of an individual node accepting a message for classification is 

98.5%, regardless of the variant of the Global algorithm which is used. 

Table 14: Single Message Acceptance Probability Using Independent Message Segments 

 Probability  

(message 

acceptance) 
0.25 0.35 0.45 0.55 0.65 0.75 0.85 

Number of  

message 

segments  

3 0.578 0.725 0.834 0.909 0.957 0.984 0.997 

5 0.763 0.884 0.950 0.982 0.995 0.999 1.000 

7 0.867 0.951 0.985 0.996 0.999 1.000 1.000 

9 0.920 0.980 1.000 1.000 1.000 1.000 1.000 

Determining the degree of independence between WFP measurements made at different 

sites can be viewed as a type of inter-rater reliability problem.  Such problems are 

common in the social sciences like medicine and psychology, where the objective is to 

measure the degree of agreement among raters for the same subjects taking the same 

tests.  We use these statistical analysis techniques for our own work. 
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To determine independence, given that we have only two SDR ‘raters’, we measure the 

misclassification accuracy of two receivers for common messages and create contingency 

tables for the four different cases of correct/ incorrect classification of messages at each 

SDR receiver as shown in Table 15. 

Table 15: WFP Misclassification Contingency Table 

Cell 

# 
Event 

Event 

Description 

SDR ‘AA’ 

misclassifies 

SDR ‘BB’ 

misclassifies 

Joint 

Misclassification 

C0 {AA, BB} 

Both SDRs 

classify 

correctly 

No No No 

C1 {AA, BB } 

Only SDR 

‘AA’ classifies 

properly 

No Yes No 

C2 { AA, BB} 

Only SDR 

‘BB’ classifies 

properly 

Yes No No 

C3 { AA, BB } 
Both SDRs 

misclassify 
Yes Yes Yes 

We estimate the marginal probabilities of the events defined in the contingency table 

using the measured occurrence rates of each of the four different cases (cells C0, C1, C2 

and C3 in the table).  A message can only contribute, statistically, to one cell of the table.  

If misclassification events are independent, the product of the estimated marginal 

probabilities of misclassification by each of the SDRs will equal the estimate of the 

marginal probability of the joint misclassification event, which is the bottom cell on the 

right in Table 15. 

8.4 Experimental Results- USRP1 Classification Decision Error 

Independence 

This section describes the results of the experiments performed to measure the 

independence of errors at multiple receivers.  We study the degree of independence for 
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two different receivers over medium-range and long-range transmission distances, using 

multiple trials.  Short-range data is not presented in graphical form nor analyzed 

statistically, since very few classification errors are made by either SDR at this range.  

The medium-range statistics have misclassifications for all RF sources and the long-range 

statistics have the most misclassifications, making analysis worthwhile for these 

transmission distances. 

In each trial, 100 training samples and 100 classification samples are randomly selected 

from specific disjoint intervals in time and a contingency table (Table 15) is created for 

the classification results for each message.  We classify a set of five WSN nodes, as 

before, keeping the RF channels for the two SDR receivers as similar as possible to each 

other during the tests but arranging their antennas in a  spatially diverse configuration 

with 26 cm separation. 

We estimate the probabilities of misclassification events by measuring the observed 

relative frequencies of the cells in the contingency table for each message.  For example, 

the probability that SDR ‘AA’ misclassifies a given message is estimated by calculating 

an average of the lighter-shaded cell frequencies within a trial.  The estimate for SDR 

‘BB’ is derived the same way with the darker-shaded cells.  This averaging is done over 

all of the messages that are received from a distinct RF source in a trial and then also over 

all received messages. 

The messages that are used for this averaging must be common to both SDRs (i.e. both 

SDRs must observe the message and also attempt to classify that message in a specific 

trial).  To achieve this, we randomly select training and classification messages for the 
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first SDR from specific training and classification intervals.  These selections are then 

duplicated on the second SDR. 

On the second SDR, we verify that each message meets the same criteria for alignment 

mismatch errors in the WFP classification algorithm as used by the first SDR, excluding 

messages where this is not the case.  The templates for each trial on the second SDR are 

also established using the same set of training samples as used by the first SDR, unless 

such samples are rejected by the training algorithm as being unfit.  If a training sample is 

not acceptable, training sample replacements are selected randomly from the same 

training interval that was used by the first SDR. 

The probabilities of the joint misclassification event and the product of the individual 

probabilities of miscalculation by each SDR is summarized in Table 16.  The average 

value for all RF sources, over all trials, is also shown for both transmission distances. 

Table 16: Marginal Misclassification Probabilities 

Transmission 

Range 

WSN 

Source 

Estimated marginal 

joint probability that 

both SDRs misclassify 

a message from an RF 

source 

Products of estimated 

individual marginal 

misclassification 

probabilities for each 

message by each SDR 

Medium 

A 0.0003 0 

B 0 0 

C 0.0264 0.0212 

D 0 0 

E 0.0007 0.0003 

Average 0.0055 0.0043 

Long 

A 0.0766 0.0754 

B 0.0090 0.0060 

C 0.0506 0.0596 

D 0 0.0033 

E 0.0151 0.0110 

Average 0.028 0.030 
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Examining the table, we see that the average probabilities for misclassification of specific 

RF sources are not the same at each SDR.  However, for any given source, the product of 

the marginal probabilities of misclassification from each SDR is very similar to the joint 

probability of misclassification by both SDRs.  This is true for both medium-range and 

long-range test results.  Therefore, the two SDRs misclassify messages from any of our 

tested RF sources independently of each other, over both medium and long transmission 

distances. 

8.5 Significance of SDR Classification Differences 

We have seen that distinct RF sources are classified with different classification 

accuracies.  We have also seen that different SDRs are better at classifying particular RF 

sources.  In the previous section, we showed that misclassification decisions made by two 

receivers are independent of each other. 

If the two receivers make independent errors, then this begs the question of whether 

independent WFP classification decisions made on a single SDR are significantly 

different from those expected by chance alone.  If not, then WFP classification decisions 

made by different SDRs are not expected to be any different from those made using 

multiple messages for a specific RF source using the same SDR.  In this case, the 

overhead of using network-level aggregation techniques for classification decisions from 

multiple receivers is not worthwhile. 

If there is a significant difference, then it is worth considering whether the 

communication overhead and other implementation costs associated with aggregation of 

WFPs in a network are merited for a particular application.  We show that there are 

statistically significant differences between the two SDRs when classifying messages 
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from the same RF source.  The WFP templates themselves may also be aggregate-able, if 

different SDRs have perspectives which differ enough statistically. 

8.5.1 Method- Simultaneously Classifying Messages With Two SDRs 

We analyze the classification decisions for messages that are received simultaneously by 

two SDRs over the same RF transmission distance.  Statistically, this data is categorical 

(non-ordinal and non-interval) and takes the form of matched samples, whose 

distributions may or may not be normal.  In this case, McNemar’s test is the most 

appropriate non-parametric
4
 statistical test to determine whether classification decisions 

made by distinct SDRs differ from each other significantly or not (i.e. more than would 

be expected by chance alone) [64]. 

McNemar’s test is frequently used for the analysis of paired data collected on the same 

subject taken at different times (i.e. before or after a specific treatment).  McNemar's test 

is also often used to evaluate the differences between different testers of the same subject, 

which  corresponds closely to our case.  We wish to measure the similarity between the 

observations made by different SDR ‘testers’ on the same message ‘subjects’. 

The null hypothesis, in our statistical analysis, measures the likelihood that the 

classification decisions made by different SDRs have the same relative proportion of 

misclassifications as would be expected by chance alone.  If we reject the null hypothesis, 

then the classification errors made by different SDRs are significantly different from each 

other in a statistical sense.  In other words, it is possible for different SDRs to add value 

in aggregation schemes (either pooling classification decision or even comparing the 

WFP templates themselves), even when classifying the same received messages.  If the 

                                                 

4
 Non-parametric statistical tests do not assume a particular distribution (e.g. like the normal distribution). 
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null hypothesis cannot be rejected, then collecting more samples at the same SDR is just 

as effective as using data collected by a different SDR and any aggregation overheads are 

not worthwhile. 

However, McNemar’s test has been criticized [65][66] as being inaccurate for cases 

where there is clustering between the matched observation pairs.  For example, clustering 

might be expected in a dental study, where the analyzed treatment data includes the 

effects of a specific treatment on different teeth that come from the same patient mouth.  

Such clustering is a fundamental assumption in our work (i.e. we count on there being 

similarity between WFP samples from the same RF source).  Therefore, we use the 

modified statistic proposed by Obuchowski in [66]. 

Referring to Table 15 for the meaning of the cell numbers, C1 and C2, in the contingency 

table, McNemar’s basic test is calculated as a Chi squared random variable with one 

degree of freedom: 
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In this statistic, only cases where a single SDR makes an error are included as being 

significant.  Obuchowski’s modified version of the statistic makes no assumptions about 

the correlation of measurements and performs more accurately when there is higher 

correlation between the statistical distributions of the paired clusters of data.  This is the 

case with messages generated by the same RF source.  
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Defining ip  as the probability that SDRi makes a classification error on a randomly-

selected message and 
i

p  as an estimator for ip , Obuchowski’s modified statistic is 

defined as: 
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The detailed steps for the calculation of this statistic are given in [67]. 

8.5.2 Statistical Analysis- Messages Classified by Two SDRs 

The probability of the Obuchowski 2

1 statistic is calculated for each of the 100 trials and 

is shown in Figure 41.  Values above the significance level of 0.05 indicate that there is 

evidence to reject the null hypothesis.  In both the long-range and medium-range 

experiments, the probability of an invalid null hypothesis is always greater than 0.2.  

Therefore, there is strong evidence to support the claim of significant differences between 

the misclassification errors of the two SDRs. 

Based on these results and our earlier results in Section 8.4, we conclude that WFP 

classification errors are independent and also significantly different at the two SDRs 

using our Global WFP algorithm.  Therefore, we now consider methods for using WFPs 

in a network setting.  For example, multiple SDRs can collaborate to establish a shared 
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Figure 41: Obuchowski's Modified Statistic (Medium and Long Range) 
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secret communications channel by producing a shared secret key using WFPs for 

authentication and we present a method for doing this in the next section. 

8.6 Establishing a Group Secret Key in the Presence of Malicious Nodes 

We have determined a practical method to capture a WFP for an RF source.  We have 

also shown that there is value in nodes collaborating to reconcile WFP classification 

decisions with each other or even to derive a better WFP template and that the sharing of 

templates from different nodes has advantages for improving classification accuracy.  We 

now show how a WFP can be used in a network setting by modifying an existing protocol 

to establish a group key in the presence of a minority of malicious nodes. 

8.6.1 Network Architecture 

For fixed architecture networks with centralized and powerful base station nodes, nodes 

can communicate WFP information to those base stations, receiving authentication 

messages in return.  They need only the ability to authenticate transmissions from the 

base station themselves, requiring multiple base stations to be available for the 

certification of other base stations (assuming that we do not allow such devices to certify 

themselves). 

Different methods for key establishment, key distribution and key revocation can be used 

for authentication.  However, if WFPs can be used to classify other nodes from inside a 

network, they are no longer required to be within transmission range of a central base 

station and distributed authentication options become possible.  This reduces the power 

requirements in the network, since nodes no longer need to send/receive signals to/from a 

distant base station. 
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We assume that the transmission range is such that bidirectional communication is 

possible between those neighbours.  We do not require full interconnection between all 

nodes, but assume that subsets of nodes are fully connected.  Therefore, we end up with 

sub-networks of fully connected nodes.  To use our method across an entire network, an 

honest majority of nodes are required at both ends of the RF links that form the gateway 

connections between these fully-connected sub-networks. 

Our requirement for full interconnection can be relaxed, provided that malicious nodes 

are not in the majority in any of the sub-network partitions.  Practically, defining all of 

these sub-cases is harder than just requiring the network to be fully connected.  Basically, 

there cannot be a way for malicious nodes to corrupt an honest node without a majority of 

honest nodes overhearing the communication in both directions. 

8.6.2 Protocol Incorporating WFPs 

New protocols are required that incorporate WFPs into the authentication protocols as 

early as the neighbour discovery stage.  WFPs work at the link layer for the set of 

neighbours around a node that are within transmission range, but can also be aggregated 

as templates.  In Section 8.1 and Section 8.2, we showed that this is feasible.  The 

protocol we select is based on previous work [68], which we term the 'base protocol'.  

The protocol allows nodes to establish a shared private group key, with the assumptions 

of Section 8.6.1. 

In our version of the protocol, we add WFP functionality as an additional condition in the 

protocol.  We require that the WFP for a given node is distinguishable from the other 

nodes in the sub-network by a majority of the nodes in that sub-network and also that 
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there is a comparable version of that WFP at each of those nodes.  We have already 

shown that this is feasible in Section 8.1 and Section 8.2. 

Our authentication method uses WFPs ‘as far as they can go’ and integrates them with 

other established security mechanisms when the WFPs are ambiguous, while still 

providing a secure authentication process.  We accomplish this by binding the measured 

WFP physical layer parameters of the radio signal with the data being carried in that 

signal.  We ‘average out’ RF channel effects by combining measurements from multiple 

locations in a secure fashion. 

The ‘readers’ of a WFP are the immediate neighbours of the node in question. A 

connection of the WSN to other networks also relies on intermediate nodes to relay data 

to and from remote nodes in the network. Therefore, we need a reputation system and use 

trust mechanisms such as those listed in Section 2.  We do not need to use auxiliary 

‘secure’ authentication channels for this purpose. 

In our version of the protocol [6], we add WFP functionality as an additional condition in 

the protocol and we assume that the transmission range is such that bidirectional 

communication is possible between those neighbours.  However, we do not require full 

interconnection between all nodes.  If we assume that these subsets of nodes are 

connected, we end up with sub-networks of fully connected nodes.  For use of our 

method across an entire network, an honest majority of nodes are required at both ends of 

the RF links that form the gateway connections between these fully-connected sub-

networks. 

The objective of our method is to establish a shared and private security key amongst a 

specific group of nodes.  We show how WFPs can be used to augment the operation of 
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the base protocol to include the authentication of WSN nodes.  The basic steps for the 

initialization for authentication in the WSN sub-network using WFPs are as follows: 

1. Nodes execute a neighbour discovery protocol.   

2. Nodes create a secure private group of fully connected neighbours, with a shared 

conference key. 

3. The group members exchange WFP information gathered during the previous two 

stages.  The measurements may be aggregated.  Nodes create a shared group 

credential for each other using this (potentially aggregated) data, provided that the 

WFP template data is close enough or that WFP classification decisions are close 

enough to their own WFP data/decisions
5
.   

After these steps have been completed, nodes have authenticated their immediate 

neighbours and have local certificates from them produced in the group setting.  These 

local certificates can be grown into chains of certificates by ‘showing’ the digital 

credentials [69] (along with the authentication information for the referring nodes that 

issued them) to other neighbours which were not in the original fully-connected set.  

Credentials are verified interactively, but require the presence of one of the participants in 

the conference group originally used to establish the credential.  'Showing' requires the 

owner to demonstrate knowledge of all WFP data and all ‘data layer’ identifier data in the 

credential but does not require the value to be revealed. 

While different group sizes are possible, impossibility results indicate that the group size 

must be three or more nodes to handle the presence of a single adversary.  The private 

group is created by establishing a conference key.  This means that adversaries need to 

                                                 

5
 The WFP template itself can be compared or the classification decision that is making use of that template 

can be compared with the local results. 
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participate actively in the group creation process to learn the WFPs of nodes at the end of 

different RF channels other than their own.  This, in turn, requires them to ‘reveal’ their 

own WFP to everyone in the group.  The steps listed earlier are now broken down in 

more detail in the following sections, to show more clearly how the existing protocol has 

been augmented with WFPs. 

8.6.3 Neighbour Discovery 

The originating node (which we will call ‘A’) sends a request and an appropriate ‘pseudo-

corroboration’ (e.g. a signature on a nonce, using the value of a as a secret key): 

REQ: ;a
qA R

ID Z g a  Z  

This (and the WFP) shows that ‘A’ is the actual sender.  This is required for all 

transmissions and verifying it is required for all receptions.  Therefore, it is implicitly 

included in the following steps, but omitted for reasons of brevity.  Neighbours note the 

WFP of ‘A’ as: 

A i
WFP


  

They then reply in kind (using CSMA mechanisms to avoid collisions) using a message 

with the following format: 

ACK: ;i qi R
ID Z g i    

Nodes record the WFPs of each other, recording also the corresponding cryptographic ID 

as the index.  Once an adequate number of neighbours have responded with unique 

cryptographic keys, Node ‘A’ starts the Conference Key Establishment protocol or aborts 

with an ‘ABORT’ message.  We choose to permit the protocol to continue now to tolerate 

some ‘noise’, even if WFPs are not unique.  A more energy-conserving approach would 

be to abort instead. 
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8.6.4 Conference Key Establishment 

A’ sends the list of group members, identifying and ordering them using their 

cryptographic Identifiers.  This is an arbitrary ordering, but corresponds to the ring 

arrangement of the base protocol. 

‘A’ calculates a partial key value derived from the published keys of the appropriate 

neighbours.  These neighbours are determined using the cryptographic keys that lie above 

and below ‘A’s own value in the previously defined order
6
.  This value is calculated as: 

 1 1

a

A i iX Z Z  ,  

where 1iZ   is the value immediately below ‘A’s value and 1iZ   is the value immediately 

above ‘A’s value in the ring-style ordering. 

‘A’ then broadcasts the AX  value along with a hash of each of the WFPs that ‘A’ 

measured in the Neighbour Discovery protocol round.  The hash serves as a commitment 

to a WFP value, which can be revealed in the next round, but prevents an adversary from 

cheating using the WFP estimates from other nodes.  The other nodes then record ‘A’s 

own WFP (and can compare it with their earlier estimate).  They also note ‘A’s 

cryptographic identifier and partial key as well as his list of hashed WFPs (and associated 

tagging information). 

Once this has been notes, the other nodes can then reply in kind with their own iX  

values: 

 
b

B A CX Z Z   

                                                 

6
 An adversary can manipulate these values by waiting as long as possible (i.e. before ‘A’ times out and 

then replying with specific cryptographic values to put him in a specific ring position.  We handle this 

problem using WFPs in the next stages. 
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They can include the hashes of the WFPs that they measured in their Neighbour 

Discovery round.  As before, all nodes (including ‘A’) record the WFPs for each of their 

neighbour’s broadcasts.  ‘A’ waits until all nodes have responded or a timeout period has 

elapsed.  If the protocol has not aborted, ‘A’ and all other nodes can then calculate the 

same shared group secret conference key using the previous broadcast results available to 

them. 

8.6.5 WFP Exchange and Aggregation 

Nodes in the secure conference group now encrypt further communications using their 

shared conference key.  They each broadcast their Neighbour Discovery round WFP data.  

Receiving nodes can check to make sure each hashed value received in the Conference 

Key Establishment round is consistent.  Nodes can record the WFPs of their neighbours 

in this round too.  This gives them a total of three WFP measurements for each of their 

conference group neighbours.  This is also a crude way for nodes to determine if their 

first WFP measurement is accurate. 

The first-round WFP data is aggregated by ‘A’ using an aggregation algorithm, as 

referenced to in Section 2.  ‘A’ compiles a credential with the resulting WFPs for each 

node in the conference group along with their data layer identifiers and the specified 

‘order’ used to calculate the 'iX s used earlier.  ‘A’ then adds a threshold value and then 

signs the resulting credential, broadcasting this signed result. 

Each node runs the same aggregation algorithm as ‘A’ and determines whether their WFP 

measurements are ‘close enough’ using the threshold value published by ‘A’.  If all 

measurements are within tolerance, nodes sign ‘A’s (signed) broadcast in the order 
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specified in the credential.  If not, they abort, suggesting a new threshold value (for which 

they could sign). 

‘A’ can re-run the previous two steps until he gets a credential signed by all parties or he 

can terminate with the set of signatures that he has received.  Thus, a better credential has 

more signing parties and a tighter tolerance value.  To verify this credential, a node 

attempts to verify the signatures in the order specified in the credential.  This credential 

would only be shared in a similar secure conference setting (i.e. the adversary has to 

participate in at least one session to learn WFP data). 

The authentication credential with both FP and cryptographic identification information 

can now be used in the network.  Credentials are verified interactively, but require the 

presence of one of the participants in the conference group originally used to establish the 

credential.  They have the same form and are shown in the same way as the digital 

credentials in Section 2.  Specifically, showing requires the owner to demonstrate 

knowledge of all WFP data and all ‘data layer’ identifier data in the credential but does 

not require the value to be revealed, necessarily. 

8.6.6 Summary 

Our modification of the base protocol integrates a physical authentication mechanism 

based on WFPs with existing digital credential technology.  We do not rely on trusted 

third parties for this.  The resulting protocol is efficient and has been shown to be secure, 

if the discrete logarithm problem is mathematically hard [68].  Our method can accept 

imperfect WFPs (i.e. cases where a single WFP alone is not adequate for distinguishing 

between nodes).  This is done by aggregating different results (that were measured over 

different RF channels) from multiple nodes using resilient aggregation techniques.  
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Furthermore, we can also incorporate other physical authentication mechanisms as part of 

the credential for a node too. 

Secure aggregation techniques such as those described in [70] would also allow our 

method to be extended across a network that was not fully connected.  Similarly, trust-

based reputation systems like those of [71] would work well with WFPs, allowing 

security to be bootstrapped into existence without requiring the provisioning of key 

information.  Digital credentials [69] that include WFP information can be constructed in 

a shared group setting, as discussed in [72]. 
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9 Chapter: Conclusions and Future Work 

We summarize the main conclusions drawn from our work in Section 9.1 and then 

suggest areas for future work in Section 9.2. 

9.1 Conclusions 

Authentication of Wireless Sensor Network (WSN) nodes in a network is feasible using 

current technology.  We present an authentication method using Wireless Fingerprints 

(WFPs) on both a real WSN node and a USRP1 software-defined radio. 

On the WSN node, we use the characteristic responses of Automatic Gain Control (AGC) 

circuitry on a WSN node.  The implementation is limited by the platform architecture.  

However, we successfully demonstrate the feasibility of discrimination between different 

RF sources.  Basic discrimination between RF sources on real WSN node hardware is 

achieved near baseband data rates and on more than just the transient portion of the 

signal, without changing the WSN node design. 

Better practical WFP classification performance is achieved on the more advanced 

software-defined radio USRP1 platform.  We learned that more reliable access to 

received data samples is required than is provided on our SiLabs WSN node.  Software-

defined radios, like the USRP1, can provide that access and classify WFPs accurately. 

We achieved average classification accuracies of 99.6% at short range, 95.3% at medium 

range and 81.9% at long range for a sample of five SiLabs devices.  While they provide 

full visibility of the demodulated data samples, and indeed all other (non-RF) radio 

functions, they use the same zero-IF architecture as many current WSN nodes.  

Therefore, the USRP1 is both a representative experimental platform for future WSN 

nodes and an acceptable stand-in for current WSN node technology. 
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WFPs are analog signals and so distance is an important variable, affecting performance.  

Short-range classification works well and is relatively immune to WSN node positioning.  

Medium-range classification is less dependable and the results are generally poorer than 

the short-range data we gathered.  In turn, long-range classification is less consistent than 

medium-range classification, with much higher variability.  Classification accuracy is 

directly related to the signal quality (i.e. Signal to Noise ratio). 

Specific RF sources are classified more accurately by specific USRP1 devices.  The 

relative classification performance of our two devices is consistent for a specific RF 

channel.  However, the WFP classification accuracy of different RF sources changes for 

different RF Channel conditions.  WFP classification performance generally deteriorates 

for all WSN nodes at USRP1 receiving devices, as the transmission distance increases, 

although certain nodes exhibit more variation than others and are more poorly classified. 

Small changes in node position cause changes in the number of error-free (valid WSN 

node code and valid sequence numbers) messages that are detected.  The antenna 

alignment of the receivers is also significant.  The positioning of the antennas affects the 

number of messages that are 'properly' received. 

Under such conditions, certain WSN nodes dominate message reception over the 

transmission medium and also have better WFP classification performance.  This effect is 

the most severe when SDR antennas are co-located.  This might be related to problems in 

the experimental setup with deep fades caused by reflections or other small-scale 

variations in the RF environment. 

Classification accuracy for specific SDR and node combinations using our WFP 

algorithm is stable over time.  If a specific SDR (at a specific location) has issues with a 
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specific RF source, the identity of that ‘problem’ source and the classification accuracy 

performance for that RF source is also stable over time. 

Our WFP algorithm is able to classify with good relative consistency over different RF 

transmission distances and performed well on multiple receiving devices.  WFP templates 

generated using data collected over a short transmission distance can provide better 

classification accuracy, when used over long RF channels, than templates that are 

generated from data received over those long RF channels. 

Our WFP is calculated over multiple chip positions in the IEEE 802.15.4 preamble.  Each 

of our WFP templates contains average phase residual data for the phase residual values 

for all chip positions other than ones where the direction of the phase polarity is 

reversing.  PCA techniques indicate that fewer than the 118 phase residuals used in our 

experiments are required for classification (see the next section). 

WFPs can be used in an IEEE 802.15.4 WSN without requiring access to a centralized 

authority.  We present a method using WFPs together with an existing protocol, to allow 

nodes to derive a shared secret group key.  With this approach, key information does not 

have to be provisioned before deployment or using private locations, but can be derived 

using broadcast RF communication within a community of nodes. 

We show that classification errors are independent with different receivers for different 

RF sources and that the WFP classification decision at different receivers is significantly 

different from multiple measurements made at the same receiver.  This suggests that it is 

potentially worthwhile to use multiple WSN nodes to collaborate with each other either 

to produce more accurate WFPs and to make better classification decisions for a specific 

message. 
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As an example of this, we modify an existing protocol for secure establishment of a 

group key over the RF interface.  We use WFPs to provide a method of linking the digital 

information being carried with the biometric information of the wireless signal used for 

carriage during the execution of the protocol.  WFPs identify and authenticate the sender 

of the signal but do not authenticate the sender's information.  Changes in the sender can 

be detected subsequently, since the WFP information is inextricably linked with the key 

information established during the execution of the protocol.  This is important since key 

information is vulnerable in WSNs. 

9.2 Future Work 

We use a large number of chip coefficients to calculate the phase residuals for our WFP 

algorithm.  However, we observe more variation in certain chip locations than others.  

Instead of using all chip locations, a subset of phase residuals in specific chip positions 

could be used.  The specific positions that are used could be chosen based on a criterion 

for the signal to noise ratio, if specific chip positions have more phase margin or less 

variability for a given RF source. 

Alternatively, the chip positions could be chosen adaptively to suit the RF channel 

conditions or to maximize discrimination between the set of known templates at any 

given time.  PCA techniques, like the ones that we have used in our work, could be used 

to identify the most discriminating chip positions.  The entries in the loading matrix to the 

distance calculation could be observed and analyzed further to determine if there was a 

consistent bias that magnified the contributions of certain chip positions. 

At a network level, a trust-based system could be implemented on the WSN network to 

permit collaboration for nodes to generate better WFP templates or for nodes to improve 
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their WFP classification decisions.  Within such a trust system, an aggregate WFP could 

be calculated as an average of individual training WFP templates.  The template 

contributions from each participating receiver could be weighted appropriately by their 

range from the RF source, although establishing that range in a secure fashion is will be 

difficult. 

A WFP-based intrusion detection or trust system (or a system based on other biometric 

types of authentication mechanism, rather than provisioned tokens) allows trust to be re-

initialized after a system has been compromised by an attacker.  Further research on 

attacks specific to WFPs would be useful as would a more detailed design of an interface 

with the WFP system and the intrusion detection system.  Research into WFP aggregation 

methods which are resilient to attack would also be useful. 
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Appendix A IEEE 802.15.4 Signal Format 

The IEEE 802.15.4 specification [47] specifies the use of a data payload preceded by a 

set of header bytes in each PHY Physical Data Unit (PPDU) packet (Table 17).  In our 

work, we have used the preamble sequence defined in the standard to synchronize to data.  

Because our work is at the physical layer, this is sufficient.  In systems which do not have 

such a preamble defined, our methods and techniques for WFPs are still applicable but 

would require different methods for synchronization. 

Table 17: IEEE 802.15.4 PHY PPDU Contents 

Label SHR PHR PHD 
Number of 

Octets 
4 1 1 variable 

Description Preamble SFD 
Frame length 

(7 bits) 

Reserved 

(1 bit) 

Physical Service 

Data Unit (PSDU) 

 In IEEE 802.15.4, the PPDU (data) octets are defined as follows (see Table 17): 

 SHR: This 5-octet field is broken down into two fixed-value sub-fields: 4 octets of 

Preamble and a single byte of SFD which have the following functions and form: 

o Preamble: This information allows a receiver to synchronize and lock onto the 

bit stream.  The preamble consists of 8 identical '0000' symbols. 

o SFD (Start of Frame Delimiter): This sub-field signifies the end of the 

preamble and the start of the packet data.  The SFD consists of a '1110' symbol 

followed by a '0101' symbol. 

 PHysical Layer Header (PHR): contains information to specify the frame length 

(maximum value of 127 possible in 7 bits). 
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 PHysical layer Data (PHD): payload data which contains the Medium Access Control 

(MAC) sublayer frame.  The length of the PHY payload has a maximum length of 127 

octets, requiring 7 bits in the PHR. 

IEEE 802.15.4 nodes transmitting at 2.4GHz transmit the OQPSK signal in the range of 

2400 to 2483.5 MHz (16 distinct channels, spaced 5MHz apart).  This portion of the RF 

spectrum is termed the Industrial/Scientific Medical (ISM) band.  However, IEEE 

802.11b/g/n routers, microwave ovens and various other equipment are also allowed to 

generate RF signals in the ISM band, making it a relatively noisy portion of the RF 

spectrum, world-wide, often containing unlicensed interfering RF sources. 

The 2.4GHz OQPSK version of the IEEE 802.15.4 PHY encodes 4-bit data symbols into 

one of 16 different 32-chip pseudorandom Positive/Negative (PN) phase-shift sequences.  

The generated PN sequences used for each data symbol in the standard have a specific 

minimum hamming distance between each other and give the transmitted radio signal 

noise-like properties, spreading the signal energy over a wider transmission bandwidth.  

This makes the transmitted signal immune to a wider range of interference conditions 

present on the RF channel than if a narrower bandwidth were used.  These interfering RF 

sources could also include other IEEE 802.15.4 radio signals. 

The bytes below are transmitted over the air in order from left to right.  The first 

transmitted bytes are the preamble bytes, which are used to synchronize the receiver.  To 

align to data using the preamble, an IEEE 802.15.4 receiver synchronizes to the PN 

sequence that corresponds to the '0000' symbol, which is repeated eight times. 

The '0000' symbol is mapped to the following 32-chip PN chip sequence: 

11 01 10 01 11 00 00 11 01 01 00 10 00 10 11 10 
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If this pattern is split into two alternating sequences (shown in red and black) the 

resulting sub-sequences are: 

'I' sub-sequence: 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 

and 

'Q' sub-sequence: 1 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 

In the IEEE 802.15.4 OQPSK system, these two sub-sequences are transmitted in 

quadrature using orthogonal sinusoidal carriers and data is encoded as streams of positive 

and negative π/2 phase shifts.  A 'zero' PN-sequence value is represented by a negative 

π/2 phase shift and a 'one' PN-sequence value is represented by a positive π/2 phase 

shift.  At the receiver, these two orthogonal streams of I and Q data are recovered using a 

quadrature receiver and a state machine. 

The conversion back to 'digital' 'zero' or 'one' PN sub-sequence values at the receiver uses 

a simple decision process, based on the polarity of the received phase shift.  Any positive 

phase change is decoded as a 'one' and any negative phase change is decoded as a 'zero'.  

To reconstruct the final received data pattern, these I and Q PN digital sub-sequences are 

decoded using a decoding state machine. 

The decoding state machine processes the two sub-sequences to produce a single output 

stream.  The state machine outputs are completely determined by portions of the two 

most recent I and Q digital sample values.  Using the nomenclature that Ik and Qk are the 

k
th

 received I and Q digital values, respectively, the time-ordering of the I and Q sample 

inputs and the corresponding state machine output is illustrated in Figure 42. 

During the sample period at time k, the state machine produces two output bits, labeled 

2k and 2k+1, where k is the label of the input I or Q sample.  Note that the (k-1)
th

 I or Q 
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sample value is required to produce the k
th

 output value.  Therefore, if the bit that occurs 

just before the first preamble bit is not defined, this first preamble bit will not necessarily 

be decoded properly. 

Figure 42: IEEE 802.15.4 Receiver State Machine Inputs and Outputs 
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Using the state machine illustrated in Figure 42 and the sub-sequences given earlier, the 

state machine output for the preamble
7
 '0000' symbols is: 

11100000011101111010111001101100 

For a perfect waveform, sampled at double the transmission rate, this corresponds to 

repeating every bit twice, which inflates the pattern to: 

1111110000000000001111110011111111001100111111000011110011110000 

Our receiver code searches for this pattern (and the repetitions of it) to find the best 

alignment of data with the I/Q data samples that were received.  Note that, with the 

exception of the very first preamble bit, this pattern should be seen 8 consecutive times.  

However, practical RF systems have gain control loops operating and sources of phase 

noise inside the receiver and over the RF channel, which can all create errors and 

differences from the expected pattern at the receiver. 

                                                 

7
  Since the previous phase value is not defined, the first '0000' preamble symbol state 

machine output is strictly:  X1100000011101111010111001101100, where X is 

an unknown value. 
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Appendix B Frequency and Phase Offset 

0The IEEE 802.15.4 standard allows a slight offset of ±40 parts per million (ppm) in the 

frequencies of different transmitters or between the transmitter and the receiver.  Such a 

small frequency offset only induces a small 'creep' in the relative phases of the two 

signals during the course of a message.  Figure 43 shows a long-term measurement of the 

RF (transmitter and receiver) reference clock frequency for six different WSN nodes, 

measured in parallel, over a period of almost five days (413,579 seconds). 

A hardware timer/edge counter in the microprocessor on each WSN node was used to 

count the reference clock edges used for the RF circuitry.  These counts were sent 

Figure 43: RF Clock Frequency Accuracy and Stability over Time (6 WSN Nodes) 
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periodically to a logging PC via the RS-232 interface on the node.  The PC was 

connected to the Internet, which provided periodic synchronization adjustments from a 

Stratum-1 aligned clock source via the NTP (Network Timing Protocol) service. 

The different RF reference clock rates can be seen to diverge over time, but the absolute 

frequency is only 10 ppm away from the ideal nominal value.  The worst-case frequency 

difference between our six different WSN nodes is slightly over 3 ppm.  We believe the 

periodic dips in the measured frequency are related to PC synchronization adjustments or 

errors over the RS-232 interface, since all six WSN nodes make the adjustments at the 

same time, but they are all running independently of one another. 

While the clock frequencies are very close, the initial phase offset of the transmitter's 

clock is randomly distributed across the period of the receiver's clock.  Multiple symbols 

must be received before accurate re-alignment of the receiver's clock is possible and the 

tuning algorithm is set up to occupy most of the preamble (i.e. 8 'zero' symbols).  Our 

algorithm has been tested to work well even with just a single 'zero' symbol. 

Symbol synchronization is required for both the WFP training process and the WFP 

classification processes.  We need a method for aligning the training templates with each 

other and also to allow the newly-arrived signals in the classification set to be aligned 

with those templates.  We now estimate an upper bound for the changes in the phase 

offset of the transmitter and receiver clocks during reception of the portion of the 

received IEEE 802.15.4 signal with known data signal content (i.e. the preamble zero 

symbols). 

Since the clocks are not required to be synchronous in an IEEE 802.15.4 WSN, the initial 

receiver clock phase is random with respect to the transmitter clock phase unless the RF 
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source clock and Receiver clock are exactly equal (unlikely)  Therefore, for an OQPSK 

demodulated digital I/Q signal where both I and Q signals are being sampled at a rate of 

2Msamples per second, the initial clock phases could be off by as much as 

However, the alignment will move slightly during the 8 zero symbols of the 

preamble. 

The Tx and Rx carrier frequencies are not exactly the same.  However, they are supposed 

to be within +/- 40 ppm of a perfect frequency according to the IEEE 802.15.4 

specification.  In a message of x bits (e.g. IEEE 802.15.4 preamble duration of 32 bits, 

the total number of clock phases gained/lost by the worst-case frequency difference 

would be: 

   

 6

Number of  chips in preamble  = 32 4 32 256 

Chip rate = 2 10
sec

If  sending and receiving oscillators are both at the extremeties of  the 40 ppm specificatio

bits chip
bits chip

symbol symbol

chip
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6
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Maximum possible Tx clock offset with respect to the Rx clock = 80 ppm

80 secClock delay difference per chip  = 2 10 40 10
sec1 10

Maximum possible clock shift during the preamble seque

chip
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chip
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12 9
max

nce, T , is given by :

secT 256 40 10 10.24 10 0.02048( )chip chip
chip

      sec

 

Less than 2% of a chip period gain/slip occurs in the very worst case frequency offset 

conditions during the entire preamble.  This is considered to be negligible movement of 

the receiver clock with respect to the transmit clock and is ignored in our algorithm.  

Note that our algorithm also works in less than 16 bits (one half) of the total preamble 

duration and that our actual WSN oscillator frequencies were only 3 ppm apart from each 
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other (or 1/26 of the worst case frequency offset of 80 ppm).  This yields a gain/slip of 

approximately 0.04% of a chip period in the worst case. 
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Appendix C Comparison of USRP1 and WSN Node Architectures 

For our purposes, the most significant difference between the RF interface of the two 

platforms is the degree of user access provided to the RF signals that are being 

transmitted and received by the radio.  The physical-layer RF functionality of the WSN 

node is implemented in specialized hardware and firmware that is not modifiable by the 

user. 

In contrast, the USRP1 SDR is designed specifically to allow a user to write custom 

software and also FPGA firmware to do as much of the RF signal processing as is 

practical.  Further, a growing database of this software is also publicly available through 

the online Gnu Radio user community. 

In addition, the FPGA hardware that is used at the front-end of the USRP1 can also be 

modified by the user to provide direct access to the data samples without the bottleneck 

of either a PC interface or PC CPU pre-processing.  Indeed, we use a custom version of 

the FPGA firmware designed by CMU researchers [57] to provide high-resolution 

timestamp information on groups of I and Q demodulated data samples that are sent over 

the PC USB interface.  We have not made any other modifications to the FPGA.  As of 

the time of writing, timestamps have subsequently been incorporated into the latest Gnu 

Radio 'UHD' software but, unfortunately, they are not supported yet for the older USRP1 

platform. 

In spite of the differences between the two experimental platforms, both of them use a 

zero-IF RF receiver hardware architecture.  The name arises from the absence of an 

intermediate frequency mixing stage that is common in many high-performance radio 
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architectures.  This section discusses the basic architecture of a zero-IF radio receiver 

design that replaces the more ubiquitous heterodyne architecture (still) used traditionally 

in wireless receivers. 

In a zero-IF architecture, the RF signal is converted as quickly as possible into a digital 

format.  Digital Signal Processing (DSP) techniques implement functionality that used to 

require specialized and somewhat sensitive hardware components.  Therefore, besides the 

reduction in hardware cost and complexity that is due to the loss of an intermediate 

mixing stage, the main advantages of the zero-IF architecture are: increased flexibility 

and consistency as well as ease of adjustment.  These are all essential attributes for our 

work. 

The received analog radio signal is detected initially as a wireless transmission by an 

antenna of the appropriate length for the specific RF carrier being used (e.g. 2.4GHz).  

The carrier information is subtracted from the RF input signal to produce a demodulated 

data signal with much lower frequency components (measured in MHz).  Before this is 

possible, the weak signal from the antenna must be amplified.  This first-stage of 

amplification has a critical effect on the noise performance of the system and, for this 

reason, user adjustment is limited. 

To remove the RF carrier information, the output from this Low-Noise Amplifier (LNA) 

is multiplied with a locally-generated sinusoid of the same (nominal) frequency as the RF 

carrier used by the transmitter to send the signal to the receiver.  In practice, the two 

carrier frequencies of the sender and receiver will not be exactly the same.  The received 

signal and the local sinusoid are multiplied together using a high-frequency analog mixer 

component.  After filtering out the undesired signal components that arise as a natural 
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result of this multiplication process, the lower-frequency demodulated data signal is 

recovered. 

Both of our two experimental platforms use an initial low-noise amplifier (LNA) that has 

some limited low-granularity gain value settings, followed by a pair of mixers in an I/Q 

demodulator configuration.  In this configuration, one (In-phase; I) mixer multiplies the 

received signal with the locally-generated oscillator signal.  The other (Quadrature; Q) 

mixer multiplies the input signal with a quadrature version of the same local oscillator 

signal. 

Both of the I and Q signal components are then amplified by a second-stage amplifier and 

converted into a digital format using an Analog to Digital (A/D) converter, sampling at a 

rate of 2Msamples per second.  The A/D digital signal output is processed digitally to 

filter the undesired frequency components that result from the mixing process and 

compensate for distortions arising from the transmission of the signal over the RF 

channel. 

The second amplifier stage has a much less critical effect on noise than the first-stage
8
 

LNA and is used to adjust the signal with much more precision than possible with the 

first stage.  The optimum setting for the gain of both stages is controlled continuously in 

an automatic gain control (AGC) loop.  The gain is set once at the beginning of the 

reception of each new message and remains constant during the reception of that 

message. 

                                                 

8
  The amount of noise introduced depends directly on the gain of the first stage of amplification, but 

noise introduced by subsequent stages is scaled with the product of all of the preceding gain stages (follows 

from Friis' formula for calculating the Noise Figure in a set of cascaded gain stages). 
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There is an inherent trade-off required when choosing the optimum gain for a given set of 

input signal conditions.  The ideal gain setting is one that is small enough so that the 

input signal does not saturate the analog outputs of the components in the RF chain, up to 

and including the A/D input.  If an output saturates, then distortion can occur since the 

output no longer tracks input changes properly.  Conversely, while not saturating 

component outputs, a signal that has been too weakly amplified will be overwhelmed by 

small amounts of noise in the RF components prior to the A/D conversion. 

The details of the AGC algorithm in the WSN node hardware are proprietary, so what we 

have deduced has been from what documentation is available in the public domain.  It is 

believed that a firmware look-up table is used to implement the AGC control loop.  The 

control outputs of this AGC algorithm were observed in real time on our experimental 

WSN node platform. 

The USRP1 AGC algorithm is completely determined by user software.  The AGC 

algorithm on the USRP1 is less critical for this phase of our research since the USRP1 

provides full software access to the I and Q digital baseband data in real time.  However, 

for both platforms, the digital demodulated I and Q signal components are the input to the 

AGC algorithm. 
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