
i

Adaptive Random Linear Network Coding with Controlled

Forwarding for Wireless Broadcast

by

Kashif Mahmood

A thesis submitted to The Faculty of Graduate Studies and Research

in partial fulfilment of the degree requirements of

Master of Applied Science in Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical & Computer Engineering
Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada
 December 2010

© Copyright 2010, Kashif Mahmood

i

The undersigned recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis

Adaptive Random Linear Network Coding with Controlled Forwarding

for Wireless Broadcast

Submitted by Kashif Mahmood

in partial fulfilment of the requirements for the degree of

Master of Applied Science in Electrical and Computer Engineering

__

(Dr. Thomas Kunz), Thesis Co-Supervisor

__

(Dr. Ashraf Matrawy), Thesis Co-Supervisor

__

(Dr. Howard Schwartz), Chair, Department of Systems and Computer Engineering

Carleton University

 2010

ii

Abstract

Multicasting and broadcasting are important communication techniques in

wireless adhoc networks. Recently, Network Coding (NC), which has emerged as a

promising technique for various applications, has been applied to multicast and broadcast

in wireless adhoc networks. It is however observed that the performance using NC is

strongly dependent upon the topology, node density and the kind of coding algorithm.

The algorithms that are proposed are mostly dealing with single source multicasting or

broadcasting.

In this thesis I propose an adaptive multi-source broadcasting protocol using

Random Linear Network Coding (RLNC). The key features of this protocol include its

multi-source operation, cross-session generations, controlling the number of re-

transmissions effectively based on neighbourhood information and earlier decoding. Our

simulations with and without cross-session generations show that cross-session

generations result in improved Packet Delivery Ratio as well as lower latency. We also

investigate its adaptive performance compared to packet forwarding schemes, including a

simple flooding protocol, a probabilistic flooding protocol, BCAST and Simplified

Multicast Forwarding. We observe the steady performance of our protocol under different

node densities and rates.

iii

Dedicated to my parents, my wife and my wonderful son

iv

Acknowledgements

I would like to express my sincere gratitude to my advisors, Dr. Thomas Kunz

and Dr. Ashraf Matrawy for their extraordinary support and guidance throughout my

graduate studies at Carleton University. I must unequivocally acknowledge that Dr.

Thomas was a real source of motivation for me and there was not a single moment when

I found myself unguided. He was always available with his valuable suggestions and

guidance throughout my thesis. Dr. Ashraf was also always motivating and supported me

on quite a few occasions where I was in a fix.

I also would like to thank my friends and colleagues who were always there to

extend support and motivation. I would like to thank the SCE department and overall the

Carleton University for all their support. This work was partially funded by

Communication Research Center (CRC), Canada and I would like to thank CRC for their

support. I also would like thank the Graduate Chair for all his moral and financial

support.

Not to mention, I would like to especially thank my parents whose prayers are

always there for me and it’s due to their prayers and efforts which have led me to success

in life. I would like to thank my wife and son, who were always there to support me in all

circumstances and situations. As a student with minimal resources and no time for

family, she was always there as a support. Finally, I would like to thank my sister and

brother-in-law who always motivated me and guided me on all occasions during the

research work.

v

Table of Contents

Chapter 1 Introduction ... 1

1.1 Background ... 1

1.2 Emergence of Network Coding for Wireless Networks .. 1

1.3 Problem Statement .. 2

1.4 Proposed Scheme .. 4

1.5 Thesis Organization ... 5

Chapter 2 Network Coding ... 6

2.1 Concept.. 6

2.2 Types of Network Coding ... 7

2.2.1 XOR-based NC ... 7

2.2.2 Reed-Solomon-based NC ... 10

2.2.3 Random Linear Network Coding ... 12

2.3 Benefits of Network Coding ... 14

Chapter 3 Related Work ... 17

3.1 Broadcast Media .. 17

3.2 Efficient Packet-Forwarding-Based Wireless Broadcast 18

3.3 Related Work on RLNC for Wireless Networks ... 20

3.3.1 Analytical Work ... 20

vi

3.3.2 RLNC-based Heuristic Protocols ... 26

3.4 Discussion ... 31

Chapter 4 Proposed Model ... 34

4.1 Adaptive Random Linear Network Coding with Controlled Forwarding

(ARLNCCF) .. 34

4.2 Proposed Scheme .. 34

4.2.1 Hello Control Messages and Number of Retransmissions 36

4.2.2 Packet Format ... 37

4.2.3 Generation Size... 39

4.2.4 Generation Timeout .. 40

4.2.5 Generation Distance (GD) .. 40

4.2.6 Partial and Full Decoding ... 41

4.2.7 Generation ID - Duplication ... 42

4.3 Operation of ARLNCCF ... 42

4.3.1 Source Node Operation .. 43

4.3.2 Intermediate Node Operation ... 45

4.3.3 Decoding Process ... 51

Chapter 5 Simulation Setup.. 55

5.1 Simulation Tool & Parameters .. 55

5.2 Performance Metrics ... 56

vii

5.3 Algorithms for Comparison .. 58

5.4 Sensitivity of ARLNCCF .. 60

5.4.1 Generation Size... 60

5.4.2 Generation Timeout .. 67

5.4.3 Early Decoding ... 71

5.5 Simulation Scenarios ... 77

5.5.1 Wi-Fi Scenarios .. 77

5.5.2 Tactical Scenarios ... 81

Chapter 6 Adaptive Performance .. 84

6.1 Static Scenarios 01-Source .. 84

6.2 Static Scenarios 04-Sources .. 91

6.3 Mobile Scenarios 01-Source ... 96

6.4 Mobile Scenarios 04-Sources .. 102

6.5 Tactical Scenarios 01-Source .. 106

6.6 Tactical Scenarios 04-Sources .. 108

6.7 Summary ... 110

Chapter 7 Cross-Session Performance .. 114

7.1 100-source scenarios ... 114

7.2 4-Source Scenarios .. 116

Chapter 8 Conclusions and Future Work ... 121

viii

8.1 Conclusions ... 121

8.2 Future Work .. 123

Appendix A ... 132

ix

List of Figures

Figure 2.1: Basic NC idea [19] ... 6

Figure 2.2: Butterfly Network without NC ... 7

Figure 2.3: Butterfly Network with NC .. 8

Figure 2.4: Data Forwarding without and with COPE [20] .. 9

Figure 2.5: RS Codeword ... 10

Figure 2.6: RLNC Process .. 12

Figure 3.1: Dominating Set (DS) & Connected Dominating Set (CDS) 19

Figure 4.1: Neighborhood of Node m ... 37

Figure 4.2: Packet Format for ARLNCCF .. 38

Figure 4.3: Flow Diagram of GD Concept ... 41

Figure 4.4: Flow Diagram - Encoding Process ... 43

Figure 4.5: Single Packet Insertion ... 45

Figure 4.6: Flow Diagram - Intermediate Node Operation ... 46

Figure 4.7: Generation with Symbol Location and Respective Coding Coefficients 48

Figure 4.8: Received Packet with Symbol Location and Respective Coefficients 49

Figure 4.9: Generation 73098 after Conflict Resolution .. 49

Figure 4.10: Generation 73098 with Symbol Location and Respective Symbols 50

Figure 4.11: Received Packet for Generation 73098 .. 51

Figure 4.12: Generation 73098 after Conflict Resolution .. 51

Figure 4.13: Flow Diagram – Decoding Process .. 52

Figure 4.14: Earlier Decoding Examples .. 53

Figure 5.1: PDR vs. Generation Size (01 Source) .. 61

x

Figure 5.2: Latency vs. Generation Size (01 Source) ... 62

Figure 5.3: PDR vs. Generation Size (04 Sources) ... 63

Figure 5.4: Latency vs. Generation Size (04 Sources) .. 64

Figure 5.5: MAC Transmissions vs. Generation Size (04 Sources) 66

Figure 5.6: PDR vs. Generation Timeout ... 68

Figure 5.7: Latency vs. Generation Timeout .. 70

Figure 5.8: MAC Transmissions vs. Generation Timeout .. 70

Figure 5.9: PDR vs. Rate (kbps) - (Static - 01 Source)... 71

Figure 5.10: Latency vs. Rate (kbps) - (Static - 01 Source) ... 72

Figure 5.11: PDR vs. Nodes (Static - 01 Source) ... 73

Figure 5.12: Latency vs. Nodes (Static - 01 Source) .. 74

Figure 5.13: PDR vs. Rate (kbps) - (Static - 04 Source)... 75

Figure 5.14: Latency vs. Rate (kbps) - (Static - 04 Source) ... 75

Figure 5.15: PDR vs. Nodes (Static – 04 Sources) ... 76

Figure 5.16: Latency vs. Nodes (Static - 04 Sources) ... 77

Figure 5.17: Different Scenarios ... 78

Figure 6.1: PDR vs. Rate (kbps) - (Static - 01 Source)... 85

Figure 6.2: Latency vs. Rate (kbps) - (Static - 01 Source) ... 86

Figure 6.3: MAC Transmissions vs. Rate (kbps) - (Static - 01 Source) 86

Figure 6.4: IFQ Drops vs. Rate (kbps) - (Static - 01 Source) ... 87

Figure 6.5: PDR vs. Nodes (Static - 01 Source) ... 88

Figure 6.6: Latency vs. Nodes (Static - 01 Source) .. 89

Figure 6.7: MAC Transmissions vs. Nodes (Static - 01 Source) 89

xi

Figure 6.8: IFQ Drops vs. Nodes (Static - 01 Source) .. 90

Figure 6.9: PDR vs. Rate (kbps) - (Static - 04 Sources) ... 91

Figure 6.10: Latency vs. Rate (kbps) - (Static - 04 Sources) .. 92

Figure 6.11: MAC Transmissions vs. Rate (kbps) - (Static - 04 Sources)........................ 92

Figure 6.12: IFQ Drops vs. Rate (kbps) - (Static - 04 Sources).. 93

Figure 6.13: PDR vs. Nodes (Static - 04 Sources) .. 94

Figure 6.14: Latency vs. Nodes (Static - 04 Sources) ... 95

Figure 6.15: MAC Transmissions vs. Nodes (Static - 04 Sources) 95

Figure 6.16: IFQ Drops vs. Nodes (Static - 04 Sources) .. 96

Figure 6.17: PDR vs. Rate (kbps) - (Mobility - 01 Source) .. 97

Figure 6.18: Latency vs. Rate (kbps) - (Mobility - 01 Source)... 97

Figure 6.19: MAC Transmissions vs. Rate (kbps) - (Mobility - 01 Source) 98

Figure 6.20: IFQ Drops vs. Rate (kbps) - (Mobility - 01 Source) 98

Figure 6.21: PDR vs. Nodes - (Mobility - 01 Source) .. 100

Figure 6.22: Latency vs. Nodes - (Mobility - 01 Source) ... 100

Figure 6.23: MAC Transmissions vs. Nodes - (Mobility - 01 Source)........................... 101

Figure 6.24: IFQ Drops vs. Nodes - (Mobility - 01 Source)... 101

Figure 6.25: PDR vs. Rate (kbps) - (Mobility - 04 Sources) .. 102

Figure 6.26: Latency vs. Rate (kbps) - (Mobility - 04 Sources) 103

Figure 6.27: MAC Transmissions vs. Rate (kbps) - (Mobility - 04 Sources) 103

Figure 6.28: IFQ Drops vs. Rate (kbps) - (Mobility - 04 Sources) 104

Figure 6.29: PDR vs. Nodes - (Mobility - 04 Sources) .. 104

Figure 6.30: Latency vs. Nodes - (Mobility - 04 Sources) ... 105

xii

Figure 6.31: MAC Transmissions vs. Nodes - (Mobility - 04 Sources) 105

Figure 6.32: IFQ Drops vs. Nodes - (Mobility - 04 Sources) ... 106

Figure 6.33: PDR vs. Rate (kbps) - (Tactical - 01 Source) ... 107

Figure 6.34: Latency vs. Rate (kbps) - (Tactical - 01 Source) .. 107

Figure 6.35: MAC Transmissions vs. Rate (kbps) - (Tactical - 01 Source) 108

Figure 6.36: PDR vs. Rate (kbps) - (Tactical - 04 Sources) ... 109

Figure 6.37: Latency vs. Rate (kbps) - (Tactical - 04 Sources) 109

Figure 6.38: MAC Transmissions vs. Rate (kbps) - (Tactical - 04 Sources) 110

Figure 7.1: PDR vs. Rate (kbps) - (04 Sources) ... 117

Figure 7.2: Latency vs. Rate (kbps) - (04 Sources) .. 117

Figure 7.3: PDR vs. Nodes - (04 Sources) .. 118

Figure 7.4: Latency vs. Nodes (04 Sources) ... 119

Figure A.1: Encoding Process ... 132

xiii

List of Tables

Table 4.1: Notations used in the Algorithm .. 42

Table 5.1: Default values in NS2 .. 55

Table 5.2: Optimal P values used for Probabilistic Flooding ... 59

Table 5.3: Common Parameters .. 79

Table 5.4: Simulation Parameters ... 80

Table 5.5: Simulation Parameters ... 81

Table 6.1: Comparing SMF and ARLNCCF for Wi-Fi and Tactical Scenarios 111

Table 7.1: PDR for 1 Packet and 4 Packets per Source .. 115

Table 7.2: Latency for 1 Packet and 4 Packets per Source ... 116

Table 7.3: Confidence Interval-PDR (04 Sources - 50 Nodes) 118

Table 7.4: Confidence Interval-Latency (04 Sources - 50 Nodes) 119

Table A.1: Simplified Multiplication on GF (28) .. 135

xiv

List of Acronyms

AES: Advanced Encryption Standard

ARLNCCF: Adaptive Random Linear Network Coding with Controlled Forwarding

ARQ: Automatic Repeat reQuest

ARQ-E: Enhanced ARQ

ARQ-SPR: Single Path Routing ARQ

BCAST: No Acronym

CBR: Constant Bit Rate

CDS: Connected Dominating Set

DS: Dominating Set

DTN: Delay Tolerant Networks

FEC: Forward Error Correction

GD: Generation Distance

GF: Galois Field

MANETs: Mobile Adhoc NETworks

MC2: Multipath Code Casting

MPR: Multi Point Relay

NC: Network Coding

OLSR: Optimized Link State Routing protocol

OMNC: Optimized Multipath Network Coding

PDR: Packet Delivery Ratio

RLNC: Random Linear Network Coding

RS: Reed-Solomon

xv

SMF: Simplified Multicast Forwarding

S-MPR: Source based Multi Point Replay

TBRPF: Topology dissemination Based on Reverse-Path Forwarding

1

Chapter 1

Introduction

1.1 Background

In many wireless applications, there is a requirement to flood information to all

the nodes in the network with one-to-many or many-to-many communication patterns to

disseminate control messages and other important information like emergency messages

in battlefield operation and disaster relief operations, etc. Simple flooding, in which each

node in the network rebroadcasts the packet it receives, requires no overhead but

consumes lots of channel bandwidth as many duplicate packets are received by the nodes.

The result, called broadcast storm [1], causes significant packet loss and network

congestion.

 In order to deal with the broadcast storm problem, more efficient ways have been

proposed for broadcasting in multi-hop wireless networks by reducing the number of

redundant retransmissions. Various techniques have been applied to reduce the number of

retransmissions (i.e. number of nodes forwarding the broadcast packets) in wireless

networks while attempting to ensure that a broadcast packet is delivered to each node in

the network. The detailed explanation of these techniques is provided in Chapter 3.

1.2 Emergence of Network Coding for Wireless Networks

Wireless networks, which are basically broadcast in nature, have some potential

challenges compared to wired networks. The challenges include low throughput, limited

2

bandwidth, dead spots, poor performance under mobility, energy-constrained operation,

unreliability, susceptible to environmental factors such as fading and interference, and

security threats. However, the inherent characteristics of wireless media like its broadcast

nature, the diversity of information and data redundancy can help in designing new ways

of wireless communication [2]. One emerging area, originally designed for wired

networks, is Network Coding (NC) [3] that works very well in wireless broadcast

environment by exploiting these characteristics. With network coding, the sending nodes

or the intermediate nodes not only act as relay but they additionally combine (encode) a

number of packets they have received into one or several outgoing packets, thus

improving the throughput of the network. Various analytical models and simulations have

shown that network coding can improve the efficiency, throughput, complexity,

robustness and security of the network [4][5][6].

Various NC based techniques have been proposed and applied to applications like

multicasting and broadcasting in wireless networks, peer to peer file distribution [7],

security and robustness to attacks [8], video surveillance [9], as an alternative to

Automatic Repeat reQuest (ARQ) [10], large scale content distribution [11], on chip

communication [12] and distributed storage [13]. A more detailed explanation of these

techniques is given in Chapter 2.

1.3 Problem Statement

In simple packet forwarding, if the packet is lost, there is no way to recover the

lost packet unless the source sends that packet again or same packet is overheard from

another neighbour (opportunistic listening). Using network coding, nodes are allowed to

3

process (encode / re-encode) the received incoming packets instead of simply forwarding

or repeating them. Thus, the packets which are independently generated by the source

nodes are not required to be processed separately by intermediate nodes. These packets

can be combined into one or several outgoing packets. If the encoded packet is lost, there

is still a chance that if the required number of encoded packets can be collected by a node

from any neighbour or group of neighbours, the original packets can be recovered

without any retransmission from the source node. Due to this appealing property, network

coding is able to offer benefits in various aspects of communication networks. The

benefits of using NC are discussed in detail in Chapter 2.

Consideration of the benefits of NC motivated us to explore its potential for

wireless broadcasting. Although there are many proposed schemes dealing with single

source wireless broadcast using NC, only few works are related to multi-source

broadcast. Similarly, the protocol performance depends on how it adapts to the different

data rates and node densities. Many existing protocols have parameters that can be set to

appropriate values like probability of retransmission or forwarding factor [14][15] to

adapt themselves to the above situations. We would like a solution where the protocol is

able to adapt itself automatically, thus, making it more suitable for wireless adhoc

networks.

In this thesis, we have developed a NC-based broadcast protocol that works well

for both single-source and multi-source environment. We have explored the potential

benefit of allowing packets originating from different sources to be combined/coded

together, as opposed to the already proposed algorithms that limit this to packets

originating from the same source only (detail is provided in later chapters). We have

4

shown through simulations that our protocol is able to adapt well to different nodes

densities and data rates and show steady performance in terms of Packet Delivery Ratio

(PDR) and end-to-end packet delay.

1.4 Proposed Scheme

 Our main focus is the application of NC in the area of broadcasting in wireless

adhoc networks. Various analytical models have been proposed and their performance is

evaluated [16][17]. Our proposed scheme uses Random Linear Network Coding (RLNC)

for wireless broadcast. We call it Adaptive Random Linear Network Coding with

Controlled Forwarding (ARLNCCF). Very little work addresses the issue of multi-source

RLNC-based broadcast [16]. The key elements of our protocol are as following.

1. The algorithm is specifically designed to work in multi-source broadcast

environments. The scheme works well for both single-source and multi-source

environments by allowing to code/combine packets originating from different

sources. This improves the Packet Delivery Ratio and reduces the latency.

2. Using neighbour knowledge and the generation size, our scheme can effectively

calculate the number of rebroadcasts that are sufficient for all the nodes to decode the

coded packets. Hence, it is adaptive to varying nodes densities, making it more

suitable for adhoc networks in which there is no control over the number and density

of nodes in the network.

3. The Generation Distance (GD) concept is introduced to check the size of generation

to grow uncontrolled in a multi-source environment.

5

4. An early decoding concept, which is also considered in some of the other research

papers, is included in our protocol. We have used different possibilities of early

decoding to enhance the performance of our protocol. We have investigated the

performance of with and without early decoding. This investigation is not done so far

in the research.

Based on our research work, a paper was published in International Federation for

Information Processing (IFIP) / IEEE Wireless Days (WD’10) Conference [18] held in

Venice in October 2010.

1.5 Thesis Organization

This thesis is organized in the following manner. Chapter 2 is discussing various

NC algorithms and their implementation detail. It also covers some of the benefits of NC

mentioned in the literature. Chapter 3 deals with the application of RLNC to wireless

adhoc networks. The main focus is on the algorithms and analytical models proposed so

far, dealing with multicasting and broadcasting. This chapter also briefly reviews packet

forwarding broadcast protocols. Chapter 4 discusses our proposed model and its

implementation detail. Chapter 5 discusses the sensitivity of our protocol as well as the

simulation setup. Chapter 6 is related to the performance evaluation and comparison of

our protocol to the other selected protocols. Chapter 7 discusses the cross-session

performance of our protocol and finally Chapter 8 is related to the conclusion and future

work.

6

Chapter 2

Network Coding

2.1 Concept

Network Coding is a relatively new concept in information theory. Unlike the

existing store and forward routing schemes, in which data is relayed hop by hop from a

source to a destination without being altered, NC refers to the notion of mixing (linearly

combining) information from different flows at intermediate nodes in the network. The

receiver decodes these packets to recover the original data when it receives enough coded

packets. It has been shown that multicast capacity can be achieved by mixing packets

from different flows [3]. As shown in Figure 2.1, each node in a network can perform

some computation and output packets are a function of input packets. Intuitively, network

coding allows information to be mixed at a node.

Figure 2.1: Basic NC idea [19]

7

Coding Gain

In terms of NC, coding gain is the effective gain that NC provides over non-coded

packets. The gain can be in terms of Packet Delivery Ratio (PDR), reliability, robustness,

number of transmissions or lower end-to-end latency of packets etc.

2.2 Types of Network Coding

There are various types of NC that have been applied in the research. NC can be

classified into the following three types.

1) XOR-based

2) Reed-Solomon-based

3) Random Linear Network Coding (RLNC)

Each of the above types is explained in detail in the following sections.

2.2.1 XOR-based NC

XOR-based algorithms are the simplest algorithm to encode the data packets. The

benefit of XOR-based NC is very well explained in the literature using the famous

Butterfly Network for wired networks by Ahlswede et al [3]. The coding gain can be

explained as follows:

Figure 2.2: Butterfly Network without NC

8

Refer to Figure 2.2; it is the case of a butterfly network without NC. The source S

wants to multicast two bits b1 and b2 to two receivers Y and Z. Let us assumes that the

capacity of each link is 1 bit per second. The source S sends b1 through link S – T and b2

through link S – U as two bits cannot be sent together through the same link at the same

time. If we use the standard store and forward scheme, the middle link W – X cannot

transmit two bits at the same time. W sends the two bits alternately. Now if we calculate

the throughput at each receiver, it will not be 2 bits/sec but 1.5 bits/sec due to the limited

capacity of link W – X.

Figure 2.3: Butterfly Network with NC

Refer to Figure 2.3 now, it shows the case of the same network using XOR-based

NC. The node W has enough processing power to linearly combine the two bits it has

received by calculating the XOR operation i.e. b1 ⊕ b2. The XOR-ed version is forwarded

to node X, which broadcasts the same to the destination nodes Y and Z. Meanwhile, Y

receives b1 from the T – Y link and Z receives b2 from the U – Z link.

The decoding is done in a very simple way at the destination nodes. Node Y is

able to decode b2 by b2 = b1⊕ (b1 ⊕ b2). Similarly, node Z is able to decode b1 by b1 = b2

9

⊕ (b1 ⊕ b2). If we calculate the throughput, it will be 2 bits/sec. This simple example

clearly shows improvement in the throughput of the network using NC.

The slight overhead that can be seen here is the buffer space requirement as well

as additional processing in encoding and decoding the packet. With the advancement in

solid states like high speed processors and high speed and large capacity memories, these

overheads are well taken care of. The bandwidth is limited especially in wireless

networks. Using NC, we can efficiently utilize the bandwidth of the network.

The above example is for a wired network. Another example of XOR-based

coding, this time in a wireless broadcast network, is provided in the work of Katti et al.

[20] and shown in Figure 2.4. They proposed the COPE algorithm, using XOR-based

NC. If node A wants to send a message to node B (and vice versa) and there is an

intermediate node / router R between them that relays the messages between A and B, the

process requires 4 transmissions in total. On the other hand, if A and B send their packets

to R and R broadcasts the XOR version of the packet, a total of 3 transmissions are

required. In this case, node A and B can obtain each other’s packets by XOR-ing them

with their own packets.

Figure 2.4: Data Forwarding without and with COPE [20]

10

2.2.2 Reed-Solomon-based NC

Reed-Solomon (RS) codes are block-based error correcting codes with a wide

range of applications in digital communications and storage. Reed-Solomon codes are

used to correct errors in many systems which include [21]:

• Storage devices (including tape, Compact Disk, DVD, barcodes, etc)

• Wireless or mobile communications (including cellular telephones, microwave

links, etc)

• Satellite communications

• Digital Video / DVB

• High-speed modems such as ADSL, xDSL, etc.

A Reed-Solomon code is specified as RS (n,k) with s-bit symbols. This means

that the encoder takes k data symbols of s bits each and adds parity symbols to generate

an n symbol codeword. There are n-k parity symbols of s bits each. A Reed-Solomon

decoder can correct up to t symbols that contain errors in a codeword, where 2t = n-k.

The following diagram shows a typical Reed-Solomon codeword (this is known as a

systematic code because the data is left unchanged and the parity symbols are appended).

Figure 2.5: RS Codeword

n

k 2t

DATA PARITY

11

Example: A popular RS code is RS (255,223) with 8-bit symbols. Each codeword

contains n = 255 code word bytes, of which k = 223 bytes are data and 2t = n-k = 32

bytes are parity. If the locations of the symbols in error are not known in advance, then a

Reed–Solomon code can correct up to t = (n − k) / 2 erroneous symbols, i.e., it can

correct half as many errors as there are redundant symbols added to the block. This

implies t = 16. The decoder can correct any 16 symbol errors in the code word: i.e. errors

in up to 16 bytes anywhere in the codeword can be automatically corrected.

Sometimes error locations are known in advance (e.g., “side information” in

demodulator signal-to-noise ratios)—these are called erasures. A Reed–Solomon code is

able to correct twice as many erasures as errors, and any combination of errors and

erasures can be corrected as long as the relation 2E + S <= n-k is satisfied, where E is the

number of errors and S is the number of erasures in the block.

RS-code-based NC is used for broadcasting in Mobile AdHoc Networks

(MANETS) in [22]. The authors claimed to achieve 61% coding gain compared to a non-

coding approach. The authors defined coding gain as the ratio of the number of

transmission required by a specific non-coding approach, to the number of transmissions

used by their protocol to deliver the same set of packets to all nodes. However the results

are greatly dependent upon the network topology and density of the network. As this

protocol extensively relies upon opportunistic listening, sparsely placed nodes do not get

much chance of overhearing other messages.

The proposed algorithm works as follows. Let u be the source, v be the receiver

where v ∈ N(u). N(u) is the set of neighbors of node u. Assume that P is the ordered set

of n native packets in u’s output queue. Once u broadcasts the coded packets P, let Pv be

12

the set of packets received by node v, for each v ∈ N(u). Let k = max {|P − Pv|, v ∈

N(u)} and Θ be the k × n Vandermonde matrix which represents RS codes. Then the

minimal number of encoded packets that needs to be sent, such that each neighbor v can

decode the packets in P − Pv is k and the set of k packets are given by Q = Θ× P.

Therefore a node constructs the coded packet set Q = Θ×P. It then adds the set of native

packet IDs to each coded packet and the index number of codes used. When a node v

receives an encoded packet consisting of n native packets (set P), v first goes over all

native packets received in its packet pool. It collects Pv, the subset of packets in P that it

has already received. It then constructs Λv (the decoding matrix) and adds the new

coefficient vector to matrix Λv. For each decoded native packet q, node v can now

process q.

2.2.3 Random Linear Network Coding

In case of Random Linear Network Coding [23], the output flow at the given node

is obtained as a linear combination of its input flows. The coefficients selected for this

linear combination are completely random in nature, hence the name Random Linear

Network Coding (RLNC). The node combines a number of packets it has received or

created into one or several outgoing coded packets.

Figure 2.6: RLNC Process

Encoder Re-encoder Decoder
Original packet

Encoded packet Re-encoded packet Original packet

Intermediate nodes

Coding coefficients Coding coefficients

13

Typically three different operations are performed by RNLC:

1. Encoding

2. Re-encoding

3. Decoding

 The encoding process involves linearly combining the native / original packets

with randomly selected coefficients. The coefficients are independently and randomly

selected from a finite field called Galois Field (GF). The coefficients of this combination

form a coding vector. The encoding, re-encoding and decoding operations are

implemented via matrix operations. The re-encoding process is almost similar to the

encoding process with the exception that the coding vector of the re-encoded packet is

calculated by the arithmetic operation between the newly generated coefficients at that

node and the original coefficients of the received coded packets. This simple arithmetic

operation can be shown by a simple example.

Suppose a node received two coded packets; aX1+ bX2+ cX3 and dX1+ eX2+ fX3.

In order to perform the re-encoding operation on the two received coded packets, the

node generates 2 coding coefficients (g, h) for the two coded packets to be re-encoded.

The coding vector of the new re-encoded packet can be calculated as following;

g (aX1+ bX2+ cX3) + h (dX1+ eX2+ fX3) = (ga+hd) X1 + (gb+he) X2 + (gc + hf) X3

where, (ga+hd), (gb+he) and (gc+hf) are the new coding coefficients of the re-encoded

packet.

The decoding operation is performed at the given node by collecting the coded

packets. These packets form a system of linear equations and can be solved forming a

14

matrix. The matrix is referred to as decoding matrix. Appendix A contains a detailed

description of the encoding, re-encoding and decoding processes.

• Generation

It is important to limit the size of the matrix that is used for encoding and

decoding. For that purpose the packets are grouped together in blocks. Each block is

called a Generation. Only packets of the same generation can be encoded and later

decoded. It is shown that the size and composition of the generation has significant

impact on the performance of network coding [24].

• Dependency

It is shown that with RLNC, there exists a probability of selecting linearly

dependant combinations, which depends upon the size of the GF, i.e., the range of

possible coding coefficient values. However, it is shown through simulations that, even

choosing a small field size, this probability becomes negligible [8].

• Rank of a Matrix

The rank of a matrix is the maximum number of independent rows (or the

maximum number of independent columns) of a matrix.

• Innovative Packet

A packet is said to be innovative if it increases the rank of a matrix.

2.3 Benefits of Network Coding

Some of the benefits of using NC for wireless networks are mentioned in [2][8].

15

Throughput

As mentioned before, NC increases the capacity of a network for multicast flows.

It is shown in the literature that, using NC, the same information is delivered while

transmitting fewer packets in the network. In case of flooding, the broadcast storm

overwhelms the network bandwidth. NC is an effective way to deal with this problem in a

distributed way for multicasting and broadcasting [20][23][25].

Reliability

Some of the main advantages of NC include higher reliability [10] and robustness

[14], especially in case of mobile and lossy networks, where other FEC or ARQ schemes

do not show good performance. By encoding the packets into a single packet, we are

ensuring that a single packet loss does not necessarily require retransmissions [26]. If the

complete set of coded packets of the same generation can be received from any node,

decoding can be successful and all the packets can be recovered. Similarly, the concept of

partial decoding is also provided in the literature where partial packets can still be

recovered even if all the required encoded packets are not received.

Distributed Nature

With NC, there is no need to have global knowledge of the network. Especially in

case of RLNC, we even do not care what the neighbour has received. It is highly

distributed in nature. Due to this property it is well suited for wireless networks which are

also distributed in nature.

Low Complexity

Overall, NC works by solving the set of equations linearly combined together in

polynomial time. The decoding is performed using Gaussian elimination methods. These

16

methods are simple in computation and utilize the cheap computational power to improve

network efficiency [16][24].

Mobility

In mobile environments, the network topology changes over time and a main

difficulty for many routing protocols are the frequent route updates and gathering new

topological information. NC can address this uncertainty and alleviate the need for

exchanging route updates [9][14].

Security

Sending the linear combination of the packets instead of un-coded packets offers a

natural way to take advantage of multipath diversity for security against wiretapping

attacks in wireless networks [27].

17

Chapter 3

Related Work

3.1 Broadcast Media

As mentioned earlier, wireless media, which is broadcast in nature, is a very

suitable candidate for NC. As a result, researchers have explored its benefit for wireless

networks, especially wireless adhoc networks (both static and mobile). Due to the adhoc

nature of the networks, each node is capable of generating as well as routing / relaying

the packets in the network from other nodes.

NC performance is strongly relying on diversity of information, which in the case

of wireless networks can significantly improve the performance of multicast and

broadcast messages in adhoc networks. The wireless media is unreliable and lossy. There

can be frequent retransmissions as required by standard error detection and correction

schemes like Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ).

Secondly, in case of broadcasting, reliable broadcast requires that every receiver must

receive the correct information sent by the sender. In case of wireless adhoc networks,

which are infrastructure-less with limited bandwidth, simple flooding causes bandwidth

bottlenecks and loss of packets. Finding more effective ways to multicast and broadcast

messages has always been a challenging task and many new protocols and algorithms

have been proposed. In this chapter we will focus on the current research trends dealing

with efficient broadcasting in multi-hop wireless networks using packet-forwarding

approaches as well as using RLNC.

18

3.2 Efficient Packet-Forwarding-Based Wireless Broadcast

Efficient ways have been proposed in the literature to flood the information within

wireless adhoc networks. These broadcasting techniques are categorized [28][29] as

Simple Flooding, Probability Based Methods, Area Based Methods and Neighbour

Knowledge Methods. For probabilistic flooding, each node retransmits the received

packets with probability P. This significantly reduces the broadcast storm problem in

simple flooding.

BCAST [30], which is based on the Neighbour Knowledge Method, exchanges

periodic HELLO messages to collect 2-hop neighbourhood information. For

retransmission, a receiving node A reschedules the packet with random delay if all the

neighbours of A are not covered by the previous hop B of the received packet. If the same

packet arrives from another neighbour (or set of neighbours) C who covers the remaining

neighbours, A discards the packet. Optimized Link State Routing Protocol (OLSR) [31]

and Topology Dissemination Based on Reverse-Path Forwarding (TBRPF) [32] are two

additional protocols that implement the Neighbour Knowledge distributed method of

dynamically electing a reduced relay set of neighbours for broadcasting information.

Each member of the relay set, called Multi Point Relay (MPR), "re-transmits" all the

broadcast messages that it receives from its selector node based on certain conditions.

These reduced relay set members provide flooding coverage to all 2 hop neighbors from

the source. The extension of the above concept of controlled / efficient flooding is

applied to the data plane in the Simplified Multicast Forwarding (SMF) algorithm [33].

Other popular Neighbour Knowledge Methods include Dominant Pruning [34] and its

improved versions, Total Dominant Pruning and Partial Dominant Pruning [35].

19

The SMF architecture consists of three main components

2) Neighborhood discovery

3) Relay set selection

4) Forwarding process with duplicate packet detection mechanism.

Finding the minimum number of nodes in the Relay set (the forwarding nodes) is

an NP-complete problem [34]. There are various relay set selection algorithms proposed

in the literature using the concepts of graph theory. In graph theory, a Dominating Set

(DS) for a graph G = (V, E) is a subset V′ of V such that every vertex not in V′ is joined

to at least one member of V′ by some edge. V stands for Vertex and E stands for Edge in

the network. A Connected Dominating Set (CDS) is a DS which is connected.

Figure 3.1: Dominating Set (DS) & Connected Dominating Set (CDS)

CDS-based algorithms are proposed in the literature and their performance is analyzed

under high traffic loads and mobility. Among others, one such algorithm is Source based

Multi Point Replay (S-MPR), under consideration to be used for SMF.

 We compared the performance of our protocol to the simple flooding protocol, a

probabilistic flooding protocol, BCAST, and SMF. Simple flooding is chosen as a base

line protocol. Simple flooding causes broadcast storm. In order to study the performance

of our protocol, we need to compare it with more controlled and efficient flooding

20

schemes. The second protocol we selected is probabilistic flooding. Probabilistic flooding

is very efficient if the right value of forwarding probability is found and used in the

protocol. However such a protocol is not adaptive as we need to find the best value of

forwarding probability for every changing scenario for best performance. This value, for

example, is very sensitive to the network density. This makes this protocol not practical

for adhoc networks. The next protocol we selected for comparison is BCAST. BCAST is

adaptive and uses neighbour knowledge to decide if the packets need to be forwarded or

not. The PDR and latency performance of this protocol is good for very low data rates of

a few kilobits per second (kbps). Finally we selected SMF, which is considered as one of

the most efficient broadcast protocols developed based on MPR. Hence we compare our

protocol with a wide range of broadcast protocols from baseline flooding to one of the

best, namely, SMF.

3.3 Related Work on RLNC for Wireless Networks

We divided the related work on RLNC for wireless networks in two categories;

Analytical Work and RLNC-based Heuristic Protocols. The details for each category are

provided in the following sections.

3.3.1 Analytical Work

The original work on network coding for multicasting in wireline networks was

done by Ahlswede et al. [3]. They showed that as the symbol size approaches infinity, the

source can multicast information at a rate approaching the min-cut between the source

and any receiver. The work was further extended by Koetter and Medard [36], showing

21

that codes with simple and linear structure were sufficient to achieve capacity in lossless

wireline networks. They presented an algebraic framework for network coding, a

discipline that is already well established in the mathematical world and proved that there

exist coding strategies that provide superior performance without requiring to adapt to the

network interior / structure. They derived their results for both delay-free networks and

networks with delay.

3.3.1.1 NC Performance in Lossless and Lossy Networks

In [37], the authors gave a theoretical overview of network coding in both lossless

and lossy networks for single source unicast & multicast operation. Their theoretical

work shows that, for lossless networks, NC provides no advantage / coding gain in terms

of energy efficiency, robustness and reliability compared to standard routing in case of

unicast traffic. However, for multicast traffic, NC provides considerable gain. For lossy

networks, NC provides coding gain for both unicast as well as multicast traffic. Their

results show the benefit of NC especially in providing robustness and reliability in the

network. The heuristic implementation of the theoretical work provided in their paper

results in a protocol called CodeCast [9], discussed in the next section.

3.3.1.2 NC in Distributed Network Operations

Ho et al. [17] showed that RLNC achieves single source multicast capacity with

probability approaching 1 with the length of the code. They demonstrated their results in

two scenarios – distributed network operation and networks with dynamically varying

connections. They provided a lower bound on the probability of error-free transmission

22

for independent or linearly correlated sources. Another important analysis is that RLNC

effectively compresses arbitrarily correlated sources in the network in a natural way. The

authors compared their distributed NC approach to a Steiner tree routing protocol in their

analysis. The results were compared in terms of blocking probability and throughput.

The results showed that when the connections vary dynamically, NC can offer significant

benefit. Their simulations were based on short network code lengths and networks of 8-

12 nodes. However, the theoretical bound calculated in their work for error-free

transmission is considering large field sizes. It is already shown in [38] that choosing

even a smaller field size of 8 is enough to make the combination dependency negligible.

3.3.1.3 NC Performance in Elastic and Inelastic Networks

The delay performance of RLNC is studied for elastic and inelastic traffic in [6]

for single source broadcast. The authors defined elastic traffic as one with no delay

constraints and inelastic traffic as traffic that has stringent delay constraints. Inelastic

traffic does not enter the system until the minimum delay constraints are guaranteed to be

met. The analytical analysis is done for a single hop system and generalized to multi-hop

networks. The results showed that for elastic traffic there is a significant coding gain

which is proportional of the file size. For inelastic traffic, it is shown that for the same

delay constraints, NC is able to support a larger number of receivers and improve the

throughput of the system. However, in the analysis they assumed Poisson arrival only.

Secondly, in order to extend their work to multi-hop scenarios, they rearranged the

network in layers and assume that there is no communication between nodes in the same

layer for multi-hop networks. Nodes are not allowed to transmit the packets until all the

23

nodes in the same layer have received the packets. They did not mention how the layered

topology will be constructed and the overhead associated with broadcast messages that

will be sent in identifying the layers in which the nodes are to be placed. Finally, their

scheme will not be able to function when there is mobility as the nodes might leave the

layer or enter another layer’s region from time to time.

3.3.1.4 NC Comparison with ARQ and FEC Schemes

In [39], the delay performance of network coding for a tree-based single source

multicast problem is studied and compared analytically with various Automatic Repeat

reQuest (ARQ) and Forward Error Correcting (FEC) techniques in terms of effective

number of retransmissions per packet. For network coding, this paper assumes reliable

and instantaneous feedback to acknowledge correct decoding of all data packets. In

practical systems, the acknowledgement can be lost as well, especially in highly

unreliable wireless networks. The work shows the advantage of coding over ARQ in

terms of the expected number of transmissions in a single-path tree or one-hop topology

for lossy networks. NC has been shown to be an efficient reliable wireless multicast

method which achieves a logarithmic reliability gain over ARQ mechanisms. However,

Rateless Coding and link-by-link ARQ achieve comparable performance to that of

network coding. However, their analysis ignores the complexity and overhead associated

with increasing block size. Although they mentioned that their results show that a

reasonable block size is sufficient to obtain the full reliability benefit available via NC,

they did not quantify what they mean by sufficient. The other assumption is that each

24

node of the multicast tree has exactly K children, which is not practical, especially when

we talk about mobile wireless environments.

The reliability performance of RLNC is compared with two different Automatic

Repeat reQuest (ARQ) schemes namely Enhanced ARQ (ARQ-E) and Single Path

Routing ARQ (ARQ-SPR) [26]. Reliability is calculated as the total expected number of

bits transmitted for each information bit transmitted from sender to receiver. Their results

and theoretical analysis show that these advanced ARQ schemes perform comparable to

RLNC. The ARQ-SPR scheme gives comparable performance with negligible overhead.

However, it is observed in their work that the model they have considered is one with a

single sender and a single receiver. We have already discussed that the real benefit of

RLNC is observed in the case of multiple unicasts, multicasting, or broadcasting and the

papers already discussed before acknowledge this fact. The authors have ignored the

coordination and scheduling cost between relay nodes for simplifying the analysis.

However, we have observed from our survey that there is no requirement for such

coordination in the case of RLNC.

3.3.1.5 Energy Efficient Scheme Using NC

Theoretical analysis is provided as well as simple algorithms are proposed for

energy efficient broadcast in [16]. Energy efficiency is directly related to battery life,

which is of significant importance in wireless adhoc as well as sensor networks. Their

work addresses fixed (topologies and link capacities are not changing) as well as

dynamically changing network environments (due to mobility, going to sleep, etc) for all-

to-all communication patterns, which is our interest as well. Their theoretical analysis

25

shows that NC improves performance by a constant factor for fixed networks and by a

log n factor for dynamically changing networks, where n is the number of nodes. Their

assumption in the system model is that a broadcast transmission is successfully received

by all neighbours or the complete transmission will fail. Secondly, each source has only a

single packet to transmit. The paper also described issues related to generation selection

and management based on multi-source scenarios. Although the authors have hinted at

these generation management methods, no detail is provided as to how the generation

management is actually working. Secondly, in their work, they have assumed that each

node has only a single symbol to transmit and all the packets belong to a single

generation. This assumption is not practical in a sense that there will always be multiple

packets to be transmitted by sources and if the number of nodes increases, keeping all the

packets in a single generation will not be practical in terms of memory utilization and

processing time.

3.3.1.6 Improvement of Distributed MAC Protocol using NC

In [25], the authors provided an extension to distributed MAC protocols that

improves efficiency of coding decisions and allows decodability of packets before they

are transmitted. They provided an algorithm (NC-MAC) that manages the stored data

packets intelligently at the MAC queue of each node. The algorithm improves the

knowledge of the node for available correct coding opportunities by using opportunistic

acknowledgements. They showed that their protocol shows significant throughput

improvement compared to standard NC. However this work is related to XOR-based NC,

which works on the neighborhood knowledge of received packets.

26

Similar work is done for the case of unicast traffic [40], showing a 20-30 %

throughput increase using their RLNC-based proposed algorithm, named Multipath Code

Casting (MC2). Another paper shows almost two-fold throughput increase [41] compared

to traditional routing when their RLNC-based algorithm is applied, named Optimized

Multipath Network Coding (OMNC).

3.3.2 RLNC-based Heuristic Protocols

In this section we discuss in detail the various RLNC-based routing algorithms

proposed and their analysis. Later, we sum up the performance of RLNC-based protocols

mentioned in the literature, thus developing the basis for our proposed algorithm.

3.3.2.1 RLNC-based Probabilistic Routing

The first protocol [14] is related to multisource unicast for wireless adhoc

networks using RLNC for probabilistic routing (Delay Tolerant Networking) in extreme

performance-challenging environments. The simulation results show that their proposed

RLNC-based probabilistic routing algorithm achieves high reliability and robustness

compared to a simple probabilistic routing scheme for both static and mobile nodes.

Hashing is performed over the sender address and packet identifier to determine which

generation the packet should belong to. However the paper did not provide much detail

on this hashing operation. In order to forward the packets, a forwarding factor d is

introduced. The results for a static topology show that NC achieves 100% delivery ratio

with less overhead, whereas probabilistic routing results in a three times larger overhead

to achieve the same PDR. For the mobile topology, the authors claim similar results,

27

100% packet delivery ration is achieved with a forwarding factor of 0.125, resulting in 6

times overhead reduction compared to simple probabilistic routing. For sparse networks,

NC performs much better and probabilistic routing almost fails to deliver the packets.

They also investigated the impact of generation size on the overhead and size of matrix.

For a generation size of 4, 99% of PDR is achieved. The results also confirm that an

increase in the generation size improves the network throughput as well as delivery ratio.

However, even a smaller generation size is shown to perform well compared to simple

probabilistic routing.

3.3.2.2 RLNC-based Video Surveillance Protocol

CodeCast [9] is proposed for multimedia applications, especially for surveillance

i.e. for transmitting video images collected from various cameras to the patrolling

security agents in an industrial environment. The main focus is on delay constraints and

delivery ratio for single source wireless multicast. The images should be delivered

successfully within the delay constraints.

The authors used the term “Block” in their research work in lieu of “Generation”

used in the literature and in our thesis. The application generates equal-sized frames p1,

p2 ….Adjacent frames are arranged into blocks denoted by (blockid, blocksize). The

blocksize (# of frames to be encoded) is kept variable based on the delay constraints

calculated from the frame generation rate of the application. However their results are

presented for only two distinct block sizes, 4 and 8. The end-to-end delay increases when

the blocksize is increased to 8 as more frames are needed from the application to encode

them. However, increasing blocksize (generation size) improves the network throughput,

28

as also mentioned in other literature. The receiving node has a timer called blocktimeout.

Based on the value of blocktimeout, the node makes the forwarding decision. If all the

packets of a particular block are received, then they are decoded and recovered. However,

as mentioned in [15], some of the packets can be recovered even if fewer than

blocklength packets are received if the rank of the sub matrix is full. However, this paper

did not talk about decoding based on partially received packets. The paper compares the

performance of CodeCast with the On Demand Multicast Routing Protocol (ODMRP),

which is claimed to be one of the best multicast routing protocols in mobile lossy

environments. The results show 100% packet delivery regardless of node speed, block

size and packet drop probability compared to 94% for ODMRP, with less overhead.

3.3.2.3 RLNC-based Broadcast in Realistic Simulation Scenarios

In [15], the authors observed the effect of packet loss and propagation delay using

RLNC. Their work addresses single-source broadcast in wireless adhoc networks. They

showed through simulations that network node density and generation size play an

important role in the performance of RLNC-based broadcast. The encoding, re-encoding

as well as decoding processes are almost similar to that of CodeCast with minute

differences. It is unclear in the paper how the re-encoded packet’s rank is identified.

 The performance metrics used to evaluate the broadcast schemes are

delay, packet loss rate, protocol overhead and transmission fairness. The results show that

as the network becomes more crowded, NC loses more packets with neighborhood size >

14. The reason given is that, in case of dense networks, there is a higher chance that all

packets are received and the simple broadcast scheme works well. However they did not

29

mention the fact that in case of dense networks, there are more collisions, and packet loss

due to collisions should increase with denser network, thus causing broadcast storm.

Secondly, the results from other references show that in denser networks RLNC shows

better performance. Another important factor is that they have considered only static

scenarios. As described before, much improved performance is achieved for lossy as well

as mobile networks compared to standard broadcast. The protocol overhead for RLNC

decreases when a larger generation size is used, but they did not mention the fact that

once the generation size increases, it affects the delay performance of the algorithm. As

mentioned in previous work, the balance between the delay constraint and generation size

need to be established. Their work lacks this analysis.

3.3.2.4 RLNC-based Broadcast in Dense Environment

Broadcasting with RLNC for dense wireless environment is presented in [42]. The

work is for single-source adhoc networks. In their proposed algorithm, the source node

divides the information into groups of N packets and every packet in the same group is

assigned the same sequence number. If a receiving node finds the sequence number of the

arriving packet to be one that has already been recovered, the node discards that packet.

In simulations, the authors have made the assumption that there is no buffer overflow and

no bit error packet loss. Secondly, decoding failure causes all packets to be lost. They did

not look at the possibility of earlier decoding of packets as mentioned in [15]. The metric

used to judge the performance is decoding failure, packet loss probability vs. node

density, vs. length of coding vector N and vs. order of GF. Their results show that as the

length of the coding vector increases, the number of collided packets decreases.

30

Secondly, as the node density increases, Ploss becomes a convex function. As the number

of nodes increases, there are more chances to successfully decode the packets, but on the

other hand a conflicting situation arises as there are more collisions and the chances of a

decoding failure increases as well. Their Ploss results are also in conflict with the results

mentioned in [15], who showed that RLNC shows poor performance when the number of

nodes increases. Another result between Ploss and length of coding vector shows that there

is strong influence of the size of the coding vector and Ploss. Choosing the optimal vector

size is necessary for better Ploss performance. Similarly, they have shown that the order of

the GF field also has a strong impact on Ploss. The authors did not analyze the

performance of their algorithm in case of mobility and lossy environments.

3.3.2.5 RLNC-based Wireless Broadcast for Multi-player Video Game

Finally, multisource wireless broadcast using RLNC is discussed in [43]. The

algorithm is developed for multi-player video game broadcast for wireless networks

called Network Coded Piggy-Back (NCPB). The proposed algorithm is compared with

IEEE 802.11 broadcast, Piggy-Back Retransmission (PBR) and Multi Point Relay (MPR)

in terms of packet delivery ratio and delay. The simulations were carried out for lossy

static as well as mobile scenarios involving multiple sources. However their work is more

specific to the gaming environment where there is a periodic nature of traffic.

Before starting the game, the N nodes negotiate with each other for entry into and

initialization of the game. Each node obtains an ID and their coding vectors are

exchanged among each other during the initialization phase. Afterwards, each node uses

the same coding vector. The authors did not describe the impact of linearly dependent

31

coding vectors. All the coding vectors generated and exchanged should be checked for

dependency. Another point, as mentioned in [16], is that each source packet should only

be part of one generation but the authors in this paper did not mention anything related to

dealing with this issue or how they are creating generations. The exchanges take place in

each time interval, which are well synchronized between nodes. However, in case of

adhoc networks, an algorithm should be designed that does not require or depend upon

synchronized nodes. This algorithm showed high delivery ratio and less delay suitable for

gaming in all simulations compared to other schemes. Their results also show that once

the node density increases, the performance degrades for other schemes, but the NCPB-

based scheme shows better results. The same performance is observed when conducting

experiments on their test-bed implementation.

3.4 Discussion

 As we have seen from the analytical work as well as various proposed protocols

for RLNC, there is a strong potential of using network coding for various applications.

The work on wireless networks shows many promising results. Based on the survey, we

conclude the following for the application of RLNC for wireless applications.

1. RLNC is very suitable for multicast / broadcast applications.

2. The analytical models show the benefit of RLNC in terms of reliability, robustness

throughput and energy efficiency. However, all these models are based on certain

assumption that may limit their analysis in the context of real applications.

3. RLNC shows almost similar performance compared to advanced ARQ and other

controlled flooding schemes in case of static and low density networks. In harsh

32

environments, especially where there is sparse connectivity and lossy links, RLNC

performs better than other counterpart schemes.

4. For dense networks, there are more collisions and hence more retransmissions. RLNC

is shown to provide better results compared to other schemes even though there are

losses due to collisions.

5. In case of mobile networks like MANETs, RLNC performs better and provides more

robustness and reliability with less overhead compared to other schemes

6. The performance of RLNC is very much dependent upon the generation size, size of

GF (symbol size) and how the extra (redundant) transmissions are controlled in case

of broadcasting.

7. Increasing the generation size improves the throughput, but there is a strong relation

between the decoding complexity, delay and selection of a proper generation size.

8. Another important issue is defining the role of intermediate nodes (sub-graph

selection problem). Different papers have proposed various methods to improve the

delivery ratio as well as throughput by storing the coded packets at intermediate

nodes and either decode, partially decode or re-encode the received encoded packets.

An intermediate node also needs to decide whether to send multiple copies or a single

encoded packet.

9. Most schemes have parameters to control the number of retransmissions. However,

these parameters are manually set for each scenario and therefore are not adaptive,

which makes these protocols not suitable for different node densities and speeds. A

suitable algorithm needs to be developed that can take care of all the possibilities and

33

provide the most effective solution for a wide range of dynamically changing

environments.

10. Most of the work in wireless networks is either related to multiple unicast or multicast

scenarios; there is less work done investigating the performance of broadcasting in

adhoc networks using RLNC. There are analytical models as well as a few simulation

papers that discuss broadcast, but there is still a lot of room to develop an algorithm

that is suitable and practical in implementation. Especially very little research has

been done to-date for multi-source broadcast.

11. The problem dealing with multi-source broadcast has to be handled quite differently

from the proposed schemes for a single source. The main issue is how the generation

is to be defined for packets from different sources. Some of the proposals for

selecting a generation include packets generated within a specific area of network,

packets generated over a specific period of time or packets containing a certain type

of information.

12. It is mentioned in the literature [42] that for multi-source broadcast, the initial

assumption is that all the nodes are well synchronized. However our protocol is

totally distributed in nature and does not require node synchronization.

13. To the best of our knowledge, there has been no comparison of the performance of

multi-source wireless broadcast with and without cross-session generations in the

literature. The cross-session generation concept is explained in more detail in the next

chapter.

34

Chapter 4

Proposed Model

4.1 Adaptive Random Linear Network Coding with Controlled

Forwarding (ARLNCCF)

Based on the analysis from Chapter 3, we propose Adaptive Random Linear

Network Coding with Controlled Forwarding (ARLNCCF) for broadcasting in wireless

adhoc networks. The proposed algorithm is carefully designed based on the concepts and

shortcomings of previously proposed algorithms. Our main target is to present a single

algorithm that can meet the needs of various environments and situations and is not

limited to a single scenario, hence the reason we call our protocol adaptive. This chapter

introduces our approach and our algorithm’s functionality in detail.

4.2 Proposed Scheme

RLNC is highly distributed in nature. Unlike XOR-based or Reed-Solomon-based

coding, which require the knowledge of what its neighbours have received to encode the

packets, no such information is required by RLNC. Broadcasting is an important

communication technique and needs the same attention as unicast and multicast. Most of

the work found in the literature is addressing the case of single source broadcasting.

There are few proposed adaptive algorithm dealing with multi-source broadcasting. Our

algorithm will be suitable for both single source and multi-source broadcasting. It is

observed from the previous work that RLNC works well for dense, mobile and lossy

35

environments where other algorithms show poor performance [42]. However, if the node

density is small, its performance depends upon how many packets are encoded together

to obtain a better coding gain [14]. ARLNCCF is able to combine packets from the same

source or multiple sources based on available generations and their sizes in the buffer.

Our protocol follows the basic idea of RLNC as discussed in Chapter 2. We got

the inspiration from [9][15][16] to develop our protocol. It is mentioned in the literature

[38][44] that GF(28) is sufficient for the symbol size to maintain linear independence with

high probability. So for simplicity and byte-by-byte operation, we set the symbol size to 8

in our implementation. Some of the terms used are as following,

Coded packet

Once the source generates the packet, it is encoded with a random coefficient from

GF(28), the resultant packet is called coded packet. This packet is re-encoded with other

coded packets in the generation (if they exist) before transmission.

Re-encoded packet

When the existing coded packets are further encoded with random coefficients from

GF(28), the resultant packet is called a re-encoded packet.

Decoding matrix

All the packets are stored locally in generations in the form of a decoding matrix. Each

row of the matrix contains the coefficients of the coded/re-encoded packet.

Coded vector

The vector of coefficients that are stored as rows in the decoding-matrix for each

encoded/re-encoded packet is called coded vector for that packet.

36

Cross-session generations

Generations that are not confined to particular sources (generations having

symbols from the same source only) and allow inter-mixing of symbols from different

sources are called cross-session generations. In this thesis we show that cross-session

generations improve PDR and reduce latency compared to generations that do not allow

symbols to be combined from different sources (see results in Section 7.1)

The unique features of our protocol that make it adaptive and support cross-

session design are discussed in the following sections.

4.2.1 Hello Control Messages and Number of Retransmissions

In order to adapt the number of retransmissions as well as the probability of

broadcast, we need to maintain the neighborhood information for the topology. Based on

this neighborhood information, the algorithm can decide about the node density as well as

the number of retransmissions required.

Each node sends Hello messages periodically with its own neighbourhood

information stored in the Hello packet. In this way each node can obtain the two-hop

neighbourhood information. If we assume node “m” as a starting point, the set of

neighbours of m is given by Nr(m) and the neighbours of neighbours of m are given by

NrN1(m), NrN2(m)…. NrNn(m), where, NrNn(m) is the set of neighbours of the nth

neighbour of m. As per Figure 4.1, the neighbours of m and the neighbours of

neighbours of m are as follows:

37

Figure 4.1: Neighborhood of Node m

Based on the neighbour’s neighbour information, the node will compute the

neighbouring node with the minimum number of neighbours, i.e. Min (NrNn(m), for all

n). It will compute NT(i), the number of transmission required for that generation as

follows:

NT (i) = ⎡generation size / Min (NrNn(m), for all n)⎤

The node will transmit NT (i) packets for that generation. In case of a dense

network, not every node needs to retransmit coded packets. So for dense networks, where

the ratio is < 1, NT will become the probability to rebroadcast We don’t use the ceiling

function in this case. So if the ratio is < 1,

PT = generation size / Min (NrNn(m), for all n)

 The rationale behind this formula is that each node is guaranteed to receive at

least generation size coded packets, thus allowing the node to decode all original packets.

4.2.2 Packet Format

We define our own packet format for ARLNCCF. Finding space in the IP header

is quite challenging due to very limited space availability. All previous works related to

RLNC have defined their own packet format. We have also defined our own packet

N8

N1

N7

N6

N2

N5

N4

N3

m
Nr(m): {N1, N2, N3}
NrN1(m): {m, N8}
NrN2(m): {m, N6, N7}
NrN3(m): {m, N4, N5}

38

header format where the required information will be stored. In the header, each coded

symbol needs to be identified in the encoded vector attached to the packet. We identify

each symbol with a Sequence Number (16 bit) and IP address (32 bit) pair. The header

fields are shown in Figure 4.2.

Generation ID Generation Distance Length

IP address and Sequence Number pair

(32 bit IP address & 16 bit sequence number)

IP address and Sequence Number pair

(32 bit IP address & 16 bit sequence number)

Encoding/Re-encoding Coefficients (8 bits per coefficient)

payload

Figure 4.2: Packet Format for ARLNCCF

The Generation ID is the 16 bit number used to represent each generation

uniquely at the given period of time. Generation Distance is an 8 bit number and is

explained in detail in Section 4.2.5. The length field specifies how many source address

and sequence number pairs we have. The IP address and Sequence Number pair is used to

uniquely identify the original packet in the encoded vector. We have as many pairs as that

of number of original packets encoded together. This pair is required because if we just

24 0 15 16 23 31

39

use one parameter than there is no way to distinguish packets from one source to another.

Each source maintains its own sequence number and each packet can only be

distinguished by its sequence number and the source address generating that sequence

number. Similarly, we have as many coding/ re-encoding coefficients (encoding vector)

as that of source address and sequence number pairs. This encoding vector is inserted in

the respective Generation as the last row in the decoding matrix by the receiving node.

Finally we have the payload part which contains the actual coded packet.

In order to implement our protocol in real world, we need a new protocol value in

the IP header’s “Protocol” field. This value is assigned by the Internet Assigned Numbers

Authority (IANA). An ARLNCCF packet is carried as the payload of an IP packet. At

layer 3, once the IP header’s protocol field is examined with our protocol value, the

packet will be send to the ARLNCCF protocol implementation for further processing.

4.2.3 Generation Size

Since our main aim is to develop a multi-source protocol and nodes are free to

insert their packets in any generation, there will always be cases where different nodes

insert their symbols in the same slot of a given generation based on their local space in

that generation. The receiving node maintains an ordered list of source addresses and

sequence numbers for each locally saved generation. Once a coded packet arrives, the

node reorders the symbols of the receiving packet based on its local ordered list. If a

symbol is found with a different 2-tuple for the same slot, this symbol is moved to the

available space in that generation. If no space is available, the generation size is increased

by 1 and the conflicting symbol is added to the end.

40

4.2.4 Generation Timeout

Motivated by the generation timer concept introduced in [9][15], our protocol also

has a timer T associated with each generation. The required number of encoded packets is

rebroadcasted after the timer expires. However, there is still a chance that the node

receives more innovative packets after T has expired. In that case, a single packet is

rebroadcast for each received innovative packet if NT > 1.

4.2.5 Generation Distance (GD)

In order to control the generation size and to avoid increasing it by a large value,

especially at high data rates and a large number of senders, we introduce the idea of a

generation distance. It works as follows:

1. The source, creating the new generation, sets the generation distance to 0 for that

generation. The rebroadcasted packets for that generation have this value set to 1 in

the packet header.

2. When the node receives a packet, it compares the generation distance value for that

generation with the value in the packet. If the packet value is less than the locally

stored value, the locally saved value is replaced with the packet value. In this way the

minimum hop distance is known to the node from where the generation was created.

3. If the source inserts its packet in another generation, not created locally, the value

remains unchanged and the re-encoded packet for that generation has the value

incremented by 1.

4. To insert a new packet, locally created generations are preferred. If none are

available, then the generation with minimum GD is preferred, as long as the GD value

41

is less than or equal to a given threshold. If all the available generations have a value

above that threshold, a new generation is created.

The whole process can be explained with a flow diagram as shown in Figure 4.3.

Figure 4.3: Flow Diagram of GD Concept

4.2.6 Partial and Full Decoding

Decoding is done by the Gauss-Jordan elimination method [45]. Since source

packets are re-encoded with other packets already in the generation, there will always be

a possibility for each node to partially decode the generation. The generation is partially

decoded once the rank of the sub-matrix is full. All the packets that are decoded for that

generation are recorded to prevent passing duplicate packets to the upper layers.

42

4.2.7 Generation ID –Duplication

The Generation ID is randomly generated by the source node and it should be

unique in the network. According to [44], one or two bytes are enough to be reserved for

the generation ID in the encoded packet. In our simulation, we will limit it to 2 bytes. To

further reduce the probability of duplicate ID’s in the network, each node maintains the

list of all IDs seen so far in a given frame of time. If the node generates a new ID, it will

be checked against the list. If that ID is already in the list, a new ID is generated again till

it is not present in the list. The list is periodically refreshed.

4.3 Operation of ARLNCCF

Our focus is on a multi-source broadcast environment where every node is a

receiver. The source node performs multiple operations depending upon certain

conditions. The whole process is explained below.

Notations:

Symbol Meaning
G(i) ith generation

GD(i) Generation distance of ith generation
T Timer for generation

T(i) Timer for ith generation
NT (i) # of transmissions for ith generation

GDThreshold Generation distance threshold
NrNn(m) Neighborhood of Nn

th neighbor of node m
Nr(m) Neighborhood of node m

Table 4.1: Notations used in the Algorithm

43

4.3.1 Source Node Operation

1. The source generates a packet. The packet consists of multiple symbols of 8 bit each.

If we assume an IP packet length of 1400 bytes, there will be (up to) 1400 symbols in

each packet, considering GF (28). The encoding operation is performed on each

packet.

2. Once the packet is generated, the node checks if there are already some generations

available in the memory with GD < GDThreshold.

Source
generates

symbols of
packets

Generations
exist in buffer

No
Create new generation with
random ID.
Encode the packet and create
coded vector.

Initialize the decoding
matrix and add
encoded vector to this
generation.
Start the timer T

Yes

Find the generation G(i) with
lowest generation distance

(S(i) < Smax)
If locally created generation
exists, it is preferred as its

generation distance is 0

Such
generation

exists

No

Yes

Encode the packet and insert in
G(i).
Re-encode all the packets in that
generation.

Create the packet with
required format.
Transmit single packet

Figure 4.4: Flow Diagram - Encoding Process

44

3. If YES (Generations exist in the memory):

a. Find the generation G(i) in memory with lowest generation distance, i.e. min

GD(i). If there are more than one generations with same minimum GD value,

than the first generation found by the algorithm with that GD value is used.

b. Generate a random coefficient from GF(28) for that packet and insert the

packet in the generation G(i).

c. Re-encode all the available coded vectors including the source vector in the

decoding matrix. A single coded packet is broadcasted.

4. If NO (No suitable generation is available in memory):

a. A new generation is created with randomly selected generation ID. The

generation is saved in the memory in the form of a decoding matrix.

b. The coded vector is created by choosing random coding coefficients.

c. An encoded packet is created with the header containing the generation ID

and coding coefficients.

d. A single encoded packet is broadcasted, as this generation contains one new

source packet.

Example: Source packet insertion

Source S1 has a packet m4 to send. The packet is encoded with random

coefficient, x3 = g5 * m4, where g5 is taken from GF (28). If no generation is available

then a new generation is created and x3 is inserted in the new generation and transmitted

(there is no re-encoding in this case). We assume that the source already has two coded

packets in the some generation in the memory, g1 * m1+ g2 * m2 and g3 * m1 + g4 *

m3. The two coded packets contain symbols from 3 original packets, m1, m2 and m3.

45

The source decides to put its packet in this generation. The source packet is

encoded and x3 is added to this decoding matrix. Now the generation has symbols from 4

original packets. The source re-encodes all these packets into a single re-encoded packet

and broadcasts with 100% probability as this generation includes a new source packet.

Figure 4.5: Single Packet Insertion

In order to transmit the re-encoded packet, the source will generate 3 random

coefficients; assume these are g6, g7 and g8. It will linearly combine the coded packets

and create a single re-encoded packet as following.

g6 (g1m1+g2m2) + g7 (g3m1+g4m3) + g8 (g5m4)

= (g6g1+g7g3)m1+(g6g2)m2+(g7g4)m3+(g8g5)m4

The new packet will look like the following,

Gen ID [m1 m2 m3 m4] GD [(g6g1+g7g3) g6g2 g7g4 g8g5] Payload

4.3.2 Intermediate Node Operation

The node which is not the source is referred here as intermediate node. The intermediate

node operation is explained with the flow diagram shown in Figure 4.6.

46

1. The node receives an encoded packet. The memory is checked to see whether the

generation of the received packet already exists in the memory.

Node receives
the encoded

packet

Generation
Exists

No

Yes

Packet is
innovative

Yes

Discard the
packet

No

Create a new generation
with given ID and
initialize the decoding
matrix

Add the received packet’s
coding vector to this generation.
Start timer T

Yes

NoTimer T has
expired

Packets
rebroadcasted
after T expired

Match the received sequence
numbers and IP addresses of
added co-efficients with the
existing co-efficients in the
generation. Wait for more

innovative packets

Move conflicting packet’s coding
co-efficients to the free space or
increase the generation size to
add these co-efficients

Calculate NT

Create the packets with required
format.
Transmit NT packets
If NT < 1, transmit with probability
NT

Yes
Calculate NT

If NT is > 1, rebroadcast only one
packet.
If NT < 1, rebroadcast with
probability NT

No

Figure 4.6: Flow Diagram - Intermediate Node Operation

2. If NO (Generation does not exist in memory),

47

a. The nodes create a new generation with the generation ID taken from the

received packet and the packet is inserted in the generation in the form of a

decoding matrix. Timer T for the generation is started.

b. If the timer T has expired, calculate NT and create NT packets with required

format. Transmit NT packets. If NT < 1, transmit with probability NT.

c. It the timer T has not expired, continue waiting for more innovative packets.

3. If YES (generation exists in memory),

a. The packet is checked if it is innovative. If the packet is not innovative, it is

discarded. If the packet is innovative, the sequence number and IP addresses

of received symbols are matched with existing symbols in the generation.

b. There will be a conflict in the packet’s coefficients when a packet with

different sequence number and IP address pair is found in the slot, compared

to the locally stored packets for that generation.

c. In case of conflict, move the conflicting coefficients in the received packet to

the free space in the generation. If there is no free space available, increase the

generation size by one and move the conflicting packet’s coefficients to that

location.

d. In case NT packets are already re-broadcasted after T has expired, calculate NT

again.

e. If NT > 1, transmit only one packet. Otherwise transmit packet with

probability NT.

f. If timer T for the generation has not yet expired, do not transmit and wait for

additional innovative packets.

48

Example: Conflicting Packets (Free Slot Available)

 In order to explain how the conflicting packets are resolved, we consider the

following example. We assume that the generation size is 4. Each packet is divided into

equal sized symbols of 8 bits each. Suppose that a locally saved generation with

generation ID 73098 has the decoding matrix given in Figure 4.7.

Gen ID 73098 Slot 0 Slot 1 Slot 2 Slot 3

Source address 1 2 3 0

Sequence Number 1 3 6 0

36 42 50 0

48 62 64 0

109 154 80 0

0 0 0 0

Figure 4.7: Generation with Symbol Location and Respective Coding Coefficients

The generation has 3 vectors stored locally. (1,1), (2,3) and (3,6) represent the 2-

tuple (source address, sequence number) for each saved packet with their coefficients at

slot 0,1 and 2 respectively. Slot 3 is empty.

We assume that the node with the above generation matrix received a packet for

that generation with the coefficients and address / sequence number pair as given in

Figure 4.8.

49

 Gen ID 73098 Slot 0 Slot 1 Slot 2 Slot 3

Source address 1 2 3 2

Sequence Number 1 4 6 3

66 184 22 170

Figure 4.8: Received Packet with Symbol Location and Respective Coefficients

The received packet has the 2-tuple (2,4) at slot 1. However the locally saved

generation has the coefficients for packet with 2-tuple (2,3) at slot 1. This conflict is

resolved by moving the conflicting coefficients to slot 3 of the generation, which is free.

Similarly, the 2-tuple (2,3) in the received packet in slot 4 is moved to slot 1 of the

locally saved generation. In this way, each node maintains a conflict-free generation.

Gen ID 73098 Slot 0 Slot 1 Slot 2 Slot 3

Source address 1 2 3 4

Sequence Number 1 3 6 2

36 42 50 0

48 62 64 0

109 154 80 0

66 170 22 184

Figure 4.9: Generation 73098 after Conflict Resolution

It should also be noted that due to this shuffle of coefficients, each node maintains

the order of coefficients independent of other nodes and this order has local meaning

only. Similarly, once the coefficients are moved to a particular slot, the respective coded

50

symbols for that packet are also moved accordingly. After resolving the conflict, the new

generation entries are given in Figure 4.9.

Example: Conflicting Symbols (No Free Slot Available)

 In order to explain how the conflicting packets are resolved in case where no free

slot is available in the generation, we consider the following example. We assume that

the generation size is 4. Suppose that the locally saved generation with generation ID

73098 has the decoding matrix given in Figure 4.10. The generation has 3 vectors stored

locally. (1,1), (2,3), (3,6) and (4,2) represent the 2-tuple (source address, sequence

number) for each saved packet with their coefficients at slot 0, 1, 2, and 3 respectively.

Gen ID 73098 Slot 0 Slot 1 Slot 2 Slot 3

Source address 1 2 3 4

Sequence Number 1 3 6 2

36 42 50 69

48 62 64 102

109 154 80 09

0 0 0 0

Figure 4.10: Generation 73098 with Symbol Location and Respective Symbols

 We assume that the node with the above generation matrix received a packet for

that generation with the coefficients and address / sequence number pair as given in

Figure 4.11.

51

 Gen ID 73098 Slot 0 Slot 1 Slot 2 Slot 3

Source address 1 2 3 4

Sequence Number 1 3 7 2

66 184 22 170

Figure 4.11: Received Packet for Generation 73098

The received packet has the 2-tuple (3,7) at slot 2. However the locally saved

generation has the coefficients for 2-tuple (3,6) at slot 2. This conflict is resolved by

increasing the size of the generation and moving the conflicting packet’s coefficients to

the end. After resolving the conflict, the new generation entries are given in Figure 4.12.

Gen ID 73098 Slot 0 Slot 1 Slot 2 Slot 3 Slot 4

Source address 1 2 3 4 3

Sequence Number 1 3 6 2 7

36 42 50 69 0

48 62 64 102 0

109 154 80 09 0

66 184 0 170 22

Figure 4.12: Generation 73098 after Conflict Resolution

4.3.3 Decoding Process

1. As we are dealing with broadcast messages, each node is required to decode the

received encoded packets.

52

2. Upon receiving an innovative packet, add the received packet to the last row of

the decoding matrix.

3. If the rank is full, decode all the packets.

4. If the rank is not full, try to partially decode the matrix (i.e., check if the rank of a

sub-matrix is full). If some packets are successfully decoded, send the decoded

packets to the upper layer.

5. All 2-tuples for decoded packets are kept in a separate list for that generation. By

doing so we make sure that the same packets are not sent to the upper layer again

once the generation is partially or fully decoded again later.

Figure 4.13: Flow Diagram – Decoding Process

53

• Early Decoding Example

 As mentioned before, we get a chance to decode the symbols without waiting for

the generation to reach full rank. We get the chance to early decode the generations when

a sub-matrix rank is full. Some of the examples illustrating the situations where a sub-

matrix has full rank are given in Figure 4.14. The boxes indicate the sub-matrix with full

rank.

 ൦

48 112 212 231 30
23 44 108 0 0
34 54 0 0 0
23 0 0 0 0

൪,
23 44 108
34 54 0
23 87 0

൩ , ൦

23 44 108 75 12
34 54 212 0 0
23 105 98 0 0
90 45 20 0 0

൪

23 44 108 89
34 54 16 0
23 0 0 0

൩,
23 44 108 199
34 54 65 15
23 11 0 0

൩ , ൦

23 44 108 75 12
34 54 212 30 0
23 105 0 0 0
90 45 0 0 0

൪

Figure 4.14: Early Decoding Examples

Early decoding has a major impact on reducing the end-to-end packet delay. Even

if, by chance, the decoding matrix never reaches full rank due to the loss of packets, we

can still decode some packets rather than losing all the packets of that generation.

Similarly, if some packets have been received and we get the chance of early decoding,

these packets do not have to wait for the generation to become full, which reduces the

packet latency. However, early decoding can result in out-of-order decoding (and

delivery to the higher layers) of packets. If the node is able to decode sequence number 4

No chance

54

before sequence number 3 for some node, then the packets need to be reordered by the

transport layer.

55

Chapter 5

Simulation Setup

5.1 Simulation Tool & Parameters

We have implemented our protocol in NS-2. The MAC protocol 802.11 is used

and we have used the default parameters set in NS-2. The two-ray ground propagation

model is used to simulate the propagation at the physical layer. The default values used in

the simulations are provided in Table 5.1.

Mac set bandwidth_ 2Mb

Mac/802_11 set basicRate_ 1Mb

Mac/802_11 set dataRate_ 1Mb

Antenna/OmniAntenna set X_ 0

Antenna/OmniAntenna set Y_ 0

Antenna/OmniAntenna set Z_ 1.5

Antenna/OmniAntenna set Gt_ 1.0

Antenna/OmniAntenna set Gr_ 1.0

Phy/WirelessPhy set CPThresh_ 10.0

Phy/WirelessPhy set CSThresh_ 1.559e-11

Phy/WirelessPhy set RXThresh_ 3.652e-10

Phy/WirelessPhy set bandwidth_ 2e6

Phy/WirelessPhy set Pt_ 0.28183815

Phy/WirelessPhy set freq_ 914e+6

Phy/WirelessPhy set L_ 1.0

Table 5.1: Default values in NS2

56

 The default parameters specify that the total bandwidth is set to 2 Mbps where the

rate for data frames is 1 Mbps and rate for control frames is also 1 Mbps. Omni-

directional antenna is used by each mobile node and the antenna height is specified by

Antenna/OmniAntenna set Z_ 1.5. Transmit and receive antenna gain is set to 1.

CPThresh_ , CSThresh_ and RXThresh_ are important parameters and specify the

collision threshold, carrier sense power and receive power threshold. The default values

specify the maximum node reception range to be 250 meters. Since we are using Omni-

directional antenna, the node reception range forms a circle of 250 meter radius around

the node. However the interference range / carrier sense range is 550m.

5.2 Performance Metrics

We ran each simulation for 500 second simulation time and averaged over 10

different runs. The performance metrics used to evaluate our algorithm are as following.

PDR

 Packet Delivery Ration (PDR) is the ratio of the total number of packets actually

received by each node relative to the total number of packets that should be received

ideally. Ideally, in case of broadcasting, all packets sent by each source should be

received by all the nodes (including the sources) in the network. In case of network

coding, only those packets are considered that are successfully decoded by each node.

Merely receiving the packet does not mean that the received packet is meaningful, unless

it is decoded successfully. The PDR is calculated as following

PDR = (Total packets received by each node) / (Total packets sent by each source ×

number of nodes)

57

End-to-end packet delay / latency

 End-to-end packet latency is the total time between sending a packet at the source

and its successful reception at the receiver. In case of network coding it is the time

between sending a coded packet at the source and its successful decoding at the receiver.

For broadcasting, there are different ways to calculate the packet latency as all the nodes

are receivers. We can calculate it in 3 different ways.

1) Maximum latency: For each packet transmitted, it is the maximum time it takes to

receive that packet by any node. Ideally, nodes that are furthest from the source in

terms of number of hops should have maximum latency. We calculate the

maximum latency for each transmitted packet and then average it over the total

number of packets sent by all the sources.

2) Minimum latency: For each packet transmitted, it is the minimum time it takes to

receive that packet by any node provided that the node is not the source. If we

include the source, minimum latency will always be 0. We calculate the minimum

latency for each transmitted packet and then average it over total number of

packets sent by all the sources.

3) Overall average latency: To calculate the overall average latency, we first

calculate the average of all the times for single packet sent and received by all the

nodes in the network. The calculated average for each packet is again averaged

over all the packets transmitted by all the sources.

In this thesis we used the overall average latency for comparisons. Average

latency is a good measure of overall system latency and we deal with one parameter only

rather than 2 parameters (Minimum & Maximum) for latency.

58

MAC transmissions

 We further evaluate the performance of our protocol in terms of the total number

of packet transmissions at the MAC layer. It includes both the data packets and control

packets to justify the comparison with other protocols. Ideally, a given protocol will

achieve high PDR and low latency with a low number of packet transmissions at the

MAC layer, indicating low overheads and efficient use of the wireless media.

5.3 Algorithms for Comparison

 We choose simple flooding, probabilistic flooding, BCAST and SMF for

comparing the performance of our protocol using the above mentioned metrics.

1) For simple flooding, the packet is forwarded as soon as it reaches the node’s

network layer. Duplicate packets are discarded.

2) For probabilistic flooding, each node retransmits the received packets with

probability P. This significantly reduces the broadcast storm problem of simple

flooding. It is very important that the right value of probability of retransmission

is used that gives the optimal performance. For our scenarios, we found the

following optimal values for different node densities and data rates. For each data

point we need to find this optimal value as given in Table 5.2.

3) BCAST [30], which is based on the Neighbour Knowledge Method, exchanges

periodic HELLO messages to collect 2-hop neighbourhood information. For

retransmission, the receiving node A reschedules the packet with random delay if

all the neighbours of A are not covered by the previous hop B of the received

packet. If the same packet arrives from another neighbour (or set of neighbours) C

59

who covers the remaining neighbours, A discards the packet. The delay is

calculated by multiplying the uniformly distributed randomly generated number

by the ratio of the highest number of neighbours of neighbours of A divided by

total number of neighbours of A and the scaling factor for BCAST.

Static Scenarios

01 - Source 04 - Source 01 - Source 04 - Source

Rate P value Rate P Value Nodes P Value Nodes P Value

1 0.5 1 0.4 05 0.6 25 0.3

50 0.25 25 0.20 25 0.5 50 0.15

100 0.15 50 0.15 50 0.25 75 0.1

75 0.2 100 0.1

100 0.1

Mobile Scenarios

01 - Source 04 - Source 01 - Source 04 - Source

Rate P value Rate P Value Nodes P Value Nodes P Value

1 0.45 1 0.3 05 0.6 25 0.25

50 0.20 25 0.1 25 0.5 50 0.15

100 0.1 50 0.1 50 0.25 75 0.1

75 0.2 100 0.1

100 0.1

Table 5.2: Optimal P values used for Probabilistic Flooding

60

4) The Simplified Multicast Forwarding (SMF) algorithm [33] implements the

Neighbour Knowledge distributed method of dynamically electing a reduced relay

set of neighbours for broadcasting the information. The SMF architecture consists

of three main components; neighborhood discovery, relay set selection and

forwarding process with duplicate packet detection mechanism. Source based

Multi Point Replay (S-MPR) is used as relay set selection algorithm.

5.4 Sensitivity of ARLNCCF

We investigated the behavior/sensitivity of our protocol to Generation Size,

Generation Timeout, and its performance with/without early decoding. The results are

explained and analyzed in the following section.

5.4.1 Generation Size

01 Source Scenario

1-Source, 50 nodes, date rate 50 kbps. Timeout value: 0.1, GD Threshold: 1

 Figure 5.1 shows the PDR as a function of Generation Size for 01 source scenario.

The PDR initially is at around 80% which slowly increases to approximately 97 - 99% as

the generation size increases. For generation size of 6 and 8, we observe the highest PDR.

The reason for lower PDR for smaller generation sizes is that the generations are

complete before the timeout occurs after 0.1 second. Once the generation is complete, the

nodes re-encode the generations and transmit NT packets. Since the generation size is

very small, the NT value, which is dependent on generation size, is also very small. If the

nodes have a dense neighbourhood, NT becomes the probability with which the nodes

61

transmit. Nodes re-encode and transmit the encoded packets with very small probability

of retransmission. As a result, some of the nodes never get a chance to completely decode

the generation. Similarly, after the re-encoding operation, with smaller generation sizes,

the chances of receiving more innovative packets is also very much reduced. As the

generation size further increases to 6 and above the PDR improves. The latency is more

or less constant as the generation size increases as shown in Figure 5.2. The reason for

this is that we are doing early decoding and most of the packets get the chance to be

decoded early.

 In this research work, since we are more focused on multi-source scenarios, we

have done more investigation of the sensitivity of the protocol for multi-source scenarios.

Figure 5.1: PDR vs. Generation Size (01 Source)

3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

Generation Size

P
D

R

PDR vs. Generation Size

ARLNCCF

62

Figure 5.2: Latency vs. Generation Size (01 Source)

04 Source Scenarios

4-Source, 50 nodes, date rate 25kbps per source. Timeout value: 0.1, GD Threshold: 1

Figure 5.3 shows PDR as a function of Generation Size. It is observed that the

PDR is around 80% for a very small generation size and it increases to around 96% for a

generation size 4. PDR starts to decline again as the generation size increases. For a

timeout value of 0.1 seconds, a generation size of 4 gives the best performance in terms

of PDR.

3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation Size

La
te

nc
y

LAT vs. Generation Size

ARLNCCF

63

Figure 5.3: PDR vs. Generation Size (04 Sources)

For very small generation sizes, we are not getting any real benefit of network

coding. We calculate the required number of retransmissions for the re-encoded packets,

NT (i) = ⎡generation size / Min (NrNn(m), for all n)⎤, so a very small generation sizes

causes the ratio to result in a very small probability of retransmission (which adds to the

lower PDR value). Secondly, since the generation size is very small, the probability that

the nodes will receive more innovative packets later on (after NT transmissions) is also

reduced. So nodes do one re-encoding operation after the generation is full (transmit with

probability NT) and afterwards refrain from re-encoding as they do not receive any

further innovative packets even if their neighbours require one more packet to decode

their generation. This results in lower PDR and also high latency as some generations

2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100

Generation Size

P
D

R

PDR vs. Generation Size

ARLNCCF

64

wait longer to receive the innovative packets from any neighbouring node to decode the

generation fully. Figure 5.4 shows latency as a function of Generation Size.

Mathematically, if a node received ax+by = c, it has to wait for another innovative

packet to solve the equation. For very small generation sizes, this probability (to receive

more innovative packets) is reduced. Even with early decoding, we cannot decode the

packets from a single equation with 2 unknowns and need to wait for another innovative

packet. Overall, a very small generation size causes fewer MAC transmissions but causes

higher latency and lower PDR.

Figure 5.4: Latency vs. Generation Size (04 Sources)

Figure 5.4 shows that as the generation size increases, the latency is more or less

constant. The reason for this is that we are supporting early decoding and there is always

a chance to decode the coded packets early. There are many packets that do not get

2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation Size

La
te

nc
y

Latency vs. Generation Size

ARLNCCF

65

decoded when the generation size is big. Consequently the PDR is very low for larger

generation sizes. The reason for this behavior is that for bigger generation sizes, at the

generation timeout which set to 0.1 second, the nodes transmit NT coded packets to the

neighbours. In fact the coded packets do not have complete generation information as the

generation is not complete yet. Due to the phenomenon of early decoding, we are able to

decode a few of the packets.

Subsequently, when the node receives more innovative packets, and if by chance

any innovative packet is missed, the node is not able to decode the remaining packets.

Even the early decoding does not help in that case. This can be explained with the

following example. Suppose we have generation size 8. At the timeout, we assume that

the generation is half complete. NT packets are transmitted, which combine information

from a few packets (less than generation size). With early decoding, we are able to

decode these packets, a,b,c & d. The coefficients of these packets are shown in (1) as the

last four rows of the decoding matrix. Once more innovative packets arrive and if any

transmission is missed or results in non-innovative packet, the chances to decode the

remaining packets are minimized. In the following example, the node received 3 more

coded packets for the same generation and stored their coefficients in the generation

matrix (1) as the first 3 rows of the decoding matrix. We are not able to decode e,f,g & h

even with early decoding as the generation is missing one innovative packet. As a result

the PDR goes down. The more the generation size increases, the higher the chances of

being left with few coded packets (which we are unable to decode).

66

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
݄7 ݃7 ݂7 ݁7 ݀7 ܿ7 ܾ7 ܽ7
݄6 ݃6 ݂6 ݁6 ݀6 ܿ6 ܾ6 ܽ6
0 ݃5 ݂5 ݁5 ݀5 ܿ5 ܾ5 ܽ5
0 0 0 0 ݀4 ܿ4 ܾ4 ܽ4
0 0 0 0 ݀3 ܿ3 ܾ3 ܽ3
0 0 0 0 0 ܿ2 ܾ2 ܽ2
0 0 0 0 0 0 ܾ1 ے1ܽ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (1)

As far as MAC transmissions are concerned, as shown in Figure 5.5, we observe

that as the generation size increases, there are more and more MAC transmissions. The

reason for this behavior is that at generation timeout, which is set to 0.1 seconds, the node

transmits NT copies to its neighbors. NT is dependent on the generation size. As we

increase the generation size, the NT value increases.

Figure 5.5: MAC Transmissions vs. Generation Size (04 Sources)

2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 105

Generation Size

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Generation Size

ARLNCCF

67

In our protocol development we assume that at generation timeout, the generation

is full or close to full. At generation timeout, assuming that a generation is almost

complete, the node transmits NT copies to its neighbors. However, for larger generation

sizes, the generation is not yet complete at 0.1 second. This results in many redundant

transmissions which contribute very little in completely decoding the generation.

Similarly, there are many innovative packets received even after the expiration of the

timeout value for larger generation sizes. They need to be rebroadcasted also after NT

transmissions, which results in a higher number of MAC transmissions.

In a nutshell, there is a need to maintain a balance between the timeout value as

well as the generation size. Larger generation sizes also cause significant overhead as the

coded packet header needs to carry the source address and sequence number of each

original packet.

5.4.2 Generation Timeout

Scenario

4-Source, 50 nodes, date rate 25kbps per source, Generation size: 4

Figure 5.6 shows PDR as a function of Generation Timeout. It is observed that the

PDR is around 90% for very small timeout values. It increases to around 96% for a

timeout value of 0.1 second and then starts to decline again to 90%. The reason for this

behavior is that for very low generation timeout values, the nodes re-encode the

generations at timeout, transmit NT copies even if the generation is not complete and still

require a few more coded packets to complete the generation. Later on additional

innovative packets arrive; the node just transmits one re-encoded packet.

68

Figure 5.6: PDR vs. Generation Timeout

NT packet transmissions make sense once the generation is almost complete and a

node is able to decode almost all packets in a generation. However, for very low values of

the generation timeout, the neighbouring nodes just receive NT packets which do not have

enough information for all the packets in that generation and nodes have to wait for more

innovative packets. The situation is almost similar to the case discussed above where the

generation size is large and at timeout the generation is not complete. Here the generation

size is 4 but the timeout value is so small that the generation is not complete at timeout.

As such, after NT transmissions, the nodes keep on waiting for more innovative packets

to fully decode the generation. If any innovative packet is missed or dropped, we will be

left with few packets that we are not able to decode even with early decoding. Similarly,

the received innovative packet for some nodes does not guarantee that the same packet is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

Generation Timeout

P
D

R

PDR vs. Generation Timeout

ARLNCCF

69

innovative for other nodes as well. If some generations receive all innovative packets by

chance, nodes are able to decode the generation fully. However some of the packets are

decoded with a delay after receiving innovative packets later on. This results in higher

latency as shown in Figure 5.7. At a timeout value of 0.1 second, the PDR improves and

latency is reduced. It is however observed that we have a higher number of MAC

transmissions in order to achieve higher PDR and lower latency.

There needs to be a balance between generation size as well as timeout value.

Once we further increase the generation timeout value, the PDR declines to around 90%

and then remains constant. Similarly, the latency starts to increase slightly as the timeout

value increases. The reason for this behavior is that the timeout value is set such that at

this value, even if the generation is not complete due to either delays or drop of packets,

the nodes need to re-encode and transmit NT packets. For higher timeout values, if the

generation is not complete by any chance before the timeout value, the nodes keep on

waiting for the timeout to expire before they can re-encode and transmits the packets for

that generation. This causes higher latency.

Figure 5.8 shows MAC transmissions as a function of Generation Timeout. For

higher timeout values, the nodes retransmit only when the generation is complete. The

reason for this is that most of the generations get completed before the timeout expires.

The generation is complete once it has received all innovative packets and the number of

rows equals the number of columns in the decoding matrix. This causes fewer MAC

transmissions but results in slightly lower PDR and slightly higher latency. In a nutshell,

these parameters strike a compromise between one performance metric and another.

70

Figure 5.7: Latency vs. Generation Timeout

Figure 5.8: MAC Transmissions vs. Generation Timeout

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation Timeout

La
te

nc
y

Latency vs. Generation Timeout

ARLNCCF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 105

Generation Timeout

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Generation Timeout

ARLNCCF

71

5.4.3 Early Decoding

01-Source Scenarios - Varying data rate

Scenario

 (01-Source (Static), Nodes 50 – Generation size 6, GD Threshold 2, Timeout 0.1)

As shown in Figure 5.9, there is almost no difference in PDR with and without

early decoding. The major impact is on the latency as shown in Figure 5.10. At very low

data rates, we see that it takes much longer time to complete the generations and as a

result the latency is quite high for cases that do not support early decoding. For very low

data rates, at a generation timeout of 0.1 second, very few packets are generated (fewer

than the generation size). After NT transmissions, the neighbouring nodes need to wait for

more innovative packets to fully decode the generation (without early decoding).

Figure 5.9: PDR vs. Rate (kbps) - (Static - 01 Source)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (kbps)

P
D

R

PDR vs. Rate(STATIC - 01 Source)

With Early Decoding
Without Early Decoding

H

ti

th

th

g

re

d

an

re

With

However in t

imeout for v

he data rate

he innovativ

eneration su

Overa

esults in very

ata rates cau

nd without

educes to 0.0

La
te

nc
y

early deco

the absence

very low dat

is very low,

ve packets

uccessfully.

Figure 5.

all, this leads

y large deco

use the gener

early decod

05 – 0.15 sec

0 10
0

1

2

3

4

5

6

La
te

nc
y

ding, we a

of early dec

ta rates and

, the innovat

arrive and

10: Latency

s to a PDR w

ding delays.

rations to als

ding becom

cond as show

20 30

Latency

always get

coding, the n

keep on wa

tive packets

a generatio

vs. Rate (kb

which is alm

 As the data

so complete

mes less sign

wn in Figure

40 50
Rate (kbp

y vs. Rate(STAT

the chance

nodes receiv

iting for mo

also arrive

on is comp

bps) - (Static

most the sam

a rate increas

quickly and

nificant. Th

e 5.10.

60 70
ps)

TIC - 01 Source)

With Ea
Without

to decode

ve very few

ore innovativ

at a very slo

lete, the no

c - 01 Source

me as with ea

ses to beyond

d the differen

he difference

80 90

)

arly Decoding
t Early Decoding

the sub-m

packets afte

ve packets. S

ow rate. Onc

ode decodes

e)

arly decodin

d 50 kbps, h

nce between

e still exists

100

g

72

matrix.

er the

Since

ce all

s the

ng but

higher

n with

s but

73

01-Source Scenarios - Varying Number of Nodes

Scenario

 (01-Source (Static), Rate 50 – Generation size 6, GD Threshold 2, Timeout 0.1 second)

When we investigate the performance by varying the number of nodes, PDR is

almost the same for both cases as shown in Figure 5.11.

Figure 5.11: PDR vs. Nodes (Static - 01 Source)

However, the major impact is seen in the latency of the packets as shown in

Figure 5.12. There is an additional delay of 0.1 – 0.15 second between with and without

early decoding. With early decoding, the packets are consistently received much earlier

than without early decoding case. The reason is already explained above when we

discussed the cases with varying rate. It is noticed that varying the node densities has no

impact on with and without early decoding cases. The difference in latency here is

observed due to our set data rate of 50 kbps and not due to varying the node densities.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nodes

P
D

R

PDR vs. Nodes(STATIC - 01 Source)

With Early Decoding
Without Early Decoding

74

Figure 5.12: Latency vs. Nodes (Static - 01 Source)

04-Source Scenarios - Varying Rate

Scenario

 (04-Source (Static), Nodes 50 – Generation size 4, GD Threshold 1, Timeout 0.1)

The results for scenarios with 4 sources are almost similar to those of single

source scenarios with the difference that after 25kbps rate, the latency is almost the same

for both cases of with and without early decoding as shown in Figure 5.14. Before the 25

kbps data rate, the case without early decoding has much higher latency due to low data

rates. It takes more time to complete the generation fully and then decode. Early decoding

shows a steady performance and shows no impact due to different data rates. The reason

for this behavior is already explained when discussing the single source scenarios.

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Nodes

La
te

nc
y

Latency vs. Nodes(STATIC - 01 Source)

With Early Decoding
Without Early Decoding

75

Figure 5.13: PDR vs. Rate (kbps) - (Static - 04 Source)

Figure 5.14: Latency vs. Rate (kbps) - (Static - 04 Source)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (kbps)

P
D

R

PDR vs. Rate (STATIC - 04 Source)

With Early Decoding
Without Early Decoding

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

Rate (kbps)

La
te

nc
y

Latency vs. Rate(STATIC - 04 Source)

With Early Decoding
Without Early Decoding

76

04-Sources Scenarios - Varying Number of Nodes

Scenario

 (04-Source (Static), Rate 25 – Generation size 4, GD Threshold 1, Timeout 0.1 second)

Keeping the data rate at 25 kbps and varying the number of nodes, we observe

that there is a consistent additional delay between with and without early decoding cases

as shown in Figure 5.16. We are always able to decode the packets early and achieve

lower latency for different node densities.

 Figure 5.15: PDR vs. Nodes (Static – 04 Sources)

20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Nodes

P
D

R

PDR vs. Nodes (STATIC - 04 Source)

With Early Decoding
Without Early Decoding

77

Figure 5.16: Latency vs. Nodes (Static - 04 Sources)

5.5 Simulation Scenarios

5.5.1 Wi-Fi Scenarios

Our aim in this thesis is to investigate the performance of cross-session

generations and to test the adaptability of the protocol. In order to test the adaptability of

our protocol to different node densities and data rates, we created different scenarios

(static and mobile) with 5, 25, 50, 75 and 100 nodes in a 500m × 500m area for single-

source scenarios, and with 25, 50, 75 and 100 nodes in a 500m × 500m for 4-source

scenarios. Figure 5.17 shows some of these scenarios.

20 30 40 50 60 70 80 90 100
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Nodes

La
te

nc
y

Latency vs. Nodes(STATIC - 04 Source)

With Early Decoding
Without Early Decoding

78

Figure 5.17: Different Scenarios

 It can be seen from Figure 5.17 that by increasing the number of nodes in the

network in the same area, we are in fact increasing the node density. Fewer

retransmissions are required per node in case of a dense network as there are more

neighbours available, contributing to the retransmissions. Later, we show through

simulations that our protocol is able to appropriately control the number of

retransmissions for different scenarios and exhibits steady behavior.

Also, we tested our protocol for different data rates. We selected 1 kbps, 50 kbps

and 100 kbps data rate for single-source scenarios and 1 kbps, 25 kbps and 50 kbps data

rate per source for 4-sources scenarios. Some of the common parameters for each

scenario are summarized in Table 5.3.

0 200 400 600
150

200

250

300

350
05 nodes

X coordinates

Y
 c

oo
rd

in
at

es

0 200 400 600
0

200

400

600
25 nodes

X coordinates

Y
 c

oo
rd

in
at

es
0 200 400 600

0

200

400

600
50 nodes

X coordinates

Y
 c

oo
rd

in
at

es

0 200 400 600
0

200

400

600
100 nodes

X coordinates

Y
 c

oo
rd

in
at

es

79

Traffic Constant Bit Rate (CBR)

Packet size 256 bytes

Area 500 m × 500 m

Propagation model 2-ray ground

InterFace Queue (IFQ) 50

Mobility

Model Random waypoint mobility model

Minimum speed 2 m/s

Maximum speed 10 m/s

Pause 0 sec

Speed type Uniform

setdest version Version 2

Table 5.3: Common Parameters

Based on the results in Section 5.4, we carefully selected the generation size of 6

for single-source scenarios. We did not select a higher value than 6 as it has impact on the

complexity of the protocol. Each coded packet carries a source address and sequence

number pair to uniquely identify each original packet. A bigger generation size implies

each coded packet has to carry more source address and sequence number pairs to

uniquely identify each original packet it is carrying, thus increasing the size of the coded

packet. We selected a generation size of 4 for multi-source scenarios with timeout value

set at 0.1 second. These values are selected based on the sensitivity of our protocol to

these values. We selected the optimal values that give the best performance in terms of

PDR and latency.

In case of mobility, we used the Random Way-point mobility model with 0

second pause time and minimum and maximum speed of 2 m/s and 10 m/s respectively.

We used the NS2 built-in function SETDEST to generate these scenarios.

80

Generation Size
Number of nodes
Data rate
Gen timeout
GD

Single Source Scenarios
06
5 – 100 (Data rate fixed at 50 kbps)

 1-100 kbps (Nodes fixed at 50)
0.1 second
2

Generation Size
Number of nodes
Data rate
Gen timeout
GD

04-Source Scenarios
04
25 – 100 (Data rate fixed at 25 kbps per source)
1-50 kbps (Nodes fixed at 50)
0.1 second
1

Generation Size
Number of nodes
Date Rate
Gen timeout
GD

04-source Cross-session Scenarios
04
25 – 100 (Data rate fixed at 25 kbps per source)
1-50 kbps (Nodes fixed at 50)
0.1 second
1

Generation Size
Number of nodes
Gen timeout
GD

100-source Cross-session Scenarios
04
100 (rate: 1 and 4 packets /source)
0.2 second
1

Hello interval
(ARLNCCF, SMF and BCAST)

10 sec for all Static Scenarios

2 sec for Mobile Scenarios for SMF
and ARLNCCF

Table 5.4: Simulation Parameters

To test the multi-source scenario performance with and without cross-session

generations, we created 4-sources and 100-sources scenarios. We have modified the idea

presented in [16] to generate 100-sources scenario. GD threshold is set to 1 as each node

is a source and setting it to higher value will cause the generation size to grow rapidly in

81

a dense network of 100 nodes. The simulation is run for 20 second simulation time. Each

node generates one packet only for case-1 and 4 packets for case-2. On average 5 packets

are generated per second for case 1 and 20 packets/sec for case 2 from different sources.

Different parameters used in various scenarios are summarized in Table 5.4.

5.5.2 Tactical Scenarios

 We also investigated the protocol performance in tactical scenario [46].

The parameters used for the tactical scenario are given in Table 5.5.

Traffic CBR

Packet size 256 bytes

Area 40km × 40km

Propagation model RiceanShadowing

InterFace Queue 50

Radio transmission range 20km

Generation Size

Number of nodes

Data rate

Single Source Tactical Scenarios

06

50

 1.2kbps, 2.4kbps, 4.8kbps (# of Nodes fixed at 50)

Generation Size

Number of nodes

Data rate

04-Source Tactical Scenarios

04

50

1.2kbps, 2.4kbps, 4.8kbps (# of Nodes fixed at 50)

Table 5.5: Simulation Parameters

We used a Ricean Rescue model using the more realistic radio link model based

on Ricean fading [47]. 50 nodes are placed in a 40km × 40km area. Bandwidth is lowered

82

to 128kbps and the radio transmission range is set to 20km. The carrier sense range is set

to the transmission range. SMF and simple flooding are selected for comparison. We

tested the protocols for both static and mobile scenarios.

Mobility in tactical scenarios [46]

Some nodes in the tactical scenario move according to the Random Waypoint

mobility model and some according to Reference Point Group Mobility Model, but their

velocity depends on the group a node belongs to. Of the 50 nodes, 3 nodes, representing

command-and-control centers, are nearly stationary. Seven nodes move individually

around the whole simulation area based on the Random Waypoint mobility model, with

speed randomly selected between 30km/h and 70km/h and 0 pause time. The remaining

40 nodes are grouped into 4 sets of ten nodes each, moving as a group. Each group of 10

nodes moves according to the Reference Point Group Mobility Model, where the

reference point moves with a speed randomly selected between 30 and 70 km/h and 0

pause time.

Within each group, nodes can deviate from the reference point by +/- 1 km in

each direction. In addition, each of the four groups is assigned to work in one quadrant of

the simulation area, with the quadrants slightly overlapping. For example, group one

works in the quadrant bounded by (0, 0) and (22 km, 22 km); group 2 works in a quadrant

bounded by (0, 18 km) and (18 km, 40 km), group three is within the quadrant bounded

by (18 km, 0) and (40 km, 22 km), and finally group 4 operates within the quadrant

bounded by (18km, 18km) and (40km, 40km).

83

In this chapter we have investigated the sensitivity of our protocol to generation

timeout and generation size. We also compared the performance with and without early

decoding by simulations. We showed that early decoding plays an important role in

reducing latency. Similarly, the simulations parameters and scenarios are explained in

detail. These scenarios are used to test the adaptive performance as well as the multi-

source coding feature of our protocol. The results for the above scenarios are discussed in

the next two chapters.

84

Chapter 6

Adaptive Performance

 Our main aim in this chapter is to investigate the performance of our protocol by

varying the data rate as well as node density. The adaptive performance is analyzed for

static, mobile, as well as tactical scenarios. For each scenario, we investigated the

performance of our protocol compared to SMF, probabilistic flooding, BCAST and

simple flooding. The performance metric selected are PDR, latency and MAC

transmissions. First, the results for static scenarios are discussed for 01-source and 04-

sources. Later on, results for mobile and tactical scenarios are given with explanation.

6.1 Static Scenarios 01-Source

Figure 6.1 shows that as the data rate increases, the PDR for simple flooding and

BCAST drops significantly. ARLNCCF performs much better than simple flooding,

probabilistic flooding and BCAST as the data rate increases. However the PDR

performance drops slightly compared to SMF for higher rates. We have calculated 95%

confidence interval for all PDR plots where the difference between ARLNCCF and SMF

is less obvious. Further explanation about confidence intervals is provided in Section 6.7.

We also note that due to the generation timeout concept in our protocol, which is set at

0.1 second, there is always an inherent delay which is obvious in Figure 6.2. For lower

data rates, the delay is around 0.18 second which slightly increases to 0.25 second for our

protocol. Probabilistic flooding and SMF induce less delay compared to other protocols.

85

SMF shows the best performance in terms of PDR, low latency and fewer MAC

transmissions.

When comparing MAC transmissions, we need to explain the trend in more detail.

Figure 6.3 show that BCAST has fewer MAC transmissions than ARLNCCF and SMF.

However, when we compare the PDR for BCAST in Figure 6.1, it is much poorer than

SMF and ARLNCCF. The reason for the low number of MAC transmissions for BCAST

is due to packet drops in the InterFace Queue (IFQ) of the source itself. Due to channel

unavailability, the protocol drops the source packets at the queue and does not attempt to

deliver them. As a result there are fewer MAC transmissions but very low PDR as well.

Packet drops for the different protocols are shown in Figure 6.4.

Figure 6.1: PDR vs. Rate (kbps) - (Static - 01 Source)

0 10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (kbps)

P
D

R

PDR vs. Rate (STATIC - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

Confidence Interval (at 50 kbps)
Static (SMF/ARLNCCF)

99.80 -- 99.91
97.38 -- 99.49

86

Figure 6.2: Latency vs. Rate (kbps) - (Static - 01 Source)

Figure 6.3: MAC Transmissions vs. Rate (kbps) - (Static - 01 Source)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Rate (kbps)

la
te

nc
y

Latency vs. Rate (STATIC - 01 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 105

Rate (kbps)

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Rate (STATIC - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

87

Figure 6.4: IFQ Drops vs. Rate (kbps) - (Static - 01 Source)

Overall, comparison for the single source static scenario shows that SMF and

ARLNCCF achieve much higher PDR compared to other protocols with very few MAC

drops. Probabilistic flooding is better than BCAST and simple flooding but the optimal

probability value for retransmission needs to be determined for each scenario based on

different data rate and number of nodes, which is not a practical approach. The optimal

probability values vary from 0.5 – 0.1 for data rates of 1 kbps to 100 kbps respectively.

Similarly as we increase the node densities, a lower probability of retransmission is

required to achieve maximum performance.

In Figures 6.5 to 6.8, the number of nodes is varied from 5 to 100 in the same

geographical area. Generation timeout is set to 0.1 second and generation size is 6 for

ARLNCCF for single-source scenarios. It is observed that ARLNCCF shows steady

performance for all node densities by controlling the number of retransmissions. The

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

Rate (kbps)

IF
Q

 D
ro

ps

 IFQ Drops vs. Rate (STATIC - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

88

PDR performance is best for SMF and then ARLNCCF. The latency is around 0.23

seconds for ARLNCCF, which also remains steady for different node densities as shown

in Figure 6.6. Due to the generation timeout value in our protocol, the latency is higher

compared to SMF and probabilistic flooding. Referring to Figure 6.7 and 6.8, a trend

similar to the one when varying the data rate discussed above is seen for the MAC

transmissions and IFQ drops. BCAST and simple flooding have the highest IFQ drop

rate. Our protocol shows almost zero IFQ drops, similar to SMF and probabilistic

flooding, as shown in Figure 6.8.

Figure 6.5: PDR vs. Nodes (Static - 01 Source)

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of nodes

P
D

R

PDR vs. Nodes(STATIC - 01 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

Confidence Interval (# of Nodes 50)
Static (SMF/ARLNCCF)

99.80 -- 99.91
97.38 -- 99.49

89

Figure 6.6: Latency vs. Nodes (Static - 01 Source)

Figure 6.7: MAC Transmissions vs. Nodes (Static - 01 Source)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of nodes

La
te

nc
y

Latency vs. Nodes (STATIC - 01 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 105

Nunber of nodes

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Nodes (STATIC - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

90

Figure 6.8: IFQ Drops vs. Nodes (Static - 01 Source)

In summary, varying the node density from 5 to 100, ARLNCCF and SMF show

steady performance and there is no effect on the performance of the protocols as the node

density increases. For probabilistic flooding, we pre-determined the optimal value of

probability of retransmission for different node densities. Still we find its performance in

terms of PDR is lower than ARLNCCF and SMF. ARLNCCF and SMF are able to

control the number of retransmissions by neighbour knowledge (Although both use

different methods to determine the optimal number of required retransmissions), as a

result there is no impact observed by varying node densities. Our protocol has an

additional delay due to generation timeout but node density has no impact on this delay.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

Nodes

IF
Q

 D
ro

ps

IFQ Drops vs. Nodes (STATIC - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

91

6.2 Static Scenarios 04-Sources

For 4-source static scenarios, generation timeout is set to 0.1 second for a

generation size of 4 for ARLNCCF. The PDR and latency performance is consistent with

the results obtained for the single source scenarios. As shown in Figure 6.9, at 50kbps per

source, the PDR drops to around 83 % for ARLNCCF and around 76% for SMF. The

main reason for this drop is that each source is generating data at the rate of 50 kbps and

the accumulative data rate of 200 kbps for 4 sources causes many MAC transmissions, as

seen in Figure 6.11. The wireless channel is always occupied and many packets do not

get the chance to be transmitted and are dropped at the InterFace Queue (IFQ) of the

source node as shown in Figure 6.12. SMF has the minimum latency, which increases to

around 0.2 seconds as the data rate increases as shown in Figure 6.10. Our protocol has a

latency of around 0.24 seconds, which remains consistent as the data rate increases.

Figure 6.9: PDR vs. Rate (kbps) - (Static - 04 Sources)

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (kbps)

P
D

R

PDR vs. Rate (STATIC - 04 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

Confidence Interval (at 25 kbps)
Static (SMF/ARLNCCF)

98.33 -- 99.30
96.06 -- 97.57

92

Figure 6.10: Latency vs. Rate (kbps) - (Static - 04 Sources)

Figure 6.11: MAC Transmissions vs. Rate (kbps) - (Static - 04 Sources)

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

Rate (kbps)

la
te

nc
y

Latency vs. Rate (STATIC - 04 Sources)

BCAST
RlncBCAST
FLOODING
Prob FLOODING
SMF

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Rate (kbps)

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Rate (STATIC - 04 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

93

Figure 6.12: IFQ Drops vs. Rate (kbps) - (Static - 04 Sources)

Figure 6.11 shows that BCAST has the lowest number of MAC transmissions but

the reason for this is that BCAST does not attempt to deliver most of the packets due to

IFQ drops as shown in Figure 6.12. Our protocol has more MAC transmissions for 4

source scenarios for higher data rates with Minimum IFQ drops.

SMF shows the best performance with higher PDR and fewer MAC transmissions

with minimum IFQ drops. Our protocol has the best PDR at a data rate of 50 kbps per

source but at the cost of a higher number of MAC transmissions.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12
x 104

Rate (kbps)

IF
Q

 D
ro

ps

IFQ Drops vs. Rate (STATIC - 04 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

94

The next series of results from Figure 6.13 to 6.16 are for 4-source static scenarios

when varying the number of nodes and hence the network density. The rate is fixed at

25kbps per source. The generation timeout is 0.1 second with a generation size set to 4.

The number of nodes is increased from 25 to 100 in the same geographical area. SMF

and ARLNCCF have the best PDR but SMF achieves a slightly higher PDR with fewer

MAC transmissions. Latency for ARLNCCF increases from 0.18 second for 25 nodes to

0.21 second for 100 node scenarios.

 The overall performance of ARLNCCF for static scenarios is that it shows steady

performance for both 01-source and 04-sources. The protocol adapts itself well to

different data rates as well as different node densities. However, our protocol achieves

this performance at the cost of more number of MAC transmissions compared to SMF,

especially for 04-source scenarios with a data rate of 50 kbps per source.

Figure 6.13: PDR vs. Nodes (Static - 04 Sources)

20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Nunber of nodes

P
D

R

PDR vs. Nodes (STATIC - 04 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

Confidence Interval (# of Nodes 50)
Static (SMF/ARLNCCF)

98.33 -- 99.30
96.06 -- 97.57

95

 Figure 6.14: Latency vs. Nodes (Static - 04 Sources)

Figure 6.15: MAC Transmissions vs. Nodes (Static - 04 Sources)

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

Number of nodes

La
te

nc
y

Latency vs. Nodes (STATIC - 04 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 105

Nunber of nodes

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Nodes (STATIC - 04 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

96

Figure 6.16: IFQ Drops vs. Nodes (Static - 04 Sources)

6.3 Mobile Scenarios 01-Source

 The next series of results from Figure 6.17 to 6.24 show the results for 01-source

mobile scenarios and results are presented for different data rates and node densities.

Generation timeout is set to 0.1 seconds with a generation size of 6 for single-source

scenarios for ARLNCCF. SMF and ARLNCCF have the best PDR performance. As

shown in Figure 6.17, ARLNCCF performs slightly better than SMF for lower data rates.

As the data rate increases, PDR for ARLNCCF starts to decline slightly to around 95%.

Similarly, Figure 6.18 shows that latency varies from around 0.16 second to 0.20 second

as the data rate increases.

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 104

Nodes

IF
Q

 D
ro

ps

IFQ Drops vs. Nodes (STATIC - 04 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

97

Figure 6.17: PDR vs. Rate (kbps) - (Mobility - 01 Source)

Figure 6.18: Latency vs. Rate (kbps) - (Mobility - 01 Source)

0 10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (kbps)

P
D

R

PDR vs. Rate (MOBILITY - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Rate (kbps)

la
te

nc
y

Latency vs. Rate (MOBILITY - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

Confidence Interval (at 50 kbps)
Mobile (SMF/ARLNCCF)

95.72 -- 97.18
97.43 -- 98.31

98

Figure 6.19: MAC Transmissions vs. Rate (kbps) - (Mobility - 01 Source)

Figure 6.20: IFQ Drops vs. Rate (kbps) - (Mobility - 01 Source)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 105

Rate (kbps)

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Rate (MOBILITY - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Rate (kbps)

IF
Q

 D
ro

ps

IFQ Drops vs. Rate (MOBILE - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

99

Comparing Figure 6.19 to Figure 6.3, we observe that for mobiles scenarios, overall, all

protocols require fewer MAC transmissions to achieve the PDR as given in Figure 6.1

and Figure 6.17 respectively. SMF and ARLNCCF have almost zero IFQ drops compared

to BCAST and flooding.

The next series of results from Figure 6.21 to Figure 6.24 show the results

obtained by varying the node densities. For single source mobile scenarios, we observe

that ARLNCCF, SMF and probabilistic flooding show steady performance. However, for

probabilistic flooding we need to find the optimal value of probability of retransmissions

for each data point. So there is no adaptivity as far as probabilistic flooding is concerned.

For number of nodes set to 5, there is high probability that the network is not fully

connected, therefore we get lower PDR for all protocols as shown in Figure 6.21.

However, we observe that as the node density increases, the PDR improves.

Latency performance in Figure 6.22 show a similar trend to the results observed

before. The same inherent delay is observed due to generation timeout which is set at 0.1

second for ARLNCCF. SMF has the minimum delay. Flooding and BCAST have the

worst performance in terms of both PDR and latency as the number of nodes increases.

MAC transmissions for ARLNCCF are higher, as before, compared to SMF. The

protocol with the highest number of MAC transmission is simple flooding as shown in

Figure 6.23.

100

Figure 6.21: PDR vs. Nodes - (Mobility - 01 Source)

Figure 6.22: Latency vs. Nodes - (Mobility - 01 Source)

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Nunber of nodes

P
D

R

PDR vs. Nodes (MOBILITY - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of nodes

La
te

nc
y

Latency vs. Nodes (MOBILITY - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

Confidence Interval (# of Nodes 50)
Mobile (SMF/ARLNCCF)

95.72 -- 97.18
97.43 -- 98.31

101

Figure 6.23: MAC Transmissions vs. Nodes - (Mobility - 01 Source)

Figure 6.24: IFQ Drops vs. Nodes - (Mobility - 01 Source)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6
x 105

Nunber of nodes

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Nodes (MOBILITY - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

Nodes

IF
Q

 D
ro

ps

IFQ Drops vs. Nodes(MOBILE - 01 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

102

6.4 Mobile Scenarios 04-Sources

 Figures 6.25 to 6.32 show the performance for 04-source scenarios with different

data rates and node densities. The PDR for SMF and ARLNCCF are almost the same for

higher data rates but ARLNCCF achieves comparable PDR at the cost of a higher number

of MAC transmissions. Flooding and BCAST show the worst performance. BCAST, as

before, has a large number of IFQ drops which results in fewer MAC transmissions.

Similar performance is observed for different node densities.

Figure 6.25: PDR vs. Rate (kbps) - (Mobility - 04 Sources)

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (kbps)

P
D

R

PDR vs. Rate (MOBILITY - 04 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

Confidence Interval (at 25 kbps)
Mobile (SMF/ARLNCCF)

95.77 -- 96.41
96.73 -- 97.49

103

Figure 6.26: Latency vs. Rate (kbps) - (Mobility - 04 Sources)

Figure 6.27: MAC Transmissions vs. Rate (kbps) - (Mobility - 04 Sources)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Rate (kbps)

la
te

nc
y

Latency vs. Rate (MOBILITY - 04 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Rate (kbps)

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Rate (MOBILITY - 04 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

104

Figure 6.28: IFQ Drops vs. Rate (kbps) - (Mobility - 04 Sources)

Figure 6.29: PDR vs. Nodes - (Mobility - 04 Sources)

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9
x 104

Rate (kbps)

IF
Q

 D
ro

ps

IFQ Drops vs. Rate (MOBILE - 04 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Nunber of nodes

P
D

R

PDR vs. Nodes (MOBILITY - 04 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

Confidence Interval (# of Nodes 50)
Mobile (SMF/ARLNCCF)

95.77 -- 96.41
96.73 -- 97.49

105

Figure 6.30: Latency vs. Nodes - (Mobility - 04 Sources)

Figure 6.31: MAC Transmissions vs. Nodes - (Mobility - 04 Sources)

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of nodes

La
te

nc
y

Latency vs. Nodes (MOBILITY - 04 Sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
x 105

Nunber of nodes

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Nodes (MOBILITY - 04 Source)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

106

Figure 6.32: IFQ Drops vs. Nodes - (Mobility - 04 Sources)

6.5 Tactical Scenarios 01-Source

 From the results for static and mobile scenarios, we selected the best candidates,

SMF and ARLNCCF to be evaluated for tactical scenarios. Flooding is selected as a

baseline protocol for comparison. For the single source case, the PDR for ARLNCCF is

slightly better than SMF as shown in Figure 6.33. As the data rate increases from 1.2

kbps to 4.8 kbps, the PDR for ARLNCCF shows a slightly decreasing trend. Figure 6.34

shows that the latency for ARLNCCF is higher than SMF due to the generation timeout.

The number of MAC transmissions required to achieve this PDR increases with data rate

and at 4.8 kbps, SMF requires fewer MAC transmissions compared to ARLNCCF as

shown in Figure 6.35.

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Nodes

IF
Q

 D
ro

ps

IFQ Drops vs. Nodes (Mobility 04-sources)

BCAST
ARLNCCF
FLOODING
Prob FLOODING
SMF

107

Figure 6.33: PDR vs. Rate (kbps) - (Tactical - 01 Source)

Figure 6.34: Latency vs. Rate (kbps) - (Tactical - 01 Source)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (kbps)

P
D

R

PDR vs. Rate (TACTICAL - 01 Source)

ARLNCCF
FLOODING
SMF

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rate (kbps)

La
te

nc
y

Latency vs. Nodes(TACTICAL - 01 Source)

ARLNCCF
FLOODING
SMF

Confidence Interval (at 2.4 kbps)
Tactical (SMF/ARLNCCF)

92.17 -- 95.75
98.56 -- 99.99

108

Figure 6.35: MAC Transmissions vs. Rate (kbps) - (Tactical - 01 Source)

6.6 Tactical Scenarios 04-Sources

The results for 04-source scenarios show that PDR for ARLNCCF is better than

SMF and flooding as shown in Figure 6.36. However, as the data rate increases from 1.2

kbps to 4.8 kbps, the PDR for ARLNCCF decreases to around 85 %. SMF achieves a

PDR of around 83-84% which remains almost constant as the data rate increases. The

obvious difference is in the number of MAC transmissions as shown in Figure 6.38. As

the data rate increases, there is an increasing gap in the number of MAC transmissions

required to achieve the PDR (Figure 6.36) between ARLNCCF and SMF. SMF shows a

slightly poorer PDR than ARLNCCF but achieves this PDR with lower latency and fewer

MAC transmissions as shown in Figure 6.37 and 6.38 respectively.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15
x 104

Rate (kbps)

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Rate (TACTICAL - 01 Source)

ARLNCCF
FLOODING
SMF

109

Figure 6.36: PDR vs. Rate (kbps) - (Tactical - 04 Sources)

Figure 6.37: Latency vs. Rate (kbps) - (Tactical - 04 Sources)

1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (kbps)

P
D

R

PDR vs. Rate (TACTICAL - 04 Source)

ARLNCCF
FLOODING
SMF

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

Rate (kbps)

La
te

nc
y

Latency vs. Rate(TACTICAL - 04 Source)

ARLNCCF
FLOODING
SMF

Confidence Interval (at 2.4 kbps)
Tactical (SMF/ARLNCCF)

82.52 -- 86.49
96.52 -- 97.93

110

Figure 6.38: MAC Transmissions vs. Rate (kbps) - (Tactical - 04 Sources)

6.7 Summary

 Overall, ARLNCCF shows a steady performance for different nodes densities and

rates for both 01-source and 04-source scenarios. We tested the performance for quite

aggressive data rates of up to 100 kbps for 01-source scenarios and up to 50 kbps for 04-

source scenarios. Similarly, the number of nodes is increased from 5 to 100 nodes in the

same geographical area. ARLNCCF shows a steady performance in terms of both PDR

and latency but there is always some inherent delay due to the need to buffer packets to

generate encoding opportunities, which is bounded by the generation timeout. Our

protocol, when compared to flooding and BCAST, performs much better. As far as

comparison with probabilistic flooding is concerned, since probabilistic flooding is not

adaptive to changing scenarios, we need to determine the optimal value of probability of

retransmission for each data point considered. Even considering the optimal probability

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5
x 105

Rate (kbps)

M
A

C
 T

ra
ns

m
is

si
on

s

MAC Transmissions vs. Rate (TACTICAL - 04 Source)

ARLNCCF
FLOODING
SMF

111

value for each scenario, our protocol outperforms probabilistic flooding often. In

addition, it adapts well to the changing scenarios.

Now focusing attention to more efficient broadcasting protocols like SMF, we do

not see as much benefit of ARLNCCF when compared to SMF. ARLNCCF can be

considered as an efficient broadcast protocol, but it cannot be claimed as the best. A

direct comparison between SMF and ARLNCCF for Wi-Fi and tactical scenarios is

summarized in Table 6.1.

Wi-Fi Scenarios Tactical Scenarios

SMF shows slightly better PDR than

ARLNCCF for static scenarios and

slightly poorer PDR than ARLNCCF for

mobile scenarios, especially for lower data

rates.

ARLNCCF shows slightly better PDR

than SMF in a lossy environment for all

scenarios.

Latency for SMF is always lower than

ARLNCCF for all scenarios.

Latency for SMF is always lower than

ARLNCCF for all scenarios.

The number of MAC transmissions for

SMF is always lower than ARLNCCF for

all scenarios.

The number of MAC transmissions for

SMF are comparable to that of ARLNCCF

for 01-source scenarios and lower than

ARLNCCF for 04-source scenarios.

Table 6.1: Comparing SMF and ARLNCCF for Wi-Fi and Tactical Scenarios

112

We calculated the 95% confidence intervals between ARLNCCF and SMF for all

PDR plots. The 95% confidence intervals are calculated at 50 kbps (01-source scenarios)

and at 25 kbps (04-source scenarios) for varying data rate cases and at number of nodes

set to 50 for varying nodes cases for all Wi-Fi scenarios. For tactical scenarios it is

calculated at the 2.4 kbps data rate. We verified statistically that the difference in PDR

between SMF and ARLNCCF is meaningful at 95% confidence level. For tactical

scenarios this difference is more significant than in Wi-Fi scenarios.

The main points that make SMF better than our protocol in some cases is that the

same performance can be achieved at lower latency and fewer MAC transmissions. There

are limitations as far as using network coding is concerned. If we compare how our

protocol with SMF, we can identify some ways of improving our protocol. SMF uses the

concept of relay set selection that causes fewer MAC transmissions. As far as ARLNCCF

is concerned, each node contributes towards the transmissions, ensuring that even the

least-connected node has a chance to receive enough packets to successfully decode a

generation. When multiple nodes are involved in the re-encoding process, the chances

that some of the nodes will receive non-innovative packets also increase. If there are

more non-innovative transmissions, this causes a higher number of MAC transmissions

that are wasted.

If we can apply the concept of relay set selection, it is expected that, once the

relay will transmit all the encoded packets in its area and no other node in that area is

involved in any transmission, all the transmissions should be innovative for the nodes in

that relay set. This causes fewer MAC transmissions as only the relay node is involved in

the retransmission and the chances of receiving non-innovative packets also reduces to a

113

very large extent. We expect that if the relay set mechanism is applied to ARLNCCF, it

will improve the performance of ARLNCCF in terms of fewer MAC transmissions, and

may allow it to efficiently support even higher data rates.

114

Chapter 7

Cross-Session Performance

 In this chapter, we investigate the cross-session performance of our protocol. The

main aim is to see how much benefit we are getting in allowing inter-mixing of packets

from different sources in the same generation. We devised 100-source scenarios as well

as 04-source scenarios to investigate the cross-session performance, as described in

Chapter 5.

7.1 100-source Scenarios

In case of 100-source scenarios, 100 nodes are placed in a 500m * 500 m area.

Using the concept of GD threshold (GD = 1), we are able to control the generation size

growth. We observed that the generation size increased from 4 to 8 on average for some

generations we monitored closely. Without GD threshold, the generation size becomes

quite large in a dense network of 100 nodes where each node is a source. We observed

generation size growth up to 14 or more on average for some monitored generations if we

do not use the GD threshold concept. These scenarios are further classified into two

types.

1. Each source generates only a single packet during the course of simulation. In

the absence of cross-session generations, after the timeout period, since the

node generates only one packet, network coding plays no role as there is only

115

a single encoded packet. The protocol in this case deteriorates to a simple

forwarding approach without coding.

2. Each source generates 4 packets one after another so that at least the

generations are full before a timeout occurs, even in the case when we do not

allow for cross-session coding.

Table 7.1 shows the PDR performance for both mobile and static scenarios. It is

observed that for each case the PDR is better with cross-session generations. The results

are further verified via 95 % confidence intervals for each data point. We verified

through statistical analysis that the difference is statistically significant and not just due to

randomness of simulations.

Scenario PDR (%)

 No Cross-session Cross-session

Mobile
(1 packet per source)

96.38
[95.7635 - 97.0145]

99.53
[99.3257 - 99.7363]

Mobile
(4 packets per source)

87.97
[86.2704 - 89.6716]

96.46
[95.6979 - 97.2315]

Static
(1 packet per source)

95.60
[94.8930 - 96.3237]

99.05
[98.4170 - 99.6970]

Static
(4 packets per source)

82.58
[80.1976 - 84.9664]

93.01
[90.9638 - 95.0742]

Table 7.1: PDR for 1 Packet and 4 Packets per Source

Table 7.2 shows the latency performance for both mobile and static scenarios.

There is a significant impact on latency when we allow generations to mix packets from

different sources (cross-session). For mobile scenarios with 1 packet per source, without

cross-session coding, the latency is 0.49 second. Whereas, allowing cross-session coding,

the latency is reduced to 0.15 second. In case we allow each source to generate 4 packets,

116

without cross-session coding, the latency is 0.32 second compared to 0.185 second for

cross-session coding. Similar observations are made for static scenarios. Again, for each

value, the 95% confidence interval is provided to verify our results statistically.

 Scenario
Latency (ms)

No Cross-session Cross-session

Mobile
(1 packet per source)

0.49
[0.4842 - 0.5058]

0.155
[0.1459 - 0.1641]

Mobile
(4 packets per source)

0.32
[0.3163 - 0.3317]

0.185
[0.1737 - 0.1963]

Static
(1 packet per source)

0.624
[0.6058 - 0.6422]

0.22
[0.2154 - 0.2371]

Static
(4 packets per source)

0.457
[0.4363 - 0.4792]

0.30
[0.2785 - 0.3235]

Table 7.2: Latency for 1 Packet and 4 Packets per Source

7.2 4-Source Scenarios

 Figures 7.1 to 7.4 show the cross-session performance of ARLNCCF for 4-source

scenarios. Each figure compares the cases with and without cross-session coding for

static and mobile scenarios. Figure 7.1 and Figure 7.2 compare the PDR and latency as a

function of the data rate and Figure 7.3 and Figure 7.4 compare the PDR and latency as a

function of the number of nodes. The results show that, for all cases, the cross-session

coding cases have always better PDR as well as lower latency compared to no cross-

session coding. As seen in Figure 7.2, as the data rate increases, the latency for no cross-

session coding increases significantly for both static and mobile scenarios. The 95%

confidence interval is calculated for a scenario with a date rate of 25 kbps for scenarios

where we vary the date rate and for the scenario with the number of nodes set to 50 where

we varied number of nodes.

117

Figure 7.1: PDR vs. Rate (kbps) - (04 Sources)

Figure 7.2: Latency vs. Rate (kbps) - (04 Sources)

0 5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Rate (kbps)

P
D

R

PDR vs. Rate (04 Sources)

Cross-session (STATIC)
No cross-session (STATIC)
Cross-session (MOBILE)
No cross-session (MOBILE)

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Rate (kbps)

la
te

nc
y

Latency vs. Rate(04 Sources)

Cross-session (STATIC)
No cross-session (STATIC)
Cross-session (MOBILE)
No cross-session (MOBILE)

Confidence Interval (at 25 kbps)
Static (cross / no cross)

96.0662 -- 97.5474
94.7890 -- 95.6700

Mobile (cross / no cross)

96.7392 -- 97.4905
96.3680 -- 96.6006

Confidence Interval (at 25 kbps)
Static (cross / no cross)

0.2227 -- 0.2702
0.6958 -- 0.8809

Mobile (cross / no cross)

0.1634-- 0.1762
0.5831-- 0.6768

118

Figure 7.3: PDR vs. Nodes - (04 Sources)

The confidence interval for Figure 7.3 is given in Table 7.3 for the scenarios with 50

nodes.

Table 7.3: Confidence Interval-PDR (04 Sources - 50 Nodes)

20 30 40 50 60 70 80 90 100
0.92

0.93

0.94

0.95

0.96

0.97

0.98

Nodes

P
D

R

PDR vs. Nodes(04 Sources)

Cross-session (STATIC)
No cross-session (STATIC)
Cross-session (MOBILE)
No cross-session (MOBILE)

Confidence Interval (at Nodes 50)
Static (cross / no cross)

96.0662 - 97.5474
94.6461 - 95.5877

Mobile (cross / no cross)

96.7392 - 97.4905
96.2402 - 96.6179

119

Figure 7.4: Latency vs. Nodes (04 Sources)

The confidence interval for Figure 7.4 is given in Table 7.4 below at number of nodes set

to 50.

Table 7.4: Confidence Interval-Latency (04 Sources - 50 Nodes)

20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Nodes

la
te

nc
y

Latency vs. Nodes(04 Sources)

Cross-session (STATIC)
No cross-session (STATIC)
Cross-session (MOBILE)
No cross-session (MOBILE)

Confidence Interval (at Nodes 50)
Static (cross / no cross)

0.2227 - 0.2702
0.5792 - 0.6952

Mobile (cross / no cross)

0.1634 - 0.1762
0.4749 - 0.6333

120

In a nutshell, the simulation results show that allowing cross-session coding has a

significant impact on PDR as well as latency, which is also statistically verified through

95% confidence intervals. The concept of allowing cross-session generations in our

protocol plays an important role in multi-source scenarios. The results are more profound

for mobile scenarios.

121

Chapter 8

Conclusions and Future Work

8.1 Conclusions

 In this thesis, we developed a wireless broadcast protocol based on Random

Linear Network Coding (RLNC). The following conclusions are drawn as a result of this

research work.

• Although there are many broadcast protocols developed so far, very few protocols

deal with multi-source RLNC based broadcast. Similarly, none of the RLNC-based

protocols are adaptive by design. They need parameters to control the number of

required transmissions. Probability-based methods require the optimal values of

probability of retransmission set beforehand to achieve better performance in

different scenarios.

• Using neighbour knowledge and the generation size, our protocol can effectively

calculate the number of rebroadcasts that are sufficient for all the nodes to decode the

coded packets. We tested our protocol in static, mobile and tactical scenarios for both

01-source and 04-source cases. Similarly, we investigated the performance by varying

the number of nodes as well as data rates in these scenarios. Our simulation results

demonstrate the potential of our algorithm to support wireless broadcast in adhoc

networks. We observe a steady performance of our protocol at different node

densities and data rates in all scenarios, thus making our protocol adaptive.

122

• During the simulations, we tested our protocol for very aggressive data rates (not used

in the literature before for RLNC based broadcast). As an example [9] used 40 kbps

and [15] used 50 kbps for single source scenarios. It is mentioned in [15] that their

RLNC based probabilistic broadcast algorithm has high packet loss for higher data

rates. We used up to 100 kbps for a single source and up to 25 kbps per source for 04-

source scenarios. It was observed that the PDR performance was not degraded. This

shows that by controlling the number of rebroadcasts, we are in fact able to achieve

better performance at higher data rates.

• When we compare our results with SMF, we observe that SMF achieves the same or

better PDR by using fewer MAC transmissions than our protocol in certain cases.

Similarly, our protocol has an inherent delay due to the generation timeout, as a result

latency is higher than SMF, but it does not increase with increasing node densities or

data rates and remains consistent.

• By using the concept of earlier decoding from previous research, we are able to

decode some of the original packets before the generation is complete. This greatly

reduces the decoding delays.

• Since our protocol is designed for multi-source environments and we allow packets

from different sources to be combined in the same generation (cross-session)

whenever possible, there is always a possibility that the generation size can grow to a

very large extent, especially for high data rates and multi-hop networks. This is

causing decoding complexity, decoding delays, and very large packet sizes. In order

to avoid this situation, we introduced the concept of Generation Distance (GD). GD

values can be set to control the source nodes entering their packets in the given

123

generation based on the distance (hops) from the generation origin. However as future

work we need to investigate further the impact of GD as well as devising more

efficient ways to control generation size.

• We have shown that our concept of cross-session generations plays an important role

in improving the PDR as well as reducing latency. We specifically designed 100-

source scenarios to test the cross-session concept. Similarly, we used the original 04-

source scenarios by varying the number of nodes and data rate. We demonstrated

through these simulations that for every scenario, cross-session coding results in

higher PDR and lower latency compared to no cross-session coding, where coding

opportunities are limited to packets originating from the same source. The difference

in performance is statistically significant at a 95% confidence level.

8.2 Future Work

 During the work on this thesis, possibilities of future work have arisen. They are

summarized as following:

1. By comparing the performance of ARLNCCF and SMF, a very promising idea is to

combine the concept of a Relay Set used in SMF with ARLNCCF. The new protocol

will require a new equation to calculate the number of retransmissions required based

on the Relay Sets. It is expected that the new protocol will require fewer MAC

transmissions than ARLNCCF and will improve the PDR performance as well. This

idea is already discussed in some more detail in Section 6.11.

2. Although our protocol is adaptive to network density, some of the parameters are still

fixed, such as generation size and generation timeout. As a future work, some scheme

124

can be developed that will adapt the generation size and timeout values to changing

scenarios. The timeout value is dependent upon the generation size and also the data

rate. The generation size is dependent upon the number of sources and node density.

In a dense network environment with more sources, choosing a large generation size

is not recommended, as the generations will potentially grow beyond that value.

However, for example for single source scenarios, we can afford bigger generation

sizes.

3. In our packet format, we have used the IP address and sequence number pair to

identify the packets for a particular source. More efficient mechanism can be devised

to identify the packets for particular sources, which can reduce the packet size and as

a result reduce the overhead. As an example, some hashing mechanism can be

devised to identify the packets per source.

4. Using our protocol approach, analytical analysis can be done by selecting some

simple topologies and investigating the performance of our protocol. This will

provide a solid base for our approach.

5. In our current simulations, we have assumed unlimited buffer space available in the

nodes. However, in real scenarios, the nodes have limited memory. In the future

work, the memory consideration can also be included in the protocol design. Based

on the available buffer space, a generation management scheme needs to be devised.

A new approach can be developed which could work well for generation management

keeping in mind the generation parameters.

125

References

1. S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The Broadcast Storm Problem in a

Mobile Ad Hoc Network” IEEE/ACM Mobile Computing and Networking, pages

151–162, 1999.

2. C. Fragouli, D. Katabi, A. Markopoulou, M. Médard, and H. Rahul, “Wireless

Network Coding: Opportunities and Challenges", IEEE Military

Communications Conference, pages 1-7, Oct. 2007.

3. R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information Flow,”

IEEE Transactions on Information Theory, pages 1204-1216, Jul. 2000.

4. R. Khalili, M. Ghaderi, J. Kurose and D. Towsley, “On the Performance of

Random Linear Network Coding in Relay Networks”, IEEE Military

Communication, pages 1-7, Nov 2008.

5. D. S. Lun, M. Médard, and R. Koetter, “Efficient Operation of Wireless Packet

Networks using Network Coding”, International Workshop on Convergent

Technologies (IWCT), Invited paper, pages 1-5, Jun. 2005.

6. E. Ahmed, A. Eryilmaz, M. Médard, and A. E. Ozdaglar, “On the Scaling Law of

Network Coding Gains in Wireless Networks”, IEEE Military Communications

Conference, Oct. 2007.

7. M. Wang and B. Li, “Lava: A Reality Check of Network Coding in Peer-to-Peer

Live Streaming”, IEEE International Conference on Computer Communications,

pages 1082-1090, May 2007.

126

8. C. Fragouli, J. Y. Boudec, and J. Widmer, “Network Coding: An Instant

Primer”, ACM Special Interest Group on Data Communication, Computer

Communication Review, pages 63-68, Vol. 36, No. 1, Jan. 2006.

9. J. S. Park, D. Lun, Y. Yi, M. Gerla, and M. Medard, “Codecast: A Network

Coding Based Adhoc Multicast Protocol”, IEEE Wireless Communications,

pages 76-81, Oct. 2006.

10. M . Ghaderi, D. Towsley, J. Kurose, “Reliability Gain of Network Coding in

Lossy Wireless Networks”, IEEE International Conference on Computer

Communications, pages 1-23, Mar. 2008.

11. C. Gkantsidis and P. Rodriguez, “Network Coding for Large Scale Content

Distribution”, IEEE International Conference on Computer Communications,

pages 1-11, 2005.

12. N. Jayakumar, K. Gulati, S. Khatri, and A. Sprintson, “Network Coding for

Routability Improvement in VLSI”, IEEE/ACM International Conference on

Computer-Aided Design, pages 820-823, Nov. 2006.

13. A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ramchandran, “Network

Coding for Distributed Storage Systems”, IEEE Conference on Computer

Communications, pages 1-12, May 2007.

14. J. Widmer, J. Boudec, “Network Coding for Efficient Communication in

Extreme Networks”, ACM Special Interest Group on Data Communication,

Pages 284 – 291, 2005.

127

15. S. Tarapiah, C. Casetti, C. Chiasserini, “Network Coding in Ad Hoc Networks: A

Realistic Simulation Study”, IEEE International Conference on Computer

Communications, pages 1-2, Apr. 2009.

16. C. Fragouli, J. Widmer, and J. Y. L. Boudec, “Efficient Broadcasting Using

Network Coding", IEEE/ACM Transactions on Networking, pages 450-453,

2008.

17. T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A

Random Linear Network Coding Approach to Multicast”, IEEE Transactions on

Information Theory, vol. 52, pages 4413–4430, Oct. 2006.

18. K. Mahmood, T. Kunz, and A. Matrawy, "Adaptive random linear network

coding with controlled forwarding for wireless broadcast", Proceedings of the

IFIP Wireless Days 2010, Venice, Italy, Oct. 2010

19. Y. Wu, “Network Coding for Wireless Networks”, Microsoft Research Technical

Report, MSR-TR-2007-90, pages 1-27, Jul. 2007.

20. S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard and J. Crowcroft, “XORs in the

Air: Practical Wireless Network Coding”, IEEE/ACM Transactions on

Networking, pages 497-510, Jun. 2008.

21. V. Bhargava and S. Wicker, “Reed-Solomon Codes and Their Applications”,

IEEE Press, ISBN 0-7803-5391-9, 1994.

22. L. Li, R. Ramjee, M. Buddhikot, and S. Miller, “Network-coding based

Broadcast in Mobile Ad-hoc networks”, IEEE Conference on Computer

Communications, pages 1739-1747, Apr. 2007.

128

23. S. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding”, IEEE Transactions

on Information Theory, pages 371-381, Feb. 2003.

24. C. Fragouli, J. Widmer, and J.-Y. L. Boudec, “A Network Coding Approach to

Energy Efficient Broadcasting: From Theory to Practice”, IEEE Conference on

Computer Communications, pages 1-11, Apr. 2006.

25. A. Argyriou, R. Philips, “Wireless Network Coding with Improved Opportunistic

Listening”, IEEE Transactions on Wireless Communications, pages 2014-2023,

April 2009.

26. R. Khalili, M. Ghaderi, J. Kurose, D. Towsley, “On the Performance of Random

Linear Network Coding in Relay Networks”, IEEE Military Communications

Conference, pages 1-7, Nov. 2008.

27. N. Cai and R. W. Yeung, “Secure Network Coding”, International Symposium on

Information Theory, page 323, 2002.

28. B. Williams and T. Camp, “Comparison of Broadcasting Techniques for Mobile

Ad hoc Networks”, ACM International Symposium on Mobile Ad Hoc

Networking and Computing, pages 194–205, 2002.

29. A.R. Chowdhury, S. Nandi, “Survey of Broadcasting Techniques for Dense

Wireless Computing Devices”, Wireless and Optical Communications Networks,

page 9, 2006.

30. T. Kunz, “Multicast Versus Broadcast in a Manet” Lecture Notes in Computer

Science, vol. 3158. Springer: Berlin, pages 14–27, 2004.

31. “Optimized Link State Routing Protocol (OLSR)”, Request For Comment # 3626

“http://www.ietf.org/rfc/rfc3626.txt”, Oct. 2003.

129

32. “Topology Dissemination Based on Reverse-Path Forwarding (TBRPF)”, Request

For Comment # 3684, “http://www.ietf.org/rfc/rfc3684.txt”, Feb. 2004.

33. “Simplified Multicast Forwarding (SMF)”, IETF Draft,

“http://tools.ietf.org/html/draft-ietf-manet-smf-09”, Jul. 2009.

34. H. Lim and C. Kim, “Flooding in Wireless Ad hoc Networks”, Computer

Communications Journal, volume 24, pages 353–363, 2001.

35. W. Lou and J. Wu, “On Reducing Broadcast Redundancy in Ad hoc Wireless

Networks", IEEE Transactions on Mobile Computing, pages 111 - 122, April-

Jun. 2002.

36. R. Koetter and M. Médard, “An Algebraic Approach to Network Coding”,

IEEE/ACM Transactions on Networking, pages 782-795, 2003.

37. D. S. Lun, M. Médard, and R. Koetter. “Efficient Operation of Wireless Packet

Networks using Network Coding”, International Workshop on Convergent

Technologies, pages 1-5, Jun 2005.

38. Y. Wu, P. A. Chou, and K. Jain, “A Comparison of Network Coding and Tree

Packing”, IEEE International Symposium on Information Theory, 2004.

39. M. Ghaderi, D. Towsley, J. Kurose, “Network Coding Performance for Reliable

Multicast”, IEEE Military Communications Conference, pages 1-7, Oct. 2007.

40. B. Radunovic, C. Gkantsidis, P. Key, S. Gheorgiu, W. Hu, and P. Rodriguez,

“Multipath Code Casting for Wireless Mesh Networks”, ACM International

Conference on Emerging Networking Experiments and Technologies, pages 1-16,

2007.

130

41. X. Zhang and B. Li, “Optimized Multipath Network Coding in Lossy Wireless

Networks”, IEEE International Conference on Distributed Computing Systems,

pages 243-250, 2008.

42. T. Matsuda, T. Noguchi, T. Takine, “Broadcasting with Randomized Network

Coding in Dense Wireless Ad Hoc Networks”, IEICE Transactions on

Communications, pages 3216–3225, 2008.

43. Y. Kondo, H. Yomo, S. Yamaguchi, P. Davis, R. Miura, S. Obana, “Reliable

Wireless Broadcast with Random Network Coding for Real-Time Applications”,

IEEE Conference on Wireless Communications and Networking, Pages 1-6, 2009.

44. P. A. Chou, Y. Wu, and K. Jain, “Practical Network Coding” 41st Annual

Allerton Conference on Communication, Control, and Computing, pages 1-10,

Oct. 2003.

45. W. H. Press, “Numerical Recipes: The Art of Scientific Computing”, ISBN-10:

0521880688, Third Edition, Cambridge University Press 2007.

46. T. Kunz, “Efficiently Supporting One-to-Many and Many-to-Many

Communication Patterns in Narrowband Tactical Networks: Flooding,

Efficient Broadcasting, and Network Coding”, Technical Report, Mar. 2009

47. R. Punnoose, P. Nikitin, and D. Stancil, “Efficient Simulation of Ricean Fading

within a Packet Simulator”, IEEE Vehicular Technology Conference, pages 764-

767, 2000.

48. N. R. Wagner, “The Laws of Cryptography with Java Code”, online at Neal

Wagner’s home page, http://www.cs.utsa.edu/~wagner/

131

49. P. Vingelmann, “Network Coding on the GPU”, Master’s Thesis, Budapest

University of Technology, 2009.

A

E

T

co

b

ea

el

el

or

p

…

co

re

Appendix

Encoding Pr

The encoder

onsecutive b

its as shown

These

ach packet c

lements and

lements. Du

riginal pack

acket Xj of s

… , cjN] in G

oded packet

The su

ewritten as

x A

rocess:

is respons

bits of a pac

n in Figure A

e symbols ca

consisting of

d all the ari

ue to this re

kets B1, B2, .

size L (K/s sy

GF(2s), so th

is equal to:

ummation h

a matrix mu

ible to crea

cket can be d

A.1.

Figure

an be interp

f a vector of

ithmetic ope

eason, it is

.. , BN are g

ymbols), a n

here is one

ܺ ൌ ∑ ܿே
ୀଵ

has to occur f

ultiplication

ate coded m

divided into

A.1: Encodi

preted as tak

f K/s symbol

erations in

well suited

generated by

node chooses

coefficient

ܿ ൈ ܤ

for every sy

by organiz

messages fro

L = K/s sym

ing Process

ken from th

ls. A Galois

GF also res

d for RLNC

y one or sev

s a set of cod

for each or

ymbol positio

zing the cod

om the orig

mbols, wher

he Galois Fi

 Field has a

sult in the s

. Assume th

veral sources

ding coeffic

riginal packe

on. So this e

ding coeffici

ginal packet

re a symbol

ield GF(2s),

finite numb

same finite

hat a numb

s. To code a

ients cj = [cj

et [49]. The

expression ca

ents (C) an

132

ts. K

has s

with

ber of

field

er of

a new

j1, cj2,

e new

an be

d the

133

original packets (B) into matrices. The matrix form of the previous expression is: X = C

×B

The weights or coefficients are selected randomly and independently from this

GF. That is why the approach is referred to as Random Linear coding, as the

transformation is performed by each node independently of others and using random

coefficients [8]. The coding coefficients are in the form of a vector called Coding

Vector, cj. The coding vector is sent in the header of the packet containing the encoded

data called information vector Xj. (cj, Xj) represents the coded packet j.

Arithmetic operation:

Considering GF (28), the required arithmetic operations are implemented in the following

way:

• Addition and subtraction are simply XOR operations.

• Multiplication is more complicated. The first step in multiplying two field

elements is to multiply their corresponding polynomials just as in algebra (except

that addition is via the XOR operation). The result might be a value greater than 1

byte. So the finite field now makes use of a fixed degree eight irreducible

polynomial (a polynomial that cannot be factored into the product of two simpler

polynomials). Multiplication modulo that irreducible reducing polynomial gives

the final result. In case of the Advanced Encryption Standard (AES), the

polynomial used is

x8 + x4 + x3 + x + 1 = 0x11b (hex).

134

Example:

For example, 0x93 * 0x51 can be calculated as follows:

(x7 + x4 + x + 1) * (x6 + x4 + 1)

=x13 + x11 + x7 + x10 + x8 + x4 + x7 + x5 + x + x6 + x4 + 1

=x13 + x11 + x10 + x8 + x6 + x5 + x + 1

0x93 * 0x51

=(x13 + x11 + x10 + x8 + x6 + x5 + x + 1) % (x8+x4+x3+x1+1)

=10110101100011 % 100011011

=10000001

=0x81

Simple method:

A simple calculation method that is easily implementable in code is given in [48].

Write the operands in terms of power of the polynomial, i.e. (x7 + x4 + x + 1) = (7 4 1

0). Calculations are done working from the low order terms, and by repeatedly

multiplying by (1). If the result reaches degree 8, just add (XOR) the irreducible

polynomial (8 4 3 1 0) to obtain a lower degree.

Same example:

r * s = (7 4 1 0) * (6 4 0)

135

i powers of r: r * (i) Simplified Result Final Sum

0 (7 4 1 0) (7 4 1 0)

1 (7 4 1 0) * (1) = (8 5 2 1)

+(8 4 3 1 0)

 (5 4 3 2 1 0)

2 (5432 0) * (1) (6 5 4 3 1)

3 (6 5 4 3 1) * (1) (7 6 5 4 2)

4 (7 6 5 4 2) * (1) (8 7 6 5 3)

+(8 4 3 1 0)

 (7 6 5 4 1 0)

 (7 4 1 0)

+ (7 6 5 4 1 0)

 (6 5)

5 (7 6 5 4 1 0) * (1) (8 7 6 5 2 1)

+(8 4 3 1 0)

 (7 6 5 4 3 2 0)

6 (7 6 5 4 3 2 0) * (1) (8 7 6 5 4 3 1)

+(8 4 3 1 0)

 (7 6 5 0)

 (6 5)

+ (7 6 5 0)

 (7 0) =

10000001

 = 0x81

Table A.1: Simplified Multiplication on GF (28)

Example for Encoding in RLNC:

Suppose we have 4 bytes (5, 6, 111, 152) to be encoded. We select 4*4=16 coding

coefficients as 4 coded packets are to be sent for the 4 symbols encoded together. The

136

example is provided using coding vector 3 to calculate the second coded symbol in the

encoded packet 3 (boxed values). The (randomly selected) coding vectors are as follows:

Coding vector 1: 41, 35, 190, 132

Coding vector 2: 225, 108, 214, 174

Coding vector 3: 82, 144, 73, 241

Coding vector 4: 241, 187, 233, 235

The encoding is done as follows. Note that the operation here is over GF(28).

1st encoded byte: 41 * 5 + 35 * 6 + 190 * 111 + 132 * 152 = 209

2nd encoded byte: 225 * 5 + 108 * 6 + 214 * 111 + 174 * 152 = 40

3rd encoded byte: 82 * 5 + 144 * 6 + 73 * 111 + 241 * 152 = 140

4th encoded byte: 241 * 5 + 187 * 6 + 233 * 111 + 235 * 152 = 195

Now we can form 4 packets, each consisting of a coding vector and the encoded byte,

with a size of 5 bytes:

Packet 1: 41, 35, 190, 132, 209

Packet 2: 225, 108, 214, 174, 40

Packet 3: 82, 144, 73, 241, 140

Packet 4: 241, 187, 233, 235, 195

Coding vector Coded symbol

137

In the next example, we encode 4 packets (instead of 4 bytes as shown above), each with

a size of 10 bytes:

Original packet 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Original packet 2: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Original packet 3: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

Original packet 4: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40

Now the encoded packets consist of a 4-byte coding vector, and 10 bytes encoded data,

each with a size of 14 bytes.

Packet 1: 41, 35, 190, 132, 79, 74, 122, 199, 247, 8, 56, 81, 97, 215

Packet 2: 225, 108, 214, 174, 26, 46, 219, 233, 28, 234, 31, 142, 123, 93

Packet 3: 82, 144, 73, 241, 62, 102, 28, 128, 250, 196, 190, 250, 128, 88

Packet 4: 241, 187, 233, 235, 118, 186, 242, 67, 11, 98, 42, 91, 19, 137

Here, e.g. the data 102 in the box is the 2nd encoded data in Packet 3, which is calculated

as below:

(Note: All operations are in GF(28)

ሾ82 144 73 241ሿ * ൦

2
12
22
32

൪ = 82 * 2 + 144 * 12 + 73 * 22 + 241 * 32 = 102

Re-encoding:

Note that encoding can be performed recursively to already encoded packets.

Consider a node that has already received and stored a set (c1, X1), ..., (cM, XM) of encoded

Coding vector Coded packets of 10 bytes each

138

packets. This node may generate a new encoded packet (c′, X′) by picking a set of

coefficients h= [h1, ..., hM] ∈ GF(2s) and computing the linear combination:

ܺᇱ ൌ ݄. ܺ

ெ

ୀଵ

It is important that the corresponding encoding vector c′ is not simply equal to h,

since the coefficients are with respect to the original packets B1, B2, ... , BN.

Straightforward algebra shows that the new coding vector is given by

ܿᇱ ൌ ݄. ܿ

ெ

ୀଵ

This operation may be repeated at several nodes in the network. Also note that it

is not necessary to decode a packet before applying this type of recursive encoding.

Decoding:

Assume a node has received the set (c1, X1), ..., (cM, XM) of encoded packets. In

order to retrieve the original packets, it needs to solve the system:

ܺ ൌ ܿ. ܤ

ே

ୀଵ

The Bi are the unknowns. This is a linear system with M equations and N

unknowns. We need M ≥ N to have a chance of recovering all data, i.e., the number of

received packets needs to be at least as large as the number of original packets. This

linear system can also be given in a matrix form: B = C-1 × X

But the condition M ≥ N is not sufficient, as some of the combinations might be linearly

dependent.

139

Decoding Process [8]:

Decoding requires solving a set of linear equations. A node stores the received

encoded packets as well as its own original packets row by row, into a so-called decoding

matrix. Initially this matrix is empty or it contains its own non-encoded packets with their

corresponding encoding vectors. When an encoded packet is received, it is inserted as the

last row into the decoding matrix. This matrix of coefficients is transformed into a

triangular matrix using standard Gaussian elimination (but all operations are performed

over the Galois Field). Only innovative packets are inserted. If a packet is non-innovative,

it is reduced to a row of 0s by Gaussian elimination and is ignored.

