

Mobile Code For Mobile Devices:

Migration for Improved Application Performance

By

Omid Afnan

BASc

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfillment of

the requirements of the degree of

Master of Applied Science

Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada, K1S 5B6

 Copyright 2002, Omid Afnan

ii

Acceptance Form

iii

Abstract

This work proposes a migration decision algorithm that considers the

environmental conditions on a set of neighbouring servers and attempts to select the

ideal execution platform at any give time. The algorithm is targeted toward handling

the case of a weak mobile device connected by wireless links to a set of more

powerful proxy servers. The algorithm allows migration from the mobile device to a

proxy server, and subsequently back to the mobile device, or any other suitable proxy

that can communicate with the hand-held. This paper starts with a summary of other

proposed approaches for dealing with lower capability mobile devices, and then

introduces the previous research upon which this particular approach is based. The

proposed algorithm, an emulation platform, and a set of emulation results are

presented. We conclude that the migration algorithm must predict future performance

on each platform, and avoid reacting to short-term changes in the performance.

iv

Acknowledgements

I would like to acknowledge first and foremost my loving and supportive wife

Nooshfar, without whose patience, support and insistence I would never have finished

this Thesis. Similarly, I would like to thank Dr. Kunz who gave a part-time student a

chance, along with some excellent guidance and lots of patience. Thanks to Sarah

Cosentino for her assistance in working out some difficult Voyager and coding

problems. And finally, I would like to acknowledge CrossKeys Systems Corporation,

ISOPIA Inc., and Sun Microsystems Inc. for their financial support.

v

Table of Contents

1 Introduction ... 1

2 Summary of Related Work.. 4

2.1 Client Limitations.. 6

2.1.1 Weak Processor ... 7

2.1.2 Low Resolution Monitor ... 7

2.2 Bandwidth ... 8

2.2.1 Low Throughput.. 9

2.2.2 Partial Connectedness ... 10

2.2.3 Latency.. 12

2.3 Protocol Stack ... 13

2.3.1 Application Layer.. 13

2.3.2 Transport Layer ... 13

2.3.3 Network Layer... 14

2.4 Architecture... 15

2.4.1 Mobility-Transparent Solutions .. 16

2.4.2 Mobility-Aware Solutions... 17

2.4.3 Scalability.. 19

2.5 Adaptability... 21

2.6 Modeling the Mobile Devices ... 21

2.7 Modeling the Patterns of Mobility .. 22

2.8 Relationship to Our Work ... 23

3 Migration Decision Algorithms .. 25

vi

3.1 Partitioning.. 26

3.2 Destination Selection... 27

3.3 Handoff Decision .. 28

4 Protocol Extension .. 30

4.1 Environment Monitoring... 30

4.2 Thresholds for Migration .. 34

4.3 Extension of Neighboring ... 39

5 Experimental Tools and Applications ... 41

5.1 Tools.. 41

5.1.1 Voyager ... 42

5.1.2 Load Emulator... 44

5.1.3 Environment Monitors .. 45

5.1.4 Migration Controller ... 45

5.1.5 NISTNet .. 46

5.2 Mobile Test Applications .. 47

5.2.1 MPEG Player... 48

5.2.2 MP3 Player.. 49

6 Experimental Results... 51

6.1 Experimental Test-Bed.. 51

6.1.1 Hand-held Emulators... 52

6.1.2 Proxy Servers .. 54

6.1.3 Controller .. 54

6.2 Configuring the Test-bed .. 55

vii

6.3 Base Scenarios... 55

6.4 Execution of Scenarios.. 56

6.4.1 Simple Migration Due to Load.. 58

6.4.2 Migration Back to Hand-held.. 61

6.4.3 Transient Loads ... 64

6.4.4 Basic Bandwidth Variations.. 68

6.4.5 Multi-Proxy with Bandwidth Variation 72

6.4.6 MP3 Player Tests .. 74

6.5 Adjustments to the Migration Algorithm.. 78

6.6 Evolution of the Test-bed.. 80

7 Conclusions & Future Work ... 82

viii

List of Tables

Table 1 – Summary of Works Reviewed ... 5

Table 2- BaseA and BaseC Execution Results.. 58

Table 3—BaseA, BaseB and LoadedProxy Execution Results 61

Table 4 – Pulse Load Execution Results... 65

Table 5 – Basic Bandwidth Variation Execution Results ... 69

Table 6 – Two Proxies with Decreasing BW Results ... 72

Table 7 – Base Case Results for MP3 Player.. 74

Table 8 – Reduced Bandwidth Cases for MP3 Player .. 75

ix

List of Figures

Figure 1 – Basic Mobile Network Environment ... 2

Figure 2 – Extension to Group of Neighbours ... 40

Figure 3 – Distribution of Test Tools on Servers.. 42

Figure 4 – Servers Used for the Experimntal Test-bed... 52

Figure 5 –Execution Times For Base Cases.. 60

Figure 6 – Execution Times for Migration Back to Hand-held vs. Base Cases.......... 63

Figure 7 – Execution Times for Transient Loads.. 67

Figure 8 – Execution Times for Basic Bandwidth Variations 71

Figure 9 – Execution Times with Two Proxies... 73

Figure 10 – Execution Times for MP3 Base Cases... 77

1

1 Introduction

This work focuses on the study of application execution on mobile devices

and the possible improvement of application performance through load sharing

between less capable mobile devices and more powerful fixed hosts called proxy

servers. In order to build a system that supports this type of load sharing, tools are

required to allow the migration of code between mobile devices and proxy servers.

Furthermore, algorithms are needed to determine when a migration will improve

performance and which proxy server is the best destination for the migration.

Previous work in this area has led to proposed algorithms for deciding when

to migrate code modules from a mobile device to a proxy server. Other work has

focused on the criteria for moving code from one proxy to another. Here we attempt

to bring together these two ideas and, by combining and extending the previous work,

propose an approach that allows migration to occur between a mobile device and

several proxies.

2

Figure 1 – Basic Mobile Network Environment

Figure 1 outlines the basic network environment under study in this work. A

mobile device is linked to a large fixed network of computers using wireless links.

These links are established between the mobile device and fixed hosts that have

wireless transmission capability and are usually referred to as base stations. The base

stations also have wireline links to a larger, fixed network of computers (e.g. the

Internet). These base stations are essentially edge devices between the fixed and

mobile networks. When these base stations take on processing tasks on behalf of the

applications executing on the mobile device they are referred to as proxies. The role

of proxy is useful in cases where the mobile device is unable to perform all the tasks

Fixed Network

Proxy Server

Proxy Server

Proxy Server

Mobile Device

Wireless
Base Station

W
ire

le
ss

 L
in

k

W
ire

le
ss

 L
in

k

Wireless
Base Station

Wireless
Base Station

3

related to an application and therefore requires a more powerful host to offload some

of those tasks.

This approach is based entirely on the movement of code modules between

hosts in a client-proxy-server model where the client is a mobile device. The main

contributions of this work are:

1. Combining code migration from client to proxy with code migrations

between proxies,

2. Experimentation with dynamic migration scenarios (i.e. based on changes

in the host and network conditions), and,

3. The design, creation and testing of an emulation platform built from

commonly available hardware and software for use in assessing

migration scenarios.

We begin with a survey of related work in Chapter 2. Major issues in mobile

computing are presented and proposed solutions or approaches from various sources

are summarized for each issue. Chapter 3 presents the concept of code migration and

the general algorithmic outline of making migration decisions. Chapter 4 outlines the

proposed protocol for making migration decisions using an extension of an already

proposed neighbourhood approach. This chapter also discusses monitoring of the host

environment and migration costs. In Chapter 5 the experimental platform used to

validate this proposed approach is described, followed by experimental results in

Chapter 6. Chapter 7 presents conclusions and outlines areas for future consideration.

4

2 Summary of Related Work

Designing an infrastructure suited for mobile clients requires design and

engineering work in a number of areas in order to address challenges unique to

mobile networks and devices. In this chapter we examine several previously proposed

solutions for addressing existing limitations in the areas of bandwidth, protocol

design and client resources.

No one approach addresses all limitations. Since we are interested in

understanding the main issues, and possible solutions to them, this chapter is

organized by types of limitations. For each category of limitations some specific

proposed solutions are covered. These solutions are also summarized later in terms of

general architecture, mobility models and scope of problems solved. The solutions

reviewed in this paper are summarized in Table 1.

Proposed Solution Research
Institution

Protocol Layer Summary

AgentTCL
[Gray96]

Dartmouth College Application System supporting agents that move
between full-featured mobile hosts and
fixed hosts to complete computational
tasks.

InfoPad [Le95],
[Sesan94]

University of
California –
Berkeley

Infrastructure In-building or campus system for portable
desktops or pads that allow input and
output but do not have their own
processing capability.

InfoStations
[Frenkiel00]

Rutgers Infrastructure High capacity base stations provide
islands of connectivity to mobile devices
traveling along predictable routes.

MASE
[Meggers98],
[Kreller98]

EU ACTS Infrastructure Middleware layer intended to enable
multi-media applications on mobile
networks with focus on QoS handling over
cellular phone networks for mobile
devices.

5

Mobile IP
[Perkins96]

IETF Infrastructure Protocol for supporting mobile IP-based
hosts based on a packet forwarding and
reroute notification system.

Mobiware
[Campbell97],
[Angin98]

University of
Columbia

Application Middleware layer with open APIs
focusing on QoS handling at several levels
and allowing applications the flexibility of
choosing how to respond to QoS changes.

Mowgli
[Liljeberg96]

University of
Helsinki

Infrastructure Middleware specifically addressing Web
browsing for mobile devices based on
improvements to HTTP and TCP for the
wireless portion of the connection to the
mobile client.

Mowser
[Bharadvaj98]

University of
Missouri-
Columbia

Infrastructure Simple middleware layer providing
transcoding to alter content streams to
match mobile clients capabilities.

Odyssey [Noble99],
[Satyanarayanan96]

Carnegie-Mellon Application Approach based on the concept of fidelity
and a toolkit providing APIs that
applications can use to respond to
environment changes and select different
fidelities.

Rover [Joseph95],
[Joseph97]

MIT Application and
Infrastructure

Toolkit supporting transparent data stream
modification, as well as supporting
mobility-aware applications by providing
queued RPC and Relocatable Dynamic
Objects (RDOs).

TACC [Fox98] University of
California -
Berkeley

Infrastructure Architectural approach using four
elements of transformation, aggregation,
caching and customization at a proxy
mediating between host and client.
Coupled with scalable design based on
adjustable pools of workers on the proxy.

WAP [Wap02] WAP Forum Application Application and architectural framework
being developed by consortium of
primarily mobile phone manufacturers to
enable the next generation of smart phones
with processing Internet access
capabilities.

WebExpress
[Housel98],
[Rodriguez99]

IBM Infrastructure Currently shipping hardware and software
solution aimed at reducing and optimizing
traffic flow for Internet and Web
applications using proxy architecture.

Table 1 – Summary of Works Reviewed

6

2.1 Client Limitations

Limitations in the mobile client include such items as low power, weak

processors, limited battery power, low-resolution video, and lack of audio. While

generally recognized as limitations, client side issues are less often addressed by the

solutions examined.

Most research considers one of two extremes: Fully functional devices such as

laptop computers with no client limitations, or, dumb terminal devices (e.g.

InfoPads), which are simple extensions of desktop input/output devices. These can

almost be viewed as degenerate cases that do not allow us to focus on intermediate or

dynamic conditions.

One intermediate design point that is addressed is that of intelligent cellular

phones. The WAP standard and the corporate partners involved have addressed this

type of device more extensively. In this case a more interesting combination of low-

resolution imaging, weak processor and limited battery power are addressed together.

This does not address a general computing solution as it is heavily focused on an

information-browsing appliance. However, it is still significant as this type of device

is likely to be a big part of the mobile domain.

WAP actually specifies a "microbrowser" which addresses several client

limitations. While it is optimized to have a small memory footprint and low demand

processing, it also allows adaptation of graphics to the monitor resolution of the

mobile device. This solution is probably the most comprehensive approach to client

limitations, but is very much geared toward solving the browser problem, rather than

general application execution.

7

2.1.1 Weak Processor

Since clock speed and power consumption are closely related, mobile devices

are likely to have slower or weaker processors. When addressed, the general approach

is to offload the mobile device by shifting the processing to a proxy or gateway

computer. This would be a powerful, non-mobile computer that is in direct contact

with the client. This is the approach taken in solutions that work at the application

level by introducing new intermediate components (such as Mowgli, TACC and

WebExpress).

The approach taken by middleware solutions, such as WAP or MASE, is to

encapsulate the weaker process by creating simple APIs or reduced operating system

calls. In this approach, applications are forced to consider processor limitations by

using a correspondingly limited set of functions. This approach requires rewriting of

client code, which can be a drawback given the large existing base of applications.

2.1.2 Low Resolution Monitor

Limitations in displays are the most commonly addressed issue on the client

side. Again, the most common approach for gateway solutions is to handle the

problem in the proxy. Filtering and compression are the methods of choice.

MASE and WebExpress, for example, use filtering to remove unsupported

content types from the data stream going to the client. Filters must be configured for

the mobile client specifying which data types and what resolutions can be accepted.

WAP is similar in that the microbrowser matches content to client capability.

Another solution is to replace content in the data stream with other content

better suited to the mobile clients capabilities. This approach, often referred to as

8

transcoding, is based on some sort of lossy compression. In the case of Mowser, for

example, video streams are replaced by representative sample stills. The approach in

Berkeley's TACC architecture is also to replace content with lower resolution

versions. This is set in a profile for the mobile device and is based on MIME types.

This approach again depends on an upstream processor that can make these

transformations efficiently and intelligently. A configuration method is also needed

for populating the client preferences on the proxy, which is currently handled in a

static manner by most solutions.

2.2 Bandwidth

The most widely addressed issues in mobile computing relate to bandwidth

availability for mobile devices. Most approaches try to use the existing bandwidth

more efficiently while handling periods of disconnection gracefully.

Splitting the connection between server and mobile client at the proxy is the

most common approach for reducing the impact on the fixed network while

addressing the wireless network's limitations. Using two different protocols on either

side of the proxy opens up the possibility of using protocols specifically designed for

wireless links.

In addition to using special protocols, a proxy on the fixed network allows

caching and buffering in order to address the problem of disconnection. Since

disconnection from, and reconnection to, the network are very common in mobile

devices, the term partial connectedness is often used instead.

9

2.2.1 Low Throughput

To date wireless connections have lagged wireline connections in bandwidth

and throughput by orders of magnitude. While absolute capacity for wireless links

will certainly rise, and the gap between wireless and wireline is likely to be reduced,

some disparity is always likely to remain. This means that a special approach will be

needed, in the foreseeable future, for more efficient data handling on wireless links.

Compression of the data stream is one solution, as seen in Mowgli. However,

simple compression introduces additional overhead on the mobile client that then

needs additional processing for decompression. This may be one reason why

compression is not a common solution. A variation on this approach (Mowgli, WAP)

is to use a binary encoding format for the data stream over the wireless link to achieve

some compression, but keep the decoding simple. This is more efficient than the

standard protocols (e.g. HTTP) that contain human readable data. In this scenario,

simpler compression means lower bandwidth gains, but also less processing demand

on the client.

Data filtering (MASE, WebExpress, TACC) is usually used based on the

mobile client's inability to display certain types of data, but it can also decrease

bandwidth needs. To use it for this purpose, additional profile information has to be

compiled for each client based on the wireless connection's quality of service.

Currently, most filtering is based on static profiles of the mobile client that cannot

support QoS of the link. Solutions like Mobiware that dynamically track QoS would

be better suited to make use of dynamic filtering.

10

Again, middleware approaches take a slightly different approach. MASE and

Mobiware both track QoS on the link and try to find the best connection (when

multiple paths are available). In these solutions, QoS is tracked and links are possibly

switched based on QoS changes. Applications are notified of changes in the QoS so

that they can respond to such changes. This effectively pushes the problem up to the

application level and forces the application to decide what to do in the case of

reduced bandwidth. This is a very flexible approach, but requires greater awareness of

network links by the application.

Another application level solution is provided by Odyssey. This toolkit

provides APIs that allow applications to register ranges of resource availability. Once

the required resources (most commonly bandwidth) stray outside the registered range,

the application is notified. The application is expected to change fidelity: to select

another quality level that requires lower (or higher) resource levels. The application is

made aware of its environment and is required to adapt accordingly. The authors

suggest that this solution can be applied to many systems as the adaptation portion

can be coded outside the main application [Noble 99].

2.2.2 Partial Connectedness

Another area that is addressed by several approaches is that of partial

connectedness. A common approach to addressing temporary breaks in connectivity

is buffering at a proxy host on the edge of the fixed network. The InfoPad and

InfoStation systems both take this approach. InfoPad deals with the case of a simple

input/output tablet that is used to access applications on a server. In this case all

output is buffered on the Pad Server while the Pad is out of range. A slightly more

11

complex scenario is presented in InfoStations where a mobile client makes requests

over a constantly connected channel (GSM link) but receives responses only at

information "islands" (antenna towers) where bulk transfers can be done. Again,

information is collected and buffered at a proxy until a high bandwidth connection is

available, and then transferred in bulk. InfoPad assumes brief disconnections within a

building environment, while InfoStations are proposed for use with cars on highways.

Buffering on the request (client) side is also a feature in some systems such as

WebExpress.

Extensions to buffering include pre-fetching and background transfers. Pre-

fetching is used by Mowgli and WebExpress to try and fetch related documents based

on the current document. For example, links found on a Web page can be pre-fetched

as soon as the Web page is loaded based on the assumption that the user is likely to

click on those links in the near future. This information can be cached on the proxy

until it is requested, or it can be transferred in the background before it is requested,

but while connectivity is good. Then, if the page is requested during a disconnected

phase, it will still be available. These solutions depend on the resources available on

the client along with a prediction of how the connectivity to the mobile client may

change over time.

Beyond buffering it is desirable to actually allow processing to continue at the

proxy on behalf of the mobile client during periods of disconnection. This is proposed

in both AgentTCL and MASE, which propose the use of agents to continue

processing on behalf of the client while the client is disconnected. AgentTCL is based

on a comprehensive design where agents queue on the client or proxy and migrate

12

when there is sufficient connectivity. These agents would then perform work

autonomously and return to the client when finished.

The QoS handoff schemes discussed in Section 2.2.1 are also relevant here as

a change in QoS can be used in the algorithms for deciding when to cache, when to

transfer, and what approach to take for prediction (e.g. aggressive prediction).

Mobiware and WebExpress are more suited to this kind of work as they handle

changing QoS levels. InfoPad established a fixed QoS that is not as useful in this

context.

2.2.3 Latency

Latency is a very difficult question to address in the context of data transfers

over wireless links. With mobile clients the likelihood of disconnects is very high

which means that latency will increase due to retransmits, reconnect overhead and

general lack of connectivity. There are not many proposed solutions in this area. Pre-

fetching, background transfer of predicted data, and caching on the mobile client are

all proposed by both Mowgli and WebExpress.

Predictive fetching of data is inherently difficult and very dependent on the

type of application being run. While it may be easy to predict Web page fetches, other

applications (e.g. synchronous, collaborative ones) are not as predictable. To be most

effective this would have to be tied in to on-board caching which drives up the need

for storage resources on the mobile client.

13

2.3 Protocol Stack

Most data communication protocols currently in use have been designed for

non-mobile networks. These protocols often do not function efficiently if simply

applied to wireless links or mobile clients.

Lower layer (physical and data link) protocols for wireless links have been

widely established, as this is the minimal requirement for having wireless networks.

Current issues to be addressed are mostly in the network and transport layers where

TCP/IP is the most widely used protocol set. Since these protocols do not make any

special allowance for mobile or wireless communication, using them leads to

inefficiency and lower performance.

Current approaches focus on splitting the connection at the edge of the fixed

network. The protocol stack is then left unchanged in the fixed or wireline network

while a new protocol is used over the mobile section of the network. These mobility

aware protocols can then handle issues like handoff between mobile bearer services

more efficiently.

2.3.1 Application Layer

Application layer solutions require the application to be aware of mobility

issues and to deal with them in a way appropriate to the particular application. This

idea is further discussed in the section on Architecture (Section 2.4) below.

2.3.2 Transport Layer

At the transport layer, reliable data transfer and connection handling are the

key issues. In networks supporting mobile clients, handoff from one service point to

another is a common occurrence. Although handoff occurs at the lower (physical)

14

layers the transport layer connections must also be fixed. Handoff can include short

periods of disconnection until the channel is re-established.

Mobiware addresses handoff and short disconnections by trying to decrease

the overhead of connection handling. It does this by bundling all connections to a

single device and then allowing the bundle to be handled as one unit. Using other

transport protocols, each connection would be torn down and re-established

individually, leading to greater delays, even for short disconnects which are very

common in mobile networks. This is very valuable in applications based on the Web,

where a number of higher-level connections can exist even for single tasks.

WAP introduces the idea of suspend and resume functions for connections.

This allows lightweight connection reestablishment for handoff or short disconnects.

It also allows the mobile device to suspend its connections when going into power

saving modes without paying the high overhead of connection initialization when the

device "wakes up".

MASE offers similar functionality to WAP by holding connections at the

proxy. One of the strengths of introducing a split connection is the ability to keep the

TCP/IP connection active between the proxy and fixed server, while allowing

temporary disconnects over the mobile network. Other split connection solutions like

Mowgli and WebExpress offer the same advantages.

2.3.3 Network Layer

The network layer is where address resolution and searching for hosts is

performed. Again, mobile devices create additional problems in routing. The split

connection approach allows the fixed network to continue using existing protocols

15

while the proxy takes care of locating the mobile device. WAP and MASE both use

this approach and simply rely on cellular phone networks to locate the mobile unit.

Other solutions like TACC, Mowgli and InfoPad route data to the proxy located on

the fixed network, but expect that proxy to be in direct communication with the

mobile client. In either case, the approach seems to be that the proxy does not change

(i.e. no handoff between proxies), but the proxy is expected to either be in direct

contact with the mobile device, or route through a cellular network to reach it. As

much of the routing as possible should be done in the fixed network. Any algorithm

that is partially executed on the mobile clients is more likely to suffer from

performance problems.

A more comprehensive solution is Mobile IP that primarily addresses routing

for mobile devices. The basic approach here is to have forwarding agents which are

part of the subnet where the mobile device last connected, and which can forward

packets to the new location indicated by the mobile device. To further optimize the

rerouting, the source host can be notified of the reroute so that further packets can be

sent directly to the mobile device's new location. This is very much like a traditional

post office with change of address notifications.

2.4 Architecture

All of the solutions investigated for this summary use the client-proxy-server

architecture. This is an extension of the common client-server architecture where one

host (server) provides certain services or application of which another host or device

(client) makes use. The proxy is another host logically placed between the server and

16

client in order to mediate, route, or otherwise facilitate communication between them.

Some architectures use the term proxy, while others use gateway or mediator.

The client-proxy-server approach can be implemented at different levels in the

protocol stack. When it is applied to the network or transport layers the result is

mobility-transparent1 solutions. The use of proxies at the application layer requires

the application to support mobility concepts, which is referred to as a mobility-aware

solution.

2.4.1 Mobility-Transparent Solutions

Mobility solutions that are transparent to the application are desirable because

of the reduced impact to the applications. They allow most of the fixed network

(Internet) to remain architecturally unchanged. They also allow traditional protocols

and software application designs to operate as they always have. They support the use

of new and optimized protocols between the fixed network and mobile clients. Given

the fact that fixed servers have thus far been several orders of magnitude more

powerful than mobile devices, these solutions also allow the use of such powerful

servers to perform resource intensive filtering, compression and protocol conversion

tasks.

In [Badrinath 00] a framework is presented for generalizing this kind of data

stream adaptation approach. The authors propose a generic view of the data stream

between source and destination nodes that is made up of multiple Adaptation

Agencies (AA). Each AA is further decomposed into an Event Manager (EM), a

1 The terms mobility-transparent and mobility-aware are borrowed from [Joseph97].

17

Resource Monitor (RM), and zero or more Application Specific Adapters (ASA). The

EM and the data stream itself provide inputs to the ASA. The ASA will attempt to

transform the data stream and may make requests for additional resources from the

RM. The RM is also informed by the EM of changes in resource utilization, etc. The

authors show that many proposed mobility solutions, including Odyssey and

Conductor, map well into this framework.

Most of the solutions summarized in Table 1 also map to this framework

while the adaptation performed in the proxy varies with each solution. Most proxies

are placed at the edge between the traditional fixed network and the mobile network.

InfoPad and InfoStations use a proxy that is exactly on the edge of the two networks

and is mostly used for caching or buffering data during disconnections. Mowgli,

WAP, MASE, WebExpress and TACC all use the proxy to modify and adapt content

to suit the mobile device. They use the greater computational and system resources of

the gateway machine to "digest" the data stream and pass on a version which is suited

to the wireless bandwidth and end-user device capabilities. AgentTCL uses proxies in

a symmetric form where client and server roles are assigned as needed to the fixed

host and mobile client.

2.4.2 Mobility-Aware Solutions

While transparent support for wireless networks and mobile clients is

favoured as a non-intrusive method for integrating mobile networks with fixed

networks, it can also be argued that the mobility cannot be fully exploited without the

application’s involvement. In addition, the load created for proxies carrying out the

transparent adaptation may create a scalability problem as wireless devices increase

18

in number. The proxy model results in massive amounts of data being passed over

networks, followed by resource intensive computations on the proxies, which

ultimately result in data being discarded or modified. This suggests that end-to-end

solutions that involve the application in the adaptation decisions may provide better

scalability [Joshi 00]. However, infrastructure solutions that are meant to be

transparent can also be designed to address scalability as outlined below in Section

 2.4.3.

This leads to the concept of applications that are aware of the mobile

environment they are operating in. The common approach to achieve this is to

structure mobility support into a middleware layer that the application can use to be

notified of, and respond to, network changes. MASE, Mobiware, Mowgli, and

Mowser all fall into this category. MASE and Mobiware each focus on QoS issues in

slightly different ways, while Mowser and Mowgli focus exclusively on enabling

better HTTP and TCP performance. In all cases, the use of a middleware approach

gives greater flexibility for application development. Applications can be developed

for many purposes and as long as they call on the functions of the middleware they

can support some mobility. However, the short-term drawback of this approach is that

many applications have to be re-written or re-engineered to use them. This may be

less of an issue for areas where applications are only emerging now or are changing

rapidly anyway.

An example of a toolkit intended for mobility-aware applications is Rover

[Joseph 97]. The toolkit allows portions of the application’s code to be moved from

one host to another. This is the solution most similar to that being investigated in this

19

thesis. Rover defines two main concepts: Queued Remote Procedure Calls (QRPC)

and Relocatable Dynamic Objects (RDO). RDOs are units of code that can be moved

from one host to another. QRPCs are remote requests that can be queued while a link

is down or a host is disconnected, and are serviced once a connection is re-

established.

2.4.3 Scalability

Mobile devices are generally designed to be personal devices that are

ubiquitous and easy to use. This implies that as design and cost issues are worked out

the number of such devices will rapidly increase. Therefore, networks and protocols

supporting mobile computing must address scalability.

InfoPad and InfoStations both attempt to support scalability for

communication with mobile devices. InfoPad adopts a cellular communication

network for communicating with individual pads. InfoStations attempt to address the

cost of communication networks for mobile units by providing a smaller number of

high-powered transmitting stations that create islands of connectivity. Both

approaches try to minimize cost in the communication infrastructure.

TACC addresses scalability of processing on a proxy in support of filtering

and transforming data streams headed to a mobile client. TACC segments work in the

areas of transformation, aggregation, caching and customization. TACC then

maintains a pool of "workers", for each area, which can be created and destroyed

based on the offered load. This modular approach allows the system to increase

processing capacity in the area that is needed at the time when it is needed. This

20

appears to be a sound approach to resource allocation and bottleneck removal as

shown by experiments performed by the team at Berkeley.

MASE attempts to support scalability by using simplified APIs to encapsulate

mobile device functionality. This seems to be based on the assumption that if the

mobile devices are simple, then the APIs representing them should be simple, and

therefore supporting a number of such simple devices should not be resources

intensive. However, experiments with an implementation using CORBA suffered

from performance problems, leading to a redesign of the system to reduce CORBA

dependency.

Mobiware uses a multi-layer architecture that should support scalability and

performance. However, use of technologies like Java and CORBA have similarly

created problems in experiments.

Other solutions like WAP and WebExpress are intended for deployment on

specialized servers designed on telephony principles. Although experimental results

are not available, the intent seems to be to support scalability using specialized

hardware.

AgentTCL is an example of a system that does not seem to take scalability

into account. This solution requires mobile agents to queue in different nodes and

then migrate as connectivity becomes available. The queuing and transport of these

agents suggest a solution that will not scale well with an increase in the number of

applications on a device, or the number of devices in general.

21

2.5 Adaptability

Each solution offers a different level of adaptation to changes in the network

or client. Filtering and data conversion approaches like Mowgli and WebExpress

allow a device profile to be setup for a mobile client but do not offer dynamic

modification of that profile based on changing device parameters (e.g. decrease in

power) or changing network condition (e.g. decrease in bandwidth). More thorough

solutions like TACC indicate that such dynamic changes are supported.

Solutions measuring QoS also come in static and dynamic varieties. InfoPad

establishes a fixed QoS level for its connections. QoS levels not being met will likely

result in loss of connectivity. Mobiware on the other hand will measure QoS and

supply the hooks for allowing the application to react and adjust. MASE also tracks

changes in QoS and triggers changes based on them.

None of the proposed solutions indicate the ability to shift processing from the

mobile client to the proxy and back again based on changing conditions. A system

like TACC that allows dynamic device profiles can be used to support such a

scenario. Also, AgentTCL should allow this since agents could be programmed to

migrate off a device upon detection of changes in resources or capabilities. However,

this does not seem to be a part of AgentTCL at this time as the client environment is

not taken into account.

2.6 Modeling the Mobile Devices

In each of the approaches outlined above the mobile device is modeled, either

implicitly or explicitly, as having a particular form and set of characteristics. The

majority of proposed solutions address themselves to making Web browser functions

22

available on low-powered mobile devices. Filtering and transcoding are usually

performed based on MIME types. Mowser and Mowgli are basically solutions for the

Web. TACC is also based on MIME types, but its architecture should be applicable to

a wider range of problems. InfoStations solve the problem of small requests resulting

in large amounts of data being retrieved (basic Web model).

Some solutions make particular assumptions about the hardware platform

being addressed. InfoPads only target a portable desktop scenario. WAP focuses

primarily on cellular phone, albeit more advanced ones than currently available. The

large user base projected for some of these platforms easily justify specific solutions

for those platforms.

At the same time more generic solutions that can be applied to a wider range

of hardware platforms and software applications are desirable for reduced adoption

overhead. Middleware solutions, such as those outlined in Section 2.4.1, simplify

mobility related actions but require the application to make the fundamental

adaptation decisions, and are therefore applicable to all application classes. Examples

like MASE, WebExpress and Mobiware, attempt to solve general classes of problems

such as QoS handling and content reduction. Applications using these services must

decide themselves what to do when QoS changes, or when to use content reduction.

2.7 Modeling the Patterns of Mobility

The solutions summarized here all support fully mobile clients as opposed to

simply nomadic ones (i.e. clients which only periodically change network location).

Most of the solutions allow mobile devices to change locations on a continual basis,

but some impose limitations. For example, InfoStations assume a predictable route

23

for the mobile device. The ideal case for this approach is a one-dimensional model,

such as a car traveling down a road. More complex behaviour, such as a person

walking in a city, becomes more difficult to predict. InfoPads allow full mobility, but

only in geographically limited areas such as a building or campus, and with minimal

client capability.

WAP and MASE are both based on an underlying cellular phone network.

They support full and continuous mobility. WebExpress goes a step further in

claiming that its content optimization strategies can be used in fixed networks as well

as mobile networks to improve throughput and reduce latency.

Mobiware and MASE both support QoS measurement and handoff. These

solutions have a more complex mobility model in which they allow for the existence

of several bearer services at one geographic location. This opens up the possibility of

finding a better channel and switching to it even if the device itself is not mobile.

2.8 Relationship to Our Work

 The research presented in this thesis is based on mobility-aware applications

using a mobility support infrastructure. The architecture is based on a client-proxy-

server approach at the application layer of the protocol stack. The proxy is an

application layer entity and does not perform any distillation or transcoding. It is

generally a host that is neither the display client (mobile device), nor the source

information server. The application is (re)written to be distinctly divided into portions

that can be executed on different hosts. These portions are written to use the

appropriate infrastructure tools that support the actual movement of the code

modules, remote execution, etc.

24

 The infrastructure tools are similar in structure to the framework suggested by

[Badrinath 00]. Environment monitors inform an application specific adapter of

change in the environment, allowing the adapter to decide when code modules are to

be moved. However, the adaptation here is not in the data stream, but in the

deployment of the application modules themselves.

Overall, this represents an end-to-end solution [Joshi 00] where the

application and the underlying support layers work together to deal with mobility

problems and still deliver an acceptable service to the end-user. The contribution of

this work is to extend the scope of code mobility previously investigated [Omar 00]

and [Wang 99] to allow migration from mobile clients to proxies, between proxies,

and from a proxy back to the mobile client. This extension of the previous algorithms

is tested using scenarios with dynamic host and network conditions.

25

3 Migration Decision Algorithms

In this chapter we examine some general concepts that are part of the process

of code migration from one system to another. In the context of this thesis, code

migration is intended as a means for improving application performance. The

migration may take place between the hand-held device and a proxy server (in either

direction), or between proxy servers. Generally, the migration process consists of the

following steps:

1. Partitioning the application,

2. Monitoring performance,

3. Detecting that performance is poor,

4. Creating a list of possible destination servers,

5. Deciding to handoff, and,

6. Performing the migration.

The monitoring of performance is a continuous activity that must be carried

out by all host systems in the network. This may be a native function of the operating

system, or it may be accomplished by a daemon process created for this purpose. Poor

performance, however, is both application-dependent and subjective. A somewhat

simpler task is to predict whether certain performance indicators are measured to be

better on any other available server at a given time. It should also be noted that if an

application is performing well on a given device it might not be necessary to migrate

it, even if the resulting migration will improve performance. For example, if a video

clip were being played at the required number of frames per second, it would not be

necessary to try and increase the performance of the player.

26

It is not the intent of this work to address the measurement of subjective

application quality. Therefore neither minimum nor maximum performance is defined

or measured. The primary focus here is on comparing relative performance, before

and after code migration, using different migration patterns. While performance after

a migration may still be poor, we will consider our migration strategy successful if

some improvement can be measured.

Partitioning of the application into stationary and movable segments, creating

a list of possible destinations, and the actual decision criteria for handing off that

partition, are areas that are critical to this thesis. They are covered in the following

sections.

3.1 Partitioning

Partitioning of the code refers to the act of breaking up an application into

distinct segments that can be migrated between hosts. The decision of how the code

for an application is partitioned can be based on criteria such as minimum coupling,

minimal partition sizing, or ease of separation. Minimum coupling is the most

relevant in terms of system performance in a distributed mode. Since code partitions

are likely to execute on distinct servers, the inter-partition coupling relates directly to

the network traffic generated in our distributed system. Optimal partition sizing is

more relevant for calculating initial migration costs as well as allowing for limited

host resources at a migration destination.

In [Omar 00] partitioning is considered from the point of view of minimizing

coupling between partitions. Coupling is measured by network traffic generated

between partitions. The Greedy Graph Partition algorithm is introduced for arriving at

27

an optimal partition of the application based on a weighted graph representing all the

modules in the application, and their interactions based on a particular execution

cycle. Using an MP3 player as an experimental platform that work concludes that the

only partition that improves performance is one where the display modules remain on

the mobile client while all the decoder functions migrate to a proxy server.

Based on the above-mentioned work it appears that it is not worthwhile to

investigate multiple partition distributions of the MP3 player. The optimal

partitioning for each application can be different and therefore generalizations may

not be appropriate. However, it would seem logical that an MPEG player would

behave similarly to an MP3 player as these are based on the same technology. Since

these are the two applications available for our research (as well as being extremely

popular applications for personal devices), we have chosen not to investigate different

partition distributions in this work. Instead we use the one-time partitioning, arrived

at by [Omar 00] by creating one partition containing the presentation portion of the

application, and one partition containing the decoding and computation engines.

3.2 Destination Selection

In [Omar 00] migration only occurs between the mobile client device and a

proxy server. In this model the selection of a destination is not necessary as the client

is assumed to have one choice at a given time. In [Wang 99] it is assumed that part of

the application is already running on a proxy server, but that migration to another

proxy server will be needed at some time. It is assumed that there is more than one

proxy server that is in communication with the mobile client and therefore a choice

28

exists as to which host should take over execution of the application. Here we attempt

to put these two types of migration into one algorithm.

The Group of Neighbours (GON) algorithm proposed in [Wang 99] is based

on the exchange of information between a given proxy server other proxy servers that

also have wireless connections to the hand-held. Hosts track information about their

own operating environment and pass this information on to neighbouring proxies.

Therefore each proxy ends up maintaining a list of local neighbours plus their last

known system state. The decision to move, and which host to move to, is made based

on this list. This forms the basis of the approach used in this thesis as well.

3.3 Handoff Decision

The decision as to when a portion of the application is to be handed off, or

migrated, to another host is made based on performance improvement or resource

depletion criteria.

The primary resource that can be depleted in mobile client devices is the

battery power. Loss of power will affect both the ability to perform local

computations and the ability to migrate (transmit) code or receive and display results.

It is possible to circumvent loss of power through code migration, but this will not be

further investigated in this work due to the difficulty of emulating power loss on our

experimental platform. Since the loss of power is similar to the depletion of other

resources, it should be possible to draw conclusion regarding the usefulness of our

algorithms based on other experimental measurements.

Storage is another resource that can be depleted on a hand-held device. In this

case we will only consider memory-based storage as most hand-held devices only

29

have memory chips. This is changing with the introduction of micro hard drives

suitable for hand-held devices, possibly making storage limitations a non-issue. Even

if this does turn out to be the case it can be argued that the hard disk acts as an

extension of the memory system and therefore our treatment of the memory system in

this research can be extended to cover the availability of hard disk storage.

Processor availability may also be depleted. In other words, the processor may

become busy with other tasks and therefore make fewer processing cycles available to

the application. This is more common in a multi-user scenario and therefore less

likely to occur on a mobile client device that is usually a single-user device. It is still

possible that system tasks or user-initiated tasks running in the background may

create a load on the mobile device. However, this kind of resource depletion is a

major factor for proxy servers being used to offload the hand-held device. As the

proxy servers are shared systems, likely serving a multitude of hand-held devices, the

tracking of system load is a fundamental part of the handoff decision algorithm.

Performance improvement includes increased speed of execution due to a

more powerful computing device, increased network bandwidth or decreased latency

due to better network conditions or connections, and improved response due to

relative loads on the available hosts. In order to attempt to take advantage of better

host or network conditions, it is necessary to be able to measure performance factors

in the current environment as well as measuring the environment of other hosts. This

leads to the need for environment monitors that can report on local conditions,

sharing of information about the environments on other hosts, as well as a function

for comparing these conditions.

30

4 Protocol Extension

In this chapter we cover some additions or extensions to the work outlined in

the last chapter in order to create a specific approach for performance improvement

which uses migration of code between mobile client and proxy, as well as between

proxies.

The approach taken is to extend the concept of “neighbourhood” as it applies

to potential migration destinations. The first extension is to include the mobile client

device within the neighbourhood, making it possible to apply the same algorithm for

migration decision between client and proxy, as well as proxy to proxy. Another

extension is to define the idea of “distance” between two hosts as being measured by

a combination of the migration cost and potential performance gain differential

between the two platforms. These extensions are discussed in the following sections.

4.1 Environment Monitoring

As discussed above, the changing conditions of the mobile client device and

various proxy hosts on the fixed network are of interest to us. Therefore, the

execution environment must be monitored on any platform where a part of the

application may execute. Since we are interested in the performance of the

environment in support of the application’s performance, the environment parameters

being monitored are chosen based on the application and are the same for the mobile

device as well as the proxies.

For each host, the effective system capacity (ESC) is monitored. This is

intended as a measure of the current processing capacity of a host loaded with any

31

number of tasks. While many systems provide a processor speed or load

measurements, these are usually only measures of clock speed or the length of the run

queue respectively, which cannot be used to measure relative performance between

systems. If the system reported processor load could be combined with the processor

speed we would have a portable measure of the system load [Arndt 98]. Again, those

operating systems that report processor speed often report only the clock speed,

which is relative to the architecture of the system and is not necessarily comparable

across systems. To overcome these problems, we directly measure the unloaded

system capacity (UPC) by running a processor intensive code segment, measuring its

execution time, and using the inverse of that value. In this case, we use a routine for

creating Magic Square matrices that results in a mix of integer and floating-point

math, along with array manipulation. This measured number is then used as the

processor speed.

32

To get a more accurate ESC, the processor load is calculated in two ways. If

the processor is not fully loaded, then we use the percentage of time that the processor

is not idle as the processor load. But, we also have to capture the case where the

processor is overloaded and is using the scheduler to handle a queue of jobs. In this

case we use the more traditional UNIX/Linux style “load” measure. The algorithm,

therefore, defines a load factor, λ, based on the above and defined as:

where ti denotes the percentage of time the CPU is idle, and a denotes the load factor

reported by the Linux operating system. When the CPU is very busy (low values of

ti), the load is likely to come from multiple processes and we use the Linux load

measure and add 1. This gives us an approximation of the current number of

processes (including our own) that would compete for processing resources. When

the CPU is idle (high values of ti), we subtract the actual value of the CPU utilization

from 2. This means that for low CPU utilization, λ will range from 1 (completely

unloaded CPU) to 1.85. For higher utilization, the value will range from 2 to infinity.

It should be noted that the Linux load measure is the time averaged process run-queue

length. At higher loading the Linux load measure indicates how many resources may

be competing for the CPU [Arndt98]. The ESC is then defined as:

λ
USC

ESC =

≥−
<+

=
15.0,2

15.0,1

ii

i

tt

ta
λ

33

As noted, the depletion of memory is also of interest to us. Low memory on

the mobile unit can result in the rejection of new jobs or the suspension of the existing

job. On proxies, where memory is always backed up by hard disk storage, low

memory results in frequent swapping and decrease in performance across all active

applications. Memory is therefore a factor in performance and a count of free

memory (FM) is monitored for each host.

Environmental factors related to the wireless connection between the mobile

device and a proxy server must also be considered. The mobile to proxy bandwidth

(BWm,p) between a host and the mobile device is the main factor that affects the

performance of the application. In order to determine whether a host should become

the active proxy, it is important to measure the speed of the connection it has to the

mobile. In deciding whether or not to migrate the proxy portion of the code from one

host to another, it is necessary to compare this measure between potential migration

targets.

The bandwidth is measured by sending two ping packets from the system to

the hand-held. A ping server application is run on the system emulating the hand-held

in order to respond to these pings. The two packets are of different sizes and the

difference in round-trip times is measured. This is intended to provide a bandwidth

measure by considering the incremental cost of sending each bit rather than the

loaded cost of sending a packet (including overhead). This measure is called the

PingDelta in this work.

The bandwidth between proxy systems is not considered. We assume a high

speed network is available to connect these systems and that the network is redundant

34

enough to ensure the same bandwidth over time. Also, since a neighbourhood is by

definition localized, we will not have to deal with long-haul connections or other

network conditions that change unpredictability.

The code transfer delays are considered in the migration decision algorithm as

a fixed cost. This cost drives up the threshold for the minimum performance increase

required from a desirable target destination. In the experimental setup migration cost

is minimized by having the application code pre-loaded on each host. In a production

system having a shared code server accessible by all hosts can minimize these costs.

Even if code has to be transmitted between hosts, the most common case will be to

transfer it between two proxy servers connected by a high-speed (wireline) network,

not over the slower wireless network.

4.2 Thresholds for Migration

The decision to migrate the pre-selected code partition is based on the

environmental parameters being monitored. The intent is to migrate the code every

time better performance is available elsewhere. Deciding whether performance will

be better elsewhere is based on a comparison of current system metrics compared to

metrics for potential target systems. There are a number of parameters that are

introduced for deciding on when to migrate. The intention of this work is not to

discover the ideal values for these thresholds in a dynamic or general way, but rather

to test their usefulness while assuming that reasonable values can be found in some

way.

Since a minimum performance criteria is not being set, a migration will

happen every time better execution conditions are detected on another platform. This

35

means that each time new information is available for the neighbouring servers, the

migration decision algorithm is run to decide whether a migration is favourable.

The decision algorithm simply tries to find a host where none of the

environmental measures are worse than the current system and where at least one

factor is significantly improved. To achieve the necessary comparison, it should be

noted that even two successive measurements, on the same host where no load

changes have taken place, are unlikely to yield the same exact value. Therefore the

algorithm uses ranges of values for determining “equality” and “improvement”. In

this thesis equality is considered any value that is better than 95% of the original

value, whereas significant improvement is taken as a 120% or better performance for

any measured value. Special consideration must be given to boundary values,

particularly for the PingDelta measurement. These considerations are shown in Rule 3

of the algorithm below. The need for these special considerations are outlined in

Chapter 6. Instantaneous performance values are also not reliable. Transient

conditions, such as periodic waking up and polling performed by suspended

applications, Java garbage collection, and periodic operating system tasks that occur

in the background, can easily skew single measurements. Therefore, instead of using

instantaneous measurements, we use average values calculated over a number of

samples. The number of previous samples used determines how quickly or slowly the

algorithm will react to changes in environmental variables. In the experiments outline

below we use a moving window of 20 samples, each spaced 10 seconds apart.

The use of average values is a backward looking strategy for assessing the

current state of the system. A more aggressive strategy, and one that is used here, is to

36

try and predict the future behaviour of the system. To do this, we measure the

standard deviation along with the mean. The standard deviation for the set of samples

provides us with an indication of the stability of the measured values. In order to be

able to compare standard deviation values to fixed threshold, we first normalize each

of the measured values in the set against the mean value, and then calculate the

standard deviation. This provides a dimensionless measure that can be compared to

an absolute threshold. The threshold value of 10 is used when considering standard

deviation measures. If the standard deviation is greater than 10 the system is

considered volatile.

This stability, together with the expected load created by the application being

controlled and migrated, can be used to predict the future performance of a system

being considered for migration. The simple approach taken here is to look for targets

where the environment has a certain level of stability and is capable of performance

that is equal to or better than the load created by the application. This is reflected in

the general algorithm as shown below:

37

 FOR (each potential target):

 target.suitability = 0.0

 // Rule 1 – check for basic memory

 IF

 (memory available on target does not meet minimum standard)

 THEN

 skip to next host

 ENDIF

 // Rule 2 – try to find the ideal target with higher speed AND

 // higher bandwidth (lower PingDelta)

 IF (target.speed > current.speed * minImprovementFactor

 AND target.pingdelta < current.pingdelta /

minImprovementFactor)

 target.suitability = 1.0

 // Rule 2a – the measurements on the target should be

 // stable over time.

 IF (variance for target.speed > acceptable threshold

 OR variance for target.pingdelta > acceptable threshold)

 target.suitability = 0.75

 ENDIF

 ENDIF

 // Rule 3 – try to find a target with EITHER higher speed OR

 // higher bandwidth (lower PingDelta)

 IF (

 (target.speed > current.speed * minImprovementFactor

 AND (target.pingdelta < current.pingdelta / minEqualityFactor

 OR target.pingdelta <= 10))

 OR

 (target.speed > current.speed * minEqualityFactor

38

 AND (target.pingdelta < current.pingdelta /

minImprovementFactor

 AND target.pingdelta > 10))

)

 target.suitability = 0.5

 // Rule 3a – the measurements on the target should be

 // stable over time.

 IF (variance for target.speed > acceptable threshold

 OR variance of target.pingdelta> acceptablethreshold)

 target.suitability = 0.25

 ENDIF

 ENDIF

 END FOR

 MigrationTarget = (Host with suitability rating >= 0.5)

 IF MigrationTarget is not null THEN migrate to MigrationHost

In this algorithm we introduce the concept of suitability while considering

multiple environmental factors and their combinations. The algorithm does not only

try to determine whether there will be an improvement, but rather tries to determine

relative degrees of improvement. Therefore, a target where all conditions are better is

a perfectly suitable target. Another system where only some conditions are better is a

less suitable target, and one with no improvement is not suitable at all. In our

implementation we use a suitability score of 0.5 as a minimum for triggering

migration. In this case it means that the target system must be significantly better in at

least one performance measure, and show consistency in past measurements. This

39

threshold score can be adjusted for a more aggressive or conservative migration

strategy.

An extension of this approach would be to use fuzzy logic techniques in the

decision algorithm. This could be done as a two level problem where the measured

environment factors are mapped to fuzzy sets representing levels of improvement.

Then fuzzy rules would be applied to combine these variables in a min-max type

combination. This extension could result in better interpretation of disparate system

measures, but is left for future study.

4.3 Extension of Neighboring

In [Wang 99] a group of neighbours (GON) is defined as the set of proxy

servers that have direct communication links to the mobile device. The GON concept

is used to define where to look for possible alternative execution platforms. It is

assumed that the partition of the code that was migrated off the mobile device will be

passed on to other proxies, but not back to the mobile device. Here we extend the

GON approach to include the mobile device as a potential migration target. In other

words we include the possibility that sending the code back to the mobile device may,

in some scenarios, produce better results than shipping the code to another proxy.

40

Figure 2 – Extension to Group of Neighbours

Figure 2 shows the extension of the neighbouring concept to include the

mobile device. Note that hosts not in direct contact with the mobile device are not

considered as neighbours for the purpose of the migration algorithms.

Laptop computer

Proxy Server

Proxy Server

Proxy Server

Proxy Server

Proxy Server

Cloud

Comm. Tower

Comm. Tower

Comm. Tower

Original GON

Extended GON

41

5 Experimental Tools and Applications

The experimental platform for exploring the performance of the mobile code

system is based on using real applications and emulated execution environments. This

approach was selected to provide the closest approximation of a real-world system

given that hand-held devices and wireless networks of the required flexibility and

capability are not cheaply or readily available at this time. It also provides better

control over the execution environment and allows repeatability of tests.

The entire platform is run on Intel based systems using the Linux operating

system, which provides easy querying of system metrics. An MPEG and an MP3

application written in Java are used in conjunction with the Voyager ORB. A number

of other programs were created to monitor system metrics, create loads, and control

migration. Each major tool is briefly outlined below.

5.1 Tools

Figure 3 shows the basic distribution, across various servers, of the

experimental tools used for our experiments. These tools are described in the

following sections.

42

Hand-held Emulator

Load
Emulator

Environment
Monitor

Voyager

NISTNet

Mobile User
App UI

Hand-held EmulatorHand-held Emulator

Load
Emulator

Environment
Monitor

Voyager

Environment
Monitor

Voyager

NISTNet

Mobile User
App UI

Controller

User App
File Server

Migration
Control ler

ControllerController

User App
File Server

Migration
Control ler

Proxy Server

Environment
Monitor

Voyager

User App
Back End

Proxy ServerProxy Server

Environment
Monitor

Voyager

Environment
Monitor

Voyager

User App
Back End

NetworkNetwork

Figure 3 – Distribution of Test Tools on Servers

5.1.1 Voyager

Voyager is an object request broker (ORB) with extra features supporting

code mobility. An ORB is part of the CORBA architecture for distributed computing

and is intended for connecting together service requestors and service providers. It

generally acts as an intermediary that provides mechanisms for the creation of remote

objects, publishing of services offered by such objects, and subscription or use of

such services by other objects.

In the case of Voyager, additional constructs are provided for handling mobile

code. This makes it a suitable middleware layer for use in the mobile code

43

experiments summarized in Chapter 6 . To allow code migration, several services are

provided:

•Ability to create objects remotely. This is performed using the

Factory.create() method which takes parameters for the location at

which the object is to be instantiated.

•Ability to refer to objects by proxy interfaces. The Factory.create()

method returns a proxy for the object created. The proxies for other

objects can be retrieved using the Proxy.of() method.

•Mobility is handled by a Mobility class which allows method

invocations such as moveTo() with parameters specifying a target

host.

Use of Voyager requires the Voyager ORB to be installed on each server in

the network. It also requires Voyager libraries and method invocations to be included

into the source code of the application. Voyager requires a mobility-aware

programming model and provides supporting tools for explicit handling of mobility.

As outlined in Section 2.4.2, requiring applications to become mobility-aware

introduces an adoption barrier. However, as a research tool, it simplifies the software

development part of the work by providing a number of services that are difficult to

implement without an existing structure. Also, Voyager provides better performance

with less effort than specially developed, experimental mobility toolkits [Omar 00].

Additionally, we use ORB features for both publishing, and subsequently

invoking, services across the network. This is particularly useful for accessing the

environment monitors and neighbourhood maps of migration targets.

44

5.1.2 Load Emulator

In order to use common desktop computers to mimic mobile devices, a special

emulator was developed. This emulator runs on a Linux environment and reduces the

memory and processor speed available to the application of interest, thereby

emulating the execution environment of a typical mobile host. Test applications are

executed within this emulator running on desktop Linux hosts rather than using actual

hand-held computers. This allows us to use existing lab equipment, as well as

reducing the system and communication problems often encountered in new

generations of hand-held devices.

Most current operating systems implement sophisticated processor scheduling

algorithms which make it difficult to deterministically reduce the processor time

available for a single job. Therefore the emulator increases the processor load by

running a number of extraneous child processes. The emulator attempts to reach a

certain level of resource usage at start time and does not attempt to add or subtract

children to maintain that level. In order to create a realistic scenario we want to be

able to create an initial load and then let the operating system react as it would

normally to the introduction of additional load when an application is migrated.

The emulator can also reduce the amount of memory available to the

application. Again, the reduction of memory is not a simple task as most operating

systems provide memory managers expressly designed to create the illusion of

unlimited memory for the application. The emulator is implemented using C++ as this

language has fewer safeguards than Java for the usage of system resources. This

feature is not used in the set of experiments outlined here.

45

5.1.3 Environment Monitors

Environment monitoring is performed by a Java application that can read

system information from the “/proc” pseudo-directory in Linux. In Linux, system and

process information is presented in a form that mimics files and directories that can

be accessed using normal file processing techniques. The monitor can also read

values from a file of “recorded” values in order to reproduce specific scenarios. The

monitor can be set to poll system parameters periodically and write these to file,

providing a mechanism for creating recorded script files.

The monitor is also responsible for reading and publishing the neighbourhood

map. This is a text file that lists the addresses of all hosts considered part of the

neighbourhood. The metrics collected by the monitor are system load, processor

speed, free memory count, and bandwidth to the hand-held.

All metrics, with the exception of the bandwidth, are polled only when

requested from a client using the environment monitor’s services. This is to reduce

unnecessary polling on systems not currently part of the decision algorithm. The

monitor measures the bandwidth independently and periodically. This is done

because the pings may take a relatively long time. Since the migration decision

algorithm must poll several systems, and the polls should occur as near in time as

possible, it is preferable to have the bandwidth measurement already available when

the poll occurs in order to minimize wait times.

5.1.4 Migration Controller

The migration controller is located on a single host and tracks the current

location where the back end partition of the user application is executing. It reads the

46

neighbourhood map for that host and starts to poll the listed neighbours. The

migration decision algorithm (see Section 4.2) is coded in the controller. Every time it

finds a host that is a suitable migration target it signals the back end partition to move

to the new location. It does this using Voyager commands to control the back end,

which is also Voyager enabled. It then reads the neighbourhood information for the

new location and continues to poll.

5.1.5 NISTNet

NISTNet is a network emulation tool developed as a project of the National

Institute of Standards and Technology Internetworking Technology Group [NIST 02].

It runs on Linux only and manipulates network traffic at the IP protocol level. It can

be installed on a router within a network from which point it can affect all traffic that

is routed through it. In this mode, an inexpensive Linux host can be used within any

kind of IP network to emulate more complex network interactions. It can also be

installed on a single IP host in which case it will only be able to affect the traffic

originated from or destined for the particular host.

In our experimental setup, NISTNet is installed on the host emulating the

hand-held device. In our model, the hand-held device uses a wireless network that has

a lower bandwidth than the proxy machines that reside on a fixed network. Therefore,

the traffic between the hosts representing the proxy machines is neither modulated

nor measured during the experiments. The bandwidth to the hand-held is reduced

using NISTNet and measured by the Environment Monitors located on the proxy

machines (see Section 5.1.3).

47

Due to the fact that the Environment Monitors use single “ping” style packets

for measuring bandwidth, NISTNet must be set to transmit packets after the delay

period it introduces. NISTNet provides the choice of sending the packet before, in the

middle of, or after the inter-packet delay that it introduces when trying to emulate a

given bandwidth level. Since the Monitor uses a single ping packet’s travel time in

bandwidth calculations, it is important that the delay due to bandwidth be measurable

for the single packet. Therefore transmission after the delay is the right setting. This

behaviour is set in the “Config” file for NISTNet and must be set before compiling

the tool.

NISTNet shapes traffic by buffering incoming packet streams and transmitting

them with delays in order to emulate the decreased bandwidth, loss, duplication,

latency and other effects observed in an IP network. In this set of experiments, only

the bandwidth modulation feature is used.

5.2 Mobile Test Applications

In order to experiment with the migration algorithm outlined above we

required sample applications. Ideally, such applications would be the same as those

most commonly used on hand-held devices. In the previous research ([Omar 00],

[Wang 99]) two applications have been developed: an MPEG player, and an MP3

player. These are in fact typical applications for use on personal devices, as well as

being processing and bandwidth intensive, which makes them good test applications.

Each application has been modified slightly to reflect a simpler partitioning of the

code. Based on the results of [Omar 00], each application is broken into a display

portion and a single large partition that can be migrated.

48

5.2.1 MPEG Player

The MPEG Player is a completely Java-based application that plays standard

MPEG files. Its primary components are a scanner, a decoder and a displayer. The

displayer instantiates a scanner object set to read in the appropriate source file. It then

instantiates a decoder object and passes it the scanner object. The decoder then uses

the scanner to read in the source file and decodes the stream to produce and combine

the various frame types created in MPEG streams. The decoder produces single

frames that are passed back to the displayer to be rendered graphically using Java

AWT classes and methods.

The displayer portion of the code always remains on the hand-held device.

The decoder and scanner, and all the related classes (such as the Huffman and DCT

decoders) are available as one unit for migration to other hosts. The decoder and

scanner objects are created using Voyager’s factory classes and subsequently

managed using Voyager enabled interfaces. This allows the use of Voyager migration

features. The displayer, who ultimately contains the main loop of the application, also

provides a method that the Migration Controller can call to trigger the migration of

the back-end.

The MPEG player has two threads. The displayer uses one thread; the other is

a user interface thread that handles input from the buttons on the UI for starting and

stopping the playback. The display thread theoretically provides the mechanisms for

suspending activity while the back-end objects are migrated to a new host. However,

normal thread operations cannot be applied during a migration, as these semantics are

not defined across Java virtual machines. Therefore the decoder and scanner had to be

49

altered to be re-entrant in such a way that they could be prematurely halted, and then

restarted from the same point in their processing. This was coupled with similar

semantics in the displayer’s main loop so that it could be made to pause while a

migration took place.

The migration process of Voyager consists of the following steps:

-Serialization of all the data and state information for a class, and all of

its contained classes;

-Creation of objects on the destination server;

-Transmission of serialized data to the voyager server, and population

of data into the new objects;

-Destruction of the objects on the originating server.

Voyager also provides stub methods that can be coded for pre- and post-migration

activities on both the originating and destination servers. The MPEG file being

decoded and played is always served by a separate host with a Voyager-based

connection point which is defined during application startup.

5.2.2 MP3 Player

A second test application, an MP3 player, is also completely implemented in

Java, making it easy to adapt for use with Voyager. This implementation of an MP3

decoder reads in files in MP3 format and produces WAVE format output files. There

is no graphical UI, as there is in the case of the MPEG player. Execution is initiated

from the command line and runs to completion with no further user interaction. The

output is a complete WAVE file written to disk on the server where execution was

started.

50

The original player is divided into three separate, mobility-enabled segments:

The front-end, or output; the decoding logic; and, the file server, which reads the

original MP3 file from disk and passes bits to the decoder. This segmentation allows

the file server portion to be placed on a separate host, as would be the case with

streaming audio. The front-end which creates the output WAVE file and the decoder

is separate so that the front-end can be kept on the hand-held device while the

decoder back-end is migrated by the Migration Controller during the experiments.

51

6 Experimental Results

Based on the preceding discussion and tools, a number of experiments were

conducted. The purpose of these experiments is to:

1) Determine whether application performance can be improved based on the

ideas and algorithms outlined,

2) Verify and adjust the parameters of the migration algorithm, and,

3) Integrate and stabilize the test-bed platform

The following sub-sections summarize the description of the tests performed

and the results obtained.

6.1 Experimental Test-Bed

The tests are conducted on a set of Intel-based computers running the RedHat

Version 7.0 Linux operating system. Five such servers are set up on an isolated

network. The network consists of a fast Ethernet system with an observed bandwidth

in the 10Mbps range. Depending on the experiment being conducted each machine

plays the role of controller, hand-held, or proxy server.

One host acts as a common fileserver, exporting an NFS directory structure

containing both the executable tools, and collected test output. The Voyager servers

access this common file system for copies of Java class files used in running the user

application for the experiments. This also means that code segments are not

transferred between hosts during migrations. Therefore, a migration consists only of a

hand-off of control and state information. While this results in much faster

52

migrations, there is still a non-zero hand-off cost, particularly between heavily loaded

hosts.

Ethernet

Hand-held
Emulator

Hand-held
Emulator

Proxy1

Control ler

Proxy2

NFS
Shared

Disk

Figure 4 – Servers Used for the Experimental Test-bed

Figure 4 shows this experimental test-bed. The following sections further

describe the particular equipment and environments used to perform the tests in this

thesis.

6.1.1 Hand-held Emulators

Hosts emulating hand-held devices execute the load emulator program, a

PingServer, an Environment Monitor, and a bandwidth control. A load value of two

(2) was used for all hand-held emulators. This results in a measured speed in the

Environment Monitors of about 280 to 320. Unloaded machines in our test-bed had

speed measures of 2800 to 3200. This speed measure has no meaningful unit. It is

simply a relative measure arrived at using the methodology outlined in Section 4.1.

53

However, having hand-held devices that are slower than standard desktop computers

by an order of magnitude is quite reasonable.

The hand-held must also provide a PingServer, which Environment Monitors

on the proxies use to bounce packets back and forth so they can measure actual

bandwidth to the hand-held. Since the migration algorithm only considers bandwidth

between proxies and hand-helds, there is no need for a PingServer on any other type

of machine. The Environment Monitor is the program that sends the ping packets to

the PingServer. Each hand-held must also have a running Environment Monitor, as

the hand-held is one of the nodes considered as part of the neighbourhood when a

migration decision is made.

NISTNet provides bandwidth control. Since this tool only affects incoming

traffic streams, it is run on whichever host is emulating the hand-held device.

Depending on the experiment, bandwidth reduction rules are either added at the

beginning or during the execution period of the test.

The actual application (e.g. the MPEG player) is always started on the hand-

held emulator. The load generation and monitor programs are started first, followed

by the user application. The application must create its own Voyager server and

Voyager-enabled objects. It must also publish a Voyager handle and port, which the

decision maker can contact for requesting migrations. There is no need to start a

separate Voyager server on any host. The back-end portion is migrated from the

hand-held emulator at a later stage depending on the particular dynamics of the

execution.

54

6.1.2 Proxy Servers

Hosts acting as proxy servers only need to run the Environment Monitor

program, and, during selected periods, the load generation tool. The Environment

Monitor incorporates a Voyager server that has knowledge of the path for loading the

application class files. Therefore, when migrations are required, the Monitor provides

the execution environment for launching the application’s back-end classes.

Loads are created on proxies using the same load generator as for the hand-

held emulation. Loads are either started manually at the beginning of the execution

for the duration of the test run, or they are started further into the test. For pulse

shaped loads the Linux at command is used to schedule the execution of the load

generator, as well as a later kill command to terminate the processes created.

6.1.3 Controller

In order to separate loads created by the decision maker algorithm and other

supporting tools, we designate one host as the Controller. This host executes the

migration decision algorithm, and also acts as the fileserver for the actual data file

being processed by the user application in the experiments. For example, the model

used is that an MPEG file would be streamed or served from another host in the fixed

network. Since the performance of such a file server is not considered as one of the

issues being dealt with here, it is acceptable to reuse the Controller to also act as the

fileserver. A single controller can also execute the decision algorithm and fileservers

for multiple concurrent experiments.

55

6.2 Configuring the Test-bed

To simplify the configuration of the overall test-bed, and the execution of

particular scenarios, each tool is designed to read its operating parameters from a text

configuration file. An execution scenario is first identified and then the configuration

files for the Environment Monitors, Migration Decision Maker, and neighbourhood

maps are created. In the actual test-bed, these configuration files are located on the

same, shared file-system as the Java class files (see Figure 4). This allows complex

and error-prone configuration settings to be set once and used many times, often

across scenarios.

6.3 Base Scenarios

A number of base scenarios were executed on the test-bed. These are tests that

show the execution of the user application if migration is not available, or is not

triggered. The most common ones are:

BaseA – The user application executes completely on the hand-held emulator.

The hand-held is loaded as described above. The decision maker is not run, so

no migrations occur. The input file is served from the Controller host.

BaseB – The user application begins on the hand-held with a decision maker

running. A migration is made to an unloaded proxy. The proxy then becomes

loaded to a high level (load of 10), but execution completes without another

migration.

BaseC – The user application begins on the hand-held, migrates to an

unloaded proxy and completes execution there.

56

These base cases are used in the following sections for measuring changes in

performance as various system parameters are varied. The first experiment compares

some of these base cases to each other. Subsequently, BaseA is used primarily to

show the absolute improvement over the case of having no code mobility. BaseB is

used to compare against the case of simply splitting the code across two servers, with

no consideration of multiple migrations. BaseC is primarily used for comparison with

cases where bandwidth is varied.

6.4 Execution of Scenarios

In addition to the base scenarios outlined above, additional execution

scenarios are used to exercise particular aspects of the migration algorithm and the

test-bed in general. Configuration files are created to capture the physical set-up

needed for these scenarios. From the set of five hosts available, we attempt to keep

the roles (e.g. hand-held or proxy) constant to minimize variability due to host

differences. In some experiments where all hosts are not needed multiple iterations of

the same scenario are run concurrently by splitting the system into several smaller

sets of hand-helds, proxies and controllers.

Each scenario is iterated at least seven times to produce a reasonable set of

results, and the average values across iterations are summarized in the tables and

charts below. A larger number of iterations can be used to reduce the variability in the

results. However, the results already show acceptable variances (e.g. variance of

200,000 on an average of 5,000,000 ms execution time). Furthermore, in an emulated

environment, as in the real world equivalent, there are a number of unpredictable

variables (e.g. garbage collection, background system tasks, user loads, etc.) which

57

would likely lead to even larger variances than those observed here. Therefore the

results are considered with an eye toward significant gains or losses in performances,

rather than small improvements.

A particular observation about the MPEG player’s execution characteristics is

required. In the graphs presented below it can be noted that the performance of the

player is not even across subsequent frame repaints. This is due to the MPEG

encoding standard [ISO 98] that uses a combination of fully represented I-frames,

specifying a complete single image, followed by P- and B-frames which are frames

that are predicted or interpolated from other previous (or future) frames. This means

that some frames will take a very short time to decode due to their simple encoding,

while others require more time-consuming decoding (i.e. the I-frames which are fully

encoded JPEG images). Because of this the graphs showing the per-frame rendering

times clearly show three average duration levels for a single experiment. For this

reason these graphs are presented as point graphs only to provide the clearest

depiction possible. To compare two test scenarios, each of the three frame types from

one test has to be compared to the matching set of data-points in the other test. This

can be done visually, as the pattern of time distributions is usually the same across

experiments, with a translation up or down the y-axis.

The charts presented in the following sections graph the execution time for

each frame of an MPEG movie played. The x-axis shows the frame number, and the

y-axis shows the length of time to paint that frame. It should be noted that the Java-

based MPEG player cannot currently play movies at the required frame rates. This is

58

true of the original MPEG player and even more pronounced after the application is

converted to use Voyager.

6.4.1 Simple Migration Due to Load

The first experiment consists of executing the BaseA and BaseC scenarios.

The purpose of this experiment is to compare results from simply running the user

application to completion on the lower powered hand-held, versus migrating the

back-end of the application to an unloaded proxy. This case validates the essential

concept that splitting the application across two machines with a network connection

can lead to performance improvement.

BaseA scenarios require only a single hand-held emulator host plus a

fileserver. The fileservers for multiple experiments were run on the same platform,

with 4 hand-held emulators executing iterations of the scenario concurrently.

BaseC scenarios require two hosts, a hand-held and a proxy, with the Decision

Maker running so that the initial migration from hand-held to proxy occurs. This

migration occurred within the first 15 frames in each case.

Scenario
Average Total
Exec Time (ms)

Base To
Compare To

%
Improvement

BaseA 8,691,987

BaseC 4,787,537 BaseA 45%

Table 2- BaseA and BaseC Execution Results

Table 2 shows that this simple move creates a saving on the overall execution

time. A savings of 45% against remaining on the weak hand-held device is a

significant enough gain to meet our criteria of searching for large gains rather than

59

marginal improvements. Figure 5 shows that this saving is evenly distributed across

the entire program’s execution. In other words each frame is being processed more

quickly with significant overall gains. This suggests also that a short period of

improved performance is unlikely to have as large an impact.

60

Figure 5 –Execution Times For Base Cases

61

6.4.2 Migration Back to Hand-held

We saw in Section 6.4.1 that a migration to an unloaded proxy produces gains

in a small system with only one hand-held device and a single proxy available for

offloading processing. We now examine the best strategy in the case that the proxy

server becomes loaded to find out whether it is better to remain on the proxy or return

to the hand-held.

In the LoadedProxy scenario, execution begins on the hand-held, followed by

a migration of the back end to an unloaded proxy. At about 10 minutes into execution

a large load is created on the proxy (the average start time of this load, across all

reuns, is shown as a vertical bar in Figure 6). The proxy’s load is large in keeping

with the idea that a shared proxy is more likely to become heavily loaded during peak

usage times. The back-end is then returned to the hand-held where it finishes

execution.

Scenario
Average Total
Exec Time (ms)

Base To
Compare To

%
Improvement

BaseA 8,691,987

BaseB 16,812,517 BaseA -93%

LoadedProxy 8,785,646 BaseB 48%

 8,785,646 BaseA -1%

Table 3—BaseA, BaseB and LoadedProxy Execution Results

62

Table 3 compares the LoadedProxy results against the case of remaining on

the weak hand-held (BaseA), and the case of staying on the proxy even when a load

exists (BaseB).

Going to the proxy for only 10 minutes until a load is introduced and then

migrating back to the hand-held appears here to be slightly less efficient than just

staying on the hand-held. However, the 1% difference is negligible and is also too

fine a measurement for the tolerances of the test-bed, as stated above. Therefore, it

would seem that staying on the hand-held, or moving to the proxy and back again in a

short time, are about equivalent from a performance perspective. However, Figure 6

shows that the LoadedProxy case has a higher inter-frame time during the early part

of execution. This seems to be due to the migration and settling costs of the system

(state transfer plus extra garbage collection incurred by Voyager). Therefore, it would

be preferable to not migrate since there is no real overall performance gain, but there

is a period of degraded performance.

Staying on the loaded proxy would not be a better choice. Here we see a –93%

penalty for failing to leave the proxy once it becomes loaded. The largeness of this

number is partly due to the fact that the load on the proxy is heavy, as mentioned

above. As seen in Figure 6, each execution cycle is considerably slower during the

lifetime of the execution after the load on the proxy is created. Obviously there is no

indication in BaseB of the migration costs seen for the LoadedProxy scenario.

However, it is also clear that paying the penalty on a few of the execution cycles

would be better than staying long term on the loaded proxy.

63

Figure 6 – Execution Times for Migration Back to Hand-held vs. Base Cases

64

It would seem that having a generally conservative approach to migration is

warranted. Short-term moves to other machines do not produce the gains desired and

introduce short-term performance degradation that can be noticeable to the user. At

the same time, good prediction of the future is required as failing to react to a long-

term load has significant negative impact on overall performance.

6.4.3 Transient Loads

Having examined short-term gains in the previous section, we now examine

the impact of short-term losses or loads. Transient loads are emulated in the Square-

noMig, Square-Mig and TwoSpike-noMig scenarios.

The Square-Mig case covers the situation where a square shaped load pulse is

seen on the proxy server after execution has been transferred from the hand-held. The

length of the load is about 15 minutes and the magnitude of the load is high, as in the

LoadedProxy case of Section 6.4.2. The approximate start and end times for this load

are shown as vertical bars in Figure 7. The decision maker algorithm is set such that a

migration back to hand-held occurs once the pulse starts, and another migration to the

proxy occurs after the pulse dies off. The Square-noMig scenario is the same, except

that execution continues on the proxy throughout the period of the pulse load.

The TwoSpike-noMig scenario is similar to the previous scenarios, but the

square pulse is replace by two 3 minutes spikes, one at about 10 minutes and the other

at about 22 minutes into execution. In other words, the two spikes occur in the same

time period as the square pulse.

65

Scenario
Average Total
Exec Time (ms) Base To Compare To

%
Improvement

Square-noMig 5,597,524

Square-Mig 5,337,221 Square-noMig 5%

TwoSpike-noMig 5,893,441 Square-Mig -10%

 TwoSpike-noMig 5,893,441 Square-noMig -5%

Table 4 – Pulse Load Execution Results

The table above shows that moving off the proxy during the brief square

shaped load (Square-Mig vs. Square-noMig) yields only a 5 improvement over the

case of just staying on the proxy. Again, a 5% difference is not valid for drawing

conclusions based on the emulation test-bed. Furthermore, even a 10% gain is likely

not sufficient given our criteria of having significant gains to offset the disruption

caused to the user during certain frames.

From examination of the detailed execution information for the runs of

Square-noMig, there is an extra time hit that is taken due to a garbage collection cycle

that consistently starts between cycle 30 and 50 of the execution. This is

approximately the same time as the load burst on the proxy and the cumulative effect

is seen as a large spike in Figure 7. In the other test sets it seems that the garbage

collection and the load are better separated in time.

The case of migrating back to the hand-held (Square-Mig) can be compared to

both of the non-migrating cases. This is due to the fact that the Decision Maker would

not trigger a migration back to the proxy between the closely spaced load spikes. In

all cases the performance changes between migrating or not migrating for two spikes

or a 15 minutes load seem to indicate that variations will be in the range of 5-10%.

66

This indicates that performance gains of sufficient magnitude will not be seen here

and therefore the migration algorithm should also ignore short loads.

Figure 7 shows areas of increased delay around the 50 frame (cycle of

execution) mark. This is the time during which the load spikes are occurring. As

noted above, Java garbage collection has skewed the results in the case of Square-

noMig. Otherwise, we see slightly higher cycle times for Square-Mig during that

early period due to the additional migrations included in that test.

The results in this section suggest that migration based on short load

variations does not produce significant gains. It can also create time-local delays in

specific frame repaints that would be noticeable to the user. Therefore the migration

algorithm should be set to ignore small load bursts as it should ignore short periods of

non-activity.

67

Figure 7 – Execution Times for Transient Loads

68

6.4.4 Basic Bandwidth Variations

The experiments in this section consider the impact of bandwidth variations

between the hand-held device and the proxy executing the back-end of the user

application. So far, we have examined gains from finding a more capable or faster

proxy host to execute the back-end across a very high bandwidth connection to the

hand-held. Here we emulate lower throughput wireless connections by using

NISTNet to throttle the packet transmission between proxy and hand-held.

The scenarios of BW=30kbps, BW=300kbps and BW=1Mbps have the exact

same structure. Execution begins on the hand-held and is then migrated to higher

speed proxy with high bandwidth. After migration the network connection speed

immediately drops to the listed value (in bps) and execution completes on the proxy

server. All proxies have very low loads before the application is migrated to them.

IMT-2000 [Magedanz 96] specifies 144Kbps for vehicular wireless systems,

384Kbps for pedestrian networks, and 2Mbps for indoor office wireless networks.

The bandwidth settings for these experiments are approximately based on these

settings, but with the low end further reduced to enhance the comparative results.

Also, since the maximum observed speed of the network being used was around 10

Mbps, the high end of the limited bandwidth cases was set to 1Mbps to provide an

order of magnitude variation from the open network.

BaseA and BaseC are both used as comparison points. BaseA helps us

determine what would happen if in light of low bandwidth between hand-held and

proxy we decide to execute on the hand-held only. BaseC is used to show the relative

69

impact of bandwidth, in general, as compared to the case of maximum bandwidth

with the same set-up of hosts.

Scenario
Average Total
Exec Time (ms) Base To Compare To

%
Improvement

BaseA 8,691,987

BaseC 4,787,537 BaseA 45%

BW=30kpbs 15,351,201 BaseC -221%

BW=300kbps 6,957,066 BaseC -45%

BW=1Mbps 5,513,632 BaseC -15%

BW=30kbps 15,351,201 BaseA -77%

BW=300kbps 6,957,066 BaseA 20%

BW=1Mbps 5,513,632 BaseA 37%

Table 5 – Basic Bandwidth Variation Execution Results

Table 5 shows that, as expected, decreasing bandwidth results in slower

performance. BaseC is the best case for the split application, running on wireline

LAN with an observed speed in the 10Mbps range. As the bandwidth is reduced to 1

Mbps, 300Kbps and 30 kbps, the performance is significantly degraded. This seems

to indicate that the MPEG viewer is bandwidth-dependent. This makes sense, as the

application must transmit, over the wireless connection, pixel information for each

screen repaint on the hand-held device.

Comparing the same test cases against complete execution on the hand-held

only (BaseA) yields interesting results. The table shows that there are gains to be

made by migrating across a low bandwidth connection and executing on a proxy that

is more lightly loaded (or more capable) than the hand-held. While a bandwidth of

70

less than 300 Kbps continues to yield significantly poorer (-77%) results than just

staying on the hand-held, moving to the proxy shows 20-40% improvement even

though bandwidth is sacrificed. It should be noted that the speed measure for the

hand-held device is about 300, while the same measure for the proxy is about 3000.

This suggests that our algorithm is correct in assuming that “equal”

performance for a given parameter should not be considered in terms of strict equality

of the measured numbers. There should in fact be a range of worse or lower values

that are also deemed “good enough” if there is another parameter that measures

significantly higher. This particular set of experiments also shows that the amount of

degradation that can be considered acceptable is wider than at first imagined. Here we

see 2 orders of magnitude reduction in the bandwidth being offset by one order of

magnitude improvement in server performance.

Figure 8 simply illustrates the per-cycle execution times for these sets of

scenarios: As expected gains and losses in performance are spread evenly across the

per-frame timings.

Bandwidth significantly affects performance of the application. Therefore, the

algorithm should look for better proxy to hand-held bandwidth when possible.

However, execution is more sensitive to a faster proxy server than to decrease in

bandwidth. This result may be application-specific and should be further tested by

using other applications (see Section 6.4.6), and preferably other application types.

71

Figure 8 – Execution Times for Basic Bandwidth Variations

72

6.4.5 Multi-Proxy with Bandwidth Variation

In the next experiment the 2Proxy-LowBW scenario is tested. This scenario

starts with execution on the hand-held with two proxies in the neighbourhood. The

Decision Maker migrates the back-end to one of the proxies as both are lightly

loaded. After about 10 minutes the bandwidth between the active proxy and the hand-

held is reduced to about 300Kbps. The Decision Maker then migrates the back-end to

the other proxy, which has no load and high bandwidth. Execution completes on this

proxy.

Scenario
Average Total
Exec Time (ms) Base To Compare To

%
Improvement

BW=300kbps 6,957,066

2Proxy-LowBW 4,066,677 BW=300kbps 42%

Table 6 – Two Proxies with Decreasing BW Results

Table 6 shows comparison of this scenario with BW=300kbps, which was the

case of continuing to execute on the proxy with poorer, but acceptable, bandwidth.

We already saw in Section 6.4.4 that in such a situation going back to the hand-held is

not a better choice. Here we see that migrating to another proxy instead, which has

similar processor characteristics, but better bandwidth to the hand-held produces a

42% improvement. This reinforces the idea that while it is better to stay on the proxy

if the only other choice is the hand-held, it is more advantageous to continue to search

for another proxy that has a better connection to the hand-held.

73

Figure 9 – Execution Times with Two Proxies

74

Figure 9 shows that there is more volatility in the inter-frame times for the

2Proxy-LowBW scenario than we saw in the early cycles. This is due to the double

migration required. This cost appears to be quite low and in fact is not very different

from the natural fluctuations in the application’s execution cycles. It would seem that

this level of volatility is acceptable given the large overall gain.

6.4.6 MP3 Player Tests

In order to test the generality of the migration algorithm, the base cases

outlined in Section 6.3 were repeated with the MPEG test application being replaced

by the MP3 player described in Section 5.2.2. Table 7 shows the results for all the

base cases.

Scenario
Average Total
Exec Time (ms) Base To Compare To

%
Improvement

MP3,BaseA 4,737,215

MP3,BaseB 7,629,504 MP3,BaseA -61%

MP3,BaseC 4,345,505 MP3,BaseA 8%

Table 7 – Base Case Results for MP3 Player

The case of executing on an unloaded proxy (MP3,BaseC) provides only a

marginal improvement of 8% over merely executing on a weak hand-held device.

This level of improvement is below the threshold that we would consider sufficient

improvement to warrant migration. In the case of the MPEG player a similar

migration resulted in 45% improvement. This may suggest that the MP3 player is

more bandwidth dependent that the MPEG player. Although in these test scenarios

the bandwidth of the network is left at its maximum, this bandwidth is still lower than

75

the internal “bandwidth” of running both partitions of the application on the same

server.

As expected the case of executing on a loaded server (MP3,BaseB) results in a

large degradation in the performance. It can be concluded that the small gain from

moving to a more powerful proxy is quickly offset by a load being added on that

proxy.

Scenario
Average Total Exec
Time (ms)

Base To Compare
To

%
Improvement

MP3,BW=30kbps 128,389,753 MP3,BaseA -2610%

MP3,BW=300kbps 14,284,244 MP3,BaseA -202%

MP3,BW=1Mbps 5,537,255 MP3,BaseA -17%

MP3,BW=30kbps 128,389,753 MP3,BaseC -2855%

MP3,BW=300kbps 14,284,244 MP3,BaseC -229%

MP3,BW=1Mbps 5,537,255 MP3,BaseC -27%

Table 8 – Reduced Bandwidth Cases for MP3 Player

To further investigate the dependency of the MP3 player on bandwidth

between the front-end and back-end partitions, we run the tests of Section 6.4.4.

Table 8 shows results for the three cases of bandwidth being reduced between the

hand-held and the proxy. These results further confirm that the MP3 player is indeed

very bandwidth sensitive. The decrease in performance is more pronounced and

more rapid than in the case of the MPEG player. The case of 30 kbps bandwidth takes

so long to execute that we did not perform the full set of seven iterations as in other

experiments. Also, it is apparent that the increase in processor speed or capability is

76

completely offset by the negative impact of the decreased bandwidth. In the case of

this application a much higher minimum bandwidth, along with significant processor

improvement, is required to ensure that migration to a proxy server is worthwhile.

Figure 10 shows the per cycle execution times for the base cases of the MP3

player. The cycles of the decoder’s execution are much more closely clustered than

those of the MPEG player. This is due to the fact that the audio in an MP3 file is not

encoded using the interpolation techniques of MPEG encoding, and therefore all

decoding iterations complete in a smaller range of times. The profile for MP3,BaseB

shows a notable step-increase when the load is introduced 10 minutes into the

execution. This effect is easier to see in this case since all the cycle times are

intrinsically closer in value in the absence of system load variations. The execution of

the bandwidth reduction cases is not graphed as it simply shows one well-clustered

band of cycle times for each of the bandwidth levels tested.

The results of the MP3 player tests suggest that some information is needed

about the sensitivity of the application under control to various environmental

parameters. Specifically, the level of coupling between the partitions, and the load

generated by each partition should be factored into the migration decision.

77

Figure 10 – Execution Times for MP3 Base Cases

78

6.5 Adjustments to the Migration Algorithm

The execution of the experiments, and the resulting outcomes, led to a number

of adjustments to the migration algorithm. The first version of the algorithm checked

to ensure that all environmental parameters on a potential target host were at least as

good as those on the current host. Putting this condition first meant that potentially

good targets were disqualified. For example, a host with 5 times CPU capacity, but

1.5 times lower bandwidth to the hand-held would be ignored since the bandwidth is

not considered to meet the minimum for equality. The algorithm does use thresholds

for approximating equality, and these thresholds can be (and were) adjusted.

However, a complementary solution is to rearrange the decision algorithm to look at

strong winners first, and look at boundary conditions last.

The measurement of bandwidth to the hand-held requires special handling.

The Environment Monitor on the hand-held emulator will always measure an average

value of zero for the delay (PingDelta, or relative “slowness”, in our case) from the

hand-held to the hand-held itself. This causes a problem as our approach of specifying

a multiplicative factor for calculating “equality” or improvement will not work.

Having said this, the monitor also does not manage to consistently measure zero on

the hand-held either. Transient values greater than 10 are periodically recorded by the

monitor and these throw off the variance calculations in the migration algorithm.

Therefore, we need a special rule to handle this lower bound of the PingDelta range,

which means any value of about 10 or less. PingDelta values for other bandwidth

79

settings were observed to be in the range of 10 to 500, indicating that 10 is a good

lower bound value. This rule is introduced in two parts:

1) When looking for an equally good PingDelta value, consider any

value less than 10 on the potential target as passing the equality test.

Justification: The equality test tries to ensure that the potential

target is no worse than the current environment. Any host with a

PingDelta of less than 10 essentially has the highest bandwidth

possible and should pass this test. At the same time, a purely

mathematical test comparing a current PingDelta of 1 to a target

host’s PingDelta of 3 would fail if equality was set to a minimum of

80% (i.e. 1 ÷ 0.8 = 1.25, and since 3 > 1.25 the rule would fail when

it should not).

2) Only look for an improved PingDelta value if the current host’s

PingDelta is higher than 10. Justification: If the current host has a

sufficiently low PingDelta, then there is no point in looking for a

slight improvement by moving elsewhere. Again, the multiplicative

approach used for values above 10 is justified, but for low values

we should recognize that a 6 is as good as a 2 even if

mathematically there is a factor of 3 improvement.

Also, for the migration algorithm, the threshold value for acceptable variance

of the PingDelta values is separated and set to a higher value.

Overall, the algorithm was changed to take on a more fuzzy approach to

determining a suitable target. Initial versions of the algorithm only distinguished

80

between suitable and unsuitable hosts. The migration would target the first suitable

host. Further refinement led to the creation of a gradation of suitability, which is

summarized in the table below.

Criteria Suitability

All environmental factors clearly better than
current host.

1.00

All environmental factors clearly better than
current host, but measurements show high
variance.

0.75

One environmental factor is clearly better and
others are roughly equal.

0.50

One environmental factor is clearly better and
others are roughly equal, but measurements show
high variance.

0.25

All others. 0.00

6.6 Evolution of the Test-bed

The set-up of the test-bed was simplified during the development of the

experiments. At first Voyager servers were started individually and separately from

other tools such as the MPEG player or the Environment Monitors. This was useful

during the development and integration of the test tools as it provided separate

logging facilities and the ability to track errors down to individual components. The

correct sequencing and timing for the starting of these components became more

difficult as all the pieces were brought together in the final test-bed. Therefore,

components were combined where it made sense. The Voyager servers, which

provide mobility and remote access, were integrated into the Environment Monitors.

The monitor becomes the only universal component that needs to be executed on all

81

the hosts that are part of the mobility experiments (except the platform where the

migration algorithm executes).

Using Voyager as the middleware for distribution is relatively simple, but not

problem-free. The low performance of the system is the most obvious issue. Profiling

tools were used to identify performance bottlenecks in the MPEG player. There are

areas where such improvements can be made (e.g. string and array handling), but

these are relatively minor compared to the overhead introduced by simply adding

interface based programming required by Voyager. The performance of the MPEG

player on a single machine without using Voyager, compared to the same platform

with use of Voyager, showed one to two orders of magnitude difference in

performance. While beyond the scope of this work, it is clear that better distribution

tools are required. It should also be noted that the version of Voyager being used is a

free research edition with fewer features than the full product. Also, the mobility

functions of Voyager have been removed from the professional product until a future

release. All this suggests that other equivalent tools will be needed.

The version of Voyager used also drives the version of Java being used.

Version 1.1.8, used in this test-bed, is quite out of date at this time and should be

replaced by more current versions that provide better garbage collection and general

performance improvements [Sun 00].

82

7 Conclusions & Future Work

The experimental results in the previous section suggest that a system for

measuring the system and network environment where an application is executing,

and using this information to trigger the migration of sections of application code, can

result in improved performance. Furthermore, a functional emulation test-bed is

proposed, built, tested, and shown to be usable in the execution of test scenarios and

the observation of the behaviour of migration algorithms under consideration.

General observations about performance improvement are possible. The

migration decision algorithm should be written such that it avoids reacting to short-

term changes. Migrations due to short load spikes, or migrations that result only in a

short period of improved performance, do not provide a significant gain in the overall

execution time. Such moves also incur a cost that manifests itself in time-local

degradation of the user experience (slower frame repaints, for example), which

further reduce the small positive gains in overall performance.

The foregoing suggests that a good prediction approach is required in the

migration algorithm. In this thesis the time-averaged past performance, along with a

measure of the variance of individual samples of that performance, are used as a

predictor for the future. In the limited scenarios tested, this appears to be a

sufficiently accurate prediction mechanism for preventing low improvement

migrations.

Bandwidth between proxy and hand-held is shown to have a significant

impact on the performance of split-code applications. In the case of one test

application (MP3 player) bandwidth is by far the most significant parameter. For the

83

other application (MPEG player), a trade-off is easily detected between CPU

performance and bandwidth. In the latter case a sufficient improvement in CPU

capability can offset a larger amount of bandwidth degradation. This observation

suggests that while the same general approach can be taken for multiple applications,

the parameters and their relative weights cannot be fixed. It also suggests that the

sensitivity of the application to bandwidth and CPU should be made a part of the

algorithm.

As mentioned in [Omar 00], a given application should be partitioned into

front-end and back-end pieces based on an algorithm that tries to minimize the

coupling between the partitions. While this is a valid point for the application

designer, the migration algorithm still needs to measure, or be informed of, the inter-

partition coupling that a split-code application has. This coupling ideally should be

measured in terms of the bandwidth requirements, or as a sensitivity measure. In the

same way, the back-end partition’s processing needs should be measured or recorded

for the algorithm. With these two pieces of information the migration algorithm can

scale the relative improvement that it looks for when selecting migration targets. This

approach requires both a way to measure the sensitivity, or desired range, for each

environmental measurement used by the migration algorithm, as well as an

adjustment of the algorithm itself. These, along with the following other areas of

investigation, can be the subject of future investigation.

Other areas for further research include better prediction of future

performance, especially for more complicated load profiles. This would benefit from

a study of typical workload profiles observed on machines that would serve as

84

proxies in a production environment (e.g. a service provider’s network). Accounting

for such prediction would also suggest further refinement of the migration decision

algorithm to allow handling of more complex interactions between the parameters

being measured and the desired outcomes. The fact that most measurements are not

precise, and the values are used to measure relative performance, suggests that a more

formalized use of fuzzy logic is likely to help in creating a more adaptive decision

algorithm.

A parameter that is being considered only tangentially is the cost of migration.

Currently it is factored in as a consideration in setting the minimum threshold of

improvement that will justify a migration, and this is done manually. The fact that in

our test-bed migration costs are minimized due to the transmission of state

information rather than actual code, makes this a small issue for now. However, in a

production system it is likely that code for user applications would not be pre-

populated on proxy servers and therefore the migration cost would be higher. This

would probably warrant a more thorough treatment of cost in the migration decision

algorithm.

85

References

[Angin 98] O. Angin, et al, “The Mobiware Toolkit: Programmable Support for

Adaptive Mobile Networking,” IEEE Personal Communications Magazine:

Special Issue on Adaptive Mobile Systems, August 1998, pp 32-43.

[Arndt 98] O. Arndt, B. Freisleben, T. Kielmann, F. Thilo, “Scheduling Parallel

Applications in Networks of Mixed Uniprocessor/Multiprocessor

Workstations,” Proceedings International Society for Computers and their

Applications, Parallel and Distributed Computing and Systems ‘98, Chicago,

IL, 1998, pp 190-197.

[Badrinath 00] B. R. Badrinath, A. Fox, L. Kleinrock, G. Popek, P. Reiher, and M.

Satyanarayanan, "A Conceptual Framework for Network and Client

Adaptation,” Mobile Networks and Applications, Vol. 5, No. 4, 2000, pp 221-

231.

[Bharadvaj 98] H. Bharadvaj, A. Joshi and S. Auephanwiriyakul, “An Active

Transcoding Proxy to Support Mobile Web Access,” Proceedings of the 17th

IEEE Symposium on Reliable Distributed Systems, West Lafayette, Indiana,

October 1998, pp 118-123.

[Campbell 97] A. T. Campbell, "Mobiware: QOS Aware Middleware for Mobile

Multimedia Communications", Proceedings of the 7th IFIP International

Conference on High Performance Networking, White Plains, New York, April

1997, pp 166-183.

86

[Fox 98] A. Fox, et al, “Adapting to Network and Client Variation Using Active

Proxies: Lessons and Perspectives,” IEEE Personal Communications, Vol. 5,

No. 4, August 1998, pp 10-19.

[Frenkiel 00] R. H. Frenkiel, et al, “The Infostations Challenge: Balancing Cost and

Ubiquity in Delivering Wireless Data.” IEEE Personal Communications. Vol.

7, No. 2, April 2000, pp 66-71.

[Gray 96] R. Gray, et al, “Mobile Agents for Mobile Computing.” Technical Report

PCS-TR96-285, Department of Computer Science, Dartmouth College,

Hanover, NH, 1996.

[Housel 98] B. C. Housel, George Samaras, and David B. Lindquist, “WebExpress: A

Client/Intercept Based System for Optimizing Web Browsing in a Wireless

Environment,” Mobile Networks and Applications, Vol. 3, No. 4, 1998, pp

419-431.

[ISO 98] ISO Standard MPEG-1 Coding of Moving Pictures and Audio, ISO/IEC

JTC1/SC29/ MPEG 98, September 1998. Retrieved August 12, 2002 from

http://www.cselt.stet.it/mpeg/standards/mpeg-1/mpeg-1.htm.

[Joseph 95] A. D. Joseph, et al, “Rover: A Toolkit for Mobile Information Access,”

Proceedings of the 15th ACM Symposium on Operating Systems Principles,

Copper Mountain, Co., December 1995, pp 156-171.

[Joseph 97] A. Joseph, J. Tauber, and M. Kaashoek, “Mobile Computing with the

Rover Toolkit,” IEEE Transactions on Computers: Special issue on Mobile

Computing, February 1997, pp 337-352.

87

[Joshi 00] A. Joshi, “On Proxy Agents, Mobility and Web Access,” Mobile Networks

and Applications, Vol. 5, No. 4, 2000, pp 233-241.

[Kreller 98] B. Kreller, et al, "UMTS: A Middleware and Mobile-API Approach,"

IEEE Personal Communications, Vol. 5, No. 2, April 1998, pp 32-38.

[Le 95] M. Le, F. Burghart, S. Seshan, and J. Rabey, "InfoNet: The Networking

Infrastructure for InfoPad," Digest of Papers, IEEE COMP- CON `95:

Technologies for the Information Superhighway, March 1995, pp 163-168.

[Liljeberg 96] M. Liljeberg, et al, “Enhanced Services for World-Wide Web in

Mobile WAN Environment,” Report C-1996-28, University of Helsinki,

Department of Computer Science, Helskinki, 1996.

[Magedanz 96] T. Magedanz, “Integration and Evolution of Existing Mobile

Telecommunications Systems Towards UMTS”, IEEE Communications

Magazine, September 1996, pp 90-96.

[Meggers 98] J. Meggers, et al., “A Multimedia Communication Architecture for

Hand-held Devices,” Proceedings of the 9th IEEE International Symposium

on Personal Indoor and Mobile Radio Communications, Boston, September

1998.

[NIST 02] NIST Information Technology Laboratory, NIST Net Home Page.

Retrieved August 13, 2002 from http://snad.ncsl.nist.gov/itg/nistnet.

[Noble 99] B. D. Noble and M. Satyanarayanan, “Experience with Adaptive Mobile

Applications in Odyssey,” Mobile Networks and Applications, Vol. 4, No. 4,

1999, pp 245-254.

88

[Omar 00] S. Omar, “A Mobile Code Toolkit for Adaptive Mobile Applications,”

Thesis (MCS), Carleton University, Ottawa, ON, 2000.

[Perkins 96] C. Perkins, ed., “IP Mobility Support,” IETF RFC 2002, October 1996.

[Rodriguez 99] J. R. Rodriguez, et al, Mobile Computing: The eNetwork Wireless

Solution, IBM International Technical Support Organization, Research

Triangle Park, NC, March 1999, pp 205-210.

[Satyanarayanan 96] M. Satyanarayanan, “Fundamental Challenges in Mobile

Computing,” Proceedings of the Fifteenth ACM Symposium on Principles of

Distributed Computing, Philadelphia, PA, May 1996, pp 1-7.

[Sesan 94] S. Seshan, M.T. Le, F. Burghardt, and J. Rabaey, “Software Architecture

of the InfoPad System,” Mobidata Workshop, November 1994.

[Sun 00] Sun Microsystems Inc, Java 2 SDK, Standard Edition, version 1.3,

Summary of New Features and Enhancements, Menlo Park, CA, 2002.

[Wang 99] J. Wang, “A Proxy Server Infrastructure for Adaptive Mobile

Applications,” Thesis (MCS), Carleton University, Ottawa, ON, 1999.

[WAP 02] WAP Forum, “Wireless Application Protocol: White Paper,” June 2000.

Retrieved August 13, 2002 from

http://www.wapforum.org/what/WAP_white_pages.pdf.

