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Abstract

Wireless mesh networking is a very promising technology to provide wireless broadband
access. This thesis presents a novel scheme to build a wireless mesh network with
mobility support in IPv6. One great feature of the scheme is that nodes in the mesh
network are built from off-the-shelf hardware, and support standard configured wireless
clients without modifying any software and hardware. The proposed mesh network
consists of two parts, the backbone and local footprints. Each mesh node functions as a
wireless router, and the Optimized Link State Routing (OLSR) is employed as the routing
protocol. And each mesh node also works as an intelligent Access Point (AP), which
provides access to wireless clients in the local footprint.

An implementation of the novel scheme fully integrates the mesh backbone and local
footprint. Dynamic Host Configuration Protocol for [IPv6 (DHCPv6) is deployed in the
proposed IPv6 network, which provides zero-conf to visiting wireless clients.

To the best of our knowledge, this is the first implemented wireless mesh network that
offers these salient features. A testbed is built based on this implementation. Furthermore,

we are considering the deployment of such a mesh network in the real world.
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Chapter 1

Introduction

IEEE 802.11 technology [14] based Wi-Fi networks have gained tremendous success
recently. According to a report from In-Stat/MDR [15], the home Wi-Fi market rolled out
22.7 million network interface and Access Point (AP) units in 2003, a 214% increase
from 2002’s 7.2 million unit shipments. Revenues are expected to reach $1.7 billion, an
increase of 140% from 2002 total revenues of $700 million. In today’s mobile device
market, Wi-Fi support is a standard feature on laptops and PDAs. With more and more
public wireless local area networks (WLAN) hot spots installed in hotels, coffee shops
and parks, cost-effective, ease of use wireless broadband access has become reality.
However, all these public hot spots rely on wired networks as backhauls. Counting on the
huge cost of wired networks, ubiquitous deployment of Wi-Fi is only possible with a
wireless backhaul. Wireless mesh network (WMN) technology has emerged to become an

increasingly vital part of the wireless evolution.

1.1 Wireless Mesh Networking

The topology of WMN is a mesh, which is an irregular structure as shown in Figure 2.1.

Nodes are connected with a subset of other nodes, and generally there are a number of



alternative paths between each pair of nodes. Each node operates not only as a host but

also as a router, forwarding packets on behalf of other nodes that may not be within direct

wireless transmission range of an Internet gateway. The network is dynamically

self-organizing, self-configuring and self-healing, with the nodes in the network

automatically establishing and maintaining routes among themselves. You can add,

remove, or relocate mesh nodes, whenever you wish, without disrupting the rest of the

network or rebooting the system.

WMN has several advantages over traditional WLAN:

® Rapid deployment. Installed in hours instead of days or weeks

® Network coverage can be increased dramatically

® Robust and resilient. It automatically reroutes through an alternate path if one link
fails, no longer dependent on a system with a single point of failure

® [ ess fixed infrastructure than other topologies, bringing great flexibility in increasing
density or changing coverage

® [ower cost

Therefore, WMN is a promising solution to build wireless home networks, helping to free
home users from the jumble of cables while offering the capability to support bandwidth-
intensive applications. WMN is also a good candidate for enterprises. It can quickly
extend an existing WLAN without having to wire up new base stations. Industrial control
systems can deploy wireless mesh networks of sensors and controllers in factories and
laboratories. WMN can help Wireless Internet Service Providers (WISPs) provide service

in small towns or rural areas where wired infrastructure is unavailable, inadequate or



unreliable. Many developing countries will also benefit from wireless mesh networking

technology.

1.2 Motivation

While this promising technology is attracting the attention of network managers, and a lot
of research has been done, the real world deployment of WMN is rare. Most of the
research publications are evaluated based on simulations. MeshNetworks [19] is one of
the few companies that deploy a wireless mesh network in the market currently. But it
requires special client and server hardware that works like Wi-Fi with extensions.

The Roofnet project [3] at MIT implemented an experimental multi-hop IEEE 802.11b/g
mesh network consisting of about 50 nodes. The original routing protocol used in
Roofnet is the modified Destination Sequenced Distance Vector (DSDV) protocol [23].
And now it is replaced by SrcRR, a variant of Dynamic Source Routing (DSR) [16].
There are also many community wireless networks around the world. The Southampton
Open Wireless Network (SOWN) [27] aims to build a wireless mesh network in
Southampton, UK. But as of the writing of this thesis, their new design is not fully mesh
based. Its backbone consists of central nodes, which are located in high areas that have
good line of sight, such as top of tower blocks or church spires. Clients communicate
with these central nodes using directional antennas. Central nodes are carefully deployed
so that no two neighboring nodes work on the same channel. In IEEE 802.11, there are 13
available channels. Channels 1, 6, and 11 do not overlap. Central nodes work in these

channels to reduce interference with each other. Central nodes use dedicated radio links



to communicate with each other. OSPF is employed as the routing protocol, which is not
appropriate in the wireless mobile environment.

In these WMNSs, without exception, all the nodes are built from either special hardware or
software. While general wireless clients are mostly off-the-shelf laptops or PDAs, it is
unrealistic to require them to become mesh nodes. Most importantly, allowing everyone
to be a mesh node causes big security problems.

With these concerns in mind, our approach is to build a wireless mesh network as the
backbone. At the same time each mesh node serves as an Access Point (AP) to the
wireless clients. This way we can have more control of the network without sacrificing
the flexibility of WMN. This approach also simplifies client management and enables

true nomadic operation without reliance on external client hardware or software.

1.3 Contribution

It presents some unique challenges to implement such a mesh network with mobility
support. We can not rely on the commodity APs, because they lack the ability to function
as routers running complex wireless ad hoc routing algorithms. This thesis presents an
innovative solution to build mesh nodes from plain Linux boxes with tailored software.
The main contributions of this thesis are:

® Design an innovative scheme to provide mobility support in mesh network.

® Make modifications to OLSR to support the novel scheme.

® Implementation of the scheme.

® Build a testbed for performance evaluation of the scheme.



1.4 Thesis Structure

This thesis begins with a literature review of wireless networking and related work in
Chapter 2, and describes the design and implementation in Chapter 3. Chapter 4
introduces a testbed based on the implementation and evaluates the performance of the

proposed network. Finally, Chapter 5 draws the conclusion and discusses future work.



Chapter 2

Background and Related Work

Our proposed mesh network is based on the IEEE 802.11 standard. The following

diagram illustrates the architecture of our wireless mesh network.
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Figure 2.1 Mesh Network Architecture



In order to build such a mesh network, we face challenges involves both network layer
and link layer. In this chapter, we first briefly introduce the functionalities of physical
layer and link layer of the IEEE 802.11 specification. Next we discuss issues related to
the network layer, mainly about routing and IPv6 [9] address allocation. In Section 2.2,
we summarize some of the most commonly used ad hoc routing protocols. In Section 2.3,
the IP address autoconfiguration mechanism is introduced. In Section 2.4, a number of

related wireless networking projects are explored.

2.1 IEEE 802.11 Overview

The IEEE 802.11 specification defines the functionalities and procedures that the

Medium Access Control (MAC) layer and Physical (PHY) layer must provide.

2.1.1 Physical Layer

In IEEE 802.11 there are three different PHY definitions, frequency hopping spread
spectrum (FHSS), direct sequence spread spectrum (DSSS), and InfraRed (IR). FHSS and
DSSS operate at the unlicensed 2.4 GHz band. Both FHSS and DSSS currently support 1
and 2 Mbps data rates. But DSSS can support date rates up to 11 Mbps. IEEE 802.11b, a,
and g are different extensions made to the general IEEE 802.11 standard at the physical
layer to support higher data rates. While IEEE 802.11b and IEEE 802.11g still operate at
2.4 GHz, IEEE 802.11a works in a new frequency spectrum, the SGHz radio band. IEEE

802.11g and IEEE 802.11a support transfer speed up to 54 Mbps.



2.1.2 MAC Layer

The 802.11 Medium Access Control (MAC) layer defines two forms of media access,
distributed coordination function (DCF) and point coordination function (PCF). DCF is
the basic way to support media access control, and therefore is required to be
implemented by all stations (STAs). It is based on the carrier sense multiple access with
collision avoidance (CSMA/CA) protocol. When a STA needs to transmit packets, it
defers transmission until it can not hear other STAs. This carrier sense mechanism is
defined in the PHY layer. In addition to physical carrier sensing, IEEE 802.11 introduces
a virtual carrier sense mechanism, which enables a station to hold the medium for a
specified period of time through the exchange of Request To Send (RTS) frame and Clear
To Send (CTS) frame. There are three types of IEEE 802.11 MAC layer frames: control,
management and data frames. RTS frame and CTS frame are control frames. Figure 2.2

shows the general frame format.

Bytes:2 2 6 6 6 2 6 0-2312 4
Frame | Duration/ | Address | Address | Address | Sequence | Address Frame FCS
Control ID 1 2 3 Control 4 body

< MAC header >

Figure 2.2 General MAC Frame Format




The source STA starts the transmission process by sending a RTS frame first. In the
duration/ID field of the MAC header, the value is set to the time that is required to
transmit the pending data or management frame, plus one CTS frame, plus one ACK
frame, plus three Short Interframe Space (SIFS) intervals. This time value is called
Network Allocation Vector (NAV), which is the time that the current transmission needs
to reserve the medium. If the destination STA receives the RTS frame and the channel is
idle, it sends back a CTS frame. After the source STA gets the CTS frame, it transmits
the data payload. The destination STA is required to send an ACK frame back after
successfully receiving data frames. All other STAs hear the CTS frame and know it is not
destined for them, so they back off for NAV microseconds before starting the contention
for the next transmission.

The point coordination function (PCF) is an optional access method, aiming to support
the transmission of time-sensitive data streams such as voice and video data. It is usable
when wireless networks are configured to work in the infrastructure mode. The point
coordinator within the access point grants channel access to STAs by polling the STA
during the contention free period (CFP). If a Basic Service Set (BSS) is set up with PCF
enabled, time is spliced between the contention free period with PCF mode and the
contention period in the DCF mode. Currently very few vendors support the PCF

protocol.

2.1.3 MAC Layer Management Services

There are two basic operation modes in IEEE 802.11, the infrastructure mode, and the ad



hoc mode. An ad hoc network, or Independent Basic Service Set (IBSS) in IEEE 802.11
terminology, is a network where STAs communicate with each other directly without
central control. In an infrastructure based WLAN, each Basic Service Set (BSS) consists
of exactly one station that provides the functionality to relay packets between other
stations in the same BSS and the Distribution System (DS). This station is called the
Access Point (AP). In order to increase the coverage, multiple overlapping BSSs are
connected together through a DS to form the Extended Service Set (ESS). Although the
DS could be any type of network, it is typically an Ethernet LAN. All the APs in the ESS
have the same ESS Identification (ESSID). STAs can seamlessly roam from one BSS to
another BSS within the same ESS, provided that all the APs are in the same IP subnet.
Also of note is that APs should be compliant to IEEE 802.11f specification, the

Inter-Access Point Protocol (IAPP), to ensure multi-vendor AP interoperability.



_ﬂiﬂ:.]dﬂ:l_.l

Figure 2.3 Extended Service Set

MAC layer management frames are defined to enable IEEE 802.11 STAs to establish and
maintain communications. The following are common IEEE 802.11 management frame
subtypes:
® Beacon frame: AP announces the existence of a network by periodically sending
a beacon, which includes timestamp, SSID, and other information.
® Probe request frame: A STA sends a probe request frame to scan for the
existence of an IEEE 802.11 network. It contains two fields: the SSID and the

rates supported by the STA.
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Probe response frame: In infrastructure networks, the AP will respond with a
probe response frame if parameters match.

Authentication/ Deauthentication frame: STAs exchange unicast authentication
frames to prevent unauthorized access.

Association request frame: After a STA gets authenticated with the AP, it
attempts to join the network by transmitting this frame to the AP. The frame
carries Capability Information, SSID, Supported Rates, and other information.
When the AP confirms that this information matches, it accepts the STA.
Association response frame: An AP sends an association response frame to the
STA. It contains the Status Code field, indicating an acceptance or rejection of
the STA. If the AP accepts the STA, the frame would include an association ID.
Reassociation request frame: If a STA roams between APs within the same
ESSID, it needs to send a reassociation frame to the new AP. Compared with an
association request frame, the reassociation request frame contains one field, the
address of the current AP.

Reassociation response frame: Similar to the association response frame.

Disassociation frame: Used to terminate the association.

All the APs have the functionality of handling these IEEE 802.11 management frames.

But with off-the-shelf APs, we have no access to these frames. Thanks to the Open

Source society, they provide some device drivers that meet our needs. Host AP [12],

developed by Jouni Malinen, is a Linux Wireless LAN device driver, which mainly

supports IEEE 802.11b cards that are based on Intersil's Prism2/2.5/3 chipset. When

configured in HostAP (Master) mode, the Linux box can function as an Access Point.

-12 -



The driver handles IEEE 802.11 management frames, such as authentication, association
in the kernel space. Multiband Atheros Driver for WiFi (MADWIF]I) [17], another Linux
driver, is designed for Atheros’ multiband chip sets that support IEEE 802.11b, a, and g.

It also provides AP functionality to the wireless radio.

2.2 Wireless Ad Hoc Routing Protocols

Different from an infrastructure based WLAN, an ad hoc WLAN lacks a central control
station to relay traffic. Stations communicate directly in a peer-to-peer manner when they
are within the transmission range. For an IEEE 802.11 device, the range is about 300 feet.
To create large-scale wireless networks, routing is needed. During the past several years,
much research has been done on routing protocols for mobile ad hoc networks
(MANETS). There are mainly three types, reactive, proactive, and hybrid. Reactive
routing protocols discover new routes only when needed by the source node. Reactive
protocols have less overhead but higher latency of route discovery. An early reactive
routing protocol is the Dynamic Source Routing Protocol (DSR) [16]. Another competing
reactive routing protocol is Ad hoc On-Demand Distance Vector Routing Protocol
(AODYV) [22]. Both protocols have the functionalities of route discovery and route
maintenance, but differ in neighbor detection and route storage. DSR stores source routes
in packet headers. Network performance degrades as packet headers get larger. AODV
maintains routing tables at the nodes instead of in each packet.

Proactive routing protocols determine routes based on periodically updated network

topology information. Traditional link-state and distance-vector routing protocols all



belong to this category. Since routes are always maintained in proactive protocols, more
overhead is created, but route convergence time is low.
Topology Broadcast Based on Reverse-Path Forwarding Routing Protocol (TBRPF) [21]
is a proactive protocol. Every node keeps partial network topology information. When a
node needs the shortest path to other nodes, a source tree is computed using a modified
Dijkstra’s algorithm. To reduce overhead, a node only broadcasts a partial source tree,
which is called the reportable tree. And in the neighbor discovery procedure, a node uses
“differential” HELLO messages, which only report the changes of neighbor status.
Optimized Link State Routing Protocol (OLSR) [4] is an optimization of the classical
link state algorithm. It is a table-driven and proactive routing scheme. In the classical
flooding mechanism, every node retransmits each message when it receives the first copy
of the message. While in OLSR, link state information is broadcasted only by nodes
elected as multi-point relays (MPRs). Thus it greatly reduces the overhead. MPRs of a
node y are chosen according to the following heuristic algorithm:
1. For each node x that is a 1-hop neighbor of y, calculate D(x), the degree (the number
of neighbors) of x.
2. Select as MPRs those nodes that are 1-hop neighbors of y, and they provide the “only
path” to some nodes in the 2-hop neighbor set N.
3. While there exist nodes in N which are not covered:
Select as an MPR a 1-hop neighbor of y, which reaches the highest number of
uncovered nodes in N. If multiple nodes provide the same amount of reachability, the

one with higher degree is chosen.



Figure 2.4 MPR Selection Algorithm

As shown in the above diagram, among A’s 1-hop neighbors, C and E are chosen as
MPRs, and only C and E will relay A’s control messages. MPRs also help to reduce the
packet size of the Topology Control (TC) messages. Nodes do not need to declare all
links to their neighbors, instead, they only declare links to their MPR selector set, which
are nodes that have selected this node as MPR.

For neighbor sensing, each node periodically broadcasts Hello messages. Hello messages
are not forwarded. Upon receiving Hello messages, a node calculates its MPRs.

Hello messages enable each node to discover its neighbors, while TC messages enable
each node to get the topological information about the network. Each node forms a
picture of the network topology, and then calculates the best route to any destination.
OLSR is particularly suitable for large and dense networks as the technique of MPRs
works well in this context.

OLSR also has a mechanism to provide connectivity from the OLSR interface(s) to



non-OLSR interface(s). A node equipped with both of these interfaces can act as a
“gateway” by injecting external route information to the OLSR MANET. It periodically
issues a Host and Network Association (HNA) message, with the network address of the
associated network, and the net mask.

In our proposed mesh networks, as shown in Figure 2.1, local footprints are isolated
networks. To bridge the gap between the mesh backhaul and local footprints, OLSR
HNA mechanism is employed. A mesh node that has associated clients emits HNA
messages to advertise network information of the local footprint. Upon reception of HNA
messages, other mesh nodes create corresponding route entries in their routing tables.
Therefore, packets destined to clients in that local footprint can be routed by the mesh

backhaul. The two independent networks are integrated.

2.3 Addressing Scheme

Due to concerns over the impending depletion of IPv4 address space, Japan and China
already started to deploy IPv6. The US Department of Defense (DoD) plans to migrate to
IPv6 by 2008 [31]. DoD also requires that devices acquired for its massive Global
Information Grid (GIG) network must be compatible with IPv6. In the wireless
networking world, as consumers and businesses use an increasing number of mobile
devices, the pressure for available IP addresses will continue to increase. So our proposed
mesh network is based on IPv6.

Although a vast amount of research efforts has been geared toward developing better

routing protocols, much less attention has been given to autoconfiguration mechanisms,



especially the address autoconfiguration. In this section, we first introduce the IPv6
Addressing Architecture. Then we give a more detailed description of address

autoconfiguration mechanisms in IPv6.

2.3.1 IPv6 Addressing Architecture (RFC 3513) [10]

There are three address types in IPv6: unicast, anycast, and multicast. The IPv4
terminology broadcast is discarded in IPv6.The broadcast function is replaced by
multicast addresses. Unicast is the most commonly used address type. It also has three
different types: Link-local, site-local, and global scope. The global unicast address format

is shown in the following figure.

n bits m bits 128-n-m bits

Global routing prefix Subnet ID Interface ID

Figure 2.5 General Format for IPv6 Global Unicast Address

The address allocation structure defined in RFC 2374, An IPv6 Aggregatable Global
Unicast Address Format, is obsolete. Top Level Aggregator (TLA) and Next Level
Aggregator (NLA) in RFC 2374 [11] are replaced with Global routing prefix. The Subnet

Local Aggregator (SLA) field in RFC 2374 is given a new name, Subnet ID.



2.3.2 IPv6 Address Autoconfiguration

IPv6 defines two ways of address autoconfiguration: Stateless Autoconfiguration (RFC
2462) [30], and Stateful Autoconfiguration, the Dynamic Host Configuration Protocol for
IPv6 (DHCPv6: RFC 3315) [7]. With Stateless Autoconfiguration, an IPv6 host can
configure its IPv6 address by combining locally available information such as interface
identifier, and information advertised by routers such as prefixes that identify the
subnet(s) associated with a link. Stateless Autoconfiguration is a very nice feature of
IPv6, a zero-conf mechanism that enables plug-and-play. However, it does not provide a
mechanism for DNS information to be automatically configured. Some applications
function well without DNS servers, such as file and printer sharing services using the
SAMBA protocol. But surfing the Internet with IPv6 addresses rather than DNS names,
such as “www.carleton.ca”, is simply unacceptable for most people.

DHCPv6 servers can provide not only IPv6 addresses, but also other network
configuration parameters like DNS information, domain search path, NTP server
addresses etc. by means of a rich set of options. With the relay agent mechanism, the

DHCPv6 server does not necessarily have to attach to the same link as clients.

2.3.3 DHCPv6 Operation Overview

The DHCPvV6 protocol is a client server model. Through the DHCPv6 message exchange,
a client acquires configuration information from the server. DHCPv6 messages are

carried by UDP packets. However, when the client initiates the interaction process, it



needs an IPv6 address to put into the source IP address of the UDP packet. So its
link-local address is used, which is configured when the client boots up. The client
sends a DHCPv6 Solicit message by multicast to a reserved link-scoped address,
All_DHCP_Relay_Agents_and_Servers (FF02::1:2). Servers or relay agents sitting on
the same link will receive the Solicit message, because they are configured to join this
multicast group. The client keeps retransmitting the solicit message till it receives valid
DHCPv6 Advertisement messages from any server, either directly or forwarded by relay
agents. Then the client uses a Request message to get addresses and obtain other
configuration information. After receiving Reply messages from the server, the client can
configure its interfaces with the supplied information.

After a certain time, the client needs to unicast the Renew message with the addresses
that it wishes to renew to the server. The client can also choose to release the addresses.
A client can use the Rebind message to extend the valid and preferred lifetimes for the
addresses if it fails to extent the lease in the renew phase.

Sometimes a client may move to a new link with different network prefixes, therefore,
the old addresses are no longer appropriate for the link to which the client is currently
attached. One example is that in our proposed mesh network, a client travels from one
local footprint to another one. In this case, the client must transmit a Confirm message.
The server will respond with a Reply message, indicating whether the address is still

appropriate to use.

-19-



2.4 Related Work

There are a number of research projects that aim to build wireless mesh networks. In this

section we present a short summary of these projects.

2.4.1 MIT Roofnet

In Chapter 1, we briefly introduced the MIT Roofnet project. Each node in the Roofnet
only has one wireless interface, which runs the routing protocol, SrcRR, to form the
mesh. Roofnet does not support wireless clients. End users are supported through a wired
Ethernet interface. The addressing scheme of Roofnet is based on IPv4. Each node has
two network interfaces, and both are configured with private IPv4 address. The wireless
radio is assigned an address in the range 10.x.x.x. The wired Ethernet interface has an
IPv4 address 192.168.0.1, and a DHCPv4 server is running on this interface. Home users
connect to Roofnet nodes through Ethernet ports. From DHCPv4 servers running on
Roofnet nodes, home computers attain IPv4 addresses in the range 192.168.0.x.

Some Roofnet nodes act as gateways to the Internet, with their Ethernet ports connecting
to DSL or cable modems. Only these gateway nodes have global IPv4 addresses allocated
from ISPs. To enable internet connectivity to non-gateway nodes and home users,
Network Address Translation (NAT) is used. A packet from a home computer to the
internet is NATed from the 192.168.0.x address on the wired interface to the 10.x.x.x
address on the wireless radio. The mapping from one group to another in NAT is

transparent to end users. Then the packet is routed through the wireless mesh to a
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gateway node. Again the packet is NATed from the 10.x.x.x address in the wireless radio

to the global IPv4 address, and transmitted to the Internet through the Ethernet port.

‘ Mesh node IP; 10.X.X. X } ‘Home LAN:192.168.0.X>
()
(@ é @
() S
L W

S
N NS /

Figure 2.6 MIT Roofnet Architecture and Addressing Scheme

NAT was introduced as a short term solution for the IPv4 address exhaustion problem.
But as indicated in Architectural Implications of NAT (RFC 2993), NAT is a violation of
the end-to-end communication principle. It complicates applications like Voice-over-IP.

NAT also makes implementation of IP level security, e.g. IPSec, impossible.

2.4.2 MONARCH Project

The Rice University MONARCH project [18] develops a wireless ad hoc network testbed.
It consists of two stationary nodes and five car-mounted nodes that move around on a
predefined testbed site. These nodes communicate through 900 MHz WaveLAN-I radios.

DSR is employed as the routing protocol. A car-mounted roving node roams between its
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home network, the central office, and the foreign network, the ad hoc network. Mobile IP
is configured in all nodes to support roaming. For the roving node to connect to the ad
hoc network, it also needs to start DSR to join the routing process.

Similar to MIT Roofnet, the MONARCH project is also a single radio wireless network.
But it does not use a wired interface to provide support to end users. As a pure MANET

network, standard configured clients are not supported.

2.4.3 Microsoft’s Mesh Technology

Wireless Mesh Networking has also attracted Microsoft’s attention [1]. It has developed a
module called Mesh Connectivity Layer (MCL), which is a loadable Windows driver that
implements a virtual network adapter. MCL works between the link layer and the
network layer. MCL is mainly a routing module based on DSR. The purpose of the
modification is to support link quality measurements. That is why the routing protocol is
given a new name, Link Quality Source Routing (LQSR).

Microsoft’s mesh network is not designed to support standard configured wireless clients.
Clients need to install MCL and to initiate the routing process to join the mesh network.
MCL runs on Windows XP only and needs .NET Framework 1.1 support. If clients want
to install two radios, according to the installation guide of MCL, the radios must be from
different manufacturers. The reason is that current wireless drivers for Windows do not
support two or more identical radios in the same computer. But in Linux, the HostAP and
MadWiFi drivers do not have these constrains. Compared with Windows, deploying

Linux in a large mesh network can also save a lot of money.
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2.4.4 Hyacinth Project

The Hyacinth project [25] in the State University of New York at Stony Brook aims to
build a Multi-channel Wireless Mesh Network. The following diagram illustrates their

proposed network architecture.

( Wired Network ()

. Traffic Aggregation Device
. Wireless Mesh Router
’ Wired Gateway
7N /N .
7 N Y \ B End User Device
/ \ \
,,,,,,,,, N A

Coverage Area for a
Traffic Aggregation Device

Figure 2.7 Hyacinth Network Architecture
(Adapted from the Hyacinth Project)

Each node in a Hyacinth network is equipped with multiple IEEE 802.11 radios. Each
radio is set to a particular channel for several minutes or hours. All these nodes together
form a multi-channel wireless mesh network, and relay traffic to or from wireless clients.

Among the multiple radios in a node, one is set to work in infrastructure mode. This

interface is called “traffic aggregation access point”, which provides connectivity to
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wireless clients within its coverage area. Some nodes serve as gateways between the

wireless mesh network and the wired network.

Compared with a traditional single-channel network, a Hyacinth network can increase the

network bandwidth. To evaluate the performance, a nine-node Hyacinth prototype testbed

has been built. According to published research papers, the Hyacinth project is still in its
early stage. At present, focus is on implementing a distributed channel assignment and
routing algorithm. Research efforts are also made to support autoconfiguration of IP
addresses and routing table. Though end user support is one of the design goals, it is not
implemented yet.

The design of a Hyacinth network shares some similarities with our proposed network.

1. Provides access to wireless clients without modifying software/hardware on the
mobile devices.

2. Backbone nodes form a wireless mesh network, and relay traffic to/from wireless
clients.

There are also different characteristics between the two designs:

1. Nodes in a Hyacinth network are static, while our mesh nodes are mobile. Our
implementation enjoys all the benefits of wireless mesh networks discussed in
Chapter 1. But a Hyacinth network requires extra administration overhead and cost.

2. Our implementation supports regular wireless clients. IP address autoconfiguration is
provided. The current version of Hyacinth lacks these features.

3. Although nodes in our proposed network are configured with two radios, only one
provides network bandwidth to the backbone. So it is still a single-channel multi-hop

mesh network.
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Chapter 3

Design and Implementation

In Chapter 2, we investigated several approaches to build wireless mesh networks. Here,
we present our new scheme. In Section 3.1, we introduce the network architecture.
Section 3.2 discusses the assignment of IP addresses. In Section 3.3, we investigate the
challenges to build such a wireless mesh network, and our approaches to solve these

problems. Section 3.4 presents our implementation details.
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3.1 Network Architecture
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Figure 3.1 Our Mesh Network Architecture

As illustrated in Figure 3.1 (the same as Figure 2.1), the proposed network architecture in
this research consists of two parts, the mesh backbone and local footprints. All the mesh

modes are equipped with two wireless interfaces. One is an IEEE 802.11a/g compliant
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radio, and it is the backbone traffic carrier. Another is an IEEE 802.11b radio, which
provides access to wireless clients in the local footprint. One goal of our design is to
support standard configured wireless clients, which usually have off-the-shelf IEEE
802.11 hardware. Wireless clients can have access to the Internet or intranet through the
wireless mesh backbone. Arriving users can immediately join the network when they

come into range and turn on their devices.

3.2 IP Addressing Allocation

The proposed network is IPv6 based. To assign IP addresses to the visiting wireless client,
we need to make a choice between Stateless and Stateful autoconfiguration (DHCPv6). In
the IPv4 world, there is no counterpart to the stateless autoconfiguration, DHCPv4 is the
dominant practice. So is this new stateless autoconfiguration mechanism appropriate to
our wireless mesh network?
The apparent advantage with stateless autoconfiguration is its ease of deployment. By
multicasting Router Advertisements (RAs), e.g. through running the radvd application on
each mesh node, a network prefix that identifying the subnet associated with a local
footprint is delivered to visiting clients. Clients then can generate their own addresses by
combining the network prefix with locally available information such as interface
identifier that are typically EUI-64 identifiers. Stateless autoconfiguration also has some
disadvantages:
1. Routers need to present on each link, in our case, radvd is required to run on each
mesh node on the non-OLSR (AP) radio. We have to maintain a radvd configuration
file on each node.

2. It does not supply a DNS server address. A host needs to configure at least IP
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addresses and a recursive DNS server address in order to be used.

With stateful autoconfiguration (DHCPv6), we have these benefits:

1. DHCPv6 servers provide means for securing access control to network resources by
first checking admission control policies before allocating any addresses. In stateless
autoconfiguration, every host that connects to the network can get an IPv6 address
assigned and can use network resources.

2. DHCPv6 allows for the assignment of multiple addresses to an interface, and
configuration of an interface with multiple IPv6 addresses is a fundamental feature of
[Pv6. DHCPv6 also allows for the dynamic assignment of additional addresses over
time. Addresses are assigned to a host with a lease, a preferred lifetime and a valid
lifetime. The mechanism can support renumbering through the assignment of new
addresses whose lifetimes overlap existing addresses to allow for graceful transition.
It can also provide different configuration to different users.

3. A DHCPv6 server can also provide DNS server list, domain name, search path and
other configuration data needed by a client.

4. Security is included in the DHCPv6 base specification.

DHCPv6’s main drawback lies in its complexity. The protocol is hard to implement and

deploy. At present, there are no fully RFC 3315 compliant implementations available yet.

By comparing the trade-off of these two mechanisms, we decide to use DHCPv6 to

allocate IP address to clients.
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3.3 Challenges in Integrating the Local Footprint and the Backhaul

To enable Access Point functionality on the non-OLSR interface, HostAP and MadWiFi
device drivers are two good candidates. Since HostAP is more stable, we decide to use
HostAP. Firmware in the IEEE 802.11 card is responsible for time critical tasks like
beacon transmission and frame acknowledgment, while HostAP or MadWiFi drivers take
care of management tasks: authentication/deauthentication, association/reassociation, and
disassociation, data transmission between two wireless stations, power saving (PS) mode
signaling and frame buffering for PS stations.
However, simply installing the HostAP driver and the OLSR routing protocol on the
Linux box will not give us a mesh node that fits into the proposed mesh network, as
OLSR radios on the mesh nodes do not know the reachability of wireless clients in local
footprints.
The Host and Network Association (HNA) message in OLSR is employed to provide
connectivity from the OLSR interface(s) to those non-OLSR interface(s). A node
equipped with both of these interfaces can inject external route information into the
OLSR mesh network. A mesh node announces the existence of an associated network in
the local footprint by periodically multicasting HNA messages, with the following
information:

® Network Address: The network address of the associated network.

® Netmask: The netmask, corresponding to the network address immediately above.
There are two kinds of HNA message. One is the network-specific HNA, announcing the

reachability of a whole subnet. Another is the host-specific HNA, advertising reachability
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on a per-host basis.
Obviously we need to determine the IP addresses of arriving wireless clients in order to
generate the HNA messages. Then the AP propagates HNA messages to all the other
nodes in the mesh network. This will cause the other nodes to update their routing tables.
The local footprint thus integrates with the mesh backbone. To achieve this goal, we need
to solve these problems:
1. When to start generating and propagating HNA message?
If there is no client associated in a local footprint, a mesh node should not propagate
HNA messages into the mesh backbone. The importance of reducing routing
overhead can not be overstated. On the other hand, when a client becomes associated
with the local footprint, HNA messages should be transmitted without any delay.
Otherwise, packets may get lost.
2. When to stop propagating HNA message?
After wireless clients leave the local footprint, HNA message propagating should be
terminated. But how can a mesh node know that a client has left?

3. How to determine the IP address of the client?

3.3.1 Start HNA Messages

When an IEEE 802.11 client comes to an AP, it will go through the process of
authentication and association, by exchanging IEEE 802.11 management frames with the

format showing in Figure 3.2.
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Bytes:2 2 6 6 6 2 6 0-2312 4

Frame | Duration/ | Address | Address | Address | Sequence | Address Frame FCS
Control ID 1 2 3 Control 4 body
i MAC header >
Protocol To From More Pwr More
Version Type Subtype DS DS Frag Retry Mgt Data WEP Order
Bits: 2 2 4 1 1 1 1 1 1 1 1

Figure 3.2 MAC Frame Format and Frame Control Details

The frame control field embedded in the MAC header provides rich information about
each IEEE 802.11 frame. The 2-bit Type field identifies the frame as management,
control or data frame. For a specific frame type, i.e. the management frame, the Subtype
field identifies it as authentication, association or other management frames.

In order to study the association procedure, let us have a look at the frame body of the
association request frame a client sent to an AP. It contains the following information

shown in Table 1

Order Information
1 Capability information
2 Listen interval
3 SSID
4 Supported rates

Table 3.1 Association Response Frame Body
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When an AP receives an association request frame from a client, it checks whether the
SSID, supported rates, and other parameters in the association request frame match its
own. This handling process is shown in Figure 3.3. If the association request passes the
check, the AP will sends an association response frame to the client with status code set
to success. After the client acked the association response frame, the AP accepts the
association, and creates a new association ID (AID). The MAC address of the client can
be obtained from the Address 2 field in the MAC header of frames transmitted from the
client. It is a good key to identify the associated clients in the local footprint.

Next, the client will initiate the procedure of acquiring an IP address, through DHCPv6.
After the client successfully obtained an IP address, HNA message propagation should be

started.
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Figure 3.3 Control Flow of Association Request Processing
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3.3.2 Stop HNA Messages

When the wireless client leaves the local footprint, the AP should stop propagating HNA
messages. The IEEE 802.11 specifications describe the disassociation as “STAs (stations)
shall attempt to disassociate whenever they leave a network. However, the MAC protocol
does not depend on STAs invoking the disassociation service. (MAC management is
designed to accommodate loss of an associated STA.)”.

In Section 11 of the specifications, titled “MAC sublayer management entity”, it does
talk about association and reassociation, and then the section ends without mentioning
anything about how to accommodate loss of an associated STA. So the specifications
leave the implementation of this disassociation procedure up to the vendors.

If the station proactively sends a disassociation frame to the AP that it wishes to
terminate the association (i.e. the client shuts down), upon receiving this frame, the AP
then removes this client from the association list. But most of the IEEE 802.11 cards on
the market do not provide the feature to disassociate when they go out of transmission
range of an AP.

In the HostAP device driver, it is the responsibility of the AP to initiate the disassociation
process. HostAP makes use of the special data frame type called Null function, which
means the frame body is 0 octets in length. After each predefined interval, the AP sends a
Null function data frame to poll the client. If the frame is not ACKed, the client will be
disassociated. And that is the time when the AP should stop propagating HNA messages.
One problem may result from this approach, especially when we can not define an
appropriate timeout interval. If the interval is too long, the client may be reassociated

with a new AP in another local footprint, and configured with a new IP address through
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the DHCPvVG6 server. But the old AP is still waiting for the next timeout interval, and at
the same time HNA messages are propagated to the mesh. To make things worse, the
DHCPv6 server may renew or allocate the same IPv6 address to the client based on the
client’s DUID, the DHCP Unique IDentifier for a DHCP participant.

In this case, both the old and new AP would propagate HNA messages with the same
network information! Other mesh nodes would get confused, and have no idea how to

create a routing entry for the advertised network.

An alternative is to pre-configure all the APs in different subnets, and let the DHCPv6
server allocate addresses based on an AP’s subnet. In our network design, the client will
need the AP to relay the DHCPv6 Solicit or other messages to DHCPv6 server. The relay

agent uses a Relay-forward Message, with the format shown in the following figure.

RELAY-FORW hop-count

Link-address

Peer-address

OPTION_RELAY_MSG option-len

DHCP-relay-message

Figure 3.4 Relay-forward Message Format
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The fields of the message are defined as follows:
® Link-address: Address used by the DHCP server to identify the link on which the
client is located.
® Peer-address: Source IP in the IP header of the packet that the relay agent received
® DHCP-relay-message: Copy of the received DHCP message (excluding any IP or
UDP headers)

The link-address field plays an important role. The DHCP server will allocate addresses
based on the link-address. So when the client moves to a new AP, it will send a Confirm
message to determine whether the addresses it was assigned are still appropriate to the
link to which the client is newly associated. Because we configure each AP with different
subnets, the server will return a status of NotOnLink. The client knows that the old IPv6
address is not suitable for the new footprint. Then it would send a DHCPv6 Solicit
Message, initiating the DHCP protocol again. The result is that the client will get a
different IPv6 address.
To configure each AP with different prefixes, we can use a new DHCPv6 Option, “IPv6
Prefix Options for DHCPv6”, which is defined in RFC 3633. This option provides a
mechanism for automated delegation of IPv6 prefixes using DHCPv6. It serves for the
communication between routers; it is designed to let ISP send routing prefix to
subscribers.
As shown in the following figure, a requesting router acts as a DHCP client and requests
a prefix to be assigned. The delegating router acts as a DHCP server, and responds to the

prefix request.
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Figure 3.5 Prefix Delegation

When the Prefix Delegation is applied to our proposed network, each mesh node is a
requesting router. From the DHCP server, each node will be guaranteed to obtain a
different prefix assigned. Advantages of this solution are:
B Robustness. This solution guarantees that the new AP will not propagate
duplicate HNA messages to the OLSR mesh.
B [ess overhead. The old AP will not bother to poll the client frequently. We may
set up a relatively long timeout interval.
However, to configure each local footprint with different subnets requires much more
IPv6 prefixes. While this may be considered an inefficient use of IP addresses, given the

size of IPv6’s overall address space, it is still acceptable.
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Based on the above functional requirement analysis, our design decision is to support
both the network-specific and host-specific HNA message. If plenty of subnet prefixes
are available, network administrators can configure mesh nodes with different prefixes.
Otherwise, with the support of host-specific HNA message, mesh nodes configured with
the same prefix still will not cause problems for the mesh network.

In conclusion, Null Function frame can be safely used to poll the activities of clients.
Once hostapd daemon has detected an inactive client, it will notify meshd. If meshd is
configured to support host-specific HNA messages, it will let olsrd stop propagating
HNA messages for that inactive client. When meshd is configured to support
network-specific HNA messages, HNA message propagation stops only if the inactive

client is the last client in the local footprint.

3.3.3 Design of Dynamic HNA

The current CRC OLSR implementation olsrd supports only static HNA messages. It
assumes the associated networks or hosts exist before olsrd starts, and will never change
after olsrd executes. This assumption is acceptable considering the design of HNA
message is to advertise gateway information to the mesh backbone, and the gateway is
typically a wired router that provides connection to the Internet or intranet. So when olsrd
is initiated, it first attempts to get HNA information by reading a configuration file. Then
olsrd builds a HNA message that contains all the associated networks or hosts in the
configuration file. If there is no such configuration file available, olsrd considers the
interface that it is running on does not have any associated networks or hosts, and no

HNA message will be generated.
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Based on this design, OLSR specification allows removal of information in HNA
messages only upon expiration. In our proposed mesh network, the number of wireless
clients is unpredictable. An initially empty local footprint will have visitors later, and also
a client associated with one local footprint may move to another local footprint.
Therefore the HNA mechanism needs to be modified to support the proposed network
architecture. The following are our modifications:

1. Instead of reading associated networks or hosts from a configuration file, we collect
information dynamically at run time.

2. Instead of supporting network-specific only or host-specific only HNA messages, our
implementation supports both types of HNA message.

3. To support host-specific HNA messages, removal of information in HNA messages
is allowed before expiration. When a wireless client leaves a local footprint, the entry
for the client should be deleted in the HNA message. Similarly, a newly arrived
client in a local footprint should cause a new entry to be created in the HNA

message.

3.3.4 Determining the IP Address of a Client

The IP address allocated by the DHCPv6 server is carried in the Reply message, with the

format shown below:
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Reply transaction-id

OPTION_CLIENTID

Client DUID (variable length)

OPTION_SERVERID |

Server DUID (variable length)

OPTION _IA_NA | option-len
TAID (4 octects)
T1
T2
OPTION_IAADDR | option-len

IPv6 address (16 octects)

preferred-lifetime

valid-lifetime

OPTION_STATUS_CODE option-len

status-code

status-message

Figure 3.6 DHCPv6 Solicit Message Format

® Transaction ID: A client includes a Transaction ID in each of the messages it
transmits, the server should respond with a Reply with the same Transaction ID.
Any Reply Messages with different Transaction ID will be discarded.

® DHCP Unique Identifier (DUID): used to identify clients and servers. Each
DHCEP client and server should generate a DUID, and include the DUID in every
message they transmit. When the server creates a Reply message, it copies the
client DUID from the original Solicit or other messages, and includes its server

DUID. Upon receiving the Reply message, the client compares its DUID and the
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Client DUID option in the Reply message. Unless they are the same, the client
will ignore the Reply message.

® Identity Association ID (IAID): used to identify a collection of addresses. The
DHCPV6 server will assign IPv6 addresses by filling an Identity Association (IA)

Address Option.

By capturing the Reply packet, we can extract the [Pv6 address. And since the Netmask

mechanism is discarded in IPv6, we modify the OLSR HNA message format as follows:

0 1 2 3
012345678901 2345678901234567890°1

Network Address(16 octects)

Prefix Length

Network Address(16 octects)

Prefix Length

Figure 3.7 New HNA Message Format

Since the DHCP server provides prefix length in addition to the IP address, we can

construct the HNA message.

_41 -



3.4 Implementation Details

3.4.1 Determine Association Time

To start or terminate the HNA message propagation, we must know the time when a
client joins or leaves the local footprint, and we also need to identify each client, for
example, by means of its hardware address. In order to acquire all these information, we
have to sniff the IEEE 802.11 association frames.

Traditionally, people rely on the libpcap library to capture and parse network packets.
Well-known applications, such as ethereal [8] and tcpdump [29] are based on libpcap.
But to use libpcap, HostAP must work in the special Monitor mode. Unfortunately
Monitor mode and Master mode are mutually exclusive. And since having the
functionality of an access point is a requirement of our design, we must set HostAP in
Master mode.

Because we can not make use of the libpcap library, we create a raw Linux PF_PACKET
socket, and bind it to the HostAP interface to capture the traffic between the AP and
wireless clients. But when we analyze the captured packets, we find that these packets
only contain Ethernet headers. This means even though packets have IEEE 802.11 MAC
headers in the air, the device driver removes them before sending them to the user space.
Our original idea was to modify the HostAP driver, having the driver not remove the
IEEE 802.11 MAC header. But since a user space daemon program, hostapd, was later
added to the HostAP driver package, and IEEE 802.11 management frame handling is

moved to the user space instead of the kernel space. We also make our modifications
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based on hostapd, leaving the driver intact. Hostapd includes extra features, such as

support for IEEE 802.1X, dynamic WEP rekeying, and RADIUS accounting.

To have the kernel driver send the IEEE 802.11 management frames to user space, with
IEEE 802.11 MAC frame headers, the HostAP driver needs to be configured to work in a
so called “hostapd” mode. When hostapd is started on a wireless network interface, it
triggers an ioctl() system call to the HostAP driver through a socket, configuring the
device driver into hostapd mode. In hostapd mode, the driver will not process any
management frames, and instead it sends them to hostapd. The following diagram
roughly illustrates how the IEEE 802.11 management frames are sent to user space. It
mainly involves these steps:

1. During the driver initialization, the HostAP driver registers a private ioctl in
net_device, through the function pointer do_ioctl: dev-> do_ioctl = hostap_ioctl.

2. When the HostAP driver receives private ioctl calls from the user space daemon
hostapd, it executes corresponding actions, such as putting itself in hostapd mode.

3. Whenever the driver receives an IEEE 802.11 management frame, it builds and
appends the IEEE 802.11 MAC header to the frame. Then the driver calls the Linux
kernel procedure netif rx(). This procedure enqueues the received frame to the kernel
backlog queue, and schedules a softirg.

4.  When the softirqg is executed, it calls net_rx_action(), which dequeues all the packets
in the backlog queue. And for each of the packets, its packet reception handler is
executed, such as ip_rcv() or other procedures depending on the type of the packet.

In our case, a promiscuous receive procedure is triggered.
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Figure 3.8 Management Frame with IEEE 802.11 MAC Header Reception
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Our system, meshd, is the central control process that collects information about the local
footprint and then propagates them into the mesh backbone. In order to fulfill this
requirement, we need a mechanism to collect information from hostapd when wireless
clients join or leave the local footprint. Linux has several mechanisms for Interprocess
Communication (IPC). Pipe, message queue, and shared memory are popular ones.
PF_UNIX domain socket is also a good approach to implement local communication. But
it is not appropriate to change the main structure of the hostapd code. We would like to
keep the modifications as limited as possible, since in the future we want to make use of
its authentication features. Another reason is that HostAP is an actively developing
project, if our approach is less flexible; we will have to adapt our code each time HostAP

delivers a new release.

Taking this into account, we choose FIFO or named pipe to communicate with hostapd.
Initially meshd creates a FIFO as read only and non_block, ready to receive messages
from hostapd. If a wireless client visits the local footprint, it will go through the
authentication and association process with the AP. In the time the client gets associated,

hostapd sends a message to the FIFO, notifying meshd that a new client has arrived.

read

hostapd meshd

Figure 3.9 IPC between hostapd and meshd
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How to know when a client leaves the local footprint? In HostAP, it keeps polling the
wireless station in a predefined time interval, MAX_INACTIVITY. If HostAP can not
detect any activity in the client, and the station does not acknowledge the polling, HostAP

simply assumes the station is down or has left.

To understand how the inactivity time is detected, first let us look at the timing
management in the Linux kernel. On 32-bit Intel platforms, Linux defines the time
interrupt constant HZ to be 100, which means in one second the system clock ticks 100
times. Linux kernel variable jiffies are used to keep track of the current time. Every clock
tick will increment jiffies once. The kernel also provides timers to schedule tasks. They are
organized as a doubly-linked list. This is the timer data structure defined in

<linux/timer.h>:

struct timer_list {

struct timer_list *next; /* never touch this */

struct timer_list *prev; /* never touch this */

unsigned long expires; /* the timeout, in jiffies */
unsigned long data; /* argument to the handler */

void (*function)(unsigned long); /* handler of the timeout */

volatile int running; /* added in 2.4; don't touch */

The expires field in the timer structure is the timeout interval. When the timer expires, the

scheduled handler function will be triggered. The hostapd daemon adds such a timer for
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each associated client, and initializes the expires field with MAX_INACTIVITY. Every
time the HostAP driver receives a frame destined to a client, or from the client, it
timestamps the client by setting a variable last_rx with the current jiffes. After
MAX_INACTIVITY time, the timer handler function in hostapd is activated to get the
inactivity time of the client. This is done by making a private ioctl call to the HostAP
driver. When the HostAP driver receives this request, it calculates the time elapsed since
last_rx, and sends the result back to the hostapd daemon. Then hostapd checks whether the
inactivity time is greater than MAX INACTIVITY. A larger inactivity time indicates that
there is no traffic to or from the client for MAX_INACTIVITY time. The hostapd daemon
then sends an empty data frame, Nullfunc, to the client. If the client sends back an
acknowledgment, hostapd resets the client’s timer, and this process starts over again.
Otherwise, hostapd will transmit a disassociation frame to the client. If after a short delay,
hostapd still can not detect any activity from the client, hostapd sends a deauthentication
frame to the client and removes the client from the associated clients list. The following

figure depicts the process of how an AP disassociates an inactive client.

At this time, hostapd notifies the meshd process through the FIFO that a client, identified
by its hardware address, has left the local footprint. Depending on whether the mesh
network is configured to generate host-specific or network-specific HNA messages,

meshd should activate the corresponding actions.
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?

Call ioctl to get STA inactivity
time from hostAP driver
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Inactivity_time <
MAX_INACTIVITY

A 4

register new timer, next timeout =
MAX_INACTIVITY - Inactivity_time

Next event=Disassoc && Yes
flag != Pending Poll
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Get Ack from STA Yes
No
\ 4 \ 4
[ Send Diassociation frame to STA ] STA Acked NULLFUNC
frame, reset timer
\ 4

After delay, Send deauthentication
frame to STA, and remove STA

Figure 3.10 Disassociation Process
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3.4.2 Extracting IPv6 Addresses

Before finalized as RFC 3315 in July 2003, DHCPv6 had gone through twenty eight
drafts, with significant changes throughout the lifetime of the specification. That is why
there are few available DHCPv6 implementations fully compatible with the final
specifcation.

The HP DHCPv6 implementation seems to be the most complete implementation, but it
only supports the HP-UX platform. Cisco IOS software has limited DHCPv6 support,
mainly the Prefix Delegation support. It does not implement the entire DHCPv6
protocol.The Sourceforge DHCPv6 project intends to develop an open source DHCPv6
implementation. It is based on a test implementation from the KAME project from Japan,
and ported from the original FreeBSD version to Linux. On March 15, 2004, the most
recent release dhcpv6-0.10 provides the relay agent support. Our implementation is based
on this release.

A DHCPv6 client initiates the message exchange with a server or servers to acquire or
update IPv6 addresses and other configuration information. Typically it sends a Solicit
message to discover DHCPv6 server(s). After a server or servers respond with Advertise
Message(s), the client selects a server based on the server preference value extracted from
the Advertise Message(s) and other factors. Then the client transmits a Request message,
and waits for a Reply message from the server. Optionally, the client may transmit a
Solicit message with a Rapid Commit option, asking the server to assign an address
directly without any further Request/Reply exchange.

In either case, the Solicit or Request message is received by the relay agent daemon,

=49 -



dhcpb6r, on the AP radio. The relay agent then copies the payload part of the UDP packet
into a Relay Message option in the Relay-forward message, and transmits the new
message to other relay agents or DHCPv6 servers on the OLSR radio, the backbone radio.
The response to the Relay-forward message is the Relay-reply message from other relay
agents or servers. Upon receiving such a message on the OLSR radio, the relay agent
extracts the Reply message included in the Relay Message option, and forwards the

Reply message. The message exchange is shown in the following diagram.

Solicit Relay-forward
T
Reply Relay-reply
‘—

—————— 4+ — —

Client Relay agent Relay agent Server

Figure 3.11 DHCPv6 Relay Agent Message Flow

One problem arises here. The relay agent should forward the Reply message to the
interface on which it had received the Solicit or Request message. But how does the relay
agent know the source interface information? It is achieved through the recvmsg() system
call. As defined in RFC 2292 [28], “Advanced Sockets API for IPv6”, network
information, such as incoming/outgoing interface may be carried as ancillary data in
addition to the actual payload. Ancillary data is also called control information, and it has

the following header format:

-50-



struct cmsghdr {

socklen_t  cmsg_len; /* data byte count, including hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

/* followed by u_char cmsg_data[]; */

The cmsg_level is IPPROTO_IPV6 in our IPv6 based wireless mesh network. The
cmsg_type is [IPV6_PKTINFO, which means the cmsg_data field contains IPv6 packet
information. The packet information structure is defined as following:

struct in6_pktinfo {

struct in6_addr ipi6_addr; /* src/dst IPv6 address */
unsigned int ipi6_ifindex;  /* send/recv interface index */

The ipi6_ifindex field contains the interface index of the incoming packet. In our case,
each time the relay agent receives a DHCPv6 message from the client on the AP interface,
it records the receiving interface. When the relay agent extracts the Reply message from

the Relay-forward message, it forwards the Reply to the client through the AP interface.

The above analysis tells us that we only need to capture packets on the AP interface, and
still we can intercept both the Solicit/Request message from the client and the Reply
message from the server. Because even though the Reply message is received on the
OLSR interface, the dhcpbr daemon forwards it to the AP interface. Besides, we do not

need to parse any Relay-forward or Relay-reply message.

The DHCPv6 message capturing operation mainly includes these following steps:
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1.

Each time a client joins the local footprint, hostapd notifies the meshd process
through a named pipe or FIFO. Meshd creates a new entry in the associated client list
identified by the client’s MAC address.
Capture all DHCPv6 packets, which are UDP packets with destination port 546 or
547. Clients listen for DHCPv6 messages on UDP port 546. Servers and relay agents
listen for DHCP v6 messages on UDP port 547.
If the packet has destination UDP port 547, we know these are DHCPv6 messages
from the client side. But how to identify the source of a DHCPv6 message?
Originally we used the PF_INET6 socket to capture the UDP packets. With the
system call recvfrom(), we can get the payload directly, which is the DHCPv6
message. Since all the DHCPv6 messages from the clients contain the Client DUID
option, and each DHCP client and server has exactly one DUID, by analyzing this
option, we can obtain the information of the client. There are three types of DUID
defined by the DHCPv6:

® Link-layer address plus time

® Vendor-assigned unique ID based on Enterprise Number

® Link-layer address
The Sourceforge DHCPvV6 project implements the first type. It has the following

format:

1 | hardware type (16 bits)

time (32 bits)

link-layer address (variable length)

Figure 3.12 DUID Format
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Because the device driver, HostAP, identifies a wireless client by its link layer
address (hardware address), we need to extract the link layer address from the DUID
option. Then we can determine which client transmitted the DHCPv6 message by
comparing this extracted link layer address with the associated client list.

But there are problems arise from this solution. Sometimes we found the link layer
address extracted from the DUID option did not match any of the associated client
list. Through debugging the code, we finally found out the reason. The DUID is
generated the first time the dhcp6c or the dhcpbs daemon is started, and stored on the
hard disk. It does not change over time, even when the device’s network hardware
has been changed. Our system is developed in laptops, and wireless cards are
randomly selected each time. So when we change the wireless card, the link layer
address contained in the DUID does not change accordingly. Apparently, we can not

use DUID to identify a client. The PF_INET6 socket is not appropriate in this case.

Instead we use a PF_PACKET socket. Both of the types, SOCK_RAW and
SOCK_DGRAM, can meet our needs. Packets received through a SOCK_DGRAM
packet socket are called cooked packets, which do not have the link level headers. To
attain the link level address, the recvfrom() system call is needed. The address
information is available from the returned parameter, which has the following
format:

struct sockaddr Il {

unsigned short  sll_family; /* Always AF_PACKET */
unsigned short  sll_protocol;  /* Physical layer protocol */
int sll_ifindex; /* Interface number */

unsigned short  sll_hatype; /* Header type */
unsigned char  sll_pkttype;  /* Packet type */
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unsigned char  sll_halen; /* Length of address */
unsigned char  sll_addr[8]; /* Physical layer address */

As shown in the above structure, the field sll_addr is the 8-byte source hardware
address. With a SOCK_DGRAM packet socket, the destination hardware address is
not available. But a SOCK_RAW packet socket provides both the source and the
destination hardware addresses. So we choose to use this type of socket to capture
packets.

4. After obtaining the MAC address of the client from the link layer header, we can find
the client from the station list. And we record Transaction ID, Client DUID and other
information in the list.

5. [If the packet has destination UDP port 546, it is a Reply message. The validation of
the Reply message is illustrated in the following diagram.

a) Extract the Transaction ID, and search the associated clients list to find the client
who had requested IPv6 address(es) based on the Transaction ID.

b) After finding out the corresponding message of a client, compare the Client
DUID in the two messages. If the Client DUIDs are the same, proceed to the next
step, otherwise discard the Reply message.

c) If the DHCPv6 message from the client is a Request or Solicit message and with
a Rapid Commit option, check the status code of the Reply message. If the
DHCPv6 message from the client is other types, for example, Confirm, Rebind,
Renew, or any other message, discard the Reply message.

d) If the status code is Success, the Reply is accepted.
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Figure 3.13 IPv6 Address Extraction
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At this stage, it is straightforward to extract the IPv6 address from the IA_NA option. As
for the Renew or Rebind Messages, which are used to extend the lifetime of the lease, we
can simply ignore them. The Confirm Message is processed similarly.

With the extracted IPv6 address, should we start to build the HNA message? The answer
is no, since we are not sure whether the client will accept the assigned IPv6 address. The

client is required to make sure this new IPv6 address is unique.

3.4.3 Duplicate Address Detection

An IPv6 host must perform Duplicate Address Detection (DAD) on all unicast addresses
before assigning them to an interface, no matter whether these addresses are acquired by
means of DHCP or stateless autoconfiguration. Section 5.4 of the stateless
autoconfiguration RFC (RFC 2462) describes the DAD procedure. It uses two ICMPv6
messages, defined in Neighbor Discovery (RFC 2461) [20]. One is Neighbor Solicitation
(NS) and the other is Neighbor Advertisement (NA). NS and NA are also used to perform
the Neighbor Unreachability Detection, and address resolution, which corresponds to the
ARP protocols in IPv4. DAD NS differentiates with other NSs in that the source IP
address is the unspecified address (::, or 128-bit zero).

In our case, after the DHCPvV6 client validates the Reply message, it begins the DAD
process by multicasting a DAD NS message. The interval between two NSs is
RetransTimer milliseconds. If the client receives no response after the time the last NS
message being sent plus a RetransTimer milliseconds delay, the address can be
considered unique.

After we extract the IPv6 address, we also need to perform the Duplicate Address

Detection. We can either implement DAD by parsing Neighbor Solicitation Message and
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Neighbor Advertisement Message, or we can check whether the DAD procedure
succeeds or fails, by parsing the file /proc/net/if_inet6. The following is a sample file of

/proc/net/if_inet6, for a loopback interface.

# cat /proc/net/if_inet6

1 2 3 4 () 6
00000000000000000000000000000001( 01] 80| 10 80| lo

Figure 3.14 DAD Flag

There are six fields in each entry, representing different information about the interface.

All fields are displayed in hexadecimal:

1) TPv6 address, 32 hexadecimal chars. It is ::1 in this example for the loopback
interface.

2) Interface index in hexadecimal, 2 hexadecimal chars.

3) Prefix length, 2 hexadecimal chars.

4) Scope value, 2 hexadecimal chars.

5) Interface flags, 2 hexadecimal chars. It contains DAD flags.

6) Device name, the value is “lo”.

If DAD fails, it will set the Interface flag to IFA_F_TENTATIVE (defined in
include/linux/rtnetlink.h), the opposite is IFA_F_PERMANENT. In the file,
/proc/net/if_inet6, the kernel will set the value of 0xcO to indicate a failed DAD, while

0x80 in the interface flag field indicates that the address is unique.
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Since our implementation has a constraint that we do not want to change any client side
code in order to support standard configured clients, we can not make the client send
DAD information to meshd.

Our approach is to sniff the DAD Neighbor Solicitation (NS) and Neighbor
Advertisement (NA) messages directly. After receiving the first DAD NS from a client,
meshd creates a new thread. The main function of this thread is to check whether DAD
passes or fails. Whenever a DAD NA is received in response to the DAD NS, the DAD
fail flag is set for that client.

The current IPv6 implementation in Linux keeps the parameter DupAddrDetectTransmits
in the file /proc/sys/net/ipv6/conf/default/dad_transmits, and the default is 1. The value
for RetransTimer is defined in RFC 2461 in Section 10. It defaults to 1,000 ms.

Although these constants can be changed, most of the time clients would probably simply
use the default values. But for the sake of safety, we suppose DupAddrDetectTransmits is
set to 3. So if after 3 seconds, the DAD flag is not set to fail, we assume the client has
passed the DAD check, and the thread can exit. At this time, the uniqueness of the
allocated IPv6 address can be determined, and it is the time to generate the HNA message

and propagate it to the mesh backbone.
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Figure 3.15 DAD Parsing
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3.4.4 Implementation of Dynamic HNA

Dynamic HNA is achieved with the help of meshd. In meshd, it maintains a client list that
stores various information for each associated client, such as hardware address, IP
address, and etc. Each time when a client associates with a local footprint, it configures
an IPv6 address through a DHCPv6 server. meshd acquires the IP address and prefix
length information and sends the data to olsrd through a FIFO.

FIFO is chosen instead of local domain Unix socket for interprocess communication,
because we try to make as few changes to the existing code as possible, and keep the

coding style consistent.

write read
meshd olsrd

Figure 3.16 IPC between meshd and olsrd

Besides the IP address and prefix information, the data meshd writes to the FIFO also

contains information that instructs olsrd whether it should generate host-specific or

network-specific HNA messages, and tells olsrd whether it should start advertising HNA

or stop advertising HNA message for a host or a network.

Upon receiving FIFO data from meshd, olsrd manages HNA messages according to the

FIFO data.

1. 1If the action type is stop, olsrd then further checks the HNA type. If it is
network-specific, olsrd can safely conclude that the last wireless client has left the
local footprint. Therefore, HNA propagation should be stopped. If it is host-specific,

olsrd removes the entry for this host in the host list. olsrd then checks whether the
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host list is empty. If it is empty, olsrd will not propagate HNA messages.

If the action type is start, olsrd creates a new entry in the host list or subnet list based
on the HNA type, and builds an HNA message. The timer for HNA will trigger the
transmission of an HNA message.

Each time an entry in the host list or subnet list is created or removed, the sequence
number for the HNA message is incremented. This is just like the case of TC
message broadcasts. Each time the network topology changes, the sequence number
for the topology table is incremented. Upon receiving an HNA message, a mesh node
will check whether there exists an entry in the HNA table whose hna_host_addr
corresponds to the originator address of the HNA message, and whose hna_host_seq
is smaller than the sequence number in the received HNA. If it finds such an entry,
then the entry will be removed. And for each of the host or subnet IP addresses
received in the HNA message, it will create a corresponding new entry in the HNA
table where:

® hna subnet_addr is set to the host or subnet address,

® hna_host_addr is set to the originator address of the HNA message,

® hna_host_seq is set to the sequence number of the received HNA,

® hna host_timer is set to the value of HNA_ HOLD_TIME.
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Figure 3.17 Control Flow of Modified CRC olsrd HNA Processing
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3.5 Summary

The software structure of a mesh node is illustrated in the following diagram:

meshd ——» olsrd
T dhcp6r
hostapd
User space ﬁ /
Kernel space \ '/
FIB

:
;

wlan0 «— hostap <«— wlan1

Figure 3.18 Software Structure of a Mesh Node

In the user space, there are four processes, hostapd, dhcp6r, olsrd, and meshd. In the
kernel space, the HostAP driver is responsible for packet reception and transmission on
both of the wireless interfaces. The driver also sends all the IEEE 802.11 management
frames to hostapd. Olsrd manages routing by manipulating the kernel Forwarding

Information Base (FIB).
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Chapter 4

Experiments and Evaluation

In Chapter 3, we described the design and implementation of the proposed solution to
integrate the local footprint and the mesh backhaul. In this chapter, we design and build a
testbed with our implementation. Different test scenarios are designed to demonstrate the
functionality of our implementation and evaluate the performance of our approach.
Section 4.1 briefly describes the hardware of our testbed. In Section 4.2, we conduct a
live test to verify the basic functionality. Section 4.3 discusses the result of an emulated
test involving four mesh nodes and a wireless client. In Section 4.4, we use IPv6 enabled

FTP software to test the TCP throughput in an emulated 6-hop network.

4.1 Testbed

All the nodes in the testbed are Linux laptops or desktops. Each consists of two IEEE
802.11 wireless interfaces and an Ethernet interface. Most of the wireless interfaces are
Linksys WPC11 PC cards, which are based on Intersil's Prism 3 chipset. A few are
Netgear Dual Band WAGS511 PC cards or WAG311 PCI cards. These Netgear cards
support IEEE 802.11b/a/g. To be compatible with the Linksys cards, we set them to work

in IEEE 802.11b mode. Since Netgear cards are based on the Atheros chipset, the
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MadWiFi driver is configured. Devices with Netgear cards are used only as clients, not as
mesh nodes. Some of the machines use Linux kernel 2.4.26, while others use kernel 2.6.6

based on the Fedora core 2 distribution.

4.2 Test Scenario One: Basic Functionality Test

In this test scenario, we deploy two mesh nodes. On each node, we start the following
processes: olsrd, dhcp6r, hostapd, and meshd. Meshd is configured to run in host-
specific HNA mode. Then we start a client to associate with one mesh node. After it
associated, we run the DHCPv6 client dhcpb6e on the client, and it can successfully
acquire an IPv6 address, and the HNA message is initiated.

By adding two more clients to the same local footprint, we find that the IPv6 addresses of
the two clients are appended to the host list in the HNA messages. Next, we disassociate
the three clients one by one. Since we set the IN_ACTIVITY parameter to one minute,
gradually, all the three clients are disassociated by HostAP. Each time a client is
disassociated, we notice that the corresponding IPv6 address is removed from the host list
in the HNA message. And when the last client is disassociated, no further HNA message
is generated.

Compared with the original CRC olsrd [5], our implementation reduces routing overhead.
The CRC olsrd generates an HNA message every HNA_INTERVAL time, even if all the
clients have left the local footprint. Let us look at an N-node mesh network with a string

topology as shown in Figure 4.1.
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Figure 4.1 A network with a string topology

Except for the first and the last node, all the other N-2 nodes are MPRs. When one of the
two end nodes generates an HNA message, all the N-2 MPRs will forward this HNA
message. So there are totally N-1 HNA messages flooded into the whole network. If the
HNA message is originated from nodes other than the two end nodes, the total number of
HNA messages flooded into the network is N-2. With N being a large number, we can
assume each node will flood approximately N-2 HNA messages into the network by
ignoring the special case with the two end nodes. In CRC olsrd, all the nodes must
advertise HNA messages. So the network experiences N*(N-2) HNA messages every
HNA_INTERVAL time. In our implementation, the number of HNA messages generated
depends on the number of active local footprints. If all the local footprints are empty, our
new olsrd will not propagate any HNA message at all. With K local footprints that are not
empty, the new olsrd will inject K*(N-2) HNA messages into the network. The following

diagram illustrates the difference between the two implementations.
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Figure 4.2 Comparison of HNA messages, String Topology

The network with a string topology does not benefit much from the MPR mechanism.
The MPR mechanism performs best in a star network as shown in the following diagram.

There is only one MPR node, which is the center node.

O

O

Figure 4.3 A network with a Star Topology
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If the center node generates an HNA message, other nodes will not relay this HNA
message. If the HNA message is originated from nodes other than the center node, the
center node will relay the HNA message. So in this case, the network experiences totally
2*N-1 HNA messages every HNA_INTERVAL time. With N being a large number,
approximately 2*N HNA messages will flood the network every HNA INTERVAL.
Similar to the analysis of the above string topology, CRC olsrd always injects 2*N HNA
messages into a star network, while our implementation generates 2*K HNA messages,

where K is the number of active local footprints.

2*N

——New olsrd
——CRC olsrd

Number of HNA

0 1 2 N

Number of active local footprints

Figure 4.4 Comparison of HNA Messages, Star Topology

Since each HNA message is 20 bytes plus 20 bytes per pair of network address and
network prefix, for a network-specific HNA message, it will emit a data frame of 146

bytes into the mesh network every HNA_INTERVAL time. No matter whether the local
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footprint is empty or not, each mesh node emits HNA messages and all the MPR nodes
retransmit them in CRC olsrd implementation. In a large mesh network, these HNA
messages not only consume quite a few bandwidth, but also bring more latency to the
network due to their contentions to access the media. Our implementation avoids
unnecessary HNA message propagation. Therefore, it helps to improve the network

performance.

In order to test the possibility of deploying such a mesh network in the real world, we
conduct a live experiment to measure TCP throughput. A FTP client downloads a big data
file (about 100M bytes) from its associated mesh node directly. We conduct ten runs of

FTP sessions, and the throughput we measured is shown in Figure 4.5.
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Figure 4.5 TCP Throughputs in Kbytes/s
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Both the client and server are configured with IEEE 802.11b cards. In theory, the

throughput is 11 Mbps. In our live test, the average throughput we can achieve is about

628 Kilobytes per second, which is about 5 Mbps. Why can we only make use of about

half the capacity?

DIFS

Baurm‘ RTS Data

—» —

8IFS SIF8 SIFs
Desatination

DIFS |/ / / if
Other NAY (RTS) , ?onmnﬂon 'o'o'lnd;m:.'
NAY (CTS)
p ht
Defer Accass Backoff Aftar Dafer

Figure 4.6 MAC Layer Delay (Source: IEEE 802.11 Spec. [14])

As the above figure shows, IEEE 802.11 stations have to contend for the channel. To

simplify the analysis, we ignore the RTS/CTS mechanism. First, all stations wait for a

DIFS (DCEF inter frame space) time, which is 50us for 802.11b. Then there is an average

random back-off time. An ideal scenario would be that the sender and the receiver take

turns in transmitting TCP data or TCP ACK segments, which causes an average back-off
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delay of 80us. With more nodes contending for the medium, the average back-off time
will be longer than our two-node scenario. Next is the transmission of physical layer
preamble and header, which is 192 bits in total. Since they are transmitted at 1 Mbit/s, it
will take 192us. The actual data frame transmission follows. Suppose we want to send a
1500-byte IP packet, the data frame is 1534 bytes with the MAC header. The transmission
time is 1116us.

When the destination station receives the frame, it will first wait for a SIFS (short inter
frame space) time, which is 10us. Then it sends a 14-byte ACK frame, which takes
10.2ps plus the 192ps needed for the physical preamble and header. The destination
station also needs to sends a TCP ACK packet. A similar delay happens again.

Roughly speaking, a 1500-byte IP packet takes 2.181 ms (or 2181ps) to reach the
destination and receive a TCP ACK. Therefore every second we can transmit 459 TCP
segments. Taking into account the 40-byte IPv6 header and 20-byte TCP header, each
TCP segment can carry 1440 bytes payload. The TCP throughput is approximately 5.29

Mbps for a wireless IPv6 network. Our test results are close to the above analysis.

4.3 Test Scenario Two: Connectivity Test

4.3.1 Mobile Network Emulator (MNE)

Test case one only involves two mesh nodes. To expand the network and create multi-hop
paths, we have to place the laptops far apart. For example, we put one laptop at the Minto
Center, and its 5-hop neighbor has to stay at the Mackenzie Building. It is even harder to
repeat a test. So instead we use an emulator, MNE. It is developed by the Naval Research

Laboratory (NRL). With MNE the movement of laptops is emulated. Each node moves
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virtually to a location specified in an NS-2 scenario file. To avoid interference, a
supplemental Ethernet interface is used to transport control information. Figure 4.7

illustrates the network topology of test case two.

Switch \it:

Ethernet connection
used for MNE

Ethernet

() ()

\ \ \ DHCPv6
server

Node1 Node2 Node3 Node4

0 100 200 300 meter

Figure 47 MNE Emulated Node Location

The four emulated mesh nodes are each 100 meters away in a line, as shown in Figure 4.7.
IPv4 interface ethO is the backchannel interface, and all the Ethernet interfaces are
connected to a 16-port SMC switch. MNE is started with the link range set to 150 meters
on all the nodes. That means nodel can only receive packets from node2, and node4 can
only communicate to node3. Interfaces on the mesh nodes are assigned IP addresses

shown in Table 1. All the prefix lengths are 64 bits.
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NIC Function| NIC Name Nodel Node2 Node3 Node4

AP wlan( fec1:100::1 | fec1:200::1 | fec1:300::1 | fec1:400::1
OLSR wlanl fecO:1::1 fec0:2::1 fec0:3::1 fec0:4::1
MNE eth( 192.168.0.1 | 192.168.0.2 | 192.168.0.3 | 192.168.0.4

Table 4.1 Table Mesh Nodes IP Address Configuration

In the local footprint of Nodel, a Client associates with Nodel through its AP radio
wlanQ (fecO:1::1). DHCPv6 server is running on Node2. When Nodel receives a
DHCPv6 Solicit or other messages on wlan0 from a Client, it relays the DHCPv6
message to Node2 through unicast on wlanl. The reason of using unicast is due to the
limitation of the current DHCPv6 implementation. With only one OLSR radio per mesh
node, DHCPv6 messages that are relayed by a relay agent can not forward to another
relay agent. However, even with this constraint, the approach is still reasonable. Since all
the mesh nodes are routers, we need to configure them manually, and we also know the 1P
address of the DHCPVO server.

The purpose of this test scenario is to test the functionality of OLSR, especially the HNA
message propagation in a multi-hop environment. After running crcolsrd, we check the
routing table in each node. All these diagrams of routing tables are screen shots acquired

with GIMP.
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| root@nodesad:~ X
Fle Edt View Temind Go Help
[rootfnodesgd root]# route -A inet6|grep fec|grep wlan
fec:2::1/128 i W 1 2 0 wlanl
fec(:3::1/128 fec0:2::1 UGH 2 0 0 wlanl
fec(:4::1/128 fec:2::1 UGH 3 12 0 wlanl
fecl:100::70/128 fecl:100::70 mw o0 il 2 wlan0
fecl:100::/64 U 256 0 0 wlan0
[root@nodesBd Toot]# H

Figure 4.8 Routing Table on Nodel

Nodel’s routing table tells us that it has an 1-hop neighbor, Node2 (fec0:2::1), an 2-hop

neighbor, Node3 (fec0:3::1), and one 3-hop neighbor, Node4 (fec0:4::1). This exactly

reflects the topology of the emulated network. It also shows that for Nodel to reach its

2-hop neighbor, and 3-hop neighbor, it needs to go through Node2 (fec0:2::1) as the next

hop.

The network prefix, fec1:100::/64, is the subnet of the local footprint of Nodel. And

fec1:100::70/128 is the address of the associated client in Nodel’s local footprint.
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v root®nodes03;home/dhepvémydhcpvé (8]
Hle Edt Vew Temina Tabs Hep

[rootdnodes03 nydhcpub]# netstat -A inetb -nr |grep fec|grep wlan H
fec):1::1/128 fecl:1::1 W 0 2% lulal
fecl:1::1/128 :: W1 0 0 wlanl

fec0:3::1/128 fec:3::1 I 0 16 0 wlanl
fec0:3::1/128 i W1 N 0 wlanl

fecl:4::1/128 fec(:3::1 Wi 2 166 0 wlanl
fecl:100::70/128 fecl:1:1 G 2 0 wlanl

[rootnodest mydhepvfJ# [

Figure 4.9  Routing Table on Node2

Figure 4.9 shows that Node2 has two 1-hop neighbors, Nodel (fecO:1::1) and Node3
(fec0:3::1). Node4 (fecO:4::1) is a 2-hop neighbor. To reach the client fec1:100::70 in
Nodel’s local footprint, Node2 needs to go through Nodel’s wlanl first. That is why it is

two hops away.

-75 -



¥ root@nodesZ:-

L ]

Ele Edt View Temind Go Help

[root@nodes0? root]# route -A inet6|grep fec|grep wlan

fec:1::1/128 fer0:2::1 UGH 2 0
fec0:2::1/128 i W 1 8
fec:4::1/128 s W 1 0
fec1:100::70/128 fec0:2::1 UGH 3 10

[root@nodes0? root]# pingb fecl:100::70

PING fac1:100::70(fecl:100::70) 56 data bytes

64 bytes from fec1:100::70: icmp_seq=l tt1=62 time=18.7 ms
64 bytes from fec1:100::70: icmp_seq=2 ttl=62 time=16.5 ms
64 bytes from fec1:100::70: icmp_seq=3 ttl=62 time=10.0 ms

--- fecl:100::70 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, tine 2021ns
rtt min/avg/max/mdev = 10.001/15.110/18.782/3.726 ms
[root@nodes0? root]# H

0 wlan0
0 wlan0
0 wlan0
1 wlan0

Figure 4.10  Routing Table on Node3

Node3’s routing table also has an entry for Nodel’s client, fec1:100::70. The client is 3

hops away from Node3, because the client’s AP, Nodel is 2 hops away. The output of

ping6b demonstrates that the connectivity between Node3 and the client

fine.
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¥ root@acer-04:~ -
File Edt View Teminad Go Help

[rootfacer-04 oot J# route -A inetf |grep fec|grep wlan

fecd:1::1/128 fecl:3::1 IGH 3 0 0 wlan
fec0:2::1/128 fecl:3::1 IGH 2 0 0 wlan
fecd:3::1/128 i W 1 g 0 wlan
fecl:100::70/128 fec0:3::1 UH 4 ! L wlan(

[rootQacer-04 oot J# ping6 fecl:100::70

PING fecl:100::70(fecl:100::70) 56 data bytes

64 bytes from fecl:100::70: icmp_seq=1 ttl=61 tine=11.7 ns
64 bytes from fecl:100::70: icmp_seq=2 tt1=61 tine=26.7 ns

--- fecl:100::70 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1006ns
rtt min/ave/nax/ndev = 11.770/19.275/26.780/7.505 ns
[rootOacer-04 oot J# H

Figure 4.11 Routing Table on Node4

As shown in Figure 4.7, Node4 is the right most node in the emulated network. Again we
use pingb to test the reachability of the client, fec1:100::70, and it works well. This

demonstrates that the local footprint and the mesh backhaul are integrated.

-77 -



v &gﬁl@'&'ﬂ}ﬁf&éﬂhpE!}'i'I'I}'dIICp\Pﬁ -Shell-Konsole &>

Session Edit View Bookmarks Settings Help

[root@bell mydhepv6]# ifconfig athl el
atho Link encap:Ethernet HWaddr 00:09:58:04:2A:44

inet addr:192.168.0.100 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: feB0::200:5bff:fe04:2aaa/64 Scope:Link

inetf addr: fec1:100::70/64 Scope:Site

UP BROADCAST RUNNING MULTICAST MNTU:1500 Metric:1

RX packets:2909 errors:2641 dropped:0 overruns:0 frame:2641

TX packets:4781 errors:38 dropped:0 overruns:( carrier:(0
collisions:0 txqueuelen:199

RX bytes:348802 (340.6 Kb) TX bytes:5100952 (4.8 Mb)
Interrupt:9 Memory:12148000-12158000

[root@bell mydhcpv6]# netstat -A inet6 -nr|grep athO|grep fec
fecl:100::/64 i ] 25 0 0 ath0
/0 fecl:100::1 G 1 93 0 ath0
[root@bell mydhcpvb]# traceroutef fec0:4::1

traceroute to fec0:4::1 (fec0:4::1) from fecl:100::70, 30 hops max, 16 byte packets

1 fecl:100::1 (fecl:100::1) B1.767 ms 7.589 ms 1.709 ms

2 fec:2::1 (fec0:2::1) 4.392 ms 19.41 ms 10.174 ns

3 fec0:3::1 (fec0:3::1) 17.71 ms 15.205ms 7.627 ms =
4 fec0:4::1 (fec0:4::1) 27.744 ms 14.171 ms 18.413 ms
[root@bell mydhcpv6]# |

[=1

] ashel [ @Shelto.2
= o

Figure 4.12  Routing Table on the Client

Figure 4.12 consists of three parts. The first is the output of command ifconfig, which
displays the addresses the client has configured. The second displays the routing table,
which tells us that its default gateway is fec1:100::1, the AP interface of Nodel. The third
part is the output of traceroute6. To send packets to Node4, fec0:4::1, the client follows a
path as shown in Figure 4.13, which again exactly corresponds to the emulated

network.

fec1:100::70 fec1:100::1 fec0:2::1 fec0:3::1 || fec0:4::1

v

v

Figure 4.13  Multi-Hop Forwarding Path from the Client

-78 -



4.4 Test Scenario Three: Multi-Hop TCP Throughput Test

In test case two we emulate a six-node mesh network that is a string topology. Similar to
the second test case, the distance between two neighbor nodes is 100 meters. The goal of
this scenario is to test the TCP throughput in a multi-hop mesh network. The emulated

network is shown in Figure 4.14.

Switch

Ethernet
ient ; @ ]
,: (5 /: ) NP

Ethernet connection
used for MNE

[

§Node1 §Node2 §Node3 §Node6
| DHCPv6 i i | FTP
‘ | | server | server
0 100 200 300 400 500 meter

Figure 4.14 MNE Emulated 6-node Mesh Network Topology

Since our testbed is an IPv6 network, we need an IPv6 enabled application to generate the
live traffic. Here we chose vsftpd 1.2.1 as the FTP server, and tnftp (formerly known as
lukemftp) version 20030825 as the FTP client.

Through DHCPv6, the client acquires the IP address fec0:1::70. And a routing entry is

generated automatically by the kernel for the subnet fecO:1, which is the local footprint of
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Nodel, the associated AP of the client. But it still can not have access to the FTP server,
which is running in Node6 (fec0:3::1). The reason is that it lacks a default gateway to
other networks. Unlike DHCPv4, DHCPv6 does not have a default router option.
Unfortunately, a DHCPv6 client can not configure its default gateway automatically.
Until recently, people in the DHCPv6 mailing list are still discussing the need to add such
a default router option. The DHCPv6 working group believes that Router Advertisement
in the stateless autoconfiguration should meet the need. But in a large network it is not
desirable to have radvd daemon running on all the routers just to broadcast the default
router information. Instead, having one or a few DHCPv6 servers to provide the

information is a better approach.
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¥ developer®bell: home/develo pegmydbcpit - Shell- Kansole <2 =0X

Session Edit View Bookmarks Settings Help

[root@bell mydhcpv)#
[rootlbell mydhcpv]# traceroutef fec(:3::1
traceroute to fec(:3::1 (fec0:3::1) from fec0:1::70, 30 hops max, 16 byte packets

1 fecO:1::1 (fecO:1::1) 4.987 ms 7.453 ms 9.637 ms

2 fecO:7::1 (fec0:7::1) 15.812ms G5.751ms 9.317 ms

3 fecO:4::1 (fec0:4::1) 6.781 ms 6.250 ms 6.906 ms

4 fec0:6::1 (fecO:6::1) 30.833 ms 15.604 ms 34.321 ms
§ fec0:5::1 (fecO:5::1) 25,143 ms 49.201 ms 25.620 ms

6 fecO:3::1 (fec0:3::1) 39.026 ns 43.207 ms 25.7 ms

[rootlbell mydhcpvb]# tnftp-20030825/sre/ftp fecl:3::1

Connected to fec0:3::1.

220 (vsFTPd 1.2.1)

Name (fec0:3::1:root): steven

331 Please specify the password.

Password:

230 Login successful.

Remote systen type 1s ONIX.

Using binary node to transfer files.

ftp> get tempdump

local: tempdump remote: tempdump

229 Entering Extended Passive Mode (|||14989])

150 Opening BINARY mode data connection for tempdump (472254280 bytes).

o | | 10988 KB 21.03 KB/s - stalled -
receive aborted. Waiting for remote to finish abort.

c
renote abort aborted; closing connection.
11252640 bytes received in 08:43 (20.97 KB/s)
ftp> bye

[rootdbell mydhcpvb]# []

[

=11

| i Shell

Figure 4.15 Output of Traceroute6 and FTP Connection on the client

From Figure 4.14 we can see that the FTP server is 6 hops away, and the throughput is

21.03 kilo bytes per seconds. But after about eight minutes, the FTP connection is broken.
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Similarly, FTP connections from 1 hop to 6 hops were tested, and the results are shown in

the following figure.

Throughput of FTP

600

500

Thmugh&ut (KBpE)

DO
(=)
(=)

100

1 2 3 4 5 6
Number of Hops

Figure 4.16 FTP Throughput vs Number of Hops.

Number of Hops FTP Throughput
1 557
2 231
3 78
4 61
5 57
6 21

Table 4.2 FTP Throughput KBytes/s
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With the increasing number of hops, the FTP throughput decreased dramatically. It can
not even maintain a connection at 6-hop. The main reason is due to the IEEE 802.11
MAC contention. In our case, when Node 2 forwards packets to Node 3, Nodel can not
continue transmitting packets. Because all the nodes in this test are within the
transmission range, the RTS from one node will silence all the other nodes. Even though
MNE blocks IP packets, it does not block IEEE 802.11 MAC layer frames. Therefore, in
this emulation, a virtually 6-hop neighbor which is 500 meters away actually still

contends with the first node for the access to the medium.

4.5 Summary

In both the live and emulated experiments, the modified OLSR implementation can
create correct routing table entries, which ensures the mesh backbone function well. With
the new HNA mechanism, local footprints also seamlessly integrate into the mesh
backbone. In short, we have successfully built a fully functioned wireless mesh network.
During the course of testing, we also learn some valuable lessons. As shown in the third
test scenario, we notice that multi-hop wireless connections have potential performance
problems. In order to build a scalable wireless mesh network, traditional (i.e. shortest
path first) routing protocols need to be improved. Link qualities should be taken into
account when selecting a forwarding path. Better transport layer protocols that adapted to
the wireless environment may also boost the performance. Most importantly, a better

MAC protocol, such as IEEE 802.16 [13], may more effectively solve the problem.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis presented the design and implementation of a wireless mesh network with
mobility support. Because our motivation is to deploy such a mesh network in the real
world, one of the key design decisions we made is to provide support to regular wireless
clients without modifying any software or hardware. To support IP address
autoconfiguration, DHCPv6 is employed. OLSR is chosen as the routing protocol due to
its good performance in large and dense wireless networks.

Our implementation involves both network layer and link layer. It includes processing of
the IEEE 802.11 management frame, DHCPv6 message, ICMPv6 Neighbor Discovery
message, and OLSR HNA message.

To verify the functionality and evaluate the performance of our implementation, a testbed
is constructed. Both live tests and emulations with MNE are conducted. In order to
understand the practical issues of deployment of such a wireless network, we use real
traffic instead of traffic generators even in emulated tests.

These tests indicated that our implementation achieved the expected design goals.
Visiting clients can automatically acquire an IPv6 address, and corresponding routing
entries are created on other mesh nodes. Since HNA messages are generated and

propagated dynamically, control message overhead is reduced.
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5.2 Future Work

Our implementation also has some limitations that could not be overcome due to the time
limitation. If mesh nodes are configured to propagate host-specific HNA messages, the
number of wireless clients that can be supported in the mesh network is limited. Another
limit of the current implementation is that we only provide support to nomadic users. It
would be very nice if users can roam seamlessly from one local footprint to another

without the need to initiate the connection again.

5.2.1 IPv4 Client Support

Even though IPv6 is gaining more momentum recently, IPv4 will exist for several years
before it is totally replaced by IPv6. So IPv4 support needs to be added. One solution is
to use the Dual Stack Transition Method (DSTM) mechanism [2]. DSTM is a transition
proposal that uses IPv4 over IPv6 dynamic tunnels, and allocates temporary 1Pv4
addresses to dual stack hosts. In our case, Gateway mesh nodes can be configured as
DSTM border routers, and non-gateway mesh nodes as IPv4/IPv6 dual stack hosts. When
an IPv4-only client transmits an IPv4 packet, the mesh node in that local footprint
forwards the packet through the Dynamic Tunneling Interface (DTI) mechanism to the
DSTM border routers. The DSTM border router is also called Tunnel End Point, which
encapsulates the IPv4 packet in an IPv6 packet, and vice versa.

With the DSTM solution, only the gateway mesh nodes need permanent IPv4 addresses,
and have connectivity to IPv4 networks. The mesh backbone is still an IPv6 only network.

The existing addressing scheme does not need to be changed.
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5.2.2 ETX Metric

Expected Transmission count (ETX) is proposed by MIT [6]. It is designed as a new
metric that helps to find high-throughput paths on multi-hop wireless networks. Most of
the wireless routing protocols, such as OLSR, DSR, or AODV use the minimum
hop-count as the metric. But since IEEE 802.11 is a lossy medium by nature, the shortest
path may not necessarily be the path that has the highest throughput.

The ETX metric takes into account more factors, such as link loss ratios, the asymmetry
of the loss ratios in the two directions, and the reduction of throughput due to interference
among intermediate nodes. Experiments show that routes selected based on ETX have
significantly higher throughputs than the traditional minimum hop-count metric,
particularly for long paths with more than two hops. To improve the performance of our

mesh network, the ETX link measurement algorithm should be implemented in OLSR.

5.2.3 Reduce Routing Table Size

Host-specific HNA message is very flexible, but it also has one drawback. Mesh nodes
have to create one entry for each wireless client. The result is a large routing table. One
solution to this problem is to extend the DHCPv6 implementation. With the modified
DHCEP server, it will not randomly allocate an IP address from its address pool. Instead, it
will assign addresses based on the first relay agent that has relayed the Solicit or Request

message. In our case, the first relay agent of a DHCPv6 Solicit or Request message is the
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mesh node that works as an AP in the local footprint. With the help of the configuration
file on the DHCP server, we can ensure wireless clients in one local footprint obtain
addresses in a specific range. For example, if the network prefix of a local footprint is
2001:3ffe:5005:ffff::/64, we can reserve the scope 2001:3ffe:5005:fff:1234::/80 to the
above local footprint. Then the HNA message needs not to be generated for each client.
One HNA message that advertises the 2001:3ffe:5005:ffff:1234::/80 range for the whole
local footprint will be enough. This is similar to assigning network prefixes to mesh

nodes, but allows for more efficient allocation of address space.

5.2.4 Security

At present, we rely on the Wired Equivalent Privacy (WEP) mechanism to protect our
mesh network. WEP is the encryption standard implemented in the IEEE 802.11's MAC
Layer. The payload of each IEEE 802.11 frame is encrypted before transmission using the
RC4 stream cipher provided by RSA Security [26]. The encryption key is the shared
secret key created by the user plus a randomly generated 24-bit initialization vector (IV).
Since the IV is only 24 bits, eventually the same IV will be reused. By collecting enough
frames, a hacker can crack the key. To enhance the security, a new standard IEEE 802.11i
was approved in June, 2004. IEEE 802.11i utilizes IEEE 802.1x for authentication and
key management, and Advanced Encryption Standard (AES) as the improved encryption
algorithm.

When there is an implementation of the IEEE 802.111 specification available, we will add

the stronger security mechanism to our mesh network.
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5.2.5 Roaming Support

Mobile IP (RFC 2002) [24] is a good solution to support wireless clients migrating
between local footprints without losing connectivity or previously established sessions.
However, Mobile IP has to be installed both on the mobile client side as well as on the
mesh nodes. This is a contradiction to our zero-conf policy. We need to think of a better
approach to implement roaming support on the server side (mesh nodes) without

sacrificing the zero-conf feature.
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