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Abstract 

 

The thesis proposes to combine the IEEE 1588 protocol and the adaptive 

oscillator correction method (AOCM) to improve master-slave synchronization. This is 

done by extending the AOCM to a slave clock to train a model using the IEEE 1588 

synchronization updates from a master clock. The model corrections are applied to the 

slave clock during the waiting period in between the synchronization updates and when 

the slave-master network experiences an outage. The NS-2 results indicate that the slave 

accuracy improves up to 10 times for no traffic networks depending on the slave clock 

training period. 

In traffic scenarios, the slave accuracy is affected by the asymmetric delays such 

that the degree of accuracy is one half of the asymmetric latencies. During network 

congestion, the slave accuracy improves because the delays are less asymmetric. During 

an outage in a traffic scenario, the solution only improves the slave clock stability. 
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1    Chapter: Introduction 

1.1 Overview 

Almost every organization heavily relies on computers these days, all of which 

rely on clocks. Clocks are well-known to drift as they are usually made from inexpensive 

oscillator circuits or battery backed quartz crystals, resulting in drifts of seconds per day. 

The important question is what happens to these computers and the processes running in 

these networks if their clocks do not agree with each other or with the correct time? The 

short answer is that bad things start to happen. If the network clocks are not 

synchronized, processes could fail, data could be lost, security could be compromised, 

legal implications could be faced and most importantly the organizations lose credibility 

with customers and their business partners [2]. It is also important to realize that the 

solutions to network synchronization issues are usually easy to implement, inexpensive 

and highly effective, for example a time server costing $5000 can support a network of 

thousands of computers. [1] [2] 

The objective of the thesis is to study different methods that can be used to 

synchronize clocks in a network, to understand the problems causing bad synchronization 

in a network and propose a solution to improve the synchronization accuracy. This also 

involves understanding why the clocks drift, what are the factors affecting the accuracy 

and the stability of the clock oscillators and what can be done to counter those factors. 

 

1.2 Outline 

The chapters in this thesis are organized in the following manner.  
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Chapter 2 provides background information about the elements affecting the clock 

accuracy and stability. It also talks about the network factors affecting the clock 

synchronization and how different protocols are commonly used to improve clock 

accuracy. 

Chapter 3 provides a description of the IEEE 1588 synchronization protocol and reviews 

the state-of-the-art literature related to the performance of IEEE 1588 clock 

synchronization and the adaptive oscillator correction method to counter the temperature 

and ageing effects of the clock oscillator. 

Chapter 4 presents the proposed solution to the clock synchronization problem by 

combining the IEEE 1588 protocol and the adaptive oscillator correction method 

(AOCM). It also provides details of the clock agent and algorithm implemented in NS-2 

simulator, and presents the NS-2 simulation results of temperature and ageing effects on 

clock accuracy. 

Chapter 5 presents the simulation results using the proposed solution from Chapter 4. The 

test cases are derived from the ITU standard document [20]. 

Chapter 6 concludes the thesis and provides directions for future work. 

 

1.3 Contributions 

The contributions of this thesis include the following: 

• A solution to the clock synchronization problem is proposed. The idea is to combine 

the IEEE 1588 protocol and the adaptive oscillator correction method. The purpose of 

the adaptive oscillator correction method [19] is to train a clock locked to a GPS 

signal and apply that training model to correct the clock in holdover mode (i.e. when 
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the GPS signal is lost), hence improving the oscillator accuracy and stability in 

holdover mode. The first step of the thesis is to apply the corrected oscillator method 

to a simulated master clock which has a GPS signal reference. The next step extends 

the adaptive oscillator correction method to the slave clock, using the IEEE 1588 

synchronization updates it receives from its master clock. 

• A clock agent is implemented in the NS-2 simulator to simulate a real clock. 

Environmental changes are also implemented such as changes in temperature and 

ageing affects of the clock. These changes cause the clocks to drift. 

• The proposed solution to combine the 1588 protocol and the adaptive oscillator 

correction method is implemented in NS-2. 

• NS-2 test cases are implemented based on the ITU document [20] covering various 

network conditions and network loads. The test cases are run to simulate the proposed 

solution and the results are analyzed. 

• The NS-2 results indicate that the proposed solution improves the slave accuracy up 

to 10 times for no traffic networks depending on the length of the slave clock training 

period. The solution results in traffic networks indicate that the slave accuracy is 

affected by the asymmetric delays such that the degree of accuracy is one half of the 

asymmetric latencies. In case of network congestion, the slave accuracy improves 

because the delays are less asymmetric. In a traffic scenario, when there is an outage, 

the solution only improves the slave clock stability. 

• The proposed solution can be enhanced by accounting for the asymmetric latencies by 

using IEEE 1588 transparent clocks and by employing the hardware time stamping 

for the synchronization updates. 
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2    Chapter: Background Information 

In this chapter, first an introduction to crystal oscillators is provided. In the 

second section, the factors affecting the stability and accuracy of a clock oscillator are 

presented; most importantly the effect of temperature and ageing factors is reviewed. The 

third section of this chapter reviews the elements affecting the clock synchronization in a 

network and different protocols that can be used to improve clock accuracy, signifying 

the importance of the IEEE 1588 synchronization protocol in terms of its accuracy. 

 

2.1 Crystal Oscillators 

The time-keeping element in the most consumer devices such as wristwatches, 

clocks, radios, computers, cell phones etc. is the underlying crystal oscillator. A crystal 

oscillator is an electronic oscillator circuit which creates an electrical signal with a very 

precise frequency by using the mechanical resonance of a vibrating crystal of 

piezoelectric material. The frequency is used to keep track of time. Commonly used 

piezoelectric resonators are the quartz crystal and hence the oscillators using them are 

termed as crystal oscillators. [18] 

 

2.2 Factors affecting oscillator stability and accuracy 

A clock accuracy and stability is directly related to the frequency accuracy and 

stability of the underlying crystal oscillator. The frequency accuracy of an oscillator is a 

measure of offset from a specified target. The factors establishing the frequency accuracy 
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of an oscillator include the temperature, ageing and retrace1. The frequency stability of a 

crystal oscillator is determined over a period of time by measuring the oscillator 

frequency variations from its operational frequency. The factors affecting the frequency 

stability of an oscillator include the reference signal noise (if the oscillator is locked to a 

reference signal such as GPS), oscillator tuning port noise, supply rail noise and the 

crystal vibration [18]. Figure 1 presents accuracy and the stability examples for a 

frequency source. [3] 

 

 

Figure 1: Accuracy and Stability of a Frequency Source. [3] 

 

The most important factors affecting the accuracy of oscillators are temperature 

and ageing and these factors are reviewed next. 

 

2.2.1 Temperature 

Temperature plays a major role in the frequency accuracy of a clock. The 

frequency temperature dependency is directly related to the crystal cut of the oscillator. 

                                                 

1 “When power is removed from an oscillator for several hours, then re-applied on it again, the frequency of 
this oscillator will stabilize at a slightly different value. This frequency variation error is called retrace 
error.” [18] 
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The frequency-temperature characteristic using the AT-cut crystal cut method is shown in 

Figure 2. Here � is the cut angle and with varying cut angles, the frequency-temperature 

dependency varies. It is observed that in general the crystal cuts show a cubic 

dependency on temperature. [4] 

 

 

Figure 2:  Frequency-Temperature Dependency using AT-cut. [4] 

 

2.2.2 Ageing 

The ageing of a crystal oscillator is the process where the crystal frequency 

changes over time. Generally the ageing effect over time is not linear, however when the 

ageing effect is observed over a short period of time, it can be considered as linear as 

shown in Figure 3. 
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Figure 3: Ageing Effect of an Oscillator. [3] 

 

2.2.3 Other Factors 

Some other factors affecting the frequency accuracy of a clock are Retrace, 

Thermal Hysteresis, Frequency Pushing and Pulling etc. Similarly some other elements 

affecting the frequency stability are Tuning port noise, Reference signal noise, Power 

supply noise etc. [5] [6] 

It should be noted that among all the factors, the temperature and ageing are the 

most important and dominant factors which affect the accuracy of oscillators, e.g. from 

Figure 2 for a temperature range of -60ºC to 100°C, the frequency drifts are -100 ppm to 

100 ppm, whereas from Figure 3, for a 25-day period, the frequency drifts are up to 30 

ppm for the given oscillator. On the other hand, the Retrace factor can for example cause 

frequency drifts of only 10 ppb in a 2-week period. [18] 
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Also the temperature or the ageing effect may induce more frequency errors than 

the other depending on the thermal environment. If the thermal environment is stable, the 

aging will dominate the frequency stability of the oscillator. On the other hand, if the 

thermal environment is undergoing variations in a time period which is shorter than the 

time required for the oscillator to drift significantly with respect to the aging rate then the 

temperature effect on the frequency stability of the oscillator will dominate. [18] 

 

2.3 Network Synchronization 

Network synchronization means that one tries to set the time on two or more 

clocks in a network to be the same. The hidden problem lies in the term “setting” the 

time, for example the length of time it takes to “set” the time. There is latency associated 

in processing of time packets by the operating system. There is also network latency 

created by the hubs, routers, switches, cables and other hardware existing between clocks. 

The most commonly used network protocols for the clock synchronization are 

NTP (Network Time Protocol) and IRIG (Inter-Range Instrumentation Group) time 

codes. In an NTP-based LAN network, the network devices add latency and jitter that 

reduce the clock accuracy to 1 to 2 milliseconds [7]. For an NTP-based WAN network, 

the accuracy drops to 1 to 20 milliseconds [7]. However, these are far from guaranteed 

results when taking into consideration the fact that the switches and routers used on 

LANs and WANs are adding further latency and the fact that many NTP clients run on 

non-real-time Operating Systems which further decreases the synchronization accuracy. 

For example, on Windows, if the system is busy performing high priority tasks, the clock 

accuracy could be reduced to 10 to 50 milliseconds. On the other hand, the IRIG B 
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protocol can improve accuracy using dedicated coaxial cables that are used to carry time 

stamp information between IRIG B clocks. The use of dedicated cables and hardware 

clocks in the IRIG time code provides increased accuracy of 1 to 10 milliseconds 

compared to NTP’s accuracy of 10 to 50 milliseconds for a typical NTP client running on 

Windows OS [7]. The more recently developed protocol is the IEEE 1588 Precision Time 

Protocol (PTP). The IEEE 1588 PTP overcomes the latency and jitter issues through 

hardware time stamping at the physical layer of the network resulting in 20 to 100 

nanoseconds clock accuracy. The IEEE 1588 PTP is cost effective as it uses existing 

Ethernet LANs. The key factor in achieving the higher accuracy in IEEE 1588 is the use 

of boundary or transparent clock and hardware assisted time stamping. The hardware 

time stamping reduces the operating system latency while the deployment of boundary or 

transparent clocks reduces the network latency. Figure 4 shows a comparison of NTP, 

IRIG time code and IEE 1588. [7] [8] 

 

 

Figure 4: Comparison of the Synchronization Requirements of NTP, IRIG time 

code and IEEE 1588. [7] 
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3    Chapter: Related Work 

In this chapter, the first section presents the details of the IEEE 1588 

synchronization protocol. The second section of the chapter reviews the state-of-the-art 

related to the performance of IEEE 1588 clock synchronization. The third section reviews 

the Adaptive Oscillator Correction Method used to counter the temperature and ageing 

effects of the clock oscillator. 

 

3.1 IEEE 1588 Precision Time Protocol 

In this section, the IEEE 1588 Precision Time Protocol (PTP) is briefly discussed. 

The basic message exchange mechanism between a master clock and a slave clock is 

presented that is used to do the time stamps and the offset calculations. The concept of 

boundary and transparent clocks is also mentioned. 

 

3.1.1 Introduction 

The IEEE 1588 PTP standard [9] specifies a clock synchronization protocol to 

synchronize real-time clocks in the nodes of a distributed system. A node within a 

distributed system can be modeled as containing a real-time clock that may be used by 

applications within the node for various purposes such as generating timestamps for data 

or ordering events managed by the node. The protocol provides a method for 

synchronizing the clocks of participating nodes to a high degree of accuracy and 

precision. The PTP standard [9] discusses in detail the Precision Time Protocol and the 

node, system, and communication properties necessary to support PTP. 
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3.1.2 PTP System 

A PTP system is a distributed, networked system which consists of a combination 

of PTP and non-PTP devices. PTP devices include ordinary clocks, boundary clocks, 

end-to-end transparent clocks, peer-to-peer transparent clocks, and management nodes, 

some of which are briefly discussed later in this section. Non-PTP devices include 

bridges, routers, and other infrastructure devices including application devices such as 

computers and printers. Figure 5 shows a packet switched network supporting the IEEE 

1588 protocol, showing a master clock (locked to a GPS signal), slave clocks and 

transparent clocks. 

 

 

Figure 5: Clock synchronization of wireless base stations. [15] 

 

The clocks in a distributed system are structured into a master−slave 

synchronization hierarchy where the top clock in the hierarchy determines the reference 
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time for the entire system. This clock is referred to as the grand master clock. PTP timing 

messages are exchanged between the clocks to achieve synchronization. Here the slaves 

use the timing information to adjust their clocks to the time of their master in the 

hierarchy. [9] 

The standard [9] defines event and general PTP messages. Event messages are timed 

messages as an accurate timestamp is generated at both transmission and receipt. General 

messages on the other hand, do not require accurate timestamps. The Sync, Delay_Req, 

Follow_Up, and Delay_Resp messages are used to generate and communicate the timing 

information needed to synchronize ordinary and boundary clocks using the delay request-

response mechanism. These message types and various PTP devices are described in the 

next sub-sections. 

3.1.2.1 PTP Message Types 

Sync  - A Sync message is an event message that is transmitted by a master to its slaves. 

It either contains the time of its transmission or is followed by a Follow_Up message 

containing this time. It may be used by a receiving node to measure the packet 

transmission delay from the master to the slave. 

Follow_Up  - The Follow_up is a general message. In a two-step ordinary or boundary 

clock, the Follow_Up message communicates the time of transmission of a particular 

Sync message 

Delay_Req - A Delay_Req message is an event message. It is a request for the receiving 

node to return the time at which the Delay_Req message was received. This request is 

responded to by using a Delay_Resp message.  
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Delay_Resp - The Delay_Resp message is a general message that communicates the time 

of receipt of a Delay_Req message. 

3.1.2.2 PTP device types 

The following types of PTP devices are discussed in the standard [9]. 

3.1.2.2.1 Ordinary clock 

An ordinary clock is a clock that has a single Precision Time Protocol (PTP) port2 

in a domain and maintains the timescale used in the domain. It may act as a source of 

time (a master clock), or may synchronize to another clock (a slave clock). 

3.1.2.2.2 Boundary clock 

A boundary clock has multiple Precision Time Protocol (PTP) ports in a domain 

and maintains the timescale used in the domain. It may serve as the source of time (a 

master clock), and may synchronize to another clock (a slave clock). 

3.1.2.2.3 Transparent clock 

A transparent clock is a device that measures the time taken for a Precision Time 

Protocol (PTP) event message to transit the device and provides this information to 

clocks receiving this PTP event message.  

End-to-end transparent clock 

An end-to-end transparent clock is a transparent clock that supports the use of the 

end-to-end delay measurement mechanism between slave clocks and the master clock. 

                                                 

2 Precision Time Protocol (PTP) port is a logical access point of a clock for PTP communications to 
the communications network. [9] 
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The end-to-end transparent clock forwards all messages just as a normal bridge, router, or 

repeater. The time the message takes to traverse the transparent clock, called resident 

time, is measured by the residence time bridge. These residence times are accumulated in 

a special field, the correctionField, of the PTP event message or the associated Follow-

Up message. This correction is based on the difference in the timestamp generated when 

the event message enters and leaves the transparent clock. 

Peer-to-peer transparent clock 

A peer-to-peer transparent clock is a transparent clock that provides corrections 

for the propagation delay of the link connected to the port receiving the PTP event 

message. 

 

3.1.3 Delay Request-Response Mechanism 

Delay Request-Response Mechanism is the basic synchronization mechanism in 

the IEEE 1588 PTP standard to synchronize clocks in a master-slave hierarchy. It uses 

the PTP timing messages (Sync, Delay_Req, Delay_Resp, and if required, Follow_Up) 

on the communication path linking the two clocks. Figure 6 shows the basic pattern of 

synchronization message exchange to synchronize a slave clock to a master clock. 
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Figure 6: Basic synchronization message exchange in Delay Request-Response 

Mechanism. [9] 

 

The message exchange pattern between master and slave clocks is as follows: 

• The master sends a Sync message to the slave and notes the time of its 

transmission t1. 

• The slave receives the Sync message and notes the time of reception t2. 

• The master conveys to the slave the timestamp t1 by: 

o Embedding the timestamp t1 in the Sync message. This requires some sort 

of hardware processing if highest accuracy and precision are desired. 

o Embedding the timestamp t1 in a Follow_Up message. 

• The slave sends a Delay_Req message to the master and notes the time of its 

transmission t3. 
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• The master receives the Delay_Req message and notes the time of reception t4. 

• The master conveys to the slave the timestamp t4 by embedding it in a 

Delay_Resp message. 

After the exchange of these messages, the slave possesses all four timestamps t1, t2, t3 

and t4. These timestamps can be used to calculate the offset of the slave’s clock with 

respect to the master and the mean propagation time of messages between the two clocks, 

which is the mean of t-ms and t-sm in Figure 6. The mean propagation time and offset 

computations shown below are given in the IEEE 1588 standard [9] Section 11.2 and 

11.3. 
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The standard [9] does not specify how to apply the clock offset correction to the 

slave clock. However in this thesis, the clock offset correction is directly applied to the 

time stamp of the slave clock i.e. 
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The computation of offset and propagation time assumes that the master-to-slave 

and slave-to-master propagation times are equal. Any asymmetry in propagation time 



 17

introduces an error in the calculated value of the clock offset. The computed mean 

propagation time differs from the actual propagation times due to the asymmetry. [9] 

The above calculations also assume that the slave and master frequency are exactly the 

same, or nearly exactly the same. If this assumption is not made then there will be a set of 

simultaneous equations solving for the slave frequency and offset using the two "exact" 

timestamps from the master, and two "erroneous" timestamps from the slave. The 

simultaneous equations can typically only be solved by assuming delay symmetry, but 

other methods are also possible. [11] 

 

3.2 Performance of IEEE 1588 Protocol 

This section provides a survey of research literature related to the performance of 

IEEE 1588 clock synchronization. 

 

3.2.1 FPGA based Ethernet Switch 

The author of [12] evaluates an FPGA-based Ethernet switch implementation of 

IEEE 1588 clock synchronization and presents the performance results. An Ethernet 

switch bridges multiple networking segments and allows precision time synchronization 

between all nodes required to support IEEE 1588. A switch hardware shown in Figure 7 

implements a complete 8-port 10/100 Mbps Ethernet PHY device and consists of four 

dual-port 10/100 Mbps Ethernet PHY devices and a single FPGA.  
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Figure 7: Switch Hardware. [12] 

 

A simple master device which can produce proper sync and follow-up messages and can 

respond to delay-request messages to a slave has been implemented using standard FPGA 

prototyping hardware. Test signals like a 1pps (1 pulse per second) signal and 1 KHz 

clock waveform are implemented using a physical port. An oscilloscope is fed with 

master and slave signals to visualize verification of proper synchronization and jitter 

performance. In the experiment, the frequency of 125 MHz for both slave and master 

devices is used. Hence both master and slave devices introduce a jitter of 8ns. Overall a 

minimum of 16ns jitter and offset deviation can be expected from the experiment setup. 

The experiment is performed using different sync frame transmit intervals. The values are 

recorded when they become stable which is approximately after 15 sync messages. Table 

1 presents the measured performances in terms of offset and jitter. 
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Table 1: Performance Results using FPGA based Ethernet Switch. [12] 

Sync Interval (s) Offset Min (ns) Offset Max (ns) Offset Average (ns) Jitter (ns) 

3 -408 +504 0.9 912 

2 -192 +324 -0.2 516 

1 -92 +88 -0.9 180 

 

From Table 1, it is obvious that the slave synchronizes with the master clock within 1ns 

on average. Also the sync interval clearly has an effect on the results. The smaller the 

sync interval, the smaller is the jitter. [12] 

 

3.2.2 IEEE 1588-2008 Adapters 

The authors of [13] present a system with IEEE 1588-2008 adapters that allow 

clock synchronization on the order of sub-microsecond using existing Gigabit Ethernet 

equipment. The IEEE 1588-2008 adapter measures the residence times, and runs the peer 

delay mechanism of the IEEE 1588 standard [9] to compensate for the time error caused 

by the queuing delays in the Gigabit Ethernet equipment. The authors use ordinary 

Gigabit Ethernet equipment to operate as a Peer-to-Peer Transparent Clock (P2P TC). A 

P2P TC is shown in Figure 8. 
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Figure 8: A peer-to-peer transparent clock using an IEEE 1588-2008 adapter over 

an ordinary Gb Ethernet Switch. [13] 

 

The authors present two schemes of clock synchronization, one using ordinary 

switches and the delay request-response mechanism and the other using peer-to-peer 

transparent clocks (P2P TCs) and the peer delay mechanism. To evaluate their schemes, 

the authors create a test setup in which four computers are connected to a simple network 

using two ordinary gigabit Ethernet switches as shown in Figure 9. 

 

 

Figure 9: Test setup to measure synchronization accuracy. [13] 



 21

The leftmost computer generates the SYNC messages as an IEEE 1588 master 

device. The rightmost computer, which acts as an IEEE 1588 slave device receives the 

SYNC messages and estimates time and frequency of the master. The middle two 

computers generate dummy traffic to interrupt message exchanges between master and 

slave devices. Both master and slave devices are connected to high-speed digital 

sampling oscilloscope to measure the time error between master and slave devices. The 

results obtained using the proposed IEEE 1588-2008 adapters and using ordinary clocks 

are shown in Figure 10 and Figure 11 respectively. 

 

 

Figure 10: Oscilloscope screenshot measuring the time error of the slave using the 

IEEE 1588-2008 adapters. [13] 
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Figure 11: Oscilloscope screenshot measuring the time error of the slave using only 

the ordinary clocks. [13] 

 

The results are collected using the master PPS signal as a trigger source and 

capturing the slave PPS signal for 10 minutes. Figure 10 indicates that the rising edges of 

the slave signal are distributed over the interval from -16.01 ns to 18.35 ns, whereas in 

Figure 11, when ordinary clocks are used, the slave signal is distributed over the interval 

from -11960 ns to 12580 ns. The large time error in Figure 11 is caused by queuing 

delays in the switches. With IEEE 1588-2008 adapters these errors are corrected and 

hence we have a synchronized network. Hence an accuracy of ±20ns overall can be 

obtained using the proposed IEEE 1588 adapters as P2P transparent clocks. [13] 
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3.2.3 Hardware assisted Time Stamping 

The authors [14] from Zurich University of Applied Sciences (ZHW) have used 

hardware assisted time stamping to evaluate IEEE 1588 clock synchronization. Their test 

setup consists of ZHW’s IEEE 1588 evaluation kit which is capable of delivering two 

time stamps per transmission/reception of Precision Time Protocol (PTP) event messages 

at the same time. The first time stamp is recorded at the Medium Independent Interface 

(MII) between MAC and PHY chips. The second time stamp is taken at the entry point of 

the network interface driver’s interrupt service routine.  The ZHW’s IEEE 1588 

evaluation kit, as shown in Figure 12, consists of an embedded PC with a 300 MHz 

Geode CPU and the network interface on the main board. A time analyzer board 

consisting of a TSU (time stamping unit) and an adjustable clock is connected to the 

PC/104 bus. The clock can be monitored and compared with other clocks by the one 

pulse per second (1PPS) output. 

 

 

Figure 12: The IEEE 1588 evaluation kit. [14] 
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The authors employ the hardware assisted time stamping technique using two setups. 

The experiment conditions are listed below: 

• Sync interval = 2s 

• Clocks used are equipped with cheap quartz crystal oscillators, Jauch VX3MH-

5000, 50 MHz, ±50 ppm and they drift from each other approximately by 9µ/s 

when running free. 

• Temperature is constant at room temperature. 

• Hub used for first setup: Addtron (100Base-Tx Class2) 

• Switch used for second setup: Allied Telesyn FS708 

• High Resolution Timing Analyzer (HRTA) is used to compare the 1PPS outputs 

of master and slave devices. Transitions of input lines are time stamped with a 

resolution of 20 ns. 

The first setup consists of a master and a slave clock connected via hub. The 

histogram in Figure 13 shows the offset of the slave with respect to the master clock 

determined by comparing the PPS signals of the two nodes under stable conditions. The 

variation lies within ±80ns. The observed variation is the result of hub jitter, the 

transceiver’s jitter and the time stamp’s resolution of HRTA. 
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Figure 13: Synchronization accuracy using hub. [14] 

In the second setup, the hub is replaced by a switch without any load. Figure 14 

shows the synchronization accuracy which varies beyond ±500ns. 

 

 

Figure 14: Synchronization accuracy using switch without any load. [14] 
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Next TCP data stream is added at about 20% of the available bandwidth in the 

path of SYNC messages while in the path of Delay_Req messages, the TCP stream 

consumes 2% of the available bandwidth.  This results in a small queuing delay and in 

low path asymmetry. The synchronization accuracy is in the range of ±400µs due to 

delayed SYNC messages as shown in Figure 15 

 

 

Figure 15: Synchronization accuracy using switch with asymmetric load. [14] 

Filter algorithms could be used to sort out extremely delay messages under stable 

conditions. [14] 

 

3.2.4 Using Gigabit Ethernet Switch and Combined Ordinary Peer-to-peer 

Transparent Clock to support IEEE 1588 

The authors of [15] discuss practical considerations to be taken in the design and 

implementation of time synchronization systems using IEEE 1588. The authors use a 
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model based on a Gigabit Ethernet switch and a combined ordinary clock (OC) and a 

peer-to-peer transparent clock (P2P TC). One of the important issues undermining the 

synchronization performance of a system is the asymmetry of message propagation delay. 

IEEE 1588 PTP devices assume that the propagation delay is symmetric for both 

directions, which is generally not true. The Gigabit Ethernet (e.g. 100BASE-TX) switch 

uses all four pairs for both directions so that the asymmetry almost disappears or is a 

small constant that can be eliminated using a correctional constant. Other time errors that 

may arise could be the result of quantization errors, oscillator instability and phase-

locked loop (PLL) internal jitter. Quantization errors arising from rate computations can 

be reduced to a few nanoseconds by using a relatively long dividend (e.g. an 80 bits 

dividend) in division calculations. Also if the wander and drift of the oscillators are not 

faster than the correction mechanism interval then the synchronization accuracy is not 

significantly affected. The authors perform an experimental evaluation of their combined 

OC and P2P TC model. The network setup uses the implemented switches supporting 

IEEE 1588 and connects five devices to do time synchronization. One device generates 

dummy traffic to introduce random queuing delays in the switches. An oscilloscope 

screenshot measuring the time error between the outputs of two devices is shown in 

Figure 16. It can be seen from the figure that the timing output of the slave device is 

within the range of -19.8ns to 29.0ns of the master device. 
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Figure 16: Oscilloscope screenshot measuring time synchronization performance. 

[15] 

 

3.2.5 OPNET Simulation Results over Ethernet 

The synchronization accuracy of IEEE 1588 PTP standard is dependent on the 

configuration of the network, i.e. the type of network devices, the number of devices in 

the network that contribute to the traffic, the processing delays and the point of time-

stamping of the frames at the server and client. The authors of [16] conducted simulation 

studies on the IEEE 1588 PTP clock accuracy using OPNET to investigate the above 

mentioned factors. The simulations results for a hub based Ethernet network and a switch 

based Ethernet network are presented here. The simulations were done under varying 

load conditions. Also the authors compared the difference in clock accuracy achieved 

using time-stamping at the PTP layer and at the physical layer. The various time 

stamping techniques are described below. 
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• Time stamping outside MAC layer – PTP packets are time stamped at the PTP 

layer and therefore include protocol and processing delays at the PTP and other 

intermediate layers. A single M/G/1 queue process model is used to estimate all 

protocol processing delays. 

• Time stamping inside MAC layer – PTP packets are time stamped just before 

they leave the physical layer and hence protocol and layer processing delays are 

not incurred. In case of a retransmission, the time stamp when the packet was last 

sent is recorded.  

The results of different simulation scenarios are presented in the following subsections. 

3.2.5.1 Hub Based IEEE 802.3 Ethernet 

The basic simulation setup consists of 8 workstations (a master, a slave and other 

nodes) connected using a hub. In an unloaded hub network, with time stamping inside the 

MAC layer, the delay computed at the client was 5.9366 µs and the offset was 0 while 

with time stamping outside the MAC layer, the delays were highly variable as they also 

include protocol and layer processing delays. The average offset computed was 79.1258 

µs. When the hub based network is loaded, with time stamping inside the MAC layer, the 

results obtained are the same as in the no load hub situation. With time stamping outside 

the MAC layer, and the load varied, the calculated offsets were highly variable due to 

processing delays. The results observed are shown in Table 2. 



 30

Table 2: Data obtained in a loaded hub network with time stamping outside the 

MAC layer. [16] 

Load 4.5% 9% 20% 45% 70% (seed 99) 70% (seed 177) 

Offset in µs 41.208 17.95 364 397 -100 -650 

 

3.2.5.2 Switched IEEE 802.3 Ethernet 

The basic simulation setup consists of 8 workstations (a master, a slave and other 

nodes) connected using a switch. In loaded switched network, if time stamping is done 

inside the MAC layer, then the delays due to packet buffering in the switch affects the 

synchronization accuracy and increases with the increasing traffic load. If time stamping 

is done outside the MAC layer in a loaded network, then the offsets are highly variable 

due to variable protocol processing delays. The results are shown in Table 3. 

 

Table 3: Data obtained in a loaded switched network. [16] 

Load 3.5% 17.5% 35% 60% 

Seed 99 1177 99 1177 99 1177 99 1177 

Offset in µs (time stamping 

inside the MAC layer) 
0.015 0.379 1.02 1.3 2.04 2.42 4.26 5.67 

Offset in µs (time stamping 

outside the MAC layer) 
-110 -16.7 4.9 79.7 17 -36.5 216 -7.8 
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The authors suggested that it is not feasible to use IEEE 1588 in switched 

Ethernet especially when the network is loaded more than 35%. They suggested to use 

the transparent clocks at the switch to improve the synchronization accuracy. 

 

3.3 Adaptive Oscillator Correction Method 

The authors of [19] present an adaptive correction algorithm to enhance the 

oscillator performance in holdover mode. The oscillator used in the timing module on a 

base station is usually phase locked by a one pulse per second (1-pps) GPS signal. When 

the GPS signal is lost, the timing module enters holdover mode and the timing module 

accuracy becomes dependent on the local oscillator. The proposed adaptive correction 

model can improve the oscillator performance in this situation.  According to 3GPP2 

recommendations, the CDMA systems must not exceed 10 µs cumulative time error 

(CTE) during an 8 hour holdover period. [19] 

The 10 µs CTE amounts to 0.35 ppb of oscillator drift and therefore requires an 

expensive oscillator such as a double oven controlled crystal oscillator (DOCXO) to 

fulfill the stability requirement over a 75°C operational temperature range of the 

oscillator. The authors suggested employing an adaptive model of the timing module 

during the locked period and then using the resulting model to correct the oscillator drifts 

in holdover mode. They demonstrated their algorithm on a relatively cheaper oscillator 

i.e. a single oven controlled crystal oscillator (OCXO). The timing module on which their 

model is based is shown in Figure 17. The timing module mainly includes the following 

• The GPS receiver module which receives a precise 1-pps GPS signal 

• A 10 MHz OCXO 
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• The frequency multiplier to generate a frequency source 

• The digital phase detector to count the numbers of period of the frequency source 

• The correction signal calculator to compute the correction signal based on the 

count value 

• The adaptive oscillator model. 

• A digital-to-analog converter (DAC) to control the 10 MHz OCXO, and also to 

feed the adaptive oscillator model in holdover mode. 

• A temperature sensor to collect the ambient temperature. 

 
 

 

Figure 17: Detailed Block Diagram of the Timing Module System. [19] 

 

The correction signal generated by the control loop of the timing module compensates the 

temperature and ageing effects of the oscillator. The authors determine the oscillator 

frequency stability model as shown here: 
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!'�-./0� � � � 1 2�� � � 3 1 �2� � � � � & 1 �   [19] 

where  !'�-./0� � is the oscillator frequency stability (in ppb) 

 2� � is the ambient temperature 

 � and 3 are coefficients of the temperature 

 � is a nonzero initial offset 

 & is the ageing rate 

From the oscillator stability equation, the authors determine the correction signal model 

which is based on an ARMAX model and solved by the recursive prediction error method 

(RPEM) (Details can be found in [19]). The estimated correction signal (4� � is: 

(4� � � �$�4 1 2�� � $ 35 1 2� � $ �6 $ &7 1    [19] 

where �4, 35,��6 and &7 are the estimated system parameters. 

The authors plotted the CTE for a corrected OCXO using their adaptive correction 

method vs. an uncorrected OCXO as shown in Figure 18. The locked period is 6 hours 

while the holdover period is 8 hours. The corrected OCXO shows a huge improvement 

over an uncorrected OCXO. Note that the sharp spike in the corrected OCXO figure in 

the beginning, when the training starts, is due to a nonzero initial offset existing in the 

system model and has no effect on the CTE improvement. [19] 
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Figure 18: CTE for corrected (top) and uncorrected (bottom) OCXO during locked 

and holdover mode. [19] 

 

3.4 Motivation 

To conclude from the literature survey, the IEEE 1588 synchronization protocol is 

superior to other synchronization protocols such as NTP and IRIG. It has the flexibility to 

use an NTP-like basic message exchange structure or enhance itself further using the 

transparent clocks and/or the hardware-assisted time stamping for high precision and 

accuracy. Nevertheless the proposed solution only uses the basic message exchange 

structure of the IEEE 1588 protocol to synchronize the master and slave clocks. This 

means that if NTP or IRIG protocols were used instead, the results obtained would have 

been same. However, the use of IEEE 1588 protocol leaves an opportunity for future 

work to enhance it by including the transparent clocks or the hard-assisted time stamping. 

From the literature survey, we have seen that the IEEE 1588 performance has been 
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evaluated for a master-slave hierarchy without explicitly looking at the environment 

factors such as temperature and ageing effects, which cause drifts in the master and slave 

clocks. Furthermore, none of the published works attempt to correct for slave clock drifts 

while the slave is receiving IEEE 1588 synchronization updates. The adaptive oscillator 

correction method [19] looks only at the correction of the master clock drifts when its 

reference GPS signal is lost. The objective of the thesis is to enhance this adaptive 

oscillator correction method to apply on the slave clocks such that when the slave clock 

receives the IEEE 1588 synchronization updates, it trains an adaptive model. The 

resulting model can then be applied to the slave clock in two cases. 

• Slave clock is waiting for its next update from the master clock. 

• Slave clock is temporarily disconnected from the master clock due to some 

network outage. 

The proposed solution can then be evaluated for various test scenarios such as 

varying load conditions, network congestion, outages etc. while explicitly looking at the 

temperature and ageing effects of the clock. 
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4    Chapter: Proposed Solution 

In this chapter, the proposed solution for the clock synchronization problem is 

presented, which combines the IEEE 1588 protocol and the adaptive oscillator correction 

method (AOCM). It also provides details of the clock agent and algorithm implemented 

in the NS-2 simulator, presenting the results of temperature and ageing effects using our 

NS-2 model. 

 

4.1 Combined IEEE 1588 and Adaptive Oscillator Correction Method 

The proposed solution to master-slave synchronization revolves around the idea 

of combining the IEEE 1588 synchronization protocol (Section 3.1) and the adaptive 

oscillator correction method (Section 3.3). The solution suggests having a basic 

implementation of the IEEE 1588 protocol using the Delay Request-Response 

Mechanism as detailed in Section 3.1.3 to synchronize master and slave clocks in a 

network. The master and slave clocks here drift due to different initial offsets, different 

oscillator rates, temperature and ageing effects. The master clock is locked to a GPS 

signal for its accurate time and, using the Adaptive Correction Oscillator Model [19] 

(also briefly described in Section 3.3), a model is trained to account for the master clock 

drifts due to its rate, temperature and ageing effects. The correction signal obtained from 

the model is used to correct the rate of the master clock when the GPS signal is lost (i.e. 

in holdover mode). The solution proposes to extend this oscillator correction method to 

the slave clocks in the network. 

For a slave clock in a network, its reference signal is the master clock from which 

it receives the IEEE 1588 synchronization updates at regular intervals (say every X 
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seconds). The solution suggests training a model for the slave clock using these IEEE 

1588 synchronization updates from the master clock every X seconds in the same manner 

as the model for a master clock locked to a GPS signal is trained using the corrected 

oscillator method [19] (Section 3.3). The difference between the master clock and slave 

clock training models are the following: 

• The master clock adaptive model is trained every 1 second, while in the case of 

the slave clock, it is receiving the IEEE 1588 synchronization updates every X 

seconds and therefore the slave clock adaptive model is trained every X seconds. 

• When the master clock loses its connection to GPS signal, it goes in holdover 

mode and the resulting correction signal from the training model is applied to the 

oscillator rate (by adjusting the tuning voltage in case of a real oscillator). On the 

other hand, the slave clock has two kinds of holdover periods, which are termed 

here as micro-holdover and macro-holdover periods. 

o A micro-holdover period for a slave clock is the period during which the 

slave clock is waiting for its next IEEE 1588 synchronization update from 

its master clock. For a synchronization frequency of X seconds, each 

micro-holdover period is therefore equal to X seconds. 

o A macro-holdover period for a slave clock is the period during which the 

slave clock is temporarily disconnected from the master clock due to some 

network outage. 

The solution suggests applying the resulting correction signal from the slave training 

model in both kinds of holdover periods. This is done by directly adjusting the slave 

oscillator rate using the correctional rate (by adjusting the tuning voltage in case of a real 
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oscillator). The modified diagram for the slave clock timing module system is shown in 

Figure 19. 

 

Figure 19: Detailed Block Diagram of Slave Clock Timing Module System. 

 

The slave clock timing module in Figure 19 is based on the master clock timing module 

in Figure 17. Here, the slave offset from the master clock calculated using the IEEE 1588 

protocol is fed to generate a correction signal as well as to train the adaptive oscillator 

correction model. 

 

The extension of the adaptive oscillator correction method to the slave clock aims to 

correct the temperature and ageing drifts of the oscillator and hence to improve the 

accuracy and stability of the clock. The performance of the proposed solution is evaluated 

by implementing it in the NS-2 simulator [21], discussed in Chapter 5. For this purpose, a 

clock agent simulating a real network clock having drifts due to temperature and ageing 

effects is implemented in NS-2. Based on the proposed solution, the IEEE 1588 protocol 
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and the adaptive correction methods for the master and slave clock are also implemented 

in NS-2. The next sub-section discusses the implemented NS-2 clock agent model, 

presenting the NS-2 simulation results for the temperature and ageing effects on the clock 

time stamps. 

 

4.2 NS-2 Clock Agent 

4.2.1 Description 

NS-2 is an open-source event-driven simulator designed specifically for research 

in computer communication networks. NS-2 supports simulation of TCP, routing, and 

multicast protocols over wired and wireless networks. NS-2 is written in the C++ 

programming language and the OTcl scripting language. [21] [22] 

 As part of the thesis work, a Clock Agent C++ Class is implemented in NS-2 to 

simulate a real clock. Here the environmental changes such as temperature and ageing 

effects causing drifts to a real clock oscillator are also considered. A clock agent can be 

attached to an NS-2 node3. The details from creating a clock agent to configuring the 

parameters of clock agent in a TCL script are given in Appendix A. Here are some of the 

features of the implemented clock agent. 

• A clock agent has a time stamp and a natural rate which determines its drift in 

Parts Per Billion (PPB) w.r.t. to a perfect reference clock. The natural rate is 

configurable from an NS-2 OTcl script. The natural rate of the clock is affected 

by the temperature and ageing effects.  

                                                 

3 “A node is a basic network component in NS-2. It acts as a computer host (e.g., a source or a destination) 
and a router (e.g., an intermediate node). It receives packets from an attached application or an upstream 
object, and forwards them to the attached links specified in the routing table (as a router) or delivers them 
to the ports specified in the packet header (as a host).”[22] 
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• The implementation provides an ability to configure a linear ageing effect and a 

linear or quadratic temperature effect. The temperature profile of the surroundings 

is also configurable independently for each clock in the system. 

• An initial value at which the clock starts is configurable. 

• The implementation provides a way to capture time stamps of the clock at regular 

intervals. The collected data can be imported into a graphing tool to visualize the 

accuracy of the clock. 

• A clock agent can be configured to act as a master clock or a slave clock. A 

master clock has the ability to synchronize itself to a highly accurate GPS signal 

with a GPS noise of 20 ns RMS (Root Mean Square) jitter on a 1pps edge. The 

GPS signal is implemented in NS-2 using the simulation time with the 20 ns RMS 

noise reflected by using the normal random variable generator. A slave clock, on 

the other hand, has the ability to synchronize itself to a master clock using the 

IEEE 1588 synchronization protocol.  

• A basic version of the IEEE 1588 synchronization protocol as discussed in 

Section 3.1.3 is implemented in NS-2 to facilitate the slave-master 

synchronization. The synchronization frequency and the assignment of a master to 

a slave clock are configurable. The logs are also available to capture the actual 

delays experienced by the IEEE 1588 packets in both directions. 

• Both master and slave clocks have the self-correcting adaptive oscillator 

correction algorithms implemented to counter the effects of ageing and 

temperature effects. The master correction method as described in Section 3.3 is 
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implemented. The slave correction method is implemented using the proposed 

solution (see Section 4.1). 

• The clock agent provides the ability to configure the locked and holdover periods 

for master and slave clocks to reflect a network outage for master-GPS and 

master-slave connections respectively. During a holdover period, the correction 

signal obtained from the trained adaptive model is applied directly on the natural 

rate of the clock to correct its drifts. 

 

4.2.2 Temperature and Ageing Effects 

In this section, the accuracy of a free running clock w.r.t. a perfect clock is 

presented using the Clock Agent implemented in NS-2. The purpose is to demonstrate the 

temperature and ageing effects on the clock accuracy for various simulation periods. A 

linear temperature effect of 4ppb/75°C with an 8-hour cycle temperature profile shown in 

Figure 20 and a linear ageing effect of 1ppb/day are used. The clock used has no initial 

drifts and any drifts happening over time in the clock rate are only due to the effects of 

ageing and temperature variations. The default values are used for other simulation 

parameters as detailed in Appendix A. The complete TCL script is given in Appendix B. 
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Figure 20: Temperature Profile 

 

Figure 21, Figure 22 and Figure 23 show the clock accuracy for a simulation periods of 1 

day, 1 week and 2 weeks for three scenarios: ageing only, temperature only and both 

ageing and temperature effects. 
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Figure 21:  Clock Accuracy for Simulation Period of 1 Day - Temperature and 

Ageing Effects 

 

 

Figure 22: Clock Accuracy for Simulation Period of 1 Week - Temperature and 

Ageing Effects 
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Figure 23: Clock Accuracy for Simulation Period of 2 Weeks - Temperature and 

Ageing Effects. 

The figures show that the ageing effect is exponential as the ageing drifts 

accumulate over time. The temperature effect follows the pattern of the temperature 

profile used such that the clock drifts faster when it is hot and drifts slower when it is 

cold. The figures also demonstrate the cumulative effect of temperature and ageing drifts 

on clock accuracy. For a short period, the cummulative effect is dominated by 

temperature drifts, however for a longer simulation period, the ageing effect dominates 

the cummulative effect as the drifts caused by ageing accumulates over time. This is 

consistent with the discussion in Section 2.2:  if the thermal environment is undergoing 

variations in a time period which is shorter than the time required for the oscillator to 

drift significantly with respect to the aging rate, then the temperature effect on the 

frequency stability of the oscillator will dominate. On the other hand, if the thermal 

environment is stable, aging will dominate the frequency stability of the oscillator. 
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5    Chapter: Simulation Results 

In this chapter, the results from NS-2 simulations measuring synchronization 

accuracy using the IEEE 1588 synchronization protocol and the adaptive oscillator 

correction method (AOCM) are presented and discussed. First, the generic NS-2 

simulation setup is described. The test cases run in NS-2 cover various factors such as 

temperature and ageing effects affecting the clock frequency of master and slave clocks. 

The network conditions such as varying network traffic and network outages are also 

considered and their effect on clock synchronization is studied in this chapter. 

Particularly the test cases are divided into three sections given below. 

• Test cases with no traffic in the network. (Section 5.2) 

• Test cases with traffic introduced in the network using different load profiles. 

(Section 5.3) 

• Test cases to examine the direct effect of parameters such as clock rate, IEEE 

1588 synchronization frequency, simulation time period, AOCM training period 

and AOCM holdover period. (Section 5.4) 

 

5.1 Simulation Setup 

The network topology shown in Figure 24 is used in all simulation test cases unless a 

different topology is specified in a test case. The topology consists of a master node n0 

connected to a slave node n5 with n1, n2, n3 and n4 as intermediate nodes, making it a 5-

hop topology. 
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Figure 24: Network topology 

 

By default, the following values are used for different simulation parameters for all test 

cases unless a different value is explicitly specified in a test case. 

• Bandwidth of Duplex links = 1 Mb 

• Propagation delay between two adjacent nodes = 100 ns 

• Simulation run time = 16 hours 

• Master clock rate = 1 (running at the same rate as ref. clock) 

• Slave clock rate = 1.0000001 (100 ppb faster than ref. clock) 

• IEEE 1588 synchronization frequency = 100 s 

• Number of hops (between master and slave clocks) = 5 hops 
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The temperature and ageing effect values are derived from [19].  

• Master node temperature effect when enabled = 4 ppb/75°C with quadratic term 

equal to -0.00031966 ppb/°C2 

• Master node ageing effect when enabled = 1 ppb/day 

• Slave node temperature effect when enabled = 5 ppb/75°C with quadratic term 

equal to -0.00031966 ppb/°C2  

• Slave node ageing effect when enabled = 2 ppb/3days 

• Adaptive Model on Master Clock (when enabled). Parameter values below are 

derived from [19]. 

o Training period (locked mode) = 0 to 8 hours 

o Holdover period (unlocked mode) = 8 to 16 hours 

o AOCM frequency = 1s 

§ Note: The AOCM frequency of 1 second applies to both training 

and holdover periods of the master clock. 

• Adaptive Model on Slave Clock (when enabled) 

o Training period (locked mode) = 0 to 4 hours, 4.5 hours to 16 hours 

o Holdover period (unlocked mode) = 4 to 4.5 hours 

o AOCM frequency = 1s 

§ Note: The AOCM frequency of 1 second applies to the holdover 

period of the slave clock only. For the training period of the slave 

clock, the AOCM step is executed right after receiving the IEEE 

1588 synchronization update from the master clock i.e. the AOCM 
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frequency for the slave clock’s training period is same as the IEEE 

1588 synchronization frequency (100 seconds in the current setup). 

The clocks of both master and slave nodes start ticking at a simulation time of 1s and stop 

when the simulation ends. 

 

5.1.1 Traffic Model Description 

The traffic model described in Appendix VI in [20] is used whenever required in a test 

case. This traffic model is aimed to model the traffic on networks where the majority of 

the traffic is data. To model this traffic, 60% of the load should be based on packets of 

maximum size while the remaining 40% on packets are a mix of minimum and medium 

size. 

Hence the packet size profile can be summarized as below: 

• 60% of the load must be maximum size packets (1518 bytes) 

• 30% of the load must be minimum size packets (64 bytes) 

• 10% of the load must be medium size packets (576 bytes) 

The network load profile used is individually described in the test case description 

whenever needed. 

 

5.1.2 Temperature Profile Description 

The temperature profile used for calculating the temperature effects on a clock oscillator 

is taken from [19] and is shown in Figure 25. The temperature profile represents the 

temperature values observed at the clock oscillator. The range of temperature variation is 

60°C over an 8-hour cycle. The temperature range is large enough to represent the real 
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working environment such as the cellular base stations located outdoors where the 

temperature could be very hot or cold depending on the region. The 8-hour cycle 

guarantees that the simulation results are obtained fast enough. 

 

 

Figure 25: Temperature Profile 
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5.1.3.1 Master Clock Synchronization 

Master clock synchronization accuracy is measured with respect to the reference clock. 

For this, the absolute difference (in µs) between the time stamp of the master node and 

the reference signal is collected every simulation second for each run of a test case. 

5.1.3.2 Slave Clock Synchronization 

Slave clock synchronization accuracy is measured both with respect to the master clock 

as well as the reference clock. Since IEEE 1588 synchronization happens every 100 

seconds (default synchronization window size), the slave clock drifts from the master 

between the synchronization events. Therefore the maximum slave drift in each 

synchronization window can be used to determine the slave clock accuracy. The 

following data is therefore collected. 

• The maximum absolute difference (in µs) between the time stamps of the slave 

node and the master node in each synchronization window. 

• The maximum absolute difference (in µs) between the time stamps of the slave 

node and the reference clock in each synchronization window. 

It should be noted that if there is traffic in the network, the IEEE 1588 synchronization 

accuracy could be affected due to asymmetric latencies introduced due to traffic. The 

asymmetric delays contribute to the errors in clock offset calculation in the IEEE 1588 

protocol as described in Section 3.1.3. Hence, for the test cases with traffic scenarios, the 

delays as given below are also collected to investigate their effect on slave 

synchronization. 
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• The difference between the forward delay (actual master to slave delay 

experienced) and the reverse delay (actual slave to master delay experienced), 

collected every synchronization event. 

 

5.2 Test Cases with No Traffic 

The test cases presented in this section are run with no traffic in the network using the 

topology shown in Figure 24. This means the delays experienced by the IEEE 1588 

synchronization packets are symmetric and do not affect the IEEE 1588 synchronization 

accuracy. Here, only a few test cases are presented. The additional test cases are 

described in Sub-Appendix C.1. 

 

5.2.1 A Real Slave Clock vs. a Perfect Master Clock with Temporary Network 

Outages – No Corrections in Macro-Holdover Period 

5.2.1.1 Description 

In this test case, we have a real slave clock connected to a perfect master clock. A perfect 

master clock means that the oscillator of the clock has no drifts due to temperature and 

ageing effects and therefore runs perfectly, at the same frequency as the reference clock. 

The slave clock used here is referred to as a real slave clock as it has both temperature 

and ageing effects enabled. At a simulation time of 4 hours, the connection between the 

master and slave clocks is lost, reflecting a temporary network outage. The outage 

prolongs for 30 minutes and then the connection is restored. The outage period is 

considered as the macro-holdover period for the slave clock. During the 30 minutes 

outage, the slave clock fails to receive the IEEE 1588 synchronization updates from its 
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master clock. No adaptive corrections are applied on the slave clock in macro-holdover 

mode, however in the locked mode, the slave clock is training a model based on the 

master clock updates. The test case examines the effect of outage on clock 

synchronization. The test case is repeated for the network outage of 14 to 14.5 hours. 

5.2.1.2 Results 

Figure 26 shows the master clock synchronization w.r.t. to the reference clock and the 

slave clock synchronization w.r.t. to the master clock and the reference clock, facing a 

network outage (4 to 4.5 hours) but no AOCM corrections applied during the whole 

simulation period. 

 

 

Figure 26: Clock Synchronization - A Real Slave Clock vs. a Perfect Master Clock 

Reflecting Network Outage (4 to 4.5 hours) with No AOCM Corrections 
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Figure 27 shows the slave clock synchronization when AOCM corrections are applied in 

the micro-holdover period. Whenever the slave clock receives the IEEE 1588 clock 

synchronization update (i.e. every 100 seconds), the AOCM step is executed to train the 

model. 

 

Figure 27: Clock Synchronization - A Real Slave Clock Reflecting Network Outage 

(4 to 4.5 hours) with AOCM Corrections Applied on Slave Clock in Micro-Holdover 

Period only 

 

Figure 28 shows the slave clock synchronization for the case when the network outage 

happens from 14 to 14.5 hours. 

 

Figure 28: Clock Synchronization - A Real Slave Clock Reflecting Network Outage 

(14 to 14.5 hours) with AOCM Corrections Applied on Slave Clock in Micro-

Holdover Period only 
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5.2.1.3 Discussion 

From Figure 26, the master to reference clock difference is zero as the master is a perfect 

clock. Both the slave to master and the slave to reference differences during the locked 

period (0 to 4 hours and 4.5 to 16 hours) are around 10 µs due to dominant slave clock 

drift of 100 ppb as explained in the test case results of Sub-Appendix C.1.1. However 

when the AOCM corrections are applied on the slave clock during the micro-holdover 

period as shown in Figure 27, the slave clock differences are reduced from almost 10 µs 

to 4 µs for the 0 to 4 hours period and then to 1 µs for the 4.5 to 16 hours period. Here the 

slave clock, on receiving the update from its master clock every 100 seconds, is training 

an AOCM model. The AOCM correction calculated from the training model every 100 

seconds is applied to the slave clock rate whenever queried for the time stamp (i.e. every 

1 second). It should be noted that the slave only learns about the master time stamp every 

100 seconds compared to the master clock learning about the GPS signal every 1 second 

(see Sub-Appendix C.1.3 for master clock test case). The slave AOCM model has less 

training data and is therefore less accurate compared to the master AOCM model. This 

means the slave needs a longer training period for producing accurate results. During the 

network outages (4 to 4.5 hours), the slave clock no longer receives updates from the 

master clock and the difference grows from 10 µs to around 190 µs which reflects the 

dominant slave clock drift due its rate and some drift due to the temperature/ageing 

effects in the 30 minutes holdover period. The results of 14 to 14.5 hours outage in Figure 

28 are similar with the difference growing from 1 µs to around 180 µs. 
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5.2.2 A Real Slave Clock vs. a Perfect Master Clock with Temporary Network 

Outages – Corrective Model Enabled on Slave Clock 

5.2.2.1 Description 

In the second test case, the first test case (Section 5.2.1) is repeated with the modification 

that the adaptive corrective model trained during the locked period is applied in the slave 

macro-holdover period as well, to correct the time stamp of the slave during the network 

outage (4 to 4.5 hours). 

5.2.2.2 Results 

Figure 29 shows the slave clock synchronization w.r.t. to the master clock and the 

reference clock for a real slave vs. a perfect master scenario facing a network outage (4 to 

4.5 hours) with AOCM corrections applied on slave during the outage as well. 

 

 

Figure 29: Clock Synchronization - A Real Slave Clock vs. a Perfect Master Clock 

Reflecting Network Outage (4 to 4.5 hours) with AOCM Corrections on Slave Clock 
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Figure 30 shows the slave clock synchronization for the case when the network outage 

happens from 14 to 14.5 hours. 

 

 

Figure 30: Clock Synchronization - A Real Slave Clock vs. a Perfect Master Clock 

Reflecting Network Outage (14 to 14.5 hours) with AOCM Corrections on Slave 

Clock 
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Figure 30, the slave has been comparatively trained longer and the slave drift is further 

improved to about 7 µs. It is observed that a longer training period for the AOCM model 

for the slave clock is needed to achieve more accurate results. The effect of the AOCM 

training period for the slave clock is studied in a later test case (Section 5.4.2). 

 

5.2.3 Summary 

The test cases in this section and Sub-Appendix C.1 have been run under no traffic with 

varying conditions on the master and the slave clocks. The adaptive oscillator correction 

model has been considered on both master and slave clocks. In a nutshell, the following 

points are observed. 

• When no AOCM corrections are applied on the master clock in holdover mode, 

the slave to master clock synchronization accuracy can improve if both master 

and slave clocks are drifting in the same direction and can decrease if they are 

drifting in the opposite direction. 

• The adaptive correction method on the master clock improves the master to 

reference clock synchronization significantly. When in holdover mode, the 

difference grows to about 2 µs for an 8 hour holdover period, much less compared 

to about 50 µs with no AOCM corrections applied for the parameters considered 

in the test case. Also, in the master holdover mode, the slave to reference clock 

accuracy would improve if the slave clock is running faster than reference clock 

and would decrease if the slave clock is running slower than the reference clock. 

• The adaptive correction method on the slave clock improves the slave clock 

synchronization with respect to the master clock both in locked and holdover 
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mode. In locked mode, in addition to receiving the master synchronization 

updates every 100 seconds, the slave also trains an AOCM model every 100 

seconds. In both micro and macro holdover modes, the accuracy improves up to 1 

µs but the accuracy depends on the training period of the slave clock. Also in this 

case, the slave to reference clock synchronization becomes directly dependant on 

the master to reference clock accuracy. 

It should be noted that here the performance of the IEEE 1588 and the oscillator 

corrected method is evaluated using a master-slave hierarchy with no traffic disturbance. 

Next it will be interesting to see how the network traffic delays the master updates to the 

slave clock and whether the proposed solution still improves the accuracy and stability of 

a slave clock in such scenarios. We know that the IEEE 1588 protocol does not perform 

well when the delays are asymmetric. So it can be expected that any asymmetric traffic 

will deteriorate the performance of the proposed solution. The next set of test cases 

examines this in more detail. 

 

5.3 Test Cases with Traffic 

The test cases presented in this section introduce traffic in the network using different 

load profiles. The network topology is shown in Figure 24 and the traffic model used is 

presented in Section 5.1.1. Each test case demonstrates the effect of various load profiles 

using real slave and master clocks with the AOCM corrections applied on the master only 

or both the slave and master clocks. The forward traffic (master to slave clock) is 

introduced from nodes n1 to n4. The reverse traffic (slave to master clock) is introduced 

from nodes n4 to n1. It should be noted that the load profiles used in different test cases 
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represent the real situation in cellular base station networks where most of the traffic arise 

from download traffic (i.e. from a base station to a mobile device), and hence making the 

forward traffic dominant over the reverse traffic. Since we have traffic in the network, the 

delays experienced by the IEEE 1588 synchronization packets are also observed to 

determine their effect on the IEEE 1588 synchronization accuracy. Since the traffic has 

no impact on the master clock, therefore the graphs for the master clock synchronization 

are not produced. Here, only a few test cases are presented. The additional test cases can 

be found in Sub-Appendix C.2. 

 

5.3.1 Static Packet Load using Real Slave and Master Clocks - Corrective Model 

Enabled on the Master Clock only 

5.3.1.1 Description 

In the first test case with traffic scenario, we use real master and slave clocks having 

temperature and ageing effects. The adaptive oscillator correction model is enabled on 

the master clock only. Using the traffic model described in Section 5.1.1, a static traffic 

load of 80% is introduced in the forward direction (master to slave) while 20% traffic is 

introduced in the reverse direction (slave to master) starting at a simulation time of 3hrs 

and stopping at a simulation time of 13 hours. The test case examines the effect of static 

traffic in both directions on the slave clock synchronization. 

5.3.1.2 Results 

Figure 31 shows the slave clock synchronization w.r.t. to the master and reference clocks 

and the difference of delays experienced (forward - reverse) when a static packet load is 
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introduced between the real slave and master clocks with AOCM corrections applied on 

the master clock only. 

 

Figure 31: Clock Synchronization - Static Packet Load using the Corrective Model 

on the Master Clock only 
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reverse delay) is 12,552.6 µs which indicates the forward delays dominate due to the 80% 

forward traffic. Since the slave clock difference graph is the average of the absolute 

values while the delay graph is the average of true values in Figure 31, therefore they 

cannot be used to study the relationship between the slave accuracy and the asymmetric 

delays. The slave clock difference and delay plots for a single run is therefore produced 

and shown in Figure 32. 

 

Figure 32: Clock Synchronization for Single Run - Static Packet Load using the 

Corrective Model on the Master Clock only 
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IEEE 1588 protocol. As described in Section 3.1.3, the IEEE 1588 clock offset is 

calculated using the equation given below. 
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If the delays are symmetric then the Mean Propagation Time is equal to the actual 

propagation times experienced by the synchronization packets. If the delays are 

asymmetric, the computed Mean Propagation Time differs from the actual propagation 

times. In this case, either the Forward Delay or the Reverse Delay is dominant, and the 

Mean Propagation Time and hence the Clock Offset contains an error term of up to 

:;<=/<>�?@A/B

�
 or C@D@<-@�?@A/B

�
. Therefore the degree of inaccuracy introduced in the slave 

clock time stamp is approximately half of the dominant delays. 

More specifically, the slave clock offset from the master clock can be written as: 
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Therefore, if we can predict or calculate the delay asymmetry correctly, we can correct 

the IEEE 1588 clock offset and account for errors introduced by irregular traffic 

latencies. 
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5.3.2 Sudden Large and Persistent Changes in Traffic Load using Real Slave and 

Master Clocks - Corrective Model Enabled on the Master Clock only 

5.3.2.1 Description 

In a second test case, the first test case is repeated using a different load profile. Using the 

load profile shown in Figure 33, the traffic is introduced starting at a simulation time of 3 

hours and stopping at a simulation time of 13 hours. Here in the forward direction (master 

to slave) the network load is changed between 80% and 20% every hour while 

simultaneously in the reverse direction (slave to master), the network load is changed 

between 50% and 10%. The test case examines the effect of large and persistent changes 

in network load on the slave clock synchronization with AOCM enabled on the master 

clock only. 

 

Figure 33: Load Profile demonstrating Sudden Large and Persistent Changes in the 

Network Load 
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5.3.2.2 Results 

Figure 34 shows the slave clock synchronization w.r.t. to the master and reference clocks 

and the difference of delays experienced (forward - reverse) when traffic using load 

profile in Figure 33 is introduced between the real slave and master clocks with AOCM 

corrections applied on the master clock only. 

 

Figure 34: Clock Synchronization: Sudden Large and Persistent Changes in 

Network Load using the Corrective Model on the Master Clock only 
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differences are at the 15,000 µs level and the asymmetric delays experienced by the 

synchronization packets are at the 20,000 µs level. For the simulation time interval where 

forward traffic is dominant (e.g. 3 to 4 hours, 80% forward and 50% reverse), the 

effective delays are in the forward direction. For the simulation time interval where the 

reverse traffic is dominant (e.g. 4.5 to 5 hours, 10% forward and 20% reverse), the 

effective delays are in the reverse direction. The average of delay differences (forward – 

reverse delay) is 3,023.5 µs i.e. overall the forward delays dominate due to the dominant 

forward traffic in the load profile used. 

 

5.3.3 Temporary Network Outage with Static Traffic Load using Real Slave and 

Master Clocks - Corrective Model Enabled on Both Clocks 

5.3.3.1 Description 

In a third test case, we demonstrate a temporary network outage (4 to 4.5 hours) between 

the master and slave clocks in the presence of static traffic load. The adaptive correction 

model is enabled on both master and slave clocks. Using the traffic model described in 

Section 5.1.1, a static traffic load of 40% is introduced in the forward direction while 

30% traffic is introduced in the reverse direction starting at a simulation time of 3 hours 

and stopping at a simulation time of 13 hours. The test case examines the effect of 

network outage in the presence of static traffic in both directions on the slave clock 

synchronization accuracy. 
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5.3.3.2 Results 

Figure 35 shows the slave clock synchronization w.r.t. to the master and reference clocks 

and the difference of delays experienced (forward - reverse) during network outage with 

static network load and the AOCM corrections applied on the master clock only. Figure 

36 looks closely at the slave clock synchronization during the network outage. 

 

 

Figure 35: Clock Synchronization - Temporary Network Outage during Static 

Traffic with Corrections Applied on Both Clocks 
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Figure 36: Clock Synchronization - Temporary Network Outage during Static 

Traffic with Corrections Applied on Both Clocks  - Closer Look at the Holdover 

Period 

 

Figure 37 and Figure 38 show the slave synchronization results for the case when AOCM 

correction is not applied on the slave clock. 

 

 

Figure 37: Clock Synchronization - Temporary Network Outage during Static 

Traffic with no AOCM Corrections on Slave Clock 
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Figure 38: Clock Synchronization - Temporary Network Outage during Static 

Traffic with no AOCM Corrections on Slave Clock - Closer Look at the Holdover 

Period 

 

5.3.3.3 Discussion 
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Figure 39: Clock Synchronization - Temporary Network Outage during Static 

Traffic with Corrections Applied on Both Clocks 

 

It is observed that the 5000 µs difference is within the drifts experienced by the slave 

clock due to the asymmetric delays. This was not obvious in Figure 35 where the 

maximum slave difference is taken every 100 s. With the outage happening at 4 hours it 

just so happens that slave clock has not drifted enough to cause a slave difference of more 

than 5000 µs. If the outage happens at a different time e.g. from 3.9721 to 4.5 hours and 

the slave difference is plotted again every 1 second, it is observed that the slave stabilizes 

around 7500 µs as shown in Figure 40. 

 

Figure 40: Clock Synchronization - Temporary Network Outage during Static 

Traffic with Corrections Applied on Both Clocks 
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To further investigate the latency values just before the network outage happens in Figure 

35, the average of absolute delay differences is plotted along with the average of absolute 

slave clock differences, and is shown in Figure 41. 

 

 

Figure 41: Using the Average of Absolute Delay Differences - Temporary Network 

Outage during Static Traffic with Corrections Applied on Both Clocks 

 

From Figure 41, it is observed that the asymmetric delays just before the outage starts is 

9818 µs and therefore the slave clock difference when the outage starts becomes stable 

around a value of 4909 µs (i.e. half of asymmetric delays, in accordance with the 

mathematical results in the first test case, Section 5.3.1).  Hence, in general the value 
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where the slave gets stable could vary and depends on the asymmetric latencies just 

before the outage happens. 

Comparing this result to the case when no AOCM correction is applied on slave clock, 

the slave drifts more than 30 µs during the outage period as shown in Figure 37 and 

Figure 38. The result is surprising as the drift in 30 minute outage should be around 180 

µs as observed in a previous test case (Section 5.2.1). To investigate the further, the plots 

for true clock differences for multiple single runs are plotted as shown in Figure 42. It is 

observed that depending on the asymmetric latency just before the outage, the slave clock 

difference could be positive or negative and the drift for a single run is about 180 µs in 

the positive direction. The average absolute differences plotted earlier are not a true 

indication of the expected results in this case. 

 

Figure 42: Individual Runs using True Clock Differences - Temporary Network 

Outage during Static Traffic with no AOCM Corrections on Slave Clock 
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Hence, the inclusion of adaptive correction method on a slave clock with traffic in the 

network results in an increased stability of the slave clock during the outage. 

 

5.3.4 Summary 

The test cases in this section and Sub-Appendix C.2 have been run with traffic using 

difference load profiles and varying conditions on the master and the slave clocks. The 

adaptive correction model has been considered on both master and slave clocks. In a 

nutshell, the following points are observed. 

• The slave clock difference is one half of the asymmetric latencies experienced due 

to traffic. The shape of the asymmetric latencies and hence the slave clock 

difference follows the traffic profile used. 

• When an asymmetric traffic (e.g. 40% forward, 30% reverse) is increased to 

100% in both directions to cause network congestion, the slave accuracy improves 

because the asymmetric latencies are relatively reduced. 

• When there is a network outage and the AOCM corrections are applied on the 

slave clock, the stability of the slave clock improves compared to the case when 

the AOCM correction is not applied.  However the slave synchronization 

accuracy remains poor. 

 

5.4 Test Cases to Examine the Effect of Miscellaneous Parameters 

The test cases presented in this section study the direct effect of various parameters on 

the clock synchronization. The parameters considered are master clock rate, slave clock 
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rate, IEEE 1588 synchronization frequency, master AOCM training period and slave 

AOCM training period. The master and slave clocks are connected as shown earlier in 

Figure 24 using the parameters mentioned in the simulation setup section (Section 5.1.). 

Also no traffic is considered in the network. For each parameter, the test case is executed 

50 times for all the values under consideration. The average values of the clock 

inaccuracy are calculated. In case of the slave clock, the average values for the maximum 

drift in each synchronization window are calculated. The values calculated are plotted 

using a bar chart. Here, only a few test cases are presented. The additional test cases are 

discussed in Sub-Appendix C.3. 

 

5.4.1 IEEE 1588 Synchronization Frequency 

5.4.1.1 Description 

In a first test case, a real slave clock is connected to a perfect master clock and the IEEE 

1588 synchronization frequency is varied using the values of 1, 5, 10, 100, 1000 and 

10000 seconds. Here the slave clock is running at a rate of 100 ppb. The test case is run 

first without AOCM applied on the slave clock and is then repeated with the AOCM 

corrections enabled on the slave clock. The effect on the slave clock synchronization 

w.r.t. the master clock is observed in both cases versus the varying synchronization 

frequency. 

5.4.1.2 Results 

The average values for maximum slave drifts in each synchronization window are 

calculated to determine the slave clock inaccuracy w.r.t. the master clock and plotted 
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using a bar chart both with no AOCM and with AOCM on the slave clock as shown in 

Figure 43 and Figure 44 respectively. 

 

 

Figure 43: Slave Clock Synchronization with No AOCM - Varying IEEE 1588 

Synchronization Frequency 
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Figure 44: Slave Clock Synchronization with AOCM enabled on the Slave - Varying 

IEEE 1588 Synchronization Frequency 
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provide a good clock synchronization. Nevertheless, applying the AOCM does improve 

the slave accuracy significantly and that can be seen for the synchronization frequency 

values of 1 s, 10 s and 100 s. A higher synchronization frequency also means more traffic 

in the network. So an optimal synchronization frequency should be found where the 

effect of AOCM can be realized at maximum with minimum load on the network. On the 

other hand, if the synchronization updates are received less frequently (i.e. 1000 s or 

10000), then the improvement achieved using the AOCM is not that significant. This is 

due to the reason that the adaptive model does not have enough training data to achieve 

higher synchronization accuracy. 

The effect of the slave AOCM training period is considered in the next test case (Section 

5.4.2) where it will also be determined how many IEEE 1588 updates are required by the 

slave clock to achieve 1 µs accuracy with a confidence level of 95%. 

 

5.4.2 Slave AOCM Training and Holdover Periods 

5.4.2.1 Description 

In a second test case, we have a real slave connected to a perfect master as in Figure 24 

using the parameters as described earlier in the simulation setup section (Section 5.1) and 

the AOCM model enabled on the slave clock. The slave AOCM training period is varied 

while the holdover period of 100 hrs is fixed. The training periods used are 1, 2, 5, 10 and 

20 hours resulting in total simulation periods of 101, 102, 105, 110 and 120 hours 

respectively. The effect of the training period variation on the slave clock 

synchronization is examined in this test case. In addition, for a training period of 20 

hours, the slave inaccuracy is observed for various holdover periods of 1, 5, 10, 20, 30, 
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50 and 100 hours. It is also determined how many IEEE 1588 synchronization updates 

from master to slave clock are needed to achieve 1µs slave accuracy with 95% 

confidence. 

5.4.2.2 Results 

Figure 45 and Figure 46 show the average slave inaccuracy values for training and 

holdover periods respectively while Figure 47 shows the average values for various 

holdover periods. 

 

 

Figure 45: Slave Clock Synchronization in Training Period - Varying Slave AOCM 
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Figure 46: Slave Clock Synchronization in Holdover Period - Varying Slave AOCM 

Training Period 

 

 

Figure 47: Slave Clock Synchronization - Varying Slave AOCM Holdover Period 
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5.4.2.3 Discussion 

From Figure 45, it can be seen that the slave accuracy during the training period improves 

with increasing training periods. From Figure 46, it is observed the slave inaccuracy in 

holdover period is also reduced greatly with longer training periods where the holdover 

period is fixed at 100 hours for all cases. The longer training period ensures more 

samples contribute to the AOCM training model, producing better results in the holdover 

period. 

From Figure 47, the results for varying holdover periods as expected show that the slave 

clock differences grow with longer holdover periods. The slave inaccuracy also has a 

dominant ageing effect for longer simulation periods. However the slave clock drifts up 

to 1350 µs and the master clock drifts up to 15 µs for the same 100 hr holdover period. 

The reason for this big difference is that the slave clock is running at 100 ppb but the 

master clock is running at the rate of the reference clock and only has the temperature and 

ageing effects. Hence the master clock drifts much less than the slave clock. 

It was determined that after 306 IEEE synchronization updates from master to slave clock 

(i.e. Training period = 306x100 seconds = 8.5 hours), the slave to master accuracy is 

about 1 µs. To determine whether this is true in general, we collected two sets of data for 

this training period, and calculated the 95% confidence interval, as shown in Table 4. The 

confidence interval of Set 1 overlaps with the confidence interval of Set 2 such that the 

average of Set 1 belongs to Set 2 CI and the average of Set 2 belongs to Set 1 CI. Hence 

the difference in the results is statistically insignificant and we conclude that with 95% 

confidence that after 306 time stamp updates, the slave clock achieves an accuracy of 1 

µs. 
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Table 4: Slave Clock Accuracy of 1 µs after 306 Synchronization Updates 

 Set 1 Set 2 

Average 1.000612247 µs 0.998811083 µs 

Standard Deviation 0.01838711 0.018317667 

Sample Size 50 50 

Interval 0.005226663 µs 0.005206924 µs 

Confidence Interval 0.995386 to 1.005839 µs 0.993604 to 1.004018 µs 

 

The result can be more generally used to determine how much training is needed for a 

slave clock. If we know the clock synchronization frequency is f, then the training period 

should be approximately (f x 306) seconds to achieve an accuracy of 1 µs with 95% 

confidence. It should be noted that the number of updates (306) obtained here depends on 

the simulation parameters used such as the network topology, the clock rate, the 

temperature profile etc. Nevertheless similar calculations can be done for a different set 

of simulation parameters to predict the optimal number of synchronization updates. On a 

final point, these calculations are done using a no traffic network. For networks with 

traffic, the delays could be highly asymmetric depending on the traffic profile. The 

performance of IEEE 1588 and AOCM, in this case, will not be same as explained earlier 

in Section 5.3. 

 

5.4.3 Summary 

The test cases in this section and Sub-Appendix C.3 have been run to observe the effect 

of various parameters on the master and slave clock synchronization. In summary, the 

following points are observed. 
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• The more the master clock rates deviate (positively or negatively) from the 

reference clock, the worse is the master accuracy w.r.t the reference clock in 

holdover mode on average and vice-versa. 

• The more the slave clock rates deviate (positively or negatively) from the master 

clock, the worse is the slave accuracy w.r.t the master clock on average and vice-

versa. 

• The higher the IEEE 1588 synchronization frequency, the higher is the slave 

accuracy w.r.t the master clock and vice-versa. 

• Longer training periods both for master and slave clocks produce better accuracy 

results for both clocks. 

• The master and slave inaccuracy increases as the holdover period increases. 

• The slave to master synchronization accuracy of 1 µs is achieved after 306 

synchronization updates from master to slave clock with 95 % confidence. 
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6    Chapter: Conclusions and Future Work 

6.1 Conclusions 

The conclusions of the thesis work are presented here. 

• The thesis proposes a solution to master-slave synchronization problem that 

combines the IEEE 1588 synchronization protocol and the adaptive oscillator 

correction method. The purpose of the adaptive oscillator correction method is to 

train a clock locked to a GPS signal and apply that training model to correct the 

clock in holdover mode (i.e. when the GPS signal is lost), hence improving the 

oscillator accuracy and stability in holdover mode. The first step of the thesis is to 

apply the corrected oscillator method to a simulated master clock which has a 

GPS signal reference. The next step extends the adaptive oscillator correction 

method to the slave clock, using the IEEE 1588 synchronization updates it 

receives from its master clock. This model is applied to the slave clock during the 

waiting period between the synchronization updates and when the slave stops 

receiving updates from the master due to network outage or temporary failure of 

the master clock itself.  

• A clock agent is implemented in the NS-2 simulator to simulate a real clock. 

Environmental changes are also implemented such as changes in temperature and 

ageing affects of the clock. These changes cause the clocks to drift. 

• The proposed solution is evaluated by implementing it in NS-2. Test cases are 

also implemented based on an ITU document covering various network 

conditions and network loads. 
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• The NS-2 results indicate that our proposed solution improves the slave accuracy 

up to 10 times for no traffic networks, depending on the length of the slave clock 

training period.  

• The solution results in traffic networks indicate that the slave accuracy is affected 

by the asymmetric delays such that the degree of accuracy is one half of the 

asymmetric latencies.  

• In case of network congestion, the slave accuracy improves because the delays are 

less asymmetric.  

• In a traffic scenario, when there is an outage, the proposed solution only improves 

the slave clock stability. 

 

6.2 Future Work 

Some suggestions are presented here to enhance the thesis work in the future. 

• The solution uses a basic IEEE 1588 message exchange structure to calculate the 

slave clock offset from the master clock, and applies it directly to the time stamp 

of the slave clock. This in essence only corrects the phase of the slave clock. This 

technique can be enhanced to correct the frequency of the slave clock as well. 

This can be done by enhancing the IEEE 1588 clock synchronization model. One 

suggestion for this is to determine the frequency adjustment by continuously 

monitoring the calculated offsets, and computing the correctional rate from the 

slope of the most recent set of calculated offsets. Another proposal is to reuse the 
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frequency adjustment work done in the Clock Sampling Mutual Network 

Synchronization (CS-MNS) protocol [23]. 

• The IEEE 1588 protocol can also be enhanced by accounting for the asymmetric 

latencies observed in traffic networks. One proposal is to dynamically exchange a 

large number of messages between the master and slave clocks within every 

synchronization window and use the sample with the lowest RTT (Round Trip 

Time) for the slave offset calculation. The smallest measured RTT will reduce the 

impact of latency asymmetry. As the error is bound by ½ RTT, the maximum 

error is reduced as well. Another suggestion is to use the IEEE 1588 transparent 

clocks as mentioned in IEEE 1588 standard [9]. 

• The use of hardware time stamping for the synchronization updates can also help 

reduce the operating system latency. Hardware time stamping means time 

stamping the packets at the interface between the physical and data link layers. 

[24] 

• The performance of the adaptive oscillator correction model can further be 

evaluated by comparing the estimated model parameters (�4, 35,��6 and &7) with the 

known model parameters (a, b, c and d) under varying network conditions and 

traffic scenarios. 
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Appendices 

Appendix A: NS-2 Clock Agent TCL Commands 

The details from creating a clock agent to configuring the parameters of clock agent in a 

TCL script are presented in this appendix. To quickly start using the clock agent using the 

default values for the parameters, refer to Sub-Appendix A.1 for Creating a Clock Agent, 

Sub-Appendix A.15 for Attaching a Clock Agent to a node, Sub-Appendix A.16 for 

Starting and Stopping a Clock Agent and Sub-Appendix A.17 for Capturing time stamp 

passed from ns2 C++ code to ns2 TCL code. 

A.1 Creating a Clock Agent 

Syntax: 

To create a clock agent c0 

set c0 [new Agent/Clock] 

A.2 Clock rate 

The parameter rate represents the natural rate of the clock with respect to the ns2 

simulation time (also referred to here as reference time). For example if rate = 1 it means 

the clock is running at the same rate as simulation time, rate = 1.5 means the clock is 

running 1.5 times faster than simulation time, rate = 0.5 means the clock is running 0.5 

times the simulation time. The parameter rate is adjusted if the ageing effect of the 

oscillator is enabled (Refer to Sub-Appendix A.12 for more info). 

Syntax: 

$c0 set rate 1      Clock running at the same rate as reference time 
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$c5 set rate 1.0000001   Clock 100 ppb (parts per billion) faster than reference time 

Default: 

The default value of rate is 1. 

A.3 Clock initial offset 

The parameter offset represents the initial offset of a clock i.e. when a clock starts ticking 

it starts from this value. For example if offset is set to 100, it means the clock start 

ticking from 100s.  

Syntax: 

$c0 set offset 1 Sets the offset as 1s 

$c0 set offset 20 Sets the offset as 20s 

Unit: 

The unit of offset is seconds w.r.t the corresponding clock. 

Default: 

The default value of offset is 0. The offset must be greater than or equal to zero and can 

be a double value. 

A.4 Querying time stamp value 

The parameter timeToDisplayInfo represents how often the clock time stamp value is 

queried. The value of the time stamp is passed from ns2 C++ code to TCL where it can 

be outputted to screen or captured in a text file (More info in Sub-Appendix A.17). Every 

time the clock time stamp is queried, the simulation time elapsed between the last query 

and current query is calculated. The time stamp of the clock is returned based on the 

clock rate and elapsed time. Here the clock rate includes the “natural rate” of the clock 
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(i.e. the parameter rate which also includes the ageing effect, refer to Sub-Appendix A.2 

and A.12) as well as the correction rate as calculated by the adaptive oscillator correction 

algorithm (Refer to Sub-Appendix A.14).  The drift due to temperature effects is also 

added to the returned time stamp. (Refer to Sub-Appendix A.11). 

Syntax: 

$c0 set timeToDisplayInfo 1 Time stamp information is captured every 1 simulation 

second 

Unit: 

The unit of timeToDisplayInfo is simulation time seconds. 

Default: 

The default value of timeToDisplayInfo is 100. The parameter timeToDisplayInfo must be 

a positive integer i.e. multiple of seconds. 

A.5 masterClock 

The parameter masterClock indicates whether the clock is a master clock or a slave clock. 

A value of 1 means a master clock and 0 means a slave clock. If there is a slave clock in 

the network, we must also have a master clock which would be used to synchronize the 

slave clock time stamp using the IEEE 1588 synchronization protocol. The address and 

port of the master clock to be used by the slave clock to request 1588 messages must be 

set as explained in Sub-Appendix A.6. Both master and slave clocks have the self-

correcting adaptive oscillator correction algorithms implemented to counter the effects of 

ageing and temperature effects. The master correction method as described in Section 3.3 

is implemented. The slave correction method is implemented using the proposed solution 



 88

(see Section 4.1).  The NS-2 TCL configurations to enable these algorithms are given in 

Sub-Appendix A.14. 

Syntax: 

$c0 set masterClock 1 

Default: 

The default value of masterClock  is 1 i.e. a master clock. 

A.6 masterAddr and masterPort 

For using the IEEE 1588 synchronization protocol, a slave clock can be configured to 

receive updates from a master clock. The address and port of the master clock is 

configured at the slave clock so that it can request IEEE 1588 sync messages. 

Syntax: 

To set a node represented by address 0 and port 0 to be the master node of a slave node 

with clock c5, the syntax given below is used. 

$c5 set masterAddr 0 
$c5 set masterPort 0  

Default: 

Both masterAddr and masterPort have default values of -1.  

Note: 

The correct values must be set before using a slave clock. The first node created in the 

TCL script has the default address of 0 and the default port of 0. Therefore it is 

recommended to use the first node as the master node so that the parameters masterAddr 

and masterPort of the slave node can both be set to 0. 
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A.7 timeStampReqFreq 

The parameter timeStampReqFreq indicates how often the slave clock requests the 

timestamp from the master clock for doing IEEE 1588 synchronization. 

Syntax: 

$c5 set timeStampReqFreq 100  Master clock sends sync messages every 100 

seconds (as per its own rate) 

Unit: 

The unit of timeStampReqFreq is seconds w.r.t. the corresponding master clock. 

Default: 

The default value of timeStampReqFreq is 100. The parameter timeStampReqFreq must 

be a positive integer i.e. multiple of seconds. If the AOCM method is enabled, the 

parameter timeStampReqFreq must also be a positive integer multiple of the parameter 

RLSFreq (see Section A.14) . 

A.8 enable1588Logs 

The parameter enable1588Logs is used to enable or disable IEEE 1588 protocol logs 

outputted on the screen. If set to 1, the logs are enabled. If set to 0, the logs are disabled. 

If enabled the logs are outputted to the standard output such as console. 

Syntax: 

To enable logs for a master node 0 represented by clock c0 and slave node 5 represented 

by clock c5, the following is the syntax. 

$c0 set enable1588Logs 1 
$c5 set enable1588Logs 1 

A snapshot of the logs outputted to the screen for the above example is given next: 
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Node: 5 ***INIT Message (packet rate) sent by slave clock @ Ref. time = 1s 
Node: 0 ***INIT Message received by master clock @ Ref. time = 1.0025605s 
Node: 0 ***SYNC Message sent by master clock @ Ref. time = 1.0025605s 
Node: 5 ***SYNC Message received by slave clock @ Ref. time = 1.005121s 
           master to slave delay: 0.00256049999999952 
Node: 0 ***Delay Request Message received by master clock @ Ref. time = 1.0076815s 
           slave to master delay: 0.00256049999999952 
Node: 5 ***Delay Response Message received by slave clock @ Ref. time = 1.010242s 
           master to slave delay: 0.00256049999999952 
           offset = 5.08937558763023e-10 
           mean delay = 0.00256049999999952 
           old timestamp = 1.00512100050894 
           new timestamp = 1.01024200050894 

The highlighted logs are outputted from the slave side whereas the logs not highlighted 

are outputted from the master side. Note the INIT message logs are outputted only once 

in the beginning when the packet rate is sent by slave clock and then received by master 

clock. 

Default: 

The default value of enable1588Logs is 0 i.e. logs are disabled. 

A.9 enable1588Delays 

The parameter enable1588Delays is used to enable or disable the recording of actual 

forward (master to slave) and reverse (slave to master) delays into a text file observed 

during each IEEE 1588 synchronization event. The delays are logged into a text file 

called “delays_x.txt” where x is the node number corresponding to the clock. If the file 

"delays_x.txt" already exists it will be overwritten by the new one. The unit of the delays 

is simulation seconds. The parameter is valid for a slave clock only. 

Syntax: 

To enable delays for a slave node 5 represented by clock c5 
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$c5 set enable1588Delays 1 

As a result a text file “delays_5.txt” will be generated. A snapshot of the file is given in 

Figure 48: 

 

Figure 48: A snapshot of delays_5.txt file 

The first column represents simulation time, the 2nd column represents forward delay and 

the 3rd column represents reverse delay. Each row represents one complete 

synchronization event. 

Default: 

The default value of enable1588Delays is 0 i.e. output of delays is disabled. 

A.10 tempProfileName 

The parameter tempProfileName is used to indicate the text file to be used for reading the 

temperature profile coefficients. The temperature profile indicates the values of 

temperature to be used over time. A value of -1 indicates no temperature profile selected, 

hence no temperature effects. Any other number e.g. 1 means the text file 

"TempProfile1.txt" would be read for temperature profile coefficients. 

Syntax: 

$c0 set tempProfileName 1 Text file "TempProfile1.txt" is used for temperature profile 

A typical temperature profile text file is shown in Figure 49. 
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Figure 49: Temperature profile text file “TempProfile1.txt” 

Each line in the text file represents coefficients a and b for each hour. Temperature and 

time are related using linear equation y = ax + b, where y is temperature and x is time. The 

temperature profile will reuse the coefficients from the beginning after reaching the last 

set of coefficients.  The Figure 49 temperature profile coefficients results in a temperature 

profile graph shown in Figure 50. 
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Figure 50: Temperature Profile using coefficients from “TempProfile1.txt” 

Default: 

The default value of tempProfileName is -1 i.e. no temperature profile provided, 

therefore no temperature effects on the clock oscillator. 

A.11 Temperature Effect 

The three parameters temp_ppb,  temp_degreesC and  temp_quad_term together define 

the temperature effects on the clock oscillator. The linear temperature effect is 

represented by temp_ppb and  temp_degreesC e.g. if temp_ppb = 4 and temp_degreesC 

= 75, it means a linear temperature effect of 4ppb/75C. To model a quadratic temperature 

effect, a quadratic term temp_quad_term is included e.g. temp_quad_term = -

0.00031966 ppb/C2 
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$c0 set temp_ppb 5 
$c0 set temp_degreesC 80 
$c0 set temp_quad_term -0.00031966 

Whenever the time stamp is queried, the drift due to temperature is calculated for the time 

elapsed since last query. The elapsed interval is divided into sub-intervals, each 

represented by the parameter driftInterval (More info in Sub-Appendix A.13). For each 

sub-interval, the temperature at its middle (midTemp) is obtained using the assigned 

temperature profile and the drift calculated as below: 

&�"� � ������
E

3F���
E&�����#�� 1 �&���
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1 �&���
 1 �&���
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Unit: 

The unit of temp_ppb is ppb (parts per billion). The unit of temp_degreesC is C 

(Celsius). The unit of temp_quad_term is ppb/C2. 

Default: 

The default values are temp_ppb = 4, temp_degreesC = 75, temp_quad_term =  -

0.00031966. The parameter temp_ppb must be an integer. temp_degreesC can be a 

double value excluding zero. temp_quad_term can be a double value. 

A.12 Ageing Effect 

The parameters ageing, ageing_ppb and ageing_days together define the ageing effects 

on the clock oscillator. To enable the ageing effect, the parameter ageing must be set to 1, 

and to disable ageing, it is to be set to 0. Only a linear ageing effect is considered and is 

represented by the parameters ageing_ppb and  ageing_days e.g. if ageing_ppb = 1 and 

ageing_days = 1, it means a linear ageing effect of 1ppb/day.  
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Syntax: 

$c0 set ageing 1 
$c0 set ageing_ppb 1 
$c0 set ageing_days 1 

Whenever the time stamp is queried, the change in the natural rate of the clock due to 

ageing is calculated for the time elapsed since last query. The elapsed interval is 

subdivided into sub-intervals, each represented by the parameter driftInterval (More info 

in Sub-Appendix A.13). For each sub-interval, the new natural rate of the clock is 

obtained as follows: 

���� � ���� � �������E
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Unit: 

The unit of ageing_ppb is ppb (parts per billion). The unit of ageing_days is days. 

Default: 

The default values are ageing = 0, ageing_ppb = 1, ageing_days = 1 

The parameter ageing_ppb must be an integer. ageing_days must be a positive number 

and can be a double value. 

A.13 driftInterval 

The parameter driftInterval represents a sub-interval used for temperature and ageing 

effects calculations. For simplicity, use the same value as for timeToDisplayInfo (Sub-

Appendix A.4). 

Syntax: 

$c0 set driftInterval 1 

Unit: 
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The unit of driftInterval is simulation seconds. 

Default: 

The default value of driftInterval  is 1. The parameter driftInterval must be a positive 

integer i.e. multiple of seconds. 

A.14 Adaptive Oscillator Correction Method Parameters 

enableRLS, gpsSignal and RLSFreq 

In the adaptive oscillator correction method (AOCM) aka RLS algorithm, to allow the 

clock to have a locked mode and a holdover mode feature, the parameter gpsSignal must 

be set to 1. The interval for the holdover period is determined by the parameters 

holdoverStart and holdoverEnd explained later in this appendix. The remaining interval 

represents a training (locked) period. To disable such a feature, set gpsSignal to 0. In 

addition if the purpose is to apply AOCM corrections to the clock rate in holdover mode,  

set enableRLS to 1, 0 to disable AOCM corrections in holdover mode. The parameter 

RLSFreq determines how often the AOCM algorithm is run. The AOCM algorithm can be 

applied to both master and slave clocks. For the master clock, the AOCM algorithm tries 

to synchronize it with the reference time i.e. simulation time.  For the slave clock, the 

AOCM algorithm tries to synchronize it with the master clock time. 

Syntax: 

$c0 set gpsSignal 1 
$c0 set enableRLS 1 
$c0 set RLSFreq 1 

Unit: 
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The unit of RLSFreq is simulation time seconds and must be a positive integer multiple of 

the parameter timeToDisplayInfo (Refer to Sub-Appendix A.4). 

Default: 

The default values are gpsSignal = 0, enableRLS = 0, RLSFreq = 100.  

holdoverStart and holdoverEnd 

The holdover period start and end are indicated by the parameters holdoverStart and 

holdoverEnd. For the master clock, a holdover period means that it no longer receives 

updates from GPS (or whatever reference clock it is tuned to). For a slave clock, a 

holdover period means it no longer receives IEEE 1588 synchronization updates from its 

master clock. Any period which is not a holdover period is the training period (i.e. locked 

mode). Only one holdover period is supported. 

Syntax: 

$c0 set holdoverStart 8  Holdover mode starts at 8hrs 

$c0 set holdoverEnd 20  Holdover mode ends at 20hrs 

Unit: 

The unit of the parameters holdoverStart and holdoverEnd is hours. 

Default: 

The default values are holdoverStart = 10 and holdoverEnd = 52. Double values can be 

used here. 

outputMaxCTE 

To log maximum CTE (Cumulative Time Error in microseconds) for each simulation run 

to a text file "maxCTE_x.txt", set the parameter outputMaxCTE to 1, to disable set it to 0, 
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where x is the node number for the corresponding clock. If the file "maxCTE_x.txt" 

already exists, the CTE is appended to it otherwise it is generated. One value is appended 

for each simulation run. 

Syntax: 

To enable output of max CTE for a node 0 represented by clock c0 

$c0 set outputMaxCTE 1 

As a result max CTE is appended to a text file “maxCTE_0.txt”. A snapshot of the file is 

given for 3 runs in Figure 51. 

 

Figure 51: A snapshot of maxCTE_0.txt file 

Default: 

The default value of outputMaxCTE is 0 

outputRLSCorrections 

To output all the AOCM rate corrections for a single run to a text file "corrections_x.txt", 

set the parameter outputRLSCorrections to 1, to disable set it to 0. Again,  x is the node 

number corresponding to the clock. If the file "corrections_x.txt" already exists it will be 

overwritten by the new one. The unit of the corrections is ppb. 

Syntax: 

To enable output of AOCM corrections for a node 0 represented by clock c0 

$c0 set outputRLSCorrections 1 
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As a result a text file “corrections_0.txt” is generated. A snapshot of the file is given in 

Figure 52. 

 

Figure 52: A snapshot of corrections_0.txt file 

The first column represents the time stamp of the node and the 2nd column represents the 

corresponding correction applied to the rate. 

Default: 

The default value of outputRLSCorrections is 0 

A.15 Attaching a Clock Agent to a node 

To attach a given clock agent c0 to a given node n0, use the following syntax. 

$ns attach-agent $n0 $c0 

A.16 Starting and Stopping a Clock Agent 

To start a clock agent, use 

$ns at 1.0 "$c0 start"   Starts at simulation time of 1.0s 

To stop a clock agent, use 

$ns at 100.0 "$c0 stop"  Stop at simulation time of 100.0s 

A.17  Capturing time stamp passed from ns2 C++ code to ns2 TCL code 

To capture the time stamp of the clock, passed from C++ code to TCL script, a procedure 

timeout must be written in the TCL script. The timeout routine defined in the TCL script 
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is called by the C++ code. Apart from passing the clock timestamp, the natural rate of the 

clock and the effective rate (after applying the AOCM correction) are also passed from 

the C++ code. The timeout procedure is given below. 

#Define a 'timeout' function for the class 'Agent/Clock' 
Agent/Clock instproc timeout {ts rate eff_rate} { 
 global ns 
 $self instvar node_ 
 puts "Node [$node_ id] @ $ts\s (rate = $rate, effective_rate = $eff_rate, ref. = 
[$ns now]s)." 
} 

The first argument ts is the time stamp, the 2nd argument rate is the natural rate of the clock and 

the 3rd argument eff_rate is the effective rate of the clock, all passed from ns2 C++ code. Here 

these values could be used to output to the screen or capture in a text file. The above routine 

shows how to output to the screen.  

To capture the time stamps of a master clock (indicated by node 0) and a slave clock into two 

separate text files, the following TCL code can be used in the script. 

set dataMaster [open master.txt w] 
set dataSlave [open slave.txt w] 
#Define a 'timeout' function for the class 'Agent/Clock' 
Agent/Clock instproc timeout {ts rate eff_rate} { 
 global ns dataMaster dataSlave 
 $self instvar node_ 
 variable nodeID [$node_ id]  
 if {$nodeID == 0} { 
  puts $dataMaster "$ts [$ns now]" 
 } else {  
  puts $dataSlave "$ts" 
 } 
} 
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Appendix B: NS-2 TCL Example – Temperature and Ageing Effects 

The NS-2 TCL script presented here uses four nodes n0, n1, n2 and n3 connected as 

shown in Figure 53. Nodes n0, n1, n2 and n3 have clocks c0, c1, c2 and c3 respectively. 

All the clocks used have no initial offsets in the rate i.e. initially all tick at the same rate 

as the reference clock (simulation time). Clock c0 is a perfect clock with no temperature 

and ageing effects. Clock c1 has ageing effect using the default values but no temperature 

drifts. Clock c2 has temperature effect using the default values but no ageing drifts. Clock 

c3 has both temperature and ageing effects using the default values. The TCL script 

measures how the clock drifts due to the temperature/ageing effects. 

 

 

Figure 53: Network Topology containing four nodes 

 

NS-2 TCL Script Code 

set ns [new Simulator] 
#Open a trace file 
set graphData [open graphData.txt w] 
 
#Define a 'finish' procedure 
proc finish {} { 
        global ns graphData 
        $ns flush-trace         
        close $graphData 
        exit 0 
} 
 
#Create nodes 
set n0 [$ns node] 
set n1 [$ns node] 
set n2 [$ns node] 
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set n3 [$ns node] 
 
$ns duplex-link $n0 $n1 1Mb 100ns DropTail 
$ns duplex-link $n1 $n2 1Mb 100ns DropTail 
$ns duplex-link $n2 $n3 1Mb 100ns DropTail 
 
#Define a 'timeout' function for the class 'Agent/Clock' 
Agent/Clock instproc timeout {ts rate eff_rate} { 
 global ns graphData 
 $self instvar node_ 
 puts $graphData "[$node_ id] $eff_rate $ts [$ns now]" 
} 
 
#Create clock agents 
set c0 [new Agent/Clock] 
$c0 set offset 1 
$c0 set rate 1 
$c0 set timeToDisplayInfo 100 
$c0 set masterClock 1 
$ns attach-agent $n0 $c0 
 
set c1 [new Agent/Clock] 
$c1 set offset 1 
$c1 set rate 1 
$c1 set timeToDisplayInfo 100 
$c1 set masterClock 1 
$c1 set ageing 1 
$c1 set driftInterval 1 
$ns attach-agent $n1 $c1 
 
set c2 [new Agent/Clock] 
$c2 set offset 1 
$c2 set rate 1 
$c2 set timeToDisplayInfo 100 
$c2 set masterClock 1 
$c2 set tempProfileName 1 
$c2 set driftInterval 1 
$ns attach-agent $n2 $c2 
 
set c3 [new Agent/Clock] 
$c3 set offset 1 
$c3 set rate 1 
$c3 set timeToDisplayInfo 100 
$c3 set masterClock 1 
$c3 set tempProfileName 1 
$c3 set ageing 1 
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$c3 set driftInterval 1 
$ns attach-agent $n3 $c3 
 
#Schedule events 
$ns at 1.0 "$c0 start" 
$ns at 1.0 "$c1 start" 
$ns at 1.0 "$c2 start" 
$ns at 1.0 "$c3 start" 
$ns at 86400.05 "$c0 stop" 
$ns at 86400.05 "$c1 stop" 
$ns at 86400.05 "$c2 stop" 
$ns at 86400.05 "$c3 stop" 
$ns at 86400.1 "finish" 
 
#Run the simulation 
$ns run 
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Appendix C: Additional NS-2 Simulation Results 

C.1 Additional Test Cases with No Traffic 

In this sub-appendix, some more no traffic test cases not already covered in Section 5.2 

are presented. 

C.1.1 A Real Slave Clock vs. a Perfect Master Clock 

Description 

The first test case measures the IEEE 1588 synchronization accuracy of a real slave clock 

connected to a perfect master clock. 

Results 

Figure 54 shows the master clock synchronization w.r.t. to the reference clock and the 

slave clock synchronization w.r.t. to the master clock and the reference clock when a 

perfect master clock is used. 
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Figure 54: Clock Synchronization – A Real Slave Clock vs. a Perfect Master Clock 

 

Discussion 

From Figure 54, the master to reference signal difference is always zero because the 

master clock used is a perfect clock i.e. no temperature and ageing effects. In addition, 

the slave to master clock difference and the slave to reference clock difference are the 

same because the master clock is a perfect clock i.e. the same as the reference clock. This 

difference comprises of the drift (about 10 µs) arising due to the slave clock rate before 

the next synchronization happens and a small drift arising from the dominant temperature 

effect and ageing effect of the slave clock in a synchronization window. The overall 
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graph shapes look like the temperature profile used due to the dominant temperature 

effect. 

 

C.1.2 Real Slave and Master Clocks with No Corrective Models Enabled 

Description 

In a second test case, both master and slave clocks have temperature and ageing effects. 

The master clock is connected to a reference signal (a highly accurate GPS signal with a 

GPS noise of 20 ns RMS (Root Mean Square) jitter on a 1pps edge) to mimic a clock 

model mentioned in Section 3.3. The GPS signal is implemented in NS-2 using the 

simulation time with the 20 ns RMS noise reflected by using the normal random variable 

generator. A master clock is said to be in locked mode when it is connected to the GPS 

signal. When the GPS signal is lost, no correction is applied on the master’s time stamp. 

The test case measures the master clock accuracy as well as the IEEE 1588 

synchronization accuracy of a slave clock receiving updates from its master clock. 

Results 

Figure 55 shows the master clock synchronization w.r.t. to the reference clock and the 

slave clock synchronization w.r.t. to the master clock and the reference clock when real 

slave and master clocks are used with no AOCM corrections applied on either. 
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Figure 55: Clock Synchronization: No Corrective Models Enabled 

 

 

Figure 56: Closer Look at Slave to Master Difference: No Corrective Models 

Enabled 
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Discussion 

From Figure 55, the master to reference clock difference is almost zero (20ns rms GPS 

noise) during the training period (0 to 8 hours). When the GPS signal is lost and the 

master clock stops receiving updates from the GPS signal, the master to reference clock 

difference starts growing due to the temperature and ageing effects on the master clock 

oscillator. 

From Figure 55 and Figure 56, the slave to master clock difference when the master clock 

is in locked mode (0 to 8 hours) is the same as in the first test case using a perfect master 

clock (Section C.1.1) with a very slight variation due to the addition of GPS noise. It 

should be noted that when the master is in locked mode, the drifts due to temperature and 

ageing effects on the master clock get corrected after receiving updates from the GPS 

signal. So the master to slave clock difference is effectively due to the drifts due to the 

rate, the temperature and ageing effects of the slave clock. However when the master 

clock is in holdover mode (8 to 16 hours), the slave to master synchronization is observed 

to be improved. This is because in this case, there are drifts due to temperature and 

ageing effects both on master clock and slave clock which are in the same direction. The 

overall master to slave difference does not have much contribution from the temperature 

and ageing effect. The difference is therefore decreased compared to locked mode case 

but still stays around 10 µs due to drift from the dominant slave clock rate. This is not to 

say that in general that the slave to master synchronization would always improve when 

the master goes into holdover mode. In general it would depend on the values of the 

temperature and ageing effects both on master and slave clocks. If they are drifting in the 



 109

same direction, the accuracy will improve, if they are in opposite direction, the accuracy 

will get worse. 

Finally the slave to reference signal difference during the master training period is around 

10µs as expected, but in the holdover mode it grows as the master clock itself is no 

longer accurate w.r.t. the reference clock. 

 

C.1.3 Real Slave and Master Clocks when AOCM is Enabled on the Master Clock 

Description 

In the third test case, the second test case (Section C.1.2) is repeated with the 

modification that the adaptive AOCM model is applied on the master clock to correct its 

time stamp. 

Results 

Figure 57 shows the master clock synchronization w.r.t. to the reference clock and the 

slave clock synchronization w.r.t. to the master clock and the reference clock when real 

slave and master clocks are used but AOCM corrections are applied on the master clock 

only. 
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Figure 57: Clock Synchronization: AOCM Enabled on Master Clock 

 

Discussion 

From Figure 57, the master to reference difference is almost zero (20ns rms GPS noise) 

during the training period (0 to 8 hours). However, in holdover mode, since the adaptive 

corrective model is applied, the difference does not grow as fast as in the second test case 

where AOCM is not applied (Section C.1.2). This behavior is consistent with the results 

reported in [19] as summarized in Section 3.3. 

Next, the slave to master clock difference is around 10 µs i.e. consists of the maximum 

slave clock drift in a synchronization window and drifts due to temperature and ageing 
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effects with the graph looking like the temperature profile used due to the dominant 

temperature effect. 

Finally, the slave to reference clock difference in Figure 57 shows that during the training 

period, the difference is around 10µs as expected but in holdover mode it reduces slightly 

and therefore shows an improvement in accuracy. The result is surprising and upon 

further investigation, and plotting the average of the true differences (master – reference) 

instead of the average of the absolute differences as shown in Figure 58, it is revealed 

that in holdover mode, the master clock becomes slower with respect to the reference 

clock, resulting in a difference of about 1 µs at simulation end.  

 

 

Figure 58: True Clock Differences: AOCM Enabled on Master Clock 

 

0 2 4 6 8 10 12 14 16
-1

-0.5

0

0.5

Simulation Time (hr)

D
iff
er
en

ce
 (
m
ic
ro
se

co
nd

s)

Master Synchronization w.r.t. to Reference Clock

0 2 4 6 8 10 12 14 16
9

9.5

10

10.5

Simulation Time (hr)

D
iff
er
en

ce
 (
m
ic
ro
se

co
nd

s)

Slave Synchronization w.r.t. Master & Reference Clock

 

 

Slave to Master

Slave to Ref.



 112

As a result the slave clock enjoys improved accuracy w.r.t. the reference clock and the 

difference drops from 10 µs to 9 µs approximately at simulation end. In general, it seems 

the AOCM corrections on the master clock in holdover mode over-correct the master 

rate, making it slower. Therefore, in general the slave to reference clock accuracy would 

improve if the slave clock is running faster than the reference clock and would decline if 

the slave clock is running slower than the reference clock. The effect of slave clock rate 

on the synchronization accuracy is further examined in the test case in Section C.3.2. 

 

C.1.4 Real Slave and Master Clocks with Temporary Network Outages –

Corrective Model Enabled on Both Clocks 

Description 

In the current test case, the second test case (Section 5.2.2) is repeated with the 

modification that a real master clock experiencing the temperature and ageing effects is 

used instead of a perfect master clock. The AOCM model is applied on both master and 

slave clocks. 

Results 

Figure 59 shows the master clock synchronization w.r.t. to the reference clock and the 

slave clock synchronization w.r.t. to the master clock and the reference clock for real 

slave and master clocks scenario facing a network outage (4 to 4.5 hours) with AOCM 

corrections applied on both. 
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Figure 59: Clock Synchronization - Real Slave and Master Clocks Reflecting 

Network Outage (4 to 4.5 hours) with AOCM Corrections Enabled on Both Clocks 

 

Figure 60 shows the slave clock synchronization for the case when the network outage 

happens from 14 to 14.5 hours. 
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Figure 60: Clock Synchronization - Real Slave and Master Clocks Reflecting 

Network Outage (14 to 14.5 hours) with AOCM Corrections Enabled on Both 

Clocks 

 

Discussion 

From Figure 59, the master to reference clock difference grows from 0 to about 3 µs as it 
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case (Section 5.2.2). However the slave to reference difference grows when the master 
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C.2 Additional Test Cases with Traffic 

In this sub-appendix, some more traffic test cases not already covered in Section 5.3 are 

presented. 

C.2.1 Temporary Network Congestion using Real Slave and Master Clocks - 

Corrective Model Enabled on the Master Clock only 

Description 

In the current test case with traffic scenario, we explore the impact of temporary network 

congestion between the master and slave clocks. The adaptive oscillator correction model 

is enabled on the master clock only. Using the traffic model described in Section 5.1.1, a 

static traffic load of 40% is introduced in the forward direction while 30% traffic is 

introduced in the reverse direction starting at a simulation time of 3 hours and stopping at 

a simulation time of 13 hours. At a simulation time of 7 hours, the traffic load is 

increased to 100% in both directions for 10 minutes and then restored to the previous 

values. The test case examines the effect of network traffic congestion on the slave clock 

synchronization accuracy. 

Results 

Figure 61 shows the slave clock synchronization w.r.t. to the master and reference clocks 

and the difference of delays experienced (forward - reverse) in network congestion 

scenario with AOCM corrections applied on the master clock only. 
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Figure 61: Clock Synchronization - Temporary Network Congestion with 

Corrective Model applied on Master Clock only 
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average of all delay differences (forward – reverse delay) is 2480.2 µs i.e. overall the 

forward delays dominate due to the dominant forward traffic.  

C.2.2 Slow Change in Traffic Load using Real Slave and Master Clocks - 

Corrective Model Enabled on the Master Clock only 

Description 

In a second test case, we demonstrate slow changes in network load over a long period of 

time between the master and slave clocks. The adaptive oscillator correction model is 

enabled on the master clock only. Using the traffic model described in Section 5.1.1, and 

the load profile shown in Figure 62, the traffic is introduced in both directions. Here in 

the forward direction, the load is changed smoothly from 20% to 90% and back over a 

16-hour period. Simultaneously, in the reverse direction, the load is changed smoothly 

from 10% to 45% and back over the same 16-hour period. The test case examines the 

effect of slow traffic changes in the network on the master and slave clock 

synchronization with AOCM enabled on the master clock only. 
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Figure 62: Load Profile demonstrating Slow Change in the Network Load 

 

Results 

Figure 63 shows the slave clock synchronization w.r.t. to the master and reference clocks 
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Figure 63: Clock Synchronization - Slow Changes in Network Load using the 

Corrective Model on the Master Clock only 

 

Discussion 

From Figure 63, the results of the slave to master and reference clock synchronization are 

in general similar to the previous test cases with traffic. The delays are highly asymmetric 
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C.2.3 Network Outage with Slow Change in Traffic Load using Real Slave and 

Master Clocks - Corrective Model Enabled on Both Clocks 

Description 

In a third test case, we repeat the 2nd test case (Sub-Appendix C.2.2) with the inclusion 

of network outage (4 to 4.5 hours) and also enabling the AOCM model on the slave 

clock. We examine the effect of network outage in the presence of slow traffic changes 

on the accuracy of slave clock synchronization. 

Results 

Figure 64 shows the slave clock synchronization w.r.t. to the master and reference clocks 

and the difference of delays experienced (forward - reverse) when traffic using the load 

profile in Figure 62 is used and a network outage (4 to 4.5 hours) is experienced between 

the real slave and master clocks with AOCM corrections applied on both the master and 

slave clocks. Figure 65 looks closely at the slave clock synchronization during the outage 

period (4 to 4.5 hours). 
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Figure 64: Clock Synchronization – Network Outage during Slow Changes in 

Network Load using the Corrective Model on Both Clocks 
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Figure 66 and Figure 67 show the slave synchronization results for the case when AOCM 

correction is not applied on the slave clock. 

 

 

Figure 66: Clock Synchronization – Network Outage during Slow Changes in 

Network Load with No AOCM Model on the Slave Clock 

 

 

Figure 67: Clock Synchronization – Network Outage during Slow Changes in 

Network Load with No AOCM on the Slave Clock - Closer Look at the Holdover 

Period 
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Discussion 

From Figure 64, the results of slave synchronization are the same as in the previous test 

case (Sub-Appendix C.2.2) while the results during the network outage (4 to 4.5 hours) 

are similar to the test case in Section 5.3.3 i.e. the slave clock is stable during the outage 

and drifts only up to 4 to 5 µs. Again plotting the average of absolute delay differences in 

Figure 68 shows that the slave clock stabilizes at half of the asymmetric inaccuracy level 

just before the network outage starts.  

 

 

Figure 68: Using the Average of Absolute Delay Differences - Network Outage 

during Slow Changes in Network Load using the Corrective Model on Both Clocks 
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Comparing the result with the scenarios where no AOCM is applied on the slave clock, 

the slave drift is 120 µs as shown in Figure 67. Again for a single run, the drift is 180 µs. 

 

C.3 Additional Test Cases to Examine the Effect of Miscellaneous Parameters 

Some more test cases not covered in Section 5.4 are presented in this sub-appendix to 

study the direct effect of various parameters on the clock synchronization. 

C.3.1 Master Clock Rate 

Description 

In the first test case, we have real master and slave clocks as connected earlier in Figure 

24 with AOCM enabled on the master clock. The master clock rate w.r.t. the reference 

clock is varied and the effect on the master clock synchronization is observed. The master 

clock rates to be used are -100ppb, -50ppb, -20ppb, -10ppb, 10ppb, 20ppb, 50ppb, 

100ppb where a minus value means a clock running slower than the reference clock by 

that much value and a positive value indicates a faster clock. The effect of the parameter 

variation on the master clock synchronization in holdover mode is examined in this test 

case. 

Results 

The average values for master clock inaccuracy w.r.t the reference clock in holdover 

mode are calculated and plotted using a bar chart as shown in Figure 69. 
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Figure 69: Master Clock Synchronization in Holdover Mode - Varying Master 

Clock Rate 

 

Discussion 

From Figure 69, as expected it is observed that when the master clock rate is 100 ppb 

faster or slower than the reference clock, the master inaccuracy is the most. On the other 

hand, with ±10 ppb master clock rate, the inaccuracy is the least. Hence the AOCM 

corrections applied on the master clock in holdover mode on average results in better 

results with lower inherent clock rates compared to higher rates. 
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C.3.2 Slave Clock Rate 

Description 

In a second test case, again we have real master and slave clocks as in the first test case 

with the AOCM enabled on the master clock. The master clock rate is the same as the 

reference clock while the slave clock rate is varied. The effect on the slave clock 

synchronization is observed. The slave clock rates to be used are -100ppb, -50ppb, -

20ppb, -10ppb, 10ppb, 20ppb, 50ppb, 100ppb. 

Results 

The average values for maximum slave drifts in each synchronization window are 

calculated to determine the slave clock inaccuracy w.r.t. the master clock and plotted 

using a bar chart as shown in Figure 70. 

 

 

Figure 70: Slave Clock Synchronization - Varying Slave Clock Rate 
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Discussion 

From Figure 70, as expected, it is observed that when the slave clock rate is 100 ppb 

faster or slower than the reference clock, the slave inaccuracy is the most. On the other 

hand, with ±10 ppb slave clock rate, the inaccuracy is the least. Also comparing the slave 

results with the previous results of the master clock, it can be seen that the master 

accuracy is better than the slave accuracy for different clock rates. This makes sense 

because in the previous test case, the master clock is locked to a GPS signal and is trained 

every second for 8 hours. The trained model is then used in holdover mode. In case of the 

slave clock, the synchronization updates are received every 100 second at which point the 

slave clock time stamp is updated based on the IEEE 1588 offset. Hence the clock 

accuracy of the slave clock suffers more as compared to the master clock for the same 

clock rate. 

 

C.3.3 Master AOCM Training and Holdover Periods 

Description 

In a third test case, we have real master and slave clocks as connected earlier in Figure 24 

with the AOCM enabled on the master clock and using the parameters as described 

earlier in the simulation setup section (Section 5.1). The master AOCM training period is 

varied while the holdover period of 100 hrs is fixed. The training periods used are 1, 2, 5, 

10 and 20 hours resulting in total simulation periods of 101, 102, 105, 110 and 120 hours 

respectively. The effect of the training period variation on the master clock 

synchronization in holdover mode is examined in this test case. In addition, for a training 
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period of 20 hours, the master inaccuracy is observed for various holdover periods of 1, 

5, 10, 20, 30, 50 and 100 hours. 

Results 

Figure 71 shows the master inaccuracy for various training periods while Figure 72 

shows the master inaccuracy for various holdover periods. 

 

Figure 71: Master Clock Synchronization in Holdover Mode - Varying Master 

Training Period 
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Figure 72: Master Clock Synchronization in Holdover Mode - Varying Master 

Holdover Period 

 

Discussion 

From Figure 71, it is observed the master inaccuracy is reduced greatly with longer 
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master clock inaccuracy, it can be seen that it has big contributions from the ageing effect 

for longer simulation periods such as 50 to 100 hours. 
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