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Introduction 
Content-based publish/subscribe systems provide a new communication paradigm to 

deliver relevant messages to various participants according to their expressed interests. In 

these systems, messages from senders (sources) are routed to receivers (ultimate 

destinations) based on their content, rather than a fixed destination address. Receivers 

describe their interests in receiving a particular category of messages by registering 

subscriptions, which are predicates on message content, in the system. When senders 

generate and inject messages in the network, the network routers (brokers) evaluate these 

messages against the registered subscriptions and route matched messages to their 

receivers. Content-based subscriptions provide receivers with a high degree of control 

over the type of information they wish to receive and hence limit the amount of network 

traffic. The challenging task of matching messages with many subscriptions is left to the 

network infrastructure, which is typically an overly network of distributed application-

level routers. 

Content-based routing has traditionally been used in the context of simple subscription 

languages, such as simple comparison predicates on attribute values, and the message is a 

simple dictionary data structure with name and value pair entries. As XML (eXtensible 
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Markup Language) [1] is widely used as a main standard format for interchanging a 

variety of data, there is increasing demands for XML-based pub/sub systems. Due to the 

flexible structure of XML documents, subscription specifications should be expressed by 

more expressive query languages such as XPath [2] or XQuery [3]. The recent use of 

XPath-based subscriptions to efficiently disseminate XML documents has increased the 

complexity of content-based routing. In this regard, we are interested in XML-based 

routing, where senders generate XML documents that are routed to interested receivers 

through application-level XML routers. Event receivers express their interest through 

XPath expressions. 

A major key concern for content distribution networks is their scalability. As the number 

of XML documents and XPath-based subscriptions increases in the system, matching 

documents to subscriptions at line speed becomes a challenging problem [4, 5, 6]. Hence, 

there is an urgent need for optimization techniques to meet the performance challenges of 

routing XML documents. Typically, researchers propose to aggregate the subscriptions in 

either a loss-less [7] or lossy [8] form to reduce the filtering burden on the XML routers. 

These proposals represent the joint set of subscriptions (which are often a subset of XPath 

expressions) in a more compact data structure. As new subscribers join the system (or 

alternatively existing subscribers add new subscriptions), or existing subscribers leave or 

cancel existing subscriptions, these data structures need to be updated in some or all 

intermediate XML routers. These updates can be fairly complex, to ensure that previously 

aggregated subscriptions are now properly matching the new set of subscriptions. 

This work will focus on a specific application domain for XML routing: disseminating 

sensor data. The input XML documents will describe sensor readings, similar to the work 

under development by the Open Geospatial Consortium [9, 10]. Most sensor readings 

will be encoded in relatively simple XML documents. Similarly, the XPath subscriptions 

will be, in general, linear expressions. We will research the most appropriate aggregation 

strategies for such a scenario, and explore the overheads in incrementally updating the 

necessary data structures in XML routers as 

• New subscriptions are added. 

• Existing subscriptions are removed 
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• The routing topology changes  

XML documents and XPath queries 
XML is a markup language that provides a widely adopted standard way of representing 

data in a flexible format. It allows us to define our own markup language and encodes the 

data of our documents in a more precise manner that can be easily processed. Typically, 

an XML document can be seen as a rooted, ordered, and labeled tree, where each node 

represents an element or a value and the edges correspond to (direct) element/subelement 

or element/value relationships. Each XML document has a single root node. There is a 

unique path from the root node to each element node in the document, which is referred 

to as node path. The depth of a node path is basically the number of nodes along that 

path. The maximal depth of all node paths is the XML document depth. For simplicity, 

this work focuses on the dissemination of XML documents which are small in depth. 

XPath is one of the popular query languages that are proposed for XML data processing. 

The XPath path query can be viewed as sequences of location steps, where each node in 

the sequence is an element tag or a string value, and query nodes are related by either 

parent-child axes, indicated by a single line (/), or ancestor-descendant axes, indicated by 

a double line(//). In general, a simple path query of length l has the form “a1n1a2n2 . . . 

alnl”, where each ni is an element name or a wildcard symbol (∗), and each ai is either (/) 

or (//). For example, “/A// ∗ /D” is a simple path query with length 3 that matches the 

following node paths: “/A/B/D”, “/A/B/C/D”, or “/A/C/D”. In this work, we consider 

simple liner path queries expressed by the above defined relations.  

Existing XML Filtering Approaches and Challenges 
We reviewed a number of existing approaches that focus on the scenario of XML data 

dissemination. XPath queries are pre-processed to create a routing table and a stream of 

XML documents are matched against the routing table entries for routing. There are 

basically two distinct approaches that address the problem of filtering and routing XML 

data: Automaton- and index-based approaches. In this section, we briefly describe the 

most popular filtering techniques that are based on these two approaches. 
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Automata-based Approaches: The state-of-the-art in XML data filtering includes Finite 

State Automaton-based (FSA) approaches such as XFilter [11], YFilter [12], DFA [13], 

AFilter [14], XScan [15], and XQRL [16]. In these approaches, some form of Finite State 

Machine (FSM) is adopted to represent XPath queries where path nodes of the queries are 

mapped to machine states. Each data node visited during parsing an incoming XML 

document triggers a state transition in the underlying FSM representation of the queries. 

A query is considered to match an input XML document when its final state is reached. 

The active states of the machine usually correspond to the prefix matches identified in the 

data. In fact, with a deep structure of XML documents, the number of active states can be 

exponentially large [12, 13, 17, 18]. As stated in [13], using an eager Deterministic Finite 

Automata (DFA) for a simple linear query may result in O(num_ancestor_axes × 

query_depth × alphabet_size × num_*_wildcards/num_ancestor_axes) active states. With 

multiple path queries, an eager DFA may have O(2num_path_queries) active states. A lazy 

DFA is adopted to address the state explosion problem. Although the lazy DFA can 

sometimes be much smaller than the eager DFA, it is shown to be very memory 

intensive. The exponential state explosion can be clearly seen in XFilter as it builds a 

single FSM for each XPath query. This limits the scalability of XFilter to a small-scale 

filtering of XML data. In most approaches, the commonality among existing queries is 

not considered to avoid redundant processing of the queries. YFilter combines the input 

XPath queries into a single non-deterministic finite automata (NFA) structure to reduce 

the number of machine states. A run-time stack structure is used to maintain the active 

and previously visited states. However, since during runtime each NFA state can be 

visited (and inserted into run-time stack) several times, as indicated in [12], deep 

documents can practically cause an exponential explosion in the number of active, run-

time states. AFilter consists of two data structures called AxisView (captures and clusters 

all axes of the registered queries in the form of a directed graph) and StackBranch 

(represent the current XML data branch). StackBranch is a compact stack-based structure 

that is used to traverse the AxisView structure to identify if there are any matches in the 

current data branch when trigger events occurred. Each time a start tag is encountered in 

the data stream, a stack object is created and pushed into its corresponding stack. The 

StackBranch structure still needs to store an exponential number of objects for deep 
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documents, which may increase the memory requirement. A hybrid XML filtering engine 

[36], a combined structure of DFA and AFilter, introduced to filter simple and complex 

queries separately. Simpler XPath queries, ones without wildcards (*) or descendents (//), 

are stored in a combined DFA while AFilter structure is used to store more complex path 

queries. The hybrid structure supports subscription insertion/deletion in an incremental 

process. A single DFA and index-based structures are built in parallel to hold simple and 

complex queries respectively. Whenever a new subscription query is received as part of 

insertion request, it has first to be parsed to identify if it is a simple or complex query. If 

the query is a simple one, it is simply add to the DFA structure by traversing DFA until 

either the final state is reached, or no edge is found for some location step in the query.  

In the later case, the remaining location steps of this query are added to the DFA. If it is a 

complex query, then the indexed structure is checked to determine the accepting (final) 

state of the new query.  If it is present, the structure nodes will be traversed to add new 

labels of the location paths of the query in reverse order. The query is successfully added 

to the structure when the root node is reached. If an element is not found during any step 

in the process, a new node must be created and added to the structure to represent that 

element. The process of query deletion is performed in the similar way. Before the adding 

and deleting operations, queries are stored in temporary buffer until they are successfully 

committed. It is not clear the reason behind using two different structures to deal with 

simple and complex queries separately. Although DFA structure can provide an efficient 

mean to process XPath queries, it is expected to perform poorly with a large number of 

XPath queries, because the structure size grows exponentially with size of the workload.     

Index-based Approaches: Various index-based approaches were proposed to match path 

queries against XML documents. This includes, but is not limited to, XTrie [19], 

PathStack/TwigStack [20], FiST [21], Index-Filter [22], and PathM [23]. In general, 

index-based techniques combine path queries into a prefix tree and generate an element 

position index for the incoming XML data. Then, the prefix tree is computed based on 

the index for the matched queries. XTrie is an index structure that offers an efficient way 

of filtering XML documents based on XPath queries. It represents XPath queries as 

strings and indexes them into a trie-based data structure, called XTrie, which leverages 

prefix commonalities in filters. XTrie supports several features that make it attractive for 
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content-based XML routing. First, it provides an effective filtering engine for matching a 

large number of complex, tree-structured XPath queries (as opposed to simple, single-

path queries) against XML data. Second, XTrie supports both ordered and unordered 

matching of XML documents. Third, by using indexing technique in a trie-based 

structure along with a sophisticated matching algorithm, XTrie can efficiently minimize 

the number of unnecessary index probes and avoid redundant matching, thereby speeding 

up the filtering process. PathStack/TwigStack introduced two families of index-based 

path/twig join algorithms as primitives for matching path queries against an XML 

document efficiently. Here, twig queries are typically a subset of XPath expressions that 

include parent/child, ancestor/descendent axes, and node predicates. The proposed 

algorithms are generalizations of the binary structural join algorithms introduced in [20, 

23, 24] to match path and twig queries. Their technique mainly depends on the use of a 

chain of linked stacks to compactly represent partial results to query paths, which are 

then stitched together to obtain matches for the twig pattern. The core contribution of the 

PathStack/TwigStack algorithms is that no large intermediate results are generated for 

complex path or twig queries, thereby eliminating the need for an optimization step that 

was needed when composing partial results from the algorithms in [23, 24]. In particular, 

the TwigStack algorithm showed to be I/O and CPU efficient for a large set of query twig 

patterns. FiST (Filtering by Sequencing Twigs) converts twig queries expressed in XPath 

and XML documents into sequences. These sequences are organized into a dynamic 

index-based data structure for efficient filtering. Instead of matching individual linear 

paths and then performing post-processing to identify matching twig queries, FiST 

exploits holistic matching of twig queries with incoming XML documents. The matching 

is holistic since the twig query is matched as whole rather than matching individual linear 

paths from root-to-leaf. FiST supports holistic matching by transforming twig queries and 

incoming documents into Prufer [21] sequences with inherently support for ordered query 

matching. Unlike XTries, since these sequences represent each filter query holistically, 

each query pattern is filtered independently without leveraging any prefix sharing. Index-

Filter is a novel technique to answer multiple path queries by using indexes to build 

structural information over the tags in the XML document. By taking advantage of this 

additional information, Index-Filter is able to avoid processing large portions of the input 
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document that are guaranteed not to be part of any match. It also generalizes the 

PathStack algorithm, and takes advantage of a prefix tree representation of the set of path 

queries to share computation during multiple query evaluation. PathM uses a compact 

data structure to encode pattern matches rather than recording them explicitly as several 

XPath streaming algorithms [26, 27] do when both predicates and descendant axes are 

present in the path queries, and the XML data is recursive (i.e. data in which tags are 

repeated along a root-to-leaf path). Explicitly storing pattern matches by enumeration can 

be expensive in terms of memory size. PathM also uses a polynomial time streaming 

algorithm to evaluate a large set of XPath queries over streaming XML data. The 

algorithm searches for satisfying matches by probing the compact data structure in a lazy 

manner without enumerating all the pattern matches. 

Key Optimization Techniques 
Recently, XPath-based subscriptions are used to express the interest of consumers in 

receiving certain XML data. In large-scale content-based systems, matching a large 

volume of such subscriptions against XML documents at line speed becomes a 

challenging issue. Several optimization techniques are proposed to meet the performance 

challenges of content-based filtering and routing. Two key optimizations are considered 

to reduce the matching burden on the XML routers. The first optimization, which has 

gained much attention, uses indexing techniques ([5, 12, 13, 19, 21, 22, 29, 30, 31]) to 

perform selective matching with only a compact subset of potentially matching 

subscriptions. The second optimization uses aggregation techniques to convert an initial 

set of subscriptions into a compact and generalized subset of subscriptions to minimize 

the matching overhead [4, 6, 7, 8, 33, 34, 35]. This section reviews the most popular 

optimization techniques that were found in the literature. 

Bloom Filter [5] introduced a novel technique for XML data filtering. A Bloom filter is 

basically a bit-vector of length m used to efficiently represent XML path queries of one 

user. Initially, all the vector bits are set to 0. Then, a number k of independent hash 

functions are selected to map the user queries into its Bloom filter. This results in setting 

some vector bits to 1’s. To determine the existence of a match, the bits of a user Bloom 

filter are checked using the same hash functions. If any of them is set to 0, this will imply 
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a matching failure. In contrast, if all of them are set to 1, this suggests that a match is 

found (with some probability of a false positive, i.e., the Bloom filter mistakenly 

indicates a match while it is not). It is shown in [28] that the probability of a false 

positive is negligible and acceptable by most applications. Figure 1 shows an example of 

a Bloom filter with 4 hash functions. 

 
 

Figure 1: A simple Bloom filter with 4 hash functions [5] 

In general, the routing table consists of many Bloom filters that are representations of the 

XML path queries. During the parsing process of each incoming XML document, a set of 

candidate paths is generated. Each candidate path is mapped to a bit-vector by the same 

hash functions to be evaluated against the routing table entities. If the existence of a 

candidate path is observed in a user’s Bloom filter, the related XML data is forwarded to 

the user. It is obvious that the number of candidate paths increases exponentially with the 

depth and the hierarchal structure of an XML document. Thus, it becomes the bottleneck 

of the system. To improve the filtering performance, a new data structure, Prefix Filters, 

is introduced to decrease the number of candidate paths. Figure 2 provides an example of 

prefix filters. . For each path query string, there are different query prefixes. For example, 

query string "/A//B/*" has respectively length 2 and 3 prefixes "/A//B" and "/A//B/*". 

Prefix filter Li is a Bloom filter representing length i prefixes of all users’ queries. During 

parsing an XML document, each new created candidate path of length l will be matched 

against prefix filter Ll. If it does not match the prefix filter, none of all users’ queries will 

match it. The system will discard this candidate path. 



 

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008 

 
       

Figure 2: An example of prefix filters [5] 
 
The idea of a Counting Bloom Filters is used to avoid any conflict in the bit vector that 

may occur due to deleting an XML path query. A single counter is assigned to each bit in 

the Bloom filter to track the number of hashed items related to that bit. Whenever an item 

is inserted to or removed from the Bloom filter, the counters related to the k hash values 

are increased or decreased, respectively. As a counter value changes from zero to one or 

from one to zero, correspondingly the related bit in the Bloom filter is set to 1 or 0. 

It is worth mentioning that Bloom filter is an incremental process, i.e., path queries can 

easily be added to or deleted from the routing table. This is considered as a key benefit of 

the Bloom filter-based approach. The authors have only focused on transforming path 

queries to a compact representation to store large number of queries in an efficient 

manner. They have not considered the similarity among user queries, which could lead to 

redundant transformation process and increase the building time and size of routing table. 

The performance of the Bloom filter can be significantly affected when the depth of the 

input XML documents is large. This is mainly due to the large number of generated 

candidate paths. 

The authors of [29] proposed a general approach to index a large number of subscriptions 

to quickly discover and maintain covering relationship. Their indexing technique is 
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dynamic, in which subscriptions can be added to and removed from the database. The key 

benefit of detecting covering relationship among subscriptions is to significantly reduce 

routing table size and avoid unnecessary proliferation of subscriptions throughout the 

system. Whenever a new subscription S arrives, the index is used to discover if there is a 

current subscription covering S. If this is the case, subscription S will not be forwarded. 

The index only examines a small fraction of subscriptions stored in the database to 

identify covering subscriptions. When the subscription S is deleted, some subscriptions 

previously covered by S may no longer be covered by any other subscription. Hence, 

such subscriptions need to be identified and routed to other routers. To facilitate this task, 

a data structure, called relation graph, is used to maintain already discovered covering 

relationship among subscriptions. The proposed solution is basically structured in two 

layers. The relation graph represents the upper layer, which stores the already discovered 

covering relationship among subscriptions. The actual index represents the lower layer, 

which is used to discover new covering relationship during the subscription or 

unsubscription process. Figure 3 shows an example of a relation graph containing 5 

subscriptions numbered according to their arrival order.       

 
 

Figure 3: An example of a relation graph [29] 
 
The relation graph is not easy to maintain due to its covering redundancy. For example, if 

a new added subscription S is covered by all existing subscriptions, then edges need to be 

built from each existing subscription into S. This can be an expensive process, especially 

if S is purged immediately. The cost of adding new subscriptions increases proportionally 

with the number of coverings. Similarly, deleting a subscription S that covers other 

subscriptions requires rebuilding the edges of the covered subscriptions. As a result, 



 

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008 

Subscription insertion and deletion is not performed in an incremental manner.      

The work by [32] proposed a novel approach to optimize the performance of an XML 

router by reducing the overhead of subscription matching. Their approach, which is 

called piggyback optimization, enables a downstream router to leverage the subscription 

matching work performed by upstream routers to reduce its own filtering overhead. This 

kind of collaboration is achieved by piggybacking some additional useful information in 

the form of header annotations in the XML documents being routed to downstream 

routers. When an XML document arrives, an XML router first pre-processes the header 

annotations to optimize subsequent processing of the XML document. The annotated 

information helps in making any immediate routing decisions, or reducing the effective 

number of subscriptions that need to be matched. Figure 4 shows the aggregated 

subscriptions in (a), the XML document in (b), and the routing tables in (c). In Figure 

4(c), Ri is used to denote a router, Ti to denote the routing table, Ai, j to denote annotated 

information, and D to denote the XML document. 

 
Figure 4: XPath subscriptions, XML document, and routing tables [32] 

 
During the matching process in an upstream router, some useful information is acquired 

about an XML document and how the matched subscriptions are related to it. Such 

knowledge is classified into positive and negative information (annotations). Positive 

annotations correspond to the information related to either (1) subscriptions in the routing 

table that matched the XML document or (2) data patterns observed in the document. 

Negative annotations correspond to the information related to either (1) subscriptions in 
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the routing table that did not match the XML document or (2) data patterns that did not 

occur in the document. The annotations are created in two steps, referred to as the offline 

and online steps. The former is performed only once as part of the routing protocol to set 

up the routing tables in the routers. To generate more effective annotations, some useful 

information related to the subscriptions in the downstream routers is exploited. More 

precisely, a downstream router transmits such information to each of its upstream routers 

when it advertises its aggregated subscriptions. The upstream routers will locally store 

this information and use them to generate annotations in the online step for the 

documents that are routed to the downstream routers. The later step is achieved by an 

upstream router each time it requires to route a document to some downstream routers. 

With a large population of subscriptions and XML documents, the computation overhead 

incurred by the upstream router to build annotations can offset any performance gains of 

its downstream routers. Also, the performance of downstream routers can be degraded as 

they are required to transmit additional information to the upstream routers and process 

incoming annotations. It should be noted that larger annotations can add additional 

overhead in terms of parsing and transmitting them. Redundant annotation can be created 

for similar subscriptions stored in the routing table. The probability of false positives can 

arise which are acceptable and do not compromise correctness. Although subscriptions 

can be incrementally added and deleted, the updating process may affect the accuracy of 

the information that is piggybacked on the incoming XML documents. This is because 

there is a strong relation between the subscriptions and the piggybacked information.  

XRoute [4, 7, 33] proposed a content-based routing protocol for XML-based data 

dissemination systems. To optimize network traffic and bandwidth, the XRoute protocol 

ensures perfect routing (i.e., an XML document is delivered only to those consumers that 

have submitted a matching subscription). Moreover, it takes full advantage of 

subscription aggregation to minimize the size of the routing tables and the processing 

time at the XML routers. Subscriptions aggregation is a key technique to support a large 

number of subscriptions. Subscriptions can be dynamically registered and cancelled 

without affecting the routing accuracy. The XRoute protocol implements two forms of 

subscription aggregation. If subscription S1 and S2 arrive through the same interface to a 
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node (as the case in N3 shown in Figure 5), it is said that S2 is represented by S1 at that 

interface. Here, it is assumed that S1 covers S2 (i.e., any event matching S2 also matches 

S1). In contrast, if both subscriptions arrive through different interfaces to a node (as the 

case in N1 shown in Figure 5), it is said that S2 is substituted by S1. The aggregation 

mechanism is derived from the following observation: when an event e is received by 

node N3, it is only necessary to examine e against S1 due to the covering property. Thus, 

subscription S2 becomes redundant and should not be propagated upstream from N1 to 

N3. Instead, S2 can be aggregated with S1 and only S1 is forwarded to upstream node N3.    

 
Figure 5: A sample content-based pub/sub network [4, 7, 33] 

 
Each subscription entry, in the routing table, maintains some information about all the 

registrations of subscription S that is received by node N. Such information represents 

N’s view of its neighbors whom they are interested in subscription S. Also, the 

subscription entry includes additional information required to implement the aggregation 

mechanism. This information is used to build the aggregation relations between 

subscription S and the other subscriptions in the routing table. Establishing the 

aggregation relations is an expensive process as it requires modifying all existing 

relations. The authors have not clarified how their aggregation mechanisms deal with 

subscription cancellation. However, we suspect that cancellation process is not performed 

in an incremental way due to the required update in the covering relations and substitute 
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pointers. The substitution mechanism adds some complexity to the routing protocol as it 

is expected to guarantee perfect routing and consistent system state during subscription 

cancellation. Redundant subscriptions are eliminated during the building of the covering 

relations. It is claimed that the matching accuracy is free of false positives or negatives. 

The authors of [6] presented their experience in using an advertisement-based technique 

for optimizing data dissemination in a content-based system. In general, advertisements 

are announcements to the information that a data producer will generate in the future. 

They are used to limit the propagation of subscriptions only to the producers who 

advertise what the consumers are interested in. In their approach, the advertisements are 

generated by using XML Document Type Definition (DTD) information to define the 

legal building blocks (root to the leave) of related XML documents. Along with the 

advertisement-based subscription routing, optimization techniques, such as covering and 

merging, are proposed to identify the covering relations among XPath queries and to 

merge similar XPath quires. They mainly aim to reduce the routing table size stored at 

each router and speed up the routing process.    

 
Figure 6: Subscription tree [6] 

 
A data structure, called subscription tree shown in Figure 6, is exploited to capture the 

covering relations among registered subscriptions. The basic concept of covering is 

described as the following: when an incoming subscription is covered by a current 

subscription in the routing table, this subscription will not be routed to the neighboring 

brokers. In contrast, when the new subscription covers current subscriptions, before it is 

routed, the router needs to unsubscribe all the current subscriptions (the covered ones). 

This results in eliminating redundant subscriptions in the routing tables. Subscriptions are 
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stored in the subscription tree according to their covering relationships. Each node in the 

tree represents a single subscription that covers all subscriptions in its sub-tree. Although 

a subscription node can have only one parent in the tree, it may be covered by several 

subscriptions. To achieve this, a set of super pointers is used by each node to indicate the 

covering relations with subscription nodes outside its sub-tree. In the absence of covering 

relations among a set of subscriptions, subscription merging can be used to build a more 

compact routing table. In the subscription tree, siblings of the same parent node are better 

candidates to be merged. As indicated in Figure 6, node /a/b/a, /a/b/b, and /a/b/d can be 

merged into a new subscription node /a/b/*, which is the union of the three original 

expressions. As shown in Figure 6, When two nodes, /b/d and /b/e, are merged to /b/*, 

their children become the new node’s children.   

In the advertisement-based technique, as the publisher needs to update its advertisements 

frequently, the network traffic as well as the overhead of matching the generated 

advertisements at each router can be drastically increased. This may hamper the gain of 

reducing subscription broadcasting among the routers and add to the already large 

subscription matching costs. In a large subscription tree, identifying the covering 

relationships among subscriptions can be costly due to sequential search. Some 

techniques, like subscriptions indexing [5, 12, 21], should be supported to facilitate the 

discovering process. It is clear that the proposed covering and merging techniques 

support only subscription insertion, but not cancellation. As the covered and merged 

subscriptions are removed permanently during the discovery process, the owner of these 

subscriptions cannot receive any event if the coverer/merger subscription is removed.   

The authors of [34] introduced a new data structure, called RoXSum, to aggregate the 

structural information of multiple XML documents in an efficient way that allows the 

subscription matching process to be applied directly on the aggregated content, instead of 

the original documents. The advantages of content aggregation and batch processing are 

combined to decrease communication costs and increase the performance of the message 

routing process. The idea of summarizing XML data is derived from the observation that 

elements within XML documents share structure and labels. RoXSum composes of two 

essential parts: a hierarchical data structure called RoXSum tree, and a set of document 
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identifiers called RoXSum extents. Each node in the RoXSum tree maps all structurally 

equivalent nodes from the document. For the purpose of message routing, a document 

identifier can be associated with only the RoXSum tree nodes that correspond to the leaf 

nodes of that document. Hence, after discovering the RoXSum tree nodes that satisfy a 

path query, it becomes straightforward to determine the documents that satisfy the query 

as well. The set of identifiers that correspond to a RoXSum tree node is the RoXSum 

extent of that node. Figure 7 presents an example RoXSum tree. The top of the figure 

shows a set of XML documents with identifiers D1, D2, D3 and D4, while the bottom 

part illustrates the corresponding RoXSum tree. For example, the query /bib/book/last on 

the documents shown in Figure 7 arrives. There is only one path in the RoXSum tree that 

matches this query. All documents within the extent of the RoXSum tree node last satisfy 

the query (i.e. documents with identifier D1 and D2). 

 
Figure 7: An example of RoXSum data structure [34] 

 
New RoXSum trees are formed whenever a stream of XML documents is accepted by a 

router. RoxSum trees are built during the parsing process of the incoming XML stream. 

Each XML document is parsed in-order and either new index nodes or document 

identifiers are added to the RoxSum tree. Finally, the registered subscriptions are 

matched against the generated RoxSum trees, one RoxSum tree at a time. 

The proposed aggregation technique assumes that XML routers will receive the published 

documents in streams (batches). This assumption is not supported by many applications, 

therefore; the use of this technique is limited to a certain category of applications. The 
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total size of a RoXSum tree is proportional to the sum of the number of nodes in each 

document. Hence, large XML documents can dramatically affect the routing performance 

as they result in large RoXSum trees. The incoming streams of XML documents are 

processed independently. Accordingly, it is clear that the composition and decomposition 

algorithms for RoXSum are performed in an incremental process. However, this process 

has to be repeated at each router in the network for the same stream of XML documents. 

This may place a high burden on the XML routers and hence degrade their performance.  

The authors of [31] proposed a new sequencing-based method, called branch sequencing, 

which converts an XML twig query into a branch sequence. In their work, the 

subscription queries are represented using a subset of XPath language called twig 

patterns. These are basically XPath expressions that include only parent/child, 

ancestor/descendent axes, and node predicates. The twig patterns are transformed into 

sequences and the matching process is performed using certain properties of the 

sequences. The proposed sequencing technique supports holistic matching of twig 

patterns with each input document as well as ordered twig patterns matching. Holistic 

means that a twig pattern is matched as a whole without breaking it into root-to-leaf 

paths. The subscription queries are parsed using an XPath parser and are converted into 

branch sequences, which are saved in a sequence store. After parsing the input XML 

documents, they go through a matching engine that matches them against the standing 

queries in the sequence store. The document nodes which satisfy a subscription query are 

saved in the buffer corresponding to the matched subscription. Afterward a separate 

predicate check is performed to identify those nodes that satisfy the predicates stored 

along with the query. Such nodes will be sent to the corresponding consumers. The 

proposed sequencing technique is slightly different from the one introduced by FiST [21] 

as it can retrieve the matched nodes in a single parse of the input document. In contrast, 

FiST has to parse the document twice, indexing the document nodes in the first parse.    

To construct the branch sequence for a twig pattern, each node in the twig pattern has 

given a preorder number during the parsing process. When a leaf node is observed, the 

nodes from the closest branch node to this leaf node are output and this branch, excluding 

the branch point. A branch node is a node with two or more children. When the last leaf 
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node of the twig pattern is encountered, the nodes from the root of the pattern to the leaf 

node are output. This reflects the name of the proposed technique as the nodes are output 

branch by branch. As the twig patterns may include the ancestor-descendent axis, 

additional information is required about the relation between nodes. Information such as 

sequence number, relation, position, and label is stored along with the nodes to ensure 

that a particular branch node occurring in two or more positions in the sequence is 

matched to the same document node. The twig pattern will be eventually transformed to a 

sequence of tuples (also refereed to as nodes), which consist of a number of fields. Figure 

8 shows a sample twig pattern and its corresponding sequence.  

 
 

Figure 8: Sequencing a twig pattern [31] 
 
An indexing mechanism for the twig pattern sequence nodes is used during the matching 

process. The sequence nodes are stored in a data structure, called sequenceStore, which 

can be considered as a two dimensional matrix where each row represents a sequence. 

For example, the sequenceStore[i, j] corresponds to the jth tuple in the branch sequence 

of the ith twig pattern. A hash-based index, called sequenceIndex, is used to index the 

twig pattern sequence nodes during the matching process. Here, the hash values of the 

sequence index are basically the different node labels. For example, the sequenceIndex[ 

L] contains the node tuples, which have node label ‘L’. 

The proposed sequencing technique is not scalable for very large number of queries as it 

is expected to be memory intensive. The converting process for twig patterns results in 
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generating large number of tuples that need to be stored and evaluated with the incoming 

documents. This may increase the overhead on the routers and hence slow down the 

routing process. Dealing with redundant sequence tuples has not been addressed to 

reduce memory requirement and processing time. Incremental updating and cancellation 

of twig patterns is supported as they are transformed independently. The authors have not 

discussed the probability of the false positive that may occur due to the transformation 

process. However, it was stated in [21] that filtering using sequencing alone can lead to 

false positives. 

ApproXFilter [35] proposed an approximative filtering algorithm, called ApproXFilter, 

for approximate filtering in a content-based routing system. Two complementary versions 

of the ApproXFilter algorithm are introduced for efficient filtering of large number of 

subscriptions: a time and a space optimized versions. Five steps are involved to match an 

ApproXFilter subscription query against an XML document. The first step is to transform 

all ApproXFilter subscription queries into their normalized form (i.e., Boolean 

disjunctions combined by conjunctions). The second step is to extend all subscription 

queries using the allowed predefined transformations such as deleting, inserting, and 

renaming parts of the queries using synonyms. The third step is to build a subscription 

match graph, called DAG (Directed Acyclic Graph), which represents all extended 

subscription queries. Every term (values and structures) in the extended query is 

interpreted as a graph vertex. Figure 9 shows an example Match DAG along with two 

extended query trees. The fourth step is to sequentially parse each incoming XML 

document and to concurrently traverse the Match DAG in depth-first order. Every 

difference to the original query is scored with additional costs. For each visited node in 

the Match DAG, the corresponding costs are calculated. The concept of costs can be seen 

as a similarity measurement between the documents and the matched subscriptions. A 

cost of zero corresponds to highest quality, which means exact matching. The higher the 

cost, the lower the quality. The fifth step is to notify the consumer about the matched 

document if the accumulated costs are less than a predefined threshold. 
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Figure 9: Concept of Match DAG and original query tree [35] 

 
Two versions of algorithms are used to optimize time and space consumptions. Compact 

data structures along with a set of hashes are used to represent the extended query graph. 

Redundant node entries are not allowed in the proposed structures. As a result, each hash 

key is set only once into the graph and in the exact position for representing the original 

query structure. All costs are encoded only once. In the time-optimized version, the time 

required to evaluate a document is O(n) while the space required is O(n
2
). In the space-

optimized version, the required filter time is O(n
2
) while the space required is O(n). Here, 

n reflects the number of vertices in the Match DAG. 

The number of vertices in the DAG could grow considerably with a large population of 

subscriptions and terms (values, structures, and synonyms). Therefore, we expect that the 

Match DAG increases the overhead of the matching process as each input document has 

to be matched against a large number of vertices. We believe that the DAG in its current 

form does not support subscription cancellation since several subscriptions may share the 

same vertices in the match graph. In fact, after the updating process the DAG may no 

longer reflect the previously transformed subscriptions, thereby generating inappropriate 

matching results. Thus, rebuilding the DAG may become a necessary task to avoid this 

problem. 
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The work by [8] introduced a systematic study of subscription aggregation in which 

subscription specifications are expressed via a much more expressive model of tree 

patterns (subset of XPath expressions). In this study, a tree-pattern aggregation algorithm 

is proposed to aggregate an input set of tree patterns into a smaller set of generalized tree 

patterns in order to reduce their storage space requirements and to speed up the matching 

process. This algorithm depends on the use of document-distribution statistics to compute 

a precise set of aggregated tree patterns within a given space constraint and to minimize 

the probability of false positives (due to aggregation) during the filtering process. In order 

to aggregate an input set of tree patterns, the aggregation algorithm, presented in Figure 

9, iteratively prunes the tree patterns by replacing a small subset of tree patterns with a 

more concise aggregate pattern, until a given space budget are met. During each iteration, 

a small set of candidate aggregate patterns are created and than the most promising 

candidate pattern is chosen (the one maximizing the gain in space while minimizing the 

loss in precision). The least upper bound (LUB) algorithm is proposed to compute the 

most precise aggregation tree pattern for a set of tree patterns. A containment algorithm 

also proposed to ensure the containment relationships between the original set of tree 

patterns and the aggregated tree pattern. 

 
Figure 10: Tree pattern aggregation algorithm [8] 

 
The problem domain addressed in the proposed technique focuses on transforming an 

input set of tree patterns into a smaller set. However, the aggregated technique does not 

reduce the number of the pattern entities in the routing table, which need to be evaluated 

against each input document. Furthermore, the issue of space constraint is addressed by 
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iteratively pruning the input set of tree patterns until the space requirement is met. It is 

not clear why the authors have not considered removing redundant tree patterns instead. 

To meet the objective of the proposed technique, three heavy, complementary processes 

need to be applied iteratively for each input set of tree patterns. These are aggregating 

(pruning) tree patterns, computing the most precise aggregate, and identifying the 

containment relationship of the output set. We thus suspect that with a large number of 

input patterns, the computation overhead incurred by these processes can substantially 

offset any performance gains of the proposed technique. Both subscription insertion and 

cancellation are performed in an incremental process; however, subscription cancellation 

in some cases may affect the benefit of the aggregation technique. If we consider the case 

when subscriptions do not stay long in the system after been registered, the overhead of 

the aggregation process would become very significant. 

Concluding Remarks 
This section summarizes the previous discussion on filtering and aggregating XPath-

based subscriptions with an emphasis on lessons learned from investigating the proposed 

solutions. In particular, we highlight to which extent these techniques are effective and 

scalable when matching and updating a large number of XPath queries. For efficient data 

dissemination, more expressive subscription languages, such as XPath, have recently 

been used to express the consumers’ interests. This has led to a marked increase in the 

complexity of content-based routing. As a result, much attention has been given to the 

performance challenges of routing XML data in the context of simple XPath-based 

queries.  

Generally speaking, two optimization techniques are expected to provide a solid base for 

improving the performance and scalability of content-based routing: subscription 

indexing and aggregation. The former technique performs selective matching with only a 

compact subset of potentially matching subscriptions, while the latter transforms an 

original set of subscriptions into a compact and generalized subset of subscriptions to 

minimize the matching overhead. Table 1 present a simple comparison for the reviewed 

work with respect to: subscription insertions, subscription deletion, redundancy, matching 

accuracy, and scalability. 
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Project 
Subscription 

Insertion 

Subscription 

Deletion 
Redundancy Accuracy Scalability 

B
lo

o
m

 

F
il

te
r 

[5
] 

Is performed in an 
incremental way 

Is performed in an 
incremental way 

Redundant 
transformation and 
matching of path 
queries 

Negligible 
probability of false 
positives due to the 
hashing process 

Is not an issue. It 
can filter millions 
of path queries. 

R
el

a
ti

o
n

a
l 

G
ra

p
h

 [
2
9

] Is performed in a 
none incremental 
manner due to the 
redundancy of 
covering relations 

Is performed in a 
none incremental 
manner due to the 
redundancy of 
covering relations 

Redundant covering 
relations among 
subscriptions that 
should be updated 
frequently 
 

Probability of false 
negatives due to 
removing coverer 
subscriptions 

Is scalable as it 
avoids unnecessary 
proliferation of 
subscriptions  in the 
system 

P
ig

g
y

b
a

ck
  

[3
2

] 

Is performed in an 
incremental way 

Is performed in an 
incremental way 
 

Redundant 
annotation can be 
created for similar 
subscriptions stored 
in the routing table 

Possibility of false 
positives due to the 
cancellation of 
subscriptions 

Is scalable since the 
piggybacked data 
can reduce the 
matching overhead 
and network traffic 

X
R

o
u

te
 [

4
] Is not incremental 

process as it needs 
to update covering 
relations and 
substitution links 

Is not explained; 
however, we think 
it is not incremental 
as well for the same 
reason 
 

Redundant 
subscriptions are 
identified during  
the building of the 
covering relations 
 

Is claimed that the 
routing accuracy is 
free of false 
positives and 
negatives 

Is limited as it is an 
expensive task to 
modify all existing 
relations in order to 
establish a new one 
 

S
u

b
sc

ri
p

ti
o

n
 

T
re

e 
[6

] 

Is not incremental 
process since the 
subscription tree 
needs to be partially 
rebuilt 

Is not supported as 
it can affect the 
state of existing 
consumers 

Redundant  
subscriptions are 
discarded during  
the covering and 
merging process 

High probability of 
false negatives if 
coverer/merger 
subscriptions are 
cancelled 

The sequential 
search for covering 
and merging 
relations limits the 
scalability 

R
o

X
S

u
m

 

T
re

e 
[3

4
] 

Is performed in an 
incremental way as 
the XML data is 
aggregated and not 
the subscriptions 

Is performed in an 
incremental way for 
the same reason 

Redundant creation 
of the RoXSum tree 
at each router and 
redundant queries 
in the routing table 

Low probability of 
false positives due 
to the use of extent 
identifiers in the 
RoXSum tree 

Is limited to small 
number of queries 
and documents due 
to iterative creation 
of the RoXSum tree 

S
eq

u
en

ci
n

g
 

[3
1

] 

Is performed in an 
incremental way as 
the twig patterns 
are transformed 
independently 

Is performed in an 
incremental way for 
the same reason 

Redundant 
sequence tuples are 
visible in the 
database 

Probability of false 
positives due to 
filtering by  
subsequence 
matching alone 

Is limited as it is a 
memory intensive 
due to generating a 
large number of 
tuples 

A
p

p
ro

X
F

il
te

r 

[3
5

] 

Is performed in an 
incremental way 

Is not supported as 
many subscriptions 
may share similar 
vertices in the 
Match DAG 

Redundant 
transformation of 
similar queries into 
the Match DAG 

Low probability of 
false negatives may 
occur due to the 
normalization of 
subscriptions 

Is the focus of the 
proposed Match 
DAG which shows 
its effectiveness in 
a limited test-bed 

T
re

e 

P
a

tt
er

n
 [

8
] Is performed in an 

incremental way 
Is performed in an 
incremental way 

Redundant nodes 
are defined and 
discarded from the 
generated patterns 

Low probability of 
false positives due 
to aggregation 

Is limited due to the 
heavy computation 
of the aggregation 
processes 

Table 1: Comparison of aggregation techniques 
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From the reviewed work, we believe that Bloom filter is the most promising technique 

for improving the performance of content-based routing in the context of XML data and 

XPath-based subscriptions. This is due to its flexibility and scalability for filtering and 

matching a large number of path queries with a negligible probability of false positives. 

In addition, subscription insertion and deletion can be efficiently performed in an 

incremental manner. However, some aspects are missing that may further improve the 

performance of Bloom filter. The first aspect is to eliminate the existing redundancy 

among the routing table entries in the Bloom filter. This can result in minimizing the 

routing table and increasing the speed of the matching process.  The second aspect is to 

avoid any redundant or unnecessary proliferation of subscriptions among the neighboring 

routers. This results in reducing the propagation overhead and the size of routing tables. 

We of course should keep in mind the performance and scalability of the chosen solutions 

when we approach these objectives.   
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