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Abstract 

 

In this thesis, new adaptive OCXO frequency drift correction algorithms are 

proposed for the timing module on the base transceiver stations. The recursive system 

identification methods are used to replace the previous Batch Least Squares (BLS) 

method in the algorithm. Two different recursive system identification methods are 

evaluated and compared, the Recursive Least Squares (RLS) method and the Kalman 

Filter method.  

New system models which include the digital control loop are created. Simulation 

results show that the new system model has better performance than the previous model. 

The Cumulative Time Error (CTE) upperbound of the timing module is analyzed. 

This upperbound determines the performance bound of the timing module system. First, a 

simple model structure of the OCXO frequency stability is used to investigate the CTE 

upperbound. In this simple model, the temperature is linear related to the frequency 

stability. Then, a refined model structure is used to investigate the CTE upperbound. In 

this refined model, both temperature effect and ageing effect are considered. The control 

loop is included in both simple and refined model structures. The simulation results show 

that the CTE upperbound can be obtained analytically. 
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Chapter 1: Introduction 

 

1.1 Overview  

Time is very important not only for the daily schedules of human beings, but also 

for processing a sequence of events that happens in computers and for time-tagging 

information that flows through communication systems. Clock sources are essential for 

almost all electronic equipment and communication systems. Clock sources (another 

name is frequency control devices) can provide precise time and frequency information 

on which modern electronic equipment depends. 

Quartz crystal oscillators are used as clock sources in the synchronization of 

distributed systems. One such system is a cellular network in which base station 

transceivers are operated within a specified time or frequency accuracy. Normal clocks 

such as clocks at home usually drift compared to the actual time. That is why one must 

regulate the time occasionally. The clocks in the base stations are much more accurate 

than clocks at home, but they drift too. The accuracy of clocks depends on their quality, 

the ambient temperature, and other environment variables. For example, a typical crystal 

oscillator such as MtronPTI’s XO5120 SC-cut oscillator drifts within 173 microseconds 

when running for one day and the ambient temperature is within 0 to 70 celsius degrees 

[1].  

The accuracy of oscillator is crucial to the normal operation of the cellular network. 
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Because GPS satellites are equipped with ultra-high accurate atomic clocks, the 

oscillators on the base stations are usually locked by the GPS signals which serve as 

timing reference signals and we call that the oscillators working in locked mode. This 

process is just like regulating a watch by a more accurate clock. In the event the GPS 

signal is lost, we call that the oscillators working in holdover mode. The clock accuracy 

of the oscillator on the base station is a function of the local environmental stimuli in 

holdover mode. Generally, a DOCXO (Double Oven Controlled Crystal Oscillator) is 

used in the timing module of the cellular network. The DOCXO is more accurate and 

therefore more expensive than the OCXO (Oven Controlled Crystal Oscillator) and the 

OCXO is not sufficient for the normal operation of the cellular network in holdover mode. 

However, the accuracy of the OCXO can be enhanced by an adaptive control module 

which guarantees that the OCXO can replace the DOCXO in the timing module. In order 

to improve the accuracy of the OCXO after losing the GPS signal, a system identification 

algorithm is trained by the adaptive control module when the timing reference signal is 

available. Accordingly, the relation between the time accuracy of the oscillator and 

environmental variables can be obtained and the effects of environment variables can be 

compensated. The accuracy of the oscillator can thus be enhanced to meet the needs of 

the cellular network.  

Figure 1.1 shows a simple block diagram of the timing module system on the base 

station. First, GPS reference signals are received by the GPS signal receiver. Second, the 

correction signal generating module uses the GPS signals to generate the correction 
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signal. Third, the correction signal is used to improve the accuracy of the oscillator. 

Fourth, at the same time, the correction signal is used to feed the adaptive control module 

which trains the system identification algorithm. Last, when GPS reference signals are 

lost, the adaptive control module generates the correction signal to correct the oscillator. 

The detailed block diagram of the timing module system is much more complicated than 

this simple one and is shown in Chapter 3. 

 

 

Figure 1.1 Simple Block Diagram of the Timing Module System 

 

The following example can make the whole timing module system easy to 
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understand. A wrist watch is regulated through a more accurate clock. One discovers that 

the wrist watch drifts one minute everyday through the regulation process. Even if the 

clock is lost, one still can regulate the watch and increase its accuracy. In this example, 

the wrist watch is like the oscillator in the base station. The more accurate clock is like 

the timing reference signal from GPS satellites. Regulating the watch through the clock is 

like locking the oscillator by GPS signals. The algorithm training process is like getting 

the information that the watch drifts one minute every day.  

The first stage in the creation of an accurate clock model is the identification and 

quantification of all significant frequency perturbing stimuli in terms of analytical 

expressions. The fundamental understanding of the parameters affecting the clock drift is 

paramount to determining the overall oscillator accuracy achievable by the system.  

The second stage is the rational utilization of the proper system identification 

algorithms to identify the parameters which affect the accuracy of the oscillator. System 

identification is a mathematical term which describes the mathematical algorithms that 

build the mathematical models from measured input and output data. The mathematical 

model in this context is a mathematical description of the dynamic behavior of a process 

or a system in the time domain or the frequency domain [2]. The mathematical relation 

between the accuracy of the oscillator and the parameters which affect the frequency drift 

is an example for such physical system mathematical models. For instance, the frequency 

accuracy of quartz crystal oscillators over ambient temperature can be approximated by a 

quadratic function. System identification algorithms can determine the parameters of this 
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function through the environment temperature and the frequency accuracy measured.  

System identification algorithms include linear, nonlinear, and hybrid identification, 

according to the characteristics of the models to be estimated. The accuracy and stability 

model of the clock source investigated in this thesis is a linear mathematical model. 

However, because of the limitations of the instrumental resolution in the control circuit, 

the model has some nonlinear characteristics. An accurate clock model can be created 

through using the correct accuracy and stability model and the suitable system 

identification.  

Another research task is to estimate the accuracy of the enhanced oscillator in 

holdover mode. For example, in locked mode, the oscillators in CDMA base transceiver 

stations are required not to have a time error relative to Radio System Time (RST) greater 

than +/- 1𝜇𝜇𝜇𝜇. RST can be considered as the actual time. This target generally can be 

reached because the oscillators are locked by GPS signals. When the GPS timing 

reference signal is lost, the adaptive control module starts to create the correction signal 

to correct the oscillator. The oscillator still drifts and the drift will get worse over time 

because the adaptive control module cannot compensate the oscillator one hundred 

percent accurately. There is a cumulative time error (CTE) that exists in the oscillator 

relative to RST. In holdover mode, the oscillators in CDMA base transceiver stations are 

required not to exceed +/- 10 𝜇𝜇𝜇𝜇 cumulative time error over an 8 hour time period relative 

to RST [3]. The accuracy of the oscillator needs to be estimated in holdover mode, which 

means the upperbound of the CTE needs to be estimated over a period of time in 
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holdover mode, given a specific system identification algorithm trained by the adaptive 

control module. The upperbound of the CTE determines how much the oscillator can drift 

relative to RST. This then determines whether or not the oscillator or the system 

identification algorithm is suitable for the base station timing module. For instance, if the 

upperbound of CTE over an 8 hour period in holdover mode is less than +/- 10𝜇𝜇𝜇𝜇, the 

oscillator and the system identification algorithm are suitable for the CDMA base station 

timing module. If the upperbound of CTE over an 8 hour period in holdover mode is 

larger than +/- 10𝜇𝜇𝜇𝜇 , which means that sometimes the CTE cannot be tolerated, the 

oscillator or the system identification algorithm is not suitable for the CDMA base station 

timing module. In this case, either a better system identification algorithm or a more 

accurate and therefore expensive oscillator is needed.  

    

1.2 Outline 

The chapters in this thesis are organized as follows: Chapter 2 introduces 

background information about the elements which affect the frequency accuracy and 

stability of crystal oscillators. Crystal oscillators are major clock sources in modern 

electronic systems. The main system identification algorithms are introduced in this 

chapter as well, such as the Recursive Least Squares algorithm and the Kalman Filter 

algorithm. Chapter 3 reviews the state-of-the-art of Adaptive Oscillator drift correction 

algorithms. The timing module system in a base station is reviewed as well. The problem 
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statement is described in this chapter in detail. In Chapter 4, different system 

identification algorithms for the creation of an accurate clock source are evaluated. 

Chapter 5 addresses the CTE upperbound of clock sources in the system. A simple clock 

model is created. This clock model only includes the linear temperature effect on the 

oscillator accuracy. The parameter distribution of the clock model is investigated. In 

Chapter 6, a more detailed clock model which combines the effect of temperature and 

ageing are studied. The system identification algorithm and the CTE upperbound are 

investigated for this more detailed model. Chapter 7 presents the conclusions and 

proposes future work.  

 

1.3 Contributions 

The contributions of this thesis include:  

• A new adaptive OCXO frequency drift correction algorithm is proposed. A 

recursive system identification method is used to develop the adaptive 

correction algorithm. A previous adaptive control algorithm for oscillators uses 

the Batch Least Squares (BLS) method. The BLS method needs a large 

memory and lots of computation. It also requires a matrix inversion 

computation which is complex to conduct. The recursive system identification 

method needs low memory and relatively less computation. The matrix 

inversion computation is not necessary. Therefore, the recursive system 
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identification method is more suitable for developing the adaptive correction 

algorithm.   

• Two main recursive system identification methods are evaluated. They are the 

Recursive Least Squares (RLS) method and the Kalman Filter method. The 

characteristics of these methods are investigated and the more suitable one, the 

RLS method, is chosen.  

• A new system model is created. The simulation results show that the new 

system model has better performance than the previous used model. The 

maximum cumulative time error of the new system model in simulations is 

lower than the old model. 

• The CTE upperbound of the oscillator enhanced by the adaptive correction 

algorithm is investigated. There are no previous works to investigate the CTE 

upperbound of oscillators when a specific system identification algorithm is 

used to enhance oscillators. The CTE upperbound can determine the range of 

applications of the enhanced oscillator. It also determines whether or not the 

enhanced oscillator can replace a more expensive and more accurate oscillator.  
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Chapter 2: Background Information 

 

In this chapter, the frequency accuracy and stability characteristics of crystal 

oscillators are reviewed first. Some key factors which impact the frequency accuracy and 

stability of oscillators such as temperature and ageing are reviewed. The reasons why 

these factors are critical are explained. In the second section of this chapter, the main 

system identification algorithms used in the thesis are introduced.  

 

2.1 Frequency Accuracy and Stability Dependencies of 

Crystal Oscillators 

 

In the modern world, a vibrating quartz crystal is the heart of nearly all frequency 

control devices. Quartz crystal oscillators provide relatively accurate time and are the 

sources of relatively precise frequency. Quartz crystal oscillators are electronic circuits 

which use the mechanical resonance of vibrating crystals of piezoelectric materials to 

create periodically varying electrical signals. The frequency stability, low cost and small 

size of quartz crystal oscillators have resulted in their ubiquitous usage as a frequency 

reference in electronic equipment. Crystal oscillators as frequency sources and frequency 

control components are most widely used in the time and frequency research and 

production fields, such as IT Industry, Communications, Electronic Instruments, Applied 
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Electronic Techniques, Measurements, Aerospace Systems, Military Industry, etc [4]. 

Table 2.1 shows the major applications of Quartz Crystal Oscillators. 

 

 

Table 2.1 Major Applications of Quartz Crystals [4] 

The crystal resonator is the most important component of a crystal oscillator and the 

quartz crystal is the “heart” of it. Although some other materials like ceramic resonators 

have been developed, their frequency stability and accuracy cannot compare with quartz 

crystals. According to different accuracy, stability and cost requirements, different types 

of crystal oscillators are employed. The temperature dependence of the crystal resonance 

is generally recognized as a first-order perturbation of the frequency accuracy of the 

crystal oscillator. Compensation of the temperature dependence  has resulted in a 

classification of crystal oscillators based on the different temperature control methods, 

such as SPXO (Simple Packaged Crystal Oscillator) which has no temperature 
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compensation, TCXO (Temperature Compensation Crystal Oscillator) which uses analog 

or digital temperature compensation circuits, OCXO (Oven Controlled Crystal Oscillator) 

which uses an oven to control crystal temperature and DOCXO (Double Oven Controlled 

Crystal Oscillator) which uses two temperature control ovens, one inside the other, to 

further improve the stabilization of the crystal temperature relative to variations in the 

ambient temperature. 

 

2.1.1 Physical and Electrical Factors Affecting Crystal 

Oscillator Frequency Stability and Accuracy 

 

The frequency accuracy of a crystal oscillator is the offset from the specified target 

frequency. The frequency stability of the oscillator is the spread of the measured 

oscillator frequency around its operational frequency in a period of time. Figure 2.1 

shows accuracy and stability examples for a frequency source. Factors such as 

temperature, crystal ageing and retrace establish the frequency accuracy of the oscillator, 

whereas reference signal noise (if the oscillator is locked to a reference), tuning port 

noise, supply rail noise, and vibration establish the stability of the oscillator. With respect 

to applications reliant on synchronization, random frequency perturbations with zero 

mean are less significant compared to the frequency accuracy of the oscillator. The 

dependence of synchronization on oscillator frequency accuracy is because time error is 
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the integral of the frequency error. 

 

 

Figure 2.1 Accuracy and Stability Examples for a Frequency Source [5] 

 

2.1.1.1 Temperature 

Temperature is a significant factor which affects the frequency of resonators. 

Different crystal cuts have a different frequency-temperature characteristic. Figure 2.2 

shows the frequency-temperature property of a typical AT-cut crystal resonator (here, AT, 

SC, or GT represents different crystal cut methods). The term 𝜑𝜑 represents the cut angle. 

One can see that crystals with different cut angles have different frequency-temperature 

curves. Some crystal resonator temperature characteristics are listed as follows:  



13 

 

Figure 2.2 AT-cut Crystal Resonator Frequency-Temperature Properties [6] 

 

1) The crystal cuts, in general, exhibit a cubic dependence on temperature [5]. 

2) In most situations, the zero temperature coefficient point can be changed through 

changing the angle between crystal wafer and crystal axis. 

3) In a wide temperature range, like−55~ + 105℃，the relative frequency change 

of AT and GT cut crystals can be limited to ±2 × 10−5 with suitable angle processing. 

 

2.1.1.2 Ageing 

The crystal resonator frequency changes according to the operational time and this 
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physical phenomenon is termed ageing. A representative ageing plot is shown in Figure 

2.3. In this figure, the X-axis represents time and the unit is day. The Y-axis represents 

frequency accuracy and the unit is ppm (part per million). One can see that the ageing is 

generally not linear. However, when the ageing effect is considered as a period of only 

several hours, such as 24 hours, ageing can be considered linear approximately.  

 

Figure 2.3 Ageing of Crystal Resonator [5] 

 

It should be noted that although the plot is monotonic, this is not always the case 

and the ageing rate can reverse sign over time. When the vibration mode of a crystal 

wafer is Thickness-Shear, as in AT cut and SC cut crystals, ageing mostly results from: 

1) Thermal gradient effect. This effect continues several minutes to several hours 

after thermal equilibrium [6]. Figure 2.4 shows the temperature gradient effects and 
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warm-up characteristics of two OCXOs, each containing an oven which reaches the 

thermal equilibrium in six minutes (Chapter “Warm-Up” in Reference [4] provides more 

information about the warm-up property of oscillators). One oven contains an AT-cut 

oscillator and the other oven contains an SC-cut oscillator. The frequency variation after 

six minutes comes from thermal gradient effects in Figure 2.4. One can see that an SC-cut 

OCXO has much better performance than an AT-cut OCXO. One does not need to 

consider the ageing rate before thermal equilibrium, because it only takes 3 to 10 minutes 

for an OCXO and a few seconds for other oscillators. 

 

Figure 2.4 Warm-up Characteristics and Thermal Gradient Effects of AT-cut and 

SC-cut Crystal Oscillators (OCXOs) [7] 

 

2) Pressure release effect. This effect is a function of the heat process above, and 

continues from 3 days to 3 months [6]. 
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3) The increase or decrease of the crystal polar plates mass, which is caused by gas 

absorption or decomposition, continues for several weeks to several years [6]. 

4) Crystal structure change caused by a defective crystal lattice, which is a long-

term effect. 

In low-frequency quartz crystal resonators, when the vibration mode is face-shear, 

the ageing rate is the lowest. The ageing rate is higher in the case of bending vibration 

and extension vibration results in the highest ageing rate. When the vibration mode is the 

same, a lower frequency and a bigger polar plate crystal experience a lower ageing rate. 

Ageing effects can be divided into two time periods, the prior period and the later period. 

The prior period ageing (for 1 to 2 months) has a higher ageing rate and this ageing rate 

can reach up to 1 × 10−7 /month (i.e., the frequency accuracy changes by 1 × 10−7 per 

month) to 1 × 10−8 /month. As for the later period, when a crystal has been operational 

for 1~2 months, the ageing rate reduces to (1~3) × 10−9  /month to (1~3) ×

10−10/month. 

 

2.1.1.3 Retrace 

When power is removed from an oscillator for several hours, and then re-applied 

again, the frequency of this oscillator stabilizes at a slightly different value. This 

frequency variation error is called retrace error. It usually occurs for twenty-four or more 

hours off-time followed by a warm-up time which is enough to reach thermal equilibrium. 
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Retrace errors reduce after warming. The shape of the error curve is as follows: the 

crystal walks back down its ageing curve when cold and then moves toward the prior 

drift curve when activated. If the resonator is in its prior period, the retrace error is added 

to the ageing drift, while with later period resonators the frequency looks for a new level 

characteristic for alternating operation. Usually, retrace errors show less spread with SC 

cut than with AT cut resonators. By careful selection of crystals, oscillators can decrease 

the influence from the retrace effect which is as close as a few parts in 1010 [8]. Retrace 

is one of the factors that affect the frequency accuracy of OCXO. As for TCXO or other 

oscillators, retrace is usually not considered a factor that significantly affects frequency 

accuracy [4]. 

 
Figure 2.5 OCXO Retrace [4] 

 

Figure 2.5 shows how OCXO retrace influences oscillator frequency accuracy. The 

X axis represents time and the Y axis represents frequency accuracy. In (a), the oscillator 

was kept on continuously while the oven was cycled off and on. In (b), the oven was kept 
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on continuously while the oscillator was cycled off and on. 

 

2.1.1.4 Other Factors 

Besides the factors mentioned above, other factors which affect the frequency 

accuracy of oscillators include Drive Level, Thermal Hysteresis, Frequency Pushing and 

Pulling, Tuning port reference voltage drift, etc. Other factors which affect the frequency 

stability of oscillators include Tuning port noise, Reference noise, Power supply noise, 

Vibration-induced noise, etc [9][10]. 

 

2.1.2 Factors Comparison 

Different factors affecting accuracy and stability of crystal oscillators have different 

weights depending on the operating conditions of the oscillator. Temperature and ageing 

drift are the most important factors which affect the accuracy of oscillators. In the case 

that the thermal environment is stable, the ageing-induced frequency error may dominate 

the frequency behavior of the oscillator. Alternatively if the thermal environment is 

undergoing variations in a time frame that is short in comparison with the time required 

for the oscillator to drift significantly with respect to the ageing rate of the crystal, then 

the temperature-dependent frequency accuracy of the oscillator dominates the temporal 

accuracy of the clock. Ranking of other factors is highly dependent on the working 

environment of the oscillator and as such must be done on a case-by-case basis. 
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Various kinds of noises are factors which affect the stability of oscillators. There are 

no documents to compare which noise is the dominant factor, and this is still based on the 

specific application. 

For example, one can consider an OCXO used in a wireless base station which 

references the GPS signal to keep its frequency accuracy. When the GPS reference signal 

is lost, the OCXO enters the “holdover” state and its accuracy drifts. Under normal 

operation of the base transceiver station, the maximal cumulative time error of the OCXO 

in a period of time (such as 24 hours) needs be limited and the OCXO accuracy needs to 

be enhanced by voltage control circuitry. In this situation, one should focus on the factors 

which affect the frequency accuracy of OCXO because the short term frequency stability 

does not contribute to the cumulative time error. Temperature and ageing are the two 

dominant factors. If the OCXO does not need to be frequently turned on and off, the 

retrace effect is minor.  

 

2.1.3 Parameters of Quartz Crystal Resonators 

 

As the most important component of the crystal oscillator, quartz crystal resonators 

have many technical parameters. Table 2.2 gives the characteristic parameters of a typical 

5 MHz precise quartz crystal resonator.  
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Table 2.2 Parameters of a 5 MHz Crystal Resonator [6] 

 

Here, the nominal frequency is the frequency that the quartz crystal resonator is 

designed to work at. The zero temperature coefficient point (also called the turnover point) 

is the temperature at which the frequency-temperature coefficient reaches zero. The 

crystal frequency difference means the difference between working frequency and crystal 

series resonance frequency when the resonator is working around the zero temperature 

coefficient point. The frequency temperature coefficient is the resonator frequency 

accuracy for each Celsius degree variation, when the crystal works around the zero 

temperature coefficient point (e.g. 50 degree to 60 degree here). The quality factor (Q-

factor) is the ratio of the frequency at which the resonator works and the rate at which it 

dissipates its energy. A higher Q-factor indicates a lower rate of energy dissipation 

relative to the oscillation frequency, so the oscillations die out more slowly. Dynamic 
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capacity, dynamic inductance, and dynamic resistance are equivalent capacity, equivalent 

inductance, and equivalent resistance of the resonators when resonators are working, 

which are useful for circuit analysis. Static capacity is the capacity value of the resonator 

when the resonator is not working, which is used in energy storage analysis of resonators. 

The overtone order means the resonator works in overtone mode and the times of 

fundamental mode frequency.        

Most highly stable crystal oscillators use a thermostatic control oven to guarantee 

high stability and accuracy. In a thermostatic control oven, the temperature is tuned to the 

zero temperature coefficient point. Table 2.3 shows the typical data for an MtronPTI’s 

XO5120 as an example to show the frequency accuracy over temperature achievable by 

using OCXO technology. Figure 2.6 shows a block diagram of OCXO circuit. 

 

 

Table 2.3 Ranges and Their Frequency Stability of MtronPTI’s XO5120 [1] 



22 

 

Figure 2.6 Block Diagram of OCXO Circuit [6] 

 

2.2 Main System Identification Algorithms and Potter’s 

Square Root Algorithm 

Building mathematic models from observed input and output data is a basic factor 

in science. Many mathematical algorithms have been developed in the control field for 

different application areas. In this chapter, some classic system identification algorithms 

used in the thesis are reviewed. They include the Recursive Least Squares method, the 

Kalman Filter method, and the Recursive Prediction Error method. Potter’s Square Root 

algorithm is also introduced. It serves as the auxiliary algorithm which can guarantee the 
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normal operation of the system identification algorithm.  

 

2.2.1 The Recursive Least Squares (RLS) Method  

Consider a linear difference equation model below: 

 𝑦𝑦(𝑡𝑡) + 𝑎𝑎1𝑦𝑦(𝑡𝑡 − 1) + ⋯+ 𝑎𝑎𝑛𝑛𝑦𝑦(𝑡𝑡 − 𝑛𝑛) = 𝑏𝑏1𝑢𝑢(𝑡𝑡 − 1) + ⋯ 

                                                                        +𝑏𝑏𝑚𝑚𝑢𝑢(𝑡𝑡 − 𝑚𝑚) + 𝑣𝑣(𝑡𝑡).    (2.1) 

 

Here, { 𝑦𝑦(𝑡𝑡)}  is the output signal, and {𝑢𝑢(𝑡𝑡)}  is the input signal. 𝑣𝑣(𝑡𝑡)  is the 

disturbance signal, and usually it follows Gaussian white noise distribution. The model 

(2.1) expresses the dynamic relation between input and output signals. It can be simply 

rewritten as 

 

𝑦𝑦(𝑡𝑡) = 𝜃𝜃𝑇𝑇𝜑𝜑(𝑡𝑡) + 𝑣𝑣(𝑡𝑡).         (2.2) 

Here, 

𝜃𝜃𝑇𝑇 = (𝑎𝑎1  … 𝑎𝑎𝑛𝑛    𝑏𝑏1 … 𝑏𝑏𝑚𝑚).        (2.3) 

𝜑𝜑(𝑡𝑡)𝑇𝑇 = �−𝑦𝑦(𝑡𝑡 − 1) …− 𝑦𝑦(𝑡𝑡 − 𝑛𝑛)  𝑢𝑢(𝑡𝑡 − 1) …   𝑢𝑢(𝑡𝑡 − 𝑚𝑚)�.   (2.4) 

 

The observed variable 𝑦𝑦(𝑡𝑡) can be expressed as an unknown linear combination of 

the components of the observed vector 𝜑𝜑(𝑡𝑡) plus noise. The objective of the system 

identification algorithms is to identify the parameter vector 𝜃𝜃. 
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For estimating the parameter vector 𝜃𝜃, the ordinary method is to choose the estimate 

by minimizing the difference 𝑦𝑦(𝑡𝑡) − 𝜃𝜃𝑇𝑇𝜑𝜑(𝑡𝑡). One can write the cost function in Equation 

(2.5): 

 

𝑉𝑉𝑁𝑁(𝜃𝜃) = 1
𝑁𝑁
∑ [𝑦𝑦(𝑡𝑡) − 𝜃𝜃𝑇𝑇𝜑𝜑(𝑡𝑡)]2𝑁𝑁
𝑡𝑡=1        (2.5) 

 

Then one can minimize 𝑉𝑉𝑁𝑁(𝜃𝜃) with respect to 𝜃𝜃. 𝑉𝑉𝑁𝑁(𝜃𝜃) is quadratic in 𝜃𝜃, so it can 

be minimized analytically by setting 𝜕𝜕𝑉𝑉𝑁𝑁 (𝜃𝜃)
𝜕𝜕𝜃𝜃

= 0. The derived equation of the estimate of 

𝜃𝜃 is written in Equation (2.6): 

 

            𝜕𝜕𝑉𝑉𝑁𝑁 (𝜃𝜃)
𝜕𝜕𝜃𝜃

= 1
𝑁𝑁
∑ (−2)�𝑦𝑦(𝑡𝑡) − 𝜃𝜃𝑇𝑇𝜑𝜑(𝑡𝑡)�𝜑𝜑𝑇𝑇(𝑡𝑡) =𝑁𝑁
𝑡𝑡=1 0  

 ⇒       ∑ 𝜑𝜑(𝑡𝑡)𝜑𝜑𝑇𝑇(𝑡𝑡)𝜃𝜃𝑁𝑁
𝑡𝑡=1 = ∑ 𝜑𝜑(𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑁𝑁

𝑡𝑡=1   

 ⇒       𝜃𝜃� = [∑ 𝜑𝜑(𝑡𝑡)𝑁𝑁
𝑡𝑡=1 𝜑𝜑𝑇𝑇(𝑡𝑡)]−1 ∑ 𝜑𝜑(𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑁𝑁

𝑡𝑡=1      (2.6) 

 

 

Equation (2.6) is the Batch Least Squares (BLS) method. The BLS method uses all 

past input and output signals to estimate the parameter vector 𝜃𝜃. Therefore, it needs a 

large memory and a significant amount of computation. From Equation (2.6), one can see 

that a matrix inversion computation is necessary. The BLS method is often used in offline 

system parameter estimation.    

Equation (2.6) can be written in a recursive way for online system identification 
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purposes. According to [7], the term 𝜃𝜃�(𝑡𝑡) denotes the estimate for 𝜃𝜃 at time t. Then one 

can write the derived equation of 𝜃𝜃�(𝑡𝑡) recursively. 

 

𝜃𝜃�(𝑡𝑡) = 𝜃𝜃�(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡)�𝑦𝑦(𝑡𝑡) − 𝜃𝜃�𝑇𝑇(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡)�,     (2.7a) 

𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)
1+𝜑𝜑𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

.         (2.7b) 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)𝜑𝜑𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)
1+𝜑𝜑𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

      (2.7c) 

 

Equation (2.7) is the Recursive Least Squares estimate. The term 𝐿𝐿(𝑡𝑡) is the gain 

vector. The term 𝑃𝑃(𝑡𝑡)  represents the covariance matrix of 𝜃𝜃�(𝑡𝑡). The expected value of 

𝜃𝜃�(𝑡𝑡)  is  𝜃𝜃 . According to [7], 𝜃𝜃�(𝑡𝑡)  converges to 𝜃𝜃 when the training time approaches 

infinity. Generally, the initial value of 𝑃𝑃(𝑡𝑡) is 𝑃𝑃(0) = 𝐶𝐶 ∙ 𝐼𝐼 , where C is a large constant 

and 𝐼𝐼 is the identity matrix. The initial value of 𝜃𝜃�(𝑡𝑡) is 𝜃𝜃�(0) = 0. 

In the recursive calculations, for storing only finite information of 𝜃𝜃�(𝑘𝑘) for 𝑘𝑘 < 𝑡𝑡, 

the forgetting factor 𝜆𝜆 is introduced, which is a number less than 1 but close to 1 such as 

0.99999. According to [11], Equation (2.7) can be rewritten as:  

 

𝜃𝜃�(𝑡𝑡) = 𝜃𝜃�(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡)�𝑦𝑦(𝑡𝑡) − 𝜃𝜃�𝑇𝑇(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡)�,     (2.8a) 

𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)
𝜆𝜆+𝜑𝜑𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

        (2.8b) 

𝑃𝑃(𝑡𝑡) = 1
𝜆𝜆

[𝑃𝑃(𝑡𝑡 − 1) − 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)𝜑𝜑𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)
𝜆𝜆+𝜑𝜑𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

]     (2.8c) 

 

Equation (2.8) is the basic equation used in the thesis. 
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2.2.2 Potter’s Square Root Algorithm 

In Equation (2.8), 𝑃𝑃(𝑡𝑡) is an important term, which determines the distribution of 

𝜃𝜃�(𝑡𝑡) at time t. For correctly updating 𝑃𝑃(𝑡𝑡) and  𝜃𝜃�(𝑡𝑡), 𝑃𝑃(𝑡𝑡)  should always be positive 

definite symmetric. However, due to numerical limitations, this property of 

𝑃𝑃(𝑡𝑡) sometimes cannot be guaranteed. Therefore, some algorithms have been developed 

to solve this problem. Here, Potter’s Square Root algorithm is introduced. This algorithm 

guarantees that the 𝑃𝑃(𝑡𝑡) matrix remains positive definite symmetric [7]. 

When 𝑃𝑃(𝑡𝑡) is positive definite symmetric, it can be decomposed as 

 

𝑃𝑃(𝑡𝑡) = 𝑄𝑄(𝑡𝑡)𝑄𝑄𝑇𝑇(𝑡𝑡)          (2.9) 

 

Here 𝑄𝑄(𝑡𝑡) is a nonsingular matrix. Potter’s Square Root Algorithm is based on the 

factorization Equation (2.9). The matrix 𝑄𝑄(𝑡𝑡)is calculated in the following algorithm [7]. 

At the initial time 𝑡𝑡 = 0, 𝑄𝑄(0)𝑄𝑄𝑇𝑇(0) = 𝑃𝑃(0)  

At time t, update 𝑄𝑄(𝑡𝑡 − 1)by performing steps 1-5. 

 

1. 𝑓𝑓(𝑡𝑡) = 𝑄𝑄𝑇𝑇(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡). 

2. 𝛽𝛽(𝑡𝑡) = 𝜆𝜆 + 𝑓𝑓𝑇𝑇(𝑡𝑡)𝑓𝑓(𝑡𝑡). 

3. 𝛼𝛼(𝑡𝑡) = 1 [𝛽𝛽(𝑡𝑡) + �𝛽𝛽(𝑡𝑡)𝜆𝜆(𝑡𝑡)]⁄  

4. 𝐿𝐿�(𝑡𝑡) = 𝑄𝑄(𝑡𝑡 − 1)𝑓𝑓(𝑡𝑡). 
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5. 𝑄𝑄(𝑡𝑡) = [𝑄𝑄(𝑡𝑡 − 1) − 𝛼𝛼(𝑡𝑡)𝐿𝐿�(𝑡𝑡)𝑓𝑓𝑇𝑇(𝑡𝑡)]/�𝜆𝜆(𝑡𝑡)     (2.10) 

 

The vector 𝐿𝐿�(𝑡𝑡)  is the normalized form of the gain vector  𝐿𝐿(𝑡𝑡) . The relation 

between them is: 

 

𝐿𝐿(𝑡𝑡) = 𝐿𝐿�(𝑡𝑡)
𝛽𝛽(𝑡𝑡)

.          (2.11) 

 

𝜃𝜃�(𝑡𝑡) can be updated by Equation (2.12). 

 

𝜃𝜃�(𝑡𝑡) = 𝜃𝜃�(𝑡𝑡 − 1) + 𝐿𝐿�(𝑡𝑡) �𝜀𝜀(𝑡𝑡)
𝛽𝛽(𝑡𝑡)

�        (2.12) 

 

Here, 𝜀𝜀(𝑡𝑡) is the update residual, and it is computed in Equation (2.13). 

 

𝜀𝜀(𝑡𝑡) =  𝑦𝑦(𝑡𝑡) − 𝜃𝜃�𝑇𝑇(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡)        (2.13) 

 

Then 𝑃𝑃(𝑡𝑡) can be calculated by Equation (2.9). 

 

 

2.2.3 The Kalman Filter Method     

The Kalman Filter method is widely used in state estimation. It can also be used in 
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parameter estimation problems. The general Kalman Filter equations for estimating the 

system state are: 

𝑥𝑥(𝑡𝑡 + 1) = 𝐹𝐹(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝑤𝑤(𝑡𝑡)         (2.14a) 

𝑦𝑦(𝑡𝑡) = 𝐻𝐻(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝑣𝑣(𝑡𝑡)                   (2.14b) 

The term 𝑥𝑥(𝑡𝑡) is the system state, and 𝑦𝑦(𝑡𝑡) is the system output. The term 𝐹𝐹(𝑡𝑡) is 

the state transition matrix, and 𝐻𝐻(𝑡𝑡) relates the system state to the system output. The 

term 𝑤𝑤(𝑡𝑡) is the process noise and 𝑣𝑣(𝑡𝑡) is the measurement noise [12]. From Equation 

(2.2), one can write the linear regression equation: 

𝑦𝑦�(𝑡𝑡|𝜃𝜃) = 𝜑𝜑𝑇𝑇(𝑡𝑡)𝜃𝜃         (2.15) 

For casting Equation (2.15) into the Kalman Filter method Equation (2.14), one can 

modify Equation (2.14) to Equation (2.16): 

𝜃𝜃(𝑡𝑡 + 1) = 𝜃𝜃(𝑡𝑡) + 𝑤𝑤(𝑡𝑡)        (2.16a) 

𝑦𝑦(𝑡𝑡) = 𝜑𝜑𝑇𝑇(𝑡𝑡)𝜃𝜃(𝑡𝑡) + 𝑣𝑣(𝑡𝑡)                   (2.16b) 

One can assume: 

𝑅𝑅1(𝑡𝑡) = 𝐸𝐸𝑤𝑤(𝑡𝑡)𝑤𝑤𝑇𝑇(𝑡𝑡)         (2.17) 

𝑅𝑅2(𝑡𝑡) = 𝐸𝐸𝑣𝑣(𝑡𝑡)𝑣𝑣𝑇𝑇(𝑡𝑡)         (2.18) 

Here, both 𝑤𝑤(𝑡𝑡)  and 𝑣𝑣(𝑡𝑡) should be independent Gaussian white noise. 

One can get Equation (2.16) by setting 𝐹𝐹(𝑡𝑡) = 𝐼𝐼,𝐻𝐻(𝑡𝑡) = 𝜑𝜑𝑇𝑇(𝑡𝑡) and 𝑥𝑥(𝑡𝑡) = 𝜃𝜃(𝑡𝑡) in 

Equation (2.14).  

Then the recursive parameter estimation equation of the Kalman Filter form can be 

written as: 
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𝜃𝜃�(𝑡𝑡) = 𝜃𝜃�(𝑡𝑡 − 1) + 𝐿𝐿(𝑡𝑡)�𝑦𝑦(𝑡𝑡) − 𝜃𝜃�𝑇𝑇(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡)�,                    (2.19a) 

𝐿𝐿(𝑡𝑡) = 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)
𝜆𝜆+𝑅𝑅2(𝑡𝑡)+𝜑𝜑𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

                              (2.19b) 

𝑃𝑃(𝑡𝑡) = 1
𝜆𝜆

[𝑃𝑃(𝑡𝑡 − 1) − 𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)𝜑𝜑𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)
𝜆𝜆+𝑅𝑅2(𝑡𝑡)+𝜑𝜑𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)𝜑𝜑(𝑡𝑡)

+ 𝑅𝑅1(𝑡𝑡)]    (2.19c) 

 

When 𝑅𝑅1(𝑡𝑡) ≠ 0  in (2.19c), the algorithm is tracking a time-varying parameter 

system. When 𝑅𝑅1(𝑡𝑡) = 0, the algorithm is tracking a time-invariant system. 

 

2.2.4 The ARMAX Model and the Recursive Prediction Error 

Method 

One can modify the basic linear difference Equation (2.1) to Equation (2.20). 

 

𝐴𝐴(𝑞𝑞−1)𝑦𝑦(𝑡𝑡) = 𝐵𝐵(𝑞𝑞−1)𝑢𝑢(𝑡𝑡) + 𝐶𝐶(𝑞𝑞−1)𝑒𝑒(𝑡𝑡)      (2.20) 

Here, 𝑞𝑞−1 is the backward shift operator: 

𝑞𝑞−1𝑦𝑦(𝑡𝑡) = 𝑦𝑦(𝑡𝑡 − 1)         (2.21) 

Therefore, 

𝐴𝐴(𝑞𝑞−1) = 1 + 𝑎𝑎1𝑞𝑞−1 + ⋯+ 𝑎𝑎𝑛𝑛𝑞𝑞−𝑛𝑛         (2.22) 

𝐵𝐵(𝑞𝑞−1) = 𝑏𝑏1𝑞𝑞−1 + 𝑏𝑏2𝑞𝑞−2 + ⋯+ 𝑏𝑏𝑚𝑚𝑞𝑞−𝑚𝑚        (2.23) 

𝐶𝐶(𝑞𝑞−1) = 1 +  𝑐𝑐1𝑞𝑞−1 + ⋯+ 𝑐𝑐𝑟𝑟𝑞𝑞−𝑟𝑟         (2.24) 

In Equation (2.20), the disturbance term 𝑒𝑒(𝑡𝑡) is also modeled. This is known as the 
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ARMAX model. One should notice that the general RLS method cannot be simply 

applied to the ARMAX model if the precise covariance matrix 𝑃𝑃(𝑡𝑡) is needed, because 

the disturbance term 𝐶𝐶(𝑞𝑞−1)𝑒𝑒(𝑡𝑡)  is not independent on the last disturbance 

term 𝐶𝐶(𝑞𝑞−1)𝑒𝑒(𝑡𝑡 − 1). 

For solving the ARMAX model, the Recursive Prediction Error Method (RPEM) 

should be applied. A simple first-order ARMAX model can be used to demonstrate how 

RPEM works. 

Consider the ARMAX model in Equation (2.25): 

𝑦𝑦(𝑡𝑡) = 𝑎𝑎𝑢𝑢(𝑡𝑡) + 𝑒𝑒(𝑡𝑡) + 𝑏𝑏𝑒𝑒(𝑡𝑡 − 1).        (2.25) 

Here, 𝑒𝑒(𝑡𝑡) is a sequence of independent white noise. The parameter is 𝜃𝜃𝑇𝑇 = (𝑎𝑎    𝑏𝑏). 

RLS method or Kalman Filter method cannot be used directly here because 𝑒𝑒(t − 1) is 

not known. 

The natural prediction of 𝑦𝑦(𝑡𝑡) is: 

𝑦𝑦�(𝑡𝑡|𝜃𝜃) = 𝑎𝑎𝑢𝑢(𝑡𝑡) + 𝑏𝑏�̂�𝑒(𝑡𝑡 − 1)        (2.26) 

�̂�𝑒(𝑡𝑡 − 1) is calculated recursively with:  

�̂�𝑒(𝜇𝜇) = 𝑦𝑦(𝜇𝜇) − 𝑎𝑎𝑢𝑢(𝜇𝜇) − 𝑏𝑏�̂�𝑒(𝜇𝜇 − 1)       (2.27) 

One can evaluate the prediction error 

𝜀𝜀(𝑡𝑡|𝜃𝜃) = 𝑦𝑦(𝑡𝑡) − 𝑦𝑦�(𝑡𝑡|𝜃𝜃)        (2.28) 

 𝜓𝜓(𝑡𝑡, 𝜃𝜃) is introduced here, which is the gradient of −𝜀𝜀(𝑡𝑡|𝜃𝜃) with respect to 𝜃𝜃.  

From [7], one can get: 

𝜓𝜓(𝑡𝑡, 𝜃𝜃) + 𝑏𝑏𝜓𝜓(𝑡𝑡 − 1,𝜃𝜃) = (𝑢𝑢(𝑡𝑡 − 1)  𝜀𝜀(𝑡𝑡 − 1,𝜃𝜃))     (2.29) 
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Then the vector 𝜑𝜑(𝑡𝑡) is introduced in Equation (2.30). 

𝜑𝜑(𝑡𝑡) = (𝑢𝑢(𝑡𝑡 − 1)   𝜀𝜀(𝑡𝑡 − 1))𝑇𝑇         (2.30) 

Rewrite (2.28) for 𝜀𝜀(𝑡𝑡|𝜃𝜃) as:  

𝜀𝜀(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝜃𝜃�𝑇𝑇(𝑡𝑡 − 1)𝜑𝜑(𝑡𝑡).        (2.31) 

Rewrite (2.29) as: 

𝜓𝜓(𝑡𝑡) = −𝑏𝑏�(𝑡𝑡 − 1)𝜓𝜓(𝑡𝑡 − 1) + 𝜑𝜑(𝑡𝑡)       (2.32) 

Equation (2.32) is a typical approximation of the gradient. 

The estimated parameter vector is: 

𝜃𝜃�(𝑡𝑡 − 1) = (𝑎𝑎�(𝑡𝑡 − 1)     𝑏𝑏�(𝑡𝑡 − 1))𝑇𝑇        (2.33) 

The Recursive Prediction Error Method (RPEM) can be given as 

𝜃𝜃�(𝑡𝑡) = 𝜃𝜃�(𝑡𝑡 − 1) + 𝑃𝑃(𝑡𝑡)𝜓𝜓(𝑡𝑡)𝜀𝜀(𝑡𝑡),       (2.34a) 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃(𝑡𝑡 − 1) − 𝑃𝑃(𝑡𝑡−1)𝜓𝜓(𝑡𝑡)𝜓𝜓𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)
1+𝜓𝜓𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡−1)𝜓𝜓(𝑡𝑡)

                      (2.34b)  

From Equation (2.34) and the definition of 𝜀𝜀(𝑡𝑡) and 𝜓𝜓(𝑡𝑡), the algorithm for an 

ARMAX model of arbitrary order can be constructed.  

The detailed RPEM deduction process is complicated. Anyone who is interested in 

this algorithm can refer to [7].  
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Chapter 3: Problem Statement 

 

Highly accurate and stabilized timing modules are important in many electrical 

systems, such as wireless communication base transceiver stations. Such timing modules 

are expensive, have high power consumption and a large size. Building a low cost, low 

power consumption and small size timing module with the same high accuracy and 

stability is an important research objective. Some researchers have developed adaptive 

control algorithms for oscillators to meet the objective. [13] developed an algorithm for 

performing adaptive temperature and ageing compensation of oscillators. This algorithm 

is based on a Recursive Least Squares method. The performance of the algorithm is 

presented by employing it to a TCXO, an OCXO, and a Rubidium oscillator. The 

algorithm improves the performance of all of these oscillators in holdover mode. 

However, [13] did not consider the instability problem of GPS signal and did not analyze 

the characteristics of correction signal created through GPS signal. [14] and [15] used the 

Kalman Filter method to develop algorithms for enhancing the oscillator stability in 

holdover mode. These algorithms compensate the ageing effect of oscillators in a long 

period of time. They did not compensate the temperature effect. They also did not analyze 

the characteristics of correction signal. [16] used the Kalman Filter method to develop an 

algorithm to compensate the ageing and temperature effect. [17] used the Batch Least 

Squares method to compensate the temperature effect. Both [16] and [17] used the same 



33 

correction signal creation model and they can meet the CDMA base station timing 

requirements. However, algorithms developed from [16] and [17] assume the linear 

stability dependencies of oscillators which may not be true in most situations. This thesis 

is based on [17]. The system concept and hardware structure of [17] are described in 

Section 3.1 in detail. 

The performance bound of oscillator when the adaptive control algorithm is used is 

another objective. The performance bound can determine whether the adaptive algorithm 

can meet system requirements. Generally, the performance bound of the adaptive control 

algorithm is represented by the cumulative time error of the oscillator. So far, there are no 

papers to investigate the performance bound of oscillators using adaptive control 

algorithms. This thesis will try to investigate this problem. 

In this chapter, a useful adaptive OCXO drift correction algorithm and related 

system structure based on [17] are reviewed. Then the deficiencies of this algorithm are 

demonstrated. In order to meet the actual application requirements, a more 

comprehensive adaptive method is needed. 

  

3.1  Review of an Adaptive OCXO Drift Correction 

Algorithm  

WiMAX and CDMA base stations all need to be time synchronous with respect to 

RST (radio system time). GPS (global positioning system) satellites which are equipped 
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with ultra-high accuracy atomic clocks generally serve as these time servers. They 

provide a 1 pulse per second (1 pps) signal to which the wireless base stations are time 

synchronous through phase lock. This state is termed locked mode. In contrast to the 

locked mode, when the base stations lose their external frequency reference, they enter 

holdover mode. In the holdover mode, the frequency accuracy of the base station is 

totally dependent on its timing module.  

According to [3], in the locked mode, the WiMAX and CDMA base stations must 

have a time offset relative to RST lesser than ±1 𝜇𝜇𝜇𝜇. In the holdover mode, relative to 

RST, the CDMA base station 1pps signal must not exceed ±10 𝜇𝜇𝜇𝜇 time error over an 8 

hour period. A WiMAX base station must not exceed ±25 𝜇𝜇𝜇𝜇 time error over an 8 hour 

period. The system design must be based on the specification above. The time error ∆𝑡𝑡 

and the time duration 𝑇𝑇 for which the frequency stability error is preserved are related to 

the stability of the oscillator ∆𝑓𝑓/𝑓𝑓0 through Equation (3.1) [17]. 

 

∆𝑡𝑡
𝑇𝑇

= ∆𝑓𝑓
𝑓𝑓0

              (3.1) 

 

Applying Equation (3.1) to the CDMA time error of ±10 𝜇𝜇𝜇𝜇 over an 8 hour period 

in holdover mode, one can get the maximum allowable frequency error of the oscillator 

of ±0.35 ppb (parts per billion). With the purpose of meeting this accuracy requirement 

over a 75℃ operation temperature, a double oven crystal oscillator (DOCXO) is applied. 

Due to the cost, size and power consumption limitation of the DOCXO, it is feasible to 
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apply an adaptive modeling of the base station timing module during the locked mode 

and use the resulting model to correct the oscillator frequency drift during holdover mode. 

In [16] and [17], a single oven crystal oscillator (OCXO) is used and the Batch 

Least Squares (BLS) fit algorithm is applied to compensate for the OCXO deficiencies to 

meet the CDMA and WiMAX base station timing module specification in holdover mode. 

Table 3.1 shows the difference between DOCXO and algorithm-enabled OCXO in the 

base station. Some advantages of using OCXO are apparent from this table. 

 

Component parameter 
Incumbent 

DOCXO 

Algorithm Enabled 

OCXO 

DC supply requirement  +12V +5V 

DC power consumption warm 

up 
9.6W 3.5W 

Peak to peak frequency 

stability over operational 

temperature ppb/75oC  

0.4ppb 4ppb 

Ageing ppb/24hours +/-0.05ppb +/-1ppb 

Dimension (L x W x H)/mm 50 x 50 x 38 25.4 x 25.4 x 12.7 

Cost  in volume 10K / USD ~$250 ~$50 

Table 3.1 Incumbent DOCXO and Algorithm Enabled OCXO [17] 
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Besides the low cost of the OCXO, the smaller power consumption and small size 

allow the timing module to be integrated onto the base station modem card. Using a 

modem card results in large cost saving as the DOCXO has to be built on a standalone 

module.   

 

3.1.1 Timing Module System 

The detailed system structure block diagram of the base station timing module is 

shown in Figure 3.1.  

 

Figure 3.1 Detailed Block Diagram of the Timing Module System [17] 

 

The GPS receiver module offers a 1pps reference signal, which is coming from 

GPS satellites. Because all GPS satellites are equipped with ultra-high accurate rubidium 

atomic clocks, this 1pps reference signal is very precise. The stability of the GPS 1pps 
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signal is not that high compared to its accuracy. Typically, the GPS receivers can bring in 

a GPS noise from 20ns to 30 ns rms (root mean square) jitter on the 1pps edge.  

The whole digital control loop includes the digital phase detector, correction signal 

calculator, and the adaptive oscillator model. All of these functional models are resident 

on a Field Programmable Gate Array (FPGA), which includes a processor. A frequency 

source which is generated from the frequency multiplier is used to count the time interval 

between the rising edges of the 1pps reference signal from the GPS receiver module. A 

10MHz OCXO is used to feed this frequency multiplier. The digital phase detector counts 

the numbers of periods of the frequency source. According to the count value, the 

correction signal is computed by the correction signal calculator. This correction signal 

then is applied to a Digital to Analog Converter (DAC) to control the 10 MHz OCXO and 

it is also used to feed the adaptive oscillator model which can be used when the system 

loses the GPS signal. A temperature sensor is used to collect the ambient temperature.  

The 10MHz OCXO is the key component of the timing module, which is locked to 

the GPS reference signal through the control loop in the locked mode. In the holdover 

mode, the adaptive oscillator model creates the correct signal to the OCXO.   

 

3.1.2  Digital Control Loop 

Referring to Chapter 2, the accuracy of the OCXO is dependent on many factors. 

The correction signal generated by the control loop compensates for the effect of these 
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factors on the accuracy of the OCXO. In this section, the control loop is introduced in 

detail. 

 

 

Figure 3.2 Frequency Multiplier Output Counting GPS 1pps Signal 

 

In order to introduce the control loop, the first step is to introduce error counts. 

Figure 3.2 indicates how the frequency signal generated by the frequency multiplier is 

used to count between the rising edges of the GPS 1pps signal. For example, we assume 

the frequency of the frequency multiplier output is 160 MHz. Then the period of the 
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output is 6.25 𝑛𝑛𝜇𝜇. If there is no GPS noise and the oscillator does not have frequency drift, 

the length between two adjacent rising edges of the GPS 1pps signal should be just 1 

second. The number of 160 MHz clock cycles between two adjacent rising edges of the 

GPS 1pps signal should be just 160,000,000. The number 160,000,000 here is the count 

value. However, the count value may not be 160,000,000 because there are always GPS 

noise and frequency drift. When the OCXO has no frequency drift, the count value is 

equal to the frequency of the frequency multiplier output +/- the error counts. These error 

counts are generated by the GPS noise. Generally, the GPS noise has a standard deviation 

from 20 𝑛𝑛𝜇𝜇 to 30 𝑛𝑛𝜇𝜇 in 1pps signal.  

In Equation (3.2), the term 𝛼𝛼 represents the actual time interval between the rising 

edges of the 1pps signal. The term 𝛽𝛽 represents the digital phase detector resolution. The 

count value is represented by 𝑛𝑛. For example, 𝛽𝛽  equals to 6.25 𝑛𝑛𝜇𝜇 and the frequency 

multiplier output frequency is 160 MHz. The time interval 𝛼𝛼 is 1 second plus 25 𝑛𝑛𝜇𝜇. The 

actual count value is: 

 

𝑛𝑛 = 𝛼𝛼
𝛽𝛽

+ 𝑣𝑣 = 1+25×10−9

6.25×10−9 + 𝑤𝑤 = 160 × 106 + 4 + 𝑤𝑤     (3.2) 

 

The term 𝑤𝑤 represents the inherent random error in the counting and it cannot be 

avoided. 𝑤𝑤 is chosen from 1, -1, or 0 randomly according to different phases. Therefore, 

the actual error count in this equation is 3, 4, or 5. The term 𝑤𝑤 does not affect the mean 

value of the error counts when there is no frequency drift and the mean count value 
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should be zero. 

When the OCXO has frequency drift, this drift appears as a bias on the mean count 

value. A moving average filter is used by the control loop to divide the OCXO frequency 

drift from the GPS noise of the receiver. The error counts are multiplied by the digital 

phase detector resolution to produce the time error between the OCXO and the received 

GPS 1pps signal. All time errors are integrated to create the cumulative time error (CTE). 

CTE can be recursively calculated through Equation (3.3). The digital phase detector 

resolution is still denoted by 𝛽𝛽. The term 𝜀𝜀 is used to denote error counts. 𝑘𝑘 represents 

how many seconds the timing module has been running for. Therefore, 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘  represents 

the cumulative time error when the timing module has been running for 𝑘𝑘 seconds. The 

term 𝜀𝜀𝑘𝑘  represents error counts at the k-th second. According to Equation (3.3), 

𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘  must be multiples of 𝛽𝛽. 

 

𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘 = 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘−1 +  𝛽𝛽 ∗ 𝜀𝜀𝑘𝑘         (3.3) 

 

The correction signal is created by combining the CTE and a moving average of the 

former correction signals. 

 

𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓 = 1
𝑁𝑁
∑ 𝐶𝐶𝑡𝑡𝑘𝑘−1
𝑡𝑡=𝑘𝑘−𝑁𝑁          (3.4) 

𝐶𝐶𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓 −  𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘/𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑        (3.5) 
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In Equations (3.4) and (3.5), 𝐶𝐶𝑡𝑡  denotes the correction signal at time t and 𝐶𝐶𝑘𝑘  

denotes the correction signal at time 𝑘𝑘. The term 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓  which is the average value 

of the last 𝑁𝑁 correction signals provides an equilibrium point about which the CTE acts. 

The term 𝑁𝑁 is a large constant such as 2000. The term damp is a constant such as 150. It 

is used for suppressing the GPS receiver noise. A digital to analog converter (DAC) is 

used to convert the digital correction signal into an analog tuning voltage. The whole 

process of determining the tuning voltage is: first, the correction signal which is digital 

and expressed in ppb (parts per billion) is divided by the OCXO tuning sensitivity (Kvco), 

which is expressed in ppb/volt. Therefore, the voltage which is applied to the tuning port 

of the OCXO is obtained. Second, the tuning voltage is divided by the DAC resolution 

which is the ratio of the control voltage range to the total number of DAC steps. Then the 

actual number of DAC steps is obtained, which is a binary word. The calculation of the 

DAC steps is: 

 

𝐷𝐷𝐴𝐴𝐶𝐶𝜇𝜇𝑡𝑡𝑒𝑒𝑑𝑑𝜇𝜇 = 𝑓𝑓𝑓𝑓𝑥𝑥{ 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡𝑓𝑓𝑐𝑐𝑛𝑛  𝜇𝜇𝑓𝑓𝑠𝑠𝑛𝑛𝑎𝑎𝑠𝑠
𝐾𝐾𝑣𝑣𝑐𝑐𝑐𝑐 ∗𝐷𝐷𝐴𝐴𝐶𝐶𝑟𝑟𝑒𝑒𝜇𝜇𝑐𝑐𝑠𝑠𝑢𝑢𝑡𝑡𝑓𝑓𝑐𝑐𝑛𝑛

}            (3.6) 

 

The operator 𝑓𝑓𝑓𝑓𝑥𝑥(∙)  truncates the arguments in the brackets toward zero. For 

example, 𝑓𝑓𝑓𝑓𝑥𝑥(2.1) = 2 and 𝑓𝑓𝑓𝑓𝑥𝑥(−1.6) = −1. 𝑓𝑓𝑓𝑓𝑥𝑥(∙) is used in Equation (3.6) because 

DAC steps must be an integer. This DAC steps value is fed into the DAC to get the real 

control voltage.  

Figure 3.3 shows the block diagram of the digital control loop.   
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Figure 3.3 Block Diagram of the Digital Control Loop 

 

3.1.3 The Adaptive Control Algorithm  

 

Although there are many factors affecting the frequency accuracy of the OCXO, the 

two most important factors are temperature and ageing. When the OCXO is locked to the 

GPS satellite reference signal, we refer to this as the OCXO be in a training mode. The 
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temperature in the crystal oven of OCXO is limited to a small range around the turnover 

point. The turnover point refers to the temperature at which the frequency-temperature 

ratio is zero. The temperature is linear related to the frequency stability of the oscillator at 

the turnover point, so it can be assumed that a straight line fit is applied to the 

temperature and the correction signal. A Batch Least Squares (BLS) method is used to 

determine the coefficients of the straight line fit [17] [18] [19]. The ageing effect is not 

considered, so the OCXO model equation is: 

 

𝑦𝑦𝑓𝑓 = 𝑎𝑎2 ∙ 𝑥𝑥𝑓𝑓 + 𝑎𝑎1 + 𝑣𝑣𝑓𝑓          (3.7) 

 

Here, 𝑦𝑦𝑓𝑓  represents the 𝑓𝑓𝑡𝑡ℎ  frequency stability reading of the OCXO.  

 

𝑦𝑦𝑓𝑓 = ∆𝑓𝑓𝑓𝑓
𝑓𝑓0

           (3.8) 

 

The term 𝑥𝑥𝑓𝑓  represents the 𝑓𝑓𝑡𝑡ℎ  termperature sensor reading. The term 𝑎𝑎1 represents 

the initial offset of the frequency stability and 𝑎𝑎2 represents the thermal sensitivity of the 

crystal resonator frequency stability. The term 𝑣𝑣𝑓𝑓  represents the GPS receiver noise. 

The term 𝑟𝑟𝑓𝑓  is used to represent the residual between the frequency stability reading 

and the frequency stability prediction. The term 𝜎𝜎𝑓𝑓  is used to represent the difference 

between the mean value of the 𝑦𝑦𝑓𝑓  data set and the 𝑓𝑓𝑡𝑡ℎ  data point. 
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𝜎𝜎𝑓𝑓 = 𝑦𝑦� − 𝑦𝑦𝑓𝑓           (3.9) 

 

The summation of the square of the residuals is expressed as: 

 

𝑆𝑆 = ∑ �𝑟𝑟𝑓𝑓
𝜎𝜎𝑓𝑓
�

2
𝑓𝑓           (3.10) 

 

The algorithm minimizes 𝑆𝑆 to obtain the optimal estimation of the coefficients 𝑎𝑎2 

and 𝑎𝑎1. 

𝜎𝜎𝑓𝑓  is used here to decrease the impact of outliers on the line fit by decreasing the 

weighting on large residuals. 

From Equation (3.7), it follows that the frequency stability prediction is: 

 

𝑦𝑦� = 𝑎𝑎2 ∙ 𝑥𝑥𝑓𝑓 + 𝑎𝑎1          (3.11) 

 

Substituting Equation (3.11) into Equation (3.10): 

𝑆𝑆 = ∑ �𝑦𝑦𝑓𝑓−(𝑎𝑎2∙𝑥𝑥𝑓𝑓+𝑎𝑎1)
𝜎𝜎𝑓𝑓

�
2

𝑓𝑓          (3.12) 

 

Equations (3.13) and (3.14) are obtained by setting the partial derivatives of 𝑆𝑆 with 

respect to the coefficients 𝑎𝑎1 and 𝑎𝑎2 to zero. 
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𝜕𝜕𝑆𝑆
𝜕𝜕𝑎𝑎1

= ∑ −2 �𝑦𝑦𝑓𝑓−(𝑎𝑎2∙𝑥𝑥𝑓𝑓+𝑎𝑎1)
𝜎𝜎𝑓𝑓

2 � = 0𝑓𝑓        (3.13) 

𝜕𝜕𝑆𝑆
𝜕𝜕𝑎𝑎2

= ∑ −2𝑥𝑥𝑓𝑓 �
𝑦𝑦𝑓𝑓−(𝑎𝑎2 ∙𝑥𝑥𝑓𝑓+𝑎𝑎1)

𝜎𝜎𝑓𝑓
2 � = 0𝑓𝑓        (3.14) 

 

Set: 

 

𝑆𝑆1 = ∑ 1
𝜎𝜎𝑓𝑓

2𝑓𝑓           (3.15) 

𝑆𝑆𝑥𝑥 = ∑ 𝑥𝑥𝑓𝑓
𝜎𝜎𝑓𝑓

2𝑓𝑓           (3.16) 

𝑆𝑆𝑦𝑦 = ∑ 𝑦𝑦𝑓𝑓
𝜎𝜎𝑓𝑓

2𝑓𝑓           (3.17) 

𝑆𝑆𝑥𝑥𝑥𝑥 = ∑ 𝑥𝑥𝑓𝑓
2

𝜎𝜎𝑓𝑓
2𝑓𝑓           (3.18) 

𝑆𝑆𝑥𝑥𝑦𝑦 = ∑ 𝑥𝑥𝑓𝑓∙𝑦𝑦𝑓𝑓
𝜎𝜎𝑓𝑓

2𝑓𝑓            (3.19) 

∆= 𝑆𝑆1 ∙ 𝑆𝑆𝑥𝑥𝑥𝑥 − 𝑆𝑆𝑥𝑥2         (3.20) 

 

Expanding Equations (3.13) and (3.14) results in Equations (3.21) and (3.22): 

 

−2∑ 𝑦𝑦𝑓𝑓
𝜎𝜎𝑓𝑓

2𝑓𝑓 + 2 ∙ 𝑎𝑎1 ∑
1
𝜎𝜎𝑓𝑓

2𝑓𝑓 + 2 ∙ 𝑎𝑎2 ∑
𝑥𝑥𝑓𝑓
𝜎𝜎𝑓𝑓

2𝑓𝑓 = 0      (3.21) 

−2∑ 𝑥𝑥𝑓𝑓∙𝑦𝑦𝑓𝑓
𝜎𝜎𝑓𝑓

2𝑓𝑓 + 2 ∙ 𝑎𝑎1 ∑
𝑥𝑥𝑓𝑓
𝜎𝜎𝑓𝑓

2𝑓𝑓 + 2 ∙ 𝑎𝑎2 ∑
𝑥𝑥𝑓𝑓

2

𝜎𝜎𝑓𝑓
2𝑓𝑓 = 0      (3.22) 

 

The coefficients 𝑎𝑎1 and 𝑎𝑎2  are obtained by substituting Equations (3.15) to (3.20) 

into Equations (3.21) and (3.22). 

 

𝑎𝑎1 = (𝑆𝑆𝑦𝑦𝑆𝑆𝑥𝑥𝑥𝑥 − 𝑆𝑆𝑥𝑥𝑦𝑦 𝑆𝑆𝑥𝑥)/∆        (3.23) 
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𝑎𝑎2 = (𝑆𝑆1𝑆𝑆𝑥𝑥𝑦𝑦 − 𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦)/∆        (3.24) 

 

Equations (3.9) to (3.24) for calculating 𝑎𝑎1 and 𝑎𝑎2 are actually the Batch Least 

Squares (BLS) method which is introduced in Section 2.2.1.  

High precision OCXOs have an ageing rate of less than 1ppb per day, which 

corresponds to 1.157 × 10−5 𝑑𝑑𝑑𝑑𝑏𝑏/𝜇𝜇𝑒𝑒𝑐𝑐. One can assume that the ageing effect is linear: 

 

�∆𝑓𝑓
𝑓𝑓0
�
𝑎𝑎𝑠𝑠𝑒𝑒𝑓𝑓𝑛𝑛𝑠𝑠

= 𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒𝑓𝑓𝑛𝑛𝑠𝑠 ∙ 𝑡𝑡𝑓𝑓𝑚𝑚𝑒𝑒       (3.25) 

 

The cumulative time error according to ageing is obtained by integrating Equation 

(3.25) with respect to time. 

 

𝐶𝐶𝑇𝑇𝐸𝐸𝑎𝑎𝑠𝑠𝑒𝑒𝑓𝑓𝑛𝑛𝑠𝑠 = 1
2
𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑎𝑎𝑠𝑠𝑒𝑒𝑓𝑓𝑛𝑛𝑠𝑠 ∙ 𝑡𝑡𝑓𝑓𝑚𝑚𝑒𝑒2        (3.26) 

 

If the holdover mode lasts for 8 hours and the ageing rate is exactly 1ppb per day, 

the cumulative time error in terms of ageing would be 4.8 𝜇𝜇𝜇𝜇. This time error can be 

tolerated by the WiMAX specification of 25 𝜇𝜇𝜇𝜇 and CDMA specification of 10 𝜇𝜇𝜇𝜇 for 8-

hour holdover times. Accordingly, ageing effect is not considered in this adaptive 

algorithm.  

Figure 3.4 illustrates the operation of the adaptive control algorithm.  
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Figure 3.4 Flow Diagram for Adaptive Control Algorithm [17] 

 

The data buffers store the values of the sums of Equations (3.15) to (3.19), which 

are periodically set to zero to prevent overflow errors. When a predetermined ambient 

temperature variation is met, one can consider that enough input samples are obtained. 

Then the BLS method can be considered to have converged to a sufficiently accurate 

level and the calculated model coefficients are considered applicable for use during 

holdover mode.  
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3.1.4 Simulation of the Adaptive Control algorithm 

 

A software test platform which is based on Matlab is developed by [17] to confirm 

the correct operation of the adaptive control algorithm. An ideal OCXO model is created 

which contains the linear frequency dependence on temperature and linear frequency 

dependence on ageing. The ageing rate is set to 1ppb/day and the temperature sensitivity 

of the OCXO frequency stability is set to 4𝑑𝑑𝑑𝑑𝑏𝑏/75℃ respectively. The test platform 

switches between the locked mode and holdover mode. A second OCXO model which is 

not enhanced by the adaptive algorithm is run in parallel for comparing the results of the 

cumulative time error and showing the impact of the algorithm.  

The ambient temperature variation profile is fixed and is illustrated in Figure 3.5. 

Figure 3.6 illustrates the simulation result of the BLS fit of the temperature model and the 

correction signal data readings. The solid straight line through the data points represents 

the BLS fit. Figure 3.7 graphs the cumulative time error for the uncorrected OCXO and 

the corrected OCXO respectively when the models are in the locked mode for 4 hours 

and then in holdover mode for 8 hours.    
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              Figure 3.5 Temperature Profile 

 

 

             Figure 3.6 Correction Signal Data and the BLS Fit Line 

 



50 

 

         Figure 3.7 CTE for the Uncorrected and Corrected OCXO 

 

From Figure 3.7, it can be found that the algorithm provides a 10-fold improvement 

in the cumulative time error for the corrected OCXO over the uncorrected OCXO. The 

WiMAX and CDMA specifications can be met with the corrected OCXO as the timing 

module when the ageing rate of the oscillator is not considered.  

 

3.2  Deficiencies of the Adaptive Control Algorithm  

 

The adaptive control algorithm for improving frequency accuracy of the OCXO 

described in the last section is very practical for the timing module of the WiMAX and 
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CDMA base transceiver stations. However, this control algorithm still has some 

deficiencies. First, the adaptive algorithm above uses the BLS method, which needs data 

buffers to contain the parameters. Actually, a Recursive System Identification method is 

more suitable for this on-line parameter estimation problem. In contrast, the BLS method 

is more suitable for off-line parameter estimation problems. By using a Recursive System 

Identification method, the required computation of the processor in the timing module is 

decreased significantly. Many Recursive System Identification methods are developed, 

and these methods are very mature, such as the Kalman Filter method and the Recursive 

Least Squares method. Therefore, we have more options in developing the adaptive 

control algorithm. According to the performance of these algorithms, the best one can be 

chosen.  

Second, the adaptive algorithm above does not consider the ageing effect on the 

frequency stability of the OCXO in the timing module. In the last section, when the 

holdover mode lasts for 8 hours and the ageing rate of the OCXO is 1ppb/day, the 

cumulative time error with respect to the ageing effect is 4.8 𝜇𝜇𝜇𝜇. This result satisfies the 

specification of the timing modules of WiMAX and CDMA base stations. However, with 

the development of wireless communication technology, the requirement of the 

cumulative time error of the timing module is becoming more stringent. In addition, 

longer holdover periods are desirable. Therefore, the ageing effect of the OCXO should 

be considered in the adaptive control algorithm.  

Third, a straight line fit is applied in the adaptive algorithm. The real relation 
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between the temperature and the frequency stability correction signal of the OCXO is not 

linear. In fact, it is more like a quadratic function. A linear fit only satisfies the 

requirement on the temperature sensitivity estimation for the OCXO. A quadratic curve 

fit is applied to the temperature and correction signal data for more accurate system 

identification. 

Fourth, the upperbound of the cumulative time error of oscillator is another 

interesting problem for some applications. The parameters predicted cannot be one 

hundred percent accurate because, according to the system identification theory, the 

parameter estimates converge to the real coefficients when the training time approaches 

infinity. When the training time is finite, the distribution of parameter estimates can 

determine the error range of the predicted values of the parameters. Applying this error 

range to the timing module, the upperbound of the cumulative time error of the OCXO 

enhanced by the adaptive control algorithm is determined. Many engineering applications 

can apply this upperbound of the cumulative time error to determine if this adaptive 

algorithm is suitable, given their specifications. 

The problems stated in this section are the main research tasks and solved in the 

subsequent chapters.     
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Chapter 4: Training Algorithms for a Simple 

Model  

 

In this chapter, the Recursive Least Squares (RLS) method is evaluated and 

compared with the BLS method. Then the Kalman Filter method is evaluated and 

compared with the RLS method.  

 

4.1 Adaptive Control Algorithm with RLS Method and BLS 

Method 

In the last chapter, a BLS method is used to estimate the temperature sensitivity 

parameter to improve the frequency stability of an OCXO. In this section, the Recursive 

Least Squares method is used to develop the adaptive algorithm. For simplicity, a linear 

fit is applied to the temperature and correction signal data. The ageing effect is ignored 

and the initial frequency offset is zero. The OCXO model equation is of the general form: 

 

𝑦𝑦(𝑡𝑡) = 𝜃𝜃 ∙ 𝑥𝑥(𝑡𝑡) + 𝑣𝑣(𝑡𝑡)         (4.1) 

 

Where the term 𝑦𝑦(𝑡𝑡) is the correction signal defined in Equation (3.8), 𝜃𝜃  is the 

temperature sensitivity of the OCXO. The term 𝑥𝑥(𝑡𝑡) represents the ambient temperature 

around the OCXO and the measurement noise in the system is  𝑣𝑣(𝑡𝑡). The task is to 
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estimate the value of 𝜃𝜃.  

First, the performance of the BLS method is compared with the RLS method. The 

performance of system identification methods is determined by the cumulative time error 

of the OCXO. The cumulative time error is calculated through simulation and Matlab is 

used as the simulation platform.  

The BLS method uses Equation (2.6) to estimate the parameter and to calculate the 

CTE. All past input and output data are needed to operate Equation (2.6) and no initial 

values are needed.  

The RLS method uses Equation (2.7) to estimate the parameter and to calculate the 

CTE. The initial values of 𝜃𝜃�(𝑡𝑡) and 𝑃𝑃(𝑡𝑡)  are needed. Referring to Section 2.2.1, we 

initialize 𝜃𝜃�(0) = 0 and 𝑃𝑃(0) = 𝐶𝐶 ∙ 𝐼𝐼 . Here, 𝐶𝐶  is a large constant and  𝐼𝐼  is the identity 

matrix. In this thesis, 𝐶𝐶 is set to 900. The estimated parameter 𝜃𝜃�(𝑡𝑡) is a scalar in this 

simple model, and 𝑃𝑃(𝑡𝑡) is proportional to the covariance matrix of 𝜃𝜃�(𝑡𝑡). Hence, 𝑃𝑃(𝑡𝑡) is a 

scalar and it equals to 900 in this section. The forgetting factor 𝜆𝜆 is set to 0.99999. In 

each step of the recursive calculation, one only needs to update 𝑃𝑃(𝑡𝑡) and 𝜃𝜃�(𝑡𝑡), and the 

total computation load is much lower than for the BLS method.  

In order to update 𝑃𝑃(𝑡𝑡) and 𝜃𝜃�(𝑡𝑡) correctly in the RLS method, 𝑃𝑃(𝑡𝑡)  needs to be 

positive definite symmetric in each step. This property of 𝑃𝑃(𝑡𝑡) may be corrupted in the 

recursive computations. We applied Potter’s Square Root Algorithm on the Recursive 

Least Squares method to overcome this problem, as described in Section 2.2.2. In this 

algorithm, by setting 𝑄𝑄(0)𝑄𝑄𝑇𝑇(0) = 𝑃𝑃(0) and only updating  𝑄𝑄(𝑡𝑡) in each step, we obtain 
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𝑃𝑃(𝑡𝑡)  via Equation (4.2). 

𝑃𝑃(𝑡𝑡) = 𝑄𝑄(𝑡𝑡)𝑄𝑄𝑇𝑇(𝑡𝑡)          (4.2) 

By using this method, the matrix 𝑃𝑃(𝑡𝑡)  is guaranteed to be positive definite 

symmetric. 

 

Figure 4.1 Maximum CTE and Fifth Maximum CTE for 8 Hours Holdover with 

BLS Method 

 

The performance of the BLS method is shown in Figure 4.1 and the performance of 

RLS is shown in Figure 4.2. 

In Figure 4.1 and 4.2, the holdover mode time is 8 hours and the training time is 

from 1 hour to 10 hours. The temperature profile which represents the input data is 

presented in Figure 3.5. For each training time, the simulations are run 100 times. The 

maximum cumulative time error and the fifth maximum cumulative time error are 

recorded. The X-axis shows how many hours the algorithm is trained. The Y-axis 
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represents the cumulative time error and the unit is  𝜇𝜇𝜇𝜇. The solid line represents the 

maximum CTE in 100 simulations according to the different training time.  

 

Figure 4.2 Maximum CTE and Fifth Maximum CTE for 8 Hours Holdover with 

RLS Method 

 

For example, when the X-axis coordinate value is 5, the Y-axis value on the solid 

line is approximately 1.7 in Figure 4.2, which means that when the algorithm is trained 5 

hours and the holdover mode lasts for 8 hours, the maximum CTE with the RLS method 

in 100 simulations is approximately 1.7 microseconds. The maximum CTE in 100 

simulations can approximately represent the upperbound of CTE. The dashed line 

represents the fifth maximum CTE in 100 simulations according to the different training 

time. For example, when the X-axis coordinate value is 6, the Y-axis coordinate value on 

the dashed line in Figure 4.1 is approximately 1.2, which means when the algorithm is 
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trained 6 hours, the fifth maximum CTE with the BLS method in 100 simulations is 

approximately 1.2 microseconds. The fifth maximum CTE in 100 simulations can 

approximately represent the 95% probability CTE upperbound because there are 100 

simulations. The 95% probability CTE upperbound corresponds to the 95% confidence 

interval of the parameter estimate. The 95% confidence interval is an important parameter 

investigated in subsequent chapters. We can see that in Figure 4.1 and Figure 4.2, there is 

an obvious drop when training time is 7 hours. In theory, the maximum CTE in 100 

simulations should be monotone decreasing along with training time increasing. However, 

when training time is long enough, such as more than 4 hours in this example, the 

simulation results of maximum CTE are not necessary to be monotone decreasing 

because the CTE is low enough. These results are totally normal. Because the same 

simulated input and output data are used for training BLS and RLS methods and they 

produce similar parameters, Figure 4.1 and Figure 4.2 have similar maximum CTE and 

95% maximum CTE plots. This situation also happens when Kalman Filter method is 

used below and the similar plot is produced because the same input and output data are 

still used for training Kalman Filter method.        

The performance of BLS and RLS are determined by their CTE upperbound. One 

can see the performances of both methods are almost identical. However, the BLS 

method needs all past input and output data to estimate the parameters and needs the 

matrix inversion computation which is not needed in the RLS method Therefore, a large 

memory is needed and the computation load of the BLS method is also heavier than the 
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RLS method. In the RLS method, the covariance matrix of  𝜃𝜃�(𝑡𝑡)  can be calculated 

through  𝑃𝑃(𝑡𝑡) . This covariance matrix is important to calculate the analytical CTE 

upperbound of the OCXO. The BLS method cannot calculate the covariance matrix of the 

parameter estimate. Therefore, in this thesis we use the RLS method to replace the BLS 

method because of the advantages of the RLS method above. 

  

4.2 Adaptive Control Algorithm with Kalman Filter Method 

 

Besides the Recursive Least Squares method, the Kalman Filter method is another 

efficient recursive system identification method. Referring to Section 2.2.3, in addition to 

initializing𝜃𝜃�(0) = 0 ,𝑃𝑃(0) = 900 , and 𝜆𝜆 = 0.99999 , which are the same as for the 

Recursive Least Squares method, one also needs to know the covariance matrix 𝑅𝑅1(𝑡𝑡) of 

the process noise 𝑤𝑤(𝑡𝑡), and the covariance matrix 𝑅𝑅2(𝑡𝑡) of the measurement noise 𝑣𝑣(𝑡𝑡). 

For the convenience of the readers, the Kalman Filter Equations (2.16) to (2.18) are 

rewritten as Equations (4.3) to (4.5). 

 

𝜽𝜽(𝒕𝒕 + 𝟏𝟏) = 𝜽𝜽(𝒕𝒕) + 𝒘𝒘(𝒕𝒕)        (4.3a) 

𝒚𝒚(𝒕𝒕) = 𝝋𝝋𝑻𝑻(𝒕𝒕)𝜽𝜽(𝒕𝒕) + 𝒗𝒗(𝒕𝒕)                         (4.3b) 

We assume: 
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𝑹𝑹𝟏𝟏(𝒕𝒕) = 𝑬𝑬𝒘𝒘(𝒕𝒕)𝒘𝒘𝑻𝑻(𝒕𝒕)          (4.4) 

𝑹𝑹𝟐𝟐(𝒕𝒕) = 𝑬𝑬𝒗𝒗(𝒕𝒕)𝒗𝒗𝑻𝑻(𝒕𝒕)            (4.5) 

 

 If 𝑅𝑅1(𝑡𝑡) and 𝑅𝑅2(𝑡𝑡) are known exactly, the Kalman Filter method is the best system 

identification method [20]. Unfortunately, these quantities are seldom known a priori. 

They are always the design parameters in the estimation algorithm. One can choose 

𝑅𝑅1(𝑡𝑡) ≥ 0 and 𝑅𝑅2(𝑡𝑡) > 0 in order to get the desired properties of the filter [21]. In this 

simple application, given that the parameters are time invariant, we set the term 𝑅𝑅1(𝑡𝑡) to 

zero and set the term 𝑅𝑅2(𝑡𝑡) to 4. The reason is that the Kalman Filter does not need an 

accurate model as long as the gain vector 𝐿𝐿(𝑡𝑡) in Equation (2.19) keeps away from zero 

[20]. A setting of 𝑅𝑅1(𝑡𝑡) ≥ 0 and 𝑅𝑅2(𝑡𝑡) > 0 can guarantee this requirement. 

 

Figure 4.3 Maximum CTE and Fifth Maximum CTE for 8 Hours Holdover with 

Kalman Filter Method 
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By applying the initial values and the covariance matrix of the noise into Equation 

(2.19), the parameter estimates 𝜃𝜃�(𝑡𝑡)  are obtained recursively. By applying the same 

settings used in Section 4.1, the performance of the Kalman Filter method is evaluated. 

The maximum cumulative time error and the fifth maximum cumulative time error in the 

100 simulations are recorded. These results are shown in Figure 4.3. The X-axis and Y-

axis in Figure 4.3 have the same meanings as in Figure 4.2.  

 

4.3 Discussion  

Comparing Figure 4.2 with Figure 4.3, we find that the performances of the RLS 

method and the Kalman Filter method are almost identical. However, the RLS method is 

simpler than the Kalman Filter method. It does not require us to set the covariance matrix 

of the process noise and measurement noise. In the RLS method, the covariance matrix of 

the parameter estimates determines the distribution of the parameter prediction. This 

covariance matrix is obtained by calculating the product of 𝑃𝑃(𝑡𝑡) and the variance of the 

prediction error. The prediction error is the difference between the correction signal 

𝑦𝑦(𝑡𝑡) and 𝜃𝜃�(𝑡𝑡) ∙ 𝜑𝜑(𝑡𝑡) and is shown in Equation (4.6).  

 

𝑃𝑃𝑟𝑟𝑒𝑒𝑑𝑑𝑓𝑓𝑐𝑐𝑡𝑡𝑓𝑓𝑐𝑐𝑛𝑛 𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝜃𝜃�(𝑡𝑡) ∙ 𝜑𝜑(𝑡𝑡)       (4.6) 

 

The distribution of the parameter prediction is critical for computing the CTE 
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upperbound of the OCXO analytically. This analytical result of the CTE upperbound is an 

important task of the thesis. In different experiments, the oscillator may show different 

cumulative time errors. Sometimes the CTE is large and sometimes it is small. When the 

oscillator is manufactured, one does not know if this oscillator is suitable for the specific 

application because of the random CTE. The CTE upperbound is the maximum CTE of 

the time module over a period of time. The analytical CTE upperbound is the maximum 

CTE analytically derived.    

In the Kalman Filter method, the different settings of 𝑅𝑅1(𝑡𝑡) and 𝑅𝑅2(𝑡𝑡) affect the 

final result of the covariance matrix of the parameter estimates. Computing the correct 

covariance matrix of the parameter estimates in Kalman Filter method is more difficult 

than in the RLS. Hence, computing the analytical CTE upperbound in Kalman Filter is 

more difficult than in the RLS. The use of the Kalman Filter method is not as convenient 

as the RLS method. In summary, the RLS method is better than the BLS method and the 

Kalman Filter method in developing the adaptive control algorithm for the oscillator.  
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Chapter 5: Modeling Temperature Effect and 

The CTE Upperbound Analysis  

 

In this chapter, the CTE upperbound of the oscillator stated in Chapter 3 is 

investigated. The CTE upperbound determines the performance bound of the oscillator 

and this upperbound is a function of the covariance matrix of the parameter estimates. 

Only the linear frequency stability dependence on temperature is considered in this 

chapter. Equation (4.1) is used as the system model in Section 5.1 and the shortcoming of 

the model is described. This model cannot determine the correct covariance matrix of the 

parameter estimates. Therefore, the CTE upperbound of the oscillator cannot be correctly 

obtained. In Section 5.2 and 5.3, an ARMAX model is used to investigate the CTE 

upperbound. The RPEM algorithm is used as the estimator method to estimate the 

parameters of the ARMAX model. 

 

5.1 Model 1:  The System Model without Control Loop 

 

In the last chapter, Equation (4.1) is used as the system model structure and the 

correction signal is used as the system output for evaluating the RLS method and the 

Kalman Filter method. In this chapter, we continue using this system model to investigate 

the CTE upperbound of the oscillator. For the convenience of the readers, Equation (4.1) 
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is rewritten as Equation (5.1) here. 

 

𝑦𝑦(𝑡𝑡) = 𝜃𝜃 ∙ 𝑥𝑥(𝑡𝑡) + 𝑣𝑣(𝑡𝑡)         (5.1) 

 

When a Recursive Least Squares method is applied to identify the system 

parameters, the parameter estimate 𝜃𝜃�(𝑡𝑡) obeys the Gaussian distribution [11]. Hence, 

𝜃𝜃�(𝑡𝑡) − 𝜃𝜃  also obeys the Gaussian distribution. The mean value of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃  is 0. The 

covariance matrix of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 is the product of 𝑃𝑃(𝑡𝑡) in Equation (2.7c) and the variance 

of the prediction error [11]. The prediction error is calculated from Equation (4.6). The 

variance of the prediction error is shown in Equation (5.2) and the covariance matrix of 

𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 is shown in Equation (5.3). 

 

𝐸𝐸 ��𝑦𝑦(𝑡𝑡) − 𝜃𝜃�(𝑡𝑡) ∙ 𝑥𝑥(𝑡𝑡)�
2
� = 𝜎𝜎2       (5.2) 

𝑐𝑐𝑐𝑐𝑣𝑣�𝜃𝜃�(𝑡𝑡) − 𝜃𝜃� = 𝜎𝜎2𝑃𝑃(𝑡𝑡)        (5.3) 

 

One should notice that the 𝑃𝑃(𝑡𝑡)  investigated in this chapter is a scalar, so the 

covariance matrix of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 is actually equal to the variance of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃.  

The cumulative time error comes from the deviation of 𝜃𝜃�(𝑡𝑡) from 𝜃𝜃. According to 

the standard statistical table, when the variance of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 is known, a 95% confidence 

interval of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 can be obtained. We use 𝜎𝜎1 to represent the standard deviation 

of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 and then the deviation of 𝜃𝜃�(𝑡𝑡) from 𝜃𝜃 should be smaller than 1.96 ∗ 𝜎𝜎1 with 
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probability larger than 95%. When the deviation of 𝜃𝜃�(𝑡𝑡) from 𝜃𝜃 is just equal to 1.96 ∗ 𝜎𝜎1, 

the 95% probability CTE upperbound in holdover mode is obtained analytically through 

Equation (5.4). 

 

95% 𝐶𝐶𝑇𝑇𝐸𝐸 𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑑𝑑 = ∑ 1.96 ∗ 𝜎𝜎1 ∗𝑘𝑘
𝑡𝑡=0 𝑥𝑥(𝑡𝑡)       (5.4) 

  

In Equation (5.4), 𝑡𝑡 = 0 corresponds to the start of the holdover mode. 𝑘𝑘 represents 

the time that the holdover mode maintains. The term 𝑥𝑥(𝑡𝑡) still represents the temperature. 

Then one can use Monte Carlo simulation method to verify this analytical 95% CTE 

upperbound [22]. One hundred simulations are run and the fifth maximum CTE is 

recorded. The training time is set 4 hours and holdover time is set 20 hours. This fifth 

maximum CTE can approximately represent the simulation result of 95% CTE 

upperbound. The comparison results are shown in Figure 5.1.  

In Figure 5.1, X-axis represents the time and Y-axis represents the cumulative time 

error. The solid line represents the simulation result of 95% CTE upperbound. The dashed 

line represents the analytical 95% CTE upperbound. One can see that the analytical CTE 

upperbound has a huge discrepancy from the simulation result of CTE upperbound. The 

reason for this discrepancy is described below.  
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Figure 5.1 Comparison between Analytical and Simulation Results of 95% CTE 

Upperbound 

 

The standard deviation of  𝜃𝜃�(𝑡𝑡) − 𝜃𝜃  is used to determine the analytical CTE 

upperbound of the oscillator. The standard deviation is the square root of the variance 

of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃. If this analytical variance is invalid, it cannot be used to determine the CTE 

upperbound. 

 The Monte Carlo method is applied to verify the validity of the variance of 𝜃𝜃�(𝑡𝑡) −

𝜃𝜃 calculated from Equation (5.3). One hundred simulations are run and the 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 in 

each simulation is recorded. Then the variance of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 from 100 simulations can be 

calculated through the definition of variance. If the analytical variance, which is 

calculated from Equation (5.3), is valid, it should be close to the variance calculated via 
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the Monte Carlo method. 

The comparison which is shown in Figure 5.2 demonstrates that the variance 

calculated from the Monte Carlo method has a huge discrepancy from the variance 

calculated from the system identification method. The variance of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃, calculated 

from Equation (5.3), is much lower than the variance obtained from the Monte Carlo 

method. Hence, the analytical CTE upperbound is much lower than the Monte Carlo 

result of the CTE upperbound, as the comparison result shown in Figure 5.1 confirms. 

 

Figure 5.2 Variance Comparison between Analytical Method and Monte Carlo 

Method with RLS Applied 
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Figure 5.3 Prediction Error Plot for the Simple Model  

 

The reason that the analytical variance of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 has a huge discrepancy from the 

variance calculated via the Monte Carlo method is described as follows. According to [7], 

the RLS method can be used validly if the prediction is unbiased. Then the plot of the 

prediction error should be Gaussian white noise. If the prediction is biased, the plot of the 

prediction error should be colored noise and the RLS method cannot be used validly.  

Figure 5.3 shows the prediction error plot. In this figure, X-axis represents the time 

which is the total training time. Y-axis represents the prediction error which is calculated 

from Equation (4.6). This plot illustrates a colored noise and indicates that the prediction 

is biased. Therefore, the analytical variance calculated from Equation (5.3) is not close to 

the simulation result.  
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The system model structure must be modified to guarantee the prediction error is a 

Gaussian white noise. The RLS method or another system identification method then can 

be applied correctly and the valid analytical variance of 𝜃𝜃�(𝑡𝑡) − 𝜃𝜃 can be obtained. The 

correct CTE upperbound then can be calculated. 

 Looking back at Equations (3.3) to (3.5), the correction signal is not obtained from 

Equation (5.1). The actual correction signal is created by a control loop and it is the 

combination of the former correction signals and the CTE [16]. Therefore, it can be 

assumed that the prediction error can be a Gaussian white noise and the estimate can be 

unbiased when the system model structure reflects the actual creation process of 

correction signal as far as possible [11]. In order to obtain the correct CTE upperbound, 

the control loop should be included in the system model structure.   

 

5.2 Model 2: Including the Control Loop in the System 

Model  

 

Referring to Section 3.1.2, the correction signal is created by the control loop which 

is represented by Equations (3.3) to (3.5). For the convenience of the readers, Equations 

(3.3) to (3.5) are rewritten as Equations (5.5) to (5.7) respectively. 

 

𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘 = 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘−1 +  𝛽𝛽 ∗ 𝜀𝜀𝑘𝑘 = ∑ 𝛽𝛽 ∗ 𝜀𝜀𝑡𝑡+1
𝑘𝑘−1
𝑡𝑡=0        (5.5) 
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𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓 = 1
𝑁𝑁
∑ 𝑦𝑦(𝑡𝑡)𝑘𝑘−1
𝑡𝑡=𝑘𝑘−𝑁𝑁          (5.6) 

𝑦𝑦(𝑘𝑘) = 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓 −  𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘/𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑        (5.7) 

 

The term 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘  represents the cumulative time error at the k-th second. The term 

𝑦𝑦(𝑡𝑡) represents the correction signal at time t and 𝑦𝑦(𝑘𝑘) represents the correction signal at 

time k. The term 𝛽𝛽 represents the digital phase detector resolution and the term 

𝜀𝜀𝑘𝑘  represents error counts at the k-th second. The term 𝛽𝛽 ∗ 𝜀𝜀𝑘𝑘  represents the time error at 

the 𝑘𝑘𝑡𝑡ℎ  second. For example, the system has run for 4 hours (14400 seconds) and the 

cumulative time error is 5𝜇𝜇𝜇𝜇. Thus, 𝑘𝑘 is 14400 and 𝐶𝐶𝑇𝑇𝐸𝐸14400  is 5 𝜇𝜇𝜇𝜇. If the time error at 

the third second is 1𝑛𝑛𝜇𝜇 , then 𝛽𝛽 ∗ 𝜀𝜀3  is 1 𝑛𝑛𝜇𝜇 . Equation (5.5) shows that 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘  is the 

integration of all time errors from the first second to the k-th second. Equation (5.5) also 

shows that the time error obtained at each second and 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘  must be multiples of 𝛽𝛽. In 

Equation (5.6), the term 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓   is the average value of the last 𝑁𝑁 correction signals 

and 𝑁𝑁 should be a large constant. The term 𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑 is a constant which serves as a 

suppression of the GPS receiver noise. In the simulation, 𝑁𝑁 is set to 2000 and 𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑 is set 

to 150. In Equation (5.7), 𝑦𝑦(𝑘𝑘) represents the correction signal at the k-th second when 

the timing module is locked by the GPS 1pps signal. Thus, by combining Equations (5.5) 

to (5.7), Equation (5.8) is obtained. 

 

𝑦𝑦(𝑘𝑘) = � 1
2000

� ∗ ∑ 𝑦𝑦(𝑡𝑡)𝑘𝑘−1
𝑡𝑡=𝑘𝑘−2000 − � 1

150
� ∗ 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘                  (5.8) 
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The time error is caused by the GPS noise and the frequency stability of the 

oscillator. In this chapter, only the linear frequency stability dependence on temperature 

is considered for the oscillator and the initial frequency stability is set to zero. Equation 

(5.9) shows the relation between the frequency stability of the oscillator and the 

temperature.  

 

𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) = 𝜃𝜃0 ∙ 𝑢𝑢(𝑘𝑘)        (5.9) 

 

The term 𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) represents the oscillator frequency stability at the k-th 

second. The term 𝑢𝑢(𝑘𝑘) represents the temperature. The term 𝜃𝜃0 is the temperature 

sensitivity of the oscillator frequency stability. According to Equation (3.8), Equation 

(5.10) is obtained. 

 

𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) = ∆𝑓𝑓𝑘𝑘
𝑓𝑓0

           (5.10) 

 

The term ∆𝑓𝑓𝑘𝑘  represents the oscillator frequency drift at the k-th second and the 

term 𝑓𝑓0 represents the nominal frequency. The time error ∆𝑡𝑡  caused by the frequency 

stability and the time duration 𝑇𝑇 for which the frequency stability is maintained is related 

to the oscillator stability ∆𝑓𝑓/𝑓𝑓0 through Equation (5.11) 
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∆𝑡𝑡
𝑇𝑇

= ∆𝑓𝑓
𝑓𝑓0

          (5.11) 

 

𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) is only maintained at the k-th second, so the time duration 𝑇𝑇 is 1 

second. Therefore, the time error ∆𝑡𝑡𝑘𝑘  caused by the frequency stability at the k-th second 

is equal to 𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) . In training mode, the oscillator stability is corrected by the 

correction signal 𝑦𝑦(𝑘𝑘 − 1) at the k-th second. The actual time error measured at the k-th 

second should be the summation of 𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘), 𝑦𝑦(𝑘𝑘 − 1), and the measurement 

noise. The actual time error measured is shown in Equation (5.12): 

 

∆𝑡𝑡𝑚𝑚𝑒𝑒𝑎𝑎𝜇𝜇𝑢𝑢𝑟𝑟𝑒𝑒𝑑𝑑 (𝑘𝑘) = 𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) + 𝑦𝑦(𝑘𝑘 − 1) + 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1)  

                         = 𝜃𝜃0 ∙ 𝑢𝑢(𝑘𝑘) + 𝑦𝑦(𝑘𝑘 − 1) + 𝑣𝑣(𝑘𝑘)  − 𝑣𝑣(𝑘𝑘 − 1)                  (5.12)  

 

The term 𝑣𝑣(𝑘𝑘) represents the GPS noise at the k-th second. One should have noticed 

that the measurement noise in Equation (5.12) is  𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1). The reason is as 

follows. The measurement noise of the system comes from the GPS noise jitters. The 

GPS receiver receives the GPS 1 pulse per second (pps) signal. If there are no GPS noise 

jitters, the distance between GPS pulses should be exactly 1 second. However, GPS 

noises always exist and the distortion of the jitter has to be added into the distance 

between pulses. For example, if both the first and second GPS 1 pps signals are distorted 

by a +10 ns jitter, both the first and second pulse edges move +10 𝑛𝑛𝜇𝜇. Then the distance 

between two pulse edges is still 1 second. The measurement noise perceived is 0 ns.  If 



72 

the first 1 pps signal is distorted by a +10 ns jitter and the second 1 pps signal is distorted 

by a -10 ns jitter, the first edge moves +10 ns and the second edge moves -10 ns. The 

distance between two pulse edges is 1 second minus 20 ns. The measurement noise 

perceived is -20 ns. Hence, the measurement noise is given by Equation (5.13). 

 

𝑀𝑀𝑒𝑒𝑎𝑎𝜇𝜇𝑢𝑢𝑟𝑟𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 𝑛𝑛𝑐𝑐𝑓𝑓𝜇𝜇𝑒𝑒(𝑘𝑘) = 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1)      (5.13) 

 

According to Section 3.1.2, 𝛽𝛽 ∗ 𝜀𝜀𝑘𝑘  can represent the time error measured at the k-

th second, so Equation (5.14) is obtained. 

 

𝛽𝛽 ∗ 𝜀𝜀𝑘𝑘 = 𝜃𝜃0 ∙ 𝑢𝑢(𝑘𝑘) + 𝑦𝑦(𝑘𝑘 − 1) + 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1)       (5.14) 

 

Referring to Figure 3.3, in the control loop, a DAC is used to transfer the correction 

signal to a control voltage signal. This control voltage signal is fed into the oscillator 

tuning port to correct the oscillator. When the DAC resolution and the digital phase 

detector resolution are infinite, the ideal cumulative time error is obtained from Equation 

(5.15). 

 

𝐼𝐼𝑑𝑑𝑒𝑒𝑎𝑎𝑠𝑠 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘 = ∑ (𝜃𝜃0 ∙ 𝑢𝑢(𝑡𝑡 + 1) + 𝑦𝑦(𝑡𝑡) + 𝑣𝑣(𝑡𝑡 + 1) − 𝑣𝑣(𝑡𝑡))𝑘𝑘−1
𝑡𝑡=0     (5.15) 

 

However, the DAC resolution and the digital phase detector resolution are not 
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infinite. In the simulation, the DAC resolution is 0.0229 ppb. Hence, when the correct 

signal is used to tune the oscillator, it must be multiples of 0.0229. The digital phase 

detector resolution is set to 6.25 𝑛𝑛𝜇𝜇. Hence, the time error measured at each second must 

be multiples of 6.25. The cumulative time error must be multiples of 6.25 too. The 

parameter 𝜃𝜃0 needs to be identified. In the simulation,  𝜃𝜃0  is set to 0.0533 and 𝑣𝑣(𝑡𝑡) has a 

mean value of zero and standard deviation of 20 𝑛𝑛𝜇𝜇. Thus, the cumulative time error is 

obtained from Equation (5.16). 

 

𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘 = ∑ (6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥 �
𝑣𝑣(𝑡𝑡+1)−𝑣𝑣(𝑡𝑡)+𝜃𝜃0∗𝑢𝑢(𝑡𝑡+1)+0.0229∗𝑓𝑓𝑓𝑓𝑥𝑥 ( 𝑦𝑦 (𝑡𝑡)

0.0229 )   

6.25
�)𝑘𝑘−1

𝑡𝑡=0               (5.16) 

 

In Equation (5.16), the term 6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥( ∙
6.25

)  guarantees that the time error 

measured at each second and the cumulative time error are multiples of 6.25 𝑛𝑛𝜇𝜇. The 

meaning of 𝑓𝑓𝑓𝑓𝑥𝑥(∙)  is explained in Section 3.1.2. The term 0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥( 𝑦𝑦(𝑡𝑡)
0.0229

) 

guarantees that the correction signal working on the oscillator is in multiples of 0.0229 

ppb. Combining Equations (5.8) and (5.16), the system model structure in Equation (5.17) 

is obtained.  

 

𝑦𝑦(𝑘𝑘) = �
1

2000�
∗ � 𝑦𝑦(𝑡𝑡)

𝑘𝑘−1

𝑡𝑡=𝑘𝑘−2000

− �
1

150�
∗�{6.25
𝑘𝑘−1

𝑡𝑡=0

∗ 𝑓𝑓𝑓𝑓𝑥𝑥[(𝑣𝑣(𝑡𝑡 + 1) − 

                       𝑣𝑣(𝑡𝑡) + 𝜃𝜃0 ∗ 𝑢𝑢(𝑡𝑡 + 1) + 0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥( 𝑦𝑦(𝑡𝑡)
0.0229

))/6.25]}      (5.17)  
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Equation (5.17) represents the detailed mathematical form of the control loop which 

is described in Section 3.1.2. However, referring to Section 2.2.1, the system model must 

have a form similar to Equation (2.2) in order to use the system identification method. 

Therefore, Equation (5.17) must be rearranged to Equation (5.18).   

 

 𝑌𝑌1(𝑘𝑘) = (−150) ∗ 𝑦𝑦(𝑘𝑘) + � 150
2000

� ∗ ∑ 𝑦𝑦(𝑡𝑡)𝑘𝑘−1
𝑡𝑡=𝑘𝑘−2000  

             = ∑ {6.25𝑘𝑘−1
𝑡𝑡=0 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥[(𝑣𝑣(𝑡𝑡 + 1) − 𝑣𝑣(𝑡𝑡) + 𝜃𝜃0 ∗ 𝑢𝑢(𝑡𝑡 + 1) + 

                0.0229 ∗  𝑓𝑓𝑓𝑓𝑥𝑥( 𝑦𝑦(𝑡𝑡)
0.0229

))/6.25]}            (5.18) 

       

The ∑ in Equation (5.18) can be removed by computing the difference between 

𝑌𝑌1(𝑘𝑘) and 𝑌𝑌1(𝑘𝑘 − 1). 

 

 𝑌𝑌2(𝑘𝑘) = 𝑌𝑌1(𝑘𝑘) − 𝑌𝑌1(𝑘𝑘 − 1) 

 =  6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥[(𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝜃𝜃0 ∗ 𝑢𝑢(𝑘𝑘) 

        +0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥(𝑦𝑦(𝑘𝑘−1)
0.0229

))/6.25]            (5.19) 

For simplicity, we introduce 

 

𝐵𝐵(𝑘𝑘 − 1) = 0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥(𝑦𝑦(𝑘𝑘−1)
0.0229

)           (5.20) 

So, 

𝑌𝑌2(𝑘𝑘) = 6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥[𝑣𝑣(𝑘𝑘)−𝑣𝑣(𝑘𝑘−1)+𝜃𝜃0∗𝑢𝑢(𝑘𝑘)+𝐵𝐵(𝑘𝑘−1)
6.25

]    

         = [𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝜃𝜃0 ∗ 𝑢𝑢(𝑘𝑘) + 𝐵𝐵(𝑘𝑘 − 1)]    
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                +6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥[𝑣𝑣(𝑘𝑘)−𝑣𝑣(𝑘𝑘−1)+𝜃𝜃0∗𝑢𝑢(𝑘𝑘)+𝐵𝐵(𝑘𝑘−1)
6.25

]  

   −[𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝜃𝜃0 ∗ 𝑢𝑢(𝑘𝑘) + 𝐵𝐵(𝑘𝑘 − 1)]      (5.21) 

We introduce  

𝛿𝛿𝑌𝑌2(𝑘𝑘) = 6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥 �𝑣𝑣(𝑘𝑘)−𝑣𝑣(𝑘𝑘−1)+𝜃𝜃0∗𝑢𝑢(𝑘𝑘)+𝐵𝐵(𝑘𝑘−1)
6.25

� − [𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) +

                              𝜃𝜃0 ∗  𝑢𝑢(𝑘𝑘) + 𝐵𝐵(𝑘𝑘 − 1)]                         (5.22) 

So, 

𝑌𝑌2(𝑘𝑘) = 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝜃𝜃0 ∗ 𝑢𝑢(𝑘𝑘) + 𝐵𝐵(𝑘𝑘 − 1) + 𝛿𝛿𝑌𝑌2(𝑘𝑘)    (5.23) 

We introduce 𝑌𝑌3(𝑘𝑘) which equals the difference between 𝑌𝑌2(𝑘𝑘) and  𝐵𝐵(𝑘𝑘 − 1) . 

Thus, Equation (5.24) is obtained. 

𝑌𝑌3(𝑘𝑘) = 𝑌𝑌2(𝑘𝑘) − 𝐵𝐵(𝑘𝑘 − 1)  

             = 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝜃𝜃0 ∗ 𝑢𝑢(𝑘𝑘) + 𝛿𝛿𝑌𝑌2(𝑘𝑘)     (5.24) 

 

 

Figure 5.4 Quantization Error Caused by the Phase Detector Resolution 



76 

The term 𝛿𝛿𝑌𝑌2(𝑘𝑘) is the quantization error caused by the digital phase detector 

resolution, which is limited between -6.25 and +6.25 in the simulation. Figure 5.4 shows 

the graph of 𝛿𝛿𝑌𝑌2(𝑘𝑘). The X-axis represents the training time. The Y-axis represents the 

quantization error which is calculated from Equation (5.22). 

In Equation (5.24), 𝑌𝑌3(𝑘𝑘) becomes the new system output. 𝑢𝑢(𝑘𝑘) is still the system 

input and 𝜃𝜃0 is still the parameter that needs to be identified. Equation (5.24) has similar 

form and characteristics as Equation (2.2) and can therefore be analyzed using a standard 

system identification method. However, Equation (5.24) and Equation (2.2) also exhibit 

some differences. One of the differences is the measurement noise. In Equation (2.2), the 

measurement noise is independent white noise. In Equation (5.24), the measurement 

noise is  𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) . These measurement noises are not independent from each 

other. Referring to Section 2.2.4, Equation (5.24) is an ARMAX model and should be 

solved by the Recursive Prediction Error Method (RPEM). Another difference is that 

Equation (5.24) contains a quantization error term 𝛿𝛿𝑌𝑌2(𝑘𝑘) which can also be solved by 

RPEM approximately.  

A new ARMAX model is created and shown in Equation (5.25). 

 

𝑦𝑦𝑅𝑅𝑃𝑃𝐸𝐸𝑀𝑀(𝑘𝑘) = 𝑎𝑎 ∗ 𝑢𝑢(𝑘𝑘) + 𝑣𝑣(𝑘𝑘) + 𝑏𝑏 ∗ 𝑣𝑣(𝑘𝑘 − 1)        (5.25) 

 

The term 𝑦𝑦𝑅𝑅𝑃𝑃𝐸𝐸𝑀𝑀(𝑘𝑘) is the 𝑌𝑌3(𝑘𝑘)  in Equation (5.24). The term 𝑢𝑢(𝑘𝑘) and 𝑣𝑣(𝑘𝑘) are 

still the temperature and the GPS receiver noise. The term 𝑎𝑎 is the temperature sensitivity 
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which is the 𝜃𝜃0 in Equation (5.24). The term  𝑏𝑏 ∗ 𝑣𝑣(𝑘𝑘 − 1)  represents the term 𝑣𝑣(𝑘𝑘 − 1) 

and the quantization error term  𝛿𝛿𝑌𝑌2(𝑘𝑘) in Equation (5.24). The parameters 𝑎𝑎 and 𝑏𝑏 

constitute the new parameter vector 𝜃𝜃𝑅𝑅𝑃𝑃𝐸𝐸𝑀𝑀 . The term 𝑎𝑎� represents the estimate of 𝑎𝑎. By 

using RPEM, this ARMAX model is solved recursively and the distribution of parameter 

estimates is obtained. Simulation results are shown in the next section. Section 2.2.4 

described RPEM in more detail. 

The Monte Carlo method can be used to verify whether using the model of 

Equation (5.25) is better than using the model of Equation (5.1). The system model of 

Equation (5.25) is referred to as the system model including the control loop. The term 

system model without including the control loop refers to the model of Equation (5.1). 

The performance of the system model can be represented by the maximum cumulative 

time error in 100 simulations. Figure 5.5 shows the comparison result between the 

maximum CTE when using the system model of Equation (5.1) and the maximum CTE 

when using the system model of Equation (5.25). In Figure 5.5, the X-axis represents the 

time and the Y-axis represents the maximum CTE in 100 simulations. Training time is set 

4 hours and holdover time is set to 20 hours.  

Figure 5.5 shows that the performances of both system models are almost the same. 

This comparison is still true when the training time is changed. In the next chapter, when 

other factors such as ageing rate are introduced in the system model, one will see that the 

performance of the model including the control loop has advantages, which means that 

the model produces a lower maximum CTE.  
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Figure 5.5 Simple System Model Performance Comparisons with Training 4 Hours  

 

5.3 Simulation Result of the ARMAX Model 

 

First, the analytical result for the distribution of parameter estimate 𝑎𝑎�   in one 

simulation is shown in Figure 5.6. In this simulation, the training time is set to 2 hours.  

According to [11], the parameter estimate 𝑎𝑎� should have a Gaussian distribution. 

The distribution of 𝑎𝑎� − 𝑎𝑎 has the form of 

 

𝑎𝑎� − 𝑎𝑎 ∈ 𝑁𝑁(0,𝑃𝑃𝑁𝑁)             (5.26) 
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Figure 5.6 Distribution of Parameter Estimate 𝑎𝑎� 

 

The system parameter estimates are obtained from Equation (2.34a). The first term 

of estimates is 𝑎𝑎�. The variance 𝑃𝑃𝑁𝑁  of 𝑎𝑎� is the product of 𝑃𝑃11(𝑡𝑡) and the variance of 𝜀𝜀(𝑡𝑡) in 

Equation (2.31). 𝑃𝑃11(𝑡𝑡) is the term of first row and first column of 𝑃𝑃(𝑡𝑡) in Equation 

(2.34b). 𝜀𝜀(𝑡𝑡) is the prediction error sequence. According to the standard statistical table, 

the 95% probability confidence interval of 𝑎𝑎 is computed via: 

 

𝑎𝑎� − 1.96 ∗ �𝑃𝑃𝑁𝑁 ≤ 𝑎𝑎 ≤ 𝑎𝑎� + 1.96 ∗ �𝑃𝑃𝑁𝑁         (5.27) 

 

In this simulation, 
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 𝑎𝑎 = 0.0533         (5.28a) 

 𝑎𝑎� = 0.0541                       (5.28b) 

 𝑃𝑃𝑁𝑁 = 7.523 × 10−7          (5.28c) 

 𝑎𝑎� − 1.96 ∗ �𝑃𝑃𝑁𝑁 = 0.0523                               (5.28d) 

 𝑎𝑎� + 1.96 ∗ �𝑃𝑃𝑁𝑁 = 0.0558                                (5.28e) 

 

Since the distribution of 𝑎𝑎� is known, the 95% probability upperbound of the time 

error can be calculated analytically. The real parameter 𝑎𝑎 is located on the 95% 

probability bound (upper or lower bound) when the 95% probability upperbound of the 

time error is reached. The corresponding time error is calculated through the difference 

between 𝑎𝑎� and the bound 𝑎𝑎� − 1.96 ∗ �𝑃𝑃𝑁𝑁  or  𝑎𝑎� + 1.96 ∗ �𝑃𝑃𝑁𝑁 . In either case, the 

difference is 1.96 ∗ �𝑃𝑃𝑁𝑁. This shows that the analytical time error is only related to the 

variance of 𝑎𝑎�.  

 

𝑇𝑇𝑓𝑓𝑚𝑚𝑒𝑒 𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 = 1.96 ∗ �𝑃𝑃𝑁𝑁 ∗ 𝑡𝑡𝑒𝑒𝑚𝑚𝑑𝑑𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑢𝑢𝑟𝑟𝑒𝑒      (5.29) 

 

The cumulative time error is also computed through the integration of the time error 

second by second. Figure 5.7 shows the analytical result for the 95% probability 

upperbound of the cumulative time error.  
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Figure 5.7 Analytical Result for the 95% Upperbound of CTE 

 

 

Figure 5.8 Monte Carlo Result for the 95% Upperbound of CTE 
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For verifying the CTE shown in Figure 5.7, 100 independent simulations have been 

run. In each simulation, the training time is set to 2 hours and holdover time is set to 24 

hours. The fifth maximum CTE in 100 repetitions can approximately serve as the Monte 

Carlo result for the 95% upperbound of cumulative time error, which is shown in Figure 

5.8. By comparing Figure 5.7 and 5.8, one can see the analytical CTE upperbound is very 

close to the simulation result of the CTE upperbound. 

Figure 5.7 and Figure 5.8 show periodic phases. From the 6𝑡𝑡ℎ  hour to the 8𝑡𝑡ℎ  hour, 

from the 14𝑡𝑡ℎ  hour to the 16𝑡𝑡ℎ  hour, and from the 22𝑡𝑡ℎ  hour to the 24𝑡𝑡ℎ  hour, the CTE 

curve almost keeps flat. The temperature profile is needed to explain this periodic phases 

because the temperature is the only input data.    

 

Figure 5.9 Temperature Profile 

 

Figure 5.9 shows the temperature profile used in this chapter. One can see the 
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temperature is 0 when the time is from the 6𝑡𝑡ℎ  hour to the 8𝑡𝑡ℎ  hour, from the 14𝑡𝑡ℎ  hour to 

the 16𝑡𝑡ℎ  hour, and from the 22𝑡𝑡ℎ  hour to the 24𝑡𝑡ℎ  hour. Referring to Equation (5.29), 

when the temperature is zero, the time error is zero. Therefore, the cumulative time error 

does not increase during these times because the CTE is the integration of the time error.  

 

 

Figure 5.10 Variance Comparisons between Analytical Method and Monte Carlo 

Method with ARMAX Model and RPEM Applied 

 

Figure 5.10 shows the comparison result of another verification method. 100 

independent simulations have been run and in each simulation, the variance 𝑃𝑃𝑁𝑁  is 

calculated analytically. Each 𝑃𝑃𝑁𝑁  is connected with each other with the solid line. The 



84 

parameter estimate 𝑎𝑎� is also calculated in each simulation. Via the variance definition, the 

variance of 𝑎𝑎� calculated from the Monte Carlo method is obtained. It is represented by 

the dot. Figure 5.10 illustrates that the analytical parameter estimate variances fluctuate 

around the variance computed from the Monte Carlo method. 

 

 

Figure 5.11 Prediction Error Plot for the Model Including the Control Loop  

 

Figure 5.11 is the plot of the prediction error 𝜀𝜀(𝑡𝑡) computed from Equation (2.31). 

The plot shows Gaussian white noise and indicates that the parameter estimation by using 

RPEM is unbiased. 

Figure 5.12 shows the CTE upperbound computed analytically via RPEM. The X-

axis coordinates represent the training time, varying from 1 hour to 24 hours. The Y-axis 
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coordinates represent the predicted 95% probability max CTE. The holdover time is fixed 

to 24 hours. One can observe that the max CTE becomes smaller and smaller, ideally 

approaching zero when the training time is arbitrarily long. However, the max cumulative 

time error cannot really be zero when the timing module is working in the base station 

because there are other factors affecting the accuracy of oscillator besides the temperature.   

 

Figure 5.12 CTE Upperbound when Training Time is from 1 to 24 Hours and 

Holdover Time is 24 Hours 

 

5.4 Discussion 

In this chapter, the CTE upperbound of the oscillator is investigated. This oscillator 

is described in Chapter 3. The temperature is linear related to the frequency stability of 

the oscillator and is the only input. First, a simple system model of the oscillator 



86 

frequency stability is used. Equation (5.1) is the model equation. The simulation results 

show that the analytical CTE upperbound calculated via this simple model is not close to 

the Monte Carlo CTE upperbound. Analyzing the control loop, which creates the 

correction signal for the oscillator, the system model structure is modified to include the 

control loop in the model equation. The new system model is an ARMAX model and 

RPEM is used to estimate the parameter. The analytical CTE upperbound is obtained 

through the parameter estimates. The simulation results show that the analytical CTE 

upperbound is very close to the Monte Carlo CTE upperbound. The performance of 

applying the ARMAX model is compared with the model of Equation (5.1). Simulations 

show that their performances are close.    
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Chapter 6: Refined Model Including Temperature 

and Ageing Effect  

 

In the last two chapters, temperature is considered as the only factor affecting the 

frequency stability of the oscillator. In this chapter, a more detailed frequency stability 

dependence model is presented and used for studying the CTE upperbound of the 

oscillator. The more detailed system model combines the temperature effect and the 

ageing effect. In this model, temperature has a quadratic relation with the frequency 

stability and there is a non-zero initial frequency stability offset in the model. 

 

6.1 Refined Frequency Stability Dependence Model  

 

In Chapter 5, we showed that the cumulative time error 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘  is the summation of 

all time errors from the first second to the k-th second. The time error at each second is 

caused by the GPS noise and the frequency stability error of the oscillator. The oscillator 

frequency stability exhibits dependencies on many environmental factors. In Chapters 4 

and 5, the temperature is considered as the only factor affecting the frequency stability 

and a straight line fit is applied to the temperature and the frequency stability.  The initial 

frequency stability offset is set to zero. When the relation between the ambient 

temperature and the oscillator frequency stability is close to linear, a straight line fit is 
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suitable. However, in most situations, a higher order polynomial fit is more suitable than 

a linear fit. In this chapter, a quadratic fit replaces the linear fit. Furthermore, if the 

training time is long enough, the ageing effect on both training time and holdover time is 

not trivial. It should be included into the system model. Finally, the initial frequency 

stability offset is not zero in most situations.   

Hence, a more detailed oscillator frequency stability model is presented in Equation 

(6.1). 

 

𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) = 𝑎𝑎 ∙ 𝑢𝑢2(𝑘𝑘) + 𝑏𝑏 ∙ 𝑢𝑢(𝑘𝑘) + 𝑐𝑐 + 𝑑𝑑 ∙ 𝑘𝑘    (6.1) 

 

The term 𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) represents the frequency stability of the oscillator at 

the k-th second. The term 𝑢𝑢(𝑘𝑘) represents the temperature at the k-th second. The 

parameters 𝑎𝑎 and 𝑏𝑏 represent the temperature sensitivity of the frequency stability for the 

quadratic and the linear term, respectively. The parameter 𝑐𝑐 represents the initial 

frequency stability offset and the term 𝑑𝑑 represents the ageing rate of the frequency 

stability. According to Equations (3.1) and (3.8),  

 

𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) = ∆𝑓𝑓𝑘𝑘
𝑓𝑓0

= ∆𝑡𝑡𝑘𝑘
𝑇𝑇

        (6.2) 

 

The term ∆𝑓𝑓𝑘𝑘  represents the frequency error at the k-th second and the term 

𝑓𝑓0 represents the nominal frequency. The term ∆𝑡𝑡𝑘𝑘  represents the time error caused by the 
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frequency stability at the k-th  second and the term T  represents the time duration. 

Actually, the time duration is 1 second at the k-th second. Thus, the time error ∆𝑡𝑡𝑘𝑘  is 

equal to  𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘)  . Since 𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘)  is corrected by the correction 

signal 𝑦𝑦(𝑘𝑘 − 1) in training mode and the GPS noise 𝑣𝑣(𝑘𝑘) is introduced, the total time 

error, measured at the k-th second is:  

 

∆𝑡𝑡𝑚𝑚𝑒𝑒𝑎𝑎𝜇𝜇𝑢𝑢𝑟𝑟𝑒𝑒𝑑𝑑 (𝑘𝑘) = 𝑂𝑂𝜇𝜇𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑐𝑐𝑟𝑟𝜇𝜇𝑡𝑡𝑎𝑎𝑏𝑏 (𝑘𝑘) + 𝑦𝑦(𝑘𝑘 − 1) + 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1)    

                         = 𝑎𝑎 ∙ 𝑢𝑢2(𝑘𝑘) + 𝑏𝑏 ∙ 𝑢𝑢(𝑘𝑘) + 𝑐𝑐 + 𝑑𝑑 ∙ 𝑘𝑘 + 𝑦𝑦(𝑘𝑘 − 1)  

               +𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1)                    (6.3) 

 

Equation (6.3) is equivalent to Equation (5.12), except for the different oscillator 

frequency stability model. The measurement noise is 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1). The reason of 

choosing 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) rather than 𝑣𝑣(𝑘𝑘) is explained in Section 5.2. According to 

Equation (5.5), when the DAC resolution and the digital phase detector resolution are 

infinite, the ideal cumulative time error is: 

 

𝐼𝐼𝑑𝑑𝑒𝑒𝑎𝑎𝑠𝑠 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘 = ∑ (𝑎𝑎 ∙ 𝑢𝑢2(𝑡𝑡 + 1) + 𝑏𝑏 ∙ 𝑢𝑢(𝑡𝑡 + 1) + 𝑐𝑐 + 𝑑𝑑 ∙ (𝑡𝑡 + 1) + 𝑦𝑦(𝑡𝑡) +𝑘𝑘−1
𝑡𝑡=0

                                      𝑣𝑣(𝑡𝑡 + 1) − 𝑣𝑣(𝑡𝑡))             (6.4) 

 

However, the DAC has a resolution of 0.0229 ppb and the digital phase detector 
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resolution is 6.25  𝑛𝑛𝜇𝜇 .  The term 6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥( ∙
6.25

) is used to guarantee that 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘  is a 

multiple of 6.25 𝑛𝑛𝜇𝜇 and the term 0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥 � 𝑦𝑦(𝑡𝑡)
0.0229

� is used to guarantee the correction 

signal for the oscillator is a multiple of 0.0229 ppb. Thus, Equation (6.5) is obtained. 

 

𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘 = ∑ {6.25𝑘𝑘−1
𝑡𝑡=0 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥[(𝑣𝑣(𝑡𝑡 + 1) −  

              𝑣𝑣(𝑡𝑡) + 𝑎𝑎 ∗ 𝑢𝑢2(𝑡𝑡 + 1) + 𝑏𝑏 ∗ 𝑢𝑢(𝑡𝑡 + 1) + 𝑐𝑐 + 𝑑𝑑 ∗ (𝑡𝑡 + 1) 

              +0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥( 𝑦𝑦(𝑡𝑡)
0.0229

))/6.25]}          (6.5) 

 

According to Equation (5.6) and (5.7), the correction signal 𝑦𝑦(𝑘𝑘) is the difference 

between the average value of the last 𝑁𝑁 correction signals and 𝐶𝐶𝑇𝑇𝐸𝐸𝑘𝑘/𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑. When 𝑁𝑁 is 

2000 and 𝑑𝑑𝑎𝑎𝑚𝑚𝑑𝑑 is 150, combining Equations (6.5) and (5.8), Equation (6.6) is obtained. 

 

𝑦𝑦(𝑘𝑘) = �
1

2000�
∗ � 𝑦𝑦(𝑡𝑡)

𝑘𝑘−1

𝑡𝑡=𝑘𝑘−2000

− �
1

150�
∗�{6.25
𝑘𝑘−1

𝑡𝑡=0

∗ 𝑓𝑓𝑓𝑓𝑥𝑥[(𝑣𝑣(𝑡𝑡 + 1) − 

              𝑣𝑣(𝑡𝑡) + 𝑎𝑎 ∗ 𝑢𝑢2(𝑡𝑡 + 1) + 𝑏𝑏 ∗ 𝑢𝑢(𝑡𝑡 + 1) + 𝑐𝑐 + 𝑑𝑑 ∗ (𝑡𝑡 + 1) 

              +0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥( 𝑦𝑦(𝑡𝑡)
0.0229

))/6.25]}           (6.6) 

 

In Equation (6.6), the parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 𝑎𝑎𝑛𝑛𝑑𝑑 𝑑𝑑 are four parameters that need to be 

identified. In the simulation, 𝑎𝑎 is set to −3.1966 × 10−4, 𝑏𝑏 is set to 0.0533, 𝑐𝑐 is set to 21 

and 𝑑𝑑 is set to 1.1574 × 10−5 𝑑𝑑𝑑𝑑𝑏𝑏/𝜇𝜇. The value of 𝑑𝑑 represents the 1ppb frequency drift 

per day for the ageing effect. Equation (6.6) is a more detailed model which can simulate 



91 

the physical process of the control loop more precisely than Equation (5.17). In Section 

5.2, Equation (5.17) is rearranged to Equation (5.24) in order to use the RPEM method. 

Equation (6.6) also needs rearrangement to a suitable form similar to Equation (2.2) to 

use the RPEM method.      

Similar to the deduction steps from Equation (5.18) to (5.24), Equation (6.6) is 

rearranged to Equation (6.7). 

 

𝑌𝑌1(𝑘𝑘) = (−150) ∗ 𝑦𝑦(𝑘𝑘) + � 150
2000

� ∗ ∑ 𝑦𝑦(𝑡𝑡)𝑘𝑘−1
𝑡𝑡=𝑘𝑘−2000   

              = ∑ {6.25𝑘𝑘−1
𝑡𝑡=0 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥[(𝑣𝑣(𝑡𝑡 + 1) − 𝑣𝑣(𝑡𝑡) + 𝑎𝑎 ∗ 𝑢𝑢2(𝑡𝑡 + 1) + 

                 𝑏𝑏 ∗ 𝑢𝑢(𝑡𝑡 + 1) + 𝑐𝑐 + 𝑑𝑑 ∗ (𝑡𝑡 + 1) + 0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥( 𝑦𝑦(𝑡𝑡)
0.0229

))/6.25]}       (6.7) 

 

The ∑ in Equation (6.7) can be removed by computing the difference between 

𝑌𝑌1(𝑘𝑘) and 𝑌𝑌1(𝑘𝑘 − 1). 

 

 𝑌𝑌2(𝑘𝑘) = 𝑌𝑌1(𝑘𝑘) − 𝑌𝑌1(𝑘𝑘 − 1) 

  =  6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥[(𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝑎𝑎 ∗ 𝑢𝑢2(𝑘𝑘) + 𝑏𝑏 ∗ 𝑢𝑢(𝑘𝑘) 

                    𝑐𝑐 + 𝑑𝑑 ∗ 𝑘𝑘 + 0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥(𝑦𝑦(𝑘𝑘−1)
0.0229

))/6.25]          (6.8) 

 

 For simplicity, we introduce 

𝐵𝐵(𝑘𝑘 − 1) = 0.0229 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥(𝑦𝑦(𝑘𝑘−1)
0.0229

)                     (6.9) 

So, 
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𝑌𝑌2(𝑘𝑘) = 6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥[𝑣𝑣(𝑘𝑘)−𝑣𝑣(𝑘𝑘−1)+𝑎𝑎∗𝑢𝑢2(𝑘𝑘)+𝑏𝑏∗𝑢𝑢(𝑘𝑘)+𝑐𝑐+𝑑𝑑∗𝑘𝑘+𝐵𝐵(𝑘𝑘−1)
6.25

]    

         = [𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝑎𝑎 ∗ 𝑢𝑢2(𝑘𝑘) + 𝑏𝑏 ∗ 𝑢𝑢(𝑘𝑘) + 𝑐𝑐 + 𝑑𝑑 ∗ 𝑘𝑘 + 𝐵𝐵(𝑘𝑘 − 1)] 

              +6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥[𝑣𝑣(𝑘𝑘)−𝑣𝑣(𝑘𝑘−1)+𝑎𝑎∗𝑢𝑢2(𝑘𝑘)+𝑏𝑏∗𝑢𝑢(𝑘𝑘)+𝑐𝑐+𝑑𝑑∗𝑘𝑘+𝐵𝐵(𝑘𝑘−1)
6.25

]  

   −[ 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝑎𝑎 ∗ 𝑢𝑢2(𝑘𝑘) + 𝑏𝑏 ∗ 𝑢𝑢(𝑘𝑘) + 𝑐𝑐 

   +𝑑𝑑 ∗ 𝑘𝑘 + 𝐵𝐵(𝑘𝑘 − 1)]         (6.10) 

 

We introduce 

 𝛿𝛿𝑌𝑌2(𝑘𝑘) = 6.25 ∗ 𝑓𝑓𝑓𝑓𝑥𝑥 �𝑣𝑣(𝑘𝑘)−𝑣𝑣(𝑘𝑘−1)+𝑎𝑎∗𝑢𝑢2(𝑘𝑘)+𝑏𝑏∗𝑢𝑢(𝑘𝑘)+𝑐𝑐+𝑑𝑑∗𝑘𝑘+𝐵𝐵(𝑘𝑘−1)
6.25

� − [𝑣𝑣(𝑘𝑘) −

                               𝑣𝑣(𝑘𝑘 − 1) + 𝑎𝑎 ∗ 𝑢𝑢2(𝑘𝑘) + 𝑏𝑏 ∗ 𝑢𝑢(𝑘𝑘) + 𝑐𝑐 + 𝑑𝑑 ∗ 𝑘𝑘 + 𝐵𝐵(𝑘𝑘 − 1)]        (6.11) 

So, 

𝑌𝑌2(𝑘𝑘) = 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝑎𝑎 ∗ 𝑢𝑢2(𝑘𝑘) + 𝑏𝑏 ∗ 𝑢𝑢(𝑘𝑘) + 𝑐𝑐 + 𝑑𝑑 ∗ 𝑘𝑘 + 𝐵𝐵(𝑘𝑘 − 1) 

    +𝛿𝛿𝑌𝑌2(𝑘𝑘)            (6.12) 

 

We thus define 𝑌𝑌3(𝑘𝑘) as the difference between 𝑌𝑌2(𝑘𝑘) and 𝐵𝐵(𝑘𝑘 − 1) 

 𝑌𝑌3(𝑘𝑘) = 𝑌𝑌2(𝑘𝑘) − 𝐵𝐵(𝑘𝑘 − 1) 

            = 𝑣𝑣(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1) + 𝑎𝑎 ∗ 𝑢𝑢2(𝑘𝑘) + 𝑏𝑏 ∗ 𝑢𝑢(𝑘𝑘) 

                +𝑐𝑐 + 𝑑𝑑 ∗ 𝑘𝑘 + 𝛿𝛿𝑌𝑌2(𝑘𝑘)             (6.13) 

 

 Similar to Equation (5.22) in Chapter 5, the term 𝛿𝛿𝑌𝑌2(𝑘𝑘) is the quantization error 

caused by the digital phase detector resolution, which is limited between -6.25 and +6.25 

in the simulation. 
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Equation (6.13), which is equivalent to Equation (6.6), is the system model. 

Equation (6.13) is an ARMAX model except for the inclusion of a quantization 

error 𝛿𝛿𝑌𝑌2(𝑘𝑘). The corresponding ARMAX model structure for identifying this system is 

given by Equation (6.14). 

 

𝑦𝑦𝑅𝑅𝑃𝑃𝐸𝐸𝑀𝑀(𝑘𝑘) = 𝑎𝑎 ∗ 𝑢𝑢2(𝑘𝑘) + 𝑏𝑏 ∗ 𝑢𝑢(𝑘𝑘) + 𝑐𝑐 + 𝑑𝑑 ∗ 𝑘𝑘 + 𝑣𝑣(𝑘𝑘) + 𝑒𝑒 ∗ 𝑣𝑣(𝑘𝑘 − 1)       (6.14) 

The parameter vector is 

𝜃𝜃𝑅𝑅𝑃𝑃𝐸𝐸𝑀𝑀 = [𝑎𝑎  𝑏𝑏  𝑐𝑐  𝑑𝑑  𝑒𝑒]𝑇𝑇               (6.15) 

 

Correspondingly, the parameter estimate vector of Equation (6.14) is: 

 

 𝜃𝜃�𝑅𝑅𝑃𝑃𝐸𝐸𝑀𝑀 = �𝑎𝑎�  𝑏𝑏�  �̂�𝑐  𝑑𝑑�   �̂�𝑒�
𝑇𝑇

           (6.16) 

 

The value of 𝑦𝑦𝑅𝑅𝑃𝑃𝐸𝐸𝑀𝑀(𝑘𝑘) is equal to 𝑌𝑌3(𝑘𝑘) in Equation (6.13). The term 𝑒𝑒 ∗ 𝑣𝑣(𝑘𝑘 − 1) 

represents the term  𝛿𝛿𝑌𝑌2(𝑘𝑘) − 𝑣𝑣(𝑘𝑘 − 1)  in Equation (6.13). The Recursive Prediction 

Error Method is used to solve Equation (6.14). The parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 and 𝑒𝑒  are 5 

parameters that need to be identified.  

In the remainder of this document, the model developed above will be referred to as 

the system model including the control loop. The term system model without including 

the control loop refers to the model structure of Equation (4.1). Because the model 

structure of Equation (4.1) only considers the temperature effect, a multi-parameter 
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model without including the control loop is created below for comparing the performance 

with the model including the control loop. 

 

𝑦𝑦(𝑡𝑡) = 𝒶𝒶 ∗ 𝑥𝑥2(𝑡𝑡) + 𝒷𝒷 ∗ 𝑥𝑥(𝑡𝑡) + 𝒸𝒸 + 𝒹𝒹 ∗ 𝑡𝑡 + 𝑣𝑣(𝑡𝑡)                      (6.17) 

 

Similar to Chapter 4, the term 𝑦𝑦(𝑡𝑡) represents the correction signal. The term 

𝑥𝑥(𝑡𝑡) represents the temperature. The term 𝑣𝑣(𝑡𝑡) represents the measurement noise. The 

terms 𝒶𝒶 and 𝒷𝒷 represent the temperature sensitivity for the quadratic term and linear term. 

The term 𝒸𝒸  represents the initial frequency stability offset. The term 𝑑𝑑 represents the 

ageing rate. The RLS method is used to solve Equation (6.17).  

The Monte Carlo method is used to verify whether using the model of Equation 

(6.14) is better than using the model of Equation (6.17). The training time is set 4 hours 

and the holdover time is 20 hours. One hundred simulations are run when including the 

control loop in the system model and one hundred simulations are run without including 

the control loop in the system model. The maximum CTE is recorded. Similar to previous 

chapters, we use the maximum CTE in 100 simulations to represent the performance of 

the system model. A lower maximum CTE indicates better performance of the system 

model. The comparison result is shown in Figure 6.1.  

In Figure 6.1, the X-axis represents the time and the Y-axis represents the maximum 

CTE in 100 simulations. The dashed line represents the maximum CTE when using the 

system model of Equation (6.17), which means that the system model does not include 
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the control loop. The solid line represents the maximum CTE when using the system 

model of Equation (6.14), which means that the system model includes the control loop. 

Obviously, the maximum CTE of using the system model of Equation (6.17) is larger 

than using the system model of Equation (6.14).   

 

 

Figure 6.1 System Model Performance Comparisons with Training 4 Hours 

 

The training time can be changed to further show the performance of the two 

system models. In Figure 6.2, the training time is set 10 hours and the holdover time is set 

20 hours. The dashed line still represents the maximum CTE of using the system model 

of Equation (6.17). The solid line represents the maximum CTE of using the system 

model of Equation (6.14). The comparison again shows that the maximum CTE of using 
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the system model of Equation (6.17) is larger than using the system model of Equation 

(6.14). Both Figure 6.1 and Figure 6.2 show that including the control loop allows for the 

system model to result in a lower maximum CTE. 

 

Figure 6.2 System Model Performance Comparisons with Training 10 Hours 

 

We can notice that in Figure 6.2 there is a sharp spike when training process just 

begins. The reason is that a non-zero initial offset exists in the system model. Actually, 

this sharp spike also exists in Figure 6.1, but we cannot see it because the Y-axis scale of 

Figure 6.1 is much bigger than Figure 6.2.  

The multi-parameter ARMAX model of Equation (6.14) is more complicated than 

the simple ARMAX model of Equation (5.25) for investigating the cumulative time error. 
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In Equation (5.25), the time error is determined by the variance of only one parameter 

estimate 𝑎𝑎�. In Equation (6.14), not only the variance of the first four parameter estimates, 

but also the covariance between them are important to determine the cumulative time 

error. The information of the variance of the parameters and the covariance between them 

are all contained in the covariance matrix of the parameter estimates vector 𝜃𝜃�. The joint 

distribution information and the corresponding confidence intervals of 𝜃𝜃� are investigated 

in the next section. 

 

6.2 Confidence Intervals of the Parameter Estimates    

 

According to Equation (6.14), there are 5 parameters which need to be estimated. 

However, there are only 4 parameters in Equation (6.13). The parameter 𝑒𝑒 in Equation 

(6.14) is the parameter for the noise, which does not relate to creating the correction 

signal. We only need the parameter estimates 𝑎𝑎�, 𝑏𝑏�, �̂�𝑐 and 𝑑𝑑� to create the correction signal 

for compensating the oscillator. Hence, in the remainder of this chapter, we set 𝜃𝜃0 =

[𝑎𝑎  𝑏𝑏  𝑐𝑐  𝑑𝑑]𝑇𝑇  and 𝜃𝜃� = �𝑎𝑎�  𝑏𝑏�  �̂�𝑐  𝑑𝑑��
𝑇𝑇

. Through analyzing 𝜃𝜃0 and 𝜃𝜃�, the characteristics of the 

parameter estimates can be obtained.  

According to [11], a four-dimensional parameter estimates vector 𝜃𝜃� has a Gaussian 

distribution with mean value 𝜃𝜃0 and covariance matrix 𝑃𝑃𝑁𝑁. 
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𝜃𝜃� ∈ 𝑁𝑁(𝜃𝜃0,𝑃𝑃𝑁𝑁)            (6.18) 

 The covariance matrix 𝑃𝑃𝑁𝑁 comes from 𝑃𝑃(𝑡𝑡) in Equation (2.34b). One should notice 

that 𝑃𝑃(𝑡𝑡) is a 5 × 5 matrix because the ARMAX model of Equation (6.14) has 5 

parameters. Because we only need parameter estimates 𝑎𝑎�, 𝑏𝑏�, �̂�𝑐 and 𝑑𝑑�  to create the 

correction signal, only the first 4 rows and first 4 columns of 𝑃𝑃(𝑡𝑡) are needed to 

determine the distribution of  𝜃𝜃� . We set 𝑃𝑃4×4(𝑡𝑡) to equal the first 4 rows and first 4 

columns of 𝑃𝑃(𝑡𝑡). The covariance matrix 𝑃𝑃𝑁𝑁 is the product of 𝑃𝑃4×4(𝑡𝑡) and the variance of 

prediction error 𝜀𝜀(𝑡𝑡) in Equation (2.31).  

The parameter 𝜃𝜃0 is unknown and 𝜃𝜃� is known after the system identification process. 

The distribution of 𝜃𝜃� − 𝜃𝜃0 is given as, 

 

𝜃𝜃� − 𝜃𝜃0 ∈ 𝑁𝑁(0,𝑃𝑃𝑁𝑁)            (6.19) 

 

For the 𝑓𝑓𝑡𝑡ℎ  component of 𝜃𝜃0, the distribution is, 

 

𝑎𝑎� − 𝑎𝑎 ∈ 𝑁𝑁(0,𝑃𝑃𝑁𝑁
(11))          (6.20) 

𝑏𝑏� − 𝑏𝑏 ∈ 𝑁𝑁(0,𝑃𝑃𝑁𝑁
(22))            (6.21) 

�̂�𝑐 − 𝑐𝑐 ∈ 𝑁𝑁(0,𝑃𝑃𝑁𝑁
(33))           (6.22) 

𝑑𝑑� − 𝑑𝑑 ∈ 𝑁𝑁(0,𝑃𝑃𝑁𝑁
(44))           (6.23) 
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The term 𝑃𝑃𝑁𝑁
(𝑓𝑓𝑓𝑓)  indicates the 𝑓𝑓𝑡𝑡ℎdiagonal element of the covariance matrix 𝑃𝑃𝑁𝑁. Thus 

the probability distribution by which 𝜃𝜃0
(𝑓𝑓)  deviates from  𝜃𝜃�(𝑓𝑓)   can be calculated from 

standard statistical tables. Since 𝑃𝑃𝑁𝑁  is the covariance matrix of the joint distribution of the 

parameter estimates vector  𝜃𝜃� , the covariance and correlation between the different 

components of  𝜃𝜃� are obtained. We know that 

 

�𝜃𝜃� − 𝜃𝜃0�
𝑇𝑇𝑃𝑃𝑁𝑁−1(𝜃𝜃� − 𝜃𝜃0) ∈ 𝜒𝜒2(𝑑𝑑)          (6.24) 

 

Equation (6.24) is a direct application of the definition of the 𝜒𝜒2 distribution. The 

probability of |𝜃𝜃� − 𝜃𝜃0|𝑃𝑃𝑁𝑁−1
2  can be represented by 𝑃𝑃(�𝜃𝜃� − 𝜃𝜃0�𝑃𝑃𝑁𝑁−1

2 ). Hence,  

 

𝑃𝑃(�𝜃𝜃� − 𝜃𝜃0�𝑃𝑃𝑁𝑁−1
2 ) = 𝑃𝑃(�𝜃𝜃� − 𝜃𝜃0�

𝑇𝑇𝑃𝑃𝑁𝑁−1�𝜃𝜃� − 𝜃𝜃0�) ≥ 𝛼𝛼        (6.25) 

 

is  𝜒𝜒𝛼𝛼2(𝑑𝑑)  at the 𝛼𝛼 level of the 𝜒𝜒2(𝑑𝑑)  distribution [11]. Equation (6.25) defines the 

confidence ellipsoids in 𝑅𝑅𝑑𝑑 . The shape of the ellipsoid is determined by 𝑃𝑃𝑁𝑁. Figure 6.3 

shows the confidence ellipsoid of (𝜃𝜃� − 𝜃𝜃0) in the two-dimensional space, which is an 

ellipse. 

In Figure 6.3, the shaded area of the ellipse is determined by a constant from the 

𝛼𝛼 level of the 𝜒𝜒2(𝑑𝑑) distribution.  

 



100 

|𝜃𝜃� − 𝜃𝜃0|𝑃𝑃𝑁𝑁−1
2 ≤ 𝑐𝑐𝑐𝑐𝑛𝑛𝜇𝜇𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡           (6.26) 

 

 

Figure 6.3 Confidence Ellipsoid for the Joint Gaussian Distribution [11] 

 

This constant can be obtained from the 𝜒𝜒2 statistics table. For example, when the 

degrees of freedom (df) of the 𝜒𝜒2distribution is 4, and 𝛼𝛼 is 5%, this constant is 9.49 [23]. 

The degrees of freedom are the number of components in the vector 𝜃𝜃�, which are 4 for 

the models in this chapter. The 𝛼𝛼 represents the probability that 𝜃𝜃� is outside the shaded 

area. In this thesis, the constant is 9.49 for a 95% probability value in the shaded area, 

and the confidence ellipsoid is defined in 𝑅𝑅4.  
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6.3 The Eigenvector Method for Obtaining the Upperbound 

of the CTE    

 

Referring to Equation (6.1), the estimate of the frequency stability is calculated 

through Equation (6.27). 

 

𝑦𝑦�(𝑡𝑡) = 𝑎𝑎� ∙ 𝑥𝑥2(𝑡𝑡) + 𝑏𝑏� ∙ 𝑥𝑥(𝑡𝑡) + �̂�𝑐 + 𝑑𝑑� ∙ 𝑡𝑡      (6.27) 

 

The term 𝑥𝑥(𝑡𝑡) represents the temperature. The parameters 𝑎𝑎�, 𝑏𝑏�, �̂�𝑐 and 𝑑𝑑�  represent the 

parameter estimates. The term 𝑦𝑦(𝑡𝑡) is used to denote the oscillator frequency stability. 

Thus, the cumulative time error can be obtained from Equation (6.28). 

 

𝐶𝐶𝑇𝑇𝐸𝐸 = |∑ �𝑦𝑦�(𝑡𝑡𝑓𝑓) − 𝑦𝑦(𝑡𝑡𝑓𝑓)�𝑁𝑁
𝑓𝑓=1 |         (6.28) 

 

The 95% probability upperbound of the cumulative time error is the maximum 

value of CTE calculated from Equation (6.28) subject to Equation (6.26) when the 

constant in Equation (6.26) is 9.49.  

 

max𝜃𝜃��∑ �𝑦𝑦�(𝑡𝑡𝑓𝑓) − 𝑦𝑦(𝑡𝑡𝑓𝑓)�𝑁𝑁
𝑓𝑓=1 �  𝜇𝜇𝑢𝑢𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 �𝜃𝜃� − 𝜃𝜃0�

𝑇𝑇𝑃𝑃𝑁𝑁−1(𝜃𝜃� − 𝜃𝜃0) ≤ 9.49   (6.29) 
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An eigenvector method is used to solve Equation (6.29).  First, the column 

vectors  𝑍𝑍 = 𝜃𝜃� − 𝜃𝜃0  and 𝑅𝑅 = [∑ 𝑥𝑥2(𝑡𝑡𝑓𝑓)𝑁𝑁
𝑓𝑓=1   ∑ 𝑥𝑥(𝑡𝑡𝑓𝑓)𝑁𝑁

𝑓𝑓=1   𝑁𝑁   ∑ 𝑡𝑡𝑓𝑓𝑁𝑁
𝑓𝑓=1 ]𝑇𝑇  are defined. The 

problem of finding the maximum value of �∑ �𝑦𝑦�(𝑡𝑡𝑓𝑓) − 𝑦𝑦(𝑡𝑡𝑓𝑓)�𝑁𝑁
𝑓𝑓=1 � is equivalent to 

Equation (6.30).  

 

 max𝜃𝜃��∑ �𝑦𝑦�(𝑡𝑡𝑓𝑓) − 𝑦𝑦(𝑡𝑡𝑓𝑓)�𝑁𝑁
𝑓𝑓=1 �2 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑍𝑍𝑇𝑇 ∗ 𝑅𝑅)2 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑍𝑍𝑇𝑇 ∗ (𝑅𝑅 ∗ 𝑅𝑅𝑇𝑇) ∗ 𝑍𝑍)  

                                                            𝜇𝜇𝑢𝑢𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑍𝑍𝑇𝑇𝑃𝑃𝑁𝑁−1𝑍𝑍 ≤ 9.49      (6.30) 

 

Potter’s Square root algorithm introduced in Chapter 2 can be used in RPEM to 

guarantee that 𝑃𝑃𝑁𝑁 is invertible. We make 𝑃𝑃𝐼𝐼 = 𝑃𝑃𝑁𝑁−1 . The generalized eigenvalue problem 

of 𝑅𝑅 ∗ 𝑅𝑅𝑇𝑇  can be solved by Equation (6.31). 

 

𝑅𝑅 ∗ 𝑅𝑅𝑇𝑇 ∗ 𝑉𝑉 = 𝑃𝑃𝐼𝐼 ∗ 𝑉𝑉 ∗ 𝐷𝐷        (6.31) 

 

D is a diagonal matrix with the generalized eigenvalues of 𝑅𝑅 ∗ 𝑅𝑅𝑇𝑇  on the main 

diagonal. V is a full matrix whose columns are the corresponding eigenvectors of D. The 

value of V and D can be solved through matrix computation.  

The maximum value of the elements on D’s main diagonal can be found, which is 

denoted ℎ, and the corresponding index is denoted 𝑘𝑘.  Now let 𝑣𝑣𝑘𝑘  denote the k-th column 

of V, which corresponds to the maximum eigenvalue h. From Equation (6.31),  
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𝑅𝑅 ∗ 𝑅𝑅𝑇𝑇 ∗ 𝑣𝑣𝑘𝑘 = ℎ ∗ 𝑃𝑃𝐼𝐼 ∗ 𝑣𝑣𝑘𝑘         (6.32) 

 

Equation (6.32) multiplied by 𝑣𝑣𝑘𝑘𝑇𝑇  on the left side gives 

 

𝑣𝑣𝑘𝑘𝑇𝑇 ∗ 𝑅𝑅 ∗ 𝑅𝑅𝑇𝑇 ∗ 𝑣𝑣𝑘𝑘 = 𝑣𝑣𝑘𝑘𝑇𝑇 ∗ ℎ ∗ 𝑃𝑃𝐼𝐼 ∗ 𝑣𝑣𝑘𝑘        (6.33) 

 

𝑍𝑍  is calculated as follows: 

 

𝑍𝑍 = � 9.49
𝑣𝑣𝑘𝑘 ′∗𝑃𝑃𝐼𝐼∗𝑣𝑣𝑘𝑘

∗ 𝑣𝑣𝑘𝑘          (6.34)                                 

 

Equation (6.34) guarantees that 𝑍𝑍𝑇𝑇 ∗ 𝑃𝑃𝐼𝐼 ∗ 𝑍𝑍 = 9.49, because 𝜃𝜃0 which creates the 

maximum time error must be on the border of the ellipsoid. Thus, 

 

 𝑚𝑚𝑎𝑎𝑥𝑥�∑ �𝑦𝑦�(𝑡𝑡𝑓𝑓) − 𝑦𝑦(𝑡𝑡𝑓𝑓)�𝑁𝑁
𝑓𝑓=1 �2 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑍𝑍𝑇𝑇 ∗ 𝑅𝑅 ∗ 𝑅𝑅𝑇𝑇 ∗ 𝑍𝑍) 

                                        = �
9.49

𝑣𝑣𝑘𝑘 ′ ∗ 𝑃𝑃𝐼𝐼 ∗ 𝑣𝑣𝑘𝑘
∗ 𝑣𝑣𝑘𝑘 ′ ∗ 𝑅𝑅 ∗ 𝑅𝑅′ ∗ �

9.49
𝑣𝑣𝑘𝑘 ′ ∗ 𝑃𝑃𝐼𝐼 ∗ 𝑣𝑣𝑘𝑘

∗ 𝑣𝑣𝑘𝑘  

                             = 9.49
𝑣𝑣𝑘𝑘 ′ ∗𝑃𝑃𝐼𝐼∗𝑣𝑣𝑘𝑘

∗ 𝑣𝑣𝑘𝑘 ′ ∗ 𝑅𝑅 ∗ 𝑅𝑅′ ∗ 𝑣𝑣𝑘𝑘  

                           = 9.49
𝑣𝑣𝑘𝑘 ′ ∗𝑃𝑃𝐼𝐼∗𝑣𝑣𝑘𝑘

∗ 𝑣𝑣𝑘𝑘 ′ ∗ 𝑃𝑃𝐼𝐼 ∗ 𝑣𝑣𝑘𝑘 ∗ ℎ = 9.49 ∗ ℎ       (6.35) 

The maximum |𝐶𝐶𝑇𝑇𝐸𝐸|2 = �∑ �𝑦𝑦�(𝑡𝑡𝑓𝑓) − 𝑦𝑦(𝑡𝑡𝑓𝑓)�𝑁𝑁
𝑓𝑓=1 �2 is computed from Equation (6.35). 

Therefore, the maximum cumulative time error can be obtained by extracting the root of 

the maximum  |𝐶𝐶𝑇𝑇𝐸𝐸|2  when 𝜃𝜃� is located on the 95% probability confidence ellipsoid 
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boundary. Hence, this maximum CTE can be called the analytical 95% probability CTE 

upperbound.  

 

Figure 6.4 Comparison Result between Analytical CTE Upperbound and Monte 

Carlo CTE Upperbound 

 

In order to verify the analytical result, 100 independent Monte Carlo simulations are 

run. Training time is set 10 hours and holdover time is set 8 hours. We use the 5𝑡𝑡ℎ  

maximum CTE of 100 simulations to represent the Monte Carlo 95% probability CTE 

upperbound and the maximum CTE of 100 simulations to represent the Monte Carlo 

maximum CTE upperbound. Figure 6.4 compares the 95% probability analytical CTE 

upperbound, Monte Carlo maximum CTE upperbound, and Monte Carlo 95% probability 

CTE upperbound. We can notice that there is a sharp spike when training process starts. 
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The reason is that a non-zero initial offset exists in the system model, which is the same 

as Figure 6.2.  

The Monte Carlo 95% probability CTE upperbound is less than the analytical 

upperbound. The analytical upperbound of the CTE actually lies between the maximum 

CTE and the 95% upperbound of CTE computed from 100 Monte Carlo simulations. 

When the training time and the holdover time are changed, this result still holds. The 

reason is that the four parameters system identification is different from the one 

parameter system identification. A 𝜃𝜃�  which is located outside the 95% probability 

confidence ellipsoid does not always result in a larger CTE than all 𝜃𝜃� in the 95% 

probability confidence ellipsoid. A simple example can be used to illustrate this. 

 

Figure 6.5 Simple Example for Illustrating a Problem of Determining CTE 

Upperbound for Multi-parameter System Model 
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𝑧𝑧(𝑡𝑡) = 𝑥𝑥𝜃𝜃 ∙ 𝑡𝑡 + 𝑦𝑦𝜃𝜃 + 𝑣𝑣(𝑡𝑡)          (6.36) 

 

Figure 6.5 shows a two-parameter system confidence ellipse and Equation (6.36) 

shows the corresponding system model. The parameter 𝜃𝜃0 represents the true parameter 

value. We set 

 𝜃𝜃0 = [𝑥𝑥𝜃𝜃  𝑦𝑦𝜃𝜃 ]𝑇𝑇 = [1  1]𝑇𝑇         (6.37) 

The parameter estimate vector is represented by   𝜃𝜃� = [𝑥𝑥�   𝑦𝑦�]𝑇𝑇 . According to 

Equation (6.19), we know 

 𝜃𝜃� − 𝜃𝜃0 ∈ 𝑁𝑁(0,𝑃𝑃𝑁𝑁)           (6.38) 

𝜃𝜃� − 𝜃𝜃0 obeys a 𝜒𝜒2 distribution. 𝑃𝑃𝑁𝑁 is the covariance matrix of 𝜃𝜃� − 𝜃𝜃0. The shape of 

the ellipse is determined by  𝑃𝑃𝑁𝑁 . We set  𝑃𝑃𝑁𝑁 = �0.0001 −0.004
−0.004    0.1938� . From the 

𝜒𝜒2 statistics table, for the two-parameter system, �𝜃𝜃� − 𝜃𝜃0�
𝑇𝑇𝑃𝑃𝑁𝑁−1(𝜃𝜃� − 𝜃𝜃0) is less than 5.99 

with the probability 95%. In Figure 6.5, the ellipse represents the 95% probability border. 

Any point outside the ellipse results in 

�𝜃𝜃� − 𝜃𝜃0�
𝑇𝑇𝑃𝑃𝑁𝑁−1�𝜃𝜃� − 𝜃𝜃0� > 5.99       (6.39) 

 Any point inside the ellipse results in 

�𝜃𝜃� − 𝜃𝜃0�
𝑇𝑇𝑃𝑃𝑁𝑁−1�𝜃𝜃� − 𝜃𝜃0� < 5.99        (6.40) 

The term 𝐴𝐴0 is one parameter estimate. We set 

  𝐴𝐴0 = [𝑥𝑥𝐴𝐴   𝑦𝑦𝐴𝐴]𝑇𝑇 = [0.9861 1.9332]𝑇𝑇         (6.41) 

𝐴𝐴0 is a point outside the confidence ellipse because 

 (𝐴𝐴0 − 𝜃𝜃0)𝑇𝑇𝑃𝑃𝑁𝑁−1(𝐴𝐴0 − 𝜃𝜃0) = 6.14 > 5.99     (6.42) 
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The term 𝐵𝐵0 is another parameter estimate. We set 

𝐵𝐵0 = [𝑥𝑥𝐵𝐵   𝑦𝑦𝐵𝐵]𝑇𝑇 = [0.98  1.98]𝑇𝑇       (6.43) 

𝐵𝐵0 is a point inside the confidence ellipse because  

(𝐵𝐵0 − 𝜃𝜃0)𝑇𝑇𝑃𝑃𝑁𝑁−1(𝐵𝐵0 − 𝜃𝜃0) = 4.96 < 5.99      (6.44) 

The absolute value of the cumulative time error is  

|𝐶𝐶𝑇𝑇𝐸𝐸| = |(𝑥𝑥𝜃𝜃 − 𝑥𝑥�)𝑡𝑡 + (𝑦𝑦𝜃𝜃 − 𝑦𝑦�)|       (6.45) 

 

In this example, when 𝑡𝑡 < 7.67 or 𝑡𝑡 > 56.44, the cumulative time error of 𝐴𝐴0  is 

less than the CTE of 𝐵𝐵0. Hence, in some situations, the CTE of some point inside the 95% 

probability confidence ellipsoid is larger than the CTE of the point outside the confidence 

ellipsoid. 

Based on the analysis above, the analytical upperbound of the cumulative time error 

for 𝜃𝜃� based on the 95% probability confidence ellipsoid is not the 95% upperbound of the 

CTE for the system model. It is to be expected that this CTE is larger than the 95% CTE 

upperbound and less than the maximum CTE. This is different from the single parameter 

system identification. In the single parameter system model, any 𝜃𝜃�  outside the 95% 

confidence interval must have a larger CTE than the parameter estimate within the 95% 

confidence interval.   

 

 



108 

6.4 Discussion    

In Section 6.1, a refined system model is introduced. In this model, the oscillator 

frequency stability is affected by both temperature and ageing. Temperature has a 

quadratic relation with the frequency stability. Ageing has a linear relation with the 

frequency stability. The initial frequency stability offset is also included in the model. 

The model has 4 parameters that need to be identified. Similar to Chapter 5, the model 

reflects the effect of the control loop. The model is also transformed appropriately to 

apply RPEM. The performance of applying this refined model including the control loop is 

compared with the model without including the control loop. Simulation results show that the 

model including the control loop has a better performance.  

In Section 6.2, the confidence interval for multi-parameter estimates is presented. 

One can see that the confidence interval for multi-parameter estimates is different from 

the single parameter estimate. The confidence interval for the single parameter estimate is 

a section of a line. The confidence interval for multi-parameter estimates is an ellipsoid 

in  𝑅𝑅𝑑𝑑 .  The term 𝑅𝑅𝑑𝑑  means 𝑑𝑑 -dimensional space. In this chapter, 𝑑𝑑  is four, so a 

confidence ellipsoid in 𝑅𝑅4 is investigated. 

In Section 6.3, an eigenvector method is presented. This method can obtain the 

analytical upperbound of the cumulative time error. Simulations of 100 Monte Carlo runs 

are used to obtain the max CTE and 95% probability max CTE. Figure 6.4 shows that the 

analytical upperbound of the cumulative time error lies between the max CTE and 95% 
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probability max CTE. Then a simple example is presented to explain the result shown by 

Figure 6.5. This eigenvector method can only obtain an approximate CTE upperbound. If 

the requirement for the analytical CTE upperbound is not strict, this method is suitable. 

Otherwise, other more accurate methods for analytically deriving the CTE upperbound of 

the oscillator need to be developed.  
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Chapter 7: Conclusions and Future Work 

 

7.1 Conclusions 

 

In this thesis, a new adaptive OCXO frequency drift correction algorithm is 

proposed. This algorithm can enhance the accuracy of the OCXO. The enhanced OCXO 

can replace the more expensive DOCXO in the WiMAX and CDMA base transceiver 

stations. An ultra-low-cost base station timing module can be created by using this 

enhanced OCXO. The recursive system identification method is used to develop the 

adaptive correction algorithm. The recursive system identification method replaces the 

previous Batch Least Squares method. The new adaptive algorithm shows significant 

improvement for the cumulative time error of the timing module. The adaptive algorithm 

can also provide the CTE upperbound of the OCXO. The CTE upperbound is an 

important parameter which can determine the range of applications of the enhanced 

OCXO. The timing module system in base stations and the digital control loop, which is 

the core of the timing module, are reviewed for describing the adaptive algorithm.  

Some system identification methods are reviewed. These methods are used to 

develop the adaptive algorithm. Two different system identification methods are 

evaluated. They are the recursive least squares (RLS) methods and the Kalman Filter 

method. The characteristics and performance of the methods are investigated. Finally, the 
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RLS method is chosen to develop the algorithm.   

The OCXO frequency stability model is created to develop the adaptive algorithm 

and calculate the CTE upperbound of the OCXO. First, a simple model is used in Chapter 

4. The temperature is linear related to the OCXO frequency stability in this simple model 

and the digital control loop through which the correction signal is created has not been 

taken into account. Figure 5.1 shows that the analytical CTE upperbound computed from 

this simple model is not close to the Monte Carlo CTE upperbound. The CTE 

upperbound cannot be predicted correctly because the prediction error in this model is 

biased. The digital control loop is included in the model in Chapter 5 to guarantee that the 

prediction error is unbiased. From simulation results, the CTE upperbound can be 

obtained very precisely by including the control loop in the model. The performance of 

using the system model including the control loop is compared with the model without 

including the control loop. Simulation results show that the performances of both models 

are close. 

Then, a refined model structure is created in Chapter 6. This high-level model 

includes the temperature effect, the ageing effect and the initial frequency offset. The 

temperature is quadratic related to the OCXO satiability and the digital control loop is 

still included. The confidence ellipsoid of the parameter vector estimation is used to 

determine the distribution of the parameter estimates. An eigenvector method is 

developed for obtaining the CTE upperbound of the oscillator based on the confidence 

ellipsoid. The performance of using the high-level system model including the control 
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loop is also compared with the high-level model without including the control loop. 

Simulation results show that the performance of the model including the control loop is 

better than the model without including the control loop. 

 

7.2 Future Work 

The contents in the last section are what are covered in this thesis. It still leaves 

some problems as areas of future research.  

 

• First, the 95% probability CTE upperbound for the detailed model is not 

precise enough, which is verified by the Monte Carlo method. A bound larger 

than the 95% Monte Carlo CTE upperbound is obtained because of the nature 

of the parameter vector estimates distribution. In some precise application, a 

more accurate upperbound of the cumulative time error may be needed.  

• Second, the Monte Carlo method is used to verify the simulation results of the 

adaptive frequency drift correction algorithm in the research. Actually, the 

Monte Carlo method itself can be used to obtain the upperbound of the 

cumulative time error. After the timing module in the base station enters into 

the holdover mode, the analytical results of the temperature sensitivity and the 

ageing rate of the OCXO can be obtained. These data can be used to create a 

system model and simulate the training mode and the holdover mode by using 
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the same temperature and time profile as the real environment. By applying a 

sufficient number of Monte Carlo simulations, the upperbound of the CTE with 

the required precision can be obtained.  

• Third, all work in this thesis is conducted in a simulation environment. Matlab 

is used to simulate the oscillator stability, the temperature and the ageing, etc. 

In future research, actual hardware and instruments are needed to verify the 

simulation results.  

• Fourth, the adaptive OCXO frequency drift correction algorithm is only the 

first step in the research. The timing module in the base station is working 

within a large network. In the training mode, the timing module is locked by 

the satellite timing signal. When the lock is interrupted, the timing module is 

enhanced by the adaptive correction algorithm and provides a time reference to 

other clocks which cannot be locked by the satellite timing signal in the 

wireless network. The timing module enhanced by the algorithm serves as the 

standard timing reference. Transmitting the timing signal in the wireless 

network introduces signal delay and cause errors for the clocks. Solving the 

timing signal transmission problem in the wireless network is the next step in 

the research.    
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