

Cellular Data Traffic: Analysis, Models, and Scenarios

By

Xinan Zhou, M.Sc.

A Thesis Submitted to

the Faculty of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario

June 2000

 Copyright

2000, Xinan Zhou

 ii

The undersigned hereby recommend to

The Faculty of Graduate Studies and Research

acceptance of the thesis,

Cellular Data Traffic: Analysis, Models, and Scenarios

submitted by

Xinan Zhou, M.Sc.

in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science

Director, School of Computer Science

Thesis Supervisor

Carleton University

June 2000

 iii

Abstract

Networks are becoming more and more popular and the traffic over the networks is

growing rapidly. Because the network infrastructure is expanding at a quick pace,

especially the growth of the Internet, both in size and in the types of applications, the

performance issue and dimensioning issue of networks are becoming more critical. It is

important to provide a robust and flexible networking environment. To design a system

that can deal with these issues well at a reasonable cost, the first step is to characterize the

network traffic. In order to get traffic properties that are general it is necessary to study

traces of networks in various environments and of different types. A detailed analysis and

characterization of network traffic is fundamental to obtain deeper insights into the

network system, to fully realize the potential improvements in network performance, and

to optimize management of the resources. A lot of work has been done in traffic analysis.

The major part is on the Internet traffic. Recently, wireless communication has moved

from voice service to data service. Wireless Application Protocol (WAP) makes it

possible for commonly used devices such as cell phones, PCs and PDAs to access the

Internet. These new wireless data applications produce data that may have different

characteristics from those of wired data applications and wireless voice data studied

before. In this thesis, we study the data generated by Mobile Browser applications in a

cellular network of Bell Mobility in Quebec and Ontario, and compare our results with

other results of Internet traffic characterization. We also do some simple performance

prediction of the cellular network using Layered Queuing Models (LQM).

 iv

Acknowledgements

Special thanks go to my supervisor, Dr. Thomas Kunz, whom I can always count for

valuable suggestions and clear guidance. Without his support I may never have finished

this thesis. I would also like to thank the members of my committee for their helpful

suggestions for organizing the thesis.

Many thanks go to Dr. C. Murray Woodside for his valuable consulting in establishing

LQM performance models.

I thank Thomas Barry for providing the trace files, Tauseef A. Israr and Dr. Meng Zhao

for interesting advice and discussions.

Sincere thanks will be given to Bell Mobility and the National Science and Engineering

Research Council (NSERC) for the financial support during the thesis work.

 v

Table of Contents

Chapter 1: Introduction 1

1.1 Thesis Motivations …………………………………………….. 1

1.2 Thesis Contributions …………………………………………… 6

1.3 Thesis Outline ………………………………………………… 7

Chapter 2: Background and Related Work 8

2.1 Introduction to Data Networks ………………………………… 8

2.2 Brief Introduction to Wireless Networks ………………………. 10

2.3 Performance Issues …………………………………………….. 13

2.4 Related Work …………………………………………………….. 14

2.4.1 Characterizations of Internet Traffic ……………………. 14

2.4.2 Web Traffic Models …………………………………….. 17

2.5 Summary ………………………………………………………... 19

Chapter 3: Analytical Results of Trace Files 20

3.1 Trace Files ……………………………………………………… 21

3.2 Statistical Results of Trace Files ………………………………. 23

3.3 Traffic Invariants ……………………………………………….. 27

3.4 Analytical Results ………………………………………………. 29

3.5 A Layered Forecasting Model ………………………………….. 34

3.6 Summary ………………………………………………………... 43

Chapter 4: Session Analysis of Trace Files 44

4.1 Necessary Terminology and Notations …………………………. 44

4.2 Session Results ………………………………………………….. 48

4.3 Parameters of a Session …………………………………………. 59

4.4 Summary ………………………………………………………… 64

Chapter 5: Comparison of the Results 67

5.1 Traffic Pattern …………………………………………………… 67

5.2 Session Model …………………………………………………… 71

5.3 Character Distributions ………………………………………….. 75

5.4 Summary ………………………………………………………… 76

 vi

Chapter 6: Performance Study of the WAP System by LQM 77

6.1 Brief Introduction to LQM ……………………………………… 77

6.2 LQM Performance Models ……………………………………... 79

6.3 Parameters of the Performance Models …………………………. 82

6.4 Results ..……………...………………………………………… 85

6.4.1 Model 1 …………………………………………………. 86

6.4.2 Model 2 …………………………………………………. 89

6.5 Summary ………………………………………………………... 92

Chapter 7: Conclusions and Future Work 93

7.1 Conclusions ……………………………………………………... 93

7.2 Future Work ……………………………………………………... 95

References 96

Appendix A: Additional Results of Session Analysis 99

Appendix B: An Example of LQN Input and Output Files 110

 vii

List of Figures

Figure 1.1.1: A Model of a WAP System …………………………………… 4
Figure 2.2.1: An Illustration of a Cellular System …………………………… 11
Figure 3.1.1: Illustration of Trace Measurement Environments …………… 21
Figure 3.2.1: Distribution of All Packet Sizes …………………………… 24
Figure 3.2.2: Distribution of Backward Packet Sizes …………………… 24
Figure 3.2.3: Distribution of Forward Packet Sizes …………………… 24
Figure 3.2.4: Distribution of Backward Interarrival Time …………………… 25
Figure 3.2.5: Distribution of Forward Interarrival Time …………………… 25
Figure 3.2.6: Daily Traffic from July 1, 1999 to Dec. 31, 1999 …………… 26
Figure 3.2.7: Number of Packets per Day from July 1 to Dec. 31, 1999 …… 27
Figure 3.3.1: Average Packet Sizes per Day from July 1 to Dec. 31, 1999 ….. 28
Figure 3.3.2: Comparison of r-trans and r-vlm …………………………… 28
Figure 3.3.3: Number of Unique Client IP from July 1 to Dec. 31, 1999 …… 29
Figure 3.4.1: Average Daily Traffic over Period July 1 to Dec. 31, 1999 …… 30
Figure 3.4.2: Traffic in Nov. 1999 …………………………………………… 30
Figure 3.4.3: Spectral Analysis of Traces (unit = 1 day) …………………… 31
Figure 3.4.4: Spectral Analysis of Traces (unit = 1 hour) …………………… 31
Figure 3.4.5: Absolute Value Plot of High Traffic on July 1, 1999 …………. 33
Figure 3.4.6: Absolute Value Plot of Low Traffic on July 1, 1999 …………. 33
Figure 3.4.7: Variance Plot of High Traffic on July 1, 1999 …………………. 33
Figure 3.4.8: Variance Plot of Low Traffic on July 1, 1999 ………………….. 34
Figure 3.5.1: Comparison of Weekly Traffic Patterns …………………… 36
Figure 3.5.2: Average Daily Traffic of Each Month …………………… 36
Figure 3.5.3: Monday Traffic Pattern …………………………………… 37
Figure 3.5.4: Prediction of the Traffic of the Missing Part …………………… 38
Figure 3.5.5: Traffic Pattern after Mending the Hole …………………… 38
Figure 3.5.6: Predicted Traffic for Sept. 6, 1999 …………………………… 40
Figure 3.5.7: Prediction of Numbers of Unique IP in Jan. 2000 …………… 41
Figure 3.5.8: Prediction of the Traffic in Jan. 2000 ………………………….. 42
Figure 4.1.1: Illustration of a Session …………………………………… 47
Figure 4.2.1: Average Daily Number of Sessions (July to Dec. 1999) …… 50
Figure 4.2.2: Average Daily Activity Factors (July to Dec. 1999) …………… 50
Figure 4.2.3: Ratio of b-fact to f-fact …………………………………… 51
Figure 4.2.4: Average Daily Backward Link Utilization …………………… 51
Figure 4.2.5: Average Daily Forward Link Utilization …………………… 52
Figure 4.2.6: Average Number of Concurrent Sessions (July 1999) ………….. 53
Figure 4.2.7: Distribution of Session Size (July 1999) …………………… 53
Figure 4.2.8: Distribution of Session Length (July 1999) …………………… 53
Figure 4.2.9: Proportion of Traffic vs. Session Length (July 1999) ………… 54
Figure 4.2.10: Activity Factors vs. Session Length (July 1999) ……………. 54
Figure 4.2.11: Number of Sessions vs. Timeout Values …………………… 55
Figure 4.2.12: Average Session Length per Day …………………………… 57
Figure 4.2.13: Average Session Size per Day …………………………… 58
Figure 4.2.14: Session Size vs. Session Length …………………………… 59

 viii

Figure 4.3.1: Illustration of Session Parameters …………………………… 60
Figure 4.3.2: Number of synchronous Requests vs. Session Length ………... 62
Figure 4.3.3: Average Request and Answer Sizes vs. Session Length ……….. 63
Figure 4.3.4: a-size/r-size vs. Session Length …………………………… 63
Figure 4.3.5: s-size and r-size vs. Session Size …………………………… 63
Figure 4.3.6: Number of Synchronous Requests vs. Session Size ……….…... 64
Figure 4.3.7: a-size/r-size vs. Session Size …………………………………… 64
Figure 6.2.1: A Three Layer LQM Model …………………………………… 81
Figure 6.2.2: A Four Layer LQM Model …………………………………… 82
Figure 6.3.1: Illustration of Think Time Approximation …………………… 85
Figure A.1: Average Number of Concurrent Sessions (Aug. 1999) ………... 99
Figure A.2: Distribution of Session Size (Aug. 1999) …………………… 99
Figure A.3: Distribution of Session Length (Aug. 1999) …………………… 100
Figure A.4: Proportion of Traffic vs. Session Length (Aug. 1999) ……….... 100
Figure A.5: Activity Factors vs. Session Length (Aug. 1999) ……….…... 100
Figure A.6: Average Number of Concurrent Sessions (Sept. 1999) ……….… 101
Figure A.7: Distribution of Session Size (Sept. 1999) …………………… 101
Figure A.8: Distribution of Session Length (Sept. 1999) …………………… 101
Figure A.9: Proportion of Traffic vs. Session Length (Sept. 1999) ……….…. 102
Figure A.10: Activity Factors vs. Session Length (Sept. 1999) ……….…… 102
Figure A.11: Average Number of Concurrent Sessions (Oct. 1999) ……….…. 102
Figure A.12: Distribution of Session Size (Oct. 1999) …………………… 103
Figure A.13: Distribution of Session Length (Oct. 1999) …………………… 103
Figure A.14: Proportion of Traffic vs. Session Length (Oct. 1999) ……….…. 103
Figure A.15: Activity Factors vs. Session Length (Oct. 1999) ……….….. 104
Figure A.16: Average Number of Concurrent Sessions (Nov. 1999) ……….…. 104
Figure A.17: Distribution of Session Size (Nov. 1999) …………………… 104
Figure A.18: Distribution of Session Length (Nov. 1999) …………………… 105
Figure A.19: Proportion of Traffic vs. Session Length (Nov. 1999) ……….…. 105
Figure A.20: Activity Factors vs. Session Length (Nov. 1999) ……….…… 105
Figure A.21: Average Number of Concurrent Sessions (Dec. 1999) ……….…. 106
Figure A.22: Distribution of Session Size (Dec. 1999) …………………… 106
Figure A.23: Distribution of Session Length (Dec. 1999) …………………… 106
Figure A.24: Proportion of Traffic vs. Session Length (Dec. 1999) ……….…. 107
Figure A.25: Activity Factors vs. Session Length (Dec. 1999) ……….…… 107
Figure A.26: Number of Sessions per Day ……….…………………………… 108
Figure A.25: Max Number of Concurrent Sessions per Day ……….…… 108

 ix

List of Tables

Table 3.2.1: Statistical Results of the Trace Files ……….……………. 23

Table 3.5.1: Statistical Results of Weekly Traffic ……….……………. 35

Table 3.5.2: Prediction of the Missing Daily Traffic ……….………… 37

Table 3.5.3: Proportions of Traffic at Each Hour during a Day …….. 39

Table 4.2.1: Session Analysis ……….………………………………. 56

Table 6.4.1.1: Capacity vs. sh1 and sh2 ……….………………………. 86

Table 6.4.1.2: Capacity vs. CPU Speed ……….……………………. 87

Table 6.4.1.3: Capacity vs. Number of CPUs ……….…………………. 87

Table 6.4.1.4: Capacity vs. Think Time ……….……………………….. 87

Table 6.4.1.5: Capacity vs. sh1 ……….………………………………… 88

Table 6.4.1.6: Capacity vs. sh1 and Idle Time ……….………………… 89

Table 6.4.2.1: Capacity vs. Load Migration (sh1 = 11.2) ……….………. 90

Table 6.4.2.2: Capacity vs. Load Migration (sh1 = 0) ……….………….. 90

Table 6.4.2.3: Performance vs. Load Migration ……….………………. 91

 1

Chapter 1: Introduction

In this chapter, we will explain the motivations of the thesis, present the contributions of

this work, and finally provide the outline of the thesis.

1.1 Thesis Motivations

Computer networks are growing very fast. They play an important role in industry, in

business, in education, and even in our daily life. The importance will surely increase

with the time passing by. The continuous trend of growth may bring critical issues for

network systems that might not be faced before. One is the performance issue: network

systems should provide good quality services even under heavy traffic. Another issue is

the dimensioning of the network. Dimensioning is about how to match new networks to

existing resources, how to plan for the expansion of the client population and how to

upgrade and extend existing networks.

The performance of computer networks includes many factors. The server

performance is a critical issue for client/server systems. For example, during peak

periods, a server might have to serve more than 3 times as many requests than the

average number of requests per second. If the server cannot adequately handle the request

traffic, the server will fail to satisfy some requests, resulting in unacceptably slow

responses or rejecting them repeatedly. For Web sites, the high percentage of requests for

dynamic pages is more likely to make the server CPU a bottleneck. Many Web sites, like

sport sites or stock market sites, need to provide dynamic content. It is important to

examine the server performance under high CPU loads. When the server is operating near

 2

capacity, there is a tradeoff between average latencies and the percentage of requests

rejected: acceptable response time can be guaranteed by rejecting a higher percentage of

requests.

The network can also act as a performance bottleneck. Usually, links between a

client or a server and the Internet backbone might be the bottleneck at peaks. For a Web

site, the Web server will maintain open connections with each client while a request is

being processed. If the client is slow, the connection will remain open for a long time. If

many slow clients make requests to the Web server at the same time, the performance of

the Web server may decrease because the slow clients waste the link.

Nowadays, Internet has become so popular that almost all countries in the world

provide the facilities to access the Internet. Of the Internet traffic, WWW composes a

heavy part. In 1997, WWW traffic accounted for 70% of the total traffic on the Internet

[Choi 1999]. The growth of the Internet is apparent in both size and services. So is the

growth of the traffic on the network. Traffic measurement provides first hand data for

statistical analysis of the network traffic. Actually, traffic measurement itself is an

interesting research area.

Modeling the traffic in general can be very difficult. First it is hard to measure and

collect data that characterize the network traffic on users’ side. For example, it is difficult

to determine how many people visit a Web page and how many applications a user

launches during a day. Second it is also difficult to generalize traffic characteristics of a

specific network to other networks. Because we cannot prove that a group of users of one

network has the same habits and behavior patterns as other groups of network users, and

the hardware of the two networks might be different too. So it is important to study as

 3

many different data sets as possible. The study of any new types of data is always

meaningful for the validation and modification of the existing conclusions.

Network traffic modeling and forecasting is very important. By predicting the

future traffic volume, the number of client requests and size of document retrieved and

the requirements for other resources correctly, we can design high efficiency algorithms

for caches and the whole system, and make accurate dimensioning decisions.

Though there are huge volumes of references about Internet traffic, little work is

found on the cellular data traffic analysis. Newly developed technologies such as

Wireless Application Protocol (WAP) make it possible for all kinds of handsets to access

the Internet. Mobile Browser that is powered by Phone.com enables Internet on wireless

phones and handheld devices. WebCare designed by Bell Mobility [Bell 1999], which is

an application running on the Mobile Browser, can provide services like viewing the

account balance, paying the bill, etc., on Digital PCS phones. There are many other

services available.

WAP Forum initiated WAP [WAP 1998]. Its aim is to help wireless networks

offer as many and as high-quality services to clients as wired networks. WAP and

WWW, both can enable the clients to browse the Internet. But WWW is designed for the

wired network that has wider bandwidth than the wireless network. WAP is designed for

the wireless network. The WAP and WWW are so closely related that formats of WAP

content and applications and the communication protocols of WAP are all derived from

WWW. WAP uses proxy technology to connect between the wireless domain and the

WWW. Mobile Browser enables clients to navigate the Internet wirelessly on their PCS

phones and handsets. The model of WAP is roughly composed of client, gateway and

 4

WWW [WAP 1998]. Mobile Browser is run on the handset by which the client makes

requests. The gateway translates requests from the client so that the WWW can

understand them and passes the translated requests to the WWW. The WWW sends the

response back to the gateway according to the requests. The Gateway then encodes the

response content into compact format and passes it to the client. Because of the limited

wireless bandwidth, the reduction of the response content is necessary. The gateway has

its own cache to store some information according to a schedule so that some requests

from the clients need not be passed to the WWW. This will save time and resources and

improve performance. What kind of scheduling (FCFS, FCLS, etc.) will benefit the

system most is another interesting research topic. Figure 1.1.1 shows the WAP model.

The gateway bridges the wireless and wired networks.

Figure 1.1.1

In this thesis, we will study the Mobile Browser application traffic data that were

measured (new traces are kept being recorded continuously) on the cellular network of

Bell Mobility in the areas of Quebec and Ontario. The cellular network was formerly

designed for voice service. But now it can provide many kinds of data services. The

customers initiate the applications on their Digital PCS phones. The application can be

Client
handset

WAP Gateway WWW

Encoded
request

Translated
request

Response Encoded
response

Wired network Wireless network

 5

any service provided by Bell Mobility, such as bill payments, stock trading, weather or

sports news, and Web site visit. Any application that is being used today with a modem

and a phone line can be set up on the Digital PCS phone [Bell 1999]. After dialing and

setting up the connection, Web-based applications can be run on the PCS phone

wirelessly. During the connection, each client is assigned an IP address. After the

application ends or if the application is idle for more than 90 seconds, the IP address may

be assigned to another client. We call the IP address client IP address. The server has one

unique IP address all the time. But clients are assigned IP addresses dynamically. That is,

one device is not related to one unique IP address all the time.

The analysis of the trace files produced from data services on the cellular network

of Bell Mobility will provide a solid ground for the optimization of resources of the

cellular network and potential expansion and upgrading of the network in the future.

Through studying the trace files, we try to answer questions like:

1. When is the busiest time?

2. What is the weekly traffic pattern?

3. Is there a monthly traffic pattern?

4. Is there a traffic growth trend in a certain period?

5. Are there seasonal trends in the traffic flow?

6. Is the traffic self-similar?

7. What are the link utilization or activity factors?

8. What is the distribution of session size?

9. What is the pattern of concurrent sessions?

10. What is the distribution of the session length?

 6

11. Can some properties be predicted with reasonable accuracy?

12. Are the results of our study different from other results, in particular results reported

for the WWW?

By using Layered Queuing Models (LQM) and some parameters obtained from

the above results plus some assumed parameters, we try to answer the following

performance questions:

1. What is the bottleneck of the system?

2. What is the maximum number of clients that the system can serve at the same time?

3. How much the system will be improved if we either increase the CPU speed or add

additional CPUs?

4. How does the system behave if we change the values of some parameters?

 We have searched many references about data traffic analysis, but did not find

one describing cellular data traffic analysis. This work could be the first one on the topic

of cellular data traffic analysis and modeling.

1.2 Thesis Contributions

We consider the following as the contributions in this work.

• Analyzing the cellular data trace files and providing some basic characteristics of the

cellular data traffic.

• Providing a layered model to predict the traffic and other properties.

• Providing a session model and related features.

• Deriving some parameters from the session model.

• Comparing the results in this thesis with previously published results.

 7

• Studying the abstract WAP system by two LQM models.

Part of the work is presented in two workshop papers: [Kunz 2000] and [Omar 2000].

1.3 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides basic material about the

network and traffic analysis, and overviews related work on Internet traffic analysis,

especially on WWW traffic. Chapter 3 introduces the characteristics of our trace files and

the environment of the cellular network where the trace files are recorded. The results

obtained by analyzing the trace files are provided too. A layered prediction model is

devised and shown to be reasonably accurate by several examples. Chapter 4 gives a

session model and shows some results based on the session model. The session

characteristics in a month are described for July 1999 to save the space. The Results in

other months are in Appendix A. Relationships between some properties are found and

discussed. Some attempts are made to fit statistical distributions onto the results. In

Chapter 5, our results are compared with corresponding results in the literature. We

investigate the reasons for the similarities and differences. Chapter 6 gives two simple

LQM models of the system and some performance studies are carried out with these two

LQM models. Chapter 7 summarizes our findings and discusses potential future work. In

Appendix A, we provide session analysis results for August, September, October,

November and December, which are omitted in Chapter 4. We also present information

about maximum concurrent sessions from July 1, 1999 to Dec. 31, 1999.

Chapter 2: Background and Related Work

 8

In this chapter, we will give a brief introduction to data networks and discuss related

work of Internet traffic analysis, especially WWW traffic analysis.

2.1 Introduction to Data Networks

Data communication has a history that is almost as long as the history of human beings.

In ancient times people used all kinds of ways to pass information such as sounds, hands,

flags, smokes and mirrors. In modern times telegraphy is considered as the beginning of

data communications. From the 1920s to the 1960s telegraphy was the major way to

provide data communication services. When computer networks appeared, people found

it a more powerful and suitable way to provide data communication services. As

computer technology developed, packet switching was found more suitable for data

communication than circuit switching. For example, X.25 can provide robust data

transfer services.

The network is designed in a layer-structured way and a higher layer is built upon

a lower layer. The lower layer provides necessary services only to the adjacent higher

layer. Each layer has its own layer protocol. International Standards Organization (ISO)

proposed a reference model for Open System Interconnection that includes seven

conceptual layers. In the increasing order of the layer number the seven layers are

physical hardware layer, data link layer, network layer, transport layer, session layer,

presentation layer and application layer (X.25 is an example implementation of the ISO

model). The physical layer is responsible for transmitting a stream of electrical digital

data bits over a physical channel. The data link layer defines the format of frames and

 9

transfers data in a unit of frame. The network layer specifies how a start host sends

packets to a destination host. This layer concerns the destination addressing and routing.

The transport layer is responsible for the end-to-end transport reliability between the

source end and the destination end by making sure no errors occurred in the middle of

communication. The session layer provides the necessary functionality that is needed by

application programs. The presentation layer provides all the necessary ways to transform

the data of the end users. The application layer is for application programs that are

commonly provided by the networks like email and file transfer [Comer 1988]. In real

life TCP/IP is widely used, not the ISO model. TCP/IP is based on a model with only five

layers: physical layer, network interface layer, internet layer, transport layer and

application layer. It is also often called the Internet model. The ARPANET was

developed by the United States Defense Advanced Research Projects Agency (the agency

was formerly known as ARPA, not DARPA) to interconnect many of its computers in a

distributed way. It is the beginning of Internet. The ARPANET is an example of the

implementation of the Internet model. The Internet model structure is different from the

ISO model structure. The Internet model combines application layer, presentation layer

and session layer into only one application layer and adds an internet layer between the

network layer and the transport layer. The application layer in the Internet model

provides all the services that are provided by application layer, presentation layer and

session layer in the ISO model. The internet layer concerns issues such as error checking,

handling incoming datagrams, data validity checking, header detecting and data routing.

The internet layer uses protocols such as Internet Protocol (IP) and the Internet Control

Message Protocol (ICMP). TCP and UDP are at the transport layer. The application layer

 10

in the Internet model usually provides functionality such as Telnet, FTP, the Simple Mail

Transfer Protocol (SMTP), the Domain Name Server (DNS) Protocol, and World Wide

Web (WWW). The Internet is formed by a group of separate networks worldwide that are

connected through repeaters, bridges, routers, and gateways. A repeater just passes bits

from one network to another at the physical layer, and is transparent to the higher layers.

A bridge combines two networks at the data link layer. A router connects isolated

networks at the network layer. A gateway bridges different subnetworks that have

different transport protocols [Tanenbaum 1996]. Each host on the Internet has a unique

address called IP Address that is 32 bits long. Each IP address corresponds to a name

because people would like to remember machines by names not by a long string of

numbers. DNS is used to map names of machines into their corresponding IP addresses

respectively. More concepts and detailed explanations about IP, TCP, UDP, DNS, and

WWW, etc. can be found in [Tanenbaum 1996] and [Comer 1988].

2.2 Brief Introduction to Wireless Networks

Radio techniques started the wireless communication. They evolved into ocean vessel

radio, vehicular mobile radio and aircraft radio. But the moving distance is limited.

AMPS is the result of extensive research by Bell Labs in 1960s and 1970s [Redl 1998].

Since then the cellular idea has been widely accepted by the wireless world. The AMPS

system is different from previous mobile radio systems in that it interfaces with PSTN.

AMPS works by organizing a group of adjoining cells, each cell is managed by a base

station (BS) and has the capacity of handoff when a client moves through the cell to

another. The base stations are connected to public switch telephone networks (PSTN)

 11

through the mobile switching centers (MSCs) by land links (see Figure 2.2.1). The client

communicates with the BS that manages the cell the client is in wirelessly. AMPS is the

first generation cellular system that is analogue. Europeans came up with a TDMA

system, GSM, the second generation cellular system [Redl 1998]. GSM is a solution to

transfer from analog to digital. The third generation is at the research stage now.

Figure 2.2.1

Before 1992 all cellular systems were analog. In analog cellular systems, the

speech signal, a continuous smooth analog waveform, is encoded directly onto the carrier

[Lee 1998]. Since 1992, most newly deployed cellular systems have been digital, this

means that a sequence of 1s and 0s is transmitted rather than the analog signal. Digital

systems are generally considered to be better than analog system. The problem with

analog systems is that they are too sensitive to interference. For example, a small amount

of change on the input signal can result in a big change to the output signal. Digital

systems are less interference sensitive, and promise higher capacity for the same amount

of radio spectrum than analog systems.

FDMA, TDMA and CDMA [Gibson 1999] are ways of dividing up the radio

spectrum so that a number of users can talk at the same time. It is commonly agreed that

 BS

 MSC PSTN

BS

BS

 12

TDMA and CDMA are much more efficient than FDMA. But arguments about whether

CDMA was better than TDMA or whether the Qualcomm IS-95 cellular standard (now

known as CDMAone) [Lee 1998] was better than the GSM cellular standard are still on.

Jacobs and Viterbi claimed in 1991 that the CDMA cellular system had a capacity that

was 20 or so times greater than any other cellular system in existence [Gibson 1999].

However, at the present time CDMA systems provide a capacity probably around 30%

greater than TDMA systems, far below what Jacobs claimed [Gibson 1999]. And CDMA

system components cost more than TDMA components.

In the design of wireless networks, requirements of voice and data services are

different. For voice services the delay should be minimized as much as possible. If the

delay is longer than 100 ms, the listener can notice the delay and feel uncomfortable

[Pahlahvan 1994], and the voice service becomes unacceptable. But the delay in a data

network is generally acceptable to the data user. Though voice services cannot bear 100

ms delay, they can tolerate a packet loss rate that can be as high as 0.01 [Pahlahvan

1994]. On the contrary, data services do not permit any packet loss. No one wants to

download a file with errors since it is useless.

Usually there are two types of wireless data networks that serve different purposes:

Wide-Area Systems and Local-Area Systems. Wide area wireless data systems are

designed to provide high mobility, wide area coverage, but the data transmission speed is

low. They typically provide various short-message applications such as notice of

electronic mail and performing transaction services. Local area wireless data systems are

often designed to support a limited number of users in a small area, but the data

 13

transmission speed is high. They typically support various local applications such as long

file transfers or printing tasks that require high speed [Garg 1997].

Newly developed technologies such as WAP make it possible for devices like cell

phones, PCs and PDAs to access the Internet. WAP has a layered architecture that makes

WAP scaleable and extensible. WAP exists on top of GSM, CDMA, CDPD, etc.

2.3 Performance Issues

Performance is critical for client/server type systems. Many researchers are developing

new techniques that can improve performance. Results obtained by studying traces can

provide guidelines for performance studies.

For the WAP model, the time needed to complete a request include the processing

time at client, gateway, WWW and any devices in between, and queuing time at gateway,

WWW and intermediate routers in between. To guarantee a quick response to a request, it

is important to have enough network resources (bandwidth and buffer sizes) to deal with

the peak load in the network. If the network resources are limited it is necessary to

control the amount of data that is sent into the network to avoid congestion. Through

caching, the number of client requests sent to distant server can be reduced. But for the

wired network part, we cannot control the traffic volume because of its being shared by

everyone who can access the Internet. The correct match of network and server resources

to anticipated demands and the careful design of caching schemes can improve the

quality of the services provided by the systems.

2.4 Related Work

 14

Due to the fast expansion of the networks, especially the Internet and newly available

digital data services by all kinds of handsets, total traffic has increased enormously.

Many efforts focus on network measurement and performance and dimensioning studies

of networks. There exists a lot of literature about Internet behavior in recent years.

2.4.1 Characterizations of Internet Traffic

The first step to characterize the network traffic is to measure traffic flow on the

networks. Depending on what aspects to study and what information is needed, people

can choose to measure traffic on the client side, on the proxy side, on the server side, or a

combination of these. The measurement can be at the packet level, at the TCP level, or at

the application level. Decision on which level to use may be based on factors such as

which level can provide the necessary information and which level is possible technically

and legally.

More information can be obtained by measuring on the client side, but often it is

difficult. For measuring WWW traffic on the client side, the difficulty is that it is hard to

modify WWW browsers in order to record user behavior related data. Moreover we

cannot guarantee that the characteristics of the user’s behavior that has been studied are

the same as other users.

[Catledge 1995] studied client behavior in the WWW in 1994. They modified

Mosaic into Xmosaic and recorded three-week traces at the Georgia Institute of

Technology. The number of clients was 107. The results revealed the way people used

Mosaic that was the most often used browser at that time. By analyzing the traces they

found people liked to search back and forth from the initial page. This provided a solid

 15

base for behavior model building. In the same year, the Boston University Oceans Group

conducted another study on a larger scale that had over 600 users and lasted over six

months. They also used Xmosaic. The obtained traces were used widely. [Cunha 1995]

and [Crovella 1997] found that the distributions of transmission times and document sizes

versus number of requests were Pareto. The distribution of document popularity follows

Zipf’s distribution. [Crovella 1995] and [Crovella 1997a] demonstrated that WWW traffic

had the nature of self-similarity.

Many researchers like to study WWW traffic by analyzing proxy traffic traces,

because there are more proxy traces available than client traces. But many of these

studies focus on improving caching algorithms only. [Leland 1994] studied the traces

collected on several Ethernet LAN’s at the Bellcore Morristown Research and

Engineering Center from August 1989 to February 1992. They reported self-similarity of

the traffic and gave H = 0.8, after analyzing a sample of 27 hour (sampling time interval

is 10 ms) by variance method, R/S plot, and periodogram plot. [Paxson 1995] analyzed

24 traces of wide-area TCP traffic. The traces they used were from Bellcore, UK-US,

coNCert, etc. They reported self-similarity of the network traffic, but did not give the H

value (H is a Hurst parameter used to describe the degree of self-similarity). [Abdulla

1997a] did spectral analysis to the proxy traces, and found the bursty behavior of the

traffic and predictable daily and weekly periods. [Abdulla 1997c] conducted an extensive

analysis of proxy logs from ten sources, and claimed finding nine invariants. They also

revealed that the Hurst parameter varies between 0.59 and 0.94 across all proxy traces

and added this finding as another invariant. [Thompson 1997] measured traffic on the

OC3 link of the network at the U.S. East Coast. The daily traffic pattern and weekly

 16

traffic pattern are obvious. The rate of traffic flow ranges from 10 Megabits/sec to 55

Megabits/sec. They also described proportions of many components in the traffic such as

WWW, DNS, SMTP, FTP, and TELNET. [Mah 1997] used the tcpdump-capture utility

to record TCP/IP packet headers on a shared 10 Mbps Ethernet in the Computer Science

Division at the U. of California at Berkeley in late 1995. The results showed that HTTP

requests exhibit a bimodal distribution and the sizes of HTTP replies are heavy-tailed.

[Arlitt 1999b] studied the effects that cable modems have on proxy workloads. The data

were collected at an Internet Service Provider (ISP) from January 3, 1997 to May 31,

1997. They found that users were more likely to download extremely large files if they

had faster access speed.

Another important way to study Internet traffic is to measure the traffic flow on

the server side and analyze the collected traces. There are many published papers about

WWW server studies. [Mogul 1995] analyzed traces obtained from the Californian

congressional election server set up by DEC on November 9, 1994. He found that the

inter-arrival time of requests did not fit a pure Poisson process. [Arlitt 1996] conducted

an extensive analytical study, and claimed ten invariants that were consistent with results

of many other researchers. The periods of the traces that he used in his research vary

from one week to one year. [Almeida 1998] did analysis on access logs from NCSA,

SDSC, EPA, and BU during the fall of 1996. They found that popularity for documents

served by Web sites and sequences of requests from clients follow Zipf’s Law. [Arlitt

1999a] gave a detailed workload characterization study of the 1998 World Cup Web site

and compared them to those obtained from other Web server workloads. The data were

measured from the 1998 World Cup Web site for a period of three months. The authors

 17

revealed that caching at Web clients, proxies and within the network would change the

workload that could be seen by Web servers.

2.4.2 Web Traffic Models

SPECweb96 [SPEC 1996] and WebStone [Silicon 1996] are commonly used benchmarks

to generate Web server access patterns and to analyze Web server performance issues.

WebStone issues as many requests as possible from synchronous clients, and thus can

measure the maximum request rate that a Web server can sustain. WebStone is merely

used to test the system capacity, and it is not capable of characterizing the burstiness,

trends, interdependencies and seasonal behavior of requests. SPECweb96 has the same

problems as WebStone, but it can characterize delays between client requests.

 [Mathur 1996] constructed an empirical workload model fitting time-varying

trace data. The trace is modeled as a piecewise independent stochastic process. This

model is appropriate to generate trace data that can be considered as a time series. But the

key assumption in the model is not valid in real cases.

 [Lam 1996] presented a realistic model for PCS. The model was claimed to

capture complex human behaviors. Based on the model the authors developed Pleiades, a

discrete event simulator. But the validation of Pleiades on large-scale tests is not

provided.

[Barford 1997] developed a tool called SURGE. Based on statistical distributions

in WWW server usage SURGE can generate traffic that is very close to the real world. In

SURGE, the distributions of parameters such as file size, locality, etc., are used as the

inputs. These distributions of the parameters can be derived from experiments. SURGE

 18

can simulate Web sites very well statistically. SURGE can also mimic the behavior of

real clients. The workload generated by SURGE is more close to the real world than the

workload generated by SPECweb96 and WebStone. SURGE can keep a larger number of

open connections at the same time and can generate self-similar network traffic at heavy

loads.

 [Mah 1997] provided an empirical model that could mimic WWW network

applications. But the server selection distribution in the model is not changeable and the

relationships between the different model components are not investigated. [Mah 1998]

developed an IP Benchmark (IPB). IPB can synthetically generate traffic to simulate the

network activity of common Internet applications and thus be used to measure HTTP

performance. But IPB does not include enough traffic types and updated models of

existing applications. [Almeida 1998] provided a model, called the Wisconsin Proxy

Benchmark (WPB). This model can simulate the request streams according to the

temporal locality patterns that are common to Web proxy servers.

[Iyengar 1998] developed a tool called Flintstone. This model uses statistical

methods to isolate and characterize the trends, interdependencies, seasonal behavior and

noise in the access patterns. Flintstone provides an effective approach for predicting peak

request rates for analyzing and characterizing Web access patterns. Flintstone can also

generate realistic workloads for benchmarking Web servers. SPECweb96 and WebStone

cannot generate inter-request times that are based on actual Web request data. In contrast,

Flintstone generates request data that reflects the trends, burstiness, interdependencies

and seasonal behavior that occur in real situations. Flintstone also generates request

traffic that can be scaled to different arrival rates. Later, the authors extended the

 19

methodology of Flintstone by introducing the logARIMA, or eARIMA, process. The

extended model can incorporate heavy tailed distributions together with a set of time

series processes, in addition to addressing the trends, interdependencies, seasonal

behavior and noise of non-stationary time series data.

[Choi 1999] presented a behavior model of Web traffic. It defines a new unit, a

Web-request, different from a traditional Web page. It can simulate detailed dynamics of

TCP/IP as well as HTTP.

2.5 Summary

In this chapter, we briefly introduced data and wireless networks. Then we discussed

some performance issues, and reviewed related work about Internet traffic analysis and

different benchmarks. Benchmarks are not the primary concern in this work. We will

focus on the Internet traffic characterizations. However, the results reported in this thesis

could be used to design appropriate benchmarks for WAP applications.

Chapter 3: Analytical Results of Trace Files

 20

In this chapter, we will introduce the trace files used in the work and give basic analytical

results. We also put forward a layered forecasting model and show several examples of

the application of the model. In order to express the results more clearly we give the

following definitions.

• Forward packet (f-packet): a packet that is transferred from the server to the client.

• Backward packet (b-packet): a packet that is transferred from the client to the

server.

• Client IP address: an IP address that is assigned to a client during a session.

• numIPe: number of unique client IP addresses in forward packets.

• numIPs: number of unique client IP addresses in backward packets.

• numIP: number of unique client IP addresses in all packets.

• t-traf: total traffic, sum of forward traffic and backward traffic.

• f-traf: forward traffic, sum of all forward packet sizes.

• b-traf: backward traffic, sum of all backward packet sizes.

• t-packet: total number of packets, including forward packets and backward packets.

• f-packet: total number of forward packets.

• b-packet: total number of backward packets.

• t-a-p: average packet size, over all forward and backward packets.

• f-a-p: average forward packet size.

• b-a-p: average backward packet size.

3.1 Trace Files

 21

The trace files used in this work are obtained from Bell Mobility’s cellular network,

located in Quebec and Ontario. The cellular network consists of base stations and

interworking functions (IWFs). IWF functions like the MSC in Chapter 2. The measured

point is at the Gateway server that connects the Internet and IWFs of Bell Mobility’s

network, see Figure 3.1.1. TCPDUMP is used to record the UDP packets to and from the

Gateway server that has the unique IP address 161.216.17.21. The services provided by

the Bell Mobility cellular network are client-server type. The clients make queries to the

server, and the server provides answers to the clients.

Figure 3.1.1

The trace files are recorded continuously. But sometimes, the trace files are not

recorded for failures of equipment. In July 1999, trace files of the whole month are

available. In August 1999, trace files were collected from August 1 to August 24. In

September, trace files were collected from Sept. 7 to Sept. 30. Two days are special. In

Sept. 7, only data from 4:14PM to 11:59PM was collected. On Sept. 13, only the data

from 00:00AM to 9:07AM was collected, there were no data records between 9:08AM to

11:50PM, and one packet was recorded at 11:50PM. It is highly unlikely that there was

no traffic during such a long period, so we assume that some failure happened at that

IWF
Gateway
Server

Internet

Request

Request

Request
Record
Traces

 22

time. Trace files in October, November, and December, are available without a hole. The

information in the trace file includes the IP address of the sender, the timestamp that is

created at the collector, the size of the UDP packet, the IP address of the receiver.

Because we know the IP address of the server, we can distinguish forward traffic from

backward traffic. We can characterize the traffic over several time scales, e.g., 1 second,

1 minute, 1 hour, 24 hours, 7 days and 1 month. All the trace files are pre-processed so

that they are more easy to read and more easy to further process. Each line in the pre-

processed trace files has the same format. Each field in the line is separated by a space

from another field. An example is as follows:

9 7 1999 16 14 25.33 207.38.2.5 8502 161.216.17.21 1908 12

The first field is month, 9 means September. The second field is day, 7 means the 7th day

in the month. The third field is year, which is 1999 here. The fourth field is hour of the

day, and it is 16 here (i.e. 4PM). The fifth field is minute. The sixth field is second. The

seventh field is the IP address of the sender. The eighth field is the port used by the

sender. The ninth field is the IP address of the receiver. The tenth field is the port number

used by the receiver. The number 12 in last field means that the payload in the UDP

packet is 12 bytes. This number does not include the UDP header, which are 8 bytes, and

IP header, which are 20 bytes. So the packet size for each UDP packet should add 28

bytes to the payload. For the example above, the size of the packet is 40 bytes.

The sequence of numbers, 161.216.17.21, is one unique IP address assigned to the

server. In the above example, the packet is transferred from the client to the server, so it

is a backward packet. The trace collection is continuing every day. We cannot update the

data all the time. We only use the trace files from July 1, 1999 to December 31, 1999 in

 23

this work. Some update of the results may be needed when we include new trace files for

analysis.

3.2 Statistical Results of the Trace Files

In this section, we will provide some statistical properties of the trace files and plot the

traffic in different ways. These will give us a global view of the traffic during the above

period.

The inter-arrival time means the time interval between the timestamps of two

consecutive packets in the same direction. The statistical results are shown in Table 3.2.1.

Some useful information can be deduced from the table. First, there are more backward

packets than forward packets. Second, the average backward packet size is smaller than

the forward packet size. Third, backward packet sizes are closer to the average backward

packet size than forward packet sizes are to the average forward packet size (smaller

variance).

Table 3.2.1 Statistical Results of the Trace Files
 Maximum Minimum Total number Mean Variance

All
Packets

1485
bytes

30 bytes 6884602
packets

94.09 100.8

Backward
packets

1105
bytes

30 bytes 4366001
packets

52.72 15.84

Forward
Packets

1485
bytes

31 bytes 2518601
packets

163.73 141.82

Backward inter
Arrival time

53001.07
seconds

0 seconds 4365830 3.33 68.32

Forward inter
Arrival time

19786.61
seconds

0 seconds 2518430 5.75 84.84

 24

Figure 3.2.1

Figure 3.2.2

Figure 3.2.3

D it r ib u t io n o f A l l P a c k e t S iz e s

0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2

0 . 2 4

0 . 2 8

0 . 3 2

0 . 3 6

3 0 7 0 1 1 0 1 5 0 1 9 0 2 3 0 2 7 0 3 1 0 3 5 0 3 9 0 4 3 0

p a c k e t lo a d (in b y t e s)

pe
rc

en
ta

ge
 o

f n
um

be
r

of
 p

ak
et

s

D is t r ib u t io n o f B a c k w a r d P a c k e t S iz e s

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

3 0 7 0 1 1 0 1 5 0 1 9 0 2 3 0 2 7 0

p a c k e t lo a d (in b y t e s)

pe
rc

en
ta

ge
 o

f n
um

be
r

of

pa
ck

et
s

D is t r ib u t io n o f F o r w a r d Pa c k e t S iz e s

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1

0 .1 2

3 1 7 1 1 1 1 1 5 1 1 9 1 2 3 1 2 7 1 3 1 1 3 5 1 3 9 1 4 3 1 4 7 1

p a c k e t lo a d (in b y te s)

pe
rc

en
ta

ge
 o

f
nu

m
be

r
of

pa
ck

et
s

 25

Figure 3.2.4

Figure 3.2.5

The distributions of packet size and inter-arrival time are shown in Figures 3.2.1

to 3.2.5. The backward inter-arrival time distribution is not well fitted by an exponential

function (commonly used in analytical performance studies). We only use points within

the range of 0.5 seconds to 10 seconds. By assuming the fit function as e(at + c) and

manipulating natural log, we obtain a = -0.4415, c = -2.1755 with least-square

regression. The mean of error is 0.0173. The variance is 0.0542. If we use function b*tk to

fit, we get b = 0.1233, k = -1.6859. The mean of error is 0.0045. The variance is 0.013.

The two functions are not particularly good fits for the range of 0.5 seconds to 5 seconds.

But the latter is better. The fact that the inter-arrival time of backward packets is not well

fit by an exponential function implies that the poisson process is not suitable to describe

D is t r ib u t io n o f F o r w a r d I n te r - A r r iv a l T im e

0

0 .0 5

0 . 1

0 .1 5

0 . 2

0 2 4 6 8 1 0 1 2

t im e (in s e c o n d s)

pe
rc

en
ta

ge
 o

f n
um

be
r

of

in
te

ra
rr

iv
al

 ti
m

e

D is t r ib u t io n o f B a c k w a rd In te r -A rr iv a l t im e

0
0 .0 5

0 .1
0 .1 5

0 .2
0 .2 5

0 .3
0 .3 5

0 .4

0 1 2 3 4 5 6 7 8

t im e (in s e c o n d s)

pe
rc

en
ta

ge
 o

f n
um

be
r

of

in
te

ra
rr

iv
al

 ti
m

e

 26

the arrival process of backward packets, which traditionally is considered to follow a

poisson distribution.

For all packets, the number of packets in the range of 30 bytes to 50 bytes

accounts for a majority of packets, 63.8%, but account for only 26.9% to 40.5% of total

traffic volume. Similar conclusions can be obtained for backward packets and forward

packets. That means, though the number of large size packets is small, they account for a

large percentage of traffic that cannot be ignored.

The traffic pattern of July 1, 1999 to December 31, 1999 is shown in Figure 3.2.6.

August 25, 1999 to September 6, 1999 is the hole in the trace files. We can see that traffic

volume has a sharp increase around Oct. 12, 1999. This may be caused by the

introduction of new services that trigger more customers to use the network more

frequently. If we describe the traffic by the number of packets instead of bytes, we get a

similar pattern (see Figure 3.2.7).

Figure 3.2.6

Taffic in MB from July 1 to Dec. 31 1999

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
time unit = 1 day

tr
af

fic
 v

ol
um

e
in

 M
B

t-traf

f-traf

b-traf

 27

Figure 3.2.7

3.3 Traffic Invariants

One aim of trace file analysis is to find traffic invariants that can provide sound

foundation for traffic forecasting. Traffic volume varies with day, but average packet

sizes of each day are constants, see Figure 3.3.1. We also find two ratios of each day are

constant. For each day, we define

r-pk = number of backward packets / number of forward packets,

r-vlm = forward traffic volume / backward traffic volume.

As shown in Figure 3.3.2, r-pk and r-vlm seem to be constant over time. More

surprisingly, the average of the r-pk series is 1.74667, and the average of the r-vlm series

is 1.74706. They are almost equal, around 1.75, which is coincidental.

Traffic in Number of Packets from July 1 to Dec.31 1999

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

time unit = 1 day

of

 p
ac

ke
ts

 u
ni

t=
10

00

t-packet

b-packet

f-packet

 28

Figure 3.3.1

Figure 3.3.2

From Figure 3.3.3, we can see that the number of different client IP addresses per day is

linearly increasing with time (especially to the right part of the hole). We claim the rate

of increase is a constant. The number of unique client IP addresses in backward packets is

equal to the number of unique client IP addresses in forward packets for most of the days.

Comparison of r-pk and r-vlm

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

time unit = 1 day

r-pk
r-vlm

Average packet size from July 1 to Dec.31 1999

0
30
60
90

120
150
180
210

0 20 40 60 80 100 120 140 160 180

time unit = 1 day

pa
ck

et
 s

iz
e t-a-p

f-a-p

b-a-p

 29

For few days the two numbers are different, but the difference is small. There are more

times that the first number is greater than the second number.

Figure 3.3.3

3.4 Analytical Results

Figure 3.4.1 shows the average daily traffic pattern over the period of July 1, 1999 to

Dec. 31, 1999. We can see that traffic from 2:00AM to 5:00AM is low and traffic from

11:00AM to 4:00PM is high. That means people use the service more around noon than

around early morning. As shown in Figure 3.4.2, there is a peak every 24 hours. The

peaks oscillate periodically. Low peaks appear every 168 hours. They are weekly and

daily periods. The traffic is low at weekends and high on workdays, which indicates that

people use the service less on weekends than on weekdays.

Number of Unique IP Assigned from July 1 to Dec.31 1999

0

200

400

600

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

time unit = 1 day

of

 d
iff

er
en

t I
P

numIPe
numIPs

 30

Figure 3.4.1

Traff ic in November 1999

0
100
200
300
400
500
600
700
800
900

0 48 96 144 192 240 288 336 384 432 480 528 576 624 672 720

time unit = 1 hour

tr
af

fi
c

in
 K

B

t -traf f-traf
b-traf

Figure 3.4.2

Next we perform spectral analysis of trace files. To investigate if there exists a

monthly period, we should use the data for at least two months. There are no holes in

Nov. and Dec., and the trend is almost horizontal, so we first do the spectral analysis on

the trace from Nov. to Dec. 1999, and show half day, day, half week, week, month

periods. In Figure 3.4.3, the sampling unit is 1 day. The day and half-day periods cannot

be revealed (Nyquist sampling interval). The week period is the main component, T2 =

1/0.140625 (days) = 7.11 (days). Month period is not very obvious, T3 =

Average Daily Traff ic over Period July 1 to Dec.31, 1999

0

100

200

300

400

0 2 4 6 8 10 12 14 16 18 20 22
� � ��������� ����	�
������

tr
af

fic
 in

 K
B t-traf

f-traf

b-traf

 31

1/0.03125(days) = 32 (days). Half week period is not very obvious, T0 = 1/0.28125

(days) = 3.56 (days). In Figure 3.4.4, the sampling unit is 1 hour, the day period is the

main component, T1 = 1/0.041504 (hours) = 24.094 (hours). The half day period is not

very obvious, T = 1/0.083496 = 11.9766(hours). The week period is not very obvious, T2

= 1/0.005859 (hours) = 170.6776 (hours) = 7.11 (days).

We also perform spectral analysis on data shown in Figure 3.3.2 and Figure 3.3.3,

and find that the number of client IP address and r-vlm give an obvious weekly period,

but r-trans does not.

Figure 3.4.3

Figure 3.4.4

Spectral Analysis of Traces from Nov. 1, 1999 to Dec. 31, 1999

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5
frequency unit = 1/day

po
w

er
 s

pe
ct

ra
l d

en
si

ty

Spectral Analysis of Traces from Nov. 1, 1999 to Dec. 31, 1999

0

2

4

6

8

10

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

frequency unit = 1/hour

po
w

er
 s

pe
ct

ra
l d

en
si

ty

 32

To investigate the self-similarity of traffic, we use Absolute Value Method

(AVM) and Variance Method (VM) [Taqqu 1997] to calculate H values of our traces. We

did this laborious work for each day trace. For each day trace, we define low traffic part

(00:00AM to 11:00AM for the first calculation, 1:00AM to 6:00AM for the second

calculation), and high traffic part (11:00AM to 10:00PM for the first calculation,

10:00AM to 3:00PM for the second calculation), and calculate H values for both parts.

The reason that we divide a day traffic into high and low part is that we want to find if the

traffic volume is a fact that will influence the degree of self-similarity. We found H

values are from 0.70 to 0.92. We also calculate H values for the traffic series from July 1,

1999 to August 24, 1999, H = 0.84, and the traffic series from September 14, 1999 to

December 31, 1999, H = 0.86. We start from September 14, because we find that the

traces on September 7 and 13 are only half day, not continuously. H is the Hurst

parameter that refers the degree of self-similarity. For AVM, H = 1 + r; for VM, H = 1 +

r/2, where r is the slope of the line plotted by AVM and VM. We use least square method

to obtain the slope of lines here. H should be within 0.5-1.0. The closer H is to 1 the

higher is the degree of self-similarity. More details can be found in [Leland 1994]. As

examples, we only give the absolute value plot and variance plot for July 1 1999, see

Figure 3.4.5 to Figure 3.4.8.

 33

Absolute Value Plot of High Traffic on July 1 1999

-0.5

0

0.5

1

1.5

2

3.5 4.5 5.5 6.5 7.5 8.5

log of aggregation scale m

lo
g

of
 a

bs
ol

ut
e

va
lu

e
t-traf

f-traf

b-traf

Figure 3.4.5

Absolute Value Plot of Low Traffic on July 1 1999

-2.5

-2

-1.5

-1

-0.5

0

3.5 4.5 5.5 6.5 7.5 8.5 9.5

log of aggregation scale m

lo
g

of
 a

bs
ol

ut
e

va
lu

e

t-traf

f-traf

b-traf

Figure 3.4.6

Variance Plot on High Traffic of July 1 1999

0

0.5

1

1.5

2

2.5

3

3.5

4

3.5 4.5 5.5 6.5 7.5 8.5 9.5

log of aggregation scale m

lo
g

of
 v

ar
ia

nc
e

t-traf

f-traf

b-traf

Figure 3.4.7

 34

Variance Plot on Low Traffic of July 1 1999

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

3.5 4.5 5.5 6.5 7.5 8.5 9.5

log of aggregation scale m

lo
g

of
 v

ar
ia

nc
e

t-traf

f-traf

b-traf

Figure 3.4.8

3.5 A Layered Forecasting Model

One aim of studying trace files is to predict the traffic and other properties in the future.

There are many books and papers related to prediction of time series, which is a big topic

by itself. The commonly used way is to provide a formula according to the existing data.

The parameters are continuously updated with the arrival of newly collected data.

Sometimes the formula needs to be modified or totally changed if the newly collected

data reveal properties of the time series that were not found at the beginning. Here we

introduce a simple layered prediction model to predict the future traffic. We can define as

many layers as necessary. Here we choose three layers: day layer, hour layer and minor

layer (minor layer can also be divided into layers like minute layer, second layer,

millisecond layer, etc.). At each layer, we can use the existing model that suits our time

series. All we need to do is to fill in the parameters according to our data. This layered

prediction model is flexible. Each layer can have a different model, i.e., at different time

scale the traffic can have different properties.

 35

Day Layer:

In day layer, the day traffic is predicted by using the weekly traffic pattern and global

trend. The model is expressed as P = T + S + R, where P is the predicted day traffic, T is

the global trend, S(i), i = Sunday,…,Saturday, is the determined seasonal part. The

seasonal part has a period of a week. R is the random part within a range observing a

distribution that is usually normal. The center of the range is zero.

By observing the traffic pattern in Figure 3.2.6, we find that there is a step change

in Oct.12, 1999. The traffic before Oct.12, 1999 (low part) and after Oct.12, 1999 (high

part) both show weekly periods, but have no increasing trend, so T = 0.

The statistical results of the seasonal part are shown in Table 3.5.1. The average

weekly traffic pattern is shown in Figure 3.5.1, where ‘w’ means ‘whole’ , which refers to

the complete period from July 1, 1999 to Dec. 31, 1999.

Table 3.5.1 Statistical results of weekly traffic

 1.0e+06 * Sun. Mon. Tue. Wed. Thu. Fri. Sat.

Mean
(bytes)

1.17

2.11

2.56

3.12

2.98

2.90

1.50

Error
Range

(-0.34,
 0.48)

(-1.14,
 1.18)

(-1.91,
 1.28)

(-0.42,
 0.70)

(-0.96,
 1.46)

(-0.76,
 0.70)

(-0.40,
 0.39)

Low
Part

Var. 0.25 0.79 0.87 0.30 0.66 0.39 0.26

Mean
(bytes)

3.13 5.81 5.75 6.35 6.69 6.22 3.73 High
Part

Var. 0.44 0.89 1.10 0.83 1.05 1.24 0.53
Mean
(bytes)

2.07 3.81 4.05 4.73 4.76 4.49 2.52 Whole
Part

Var. 1.06 2.05 1.86 1.76 2.08 1.91 1.20

Christmas is in December, so the weekly pattern in the high part is more oscillated than

the weekly pattern in the low part (see the variance in the table). And for that reason, we

 36

only give the error ranges of the week pattern in low part. In the low part, there are 12

Wednesdays, the rest have 13 samples. It appears that the samples are not large enough,

we find the errors are not normally distributed. To see the step change at Oct. 12, 1999

more clearly, we plot the average day traffic of each month in Figure 3.5.2. The patterns

of Monday to Sunday are similar, we only show Monday traffic pattern in Figure 3.5.3.

Comparison of 3 Weekly Traffic Patterns

0

1

2

3

4

5

6

7

Sun Mon Tue Wed Thu Fri Sat

vo
lu

m
e

in
 M

B

h-part

l-part

w-part

Figure 3.5.1

Average Daily Traffic of Each Month

0

1

2

3

4

5

6

July Aug. Sept. Oct. Nov. Dec.

V
ol

um
e

in
 M

B

Figure 3.5.2

 37

Figure 3.5.3

To predict the traffic of a day, we first determine which weekday it is. Assume it is

Monday and it is in the low part period, then we can predict the traffic of the day by the

value of Monday during the low part in Table 3.5.1, plus a random number within the

range of -1.14 MB to 1.18 MB. The trend part T is 0 because there is no trend. As an

example, we predict the hole that is missing in our trace files (see Table 3.5.2).

Table 3.5.2 Predicted daily traffic of the missing hole in the low part
 Seasonal Part Random Part Prediction
Aug. 25 (Wed.) 3.12 MB 0.23 MB 3.35 MB
Aug. 26 (Thurs.) 2.98 MB -0.72 MB 2.26 MB
Aug. 27 (Fri.) 2.90 MB -0.11 MB 2.79 MB
Aug. 28 (Sat.) 1.50 MB 0.31 MB 1.81 MB
Aug. 29 (Sun.) 1.17 MB -0.01 MB 1.16 MB
Aug. 30 (Mon.) 2.11 MB 0.05 MB 2.16 MB
Aug. 31 (Tue.) 2.56 MB 0.15 MB 2.71 MB
Sept. 1 (Wed.) 3.12 MB 0.01 MB 3.13 MB
Sept. 2 (Thurs.) 2.98 MB 0.21 MB 3.19 MB
Sept. 3 (Fri.) 2.90 MB -0.40 MB 2.50 MB
Sept. 4 (Sat.) 1.50 MB -0.04 MB 1.46 MB
Sept. 5 (Sun.) 1.17 MB 0.44 MB 1.61 MB
Sept. 6 (Mon.) 2.11 MB 1.2 MB 3.31 MB

Figure 3.5.4 shows the predicted traffic. Figure 3.5.5 shows the traffic pattern after the

hole is mended. We can see the hole is mended very well. According to the r-vlm (a

Monday Traffic Pattern

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

all Mondays in time sequence

vo
lu

m
e

in
 M

B

t-traf

f-traf

b-traf

 38

constant), we can get backward traffic and forward traffic. Similarly, we can predict the

daily traffic after October 12, 1999 (high part).

Figure 3.5.4

Figure 3.5.5

Hour Layer:

Suppose we obtained the predicted traffic of a day. The pattern of daily traffic is assumed

to be the same for all days (an invariant). The ratio of forward traffic to backward traffic

is a constant. Then we can obtain the traffic pattern of that day in hour time unit by

splitting the total traffic among the different hours by their ratios. The ratio is provided in

the following table.

Traffic Pattern after mending the hole

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160 180

Time unit = 1 day (starting from July 1 1999)

vo
lu

m
e

in
 M

B
Predicted traf f ic in the hole

0

0.5

1

1.5

2

2.5

3

3.5

Aug.25 Aug.26 Aug.27 Aug.28 Aug.29 Aug.30 Aug.31 Sept.1 Sept.2 Sept.3 Sept.4 Sept.5 Sept.6

vo
lu

m
e

in
 M

B

t-traf
f -traf
b-traf

 39

Table3.5.3 Proportions of each hour traffic in daily traffic

Hour Proportion
0 – 1 0.019
1 – 2 0.011
2 –3 0.0064
3 – 4 0.0044
4 – 5 0.0029
5 – 6 0.0035
6 – 7 0.0067
7 – 8 0.015
8 – 9 0.028
9 – 10 0.047
10 – 11 0.061
11 – 12 0.072
12 –13 0.074
13 – 14 0.075
14 – 15 0.078
15 – 16 0.079
16 – 17 0.078
17 – 18 0.069
18 – 19 0.060
19 – 20 0.057
20 – 21 0.045
21 – 22 0.042
22 – 23 0.037
23 – 24 0.029

As an example, the predicted volume of traffic for Sept. 6 is 3.31 MB. If we split 3.31

MB among the time intervals according to their proportions, we can get the daily traffic

pattern. Also we can get backward traffic and forward traffic by using r-lm = 1.75, see

Figure 3.5.6.

 40

Figure 3.5.6

Minor Layer:

We can also predict the traffic in smaller time scales than 1 hour. Assume we know that

traffic volume on a specific day from 10:00am to 11:00am is V bytes, and we want to

know the flow pattern on a scale of a second. The former results guarantee us that traffic

is self similar from 10:00am to 11:00am up to a scale of 15 minutes, so we can use an

existing self-similar traffic producer to generate the traffic, with the condition that their

aggregation is V bytes. We are not going to do this in this work, because we do not do

traffic simulation here. In the following we give two examples of prediction at the day

layer only.

Example 1: Forecast of the Number of Unique Client IP Addresses in January 2000

We already know that the number of different client IP addresses has a weekly period and

a linear increase trend (after Sept. 7, 1999). We calculate the ratios for each day in a week

for the period of Sept. 7, 1999 – Dec. 31, 1999 separately. The ratios are 11.6, 13.7, 12.1,

12.3, 10.0, 11.8 and 14.2 for Monday to Sunday respectively, with the dimension 1/week.

Predicted daily traffic patern for Sept. 6, 1999

0

50
100

150

200
250

300

1 3 5 7 9 11 13 15 17 19 21 23

time unit = 1 hour

vo
lu

m
e

in
 K

B

t-traf
f-traf
b-traf

 41

We use the average of all the ratios as the common ratio for each day in a week for

simplicity. The common ratio is (11.6 + 13.7 + 12.1 + 12.3 + 10.0 + 11.8 + 14.2)/7 = 12.2

(of course we could also use these ratios separately). We use the model at the day layer

(i.e., P = S + T + R). To reduce the error (influence of the Christmas in December), we

use the average numbers of unique IP addresses of the last 3 weeks (from Dec. 10, 1999

to Dec. 31, 1999) as the determined weekly seasonal values. The weekly seasonal values

are 357, 394, 407, 450, 464, 434, and 352 in the order of Sun., Mon., Tue., Wed., Thurs.,

Fri., and Sat. The trend part is linear, so T = 12.2 * j, where j indicates the jth week in

Jan. 2000, j = 1,2,3,4,5. R is omitted for simplicity and its minor effect. For example, we

predict the number of unique IP addresses on Jan. 28, 2000. Jan. 28, 2000 is the 4th

Friday, so S = 434, j = 4, T = 12.2 * 4 = 48.8, and the predicted number of unique IP

addresses on Jan. 28, 2000, is P = S + T = 482.8. Similarly, Jan. 29, 2000 is the 5th

Saturday, so j = 5, and the predicted number of unique IP addresses on Jan. 29, 2000, is P

= S + T = 352 + 12.2 * 5 = 413. The predicted numbers of unique client IP addresses and

the actual data derived from our trace files for each day in Jan. 2000 is shown in Figure

3.5.7. The prediction is close to the real data.

Figure 3.5.7

Comparison of predicted numIP and actual numIP for Jan. 2000

0

200

400

600

1 6 11 16 21 26 31

time unit = 1 day

prediction

real data

 42

Example 2: Traffic Forecast for January 2000

The traffic increase trend of the high part is not obvious. The average daily traffic in

December is 5.40e+6 bytes. The average daily traffic in November is 5.37e+6 bytes.

Considering the effect of the Christmas in December, we use the average traffic of the

first 23 days in December. It is 5.90e+6 bytes, lager than the former one as expected. We

calculate the traffic increase ratio as (5.9 – 5.37)/4 = 0.133, with dimension of MB/week.

We use 4 as the divisor because there are roughly 4 weeks in a month. We use the high

part weekly traffic in Table 3.5.1 as the seasonal values. The trend part T = 0.133 * j,

where j = 1,2,3,4,5. P = S + T, R is omitted for simplicity and its minor effects. The

predicted traffic in January 2000 is shown in Figure 3.5.8. The prediction is less than the

real data for the last two weeks, especially for the last week. That means we need to

update the parameters for further forecasting. Preliminary study of the trace data

collected since Jan. 2000 shows that the traffic increased more than linearly during the

first four months of the year.

Figure 3.5.8

Prediction of the traffic in Jan. 2000

0
2
4
6
8

10
12
14

1 6 11 16 21 26 31

time unit = 1 day

vo
lu

m
e

in
 M

B

prediction

real data

 43

3.6 Summary

In this chapter we discussed properties of the traces that we collected:

• The number of unique IP addresses assigned to the client increases linearly with

time after September 7, 1999. The slope is 1.8 with dimension 1/day. It also has a

weekly period.

• Average packet sizes of each day are time-invariant.

• The ratio of forward traffic volume to backward traffic volume and the ratio of

number of backward packets to number of forward packets are constant.

• Daily traffic pattern and weekly traffic pattern are obvious in both time and

frequency domains. And the patterns do not change over time.

• The traffic is self-similar. H values range from 0.70 to 0.92.

We also provide a layered model to provide future predictions. The layered prediction

model is flexible, easy to understand, and easy to use. The examples show that the model

can provide reasonably exact predictions. They also indicate that prediction models by

necessity are based on assumptions about long-term trends. The accuracy of predictions

is limited by the accuracy of the long-term trend estimate.

 44

Chapter 4: Session Analysis of Trace Files

In this chapter, we will do some further session analysis of trace files and discuss the

results.

4.1 Necessary Terminology and Notations

First we give some definitions only valid in this work. This is necessary because the same

term may have different meanings in different places. For example, ‘session’ often means

a user’s complete application session in WWW traffic research. The session starts with

the user starting a browser and ends with the close of the browser. In the middle of the

session, the user can open several frames at the same time. But it needs much information

about the users to seek the start and end of a user’s session from traces that are usually

recorded on the user’s side. The trace files that we use in this work are measured on the

server’s side. So we do not have information to distinguish different users. To catch the

user behaviors as close as possible from our trace files, we give two definitions of a

session (see the definitions below). A session should always be initiated by a request of a

client, so we think the first definition of a session is more reasonable. Actually, these two

definitions give almost the same results after comparison. Our trace files are the records

of Mobile Browser applications in which the client IP address is assigned dynamically.

We cannot distinguish different users by unique client IP address, but we use unique IP

address to distinguish different Mobile Browser applications plus a timeout condition.

Clearly it is not true all the times. For example, if the client takes a long time to read the

contents on the Browser, or if the client does something else in between a Browser

 45

application, the one complete application session will have more than one client IP

address. But we believe these cases are not the dominant ones according to our

experience in using browsers. The session we defined can represent a Mobile Browser

application session reasonably well. Next we give the definitions of a session and some

terminologies and notations that can help us describe our concepts clearly and concisely.

Forward link: a link that directs from the server to the client.

Backward link: a link that directs from the client to the server.

Critical interval: noted as C-I, is the one of the conditions in session definition. The

time interval between any two consecutive packets in a session must be less than this

value. In this work the critical value is set to be 90 seconds.

Session:

Definition 1: a session must satisfy the following three conditions: 1. It is composed of a

series of packets that form the forward link traffic and the backward link traffic. The

client IP addresses of packets must be the same one that implies they are from and to the

same client. 2. The time interval between the any two consecutive packets must be less

than 90 seconds, the critical interval (C-I). 3. The starting packet of the session must be

the backward packet. This implies that a session always starts with the request of the

client.

Definition 2: same as definition 1, except that the third condition is dropped.

Incomplete Session: an incomplete session is composed of a series of packets that are

either forward packets or backward packets, but not both. The time interval between any

two consecutive packets must be less than 90 seconds.

 46

f-session: an incomplete session that contains only forward packets.

b-session: an incomplete session that contains only backward packets.

Hold time: noted as h-t. It indicates the time allocated to the link as full rate when there

is no transmission in the link. In each session, the forward link and backward link are

only dedicated to this session at full rate for the period of h-t, if there is no traffic. After

h-t, the transmission capacities are used for other sessions and link bandwidth is reduced

to 1/8 rate if there is still no traffic. h-t may be longer than 90 seconds.

Session start: noted as s-s. Let the load of the first packet in a session be S bytes, the

time stamp of the packet is t minutes, and the transmission speed is v bytes/minute. s-s = t

- S/v, if the first packet of the session is a backward packet. s-s = t, if the first packet is a

forward packet.

Session end: noted as s-e. Let t be the time stamp of the last packet in a session, load of

the packet is S bytes, and the transmission speed is v bytes/minute. s-e = t, if the last

packet of the session is a backward packet. s-s = t + S/v, if the last packet is a forward

packet. It means the session ends right after the arrival of the last packet, which can be

caused by the power off. We do not consider the h-t after the last packet. Neglecting h-t

after the last packet in a session allows us to capture how long the client is using the

session.

Session size: noted as s-size, is the number of bytes contained in a session.

Session length: noted as s-len. We define s-len = s-s – s-e.

Forward session length: denoted as f-len, the full-rate period of the forward link in a

session.

 47

Backward session length: denoted as b-len, the full-rate period of the backward link in a

session.

Backward link utilization: noted as b-ut, is the percentage of the time devoted to the

backward link in full rate (or plus 1/8 rate period) during a session. See Figure 4.1.1 and

the example.

Forward link utilization: noted as f-ut, is percentage of the time devoted to the forward

link in full rate (or plus 1/8 rate period) during a session. See Figure 4.1.1 and the

example.

Activity factor: either b-fact or f-fact.

b-fact: percentage of the s-len used in transmission of data in backward link.

f-fact: percentage of the s-len used in transmission of data in forward link.

Figure 4.1.1

As an example, see Figure 4.1.1, where ‘ t’ indicates timestamp, ‘ th’ means the end of

hold time, ‘ ts’ means the start of transmission time for backward packets and the end of

transmission time for forward packets. The figure shows a session, so the difference of

time

 r1 r2 a1 r3 a2 a3

 ts1 t1 ts2 t2 t3 ts3 ts4 t4 t5 ts5 t6 ts6

r: backward packet; a: forward packet; t: timestamp; s: transmission; h: hold
Transmission time of packet load

 s-s

Hold time

s-e

 th1 th2 th3 th4 th5 th6

 48

any two consecutive timestamps is less than 90 seconds. According to the definition

above,

s- len = ts6 – ts1,

b-len = (th2 – ts1) + (th4 – ts4), only full rate case;

f-len = (th3 – t3) + (t6 – t5), only full rate case;

b-len = (th2 – ts1) + (th4 – ts4) + (ts4 – th2)/8 + (ts6 – th4)/8, full rate plus 1/8 rate case;

f-len = (th3 – t3) + (t6 – t5) + (t3 – ts1)/8 + (t5 – th3)/8, full rate plus 1/8 rate case;

b-ut = b-len/s-len,

f-ut = f-len/s-len,

b-fact = ((t1 – ts1) + (t2 – ts2) + (t4 – ts4))/s-len,

f-fact = ((ts3 - t3) + (ts5 – t5) + (ts6 – t6))/s-len.

4.2 Session Results

In this section we will do analysis of sessions and present the results. The sessions used

in our analysis do not include the incomplete sessions, and when we say session, we

mean a complete session that includes both backward and forward packets according to

Definition 1, unless noted otherwise. We believe most of these incomplete sessions are

aborted Mobile Browser applications. For example, the client may stop the browser for

an unexpected interrupt or due to his/her impatience. First we show the soundness of

neglecting the incomplete sessions. After investigating all the trace files from July 1,

1999 to December 31, 1999, we find an average day traffic volume is 3.8 MB, in which

incomplete sessions account for only 0.4%, which is 12 KB. This implies that incomplete

sessions can be neglected without influencing the analytical results much.

 49

We are interested in various aspects in session analysis. Figure 4.2.1 shows the daily

average number of sessions in each month. It is a step change pattern similar to the traffic

pattern in Figure 3.5.2. We can conclude that the number of sessions per day is

proportional to the traffic volume of that day. Figure 4.2.2 presents the average activity

factor for each day, and clearly the end of December shows higher values than the rest.

Contradictory to our initial intuition that would suggest that the average f-fact should be

larger than the average b-fact (the fact that f-traf is larger than b-traf led us to this

assumption), the result shows the reverse. This reveals the power and necessity of

analysis, and proves that intuition cannot provide a sound ground for decision. We also

find that the ratio of b-fact to f-fact is time-invariant, with a mean of 1.32 (see Figure

4.2.3). Figure 4.2.4 and Figure 4.2.5 show the link utilization for different values of h-t.

The increasing trend is very obvious at the end of December, which is consistent with the

higher activity values at the end of December. We can conclude that link utilization is

proportional to activity factors. It is clear from the graphs that the link utilization

increases with increasing lengths of h-t, and also oscillates less. We also calculate the

utilization of links including periods at 1/8 rate, and the results are similar.

 50

Figure 4.2.1

Figure 4.2.2

Average daily number of sessions, July 1999 to Dec. 1999

0

500

1000

1500

2000

July Aug. Sept. Oct. Nov. Dec.

nu
m

 o
f s

es
si

on
s

Average daily activity factors, July 1, 1999 to Dec. 31, 1999

0

0.05

0.1

0.15

0.2

0.25

0.3

1 51 101 151

time unit = 1 day

va
lu

es
 o

f a
ct

iv
ity

 fa
ct

or
s

b-fact

f-fact

 51

Figure 4.2.3

Figure 4.2.4

Average backward link utilization at full rate only, July 1, 1999 to Dec. 31, 1999

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 51 101 151

time unit = 1 day

0.001min

0.004min

0.01min

0.1min

0.3min

b-fact/f-fact, July 1, 1999 to Dec.31, 1999

1

1.2

1.4

1.6

1 21 41 61 81 101 121 141 161 181

time unit = 1 day

 52

Figure 4.2.5

There are two important metrics of a session. One is session length, and the other is

session size. After studying, we find that for each month around 80% of all sessions have

a s-size that is less than 5000 bytes, around 90% of all sessions have a s-len of less than 4

minutes. And sessions with s-len that is less than 4 minutes account for about 65% of the

traffic volume. This implies we cannot ignore 10% longer sessions because they account

for 35% of the traffic volume. The average concurrent sessions during a day in each

month have the same pattern as the daily traffic pattern. By concurrent sessions we mean

that sessions occur at the same period and more strictly, they overlap in time. We only

show the graphs for July 1999 to save space. The results in other months are similar (see

Appendix A).

Average forward link utilization at full rate only, July 1, 1999 to Dec. 31, 1999

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151

time unit = 1 day

0.001min

0.004min

0.01min

0.1min

0.3min

 53

Average number of concurrent session, July 1999

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200 1400

time (in minutes, bin size = 0.1 minute)

nu
m

be
r

of
 c

on
cu

rr
en

t
se

ss
io

ns

Figure 4.2.6

Accumulative distribution of s-size, July 1999

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

s-size (in bytes)

Figure 4.2.7

Accumulative distribution of s-len, July 1999

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

s-len (in minutes)

Figure 4.2.8

 54

Proportion of traffic volume versus s-len, July 1999

0

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6

session length (in minutes)

tr
af

fic
 p

ro
po

rt
io

n

Figure 4.2.9

Average activity factors versus s-len July 1999

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2

session length (in minutes)

b-fact

f-fact

Figure 4.2.10

Figure 4.2.9 shows the average proportion of all the traffic volume that sessions with

different s-len account for. We can see sessions with s-len <= 0.1 minutes account for the

most part of the traffic volume of July 1999. The proportion decreases slowly after

session length is greater than 1 minutes. The long sessions still account for quite a portion

of traffic volume comparing to the short sessions. It is heavy tailed.

We like to say few more words about Figure 4.2.10 because it explains why the

average b-fact is larger than the average f-fact. We notice that b-fact is higher than f-fact

in shorter sessions, with s-len <= 0.1 minute, and we also know that a large percent of

 55

sessions are short. For longer sessions, which are much fewer than short sessions, f-fact is

larger than b-fact. The average, however, is dominated by the shorter sessions.

We also do session analysis based on Definition 2 of a session, and find the

results almost do not change. In this work, critical interval (C-I) that is the second

condition in session definition is set to be 90 seconds (90 seconds was a number given to

us by Bell and also is based on timeout value in Microbrowser). We want to investigate

the relationship between C-I and the number of sessions. It is clear that the number of

sessions will decrease with the increase of C-I. We do this investigation for 24 trace files.

Each month we randomly pick up 4 trace files, but make sure at least one is the trace file

on a weekend. We believe this will give a conclusion that is valid for all trace files but

saves us much laborious work. To save space, we just give test result on trace file of

November 1, 1999. The result is shown in Figure 4.2.11. After 700 minutes, the number

of sessions is almost constant, i.e., reaches the lower boundary that is the number of

unique client IP addresses.

Number of sessions versus C-I, Nov. 1, 1999

350

550

750

950

1150

1350

1550

1750

0 100 200 300 400 500 600 700 800 900

time unit = 1 minute

nu
m

 o
f s

es
si

on
s

Figure 4.2.11

 56

Some session results are summarized in Table 4.2.1.

Table 4.2.1 Session Analysis
 s-len < 4

minutes
Traffic of
s-len<4m

s-size <
5 KB

MCSN Max s-len
(minutes)

Max
s-size

July 90.0% 64.2% 81.6% 1.8 68,
 0.13 MB

0.13 KB,
68

Aug. 89.3% 64.9% 82.0% 1.6 44,
83 KB

83 KB,
44

Sept. 89.6% 66.7% 81.2% 2.0 39,
72 KB

72 KB,
39

Oct. 87.3% 56.6% 79.0% 3.5 100,
0.18 MB

0.84 MB,
82

Nov. 88.3% 59.3% 80.1% 4.2 57,
64 KB

0.12 MB,
48

Dec. 90.0% 61.3% 81.2% 4.0 62,
0.17 MB

0.17 MB,
62

Remarks: The first column of the table is the percentage of number of sessions with s-len

less than 4 minutes. The second column of the table is the percentage of the total traffic

volume that the sessions with s-len less than 4 minutes account for. The third column of

the table is the percentage of sessions with s-size < 5 KB. The fourth column of the table

is the average maximum number of concurrent sessions in each month. The fifth column

of the table is a pair of numbers in each cell. The first number is the maximum s-len. The

second number is the s-size of the session with that s-len. The sixth column is similar to

column 5, except the first number is the maximum s-size, and the second number is the s-

len of the sesion with that s-size.

From Table 4.2.1, we can find that the maximum numbers of concurrent sessions

in Oct., Nov., Dec., are larger than the ones in July, Aug. and Sept. We also know that the

traffic in Oct., Nov., Dec., is higher than the one in July, Aug. and Sept. We can

conclude, based on our data, that the maximum number of concurrent sessions of a day is

 57

proportional to the traffic volume of that day. We also find that the session with

maximum s-len is not always the session with maximum s-size (see cross of rows Oct.

and Nov. and columns 5 and 6 in Table 4.2.1).

In the last part of this section, we show the average session length and session size

of each day from July 1, 1999 to Dec. 31, 1999 in Figure 4.2.12 and Figure 4.2.13. The

average session length from July 1, 1999 to Dec. 31, 1999 is 1.51 minutes. The average

session size from July 1, 1999 to Dec. 31, 1999 is 3108.6 bytes. The average length of b-

session is 0.391 minutes. The average size of b-session is 429.41 bytes. The average

length of f-session is 0.275 minutes. The average size of b-session is 434.69 bytes. The

total number of sessions is 209425. The total number of b-sessions is 2641. The total

number of sessions is 1134. Again, we can see that b-sessions and f-sessions can be

neglected, compared to sessions, in number and size.

Average daily s-len, July 1, 1999 to Dec. 31, 1999

0

0.5

1

1.5

2

2.5

3

1 51 101 151

time unit = 1 day

m
in

ut
es

Figure 4.2.12

 58

Average daily session size, July 1, 1999 to Dec. 31, 1999

0

1000

2000

3000

4000

5000

6000

7000

1 51 101 151

time unit = 1 day

by
te

s

Figure 4.2.13

From Figure 4.2.12 and Figure 4.2.13, we can see that the average session length and the

session size of each day have neither an increasing nor a decreasing trend. We can claim

they are time-invariant.

We already know that the longest session does not necessarily have the largest

size. But it is still interesting to see the relationship between the session length and the

session size. We take 1 minute as the bin size, and let session length L = n * 1 minutes.

We average the session sizes with session length (n-1) < L <= n in bin L. Figure 4.2.14

shows the relationship. Session size linearly increases with session length until session

length is 10 minutes. When session length is 10 minutes or longer, the session size

increases less for a short period, then starts to decrease. This explains that the session size

is not the only factor that will determine the length of a session. For example, slower

users can cause longer sessions without generating much traffic.

 59

Figure 4.2.14

4.3 Parameters of a Session

This section will provide some useful parameters and information for Chapter 6 in which

we will do performance studies. In order to solve a Layered Queuing Model for a WAP

system, we need to provide necessary parameters. To make the model close to the

practical case, we try to get as much useful information as possible from our trace files.

We first introduce some parameters that we try to obtain from the trace files. Figure 4.3.1

shows a session composed of a series of backward and forward packets that imply the

inquiries from the client and responses from the server. We define an inquiry (or a

request) of the client as a series of backward packets in the order of timestamp, with the

last backward packet followed by a forward packet, or no packets after it at all. Similarly,

we define a response (or an answer) from the server, as a series of forward packets in the

order of timestamp, with the last forward packet followed by a backward packet or no

packets after it at all. To demonstrate these definitions, consider Figure 4.3.1. ‘ r’ denotes

Session size versus session length, July 1, 1999 to Dec. 31, 1999

0

5

10

15

20

1 11 21 31 41

session length unit = 1 minute

se
ss

io
n

si
ze

 (
in

 K
B

)

 60

request packets and ‘a’ identifies answer packets. The first inquiry is composed of r11

and r12; the second request consists of only r21; the third request combines r31, r32 and

r33. The first response is composed of a11 only; the second response is composed of a21

and a22.

Figure 4.3.1

Some other parameters are defined in the following:

• Service time: the interval between the time that the server receives the request from

the client and the time that the server sends out the response to the client.

• Synchronous request: the request of the client is answered with a response from the

server.

• Asynchronous request: the request of the client is not followed by an answer from the

server.

• Idle time: the interval between an answer from the server and the next request of the

client.

• Request time: the interval between the first backward packet and the last backward

packet in one request.

• Answer time: the interval between the first forward packet and the last forward packet

in one response.

As an example, we give their expressions according to Figure 4.3.1.

Service time = ((ta11 – tr22) + (ta21 – tr21))/2

time

r11 r12 a11 r21 a21 a22 r31 r32 r33

 tr11 tr12 ta11 tr21 ta21 ta22 tr31 tr32 tr33

 61

Idle time = ((tr21 – ta11) + (tr31 – ta22))/2

Number of synchronous requests is two

Number of asynchronous requests is one.

Request time = ((tr12 – tr11) + (tr21 – tr21) + (tr33 – tr31))/3

Answer time = ((ta11 - ta11) + (ta22 – ta21))/2

Based on the trace files from July 1, 1999 to Dec. 31, 1999, we obtain service

time = 0.211 seconds, idle time = 0.856 seconds, request time = 3.881 seconds, answer

time = 0.592 seconds, 11.19 synchronous requests and 0.766 asynchronous requests per

session on average. We also find that the average request size is 87.31 bytes, the average

response size is 152.3 bytes. From July 1, 1999 to Dec. 31, 1999, the average response

size of each day, the average request size of each day, service time and idle time and

synchronous and asynchronous request numbers of each day are all time invariant. The

ratio of response size to request size is 1.744, and is very close to the ratio of forward

traffic volume to backward traffic volume. We can find that the ratio of answer

(response) size to request size increases with the session length, but does not change

much with the session size.

We also find that the request size and response (answer) size increase with the

session size but not with the session length. The number of synchronous requests linearly

increases with the session size. When the session length is in the range of 1 minute to 10

minutes, the number of synchronous requests linearly increases with the session length.

But when session length is beyond 10 minutes, the number of synchronous requests no

longer increases with the session length and even decreases sharply when the session

length is longer than 17 minutes, like the relationship between session size and session

 62

length. This implies that WAP applications longer than 10 minutes may be caused by the

habit of the user like slow reading or typing. Some additional relationships are revealed

in the following figures.

Number of synchronous requests vs. session length

0

10

20

30

40

50

60

1 6 11 16

session length unit = 1 minute

nu
m

 o
f r

eq
ue

st
s

Figure 4.3.2

Average a-size and r-size vs. session length

0

50

100

150

200

250

1 6 11 16

s-len unit = 1 minute

by
te

s r-size

a-size

Figure 4.3.3

 63

a-size/r-size vs. session length

1

1.5

2

2.5

1 6 11 16

s-len unit = 1 minute

Figure 4.3.4

a-size and r-size vs. session size

50

100

150

200

500 2500 4500 6500 8500

s-size unit = 1 byte

by
te

s r-size

a-size

Figure 4.3.5

Number of synchronous requests vs. session size

0

10

20

30

40

50

500 2500 4500 6500 8500

s-size unit = 1byte

nu
m

 o
f r

eq
ue

st
s

Figure 4.3.6

 64

a-size/r-size vs. session size

1

1.2

1.4

1.6

1.8

2

500 2500 4500 6500 8500

s-size unit = 1 byte

Figure 4.3.7

Parameters like the number of synchronous requests, the number of asynchronous

requests, service time, idle time, request time and answer time, can be used in the

performance models in Chapter 6. Relationship between the number of synchronous

requests and the session length can be the basis for deducing the number of synchronous

requests according to the length of a session. Relationship between the number of

synchronous requests and the session size can be the basis for deducing the number of

synchronous requests according to the size of a session. This gives us an option to define

a type service provided by the gateway server as a session by the session length or by the

session size. The relationships between request size, answer size, the ratio of the two, the

session length and the session size will provide guidelines in the simulation of sessions.

4.4 Summary

In this chapter, we have done session analysis, and find:

• Two definitions of session give almost the same results.

• The traffic volume of incomplete sessions accounts for only 0.4% of total daily

traffic volume, so incomplete sessions can be neglected.

 65

• The activity factors, link utilization with full rate, and link utilization with full

rate and 1/8 rate have similar patterns. There is an obvious increase at the end of

December 1999.

• The ratio of b-fact to f-fact, the ratio of request size to the answer size, the

average session size and average session length of each day are time invariant.

• The number of sessions increases since September 1999. This might be caused by

the increase of user population and more frequent use of the system.

• The number of sessions of a day and the maximum number of concurrent sessions

of a day is proportional to the traffic volume of that day. So we deduce that the

number of sessions of each day should also have a weekly period. By spectral

analysis, its weekly period is revealed without any doubt.

• 90% of sessions are less than 4 minutes. This implies that WAP users are more

intent to use short WAP applications. This is coincident with what we know about

the WAP users. They usually use WAP to check and send emails, check new

information about sports and stock prices, etc. They seldom use WAP to

download large files or read novels.

• Even though the longer sessions are few in numbers, they account for a big

portion of traffic.

• The number of sessions decreases with the lengthening of C-I.

• If we divide the session length into 0.1 minutes interval, the largest proportion of

sessions has session length within 0.1 minutes.

• If we divide the session size into 100 bytes interval, sessions with 100 bytes < s-

size <200 bytes are the most.

 66

• The session length is not the only factor that will determine the session size. After

the session length exceeds 14 minutes, the session size starts to decrease.

• The relationship between the number of synchronous requests and the session

length is similar to the relationship between the session size and the session

length.

• The number of synchronous requests increases linearly with the session size.

We calculated the average session sizes of each month. From July to December they

are 2.95 KB, 2.86KB, 2.86 KB, 3.31 KB, 3.25 KB, 3.02 KB. The values are around 3.

But we need more data to claim it as a constant.

We also calculated the average daily traffic of each month, noted as d-traf, and the

average daily maximum number of concurrent sessions of each month, noted as m-ses.

From July to December d-traf/m-ses is 1.362 MB, 1.353 MB, 1.126 MB, 1.266 MB,

1.278 MB and 1.35 MB respectively. These values are around 1.3. But we need more

data to claim that d-traf/m-ses of each month is time-invariant. If d-traf/m-ses were a

constant, we could deduce the maximum number of concurrent sessions of a day by the

traffic volume of that day.

 67

Chapter 5: Comparison of the Results

In this chapter we will compare our results with related results reported in the literature.

A lot of work has been done analyzing all kinds of traces. We only choose those that

relate to our work closely.

5.1 Traffic Pattern

[Zhu 1994] presented the results from measurements of wide-area network TCP

conversations between the Campus Ethernet at the University of Saskatchewan and the

Internet in 1994. The author used traces of a four-day period, which contained 103,016

TCP conversations. The author showed that SMTP, FTP-Data, WWW, TELNET, etc.,

accounted for the majority of the conversations and the majority of the bytes transferred.

The figures of number of conversations vs. time during a day for SMTP, TELNET and

FTP show a similar pattern to the daily traffic pattern in our work. [Paxson 1995] studied

24 wide-area traces by investigating a number of wide-area TCP arrival processes such as

FTP data connection arrivals within FTP sessions and TELNET packet arrivals. In the

paper, for various protocols, the authors plot for each hour the fraction of an entire day’s

connections of that protocol occurring during that hour. For TELNET and SMTP, the

pattern is very similar to the daily traffic pattern in our work. But their pattern also

revealed the lunch-related dip at noontime, which our daily traffic pattern does not show.

Though longer connection time does not necessarily mean that heavier traffic will be

produced, generally it does produce more traffic. We can deduce that the daily traffic

pattern of TELNET and SMTP is similar to our daily traffic pattern. [Thompson 1997]

measured traffic on the OC3 link of the U.S. East Coast network. For the domestic link

 68

(traffic within the U.S.), during a day the traffic is low in the early morning when most

users are in bed. The traffic increases from morning to noon. Then the traffic keeps stable

for few hours and starts to decrease till early next morning. During a week, the traffic is

low on weekends when most users enjoy outdoor activities, and the traffic is high on

weekdays. The daily pattern and weekly pattern that were revealed by the authors are

very similar to the ones in our work. The range of traffic flow they measured is from 10

Mega bits/sec to 55 Mega bits/sec, which is much bigger than the traffic flow studied in

this work. This is because the OC3 link has much wider bandwidth than wireless links.

The traffic patterns on the external link (traffic to and from other countries than U.S.) are

different from the ones on the domestic link. The cause may be that the different time

zones in different areas and countries make the summation of the same user behavior in

different areas and countries different from the user’s behavior in one area that has one

time zone or several time zones that are close. For example, one area’s early morning

might be another country’s afternoon. The summation of the two traffic patterns will not

reflect the fact that the traffic in the early morning is light. That paper also described

many components of the traffic, like WWW, DNS, SMTP, FTP, TELNET, etc, which

cannot be distinguished in our traces. [Arlitt 1999b] studied the workload on the Internet

Service Provider (ISP) that provides interactive data services to residential and business

subscribers. They collected the traces of the proxy server from Jan.3, 1997 to May 31,

1997 on a daily basis. During the data collection period several thousand users used the

system. This paper presented a different daily traffic pattern. During a day, the traffic

volume level reaches the bottom in the early morning (the same as in our results), and

then the traffic increases till evening. The peak load appears in the evening, which is

 69

different from our result and the result in [Thompson 1997]. The weekly pattern they

revealed is different from ours as well. They reported that traffic volume is heavier on

weekends than the one on weekdays. The difference is caused by the different behavior

of users using the services. [Arlitt 1999b] reported that most subscribers like to use the

services when they are at home. That explains the peak load in the evening when people

are often at home and not in bed yet and the peak load on weekends when most

subscribers do not work and are likely at home. So we can see the user behavior is an

important factor that influence the traffic pattern and the importance of studying the

users’ behaviors.

[Abdulla 1997a] studied the traffic patterns from both time and frequency

domains. Their traces were collected from a Korean proxy server, a school library, CS,

and the Engineering building. The daily and weekly periods are easily observed in the

time domain. Through spectral analysis, they confirmed the daily and weekly periods and

also found half-day and half-week periods. They did not reveal a monthly period because

of shortness of the traces. To do spectral analysis of traffic, we choose traces from

November 1, 1999 to December 31,1999, because the trace files are continuous in these

two months and the traffic in these two months is stable. The results show half-day, day,

half-week, week and month periods. If the sampling time unit is hour, the day period is

the main component. If the sampling time unit is day, the week period is the main

component. The day and week traffic patterns are similar to the results in [Abdulla

1997a]. [Abdulla 1997a] used Fourier series to express the seasonal part (day and week

periods) that needs more complex mathematical operations, and then subtract the

seasonal part and the mean part from the total time series. The residual is modeled with

 70

the Weibull distribution. The residual is similar to the random part in our work, which is

modeled with a normal distribution. The random part has only a minor effect in our work.

In our work we characterize the traffic of each day in a week separately, in this way the

weekly-period time series is decomposed into seven non-weekly-period time series. And

the day period is expressed with a sequence of 24 discrete numbers, each of which is the

traffic in an hour interval of a day. The daily traffic pattern is obtained by averaging all

day traffic over the period from July 1, 1999 to Dec. 31, 1999. The method that is

provided in this work is simple and flexible.

[Leland 1994] studied the traces collected on several Ethernet LAN’s at the

Bellcore Morristown Research and Engineering Center from August 1989 to February

1992. They reported self-similarity of the traffic and gave H = 0.8, after analyzing a

sample of 27 hour (sampling time interval is 10 ms) by variance method, R/S plot and

periodogram plot. [Paxson 1995] also reported the self-similarity of the network traffic.

They used 24 traces of wide-area TCP traffic at Bellcore, coNCert, UK-US, etc., but did

not give the H value. [Crovella 1997a] revealed a range of H between 0.7 and 0.8 based

on the analysis of busy hours. The trace data was collected at the Computer Science

Department, Boston University in 1995. They modified Mosaic to record the URL of

each file accessed by the Mosaic user. Timestamps were accurate to 10ms. They claimed

that estimates of H seem to decline when moving from the busier hours to the less-busy

hours. [Abdulla 1997b] considered self-similarity as an Invariant for Web Proxies, with a

range of H from 0.59 to 0.94. The authors also provided some results for some tested

workloads. The values for the Hurst parameter are from 0.59 to 0.94. [Arlitt 1996]

discovered a value of H = 0.65 in the ClarkNet data set, very small (H = 0.53) in the

 71

Saskatchewan data set, and none at all in the Waterloo data set. [Choi 1999] provided a

traffic generator model. They showed that H = 0.805 for the trace, and 0.78 for the model

produced trace, by variance time plots, H = 0.8 for the trace and 0.77 for the model

produced trace by R/S plot. The trace was recorded on the backbone network of the

Georgia Tech campus from 11 AM to 12 PM on Wednesday October 7 1998.

In our work, we use absolute value method and variance method to calculate H

values of our traces. We did this for each daily trace file. For each day trace, we define a

low traffic part and a high traffic part. To examine the effect of different time intervals

may bring, we define low traffic as 00:00AM to 11:00AM and high traffic as 11:00AM to

10:00PM for the first time. We define low traffic as 1:00AM to 6:00AM and high traffic

as 10:00AM to 3:00PM for the second time. We calculate H values for the time intervals

separately and found no obvious difference. We found H values range from 0.70 to 0.92.

The accumulated time scale is up to 20 minutes. We also calculate H values separately

for the traffic series from July 1, 1999 to August 24, 1999 (H = 0.84), and the traffic

series from September 14, 1999 to December 31, 1999 (H = 0.86). The accumulated time

scale is up to one hour. The results imply that the WAP traffic studied in this work is self-

similar.

5.2 Session Model

Based on the different extents of information in trace files, different session models are

devised to study the traffic in order to catch the user’s behaviors as close as possible.

[Zhu 1994] and [Paxson 1995] used a complete TCP conversation to depict the users’

behavior. A conversation is defined as the communication between an application

 72

program on one Internet host and an application program on another Internet host. A TCP

conversation is initiated with the ‘ three-way handshake’ . The conversation ends with FIN

packets. A lot of detailed information is required to identify a TCP conversation from

traces. We do not have enough information in our traces. Our definition of a session can

be used to compare to the conversation. [Zhu 1994] and [Paxson 1995] revealed that

during a day the number of active conversations for SMTP and TELNET is the lowest

from 1:00AM to 5:00AM, and start to increase till 11:00AM, keeps stable for few hours

and starts to decrease at 2:00PM till midnight. The pattern is very similar to the pattern

that describes the number of concurrent sessions during a day in our work. [Zhu 1994]

also gave the ratio of forward traffic to backward traffic for various protocols. The ratio

for SMTP is 0.125, much lower than 1.75, the ratio in our work. The ratio for WWW is

19 and the ratio for TELNET is 61, which are much higher than our result. The difference

may be the result of the differences among WAP, WWW, SMTP and TELNET. [Zhu

1994] revealed that the average conversation size for WWW is 14 KB, which is bigger

than the average session size 3.1KB in our work. This is because WWW has wider

bandwidth than WAP, so WWW users are more likely to use applications that will

produce heavy traffic. For example, people are much less likely to read novels on a PDA

than on a desktop. The author also showed that the average duration of the conversation

for WWW is 13 seconds, shorter than the average session length of 91 seconds in our

work. The reason for the difference may be that the WWW has faster transmission speed

than WAP.

[Cunhua 1995] defined a session as a single execution of Mosaic. The trace files

they used are collected at the application level. The authors modified Mosaic to record

 73

the Uniform Resource Locator of each file accessed by the Mosaic user, the time that the

file was accessed and the time required to transfer the file from its server. The traces

could distinguish whether a file came from the Mosaic cache or was downloaded in a file

transfer. Mosaic now is an obsolete WWW browser. Netscape is the most popular WWW

browser. Netscape is not available in source form, which makes recording traces at

clients’ side almost impossible, so it is no wonder that the number of references about the

traces at the clients’ side is limited. [Cunhua 1995] showed the histogram of the number

of sessions per day from Nov 1994 to March 1995. The number keep flat from Nov 1994

to early Jan. 1995, then increased till middle of Feb. 1995, and finally started to decrease.

The pattern may well reflect the birth-to-death process of Mosaic itself. The number of

sessions in our work increases over time.

[Barford 1997] also used the same session definition as in [Cunhua 1995], but

adopted a Web page as the basic unit of the response to the request from the client. To

locate the boundary between Web pages, they modified Mosaic to record user

information. The authors built a benchmark, SURGE based on this session model. Now

since tools like Java-script enable a response of multiple pages to one user’s request, their

methods to determine a session from the traces are not accurate any more. The formula

that a request will result in a single page to be transferred is no longer true.

[Choi 1999] presented a session model that includes the case that one request will

result in a response of multiple Web pages. The model defines a new unit, a Web-request

that consists of a Web page or a set of Web pages. Information in the HTTP header and

the TCP header help to determine the boundary of a Web-request and other parameters

they defined such as In-line Object or Temporal Locality. Their model also incorporated

 74

the Web caching effect. Their results show that the model can mimic the user’s behavior

in real life very closely.

[Arlitt 1999a] defined a user session model based on the TCP connection

mechanism. They use the unique IP address in the access log to identify a distinct client.

In a session all requests are from a single client to the World Cup Web site, with the

interval between two consecutive requests from the client that has a unique IP address

less than a certain value that is called timeout value. This user session definition is very

close to our session definition 1, except that it only considers requests from the clients.

They did not include the timeout value in the session length either. Like our results, the

authors revealed that the session length increases with the bigger timeout value that we

call critical value (C-I) in this work, as expected. They also showed that the number of

sessions decreases with the increase of the timeout value. The curve shapes are similar to

ours. But the number of sessions in their work is much bigger than the one in our work.

The reason is that the system studied in their paper has a much wider bandwidth than the

system we studied in this work. In this work the trace files are collected at IP level. We

do not have enough information to define a complex model with many parameters. We

give two definitions of a session in Chapter 4, which imitates the process of a client

making queries to the Gateway server through Mobile Browser. We also give the

definitions of a request and a response in Chapter 6. [Arlitt 1999a] showed that the

number of sessions increased as the World Cup tournament progressed, with three big

numbers in the two semifinal and the final matches. It is common sense that people pay

more attention to the semifinal and final than to those first primary leg matches. This

 75

means that the known behaviors of users can be important factors to predict the traffic

over the Internet.

5.3 Character Distributions

Due to the difference of the information available in the respective traces, our parameter

“ request” is not directly comparable to the Web-request mentioned above. Because of the

limitation of the information in our trace files, we cannot provide parameters such as file

sizes, file access frequency and number of sessions per user. But we can still derive

something comparable. The distribution of session size is similar to the distribution of

document size in [Cunha 1995], [Crovella 1995] and [Barford 1997]. They follow a

power law distribution that takes a hyperbolic shape. It can be expressed as f(x) ~ x-a.

When a is between 0 and 2, the distribution is called heavy tailed. For the file size

distribution [Cunhua 1995] gave a = 1.35, [Crovella 1995] presented a = 1.0, [Arlitt

1996] reported 0.4 < a < 0.63, [Barford 1997] reported a = 1.0 for W95 data set, a =

1.47 for W98 data set. In our work, session size distribution gives a = 1.1. The

distribution of inter-arrival time of backward packets follows a power distribution, heavy

tailed with a = 1.8, like the distribution of ON times in [Crovella 1995] with a = 1.21.

[Arlitt 1996] showed that there are very few files less than 100 bytes at Web sites, and

10% of the files are larger than 100,000 bytes, most files are in the range of 100 bytes –

100,000 bytes. Correspondingly, we have a very small number of sessions less than 200

bytes and 10% of sessions larger than 8,000 bytes. Like [Arlitt 1996] and [Abdulla

1997c], we also find some invariants (see Section 3.4) that are valid in this work.

 76

5.4 Summary

In this chapter we compared our results to other related results. Our traces are from the

WAP applications, and recorded at the IP packet level. The trace file contains limited

information. Many WWW trace files are collected at HTTP proxies or Web servers that

also miss information like session start, session end, or which document is viewed out of

the browser’s cache. To make more accurate session model, many traces at different

levels and at different location (client, proxy and server) need to be recorded. [Choi 1999]

included many trace files at different levels in their study.

We also find the general existence of daily and weekly periods in network traffic.

But the difference in the behavior of user’s using services makes the daily traffic pattern

and weekly traffic pattern different. We can also see that WWW traffic and WAP traffic

in this work display self-similarity.

Finally we find that though there is a difference in the definition of a session, we

still find common properties. For example, the number of sessions decreases with the

increases of the timeout value.

The daily traffic pattern, weekly traffic pattern, and self-similarity of WAP traffic

in this work are found in many other WWW traffics. But we still cannot claim that these

properties of WAP in this work are general to all WAP traffics, because we have only

analyzed traces of one cellular network.

 77

Chapter 6: Performance Study of the WAP System by LQM

In this chapter, we will study the performance of the WAP system using LQM

performance models. The system is simplified as a simple three-layer model and a four-

layer model.

6.1 Brief Introduction to LQM

C.U. Smith started the concept of Software Performance Engineering. Since then people

have recognized the importance of software performance. Planning the capacity and

extension of systems is a familiar concept in industries. Appropriate planning in advance

means larger occupation of the market in the future. For example, if a mobile company

can predict the increasing trend of the number of customers and the type of services that

the customers are going to buy in the future, the company can do capacity and

performance studies about the existing systems in advance. By doing so, the company

can do necessary adjustments in advance and be well prepared for the enlargement of the

customer population and provide high quality services for future customers at reasonable

cost. To study the performance of a system, analytical modeling is often used to describe

the system. Another approach is to use simulation models. Simulation models can

represent a system with more detail that brings the model closer to the real system, but

needs more resources and time to obtain the solution. Analytical models often abstract the

system with some important characteristics in a mathematical way, neglecting some

detail of the system, but they are cheap and can be solved quickly. Queuing Network

(QN) is an analytical model that is often used to model computer network systems. QN is

 78

cumbersome in representing software and layered systems. QN has difficulties in

describing the contention for a common resource.

Layered Queuing Network (LQN) was developed in the Department of Systems

and Computer Engineering at Carleton University. Its aim is to study the performance of

distributed systems that have hardware and software. LQN extends QN. LQN is suitable

for modeling distributed layered systems, and can include software performance issues

easily. LQN has both analytical and simulation tools for solving Layered Queuing

Models (LQM). We only use the LQN analytical tool in this work. A task is a basic unit

in LQM. A task represents the software in execution. An entry represents a service

provided by a task (software). If a task can provide multiple services, then the task has

multiple entries. Entries in different tasks communicate with each other through

requesting and providing services. For example, a WAP system can be simplified into

few client tasks and a server task. In this scenario, the client tasks make requests to the

service provided by the server task, and the server task processes the clients’ requests and

responds to the requests respectively. Requests from clients to the server are either

synchronous or asynchronous. A synchronous request means that the request will block

the client until it gets the response from the server. An asynchronous request does not

block the client.

Next we briefly introduce some concepts, some terminology and notations in

LQN. Each task will run on a processor. And each task has at least one entry. The entries

in a task have execution demands respectively, and may also interact with entries in other

tasks by calling the entries in those tasks. The client tasks will not receive requests from

other tasks. They are called reference tasks. For reference tasks, usually there is a think

 79

time that is denoted by Z, which implies the pause time between two consecutive

operations. For example, a user starts a Mobile Browser and ends it, after Z seconds, the

user starts a Mobile Browser again. The non-reference tasks include tasks that do not

make requests (calls) to other tasks and only receive requests from other tasks, and tasks

that make requests to other tasks and receive requests at the same time. For execution

demands of entries, there are usually two phases. Phase 1 means the serviced call

(request) is synchronous, and the entry must provide a response to the call. Phase 2

means the serviced call is asynchronous, and the entry does not provide a response to the

call. The LQN analytical tool describes the system by the average behavior of the entries

and solves the performance model by approximate MVA calculations. A complete LQN

input file and output file of a three layer model are put in Appendix B. More detail about

LQN can be found in [Woodside 1995].

6.2 LQM Performance Models

In this section we will give two abstract Layered-Queuing-Model (LQM) models to

imitate the system by which a client uses Mobile Browser to access the Internet. Network

delay is usually small and we do not consider it in the models. Detailed information about

architecture for mobile applications can be found in [Kunz 1999] and [Wang 2000].

Model 1: A Three Layer Model

The first model is shown in Figure 6.2.1. A parallelogram represents an entry of a task.

Cascade parallelograms indicate an entry of multiple tasks. The task name is written near

the parallelogram. [Z] in the client task entry is the think time of the client. [0, tc] in the

 80

client task entry represents the execution demands of the client task entry. There are two

fields inside the brackets, the number in the first field is the execution demand in phase 1,

and the second field contains the execution demand in phase 2. Because the client tasks

receive no requests from other tasks the execution demand in phase 1 of the client task

entry is 0. The pair of brackets inside the non-referential task entries has the same

meaning as the one in the client task entry. The notation under the pair of brackets is the

entry name. The ellipse represents the CPU processor. The arrow segment connects the

calling entry and the called entry. The straight segment connects the task and the CPU on

which the task runs. The pair of circular brackets beside the arrow line contains the

number of calls from the calling entry to the called entry. ‘sh’ represents synchronous

calls and ‘ay’ represents asynchronous calls.

Now we describe the scenarios of the model in Figure 6.2.1. Client tasks make

requests to the Gateway server and wait for the responses from the Gateway server. The

Gateway server answers some of the requests directly and passes some to other Web

servers on the Internet. Generally, passing a request to another Web server takes less time

than answering one directly. The Gateway server task plays the role of a client and the

role of a server at the same time. It has four entries. The first entry se1 processes the

synchronous requests from client tasks and responds to the clients directly. The second

entry is responsible for asynchronous requests from the client tasks. The third entry

passes synchronous requests from the clients to other Web servers on the Internet and

passes back the answers from the Web servers to the clients. The Web server task is used

to represent arbitrary Web servers on the Internet since it is impossible for us to get

information for all the available Web servers on the Internet and represent each of them.

 81

The fourth entry is used to represent the idle time within a session with the help of an

imaginary Idle Server task and CPU4. When a Gateway server is occupied by a session,

the only time that the session demands CPU is when requests from the clients within the

session are processed. During the idle time of a session, the session does not require the

Gateway CPU. The idle time we refer to here is the same as the one that we defined in

Section 4.3 and it is a lower bound. But the time interval between two consecutive pairs

of request-answer might be longer than the idle time we used here. The capacity of the

system obtained with the idle time is a safe bound, which means that the system will not

be saturated for sure below that bound. We consider that CPU3 and CPU4 have infinite

capacity for simplicity. Each client has a CPU.

Figure 6.2.1

Model 2: A Four Layer Model

Often there exists a middleware between a client and the gateway server. The middleware

is a proxy. The handsets have limited CPU and memory resources. One way to improve

[tse11, tse12]
se1

[tse21, tse22]
se2

Gateway Server

 CPU2

Web Server

CPU3
 [ws1, ws2]

 (sh4)

[tse31, tse32]
se3

[tse41, tse42]
se4

Idle Server

CPU4
 [id1, id2]

 (sh5)

 (sh1)

[0, tc]
[Z] Clients

CPU1

 (sh2) (ay1) (sh3)

 82

the performance is to pass some load from the handset to a more powerful proxy. To

consider this load transition situation we add one proxy task layer below the client tasks

(see Figure 6.2.2). We do not have information about the amount of load that is

transferred from a handset to a proxy, but we can investigate the relationship between the

extent of system improvement and the amount of load that is transferred to the proxy by

changing the amount of transferred load.

Figure 6.2.2

6.3 Parameters of the Performance Models

In this section we will show how to obtain some parameters for the performance models

in Section 6.2 based on the results obtained in Chapter 4. For convenience we repeat

some results from Section 4.3 here. Based on the trace files from July 1, 1999 to Dec. 31,

[tse11, tse12]
se1

[tse21, tse22]
se2

Gateway Server

 CPU2

Web Server

CPU3
 [ws1, ws2]

 (sh4)

[tse31, tse32]
se3

[tse41, tse42]
se4

Idle Server

CPU4
 [id1, id2]

 (sh5)

 (sh1)

[pe1, pe2]Proxies

CPU5

 (sh2) (ay1) (sh3)

[0, tc]
[Z]

Clients

CPU1

 (sh6)

 83

1999, we obtain service time = 0.211 seconds, idle time = 0.856 seconds, 11.19

synchronous requests and 0.766 asynchronous requests per session on average.

Execution Demand:

We have no information about the execution demands on CPU2. But we try to

approximate the execution demand by the service time. We assume execution demands

for a synchronous request and for an asynchronous request are the same. During the

service time CPU2 might be occupied by answering one request directly, maybe more

than one request, maybe by a combination of passing some requests to other Web servers

and answering some requests directly. The execution demand tse11 should have a lower

bound that is equal to the service time since the worst case is that during the service time,

the Gateway Server processes only one synchronous request of a session. The upper

bound of tse11 could be the value of service time divided by the maximum number of

concurrent sessions (MCS) from July 1999 to Dec. 1999. The upper bound tells us that

during the service time, the Gateway Server always processes MCS synchronous

requests, which will overestimate the power of CPU2. To investigate the lower bound

tse11 case, we can give a safe system capacity estimation below which the system will

not be saturated for sure. We set tse11 = service time = 0.211 seconds, tse22 = ws1 =

tse11, tse12 = ws22 = tse21 = tse32 = tse41 = tse42 = id2 = pe2 = 0, id1 = idle time =

0.856 seconds.

Let R be the relative speed ratio of handset CPU and proxy CPU. If we move x of

tc work from the handset to the proxy, then the execution demand in the client is reduced

to tc - x, and pe1 = x*R. We assume tc = 6 seconds, tse31 = 0.02 and R = 0.04.

 84

Number of Requests:

The average number of asynchronous requests is 0.766. The average number of

synchronous requests is 11.19. For convenience, we approximate 0.766 to 0.77 and 11.19

to 11.2. We will investigate the effect of splitting 11.2 between sh1 and sh2. We set ay1 =

0.77, sh3 = 11.2, sh4 = sh5 = sh6 = 1.

Think Time:

We have no information about the users’ behavior. So we do not know the think time.

However, we can approximate the range of the think time. The lower bound of the think

time is zero, in which case the clients keep sending requests to the Gateway Server at

maximum rate. This case will give a safe system capacity estimation. The upper bound of

the think time could be one hour that happens during the light traffic period from

2:00AM to 5:00AM. The one-hour think time is meaningless since the light traffic period

cannot test the capacity of the system. To estimate the think time practically, we proceed

as follows. We consider three numbers during 10:00AM to 5:00 PM (busy traffic period)

from July 1, 1999 to Dec. 31, 1999. One number is the average session length denoted as

as-len. One number is the average number of concurrent sessions denoted as acs. The last

one is the average number of sessions denoted as anum. There are two ways to count the

sessions within 10:00AM to 5:00PM. In the first approach, we count a session if either

the start or the end of the session is between 10:00AM and 5:00PM. Alternatively, we

count a session if both the start and the end of the session are between 10:00AM and

5:00PM. By the first method we have as-len = 1.42 minutes = 85.2 seconds, anum =

687.2. By the second method we have as-len = 1.4 minutes = 84 seconds, anum = 674.1.

acs = 2.4 in both methods. The idea to estimate the think time is shown in Figure 6.3.1.

 85

One line segment represents a session, L is the length from 10:00AM to 5:00PM. We

have Z = (L – as-len * (anum/acs)) / (anum/acs – 1).

Figure 6.3.1

Method 1 gives Z = 2.8 seconds and method 2 produces Z = 5.7 seconds. We think it is

reasonable to use the average (Z = 4.25) to approximate the think time. To investigate the

extreme case, we set Z = 0. We will test the effect of increasing the value of Z.

6.4 Results

In this section we will show the capacity of the system under various conditions and the

effect of transferring execution load from handsets to proxies. The capacity of the system

indicates the maximum number of users that the system can serve at the same time

without being saturated. Proxies, Gateway Server, Web Server and Idle Server are

multithreaded, and can provide as many threads as needed. We define 0.7 (Bell Mobility

uses this number internally) as the threshold utilization of CPU2, beyond which we

consider that the system is saturated. ‘MC’ denotes the maximum number of clients that

the system can sustain with a utilization of CPU2 below 0.7.

 10:00AM 5:00PM time

3 concurrent
sessions

One segment indicates a session,
anum/3 groups of 3 concurrent sessions

Z

L

 86

6.4.1 Model 1

The summation of sh1 and sh2 is 11.2, i.e., sh1 + sh2 = 11.2, when sh2 = 1, sh1 = 11.2 –

1 = 10.2, if it is not noted specifically. sh1 = 0 represents the case when all the requests

are not directly processed by the Gateway server. sh1 = 11.2 is the case when all the

requests are directly processed by the Gateway server. We show the effect of splitting

11.2 between sh1 and sh2 in Table 6.4.1.1. There is only one CPU to support the

Gateway server. The capacity of the system decreases with the increase of sh1. That is,

the more requests the gateway Server processes directly, the smaller the system capacity

becomes. From July 1, 1999 to Dec. 31, 1999, the average maximum numbers of

concurrent sessions of each month are below 8, but during the peak hours of some days,

the maximum number of concurrent sessions is bigger than 10 (see Appendix A). But the

period for the maximum number of concurrent sessions is short, less than 1 minute. This

reveals that the system might have short period of the capacity problem from July 1, 1999

to Dec. 31, 1999. In early April 2000, the average maximum number of concurrent

sessions has approached the range of values in Table 6.4.1.1, and Bell Mobility reported

it had to address capacity problem. This indicates that our models can indeed be useful in

anticipating capacity problems.

Table 6.4.1.1 Capacity with different sh1 and sh2

Sh1 0 1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2 10.2 11.2

MC 50 36 29 24 20 17 15 13 11 10 9 8

When sh1 = 11.2, the system can serve 8 clients at the same time. We first show the

improvement by increasing the speed of CPU2 in Table 6.4.1.2. The speed row in the

table contains the relative speedup of the original CPU2.

 87

Table 6.4.1.2 Capacity with different speeds of CPU2

Speed 1 2 3 4 5 10 20

MC 8 13 17 22 26 48 91

We can also improve the capacity by increasing the number of processors that the

Gateway Server runs on. Table 6.4.1.3 shows the results. The NUM row indicates the

number of processors.

Table 6.4.1.3 Capacity with different numbers of CPU2 (running at the original speed)

NUM 1 2 3 4 5 10 20

MC 8 11 16 21 26 50 100

We can see that both ways can improve the system capacity. But the choice will depend

on financial and technical factors. For example, updating the only CPU will cause the

shutdown of the system, but adding one more CPU may not. One twice as fast CPU may

be much more expensive than two original CPUs.

We also want to know the effect of think time. Let sh1 = 11.2 and other

parameters be the same, we change the value of Z. The results are shown in Table 6.4.1.4.

Table 6.4.1.4 Capacity with different think time

Z 0 4 8 12 16 28 40

MC 8 9 11 12 13 17 20

The capacity increases with the increase of think time. We test the effect of the idle time

in a session on the capacity too. When we increase the idle time the capacity increases.

All these reveal one phenomenon that the system can serve more slow users than fast

users as expected. The think time we estimated in Section 6.3 is 4.25. By linear

interpolation with the values in Table 6.4.1.4 we find that the capacity at Z = 4.25 is 9.03.

 88

We can say safely that the system can serve 9 clients at the same time without being

saturated.

We have little information about what and how many kinds of services the

Gateway server provides and the characteristics of these services such as how long one

kind of service is on average. The parameters we obtain per session are the average

characteristics of all the services together. There are several ways to simulate the

different types of services that the system can provide. In the first method, we can use

different combinations of sh1 and sh2 to represent different types of services with fixed

total idle time within the session. For simplicity, we set sh2 = 0, and only change sh1 to

imitate different types of services and see what the capacity is for different services. The

results are in Table 6.4.1.5.

Table 6.4.1.5 Capacity versus the increase of sh1 with sh2 = 0 and fixed idle time

Sh1 1 2 3 4 11.2 20 40

MC 16 13 11 10 8 8 7

The capacity decreases with the increase of sh1. This implies that the system can serve

more users who use short applications than those who like to use long applications. Long

applications result in larger values of sh1, so we can also say that long applications

generate heavier traffic than short applications.

In the second method, we increase the request frequency without changing

execution demands and the service time of a client. The bound of service time of a client

is approximated as ST = 11.2 * (0.211 + 0.856) + 0.77 * 0.211 = 12.11 seconds. We set

sh2 = 0 for simplicity. Next we give a group of pairs of sh1 and idle time (sh1=4,

idle=0.99), (sh1=8, idle=0.92), (sh1=11.2, idle=0.856), (sh1=16, idle=0.76), (sh1=20,

 89

idle=0.69), (sh1=30, idle=0.5), (sh1=40, idle=0.31), so that ST stays constant. We give

the capacity corresponding to the above parameters in Table 6.4.1.6.

Table 6.4.1.6 Capacity with different pairs of sh1 and idle

Sh1 4 8 11.2 16 20 30 40

Idle 0.99 0.92 0.856 0.76 0.69 0.5 0.31

MC 20 22 8 6 5 3 2

We can see that the system capacity decreases sharply with the increase of the request

frequency during a fixed period. Comparing the results in Table 6.4.1.6 and Table

6.4.1.5, we find that the capacities at sh1 = 20 and sh1 = 40 in the two tables are very

different. This is because the second method generates more intensive traffic than the first

method. High frequency requests will result in heavy traffic with high intensity. So the

system can serve fewer clients who generate heavier traffic than those who generate

lighter traffic, and serve fewer clients who generate the same traffic volume with higher

traffic intensity (equivalent to fast users), as expected.

 In the third method, we can imitate different services with different execution

demands. If the CPU speed is fixed, more execution demand means that heavier traffic

data is processed. If the traffic volume is fixed, higher execution demands translate into a

relative slower CPU. So we can explain the results in Table 6.4.1.2 from a new angle, i.e.,

the heavier the traffic is, the lower the capacity of the system is, as expected.

6.4.2 Model 2

Model 2 is a modified version of model 1 by adding a proxy layer. With model 2, we

want to investigate the effect of load migration from handsets to the proxies. We use R =

 90

0.04, which means that the proxy CPU is 25 times faster than the handset CPU. The load

migration from handsets to the proxies reduces the process time at the clients’ side

(which is equivalent to making a slow user fast) and therefore increases the traffic. This

will reduce the capacity of the system. We set sh1 to 11.2 and sh1 to 0 respectively and

see the variation of the capacity with the change in load migration. The results are shown

in Table 6.4.2.1 and Table 6.4.2.2.

Table 6.4.2.1 Capacity vs. load migration when sh1 = 11.2

X 0 1 2 3 4 5 6

Tc 6 5 4 3 2 1 0

Pe1 0 0.04 0.08 0.12 0.16 0.2 0.24

MC 8 7 7 7 7 6 6

Table 6.4.2.2 Capacity vs. load migration when sh1 = 0

X 0 1 2 3 4 5 6

Tc 6 5 4 3 2 1 0

Pe1 0 0.04 0.08 0.12 0.16 0.2 0.24

MC 50 46 43 42 41 40 39

We can see that the capacity decreases with the increase of the amount of computational

load that is moved from handsets to the proxies. This is consistent with the result in 6.4.1

that shows that the system can serve more slow users than fast ones.

We also investigate how much the performance is improved by load migration.

We find that when CPU2 is saturated, load migration hardly improves the performance,

but when CPU2 is underutilized, load migration does improve the performance of the

system. UT represents the utilization of CPU2 and THPT represents the throughput of

 91

clients. With the conditions of sh1 = 0 and 40 clients in the system we show the load

migration effect in Table 6.4.2.3.

Table 6.4.2.3 Performance vs. load migration when sh1 = 0 and 40 clients

X 0 1 2 3 4 5 6

Tc 6 5 4 3 2 1 0

Pe1 0 0.04 0.08 0.12 0.16 0.2 0.24

UT 0.536 0.554 0.572 0.591 0.610 0.617 0.619

THPT 1.39 1.43 1.48 1.53 1.58 1.60 1.61

We find that when the client layer is the bottleneck (larger tc) and the other layers are not

saturated, the load migration from handsets to proxies will bring more obvious benefits

(bigger throughput and high utilization of underutilized CPU) to the performance of the

system.

 The test results in this section are obtained under the same condition: the proxy

server is multithreaded but runs on only one CPU that is 25 times fast than handset CPU,

i.e., all clients are supported by a single proxy machine. Adding one more proxy CPU

will not benefit the system since the proxy layer is not the bottleneck with the parameters

we used. If we increase the speed of CPU2 greatly, the proxy CPU will become a

bottleneck with the increase of clients. We do not show the results here because the tests

are somewhat arbitrary: the necessary parameters are not based on the collected trace

data. But one thing is certain. If the proxy layer becomes the bottleneck of the system in

the future and the other layers are underutilized, it is always possible to improve the

performance of the system by adding more proxy CPUs or increasing the speed of the

proxy CPU, as we have shown for CPU2.

 92

6.5 Summary

In this chapter we have studied the performance of an abstract WAP system by two LQM

performance models. With the test results of model 1 under various circumstances, we

find: (1) The system can serve more slow users at the same time than fast users. (2) The

system can serve more users who generate light traffic than those who generate heavy

traffic. (3) If two kinds of users generate the same amount of traffic volume, the system

can serve at the same time more the kind of users who generate traffic with lower

intensity than it can do those who generate traffic with higher intensity. (4) By increasing

the speed of the Gateway Server CPU or by increasing the number of Gateway Server

CPU the system capacity can be improved.

By model 2, we find that load migration from handsets to proxies has the same

effect as making slow users faster and the capacity will decrease with the increase of the

amount of computation that is moved from handsets to proxies. And load migration from

handsets to proxies will benefit more if the client layer is the bottleneck and the other

layers are not. The effect of the overhead of load transfer is not depicted in the model, but

it can be considered in the model by discounting the amount of load that has been

transferred to a certain percentage. Assume the overhead effect is x percentage. If the

effect of the overhead of load transfer is included the maximum percentage of load

transfer will be 1 - x. Current applications on the handsets are text based. The processing

load on the handset is light and load migration is nit necessary. The aim of the study of

load migration is for the future development that may involve heavy load applications on

the handsets and proxy layer is necessary.

 93

Chapter 7: Conclusions and Future Work

In this chapter, we will summarize the thesis work in Section 7.1 and discuss possible

future work in Section 7.2.

7.1 Conclusions

In this thesis, we studied the WAP traffic of the Bell Mobility cellular network in Quebec

and Ontario. We obtained the following main characteristics of the WAP traffic:

• The number of unique IP addresses assigned to clients is linearly increasing with

time, after September 6, 1999. It has an obvious week period.

• The traffic increases with the time.

• Average packet (backward packet and forward packet) sizes of each day are

constant and time-invariant.

• The ratio of forward traffic volume to backward traffic volume and the ratio of

number of backward packets to number of forward packets are constant.

• WAP traffic has obvious day and week periods.

• The traffic is self-similar. H values range from 0.70 to 0.92.

We hope that these characteristics here are general to WAP traffic in other networks.

It needs to be verified with more data in other cellular networks. We put forward a

layered prediction model that is flexible and easy to use. We also give two definitions of

a session, and we think the first definition is more reasonable. With the session model, we

have studied the WAP traffic further and some important results are:

• Two versions of session give almost the same results.

 94

• The ratio of backward link activity factor to forward link activity factor is time

invariant, though the activity factors themselves change with the time.

• The number of sessions increases with time after September 1999.

• The number of sessions of a day is proportional to the traffic volume of that day. And

it has an obvious weekly period.

• The maximum number of concurrent sessions of a day is proportional to the traffic

volume of that day.

• 90% of the sessions are less than 4 minutes. This implies that most users like to use

short WAP applications.

• The number of longer sessions (s-len > 4 minutes) is a minority, accounting for only

10% of all sessions, but accounting for 34% of the total traffic volume.

• The number of sessions decreases with the increasing of the timeout.

Some results are against intuition. For example, the average backward activity factor

is bigger than the average forward activity factor though the forward traffic volume is

larger. The longest session is not necessarily the one that has the largest session size. The

activity factors do not have a weekly period though repeating peaks tempt people to think

so. But spectrum analysis does not reveal a weekly period or any other one.

We also have studied the abstract WAP system with two LQM performance models.

The capacity levels of the system obtained from the performance model are in the range

of values for the maximum concurrent sessions in late March and April 2000. And Bell

Mobility reported that the system experienced capacity problems at that point. So the

results from our performance studies have practical relevance. We hope all the work in

 95

this thesis can contribute to the understanding of the Internet usage and WAP systems in

general.

7.2 Future Work

There is much scope for future research based on this work. First we hope we can get

trace files at other levels and at the client side, so that we can provide a more accurate

session model that can describe the user’s behavior more closely. We may do some

simulation work in the future, so that the traffic analysis can be partly validated. To do

simulation, we need a benchmark to generate the network traffic that is as close to real

WAP traffic as possible. We do not design a WAP benchmark here, but the results in this

work are useful in building such a benchmark. Benchmark design is very important for

network simulation, and surely will be one aspect of future work.

With more detailed information of the system available, we can design a more

complex and detailed performance model that will be very close to the real WAP system,

and that will provide more useful information for the issues of cellular network

performance, planning and dimensioning.

It is always important to keep track of new types of the applications that are

continuously introduced into the WAP systems with the evolution of the WAP systems

themselves. Just like the audio and video traffic brought in different characteristics of the

traffic over the networks several years ago, new types of applications may always

produce characteristics that are not known before.

 96

References

[Abdulla 1997a] G. Abdulla, et al, A Realistic Model of Request Arrival Rate to Caching
Proxies, http://vtopus.cs.vt.edu/~chitra/docs/abdulla-nayfeh-fox/paper.pdf, 1997.

[Abdulla 1997b] G. Abdulla, et al, WWW Proxy Traffic Characterization with
Application to Caching, http://www.cs.vt.edu/~chitra/docs/, 1997.

[Abdulla 1997c] G. Abdulla, et al, Shared User Behavior on the World Wide Web,
http://www.cs.vt.edu/~chitra/docs/97webnet, 1997.

[Almeida 1998] J. Almeida, P. Cao, Wisconsin Proxy Benchmark 1.0,
http://www.cs.wisc.edu/~cao/wpb1.0.html, 1998.

[Arlitt 1996] M. F. Arlitt, C. L. Williamson, Web Server Workload Characterization: The
Search for Invariants, http://www.cs.usask.ca/projects/discus/, 1996.

[Arlitt 1999a] M. F. Arlitt, T. Jin, Workload Characterization of the 1998 World Cup
Web Site, HP Laboratories Palo Alto, HPL-1999-35,
http://www.hpl.hp.com/techreports/1999/HPL-1999-35R1.html, 1999.

[Arlitt 1999b] M. F. Arlitt, et al, Workload Characterization of a Web Proxy in a Cable
Modem Environment, HP Laboratories Palo Alto, HPL-1999-48,
http://www.hpl.hp.com/techreports/1999/HPL-1999-48.html, 1999.

[Barford 1997] Paul Barford, Mark Crovella, Generating representative Web workloads
for network and server performance evaluation, (also in Proceedings of ACM
SIGMETRICS’98), http://www.cs.bu.edu/techreports/97-006-surge.ps.Z, 1997.

[Bell 1999] Bell Mobility, http://www.bellmobility.ca/digitaldata, 1999.
[Catledge 1995] L. D. Catledge, J. Pitkow, Characterizing Browsing Strategies in WWW,

Computer Networks and ISDN Systems, v26, n6, 1995, pp.1065-1073.
[Choi 1999] Hyoung-Kee Choi, John O. Limb, A Behavioral Model of Web Traffic,

http://users.ece.gatech.edu/~hkchoi/model.pdf, 1999.
[Comer 1988] Douglas E. Comer, Internetworking with TCP/IP, ISBN: 0-13-470154-2,

Englewood Cliffs, NJ, Prentice Hall, 1988.
[Crovella 1995] Mark E. Crovella, Azer Bestavros, Explaining World Wide Web Traffic

Self-Similarity, Department of Computer Science, Boston University, Boston, MA,
Technical Report BUCS-TR-95-015, 1995.

[Crovella 1997a] Mark E. Crovella, Azer Bestavros, Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes, IEEE/ACM Transactions on Networking, v5,
n6, 1997, pp.835-846.

[Crovella 1997b] Mark E. Crovella, et al, Heavy-Tailed Probability Distributions in the
World Wide Web, in A Practical Guide to Heavy Tails, Adler, et al, Ed., ISBN: 3-
7643-3951-9, Birkhauser, Boston, MA, Prentice Hall, 1997.

[Cunha 1995] C. Cunha, et al, Characteristics of WWW Client-Based Traces, TR-95-010,
Department of Computer Science, Boston University, Boston, MA,
http://www.cs.bu.edu/techreports/95-010-www-client-traces.ps.Z, 1995.

 [Duska 1997] Bradley M. Duska, et al, The Measured Access Characteristics of WWW
Client Proxy Caches, Dept. of Comp, Science, U. of British Columbia, TR-97-16, BC,
Canada, 1997.

[Garg 1997] Vijay K. Garg, Applications of CDMA in Wireless/Personal
Communications, ISBN: 0-13-572157-1, Upper Saddle River, NJ, P.H., 1997.

 [Gibson 1999] Jerry D. Gibson, The Mobile Communications Handbook, ISBN: 0-8493-
8597-0, Boca Raton, Fla., CRC Press, 1999.

 97

 [Iyengar 1998] Arun K. Iyengar, et al, Analysis and Characterization of Large Scale
Web Server Access Patterns and Performance, (also in World Wide Web, June 1999),
http://www.research.ibm.com/people/i/iyengar/arun2.html, 1998.

[James 1999] E. James, Summary of WWW Characterizations, World Wide Web, Jan.
1999, pp.3-13.

[Kunz 1999] Thomas Kunz, et al, An architecture for adaptive mobile applications,
Proceedings of Wireless 99, the 11th International Conference on Wireless
Communications, Calgary, Alberta, Canada, July 1999, pp. 27-38.

[Kunz 2000] Thomas Kunz, et al, WAP traffic: Description and comparison to WWW
traffic, to appear in Proceedings of the Third ACM International Workshop on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, (MSWiM
2000), Boston, USA, August 2000.

[Lee 1998] J. S. Lee, L. E. Miller, CDMA Systems Engineering Handbook, ISBN: 0-
89006-990-5, Boston, Mass., Artech House, 1998.

[Leland 1994] W.E. Leland, et al, On the Self-similar Nature of Ethernet Traffic,
IEEE/ACM Transactions on networking, v2, n1, 1994, pp.1-14.

[Lam 1997] Derek Lam, et al, Teletraffic Modeling for Personal Communications
Services, IEEE Communications Magazine, v35, n2, 1997, pp.79-87.

[Mah 1997] B.A. Mah, An Empirical Model of HTTP Network Traffic, in Proceedings of
INFOCOM’97, Kobe, Japan, April, 1997, pp.7-11.

[Mah 1998] B.A. Mah, et al, IPB: An Internet Protocol benchmark Using Simulated
Traffic, in Proceedings of the Sixth International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS’98),
Montreal, Canada, July 1998, pp.21-24.

[Mathur 1996] A. Mathur, M. Abrams, Modeling Trace Data, TR 96-14, Dept. of Comp.
Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1996.

[Mogul 1995] J. C. Mogul, Network Behavior of a Busy Web Server and Its Clients,
Research Report 95/5, Digital Western Research Laboratory, CA,
ftp://gatekeeper.dec.com/pub/DEC/WRL/research-reports/WRL-TR-95.5.ps, 1995.

[Omar 2000] Salim Omar, et al, Mobile code, adaptive mobile applications, and network
architectures, to appear in Proceedings of the Second International Workshop on
Mobile Agents for Telecommunication Applications (MATA'00), Paris, France,
September 2000.

[Pahlahvan 1994] K. Pahlahvan, A.H. Levesque, Wireless Data Communication,
Proceedings of IEEE, v82, n9, 1994, pp.1398-1430.

[Paxson 1995] Vern Paxson, Sally Floyd, Wide-Area Traffic: The Failure of Poisson
Modeling, IEEE/ACM Transactions on Networking, v3, n3, 1995, pp.226-244.

[Redl 1998] S. H. Redl, et al, GSM and Personal Communications Handbook, ISBN: 0-
89006-957-3, Norwood, MA, Artech House, 1998.

[Silicon 1996] Silicon Graphics Inc., World Wide Web Server Benchmarking,
http://mail.mindcraft.com/webstone/ws2-descr.html, 1996.

[SPEC 1996] SPECweb96 Benchmark, http://www.specbench.org/org/web96, 1996.
[Tanenbaum 1996] Andrew S. Tanenbaum, Computer Networks, ISBN: 0-13-349945-6,

Upper Saddle River, NJ, Prentice Hall, 1996.
[Taqqu 1997] M. S. Taqqu, V. Teverovsk, On Estimating the Intensity of Long-Range

Dependence in Finite and Infinite Variance Time Series, in A Practical Guide to

 98

Heavy Tails, Adler, et al, Ed., ISBN: 3-7643-3951-9, Birkhauser, Boston, MA,
Prentice Hall, 1997.

[Thompson 1997] K. Thompson, et al., Wide-Area Internet Traffic Patterns and
Characteristics, IEEE Network Magazine, v11, n6, 1997, pp.10-23.

[Wang 2000] J. Wang and T. Kunz, A proxy server infrastructure for adaptive mobile
applications, Proceedings of the Eighteenth IASTED International Conference on
Applied Informatics, Innbruck, Austria, February 2000, pp. 561-567.

[WAP 1998] WAP Forum, WAP Architecture, Version 30-Apr-1998,
http://www.wapforum.com, 1998.

[Woodside 1995] C. M. Woodside, et al, A Guide to Performance Modelling of
Distributed Client-Server Software Systems with Layered Queuing Networks,
SCE95-23, Carleton University, Ottawa, Canada, November 1995.

 99

Appendix A: Additional Results of Session Analysis

In this appendix, first we present session results for August, Sept., Oct., Nov. and Dec.

2000 in Figures A.1 – A.25.

Average daily concurrent sessions, August 1999

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 200 400 600 800 1000 1200 1400

time (in minutes)

nu
m

 o
f s

es
si

on
s

Figure A.1

Average session size distribution, August 1999

0
0.02
0.04
0.06
0.08
0.1

0.12

0 2000 4000 6000 8000 10000

session size (in bytes)

Figure A.2

 100

Average session length distribution, August 1999

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

session length (in minutes)

Figure A.3

Proportion of traffic vs. session length, August 1999

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0 1 2 3 4 5 6

session length (in minutes)

Figure A.4

 Activity factors vs. session length, August 1999

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5

session length (in minutes)

b-fact

f-fact

Figure A.5

 101

Average daily concurrent sessions, Sept. 1999

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400

time (in minutes)

Figure A.6

Figure A.7

Figure A.8

Average session size distribution, Sept. 1999

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1000 2000 3000 4000 5000 6000

session size (in minutes)

Average session length distribution, Sept. 1999

0
0.05
0.1

0.15
0.2

0.25
0.3

0 1 2 3 4 5 6

session length (in minutes)

 102

Figure A.9

Figure A.10

Average daily concurrent sessions, Oct. 1999

0
0.5

1
1.5

2
2.5

3
3.5

4

0 200 400 600 800 1000 1200 1400

time (in minutes)

nu
m

 o
f s

es
si

on
s

Figure A.11

Proportion of traffic vs. session length, Sept. 1999

0
0.005
0.01

0.015
0.02

0.025
0.03

0.035

0 1 2 3 4 5 6

session length (in minutes)

Activity factors vs. session length, Sept. 1999

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5

session length (in minutes)

b-fact

f-fact

 103

Average session size distribution, Oct. 1999

0
0.02
0.04
0.06
0.08
0.1

0.12

0 1000 2000 3000 4000 5000 6000

session length (in minutes)

Figure A.12

Figure A.13

Proportion of traffic vs. session length, Oct. 1999

0

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5 6

session length (in minutes)

co
m

po
ne

ts
 o

f t
ra

ffi
c

vo
lu

m

Figure A.14

Average session length distribution, Oct. 1999

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6

session length (in minutes)

 104

Activity factors vs. session length, Oct. 1999

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 1 2 3 4 5

session length (in minutes)

va
lu

e
of

 a
ct

iv
ity

 fa
ct

or

b-fact

f-fact

Figure A.15

Average daily concurrent sessions in Nov., 1999

0

1

2

3

4

5

0 200 400 600 800 1000 1200 1400

time (in minutes)

nu
m

 o
f s

es
si

on
s

Figure A.16

Average session size distribution, Nov. 1999

0

0.02

0.04

0.06

0.08

0.1

0 1000 2000 3000 4000 5000 6000

session size (in bytes)

Figure A.17

 105

Average session length distribution, Nov. 1999

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

session length (in minutes)

Figure A.18

Figure A.19

Activity factors vs. session length, Nov. 1999

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6

session length (in minutes)

va
lu

e
of

 a
ct

iv
ity

 fa
ct

or

b-fact

f-fact

Figure A.20

Proportion of traffic vs. session length, Nov. 1999

0

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5 6

session lengh (in minutes)

co
m

po
ne

nt
 o

f t
ra

ffi
c

vo
lu

m
e

 106

Average daily concurrent sessions, Dec. 1999

0

1

2

3

4

0 200 400 600 800 1000 1200 1400

time (in minutes)

nu
m

 o
f s

es
si

on
s

Figure A.21

Average session size distribution, Dec. 1999

0

0.05

0.1

0.15

0 1000 2000 3000 4000 5000 6000

session size (in bytes)

Figure A.22

Average session length distribution, Dec. 1999

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 1 2 3 4 5 6

session length (in minutes)

Figure A.23

 107

Proportion of traffic vs. session length, Dec. 1999

0

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5 6

session length (in minutes)

co
m

po
ne

nt
 o

f t
ra

ffi
c

vo
lu

m
e

Figure A.24

Activity factors vs. session length, Dec. 1999

0

0.1

0.2

0.3

0 1 2 3 4 5 6

session length (in minutes)

va
lu

e
of

 a
ct

iv
ity

 fa
ct

or

b-fact

f-fact

Figure A.25

The number of sessions per day from July 1, 1999 to Dec. 31, 1999 is shown in Figure

A.26. The maximum number of con current sessions each day from July 1, 1999 to Dec.

31, 1999 is shown in Figure A.27. Please note that the maximum number of concurrent

sessions here is not an average result like the one in Figure A.1. Both figures show a clear

week period (which is also confirmed by the spectral analysis). The influence of

Christmas is reflected by a decreasing trend at the end of December.

 108

Figure A.26

Figure A.27

Now we like to say something more about the concurrent sessions. During a day, the

period of 0:00 – 24:00 is divided with a bin of b minutes. In each bin, e.g., the nth bin, if

a session overlaps with the bin, we count this session at time n. If there are x sessions

overlap with the bin, we say that at time n the number of concurrent sessions is x. The

smaller the bin size b is, the smaller the number of concurrent sessions will become as

Max num of concurrent sessions per day, from July 1, 1999 to Dec. 31, 1999

0

5

10

15

20

25

30

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181

time unit = 1 day

Number of sessions per day, from July 1, 1999 to Dec. 31, 1999

0
500

1000
1500
2000
2500
3000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181

time unit = 1 day

 109

expected. But there is a limit. When b is less than the limit, the number of concurrent

sessions no longer decreases with the decreasing of b. We have found the limit in this

work is 0.1 minutes. To draw the figure about the number of concurrent sessions in a day,

24 * 60 * 10 = 14400 points are needed. The data is too big. So we use the average of 100

points to reduce the data size. We can also use the maximum one of the 100 points, but

we think the average can represent the 100 points better than the maximum point. All

figures about the number of concurrent sessions per day from July to Dec. 2000 are

drawn in this way. The problem of the method is that the maximum number of the

concurrent sessions per day will be reduced by the average. After average the maximum

numbers of concurrent sessions from July to Dec. are 1.8, 1.6, 1.9, 3.6, 4.4 and 4.0.

Before average the maximum numbers of concurrent sessions from July to Dec. are 2.2,

2.2, 2.5, 4.3, 5.0 and 4.6. The average number of concurrent sessions over a day from

July to December are 0.89, 0.77, 0.79, 1.62, 1.97 and 1.89. The Christmas in December

makes the values in December smaller than those in November.

 110

Appendix B: An Example of LQN Input and Output Files

In this appendix, we show that how the LQN input and output files look like for Model 1.

G
#This is a LQN input file
#Comments between quotes, as many lines as necessary
"Simple client-server model, only three layers, server has 4 entries"
#Convergence criterion, iteration limit, print interval, under-relax
#Under-relaxation coefficient stabilizes the algorithm if less than 1
#entry se1 represents synchronous requests
#entry se2 represents asynchronous requests
#entry se3 represents passing requests to other web servers
#entry se4 represents the idel time in a session
0.00001
200
1
0.9
End of General Information
-1

Processor Information: No of processors
P 4
#p ProcessorName SchedDiscipline [multiplicity, default = 1]
Discipline = f fifo|r random|p premptive|
h hol or non-pre-empt|s proc-sharing
multiplicity = m value (multiprocessor)|i (infinite)
p c1 f i
p s1 f
p s2 f i
p s3 f i
End of Processor Information
-1

Task Information: No of Tasks
T 7
#t TaskName RefFlag EntryList -1 Processor [multiplicity]
RefFlag = r (reference or user)|n (other)
multiplicity = m value (multiprocessor)|i (infinite)
T 4
t tc1 r ce1 -1 c1 m 8
t ts1 n se1 se2 se3 se4 -1 s1 m 8
t ts2 n ws1 -1 s2 m 10
t ts3 n id1 -1 s3 m 10
End of Task Information
-1

#Entry Information: No. of Entries

 111

E 7
ParameterToken EntryName Phase1value Phase2 Phase3 -1
Tokens and Value Definitions are:
s HostServiceRequests for EntryName
c HostServiceCoeeficientofVariation
f PhaseTypeFlag
These lines go Token FromEntry ToEntry Phase1Value Phase2 Phase3 -1
Tokens and Value definitions are:
y SynchronousCalls (no. of rendezvous)
F ProbForwarding (forward to this entry rather than replying)
z AsynchronousCalls (or no. of sned-no-reply messages)
o Fanout (for replicated servers)
i FanIn (for replicated servers)
s ce1 0 6 0 -1
#Z ce1 0 4.25 0 -1
y ce1 se1 0 11.1999 0 -1
y ce1 se3 0 0.0001 0 -1
y ce1 se4 0 11.2 0 -1
z ce1 se2 0 0.77 0 -1
s se1 0.211 0 0 -1
s se2 0 0.211 0 -1
s se3 0.02 0 0 -1
y se3 ws1 1 0 0 -1
s se4 0.000001 0 0 -1
y se4 id1 1 0 0 -1
s id1 0.856 0 0 -1
s ws1 0.211 0 0 -1
#End of Entry Information
-1

Copyright the Real-Time and Distributed Systems Group,
Department of Systems and Computer Engineering
Carleton University, Ottawa, Ontario, Canada. K1S 5B6

Generated by lqns, version 28.2 (UNIX)
Input: mthree.lqn
Output: mthree.out
Comment: Simple client-server model, only three layers, server has 4 entries

Convergence test value: 3.82591e-06
Number of iterations: 8

MVA solver information:
Layer n step() mean stddev wait() mean stddev
1 8 45 5.625 0.18298 765 95.625 6.0384
2 15 190 12.667 0.984 10440 696 137.47
3 8 76 9.5 0.18898 5792 724 28.725
Total 31 311 10.032 0.71012 16997 548.29 81.849

 sunrise.sce.carleton.ca SunOS 5.7

 112

 User: 0:00:00.12
 System: 0:00:00.01
 Elapsed: 0:00:00.16

Processor identifiers and scheduling algorithms:

Processor Name Type Copies Scheduling
c1 Inf 1 DELAY
s1 Uni 1 FCFS (V phases)
s2 Inf 1 DELAY
s3 Inf 1 DELAY

Task information:

Task Name Type Copies Processor Name Pri Entry List
tc1 ref(8) 1 c1 0 ce1 (2 phases)
ts1 mult(8) 1 s1 0 se1, se2, se3, se4 (2 phases)
ts2 mult(10) 1 s2 0 ws1
ts3 mult(10) 1 s3 0 id1

Entry execution demands:

Task Name Entry Name Phase 1 Phase 2
tc1 ce1 0 6
ts1 se1 0.211 0
 se2 0 0.211
 se3 0.02 0
 se4 1e-06 0
ts2 ws1 0.211 0
ts3 id1 0.856 0

Mean number of rendezvous from entry to entry:

Task Name Source Entry Target Entry Phase 1 Phase 2
tc1 ce1 se1 0 11.1999
 ce1 se3 0 0.0001
 ce1 se4 0 11.2
ts1 se3 ws1 1 0
 se4 id1 1 0

Mean number of non-blocking sends from entry to entry:

Task Name Source Entry Target Entry Phase 1 Phase 2
 ce1 se2 0.77

 113

Phase type flags:
All phases are stochastic.

Squared coefficient of variation of execution segments:
All executable segments are exponential.

Open arrival rates per entry:
All open arrival rates are 0.

Type 1 throughput bounds:

Task Name Entry Name Throughput
tc1 ce1 0.055709
ts1 se1 4.73934
 se2 4.73934
 se3 4.329
 se4 1.16822
ts2 ws1 4.73934
ts3 id1 1.16822

Mean delay for a rendezvous:

Task Name Source Entry Target Entry Phase 1 Phase 2
tc1 ce1 se1 0 0.00742656
 ce1 se3 0 0.0121277
 ce1 se4 0 0.0208157
ts1 se3 ws1 0
 se4 id1 0

Service times:

Task Name Entry Name Phase 1 Phase 2
tc1 ce1 0 28.4813
ts1 se1 0.520386 0
 se2 0 0.520386
 se3 0.849771 0
 se4 1.45863 0
ts2 ws1 0.211 0
ts3 id1 0.856 0

Service time variance (per phase)
and squared coefficient of variation (over all phases):

Task Name Entry Name Phase 1 Phase 2 coeff of var **2
tc1 ce1 0 882.928 1.08844

 114

ts1 se1 0.044521 0 0.164405
 se2 0 0.044521 0.164405
 se3 0.629599 0 0.871887
 se4 3.69954 0 1.73884
ts1 Total 2.03145
ts2 ws1 0.044521 0 1
ts3 id1 0.732736 0 1

Throughputs and utilizations per phase:

Task Name Entry Name Throughput Phase 1 Phase 2 Total
tc1 ce1 0.280886 0 8 8
ts1 se1 3.1459 1.63708 0 1.63708
 se2 0.216281 0 0.11255 0.11255
 se3 2.80886e-05 2.38689e-05 0 2.38689e-05
 se4 3.14593 4.58873 0 4.58873
 Total 6.50813 6.22583 0.11255 6.33838
ts2 ws1 2.80887e-05 5.92671e-06 0 5.92671e-06
ts3 id1 3.14593 2.69292 0 2.69292

Utilization and waiting per phase for processor: c1

Task Name Pri n Entry Name Utilization Ph1 wait Ph2 wait
tc1 0 8 ce1 1.68532 0 0

Utilization and waiting per phase for processor: s1

Task Name Pri n Entry Name Utilization Ph1 wait Ph2 wait
ts1 0 8 se1 0.663784 0.309385 0
 se2 0.0456353 0 0.309385
 se3 5.61772e-07 0.309385 0
 se4 3.14593e-06 0.309385 0
ts1 Total 0.709423

Utilization and waiting per phase for processor: s2

Task Name Pri n Entry Name Utilization Ph1 wait Ph2 wait
ts2 0 10 ws1 5.92671e-06 0 0

Utilization and waiting per phase for processor: s3

Task Name Pri n Entry Name Utilization Ph1 wait Ph2 wait
ts3 0 10 id1 2.69292 0 0

