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Abstract 
 
Networks are becoming more and more popular and the traffic over the networks is 

growing rapidly. Because the network infrastructure is expanding at a quick pace, 

especially the growth of the Internet, both in size and in the types of applications, the 

performance issue and dimensioning issue of networks are becoming more critical. It is 

important to provide a robust and flexible networking environment. To design a system 

that can deal with these issues well at a reasonable cost, the first step is to characterize the 

network traffic. In order to get traffic properties that are general it is necessary to study 

traces of networks in various environments and of different types. A detailed analysis and 

characterization of network traffic is fundamental to obtain deeper insights into the 

network system, to fully realize the potential improvements in network performance, and 

to optimize management of the resources. A lot of work has been done in traffic analysis. 

The major part is on the Internet traffic. Recently, wireless communication has moved 

from voice service to data service. Wireless Application Protocol (WAP) makes it 

possible for commonly used devices such as cell phones, PCs and PDAs to access the 

Internet. These new wireless data applications produce data that may have different 

characteristics from those of wired data applications and wireless voice data studied 

before. In this thesis, we study the data generated by Mobile Browser applications in a 

cellular network of Bell Mobility in Quebec and Ontario, and compare our results with 

other results of Internet traffic characterization. We also do some simple performance 

prediction of the cellular network using Layered Queuing Models (LQM). 
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Chapter 1: Introduction 

 

In this chapter, we will explain the motivations of the thesis, present the contributions of 

this work, and finally provide the outline of the thesis. 

 

1.1 Thesis Motivations 

Computer networks are growing very fast. They play an important role in industry, in 

business, in education, and even in our daily life. The importance will surely increase 

with the time passing by. The continuous trend of growth may bring critical issues for 

network systems that might not be faced before. One is the performance issue: network 

systems should provide good quality services even under heavy traffic.  Another issue is 

the dimensioning of the network. Dimensioning is about how to match new networks to 

existing resources, how to plan for the expansion of the client population and how to 

upgrade and extend existing networks.  

The performance of computer networks includes many factors. The server 

performance is a critical issue for client/server systems. For example, during peak 

periods, a server might have to serve more than 3 times as many requests than the 

average number of requests per second. If the server cannot adequately handle the request 

traffic, the server will fail to satisfy some requests, resulting in unacceptably slow 

responses or rejecting them repeatedly. For Web sites, the high percentage of requests for 

dynamic pages is more likely to make the server CPU a bottleneck. Many Web sites, like 

sport sites or stock market sites, need to provide dynamic content. It is important to 

examine the server performance under high CPU loads. When the server is operating near 
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capacity, there is a tradeoff between average latencies and the percentage of requests 

rejected: acceptable response time can be guaranteed by rejecting a higher percentage of 

requests.  

The network can also act as a performance bottleneck. Usually, links between a 

client or a server and the Internet backbone might be the bottleneck at peaks. For a Web 

site, the Web server will maintain open connections with each client while a request is 

being processed. If the client is slow, the connection will remain open for a long time. If 

many slow clients make requests to the Web server at the same time, the performance of 

the Web server may decrease because the slow clients waste the link. 

Nowadays, Internet has become so popular that almost all countries in the world 

provide the facilities to access the Internet. Of the Internet traffic, WWW composes a 

heavy part. In 1997, WWW traffic accounted for 70% of the total traffic on the Internet 

[Choi 1999]. The growth of the Internet is apparent in both size and services. So is the 

growth of the traffic on the network. Traffic measurement provides first hand data for 

statistical analysis of the network traffic. Actually, traffic measurement itself is an 

interesting research area. 

Modeling the traffic in general can be very difficult. First it is hard to measure and 

collect data that characterize the network traffic on users’  side. For example, it is difficult 

to determine how many people visit a Web page and how many applications a user 

launches during a day. Second it is also difficult to generalize traffic characteristics of a 

specific network to other networks. Because we cannot prove that a group of users of one 

network has the same habits and behavior patterns as other groups of network users, and 

the hardware of the two networks might be different too. So it is important to study as 
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many different data sets as possible. The study of any new types of data is always 

meaningful for the validation and modification of the existing conclusions. 

Network traffic modeling and forecasting is very important. By predicting the 

future traffic volume, the number of client requests and size of document retrieved and 

the requirements for other resources correctly, we can design high efficiency algorithms 

for caches and the whole system, and make accurate dimensioning decisions. 

Though there are huge volumes of references about Internet traffic, little work is 

found on the cellular data traffic analysis. Newly developed technologies such as 

Wireless Application Protocol (WAP) make it possible for all kinds of handsets to access 

the Internet. Mobile Browser that is powered by Phone.com enables Internet on wireless 

phones and handheld devices. WebCare designed by Bell Mobility [Bell 1999], which is 

an application running on the Mobile Browser, can provide services like viewing the 

account balance, paying the bill, etc., on Digital PCS phones. There are many other 

services available. 

WAP Forum initiated WAP [WAP 1998]. Its aim is to help wireless networks 

offer as many and as high-quality services to clients as wired networks. WAP and 

WWW, both can enable the clients to browse the Internet. But WWW is designed for the 

wired network that has wider bandwidth than the wireless network. WAP is designed for 

the wireless network. The WAP and WWW are so closely related that formats of WAP 

content and applications and the communication protocols of WAP are all derived from 

WWW. WAP uses proxy technology to connect between the wireless domain and the 

WWW. Mobile Browser enables clients to navigate the Internet wirelessly on their PCS 

phones and handsets. The model of WAP is roughly composed of client, gateway and 
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WWW [WAP 1998]. Mobile Browser is run on the handset by which the client makes 

requests. The gateway translates requests from the client so that the WWW can 

understand them and passes the translated requests to the WWW. The WWW sends the 

response back to the gateway according to the requests. The Gateway then encodes the 

response content into compact format and passes it to the client. Because of the limited 

wireless bandwidth, the reduction of the response content is necessary. The gateway has 

its own cache to store some information according to a schedule so that some requests 

from the clients need not be passed to the WWW. This will save time and resources and 

improve performance. What kind of scheduling (FCFS, FCLS, etc.) will benefit the 

system most is another interesting research topic. Figure 1.1.1 shows the WAP model. 

The gateway bridges the wireless and wired networks.  

 

 

 

 

 

Figure 1.1.1 

 

In this thesis, we will study the Mobile Browser application traffic data that were 

measured (new traces are kept being recorded continuously) on the cellular network of 

Bell Mobility in the areas of Quebec and Ontario. The cellular network was formerly 

designed for voice service. But now it can provide many kinds of data services. The 

customers initiate the applications on their Digital PCS phones. The application can be 
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any service provided by Bell Mobility, such as bill payments, stock trading, weather or 

sports news, and Web site visit. Any application that is being used today with a modem 

and a phone line can be set up on the Digital PCS phone [Bell 1999]. After dialing and 

setting up the connection, Web-based applications can be run on the PCS phone 

wirelessly. During the connection, each client is assigned an IP address. After the 

application ends or if the application is idle for more than 90 seconds, the IP address may 

be assigned to another client. We call the IP address client IP address. The server has one 

unique IP address all the time. But clients are assigned IP addresses dynamically. That is, 

one device is not related to one unique IP address all the time. 

The analysis of the trace files produced from data services on the cellular network 

of Bell Mobility will provide a solid ground for the optimization of resources of the 

cellular network and potential expansion and upgrading of the network in the future. 

Through studying the trace files, we try to answer questions like: 

1. When is the busiest time? 

2. What is the weekly traffic pattern? 

3. Is there a monthly traffic pattern? 

4. Is there a traffic growth trend in a certain period? 

5. Are there seasonal trends in the traffic flow? 

6. Is the traffic self-similar? 

7. What are the link utilization or activity factors? 

8. What is the distribution of session size? 

9. What is the pattern of concurrent sessions? 

10. What is the distribution of the session length? 
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11. Can some properties be predicted with reasonable accuracy? 

12. Are the results of our study different from other results, in particular results reported 

for the WWW? 

By using Layered Queuing Models (LQM) and some parameters obtained from 

the above results plus some assumed parameters, we try to answer the following 

performance questions: 

1. What is the bottleneck of the system? 

2. What is the maximum number of clients that the system can serve at the same time? 

3. How much the system will be improved if we either increase the CPU speed or add 

additional CPUs? 

4. How does the system behave if we change the values of some parameters?  

 We have searched many references about data traffic analysis, but did not find 

one describing cellular data traffic analysis. This work could be the first one on the topic 

of cellular data traffic analysis and modeling. 

 

1.2 Thesis Contributions 

We consider the following as the contributions in this work. 

• Analyzing the cellular data trace files and providing some basic characteristics of the 

cellular data traffic. 

• Providing a layered model to predict the traffic and other properties. 

• Providing a session model and related features. 

• Deriving some parameters from the session model. 

• Comparing the results in this thesis with previously published results. 
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• Studying the abstract WAP system by two LQM models. 

Part of the work is presented in two workshop papers: [Kunz 2000] and [Omar 2000]. 

 

1.3 Thesis Outline 

The rest of the thesis is organized as follows. Chapter 2 provides basic material about the 

network and traffic analysis, and overviews related work on Internet traffic analysis, 

especially on WWW traffic. Chapter 3 introduces the characteristics of our trace files and 

the environment of the cellular network where the trace files are recorded. The results 

obtained by analyzing the trace files are provided too. A layered prediction model is 

devised and shown to be reasonably accurate by several examples. Chapter 4 gives a 

session model and shows some results based on the session model. The session 

characteristics in a month are described for July 1999 to save the space. The Results in 

other months are in Appendix A. Relationships between some properties are found and 

discussed. Some attempts are made to fit statistical distributions onto the results. In 

Chapter 5, our results are compared with corresponding results in the literature. We 

investigate the reasons for the similarities and differences. Chapter 6 gives two simple 

LQM models of the system and some performance studies are carried out with these two 

LQM models. Chapter 7 summarizes our findings and discusses potential future work. In 

Appendix A, we provide session analysis results for August, September, October, 

November and December, which are omitted in Chapter 4. We also present information 

about maximum concurrent sessions from July 1, 1999 to Dec. 31, 1999. 

 

Chapter 2: Background and Related Work 
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In this chapter, we will give a brief introduction to data networks and discuss related 

work of Internet traffic analysis, especially WWW traffic analysis. 

 

2.1 Introduction to Data Networks 

Data communication has a history that is almost as long as the history of human beings. 

In ancient times people used all kinds of ways to pass information such as sounds, hands, 

flags, smokes and mirrors. In modern times telegraphy is considered as the beginning of 

data communications. From the 1920s to the 1960s telegraphy was the major way to 

provide data communication services. When computer networks appeared, people found 

it a more powerful and suitable way to provide data communication services. As 

computer technology developed, packet switching was found more suitable for data 

communication than circuit switching. For example, X.25 can provide robust data 

transfer services.  

The network is designed in a layer-structured way and a higher layer is built upon 

a lower layer. The lower layer provides necessary services only to the adjacent higher 

layer. Each layer has its own layer protocol. International Standards Organization (ISO) 

proposed a reference model for Open System Interconnection that includes seven 

conceptual layers. In the increasing order of the layer number the seven layers are 

physical hardware layer, data link layer, network layer, transport layer, session layer, 

presentation layer and application layer (X.25 is an example implementation of the ISO 

model). The physical layer is responsible for transmitting a stream of electrical digital 

data bits over a physical channel. The data link layer defines the format of frames and 
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transfers data in a unit of frame. The network layer specifies how a start host sends 

packets to a destination host. This layer concerns the destination addressing and routing. 

The transport layer is responsible for the end-to-end transport reliability between the 

source end and the destination end by making sure no errors occurred in the middle of 

communication. The session layer provides the necessary functionality that is needed by 

application programs. The presentation layer provides all the necessary ways to transform 

the data of the end users. The application layer is for application programs that are 

commonly provided by the networks like email and file transfer [Comer 1988]. In real 

life TCP/IP is widely used, not the ISO model. TCP/IP is based on a model with only five 

layers: physical layer, network interface layer, internet layer, transport layer and 

application layer. It is also often called the Internet model. The ARPANET was 

developed by the United States Defense Advanced Research Projects Agency (the agency 

was formerly known as ARPA, not DARPA) to interconnect many of its computers in a 

distributed way. It is the beginning of Internet. The ARPANET is an example of the 

implementation of the Internet model. The Internet model structure is different from the 

ISO model structure. The Internet model combines application layer, presentation layer 

and session layer into only one application layer and adds an internet layer between the 

network layer and the transport layer. The application layer in the Internet model 

provides all the services that are provided by application layer, presentation layer and 

session layer in the ISO model. The internet layer concerns issues such as error checking, 

handling incoming datagrams, data validity checking, header detecting and data routing. 

The internet layer uses protocols such as Internet Protocol (IP) and the Internet Control 

Message Protocol (ICMP). TCP and UDP are at the transport layer. The application layer 
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in the Internet model usually provides functionality such as Telnet, FTP, the Simple Mail 

Transfer Protocol (SMTP), the Domain Name Server (DNS) Protocol, and World Wide 

Web (WWW). The Internet is formed by a group of separate networks worldwide that are 

connected through repeaters, bridges, routers, and gateways. A repeater just passes bits 

from one network to another at the physical layer, and is transparent to the higher layers. 

A bridge combines two networks at the data link layer. A router connects isolated 

networks at the network layer. A gateway bridges different subnetworks that have 

different transport protocols [Tanenbaum 1996]. Each host on the Internet has a unique 

address called IP Address that is 32 bits long. Each IP address corresponds to a name 

because people would like to remember machines by names not by a long string of 

numbers. DNS is used to map names of machines into their corresponding IP addresses 

respectively. More concepts and detailed explanations about IP, TCP, UDP, DNS, and 

WWW, etc. can be found in [Tanenbaum 1996] and [Comer 1988]. 

  

2.2 Brief Introduction to Wireless Networks 

Radio techniques started the wireless communication. They evolved into ocean vessel 

radio, vehicular mobile radio and aircraft radio. But the moving distance is limited. 

AMPS is the result of extensive research by Bell Labs in 1960s and 1970s [Redl 1998]. 

Since then the cellular idea has been widely accepted by the wireless world. The AMPS 

system is different from previous mobile radio systems in that it interfaces with PSTN. 

AMPS works by organizing a group of adjoining cells, each cell is managed by a base 

station (BS) and has the capacity of handoff when a client moves through the cell to 

another. The base stations are connected to public switch telephone networks (PSTN) 
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through the mobile switching centers (MSCs) by land links (see Figure 2.2.1). The client 

communicates with the BS that manages the cell the client is in wirelessly. AMPS is the 

first generation cellular system that is analogue. Europeans came up with a TDMA 

system, GSM, the second generation cellular system [Redl 1998]. GSM is a solution to 

transfer from analog to digital. The third generation is at the research stage now. 

 

  

 

 

 

 

 

Figure 2.2.1 

Before 1992 all cellular systems were analog. In analog cellular systems, the 

speech signal, a continuous smooth analog waveform, is encoded directly onto the carrier 

[Lee 1998]. Since 1992, most newly deployed cellular systems have been digital, this 

means that a sequence of 1s and 0s is transmitted rather than the analog signal. Digital 

systems are generally considered to be better than analog system. The problem with 

analog systems is that they are too sensitive to interference. For example, a small amount 

of change on the input signal can result in a big change to the output signal. Digital 

systems are less interference sensitive, and promise higher capacity for the same amount 

of radio spectrum than analog systems.  

FDMA, TDMA and CDMA [Gibson 1999] are ways of dividing up the radio 

spectrum so that a number of users can talk at the same time. It is commonly agreed that 
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TDMA and CDMA are much more efficient than FDMA. But arguments about whether 

CDMA was better than TDMA or whether the Qualcomm IS-95 cellular standard (now 

known as CDMAone) [Lee 1998] was better than the GSM cellular standard are still on. 

Jacobs and Viterbi claimed in 1991 that the CDMA cellular system had a capacity that 

was 20 or so times greater than any other cellular system in existence [Gibson 1999]. 

However, at the present time CDMA systems provide a capacity probably around 30% 

greater than TDMA systems, far below what Jacobs claimed [Gibson 1999]. And CDMA 

system components cost more than TDMA components. 

In the design of wireless networks, requirements of voice and data services are 

different. For voice services the delay should be minimized as much as possible. If the 

delay is longer than 100 ms, the listener can notice the delay and feel uncomfortable 

[Pahlahvan 1994], and the voice service becomes unacceptable. But the delay in a data 

network is generally acceptable to the data user. Though voice services cannot bear 100 

ms delay, they can tolerate a packet loss rate that can be as high as 0.01 [Pahlahvan 

1994]. On the contrary, data services do not permit any packet loss. No one wants to 

download a file with errors since it is useless.  

Usually there are two types of wireless data networks that serve different purposes: 

Wide-Area Systems and Local-Area Systems. Wide area wireless data systems are 

designed to provide high mobility, wide area coverage, but the data transmission speed is 

low. They typically provide various short-message applications such as notice of 

electronic mail and performing transaction services. Local area wireless data systems are 

often designed to support a limited number of users in a small area, but the data 
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transmission speed is high. They typically support various local applications such as long 

file transfers or printing tasks that require high speed [Garg 1997]. 

Newly developed technologies such as WAP make it possible for devices like cell 

phones, PCs and PDAs to access the Internet. WAP has a layered architecture that makes 

WAP scaleable and extensible. WAP exists on top of GSM, CDMA, CDPD, etc. 

 

2.3 Performance Issues 

Performance is critical for client/server type systems. Many researchers are developing 

new techniques that can improve performance. Results obtained by studying traces can 

provide guidelines for performance studies. 

For the WAP model, the time needed to complete a request include the processing 

time at client, gateway, WWW and any devices in between, and queuing time at gateway, 

WWW and intermediate routers in between. To guarantee a quick response to a request, it 

is important to have enough network resources (bandwidth and buffer sizes) to deal with 

the peak load in the network. If the network resources are limited it is necessary to 

control the amount of data that is sent into the network to avoid congestion. Through 

caching, the number of client requests sent to distant server can be reduced. But for the 

wired network part, we cannot control the traffic volume because of its being shared by 

everyone who can access the Internet. The correct match of network and server resources 

to anticipated demands and the careful design of caching schemes can improve the 

quality of the services provided by the systems.  

 

2.4 Related Work 
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Due to the fast expansion of the networks, especially the Internet and newly available 

digital data services by all kinds of handsets, total traffic has increased enormously. 

Many efforts focus on network measurement and performance and dimensioning studies 

of networks. There exists a lot of literature about Internet behavior in recent years.  

 

2.4.1 Characterizations of Internet Traffic 

The first step to characterize the network traffic is to measure traffic flow on the 

networks. Depending on what aspects to study and what information is needed, people 

can choose to measure traffic on the client side, on the proxy side, on the server side, or a 

combination of these. The measurement can be at the packet level, at the TCP level, or at 

the application level. Decision on which level to use may be based on factors such as 

which level can provide the necessary information and which level is possible technically 

and legally.  

More information can be obtained by measuring on the client side, but often it is 

difficult. For measuring WWW traffic on the client side, the difficulty is that it is hard to 

modify WWW browsers in order to record user behavior related data. Moreover we 

cannot guarantee that the characteristics of the user’s behavior that has been studied are 

the same as other users.  

[Catledge 1995] studied client behavior in the WWW in 1994. They modified 

Mosaic into Xmosaic and recorded three-week traces at the Georgia Institute of 

Technology. The number of clients was 107. The results revealed the way people used 

Mosaic that was the most often used browser at that time. By analyzing the traces they 

found people liked to search back and forth from the initial page. This provided a solid 
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base for behavior model building. In the same year, the Boston University Oceans Group 

conducted another study on a larger scale that had over 600 users and lasted over six 

months. They also used Xmosaic. The obtained traces were used widely. [Cunha 1995] 

and [Crovella 1997] found that the distributions of transmission times and document sizes 

versus number of requests were Pareto. The distribution of document popularity follows 

Zipf’s distribution. [Crovella 1995] and [Crovella 1997a] demonstrated that WWW traffic 

had the nature of self-similarity.  

Many researchers like to study WWW traffic by analyzing proxy traffic traces, 

because there are more proxy traces available than client traces. But many of these 

studies focus on improving caching algorithms only. [Leland 1994] studied the traces 

collected on several Ethernet LAN’s at the Bellcore Morristown Research and 

Engineering Center from August 1989 to February 1992. They reported self-similarity of 

the traffic and gave H = 0.8, after analyzing a sample of 27 hour (sampling time interval 

is 10 ms) by variance method, R/S plot, and periodogram plot. [Paxson 1995] analyzed 

24 traces of wide-area TCP traffic. The traces they used were from Bellcore, UK-US, 

coNCert, etc. They reported self-similarity of the network traffic, but did not give the H 

value (H is a Hurst parameter used to describe the degree of self-similarity). [Abdulla 

1997a] did spectral analysis to the proxy traces, and found the bursty behavior of the 

traffic and predictable daily and weekly periods. [Abdulla 1997c] conducted an extensive 

analysis of proxy logs from ten sources, and claimed finding nine invariants. They also 

revealed that the Hurst parameter varies between 0.59 and 0.94 across all proxy traces 

and added this finding as another invariant. [Thompson 1997] measured traffic on the 

OC3 link of the network at the U.S. East Coast. The daily traffic pattern and weekly 
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traffic pattern are obvious. The rate of traffic flow ranges from 10 Megabits/sec to 55 

Megabits/sec. They also described proportions of many components in the traffic such as 

WWW, DNS, SMTP, FTP, and TELNET. [Mah 1997] used the tcpdump-capture utility 

to record TCP/IP packet headers on a shared 10 Mbps Ethernet in the Computer Science 

Division at the U. of California at Berkeley in late 1995. The results showed that HTTP 

requests exhibit a bimodal distribution and the sizes of HTTP replies are heavy-tailed. 

[Arlitt 1999b] studied the effects that cable modems have on proxy workloads. The data 

were collected at an Internet Service Provider (ISP) from January 3, 1997 to May 31, 

1997. They found that users were more likely to download extremely large files if they 

had faster access speed.  

Another important way to study Internet traffic is to measure the traffic flow on 

the server side and analyze the collected traces. There are many published papers about 

WWW server studies. [Mogul 1995] analyzed traces obtained from the Californian 

congressional election server set up by DEC on November 9, 1994. He found that the 

inter-arrival time of requests did not fit a pure Poisson process. [Arlitt 1996] conducted 

an extensive analytical study, and claimed ten invariants that were consistent with results 

of many other researchers. The periods of the traces that he used in his research vary 

from one week to one year. [Almeida 1998] did analysis on access logs from NCSA, 

SDSC, EPA, and BU during the fall of 1996. They found that popularity for documents 

served by Web sites and sequences of requests from clients follow Zipf’s Law. [Arlitt 

1999a] gave a detailed workload characterization study of the 1998 World Cup Web site 

and compared them to those obtained from other Web server workloads. The data were 

measured from the 1998 World Cup Web site for a period of three months. The authors 
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revealed that caching at Web clients, proxies and within the network would change the 

workload that could be seen by Web servers. 

 

2.4.2 Web Traffic Models 

SPECweb96 [SPEC 1996] and WebStone [Silicon 1996] are commonly used benchmarks 

to generate Web server access patterns and to analyze Web server performance issues. 

WebStone issues as many requests as possible from synchronous clients, and thus can 

measure the maximum request rate that a Web server can sustain. WebStone is merely 

used to test the system capacity, and it is not capable of characterizing the burstiness, 

trends, interdependencies and seasonal behavior of requests. SPECweb96 has the same 

problems as WebStone, but it can characterize delays between client requests.  

 [Mathur 1996] constructed an empirical workload model fitting time-varying 

trace data. The trace is modeled as a piecewise independent stochastic process. This 

model is appropriate to generate trace data that can be considered as a time series. But the 

key assumption in the model is not valid in real cases. 

 [Lam 1996] presented a realistic model for PCS. The model was claimed to 

capture complex human behaviors. Based on the model the authors developed Pleiades, a 

discrete event simulator. But the validation of Pleiades on large-scale tests is not 

provided. 

[Barford 1997] developed a tool called SURGE. Based on statistical distributions 

in WWW server usage SURGE can generate traffic that is very close to the real world. In 

SURGE, the distributions of parameters such as file size, locality, etc., are used as the 

inputs. These distributions of the parameters can be derived from experiments. SURGE 
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can simulate Web sites very well statistically. SURGE can also mimic the behavior of 

real clients. The workload generated by SURGE is more close to the real world than the 

workload generated by SPECweb96 and WebStone. SURGE can keep a larger number of 

open connections at the same time and can generate self-similar network traffic at heavy 

loads.  

 [Mah 1997] provided an empirical model that could mimic WWW network 

applications. But the server selection distribution in the model is not changeable and the 

relationships between the different model components are not investigated. [Mah 1998] 

developed an IP Benchmark (IPB). IPB can synthetically generate traffic to simulate the 

network activity of common Internet applications and thus be used to measure HTTP 

performance. But IPB does not include enough traffic types and updated models of 

existing applications. [Almeida 1998] provided a model, called the Wisconsin Proxy 

Benchmark (WPB). This model can simulate the request streams according to the 

temporal locality patterns that are common to Web proxy servers.  

[Iyengar 1998] developed a tool called Flintstone. This model uses statistical 

methods to isolate and characterize the trends, interdependencies, seasonal behavior and 

noise in the access patterns. Flintstone provides an effective approach for predicting peak 

request rates for analyzing and characterizing Web access patterns. Flintstone can also 

generate realistic workloads for benchmarking Web servers. SPECweb96 and WebStone 

cannot generate inter-request times that are based on actual Web request data. In contrast, 

Flintstone generates request data that reflects the trends, burstiness, interdependencies 

and seasonal behavior that occur in real situations. Flintstone also generates request 

traffic that can be scaled to different arrival rates. Later, the authors extended the 
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methodology of Flintstone by introducing the logARIMA, or eARIMA, process. The 

extended model can incorporate heavy tailed distributions together with a set of time 

series processes, in addition to addressing the trends, interdependencies, seasonal 

behavior and noise of non-stationary time series data. 

[Choi 1999] presented a behavior model of Web traffic. It defines a new unit, a 

Web-request, different from a traditional Web page. It can simulate detailed dynamics of 

TCP/IP as well as HTTP.  

 

2.5 Summary 

In this chapter, we briefly introduced data and wireless networks. Then we discussed 

some performance issues, and reviewed related work about Internet traffic analysis and 

different benchmarks. Benchmarks are not the primary concern in this work. We will 

focus on the Internet traffic characterizations. However, the results reported in this thesis 

could be used to design appropriate benchmarks for WAP applications. 

 

 

 

 

 

 

 

 

Chapter 3: Analytical Results of Trace Files 
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In this chapter, we will introduce the trace files used in the work and give basic analytical 

results. We also put forward a layered forecasting model and show several examples of 

the application of the model. In order to express the results more clearly we give the 

following definitions. 

• Forward packet (f-packet): a packet that is transferred from the server to the client. 

• Backward packet (b-packet): a packet that is transferred from the client to the 

server. 

• Client IP address: an IP address that is assigned to a client during a session. 

• numIPe: number of unique client IP addresses in forward packets.  

• numIPs: number of unique client IP addresses in backward packets.  

• numIP: number of unique client IP addresses in all packets.  

• t-traf: total traffic, sum of forward traffic and backward traffic. 

• f-traf: forward traffic, sum of all forward packet sizes. 

• b-traf: backward traffic, sum of all backward packet sizes. 

• t-packet: total number of packets, including forward packets and backward packets. 

• f-packet: total number of forward packets. 

• b-packet: total number of backward packets. 

• t-a-p: average packet size, over all forward and backward packets. 

• f-a-p: average forward packet size. 

• b-a-p: average backward packet size. 
 

3.1 Trace Files 
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The trace files used in this work are obtained from Bell Mobility’s cellular network, 

located in Quebec and Ontario. The cellular network consists of base stations and 

interworking functions (IWFs). IWF functions like the MSC in Chapter 2. The measured 

point is at the Gateway server that connects the Internet and IWFs of Bell Mobility’s 

network, see Figure 3.1.1. TCPDUMP is used to record the UDP packets to and from the 

Gateway server that has the unique IP address 161.216.17.21. The services provided by 

the Bell Mobility cellular network are client-server type. The clients make queries to the 

server, and the server provides answers to the clients.  

 

 

 

 

 

Figure 3.1.1 

 

The trace files are recorded continuously. But sometimes, the trace files are not 

recorded for failures of equipment. In July 1999, trace files of the whole month are 
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time. Trace files in October, November, and December, are available without a hole.  The 

information in the trace file includes the IP address of the sender, the timestamp that is 

created at the collector, the size of the UDP packet, the IP address of the receiver. 

Because we know the IP address of the server, we can distinguish forward traffic from 

backward traffic. We can characterize the traffic over several time scales, e.g., 1 second, 

1 minute, 1 hour, 24 hours, 7 days and 1 month. All the trace files are pre-processed so 

that they are more easy to read and more easy to further process. Each line in the pre-

processed trace files has the same format. Each field in the line is separated by a space 

from another field. An example is as follows:   

9 7 1999 16 14 25.33 207.38.2.5 8502 161.216.17.21 1908 12 

The first field is month, 9 means September. The second field is day, 7 means the 7th day 

in the month. The third field is year, which is 1999 here. The fourth field is hour of the 

day, and it is 16 here (i.e. 4PM). The fifth field is minute. The sixth field is second. The 

seventh field is the IP address of the sender. The eighth field is the port used by the 

sender. The ninth field is the IP address of the receiver. The tenth field is the port number 

used by the receiver. The number 12 in last field means that the payload in the UDP 

packet is 12 bytes. This number does not include the UDP header, which are 8 bytes, and 

IP header, which are 20 bytes. So the packet size for each UDP packet should add 28 

bytes to the payload. For the example above, the size of the packet is 40 bytes. 

The sequence of numbers, 161.216.17.21, is one unique IP address assigned to the 

server. In the above example, the packet is transferred from the client to the server, so it 

is a backward packet. The trace collection is continuing every day. We cannot update the 

data all the time. We only use the trace files from July 1, 1999 to December 31, 1999 in 
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this work. Some update of the results may be needed when we include new trace files for 

analysis. 

 

3.2 Statistical Results of the Trace Files 

In this section, we will provide some statistical properties of the trace files and plot the 

traffic in different ways. These will give us a global view of the traffic during the above 

period. 

The inter-arrival time means the time interval between the timestamps of two 

consecutive packets in the same direction. The statistical results are shown in Table 3.2.1. 

Some useful information can be deduced from the table. First, there are more backward 

packets than forward packets. Second, the average backward packet size is smaller than 

the forward packet size. Third, backward packet sizes are closer to the average backward 

packet size than forward packet sizes are to the average forward packet size (smaller 

variance). 

Table 3.2.1 Statistical Results of the Trace Files 
 Maximum Minimum Total number Mean Variance 

All  
Packets 

1485 
bytes 

30 bytes 6884602 
packets 

94.09 100.8 

Backward 
packets 

1105 
bytes 

30 bytes 4366001 
packets 

52.72 15.84 

Forward  
Packets 

1485 
bytes 

31 bytes 2518601 
packets 

163.73 141.82 

Backward inter 
Arrival time 

53001.07 
seconds 

0 seconds 4365830 3.33 68.32 

Forward inter 
Arrival time 

19786.61 
seconds 

0 seconds 2518430 5.75 84.84 
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Figure 3.2.1 

 

 
Figure 3.2.2 

 

 
Figure 3.2.3 
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Figure 3.2.4 

 
Figure 3.2.5 
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the arrival process of backward packets, which traditionally is considered to follow a 

poisson distribution. 

For all packets, the number of packets in the range of 30 bytes to 50 bytes 

accounts for a majority of packets, 63.8%, but account for only 26.9% to 40.5% of total 

traffic volume. Similar conclusions can be obtained for backward packets and forward 

packets. That means, though the number of large size packets is small, they account for a 

large percentage of traffic that cannot be ignored. 

The traffic pattern of July 1, 1999 to December 31, 1999 is shown in Figure 3.2.6. 

August 25, 1999 to September 6, 1999 is the hole in the trace files. We can see that traffic 

volume has a sharp increase around Oct. 12, 1999. This may be caused by the 

introduction of new services that trigger more customers to use the network more 

frequently. If we describe the traffic by the number of packets instead of bytes, we get a 

similar pattern (see Figure 3.2.7). 

 
Figure 3.2.6 
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Figure 3.2.7 

 

3.3 Traffic Invariants 

One aim of trace file analysis is to find traffic invariants that can provide sound 

foundation for traffic forecasting. Traffic volume varies with day, but average packet 

sizes of each day are constants, see Figure 3.3.1. We also find two ratios of each day are 

constant. For each day, we define  

r-pk = number of backward packets / number of forward packets,  

r-vlm = forward traffic volume /  backward traffic volume. 

As shown in Figure 3.3.2, r-pk and r-vlm seem to be constant over time. More 

surprisingly, the average of the r-pk series is 1.74667, and the average of the r-vlm series 
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Figure 3.3.1 

 

 
Figure 3.3.2 

 

From Figure 3.3.3, we can see that the number of different client IP addresses per day is 

linearly increasing with time (especially to the right part of the hole). We claim the rate 

of increase is a constant. The number of unique client IP addresses in backward packets is 

equal to the number of unique client IP addresses in forward packets for most of the days. 

Comparison of r-pk and r-vlm

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

time unit = 1 day

r-pk
r-vlm

Average packet size from July 1 to Dec.31 1999 

0
30
60
90

120
150
180
210

0 20 40 60 80 100 120 140 160 180

time unit = 1 day

pa
ck

et
 s

iz
e t-a-p

f-a-p

b-a-p



 29

For few days the two numbers are different, but the difference is small. There are more 

times that the first number is greater than the second number.  

 

 
Figure 3.3.3 

 

3.4 Analytical Results 
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Figure 3.4.1 
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Figure 3.4.2 
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1/0.03125(days) = 32 (days). Half week period is not very obvious, T0 = 1/0.28125 

(days) = 3.56 (days).  In Figure 3.4.4, the sampling unit is 1 hour, the day period is the 

main component, T1 = 1/0.041504 (hours) = 24.094 (hours). The half day period is not 

very obvious, T = 1/0.083496 = 11.9766(hours). The week period is not very obvious, T2 

= 1/0.005859 (hours) = 170.6776 (hours) = 7.11 (days).  

We also perform spectral analysis on data shown in Figure 3.3.2 and Figure 3.3.3, 

and find that the number of client IP address and r-vlm give an obvious weekly period, 

but r-trans does not. 

 
Figure 3.4.3 

 
Figure 3.4.4 
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To investigate the self-similarity of traffic, we use Absolute Value Method 

(AVM) and Variance Method (VM) [Taqqu 1997] to calculate H values of our traces. We 

did this laborious work for each day trace. For each day trace, we define low traffic part 

(00:00AM to 11:00AM for the first calculation, 1:00AM to 6:00AM for the second 

calculation), and high traffic part (11:00AM to 10:00PM for the first calculation, 

10:00AM to 3:00PM for the second calculation), and calculate H values for both parts. 

The reason that we divide a day traffic into high and low part is that we want to find if the 

traffic volume is a fact that will influence the degree of self-similarity. We found H 

values are from 0.70 to 0.92. We also calculate H values for the traffic series from July 1, 

1999 to August 24, 1999, H = 0.84, and the traffic series from September 14, 1999 to 

December 31, 1999, H = 0.86. We start from September 14, because we find that the 

traces on September 7 and 13 are only half day, not continuously.  H is the Hurst 

parameter that refers the degree of self-similarity. For AVM, H = 1 + r; for VM, H = 1 + 

r/2, where r is the slope of the line plotted by AVM and VM. We use least square method 

to obtain the slope of lines here. H should be within 0.5-1.0. The closer H is to 1 the 

higher is the degree of self-similarity. More details can be found in [Leland 1994]. As 

examples, we only give the absolute value plot and variance plot for July 1 1999, see 

Figure 3.4.5 to Figure 3.4.8. 
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Absolute Value Plot of High Traffic on July 1 1999
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Figure 3.4.5 
 
 

Absolute Value Plot of Low Traffic on July 1 1999
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Figure 3.4.6 
 
 

Variance Plot on High Traffic of July 1 1999
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Figure 3.4.7 
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Variance Plot on Low Traffic of July 1 1999
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Figure 3.4.8 

 
 
3.5 A Layered Forecasting Model  

One aim of studying trace files is to predict the traffic and other properties in the future. 

There are many books and papers related to prediction of time series, which is a big topic 

by itself. The commonly used way is to provide a formula according to the existing data. 

The parameters are continuously updated with the arrival of newly collected data. 

Sometimes the formula needs to be modified or totally changed if the newly collected 

data reveal properties of the time series that were not found at the beginning. Here we 

introduce a simple layered prediction model to predict the future traffic. We can define as 

many layers as necessary. Here we choose three layers: day layer, hour layer and minor 

layer (minor layer can also be divided into layers like minute layer, second layer, 

millisecond layer, etc.). At each layer, we can use the existing model that suits our time 

series. All we need to do is to fill in the parameters according to our data. This layered 

prediction model is flexible. Each layer can have a different model, i.e., at different time 

scale the traffic can have different properties.  
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Day Layer:  

In day layer, the day traffic is predicted by using the weekly traffic pattern and global 

trend. The model is expressed as P = T + S + R, where P is the predicted day traffic, T is 

the global trend, S(i), i = Sunday,…,Saturday, is the determined seasonal part. The 

seasonal part has a period of a week. R is the random part within a range observing a 

distribution that is usually normal. The center of the range is zero.  

By observing the traffic pattern in Figure 3.2.6, we find that there is a step change 

in Oct.12, 1999. The traffic before Oct.12, 1999 (low part) and after Oct.12, 1999 (high 

part) both show weekly periods, but have no increasing trend, so T = 0.  

The statistical results of the seasonal part are shown in Table 3.5.1. The average 

weekly traffic pattern is shown in Figure 3.5.1, where ‘w’  means ‘whole’ , which refers to 

the complete period from July 1, 1999 to Dec. 31, 1999. 

 
Table 3.5.1 Statistical results of weekly traffic 

        1.0e+06 *   Sun. Mon. Tue. Wed. Thu. Fri. Sat. 

Mean 
(bytes) 

1.17 
 

2.11 
 

2.56 
 

3.12 
 

2.98 
 

2.90 
 

1.50 
 

Error 
Range 

(-0.34, 
 0.48) 

(-1.14, 
 1.18) 

(-1.91, 
 1.28) 

(-0.42, 
 0.70) 

(-0.96, 
 1.46) 

(-0.76, 
 0.70) 

(-0.40, 
 0.39) 

Low 
Part 

Var. 0.25 0.79 0.87 0.30 0.66 0.39 0.26 

Mean 
(bytes) 

3.13 5.81 5.75 6.35 6.69 6.22 3.73 High 
Part 

Var. 0.44 0.89 1.10 0.83 1.05 1.24 0.53 
Mean 
(bytes) 

2.07 3.81 4.05 4.73 4.76 4.49 2.52 Whole 
Part 

Var. 1.06 2.05 1.86 1.76 2.08 1.91 1.20 
 
 

Christmas is in December, so the weekly pattern in the high part is more oscillated than 

the weekly pattern in the low part (see the variance in the table). And for that reason, we 
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only give the error ranges of the week pattern in low part. In the low part, there are 12 

Wednesdays, the rest have 13 samples. It appears that the samples are not large enough, 

we find the errors are not normally distributed. To see the step change at Oct. 12, 1999 

more clearly, we plot the average day traffic of each month in Figure 3.5.2. The patterns 

of Monday to Sunday are similar, we only show Monday traffic pattern in Figure 3.5.3. 
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Figure 3.5.1 
 
 
 

Average Daily Traffic of Each Month
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Figure 3.5.2 
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Figure 3.5.3 

 
 
To predict the traffic of a day, we first determine which weekday it is. Assume it is 

Monday and it is in the low part period, then we can predict the traffic of the day by the 

value of Monday during the low part in Table 3.5.1, plus a random number within the 

range of -1.14 MB to 1.18 MB. The trend part T is 0 because there is no trend. As an 

example, we predict the hole that is missing in our trace files (see Table 3.5.2). 

Table 3.5.2 Predicted daily traffic of the missing hole in the low part 
 Seasonal Part Random Part Prediction 
Aug. 25 (Wed.) 3.12 MB 0.23 MB 3.35 MB 
Aug. 26 (Thurs.) 2.98 MB -0.72 MB 2.26 MB 
Aug. 27 (Fri.) 2.90 MB -0.11 MB 2.79 MB 
Aug. 28 (Sat.) 1.50 MB 0.31 MB 1.81 MB 
Aug. 29 (Sun.) 1.17 MB -0.01 MB 1.16 MB 
Aug. 30 (Mon.) 2.11 MB 0.05 MB 2.16 MB 
Aug. 31 (Tue.) 2.56 MB 0.15 MB 2.71 MB 
Sept. 1 (Wed.) 3.12 MB 0.01 MB 3.13 MB 
Sept. 2 (Thurs.) 2.98 MB 0.21 MB 3.19 MB 
Sept. 3 (Fri.) 2.90 MB -0.40 MB 2.50 MB 
Sept. 4 (Sat.) 1.50 MB -0.04 MB 1.46 MB 
Sept. 5 (Sun.) 1.17 MB 0.44 MB 1.61 MB 
Sept. 6 (Mon.) 2.11 MB 1.2 MB 3.31 MB 

 

Figure 3.5.4 shows the predicted traffic. Figure 3.5.5 shows the traffic pattern after the 

hole is mended. We can see the hole is mended very well. According to the r-vlm (a 
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constant), we can get backward traffic and forward traffic. Similarly, we can predict the 

daily traffic after October 12, 1999 (high part). 

 
Figure 3.5.4 

 
 

 
Figure 3.5.5 

 
 
 
Hour Layer: 

Suppose we obtained the predicted traffic of a day. The pattern of daily traffic is assumed 

to be the same for all days (an invariant). The ratio of forward traffic to backward traffic 

is a constant. Then we can obtain the traffic pattern of that day in hour time unit by 

splitting the total traffic among the different hours by their ratios. The ratio is provided in 

the following table. 
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Table3.5.3 Proportions of each hour traffic in daily traffic 

Hour Proportion 
0 – 1 0.019 
1 – 2 0.011 
2 –3 0.0064 
3 – 4 0.0044 
4 – 5 0.0029 
5 – 6 0.0035 
6 – 7 0.0067 
7 – 8 0.015 
8 – 9 0.028 
9 – 10 0.047 
10 – 11 0.061 
11 – 12 0.072 
12 –13 0.074 
13 – 14 0.075 
14 – 15 0.078 
15 – 16 0.079 
16 – 17 0.078 
17 – 18 0.069 
18 – 19 0.060 
19 – 20 0.057 
20 – 21 0.045 
21 – 22 0.042 
22 – 23 0.037 
23 – 24 0.029 

 

As an example, the predicted volume of traffic for Sept. 6 is 3.31 MB. If we split 3.31 

MB among the time intervals according to their proportions, we can get the daily traffic 

pattern. Also we can get backward traffic and forward traffic by using r-lm = 1.75, see 

Figure 3.5.6. 
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Figure 3.5.6 

 
 
Minor Layer: 

We can also predict the traffic in smaller time scales than 1 hour. Assume we know that 

traffic volume on a specific day from 10:00am to 11:00am is V bytes, and we want to 

know the flow pattern on a scale of a second. The former results guarantee us that traffic 

is self similar from 10:00am to 11:00am up to a scale of 15 minutes, so we can use an 

existing self-similar traffic producer to generate the traffic, with the condition that their 

aggregation is V bytes. We are not going to do this in this work, because we do not do 

traffic simulation here. In the following we give two examples of prediction at the day 

layer only.  

 
 
Example 1: Forecast of the Number of Unique Client IP Addresses in January 2000 
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We use the average of all the ratios as the common ratio for each day in a week for 

simplicity. The common ratio is (11.6 + 13.7 + 12.1 + 12.3 + 10.0 + 11.8 + 14.2)/7 = 12.2 

(of course we could also use these ratios separately). We use the model at the day layer 

(i.e., P = S + T + R). To reduce the error (influence of the Christmas in December), we 

use the average numbers of unique IP addresses of the last 3 weeks (from Dec. 10, 1999 

to Dec. 31, 1999) as the determined weekly seasonal values. The weekly seasonal values 

are 357, 394, 407, 450, 464, 434, and 352 in the order of Sun., Mon., Tue., Wed., Thurs., 

Fri., and Sat. The trend part is linear, so T = 12.2 *  j, where j indicates the jth week in 

Jan. 2000, j = 1,2,3,4,5. R is omitted for simplicity and its minor effect. For example, we 

predict the number of unique IP addresses on Jan. 28, 2000. Jan. 28, 2000 is the 4th 

Friday, so S = 434, j = 4, T = 12.2 *  4 = 48.8, and the predicted number of unique IP 

addresses on Jan. 28, 2000, is P = S + T = 482.8. Similarly, Jan. 29, 2000 is the 5th 

Saturday, so j = 5, and the predicted number of unique IP addresses on Jan. 29, 2000, is P 

= S + T = 352 + 12.2 *  5 = 413. The predicted numbers of unique client IP addresses and 

the actual data derived from our trace files for each day in Jan. 2000 is shown in Figure 

3.5.7. The prediction is close to the real data. 

 

 
Figure 3.5.7 
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Example 2: Traffic Forecast for January 2000 

The traffic increase trend of the high part is not obvious. The average daily traffic in 

December is 5.40e+6 bytes. The average daily traffic in November is 5.37e+6 bytes. 

Considering the effect of the Christmas in December, we use the average traffic of the 

first 23 days in December. It is 5.90e+6 bytes, lager than the former one as expected. We 

calculate the traffic increase ratio as (5.9 – 5.37)/4 = 0.133, with dimension of MB/week. 

We use 4 as the divisor because there are roughly 4 weeks in a month. We use the high 

part weekly traffic in Table 3.5.1 as the seasonal values. The trend part T = 0.133 *  j, 

where j = 1,2,3,4,5. P = S + T, R is omitted for simplicity and its minor effects. The 

predicted traffic in January 2000 is shown in Figure 3.5.8. The prediction is less than the 

real data for the last two weeks, especially for the last week. That means we need to 

update the parameters for further forecasting. Preliminary study of the trace data 

collected since Jan. 2000 shows that the traffic increased more than linearly during the 

first four months of the year.    

 

 
Figure 3.5.8 

 
 
 

Prediction of the traffic in Jan. 2000

0
2
4
6
8

10
12
14

1 6 11 16 21 26 31

time unit = 1 day

vo
lu

m
e 

in
 M

B

prediction

real data



 43

3.6 Summary 

In this chapter we discussed properties of the traces that we collected: 

• The number of unique IP addresses assigned to the client increases linearly with 

time after September 7, 1999. The slope is 1.8 with dimension 1/day. It also has a 

weekly period.  

• Average packet sizes of each day are time-invariant.  

• The ratio of forward traffic volume to backward traffic volume and the ratio of 

number of backward packets to number of forward packets are constant.  

• Daily traffic pattern and weekly traffic pattern are obvious in both time and 

frequency domains. And the patterns do not change over time. 

• The traffic is self-similar. H values range from 0.70 to 0.92. 

We also provide a layered model to provide future predictions. The layered prediction 

model is flexible, easy to understand, and easy to use. The examples show that the model 

can provide reasonably exact predictions. They also indicate that prediction models by 

necessity are based on assumptions about long-term trends. The accuracy of predictions 

is limited by the accuracy of the long-term trend estimate. 
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Chapter 4: Session Analysis of Trace Files 

 

In this chapter, we will do some further session analysis of trace files and discuss the 

results. 

  

4.1 Necessary Terminology and Notations 

First we give some definitions only valid in this work. This is necessary because the same 

term may have different meanings in different places. For example, ‘session’  often means 

a user’s complete application session in WWW traffic research. The session starts with 

the user starting a browser and ends with the close of the browser. In the middle of the 

session, the user can open several frames at the same time. But it needs much information 

about the users to seek the start and end of a user’s session from traces that are usually 

recorded on the user’s side. The trace files that we use in this work are measured on the 

server’s side. So we do not have information to distinguish different users. To catch the 

user behaviors as close as possible from our trace files, we give two definitions of a 

session (see the definitions below). A session should always be initiated by a request of a 

client, so we think the first definition of a session is more reasonable. Actually, these two 

definitions give almost the same results after comparison. Our trace files are the records 

of Mobile Browser applications in which the client IP address is assigned dynamically. 

We cannot distinguish different users by unique client IP address, but we use unique IP 

address to distinguish different Mobile Browser applications plus a timeout condition. 

Clearly it is not true all the times. For example, if the client takes a long time to read the 

contents on the Browser, or if the client does something else in between a Browser 
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application, the one complete application session will have more than one client IP 

address. But we believe these cases are not the dominant ones according to our 

experience in using browsers. The session we defined can represent a Mobile Browser 

application session reasonably well. Next we give the definitions of a session and some 

terminologies and notations that can help us describe our concepts clearly and concisely. 

 

Forward link: a link that directs from the server to the client. 

Backward link: a link that directs from the client to the server. 

Critical interval: noted as C-I, is the one of the conditions in session definition. The 

time interval between any two consecutive packets in a session must be less than this 

value. In this work the critical value is set to be 90 seconds. 

Session:  

Definition 1: a session must satisfy the following three conditions: 1. It is composed of a 

series of packets that form the forward link traffic and the backward link traffic. The 

client IP addresses of packets must be the same one that implies they are from and to the 

same client. 2. The time interval between the any two consecutive packets must be less 

than 90 seconds, the critical interval (C-I). 3. The starting packet of the session must be 

the backward packet. This implies that a session always starts with the request of the 

client.  

Definition 2: same as definition 1, except that the third condition is dropped. 

Incomplete Session: an incomplete session is composed of a series of packets that are 

either forward packets or backward packets, but not both. The time interval between any 

two consecutive packets must be less than 90 seconds. 
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f-session: an incomplete session that contains only forward packets. 

b-session: an incomplete session that contains only backward packets. 

Hold time: noted as h-t. It indicates the time allocated to the link as full rate when there 

is no transmission in the link. In each session, the forward link and backward link are 

only dedicated to this session at full rate for the period of h-t, if there is no traffic. After 

h-t, the transmission capacities are used for other sessions and link bandwidth is reduced 

to 1/8 rate if there is still no traffic. h-t may be longer than 90 seconds. 

Session start: noted as s-s. Let the load of the first packet in a session be S bytes, the 

time stamp of the packet is t minutes, and the transmission speed is v bytes/minute. s-s = t 

- S/v, if the first packet of the session is a backward packet. s-s = t, if the first packet is a 

forward packet. 

Session end: noted as s-e. Let t be the time stamp of the last packet in a session, load of 

the packet is S bytes, and the transmission speed is v bytes/minute. s-e = t, if the last 

packet of the session is a backward packet. s-s = t + S/v, if the last packet is a forward 

packet. It means the session ends right after the arrival of the last packet, which can be 

caused by the power off. We do not consider the h-t after the last packet. Neglecting h-t 

after the last packet in a session allows us to capture how long the client is using the 

session. 

Session size: noted as s-size, is the number of bytes contained in a session. 

Session length: noted as s-len. We define s-len = s-s – s-e. 

Forward session length: denoted as f-len, the full-rate period of the forward link in a 

session. 
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Backward session length: denoted as b-len, the full-rate period of the backward link in a 

session. 

Backward link utilization: noted as b-ut, is the percentage of the time devoted to the 

backward link in full rate (or plus 1/8 rate period) during a session. See Figure 4.1.1 and 

the example. 

Forward link utilization: noted as f-ut, is percentage of the time devoted to the forward 

link in full rate (or plus 1/8 rate period) during a session. See Figure 4.1.1 and the 

example. 

Activity factor: either b-fact or f-fact. 

b-fact: percentage of the s-len used in transmission of data in backward link. 

f-fact: percentage of the s-len used in transmission of data in forward link. 

 

 

 

 

 

 

 

Figure 4.1.1 

 

As an example, see Figure 4.1.1, where ‘ t’  indicates timestamp, ‘ th’  means the end of 

hold time, ‘ ts’  means the start of transmission time for backward packets and the end of 

transmission time for forward packets. The figure shows a session, so the difference of 

time 
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  ts1       t1 ts2    t2               t3      ts3          ts4    t4          t5     ts5   t6      ts6     

r: backward packet; a: forward packet; t: timestamp;  s: transmission; h: hold 
Transmission time of packet load 

   s-s         

Hold time 

s-e 
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any two consecutive timestamps is less than 90 seconds. According to the definition 

above, 

s- len = ts6 – ts1, 

b-len = (th2 – ts1) + (th4 – ts4), only full rate case; 

f-len = (th3 – t3) + (t6 – t5), only full rate case; 

b-len = (th2 – ts1) + (th4 – ts4) + (ts4 – th2)/8 + (ts6 – th4)/8,  full rate plus 1/8 rate case; 

f-len = (th3 – t3) + (t6 – t5) + (t3 – ts1)/8 + (t5 – th3)/8, full rate plus 1/8 rate case; 

b-ut = b-len/s-len, 

f-ut = f-len/s-len, 

b-fact = ((t1 – ts1) + (t2 – ts2) + (t4 – ts4))/s-len, 

f-fact = ((ts3 - t3 ) + (ts5 – t5) + (ts6 – t6))/s-len. 

 

4.2 Session Results 

In this section we will do analysis of sessions and present the results. The sessions used 

in our analysis do not include the incomplete sessions, and when we say session, we 

mean a complete session that includes both backward and forward packets according to 

Definition 1, unless noted otherwise. We believe most of these incomplete sessions are 

aborted Mobile Browser applications. For example, the client may stop the browser for 

an unexpected interrupt or due to his/her impatience. First we show the soundness of 

neglecting the incomplete sessions. After investigating all the trace files from July 1, 

1999 to December 31, 1999, we find an average day traffic volume is 3.8 MB, in which 

incomplete sessions account for only 0.4%, which is 12 KB. This implies that incomplete 

sessions can be neglected without influencing the analytical results much. 
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We are interested in various aspects in session analysis. Figure 4.2.1 shows the daily 

average number of sessions in each month. It is a step change pattern similar to the traffic 

pattern in Figure 3.5.2. We can conclude that the number of sessions per day is 

proportional to the traffic volume of that day. Figure 4.2.2 presents the average activity 

factor for each day, and clearly the end of December shows higher values than the rest. 

Contradictory to our initial intuition that would suggest that the average f-fact should be 

larger than the average b-fact (the fact that f-traf is larger than b-traf led us to this 

assumption), the result shows the reverse. This reveals the power and necessity of 

analysis, and proves that intuition cannot provide a sound ground for decision. We also 

find that the ratio of b-fact to f-fact is time-invariant, with a mean of 1.32 (see Figure 

4.2.3). Figure 4.2.4 and Figure 4.2.5 show the link utilization for different values of h-t. 

The increasing trend is very obvious at the end of December, which is consistent with the 

higher activity values at the end of December. We can conclude that link utilization is 

proportional to activity factors. It is clear from the graphs that the link utilization 

increases with increasing lengths of h-t, and also oscillates less. We also calculate the 

utilization of links including periods at 1/8 rate, and the results are similar.  
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Figure 4.2.1 

 
 

 
 

Figure 4.2.2 
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Figure 4.2.3 

 

 
 

Figure 4.2.4 

 
 
 

Average backward link utilization at full rate only, July 1, 1999 to Dec. 31, 1999
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Figure 4.2.5 

 

There are two important metrics of a session. One is session length, and the other is 

session size. After studying, we find that for each month around 80% of all sessions have 

a s-size that is less than 5000 bytes, around 90% of all sessions have a s-len of less than 4 

minutes. And sessions with s-len that is less than 4 minutes account for about 65% of the 

traffic volume. This implies we cannot ignore 10% longer sessions because they account 

for 35% of the traffic volume. The average concurrent sessions during a day in each 

month have the same pattern as the daily traffic pattern. By concurrent sessions we mean 

that sessions occur at the same period and more strictly, they overlap in time. We only 

show the graphs for July 1999 to save space. The results in other months are similar (see 

Appendix A). 
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Average number of concurrent session, July 1999
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Figure 4.2.6 

 

Accumulative distribution of s-size, July 1999
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Figure 4.2.7 

 

Accumulative distribution of s-len, July 1999
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Figure 4.2.8 
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Proportion of traffic volume versus s-len, July 1999
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Figure 4.2.9 
 

Average activity factors versus s-len July 1999
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Figure 4.2.10 

 

Figure 4.2.9 shows the average proportion of all the traffic volume that sessions with 

different s-len account for. We can see sessions with s-len <= 0.1 minutes account for the 

most part of the traffic volume of July 1999. The proportion decreases slowly after 

session length is greater than 1 minutes. The long sessions still account for quite a portion 

of traffic volume comparing to the short sessions. It is heavy tailed. 

We like to say few more words about Figure 4.2.10 because it explains why the 

average b-fact is larger than the average f-fact. We notice that b-fact is higher than f-fact 

in shorter sessions, with s-len <= 0.1 minute, and we also know that a large percent of 
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sessions are short. For longer sessions, which are much fewer than short sessions, f-fact is 

larger than b-fact. The average, however, is dominated by the shorter sessions.  

We also do session analysis based on Definition 2 of a session, and find the 

results almost do not change. In this work, critical interval (C-I) that is the second 

condition in session definition is set to be 90 seconds (90 seconds was a number given to 

us by Bell and also is based on timeout value in Microbrowser). We want to investigate 

the relationship between C-I and the number of sessions. It is clear that the number of 

sessions will decrease with the increase of C-I. We do this investigation for 24 trace files. 

Each month we randomly pick up 4 trace files, but make sure at least one is the trace file 

on a weekend. We believe this will give a conclusion that is valid for all trace files but 

saves us much laborious work. To save space, we just give test result on trace file of 

November 1, 1999. The result is shown in Figure 4.2.11. After 700 minutes, the number 

of sessions is almost constant, i.e., reaches the lower boundary that is the number of 

unique client IP addresses. 
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Figure 4.2.11 
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Some session results are summarized in Table 4.2.1. 

Table 4.2.1 Session Analysis 
 s-len < 4 

minutes 
Traffic of 
s-len<4m 

s-size <  
5 KB 

MCSN Max s-len 
(minutes) 

Max  
s-size  

July 90.0% 64.2% 81.6% 1.8 68, 
 0.13 MB 

0.13 KB, 
68  

Aug. 89.3% 64.9% 82.0% 1.6 44, 
83 KB 

83 KB, 
44 

Sept. 89.6% 66.7% 81.2% 2.0 39, 
72 KB 

72 KB, 
39 

Oct. 87.3% 56.6% 79.0% 3.5 100, 
0.18 MB 

0.84 MB, 
82 

Nov. 88.3% 59.3% 80.1% 4.2 57, 
64 KB 

0.12 MB, 
48 

Dec. 90.0% 61.3% 81.2% 4.0 62, 
0.17 MB 

0.17 MB, 
62 

 
Remarks: The first column of the table is the percentage of number of sessions with s-len 

less than 4 minutes. The second column of the table is the percentage of the total traffic 

volume that the sessions with s-len less than 4 minutes account for. The third column of 

the table is the percentage of sessions with s-size < 5 KB. The fourth column of the table 

is the average maximum number of concurrent sessions in each month. The fifth column 

of the table is a pair of numbers in each cell. The first number is the maximum s-len. The 

second number is the s-size of the session with that s-len. The sixth column is similar to 

column 5, except the first number is the maximum s-size, and the second number is the s-

len of the sesion with that s-size.  

From Table 4.2.1, we can find that the maximum numbers of concurrent sessions 

in Oct., Nov., Dec., are larger than the ones in July, Aug. and Sept. We also know that the 

traffic in Oct., Nov., Dec., is higher than the one in July, Aug. and Sept. We can 

conclude, based on our data, that the maximum number of concurrent sessions of a day is 
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proportional to the traffic volume of that day. We also find that the session with 

maximum s-len is not always the session with maximum s-size (see cross of rows Oct. 

and Nov. and columns 5 and 6 in Table 4.2.1). 

In the last part of this section, we show the average session length and session size 

of each day from July 1, 1999 to Dec. 31, 1999 in Figure 4.2.12 and Figure 4.2.13. The 

average session length from July 1, 1999 to Dec. 31, 1999 is 1.51 minutes. The average 

session size from July 1, 1999 to Dec. 31, 1999 is 3108.6 bytes. The average length of b-

session is 0.391 minutes. The average size of b-session is 429.41 bytes. The average 

length of f-session is 0.275 minutes. The average size of b-session is 434.69 bytes. The 

total number of sessions is 209425. The total number of b-sessions is 2641. The total 

number of sessions is 1134. Again, we can see that b-sessions and f-sessions can be 

neglected, compared to sessions, in number and size. 
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Figure 4.2.12 
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Average daily session size, July 1, 1999 to Dec. 31, 1999
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Figure 4.2.13 

 

From Figure 4.2.12 and Figure 4.2.13, we can see that the average session length and the 

session size of each day have neither an increasing nor a decreasing trend. We can claim 

they are time-invariant. 

We already know that the longest session does not necessarily have the largest 

size. But it is still interesting to see the relationship between the session length and the 

session size. We take 1 minute as the bin size, and let session length L  = n *  1 minutes. 

We average the session sizes with session length (n-1) < L <= n in bin L. Figure 4.2.14 

shows the relationship. Session size linearly increases with session length until session 

length is 10 minutes. When session length is 10 minutes or longer, the session size 

increases less for a short period, then starts to decrease. This explains that the session size 

is not the only factor that will determine the length of a session. For example, slower 

users can cause longer sessions without generating much traffic.  
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Figure 4.2.14 

    

4.3 Parameters of a Session 

This section will provide some useful parameters and information for Chapter 6 in which 

we will do performance studies. In order to solve a Layered Queuing Model for a WAP 

system, we need to provide necessary parameters. To make the model close to the 

practical case, we try to get as much useful information as possible from our trace files. 

We first introduce some parameters that we try to obtain from the trace files. Figure 4.3.1 

shows a session composed of a series of backward and forward packets that imply the 

inquiries from the client and responses from the server. We define an inquiry (or a 

request) of the client as a series of backward packets in the order of timestamp, with the 

last backward packet followed by a forward packet, or no packets after it at all. Similarly, 

we define a response (or an answer) from the server, as a series of forward packets in the 

order of timestamp, with the last forward packet followed by a backward packet or no 

packets after it at all. To demonstrate these definitions, consider Figure 4.3.1. ‘ r’  denotes 
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request packets and ‘a’  identifies answer packets. The first inquiry is composed of r11 

and r12; the second request consists of only r21; the third request combines r31, r32 and 

r33. The first response is composed of a11 only; the second response is composed of a21 

and a22. 

 

 

 
 

Figure 4.3.1 

 

Some other parameters are defined in the following: 

• Service time: the interval between the time that the server receives the request from 

the client and the time that the server sends out the response to the client. 

• Synchronous request: the request of the client is answered with a response from the 

server. 

• Asynchronous request: the request of the client is not followed by an answer from the 

server. 

• Idle time: the interval between an answer from the server and the next request of the 

client. 

• Request time: the interval between the first backward packet and the last backward 

packet in one request. 

• Answer time: the interval between the first forward packet and the last forward packet 

in one response. 

As an example, we give their expressions according to Figure 4.3.1. 

Service time = ((ta11 – tr22) + (ta21 – tr21))/2 

time 

r11 r12                    a11       r21                     a21  a22   r31  r32  r33 

 tr11 tr12 ta11                       tr21 ta21 ta22                      tr31  tr32  tr33 
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Idle time = ((tr21 – ta11) + (tr31 – ta22))/2  

Number of synchronous requests is two 

Number of asynchronous requests is one. 

Request time = ((tr12 – tr11) + (tr21 – tr21) + (tr33 – tr31))/3 

Answer time = ((ta11 - ta11) + (ta22 – ta21))/2 

Based on the trace files from July 1, 1999 to Dec. 31, 1999, we obtain service 

time = 0.211 seconds, idle time = 0.856 seconds, request time = 3.881 seconds, answer 

time = 0.592 seconds, 11.19 synchronous requests and 0.766 asynchronous requests per 

session on average. We also find that the average request size is 87.31 bytes, the average 

response size is 152.3 bytes. From July 1, 1999 to Dec. 31, 1999, the average response 

size of each day, the average request size of each day, service time and idle time and 

synchronous and asynchronous request numbers of each day are all time invariant. The 

ratio of response size to request size is 1.744, and is very close to the ratio of forward 

traffic volume to backward traffic volume. We can find that the ratio of answer 

(response) size to request size increases with the session length, but does not change 

much with the session size.  

We also find that the request size and response (answer) size increase with the 

session size but not with the session length. The number of synchronous requests linearly 

increases with the session size. When the session length is in the range of 1 minute to 10 

minutes, the number of synchronous requests linearly increases with the session length. 

But when session length is beyond 10 minutes, the number of synchronous requests no 

longer increases with the session length and even decreases sharply when the session 

length is longer than 17 minutes, like the relationship between session size and session 
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length. This implies that WAP applications longer than 10 minutes may be caused by the 

habit of the user like slow reading or typing. Some additional relationships are revealed 

in the following figures. 
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Figure 4.3.2 

 
 
 

Average a-size and r-size vs. session length
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Figure 4.3.3 
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a-size/r-size vs. session length
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Figure 4.3.4 
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Figure 4.3.5 
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Figure 4.3.6 
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a-size/r-size vs. session size

1

1.2

1.4

1.6

1.8

2

500 2500 4500 6500 8500

s-size unit = 1 byte

 

Figure 4.3.7 

Parameters like the number of synchronous requests, the number of asynchronous 

requests, service time, idle time, request time and answer time, can be used in the 

performance models in Chapter 6. Relationship between the number of synchronous 

requests and the session length can be the basis for deducing the number of synchronous 

requests according to the length of a session. Relationship between the number of 

synchronous requests and the session size can be the basis for deducing the number of 

synchronous requests according to the size of a session. This gives us an option to define 

a type service provided by the gateway server as a session by the session length or by the 

session size. The relationships between request size, answer size, the ratio of the two, the 

session length and the session size will provide guidelines in the simulation of sessions.  

 

4.4 Summary 

In this chapter, we have done session analysis, and find: 

• Two definitions of session give almost the same results. 

• The traffic volume of incomplete sessions accounts for only 0.4% of total daily 

traffic volume, so incomplete sessions can be neglected. 
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• The activity factors, link utilization with full rate, and link utilization with full 

rate and 1/8 rate have similar patterns. There is an obvious increase at the end of 

December 1999. 

• The ratio of b-fact to f-fact, the ratio of request size to the answer size, the 

average session size and average session length of each day are time invariant. 

• The number of sessions increases since September 1999. This might be caused by 

the increase of user population and more frequent use of the system. 

• The number of sessions of a day and the maximum number of concurrent sessions 

of a day is proportional to the traffic volume of that day. So we deduce that the 

number of sessions of each day should also have a weekly period. By spectral 

analysis, its weekly period is revealed without any doubt.  

• 90% of sessions are less than 4 minutes. This implies that WAP users are more 

intent to use short WAP applications. This is coincident with what we know about 

the WAP users. They usually use WAP to check and send emails, check new 

information about sports and stock prices, etc. They seldom use WAP to 

download large files or read novels. 

• Even though the longer sessions are few in numbers, they account for a big 

portion of traffic. 

• The number of sessions decreases with the lengthening of C-I. 

• If we divide the session length into 0.1 minutes interval, the largest proportion of 

sessions has session length within 0.1 minutes. 

• If we divide the session size into 100 bytes interval, sessions with 100 bytes < s-

size <200 bytes are the most. 
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• The session length is not the only factor that will determine the session size. After 

the session length exceeds 14 minutes, the session size starts to decrease. 

• The relationship between the number of synchronous requests and the session 

length is similar to the relationship between the session size and the session 

length. 

• The number of synchronous requests increases linearly with the session size. 

We calculated the average session sizes of each month. From July to December they 

are 2.95 KB, 2.86KB, 2.86 KB, 3.31 KB, 3.25 KB, 3.02 KB. The values are around 3. 

But we need more data to claim it as a constant.  

We also calculated the average daily traffic of each month, noted as d-traf, and the 

average daily maximum number of concurrent sessions of each month, noted as m-ses. 

From July to December d-traf/m-ses is 1.362 MB, 1.353 MB, 1.126 MB, 1.266 MB, 

1.278 MB and 1.35 MB respectively. These values are around 1.3. But we need more 

data to claim that d-traf/m-ses of each month is time-invariant. If d-traf/m-ses were a 

constant, we could deduce the maximum number of concurrent sessions of a day by the 

traffic volume of that day.  
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Chapter 5: Comparison of the Results 
 

In this chapter we will compare our results with related results reported in the literature. 

A lot of work has been done analyzing all kinds of traces. We only choose those that 

relate to our work closely. 

 

5.1 Traffic Pattern 

[Zhu 1994] presented the results from measurements of wide-area network TCP 

conversations between the Campus Ethernet at the University of Saskatchewan and the 

Internet in 1994. The author used traces of a four-day period, which contained 103,016 

TCP conversations. The author showed that SMTP, FTP-Data, WWW, TELNET, etc., 

accounted for the majority of the conversations and the majority of the bytes transferred. 

The figures of number of conversations vs. time during a day for SMTP, TELNET and 

FTP show a similar pattern to the daily traffic pattern in our work. [Paxson 1995] studied 

24 wide-area traces by investigating a number of wide-area TCP arrival processes such as 

FTP data connection arrivals within FTP sessions and TELNET packet arrivals. In the 

paper, for various protocols, the authors plot for each hour the fraction of an entire day’s 

connections of that protocol occurring during that hour. For TELNET and SMTP, the 

pattern is very similar to the daily traffic pattern in our work. But their pattern also 

revealed the lunch-related dip at noontime, which our daily traffic pattern does not show. 

Though longer connection time does not necessarily mean that heavier traffic will be 

produced, generally it does produce more traffic. We can deduce that the daily traffic 

pattern of TELNET and SMTP is similar to our daily traffic pattern. [Thompson 1997] 

measured traffic on the OC3 link of the U.S. East Coast network. For the domestic link 
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(traffic within the U.S.), during a day the traffic is low in the early morning when most 

users are in bed. The traffic increases from morning to noon. Then the traffic keeps stable 

for few hours and starts to decrease till early next morning. During a week, the traffic is 

low on weekends when most users enjoy outdoor activities, and the traffic is high on 

weekdays. The daily pattern and weekly pattern that were revealed by the authors are 

very similar to the ones in our work. The range of traffic flow they measured is from 10 

Mega bits/sec to 55 Mega bits/sec, which is much bigger than the traffic flow studied in 

this work. This is because the OC3 link has much wider bandwidth than wireless links. 

The traffic patterns on the external link (traffic to and from other countries than U.S.) are 

different from the ones on the domestic link. The cause may be that the different time 

zones in different areas and countries make the summation of the same user behavior in 

different areas and countries different from the user’s behavior in one area that has one 

time zone or several time zones that are close. For example, one area’s early morning 

might be another country’s afternoon. The summation of the two traffic patterns will not 

reflect the fact that the traffic in the early morning is light. That paper also described 

many components of the traffic, like WWW, DNS, SMTP, FTP, TELNET, etc, which 

cannot be distinguished in our traces. [Arlitt 1999b] studied the workload on the Internet 

Service Provider (ISP) that provides interactive data services to residential and business 

subscribers. They collected the traces of the proxy server from Jan.3, 1997 to May 31, 

1997 on a daily basis. During the data collection period several thousand users used the 

system. This paper presented a different daily traffic pattern. During a day, the traffic 

volume level reaches the bottom in the early morning (the same as in our results), and 

then the traffic increases till evening. The peak load appears in the evening, which is 
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different from our result and the result in [Thompson 1997]. The weekly pattern they 

revealed is different from ours as well. They reported that traffic volume is heavier on 

weekends than the one on weekdays. The difference is caused by the different behavior 

of users using the services. [Arlitt 1999b] reported that most subscribers like to use the 

services when they are at home. That explains the peak load in the evening when people 

are often at home and not in bed yet and the peak load on weekends when most 

subscribers do not work and are likely at home. So we can see the user behavior is an 

important factor that influence the traffic pattern and the importance of studying the 

users’  behaviors.      

[Abdulla 1997a] studied the traffic patterns from both time and frequency 

domains. Their traces were collected from a Korean proxy server, a school library, CS, 

and the Engineering building. The daily and weekly periods are easily observed in the 

time domain. Through spectral analysis, they confirmed the daily and weekly periods and 

also found half-day and half-week periods. They did not reveal a monthly period because 

of shortness of the traces. To do spectral analysis of traffic, we choose traces from 

November 1, 1999 to December 31,1999, because the trace files are continuous in these 

two months and the traffic in these two months is stable. The results show half-day, day, 

half-week, week and month periods. If the sampling time unit is hour, the day period is 

the main component. If the sampling time unit is day, the week period is the main 

component. The day and week traffic patterns are similar to the results in [Abdulla 

1997a]. [Abdulla 1997a] used Fourier series to express the seasonal part (day and week 

periods) that needs more complex mathematical operations, and then subtract the 

seasonal part and the mean part from the total time series. The residual is modeled with 
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the Weibull distribution. The residual is similar to the random part in our work, which is 

modeled with a normal distribution. The random part has only a minor effect in our work. 

In our work we characterize the traffic of each day in a week separately, in this way the 

weekly-period time series is decomposed into seven non-weekly-period time series. And 

the day period is expressed with a sequence of 24 discrete numbers, each of which is the 

traffic in an hour interval of a day. The daily traffic pattern is obtained by averaging all 

day traffic over the period from July 1, 1999 to Dec. 31, 1999. The method that is 

provided in this work is simple and flexible. 

[Leland 1994] studied the traces collected on several Ethernet LAN’s at the 

Bellcore Morristown Research and Engineering Center from August 1989 to February 

1992. They reported self-similarity of the traffic and gave H = 0.8, after analyzing a 

sample of 27 hour (sampling time interval is 10 ms) by variance method, R/S plot and 

periodogram plot. [Paxson 1995] also reported the self-similarity of the network traffic. 

They used 24 traces of wide-area TCP traffic at Bellcore, coNCert, UK-US, etc., but did 

not give the H value. [Crovella 1997a] revealed a range of H between 0.7 and 0.8 based 

on the analysis of busy hours. The trace data was collected at the Computer Science 

Department, Boston University in 1995. They modified Mosaic to record the URL of 

each file accessed by the Mosaic user. Timestamps were accurate to 10ms. They claimed 

that estimates of H seem to decline when moving from the busier hours to the less-busy 

hours. [Abdulla 1997b] considered self-similarity as an Invariant for Web Proxies, with a 

range of H from 0.59 to 0.94. The authors also provided some results for some tested 

workloads. The values for the Hurst parameter are from 0.59 to 0.94. [Arlitt 1996] 

discovered a value of H = 0.65 in the ClarkNet data set, very small (H = 0.53) in the 
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Saskatchewan data set, and none at all in the Waterloo data set. [Choi 1999] provided a 

traffic generator model. They showed that H = 0.805 for the trace, and 0.78 for the model 

produced trace, by variance time plots, H = 0.8 for the trace and 0.77 for the model 

produced trace by R/S plot. The trace was recorded on the backbone network of the 

Georgia Tech campus from 11 AM to 12 PM on Wednesday October 7 1998. 

In our work, we use absolute value method and variance method to calculate H 

values of our traces. We did this for each daily trace file. For each day trace, we define a 

low traffic part and a high traffic part. To examine the effect of different time intervals 

may bring, we define low traffic as 00:00AM to 11:00AM and high traffic as 11:00AM to 

10:00PM for the first time. We define low traffic as 1:00AM to 6:00AM and high traffic 

as 10:00AM to 3:00PM for the second time. We calculate H values for the time intervals 

separately and found no obvious difference. We found H values range from 0.70 to 0.92. 

The accumulated time scale is up to 20 minutes. We also calculate H values separately 

for the traffic series from July 1, 1999 to August 24, 1999 (H = 0.84), and the traffic 

series from September 14, 1999 to December 31, 1999 (H = 0.86). The accumulated time 

scale is up to one hour. The results imply that the WAP traffic studied in this work is self-

similar.  

 

5.2 Session Model 

Based on the different extents of information in trace files, different session models are 

devised to study the traffic in order to catch the user’s behaviors as close as possible. 

[Zhu 1994] and [Paxson 1995] used a complete TCP conversation to depict the users’  

behavior. A conversation is defined as the communication between an application 
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program on one Internet host and an application program on another Internet host. A TCP 

conversation is initiated with the ‘ three-way handshake’ . The conversation ends with FIN 

packets. A lot of detailed information is required to identify a TCP conversation from 

traces. We do not have enough information in our traces. Our definition of a session can 

be used to compare to the conversation. [Zhu 1994] and [Paxson 1995] revealed that 

during a day the number of active conversations for SMTP and TELNET is the lowest 

from 1:00AM to 5:00AM, and start to increase till 11:00AM, keeps stable for few hours 

and starts to decrease at 2:00PM till midnight. The pattern is very similar to the pattern 

that describes the number of concurrent sessions during a day in our work. [Zhu 1994] 

also gave the ratio of forward traffic to backward traffic for various protocols. The ratio 

for SMTP is 0.125, much lower than 1.75, the ratio in our work. The ratio for WWW is 

19 and the ratio for TELNET is 61, which are much higher than our result. The difference 

may be the result of the differences among WAP, WWW, SMTP and TELNET. [Zhu 

1994] revealed that the average conversation size for WWW is 14 KB, which is bigger 

than the average session size 3.1KB in our work. This is because WWW has wider 

bandwidth than WAP, so WWW users are more likely to use applications that will 

produce heavy traffic. For example, people are much less likely to read novels on a PDA 

than on a desktop. The author also showed that the average duration of the conversation 

for WWW is 13 seconds, shorter than the average session length of 91 seconds in our 

work. The reason for the difference may be that the WWW has faster transmission speed 

than WAP.  

[Cunhua 1995] defined a session as a single execution of Mosaic. The trace files 

they used are collected at the application level. The authors modified Mosaic to record 
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the Uniform Resource Locator of each file accessed by the Mosaic user, the time that the 

file was accessed and the time required to transfer the file from its server. The traces 

could distinguish whether a file came from the Mosaic cache or was downloaded in a file 

transfer. Mosaic now is an obsolete WWW browser. Netscape is the most popular WWW 

browser. Netscape is not available in source form, which makes recording traces at 

clients’  side almost impossible, so it is no wonder that the number of references about the 

traces at the clients’  side is limited. [Cunhua 1995] showed the histogram of the number 

of sessions per day from Nov 1994 to March 1995. The number keep flat from Nov 1994 

to early Jan. 1995, then increased till middle of Feb. 1995, and finally started to decrease. 

The pattern may well reflect the birth-to-death process of Mosaic itself. The number of 

sessions in our work increases over time.  

[Barford 1997] also used the same session definition as in [Cunhua 1995], but 

adopted a Web page as the basic unit of the response to the request from the client. To 

locate the boundary between Web pages, they modified Mosaic to record user 

information. The authors built a benchmark, SURGE based on this session model. Now 

since tools like Java-script enable a response of multiple pages to one user’s request, their 

methods to determine a session from the traces are not accurate any more. The formula 

that a request will result in a single page to be transferred is no longer true.  

[Choi 1999] presented a session model that includes the case that one request will 

result in a response of multiple Web pages. The model defines a new unit, a Web-request 

that consists of a Web page or a set of Web pages. Information in the HTTP header and 

the TCP header help to determine the boundary of a Web-request and other parameters 

they defined such as In-line Object or Temporal Locality. Their model also incorporated 
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the Web caching effect. Their results show that the model can mimic the user’s behavior 

in real life very closely.  

[Arlitt 1999a] defined a user session model based on the TCP connection 

mechanism. They use the unique IP address in the access log to identify a distinct client. 

In a session all requests are from a single client to the World Cup Web site, with the 

interval between two consecutive requests from the client that has a unique IP address 

less than a certain value that is called timeout value. This user session definition is very 

close to our session definition 1, except that it only considers requests from the clients. 

They did not include the timeout value in the session length either. Like our results, the 

authors revealed that the session length increases with the bigger timeout value that we 

call critical value (C-I) in this work, as expected. They also showed that the number of 

sessions decreases with the increase of the timeout value. The curve shapes are similar to 

ours. But the number of sessions in their work is much bigger than the one in our work. 

The reason is that the system studied in their paper has a much wider bandwidth than the 

system we studied in this work. In this work the trace files are collected at IP level. We 

do not have enough information to define a complex model with many parameters. We 

give two definitions of a session in Chapter 4, which imitates the process of a client 

making queries to the Gateway server through Mobile Browser. We also give the 

definitions of a request and a response in Chapter 6. [Arlitt 1999a] showed that the 

number of sessions increased as the World Cup tournament progressed, with three big 

numbers in the two semifinal and the final matches. It is common sense that people pay 

more attention to the semifinal and final than to those first primary leg matches. This 
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means that the known behaviors of users can be important factors to predict the traffic 

over the Internet.  

 

5.3 Character Distributions 

Due to the difference of the information available in the respective traces, our parameter 

“ request”  is not directly comparable to the Web-request mentioned above. Because of the 

limitation of the information in our trace files, we cannot provide parameters such as file 

sizes, file access frequency and number of sessions per user. But we can still derive 

something comparable. The distribution of session size is similar to the distribution of 

document size in [Cunha 1995], [Crovella 1995] and [Barford 1997]. They follow a 

power law distribution that takes a hyperbolic shape. It can be expressed as f(x) ~ x-a. 

When a is between 0 and 2, the distribution is called heavy tailed.   For the file size 

distribution [Cunhua 1995] gave a = 1.35, [Crovella 1995] presented a = 1.0, [Arlitt 

1996] reported 0.4 < a < 0.63, [Barford 1997] reported a = 1.0 for W95 data set, a = 

1.47 for W98 data set. In our work, session size distribution gives a = 1.1. The 

distribution of inter-arrival time of backward packets follows a power distribution, heavy 

tailed with a = 1.8, like the distribution of ON times in [Crovella 1995] with a = 1.21. 

[Arlitt 1996] showed that there are very few files less than 100 bytes at Web sites, and 

10% of the files are larger than 100,000 bytes, most files are in the range of 100 bytes – 

100,000 bytes. Correspondingly, we have a very small number of sessions less than 200 

bytes and 10% of sessions larger than 8,000 bytes. Like [Arlitt 1996] and [Abdulla 

1997c], we also find some invariants (see Section 3.4) that are valid in this work. 
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5.4 Summary 

In this chapter we compared our results to other related results. Our traces are from the 

WAP applications, and recorded at the IP packet level. The trace file contains limited 

information. Many WWW trace files are collected at HTTP proxies or Web servers that 

also miss information like session start, session end, or which document is viewed out of 

the browser’s cache. To make more accurate session model, many traces at different 

levels and at different location (client, proxy and server) need to be recorded. [Choi 1999] 

included many trace files at different levels in their study. 

We also find the general existence of daily and weekly periods in network traffic. 

But the difference in the behavior of user’s using services makes the daily traffic pattern 

and weekly traffic pattern different. We can also see that WWW traffic and WAP traffic 

in this work display self-similarity.  

Finally we find that though there is a difference in the definition of a session, we 

still find common properties. For example, the number of sessions decreases with the 

increases of the timeout value. 

The daily traffic pattern, weekly traffic pattern, and self-similarity of WAP traffic 

in this work are found in many other WWW traffics. But we still cannot claim that these 

properties of WAP in this work are general to all WAP traffics, because we have only 

analyzed traces of one cellular network.  
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Chapter 6: Performance Study of the WAP System by LQM  

 

In this chapter, we will study the performance of the WAP system using LQM 

performance models. The system is simplified as a simple three-layer model and a four-

layer model.  

 

6.1 Brief Introduction to LQM 

C.U. Smith started the concept of Software Performance Engineering. Since then people 

have recognized the importance of software performance. Planning the capacity and 

extension of systems is a familiar concept in industries. Appropriate planning in advance 

means larger occupation of the market in the future. For example, if a mobile company 

can predict the increasing trend of the number of customers and the type of services that 

the customers are going to buy in the future, the company can do capacity and 

performance studies about the existing systems in advance. By doing so, the company 

can do necessary adjustments in advance and be well prepared for the enlargement of the 

customer population and provide high quality services for future customers at reasonable 

cost. To study the performance of a system, analytical modeling is often used to describe 

the system. Another approach is to use simulation models. Simulation models can 

represent a system with more detail that brings the model closer to the real system, but 

needs more resources and time to obtain the solution. Analytical models often abstract the 

system with some important characteristics in a mathematical way, neglecting some 

detail of the system, but they are cheap and can be solved quickly. Queuing Network 

(QN) is an analytical model that is often used to model computer network systems. QN is 
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cumbersome in representing software and layered systems. QN has difficulties in 

describing the contention for a common resource. 

Layered Queuing Network (LQN) was developed in the Department of Systems 

and Computer Engineering at Carleton University. Its aim is to study the performance of 

distributed systems that have hardware and software. LQN extends QN. LQN is suitable 

for modeling distributed layered systems, and can include software performance issues 

easily. LQN has both analytical and simulation tools for solving Layered Queuing 

Models (LQM). We only use the LQN analytical tool in this work. A task is a basic unit 

in LQM. A task represents the software in execution. An entry represents a service 

provided by a task (software). If a task can provide multiple services, then the task has 

multiple entries. Entries in different tasks communicate with each other through 

requesting and providing services. For example, a WAP system can be simplified into 

few client tasks and a server task. In this scenario, the client tasks make requests to the 

service provided by the server task, and the server task processes the clients’  requests and 

responds to the requests respectively. Requests from clients to the server are either 

synchronous or asynchronous. A synchronous request means that the request will block 

the client until it gets the response from the server. An asynchronous request does not 

block the client.  

Next we briefly introduce some concepts, some terminology and notations in 

LQN. Each task will run on a processor. And each task has at least one entry. The entries 

in a task have execution demands respectively, and may also interact with entries in other 

tasks by calling the entries in those tasks. The client tasks will not receive requests from 

other tasks. They are called reference tasks. For reference tasks, usually there is a think 
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time that is denoted by Z, which implies the pause time between two consecutive 

operations. For example, a user starts a Mobile Browser and ends it, after Z seconds, the 

user starts a Mobile Browser again. The non-reference tasks include tasks that do not 

make requests (calls) to other tasks and only receive requests from other tasks, and tasks 

that make requests to other tasks and receive requests at the same time. For execution 

demands of entries, there are usually two phases. Phase 1 means the serviced call 

(request) is synchronous, and the entry must provide a response to the call. Phase 2 

means the serviced call is asynchronous, and the entry does not provide a response to the 

call. The LQN analytical tool describes the system by the average behavior of the entries 

and solves the performance model by approximate MVA calculations. A complete LQN 

input file and output file of a three layer model are put in Appendix B. More detail about 

LQN can be found in [Woodside 1995]. 

 

6.2 LQM Performance Models 

In this section we will give two abstract Layered-Queuing-Model (LQM) models to 

imitate the system by which a client uses Mobile Browser to access the Internet. Network 

delay is usually small and we do not consider it in the models. Detailed information about 

architecture for mobile applications can be found in [Kunz 1999] and [Wang 2000]. 

 

Model 1: A Three Layer Model 

The first model is shown in Figure 6.2.1. A parallelogram represents an entry of a task. 

Cascade parallelograms indicate an entry of multiple tasks. The task name is written near 

the parallelogram. [Z] in the client task entry is the think time of the client. [0, tc] in the 
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client task entry represents the execution demands of the client task entry. There are two 

fields inside the brackets, the number in the first field is the execution demand in phase 1, 

and the second field contains the execution demand in phase 2. Because the client tasks 

receive no requests from other tasks the execution demand in phase 1 of the client task 

entry is 0. The pair of brackets inside the non-referential task entries has the same 

meaning as the one in the client task entry. The notation under the pair of brackets is the 

entry name. The ellipse represents the CPU processor. The arrow segment connects the 

calling entry and the called entry. The straight segment connects the task and the CPU on 

which the task runs. The pair of circular brackets beside the arrow line contains the 

number of calls from the calling entry to the called entry. ‘sh’  represents synchronous 

calls and ‘ay’  represents asynchronous calls.  

Now we describe the scenarios of the model in Figure 6.2.1. Client tasks make 

requests to the Gateway server and wait for the responses from the Gateway server. The 

Gateway server answers some of the requests directly and passes some to other Web 

servers on the Internet. Generally, passing a request to another Web server takes less time 

than answering one directly. The Gateway server task plays the role of a client and the 

role of a server at the same time. It has four entries. The first entry se1 processes the 

synchronous requests from client tasks and responds to the clients directly. The second 

entry is responsible for asynchronous requests from the client tasks. The third entry 

passes synchronous requests from the clients to other Web servers on the Internet and 

passes back the answers from the Web servers to the clients. The Web server task is used 

to represent arbitrary Web servers on the Internet since it is impossible for us to get 

information for all the available Web servers on the Internet and represent each of them. 
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The fourth entry is used to represent the idle time within a session with the help of an 

imaginary Idle Server task and CPU4. When a Gateway server is occupied by a session, 

the only time that the session demands CPU is when requests from the clients within the 

session are processed. During the idle time of a session, the session does not require the 

Gateway CPU. The idle time we refer to here is the same as the one that we defined in 

Section 4.3 and it is a lower bound. But the time interval between two consecutive pairs 

of request-answer might be longer than the idle time we used here. The capacity of the 

system obtained with the idle time is a safe bound, which means that the system will not 

be saturated for sure below that bound. We consider that CPU3 and CPU4 have infinite 

capacity for simplicity. Each client has a CPU. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 6.2.1 
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the performance is to pass some load from the handset to a more powerful proxy. To 

consider this load transition situation we add one proxy task layer below the client tasks 

(see Figure 6.2.2). We do not have information about the amount of load that is 

transferred from a handset to a proxy, but we can investigate the relationship between the 

extent of system improvement and the amount of load that is transferred to the proxy by 

changing the amount of transferred load. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.2 
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1999, we obtain service time = 0.211 seconds, idle time = 0.856 seconds, 11.19 

synchronous requests and 0.766 asynchronous requests per session on average. 

Execution Demand: 

We have no information about the execution demands on CPU2. But we try to 

approximate the execution demand by the service time. We assume execution demands 

for a synchronous request and for an asynchronous request are the same. During the 

service time CPU2 might be occupied by answering one request directly, maybe more 

than one request, maybe by a combination of passing some requests to other Web servers 

and answering some requests directly. The execution demand tse11 should have a lower 

bound that is equal to the service time since the worst case is that during the service time, 

the Gateway Server processes only one synchronous request of a session. The upper 

bound of tse11 could be the value of service time divided by the maximum number of 

concurrent sessions (MCS) from July 1999 to Dec. 1999. The upper bound tells us that 

during the service time, the Gateway Server always processes MCS synchronous 

requests, which will overestimate the power of CPU2. To investigate the lower bound 

tse11 case, we can give a safe system capacity estimation below which the system will 

not be saturated for sure. We set tse11 = service time  = 0.211 seconds, tse22 = ws1 = 

tse11, tse12 = ws22 = tse21 = tse32 = tse41 = tse42 = id2 = pe2 = 0, id1 = idle time = 

0.856 seconds. 

Let R be the relative speed ratio of handset CPU and proxy CPU. If we move x of 

tc work from the handset to the proxy, then the execution demand in the client is reduced 

to tc - x, and pe1 = x*R. We assume tc = 6 seconds, tse31 = 0.02 and R = 0.04.  

 



 84

Number of Requests: 

The average number of asynchronous requests is 0.766. The average number of 

synchronous requests is 11.19. For convenience, we approximate 0.766 to 0.77 and 11.19 

to 11.2. We will investigate the effect of splitting 11.2 between sh1 and sh2. We set ay1 = 

0.77, sh3 = 11.2, sh4 = sh5 = sh6 = 1.  

Think Time: 

We have no information about the users’  behavior. So we do not know the think time. 

However, we can approximate the range of the think time. The lower bound of the think 

time is zero, in which case the clients keep sending requests to the Gateway Server at 

maximum rate. This case will give a safe system capacity estimation. The upper bound of 

the think time could be one hour that happens during the light traffic period from 

2:00AM to 5:00AM. The one-hour think time is meaningless since the light traffic period 

cannot test the capacity of the system. To estimate the think time practically, we proceed 

as follows. We consider three numbers during 10:00AM to 5:00 PM (busy traffic period) 

from July 1, 1999 to Dec. 31, 1999. One number is the average session length denoted as 

as-len. One number is the average number of concurrent sessions denoted as acs. The last 

one is the average number of sessions denoted as anum. There are two ways to count the 

sessions within 10:00AM to 5:00PM. In the first approach, we count a session if either 

the start or the end of the session is between 10:00AM and 5:00PM. Alternatively, we 

count a session if both the start and the end of the session are between 10:00AM and 

5:00PM. By the first method we have as-len = 1.42 minutes = 85.2 seconds, anum = 

687.2. By the second method we have as-len = 1.4 minutes = 84 seconds, anum = 674.1. 

acs = 2.4 in both methods. The idea to estimate the think time is shown in Figure 6.3.1. 
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One line segment represents a session, L is the length from 10:00AM to 5:00PM. We 

have Z = (L – as-len *  (anum/acs)) / (anum/acs – 1). 

 

 
 
     
 
 

 

 

 
Figure 6.3.1 
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6.4.1 Model 1  

The summation of sh1 and sh2 is 11.2, i.e., sh1 + sh2 = 11.2, when sh2 = 1, sh1 = 11.2 – 

1 = 10.2, if it is not noted specifically. sh1 = 0 represents the case when all the requests 

are not directly processed by the Gateway server. sh1 = 11.2 is the case when all the 

requests are directly processed by the Gateway server. We show the effect of splitting 

11.2 between sh1 and sh2 in Table 6.4.1.1. There is only one CPU to support the 

Gateway server. The capacity of the system decreases with the increase of sh1. That is, 

the more requests the gateway Server processes directly, the smaller the system capacity 

becomes. From July 1, 1999 to Dec. 31, 1999, the average maximum numbers of 

concurrent sessions of each month are below 8, but during the peak hours of some days, 

the maximum number of concurrent sessions is bigger than 10 (see Appendix A). But the 

period for the maximum number of concurrent sessions is short, less than 1 minute. This 

reveals that the system might have short period of the capacity problem from July 1, 1999 

to Dec. 31, 1999. In early April 2000, the average maximum number of concurrent 

sessions has approached the range of values in Table 6.4.1.1, and Bell Mobility reported 

it had to address capacity problem. This indicates that our models can indeed be useful in 

anticipating capacity problems. 

Table 6.4.1.1 Capacity with different sh1 and sh2 

Sh1 0 1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2 10.2 11.2 

MC 50 36 29 24 20 17 15 13 11 10 9 8 

 

When sh1 = 11.2, the system can serve 8 clients at the same time. We first show the 

improvement by increasing the speed of CPU2 in Table 6.4.1.2. The speed row in the 

table contains the relative speedup of the original CPU2. 



 87

Table 6.4.1.2 Capacity with different speeds of CPU2 

Speed 1 2 3 4 5 10 20 

MC 8 13 17 22 26 48 91 

 
We can also improve the capacity by increasing the number of processors that the 

Gateway Server runs on. Table 6.4.1.3 shows the results. The NUM row indicates the 

number of processors. 

Table 6.4.1.3 Capacity with different numbers of CPU2 (running at the original speed)  

NUM 1 2 3 4 5 10 20 

MC 8 11 16 21 26 50 100 

 
We can see that both ways can improve the system capacity. But the choice will depend 

on financial and technical factors. For example, updating the only CPU will cause the 

shutdown of the system, but adding one more CPU may not. One twice as fast CPU may 

be much more expensive than two original CPUs.  

We also want to know the effect of think time. Let sh1 = 11.2 and other 

parameters be the same, we change the value of Z. The results are shown in Table 6.4.1.4. 

Table 6.4.1.4 Capacity with different think time 

Z 0 4 8 12 16 28 40 

MC 8 9 11 12 13 17 20 

 
The capacity increases with the increase of think time. We test the effect of the idle time 

in a session on the capacity too. When we increase the idle time the capacity increases. 

All these reveal one phenomenon that the system can serve more slow users than fast 

users as expected. The think time we estimated in Section 6.3 is 4.25. By linear 

interpolation with the values in Table 6.4.1.4 we find that the capacity at Z = 4.25 is 9.03. 
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We can say safely that the system can serve 9 clients at the same time without being 

saturated.  

We have little information about what and how many kinds of services the 

Gateway server provides and the characteristics of these services such as how long one 

kind of service is on average. The parameters we obtain per session are the average 

characteristics of all the services together. There are several ways to simulate the 

different types of services that the system can provide. In the first method, we can use 

different combinations of sh1 and sh2 to represent different types of services with fixed 

total idle time within the session. For simplicity, we set sh2 = 0, and only change sh1 to 

imitate different types of services and see what the capacity is for different services. The 

results are in Table 6.4.1.5. 

Table 6.4.1.5 Capacity versus the increase of sh1 with sh2 = 0 and fixed idle time 

Sh1 1 2 3 4 11.2 20 40 

MC 16 13 11 10 8 8 7 

  
The capacity decreases with the increase of sh1. This implies that the system can serve 

more users who use short applications than those who like to use long applications. Long 

applications result in larger values of sh1, so we can also say that long applications 

generate heavier traffic than short applications.    

In the second method, we increase the request frequency without changing 

execution demands and the service time of a client. The bound of service time of a client 

is approximated as ST = 11.2 *  (0.211 + 0.856) + 0.77 *  0.211 = 12.11 seconds. We set 

sh2 = 0 for simplicity. Next we give a group of pairs of sh1 and idle time (sh1=4, 

idle=0.99), (sh1=8, idle=0.92), (sh1=11.2, idle=0.856), (sh1=16, idle=0.76), (sh1=20, 
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idle=0.69), (sh1=30, idle=0.5), (sh1=40, idle=0.31), so that ST stays constant. We give 

the capacity corresponding to the above parameters in Table 6.4.1.6. 

Table 6.4.1.6 Capacity with different pairs of sh1 and idle 

Sh1 4 8 11.2 16 20 30 40 

Idle 0.99 0.92 0.856 0.76 0.69 0.5 0.31 

MC 20 22 8 6 5 3 2 

  
 
We can see that the system capacity decreases sharply with the increase of the request 

frequency during a fixed period. Comparing the results in Table 6.4.1.6 and Table 

6.4.1.5, we find that the capacities at sh1 = 20 and sh1 = 40 in the two tables are very 

different. This is because the second method generates more intensive traffic than the first 

method. High frequency requests will result in heavy traffic with high intensity. So the 

system can serve fewer clients who generate heavier traffic than those who generate 

lighter traffic, and serve fewer clients who generate the same traffic volume with higher 

traffic intensity (equivalent to fast users), as expected. 

 In the third method, we can imitate different services with different execution 

demands. If the CPU speed is fixed, more execution demand means that heavier traffic 

data is processed. If the traffic volume is fixed, higher execution demands translate into a 

relative slower CPU. So we can explain the results in Table 6.4.1.2 from a new angle, i.e., 

the heavier the traffic is, the lower the capacity of the system is, as expected. 

 

6.4.2 Model 2 

Model 2 is a modified version of model 1 by adding a proxy layer. With model 2, we 

want to investigate the effect of load migration from handsets to the proxies. We use R = 
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0.04, which means that the proxy CPU is 25 times faster than the handset CPU. The load 

migration from handsets to the proxies reduces the process time at the clients’  side 

(which is equivalent to making a slow user fast) and therefore increases the traffic. This 

will reduce the capacity of the system. We set sh1 to 11.2 and sh1 to 0 respectively and 

see the variation of the capacity with the change in load migration. The results are shown 

in Table 6.4.2.1 and Table 6.4.2.2. 

Table 6.4.2.1 Capacity vs. load migration when sh1 = 11.2 

X 0 1 2 3 4 5 6 

Tc 6 5 4 3 2 1 0 

Pe1 0 0.04 0.08 0.12 0.16 0.2 0.24 

MC 8 7 7 7 7 6 6 

 

Table 6.4.2.2 Capacity vs. load migration when sh1 = 0 

X 0 1 2 3 4 5 6 

Tc 6 5 4 3 2 1 0 

Pe1 0 0.04 0.08 0.12 0.16 0.2 0.24 

MC 50 46 43 42 41 40 39 

 

We can see that the capacity decreases with the increase of the amount of computational 

load that is moved from handsets to the proxies. This is consistent with the result in 6.4.1 

that shows that the system can serve more slow users than fast ones. 

We also investigate how much the performance is improved by load migration. 

We find that when CPU2 is saturated, load migration hardly improves the performance, 

but when CPU2 is underutilized, load migration does improve the performance of the 

system. UT represents the utilization of CPU2 and THPT represents the throughput of 
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clients. With the conditions of sh1 = 0 and 40 clients in the system we show the load 

migration effect in Table 6.4.2.3.   

Table 6.4.2.3 Performance vs. load migration when sh1 = 0 and 40 clients 

X 0 1 2 3 4 5 6 

Tc 6 5 4 3 2 1 0 

Pe1 0 0.04 0.08 0.12 0.16 0.2 0.24 

UT 0.536 0.554 0.572 0.591 0.610 0.617 0.619 

THPT 1.39 1.43 1.48 1.53 1.58 1.60 1.61 

 

We find that when the client layer is the bottleneck (larger tc) and the other layers are not 

saturated, the load migration from handsets to proxies will bring more obvious benefits 

(bigger throughput and high utilization of underutilized CPU) to the performance of the 

system.  

 The test results in this section are obtained under the same condition: the proxy 

server is multithreaded but runs on only one CPU that is 25 times fast than handset CPU, 

i.e., all clients are supported by a single proxy machine. Adding one more proxy CPU 

will not benefit the system since the proxy layer is not the bottleneck with the parameters 

we used. If we increase the speed of CPU2 greatly, the proxy CPU will become a 

bottleneck with the increase of clients. We do not show the results here because the tests 

are somewhat arbitrary: the necessary parameters are not based on the collected trace 

data. But one thing is certain. If the proxy layer becomes the bottleneck of the system in 

the future and the other layers are underutilized, it is always possible to improve the 

performance of the system by adding more proxy CPUs or increasing the speed of the 

proxy CPU, as we have shown for CPU2. 
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6.5 Summary 

In this chapter we have studied the performance of an abstract WAP system by two LQM 

performance models. With the test results of model 1 under various circumstances, we 

find: (1) The system can serve more slow users at the same time than fast users. (2) The 

system can serve more users who generate light traffic than those who generate heavy 

traffic. (3) If two kinds of users generate the same amount of traffic volume, the system 

can serve at the same time more the kind of users who generate traffic with lower 

intensity than it can do those who generate traffic with higher intensity. (4) By increasing 

the speed of the Gateway Server CPU or by increasing the number of Gateway Server 

CPU the system capacity can be improved.  

By model 2, we find that load migration from handsets to proxies has the same 

effect as making slow users faster and the capacity will decrease with the increase of the 

amount of computation that is moved from handsets to proxies. And load migration from 

handsets to proxies will benefit more if the client layer is the bottleneck and the other 

layers are not. The effect of the overhead of load transfer is not depicted in the model, but 

it can be considered in the model by discounting the amount of load that has been 

transferred to a certain percentage. Assume the overhead effect is x percentage. If the 

effect of the overhead of load transfer is included the maximum percentage of load 

transfer will be 1 - x. Current applications on the handsets are text based. The processing 

load on the handset is light and load migration is nit necessary. The aim of the study of 

load migration is for the future development that may involve heavy load applications on 

the handsets and proxy layer is necessary. 
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Chapter 7: Conclusions and Future Work 

 

In this chapter, we will summarize the thesis work in Section 7.1 and discuss possible 

future work in Section 7.2. 

 

7.1 Conclusions 

In this thesis, we studied the WAP traffic of the Bell Mobility cellular network in Quebec 

and Ontario. We obtained the following main characteristics of the WAP traffic: 

• The number of unique IP addresses assigned to clients is linearly increasing with 

time, after September 6, 1999. It has an obvious week period. 

• The traffic increases with the time. 

• Average packet (backward packet and forward packet) sizes of each day are 

constant and time-invariant.  

• The ratio of forward traffic volume to backward traffic volume and the ratio of 

number of backward packets to number of forward packets are constant.  

• WAP traffic has obvious day and week periods. 

• The traffic is self-similar. H values range from 0.70 to 0.92. 

We hope that these characteristics here are general to WAP traffic in other networks. 

It needs to be verified with more data in other cellular networks. We put forward a 

layered prediction model that is flexible and easy to use. We also give two definitions of 

a session, and we think the first definition is more reasonable. With the session model, we 

have studied the WAP traffic further and some important results are: 

• Two versions of session give almost the same results. 
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• The ratio of backward link activity factor to forward link activity factor is time 

invariant, though the activity factors themselves change with the time. 

• The number of sessions increases with time after September 1999. 

• The number of sessions of a day is proportional to the traffic volume of that day. And 

it has an obvious weekly period. 

• The maximum number of concurrent sessions of a day is proportional to the traffic 

volume of that day.  

• 90% of the sessions are less than 4 minutes. This implies that most users like to use 

short WAP applications. 

• The number of longer sessions (s-len > 4 minutes) is a minority, accounting for only 

10% of all sessions, but accounting for 34% of the total traffic volume.   

• The number of sessions decreases with the increasing of the timeout. 

 

Some results are against intuition. For example, the average backward activity factor 

is bigger than the average forward activity factor though the forward traffic volume is 

larger. The longest session is not necessarily the one that has the largest session size. The 

activity factors do not have a weekly period though repeating peaks tempt people to think 

so. But spectrum analysis does not reveal a weekly period or any other one. 

We also have studied the abstract WAP system with two LQM performance models. 

The capacity levels of the system obtained from the performance model are in the range 

of values for the maximum concurrent sessions in late March and April 2000. And Bell 

Mobility reported that the system experienced capacity problems at that point. So the 

results from our performance studies have practical relevance. We hope all the work in 
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this thesis can contribute to the understanding of the Internet usage and WAP systems in 

general. 

 

7.2 Future Work 

There is much scope for future research based on this work. First we hope we can get 

trace files at other levels and at the client side, so that we can provide a more accurate 

session model that can describe the user’s behavior more closely. We may do some 

simulation work in the future, so that the traffic analysis can be partly validated. To do 

simulation, we need a benchmark to generate the network traffic that is as close to real 

WAP traffic as possible. We do not design a WAP benchmark here, but the results in this 

work are useful in building such a benchmark. Benchmark design is very important for 

network simulation, and surely will be one aspect of future work. 

With more detailed information of the system available, we can design a more 

complex and detailed performance model that will be very close to the real WAP system, 

and that will provide more useful information for the issues of cellular network 

performance, planning and dimensioning. 

It is always important to keep track of new types of the applications that are 

continuously introduced into the WAP systems with the evolution of the WAP systems 

themselves. Just like the audio and video traffic brought in different characteristics of the 

traffic over the networks several years ago, new types of applications may always 

produce characteristics that are not known before.  
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Appendix A: Additional Results of Session Analysis 

 

In this appendix, first we present session results for August, Sept., Oct., Nov. and Dec. 

2000 in Figures A.1 – A.25.  

 
 
 
 

Average daily concurrent sessions,  August 1999

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 200 400 600 800 1000 1200 1400

time (in minutes)

nu
m

 o
f s

es
si

on
s

 
 

Figure A.1 
 
 

Average session size distribution, August 1999
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Figure A.2 
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Average session length distribution, August 1999
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Figure A.3 
 
 

Proportion of traffic vs. session length, August 1999
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Figure A.4 
 

 

 Activity factors vs. session length, August 1999
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Average daily concurrent sessions, Sept. 1999
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Figure A.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.7 
 

 
Figure A.8 

 
 
 
 

Average session size distribution, Sept. 1999
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Figure A.9 

 
Figure A.10 

Average daily concurrent sessions, Oct. 1999 

0
0.5

1
1.5

2
2.5

3
3.5

4

0 200 400 600 800 1000 1200 1400

time (in minutes)

nu
m

 o
f s

es
si

on
s

 

Figure A.11 

 

Proportion of traffic vs. session length,  Sept. 1999
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Average session size distribution, Oct. 1999
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Figure A.12 

 
Figure A.13 

Proportion of traffic vs. session length, Oct. 1999
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Figure A.14 

Average session length distribution, Oct. 1999
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Activity factors vs. session length, Oct. 1999
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Figure A.15 

 

Average daily concurrent sessions in Nov., 1999
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Figure A.16 

 

Average session size distribution, Nov. 1999
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Figure A.17 
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Average session length distribution, Nov. 1999
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Figure A.18 
 

 
Figure A.19 

 
 

Activity factors vs. session length, Nov. 1999
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Figure A.20 
 
 
 

Proportion of traffic vs. session length, Nov. 1999
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Average daily concurrent sessions, Dec. 1999
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Figure A.21 
 
 

Average session size distribution, Dec. 1999
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Figure A.22 
 
 

Average session length distribution, Dec. 1999
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Figure A.23 
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Proportion of traffic vs. session length, Dec. 1999
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Figure A.24 
 
 

Activity factors vs. session length, Dec. 1999
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Figure A.25 
 
 

The number of sessions per day from July 1, 1999 to Dec. 31, 1999 is shown in Figure 

A.26. The maximum number of con current sessions each day from July 1, 1999 to Dec. 

31, 1999 is shown in Figure A.27. Please note that the maximum number of concurrent 

sessions here is not an average result like the one in Figure A.1. Both figures show a clear 

week period (which is also confirmed by the spectral analysis). The influence of 

Christmas is reflected by a decreasing trend at the end of December.  
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Figure A.26 

 
 

 
Figure A.27 

 
 

Now we like to say something more about the concurrent sessions. During a day, the 

period of 0:00 – 24:00 is divided with a bin of b minutes. In each bin, e.g., the nth bin, if 

a session overlaps with the bin, we count this session at time n. If there are x sessions 

overlap with the bin, we say that at time n the number of concurrent sessions is x. The 

smaller the bin size b is, the smaller the number of concurrent sessions will become as 
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expected. But there is a limit. When b is less than the limit, the number of concurrent 

sessions no longer decreases with the decreasing of b. We have found the limit in this 

work is 0.1 minutes. To draw the figure about the number of concurrent sessions in a day, 

24 *  60 *  10 = 14400 points are needed. The data is too big. So we use the average of 100 

points to reduce the data size. We can also use the maximum one of the 100 points, but 

we think the average can represent the 100 points better than the maximum point. All 

figures about the number of concurrent sessions per day from July to Dec. 2000 are 

drawn in this way. The problem of the method is that the maximum number of the 

concurrent sessions per day will be reduced by the average. After average the maximum 

numbers of concurrent sessions from July to Dec. are 1.8, 1.6, 1.9, 3.6, 4.4 and 4.0.  

Before average the maximum numbers of concurrent sessions from July to Dec. are 2.2, 

2.2, 2.5, 4.3, 5.0 and 4.6. The average number of concurrent sessions over a day from 

July to December are 0.89, 0.77, 0.79, 1.62, 1.97 and 1.89. The Christmas in December 

makes the values in December smaller than those in November.    
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Appendix B: An Example of LQN Input and Output Files 

 

In this appendix, we show that how the LQN input and output files look like for Model 1. 

G 
#This is a LQN input file 
#Comments between quotes, as many lines as necessary 
"Simple client-server model, only three layers, server has 4 entries" 
#Convergence criterion, iteration limit, print interval, under-relax 
#Under-relaxation coefficient stabilizes the algorithm if less than 1 
#entry se1 represents synchronous requests 
#entry se2 represents asynchronous requests 
#entry se3 represents passing requests to other web servers 
#entry se4 represents the idel time in a session 
0.00001 
200 
1 
0.9 
# End of General Information 
-1 
 
# Processor Information: No of processors 
P 4 
#p ProcessorName SchedDiscipline [multiplicity, default = 1] 
# Discipline = f fifo|r random|p premptive| 
#   h hol or non-pre-empt|s proc-sharing 
# multiplicity = m value (multiprocessor)|i (infinite) 
p c1 f i 
p s1 f 
p s2 f i 
p s3 f i 
# End of Processor Information 
-1 
 
# Task Information: No of Tasks 
T 7 
#t TaskName RefFlag EntryList -1 Processor [multiplicity] 
# RefFlag = r (reference or user)|n (other) 
# multiplicity = m value (multiprocessor)|i (infinite) 
T 4 
t tc1 r ce1 -1 c1 m 8 
t ts1 n se1 se2 se3 se4 -1 s1 m 8 
t ts2 n ws1 -1 s2 m 10 
t ts3 n id1 -1 s3 m 10 
# End of Task Information 
-1 
 
#Entry Information: No. of Entries 
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E 7 
# ParameterToken EntryName Phase1value Phase2 Phase3 -1 
# Tokens and Value Definitions are: 
# s HostServiceRequests for EntryName 
# c HostServiceCoeeficientofVariation 
# f PhaseTypeFlag 
# These lines go Token FromEntry ToEntry Phase1Value Phase2 Phase3 -1 
# Tokens and Value definitions are: 
# y SynchronousCalls (no. of rendezvous) 
# F ProbForwarding (forward to this entry rather than replying) 
# z AsynchronousCalls (or no. of sned-no-reply messages) 
# o Fanout (for replicated servers) 
# i FanIn (for replicated servers) 
s ce1 0 6 0 -1 
#Z ce1 0 4.25 0 -1 
y ce1 se1 0 11.1999 0 -1 
y ce1 se3 0 0.0001 0 -1 
y ce1 se4 0 11.2 0 -1 
z ce1 se2 0 0.77 0 -1 
s se1 0.211 0 0 -1 
s se2 0 0.211 0 -1 
s se3 0.02 0 0 -1 
y se3 ws1 1 0 0 -1 
s se4 0.000001 0 0 -1 
y se4 id1 1 0 0 -1 
s id1 0.856 0 0 -1 
s ws1 0.211 0 0 -1 
#End of Entry Information 
-1 
 

Copyright the Real-Time and Distributed Systems Group, 
Department of Systems and Computer Engineering 
Carleton University, Ottawa, Ontario, Canada. K1S 5B6 
 
Generated by lqns, version 28.2 (UNIX) 
Input:  mthree.lqn 
Output: mthree.out 
Comment: Simple client-server model, only three layers, server has 4 entries 
 
Convergence test value: 3.82591e-06 
Number of iterations:   8 
 
MVA solver information:  
Layer   n     step()       mean     stddev     wait()       mean     stddev 
1       8         45      5.625    0.18298        765     95.625     6.0384  
2      15        190     12.667      0.984      10440        696     137.47  
3       8         76        9.5    0.18898       5792        724     28.725  
Total  31        311     10.032    0.71012      16997     548.29     81.849  
 
    sunrise.sce.carleton.ca SunOS 5.7 
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    User:     0:00:00.12 
    System:   0:00:00.01 
    Elapsed:  0:00:00.16 
 
Processor identifiers and scheduling algorithms: 
 
Processor Name  Type    Copies  Scheduling 
c1              Inf     1       DELAY 
s1              Uni     1       FCFS (V phases) 
s2              Inf     1       DELAY 
s3              Inf     1       DELAY 
 
 
Task information: 
 
Task Name       Type    Copies  Processor Name  Pri Entry List 
tc1             ref(8)  1       c1              0   ce1 (2 phases) 
ts1             mult(8) 1       s1              0   se1, se2, se3, se4 (2 phases) 
ts2             mult(10) 1       s2              0   ws1 
ts3             mult(10) 1       s3              0   id1 
 
 
 
Entry execution demands: 
 
Task Name       Entry Name      Phase 1     Phase 2      
tc1             ce1             0           6            
ts1             se1             0.211       0            
                se2             0           0.211        
                se3             0.02        0            
                se4             1e-06       0            
ts2             ws1             0.211       0            
ts3             id1             0.856       0            
 
 
Mean number of rendezvous from entry to entry: 
 
Task Name       Source Entry    Target Entry    Phase 1     Phase 2      
tc1             ce1             se1             0           11.1999      
                ce1             se3             0           0.0001       
                ce1             se4             0           11.2         
ts1             se3             ws1             1           0            
                se4             id1             1           0            
 
 
Mean number of non-blocking sends from entry to entry: 
 
Task Name       Source Entry    Target Entry    Phase 1     Phase 2      
                ce1             se2                        0.77         
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Phase type flags: 
All phases are stochastic. 
 
 
Squared coefficient of variation of execution segments: 
All executable segments are exponential. 
 
 
Open arrival rates per entry: 
All open arrival rates are 0. 
 
 
Type 1 throughput bounds:  
 
Task Name       Entry Name      Throughput   
tc1             ce1             0.055709     
ts1             se1             4.73934      
                se2             4.73934      
                se3             4.329        
                se4             1.16822      
ts2             ws1             4.73934      
ts3             id1             1.16822      
 
 
Mean delay for a rendezvous: 
 
Task Name       Source Entry    Target Entry    Phase 1     Phase 2      
tc1             ce1             se1             0           0.00742656   
                ce1             se3             0           0.0121277    
                ce1             se4             0           0.0208157    
ts1             se3             ws1             0            
                se4             id1             0            
 
 
Service times: 
 
Task Name       Entry Name      Phase 1     Phase 2      
tc1             ce1             0           28.4813      
ts1             se1             0.520386    0            
                se2             0           0.520386     
                se3             0.849771    0            
                se4             1.45863     0            
ts2             ws1             0.211       0            
ts3             id1             0.856       0            
 
 
Service time variance (per phase) 
and squared coefficient of variation (over all phases): 
 
Task Name       Entry Name      Phase 1     Phase 2     coeff of var **2 
tc1             ce1             0           882.928     1.08844 
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ts1             se1             0.044521    0           0.164405 
                se2             0           0.044521    0.164405 
                se3             0.629599    0           0.871887 
                se4             3.69954     0           1.73884 
ts1             Total           2.03145      
ts2             ws1             0.044521    0           1 
ts3             id1             0.732736    0           1 
 
 
Throughputs and utilizations per phase: 
 
Task Name       Entry Name      Throughput  Phase 1     Phase 2     Total 
tc1             ce1             0.280886    0           8           8            
ts1             se1             3.1459      1.63708     0           1.63708      
                se2             0.216281    0           0.11255     0.11255      
                se3             2.80886e-05 2.38689e-05 0           2.38689e-05  
                se4             3.14593     4.58873     0           4.58873      
                Total           6.50813     6.22583     0.11255     6.33838      
ts2             ws1             2.80887e-05 5.92671e-06 0           5.92671e-06  
ts3             id1             3.14593     2.69292     0           2.69292      
 
 
Utilization and waiting per phase for processor:  c1 
 
Task Name       Pri n   Entry Name      Utilization Ph1 wait    Ph2 wait     
tc1             0   8   ce1             1.68532     0           0            
 
 
Utilization and waiting per phase for processor:  s1 
 
Task Name       Pri n   Entry Name      Utilization Ph1 wait    Ph2 wait     
ts1             0   8   se1             0.663784    0.309385    0            
                        se2             0.0456353   0           0.309385     
                        se3             5.61772e-07 0.309385    0            
                        se4             3.14593e-06 0.309385    0            
ts1             Total                   0.709423     
 
 
Utilization and waiting per phase for processor:  s2 
 
Task Name       Pri n   Entry Name      Utilization Ph1 wait    Ph2 wait     
ts2             0   10  ws1             5.92671e-06 0           0            
 
 
Utilization and waiting per phase for processor:  s3 
 
Task Name       Pri n   Entry Name      Utilization Ph1 wait    Ph2 wait     
ts3             0   10  id1             2.69292     0           0            


