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Applications and protocols for wireless and mobile systems have to deal with volatile envi-
ronmental conditions such as interference, packet loss, and mobility. Utilizing cross-layer
information from other protocols and system components such as sensors can improve
their performance and responsiveness. However, application and protocol developers lack
a convenient way of specifying, monitoring, and experimenting with optimizations to eval-
uate their cross-layer ideas.

We present CRAWLER, a novel experimentation architecture for system monitoring and
cross-layer-coordination that facilitates evaluation of applications and wireless protocols.
It alleviates the problem of complicated access to relevant system information by providing
a unified interface to application, protocol and system information. The versatile design of
this interface further enables a convenient and declarative way to specify and experiment
with compositions of cross-layer optimizations and their adaptions at runtime. CRAWLER also
provides the necessary support to detect cross-layer conflicts, and hence prevents perfor-
mance degradation when multiple optimizations are enabled across the protocol stack. We
demonstrate the usability of CRAWLER for system monitoring and cross-layer optimizations
with three use cases from different areas of wireless networking.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Developing real-world protocols and applications for
wireless and mobile systems is difficult. The volatile nature
of the wireless medium as well as network and channel
dynamics induced by mobility complicate their compre-
hensive development. This is further aggravated by the iso-
lated nature of today’s applications, protocols, and the
operating system. Although the isolation of applications
from each other, protocols, and the operating system at-
tains reasonable software engineering advantages, it disre-
gards (i) access to relevant system information, such as
protocol states, for monitoring and experimentation and
(ii) coordination among different components to optimize
the performance in the face of changing conditions or
mobility effects.
In order to achieve in vivo access to such relevant sys-
tem information, network analysis tools, such as wireshark
[1], allow the inspection of traffic specific points in the pro-
tocol stack. However, such tools lack the ability to monitor
protocol states, variables, and system components, e.g.,
battery, motion indicators, and CPU utilization. This is
mainly because the protocol stack and system component
drivers are deeply integrated into the operating system
which strongly limits external access to their internal
states. Therefore, application and system developers are
unable to access vital system information for monitoring,
experimentation and performance optimization.

However, breaking this isolated layer and application
paradigm, recent research [2] has shown cross-layer infor-
mation, i.e., information provided also over non-adjacent
layers, to allow both diverse applications and protocols to
be significantly more adaptive. For example, in mobile
and wireless systems, even a single cross-layer optimiza-
tion at the MAC layer can achieve TCP throughput
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speedups of up to 20 times and latency reduction of up to
10 times over unmodified systems [3]. However, despite its
proven potential to enhance system performance and a fair
share of research investment in recent years, the cross-
layer paradigm has not been able to leverage its utility
beyond few promising yet concentrated research efforts
[4–8].

Although several static cross-layer architectures have
been proposed, networking researchers and application
developers lack a generic and flexible architecture that en-
ables specification and experimentation with cross-layer
optimizations. Specifically, existing static cross-layer archi-
tectures [5,9–11] facilitate manipulation of protocol-stack
parameters and combine several dedicated cross-layer
optimizations. However, in current architectures of this
type, cross-layer optimizations are composed offline (i.e.,
at compile time) and are deeply embedded within the
operating system (OS). This approach has three key limita-
tions that motivate the ideas presented in this article.

First, the process of adding or removing an optimization
is impractical: optimizations are hard-wired with the
architecture, and because the architecture is deeply
embedded into the OS, recompiling the kernel and reboot-
ing the system are typical consequences when changing
optimizations. Furthermore, the developer has to deal with
too many system internals such as OS programming lan-
guage, application programming interfaces (APIs) and
primitives before actually experimenting with cross-layer
optimizations.

Second, because of this static nature of the existing
architectures, an optimization will change the system
behavior even if it is not needed or intended to take effect.
Precisely, an optimization that is specific to an application
or environment is not required when that application is
not running or the underlying conditions have changed.
For example, energy saving optimizations may not be nec-
essary if the device is plugged into a power supply. There-
fore, this optimization and its interaction with the network
stack is superfluous and may even adversely affect other
active applications. We strongly believe that this is against
the original spirits of the cross-layer paradigm [12] which
emphasize the need for dynamic adaptation of the system
behavior (i.e., protocols, system components, and applica-
tions) based on the current application requirements and
the network conditions.

Third, compile-time installation of optimizations signif-
icantly complicates the detection of cross-layer conflicts,
i.e., possible performance degradations [13] caused by
multiple, contradicting optimizations. Detecting such con-
flicts thereby remains one of the major unresolved chal-
lenges in the cross-layer development domain [4,8,13].

In this article we present CRAWLER, a novel experimenta-
tion architecture for system monitoring and cross-layer-
coordination that facilitates the evaluation of applications
and wireless network protocols. CRAWLER thereby benefits
developers of wireless and mobile applications, protocols,
and systems and supports them in experimenting with
and evaluating their cross-layering ideas. Specifically,
CRAWLER provides the following key features that illustrate
its departure from the existing work and mark the contri-
butions of this article.
� CRAWLER simplifies the process of monitoring and exper-
imentation by providing a unified interface for access-
ing application, protocol, and system information,
independent from the OS internals.
� The generic, versatile design of this interface further

facilitates specifying cross-layer optimizations by pro-
viding a declarative way of composing a set of optimiza-
tions and their adaption and adaptability at runtime.
� It offers (i) a very high degree of flexibility, to fluently

experiment with changing compositions of cross-layer
optimizations and (ii) extensibility, to include and
remove heterogeneous protocol and system compo-
nents in order to find the right set of optimizations for
a certain use-case. Hence, CRAWLER is well suited as a
rapid prototyping tool for application and system
developers.
� It enables cross-layer conflict detection support to pro-

vide feedback to the developers regarding conflicting
interdependencies when experimenting with multiple,
concurrent cross-layer optimizations.

The remainder of this article is organized as follows.
Section 2 presents a system overview, highlights our de-
sign goals, and comprehends the scope of our architecture.
Based on our design goals, Section 3 describes our architec-
ture from a conceptual point of view. The practical value of
CRAWLER is demonstrated in Section 4 where three different
use cases from divers networking fields are presented. In
Section 5 we show how CRAWLER supports a developer to de-
tect conflicting interdependencies between multiple cross-
layer optimizations. The implementation details and the
architectural overhead of CRAWLER are presented in Section 6.
Finally, we discuss related work in Section 7 before con-
cluding the article in Section 8.
2. Design overview

CRAWLER consists of two main components as shown in
Fig. 1: the logical component (LC) allows cross-layer devel-
opers to express their monitoring and optimization needs
in an abstract and declarative way. For this purpose, we
have created a rule-based language customized to cross-
layer design purposes. Using this language, developers
can specify cross-layer signaling at a high level without
needing to care about implementation details. Addition-
ally, the LC offers a uniform interface that allows applica-
tions (i) to provide their own optimizations on demand
and (ii) exchange information with the protocol stack, sys-
tem components and other applications.

The cross-layer optimizations as specified in the LC are
realized by the cross-layer processing component (CPC).
Here, rules are mapped to compositions of self-written
functional units (FUs). Finally, stubs provide read/write ac-
cess to protocol information and sub-system states via a
generic interface that abstracts from a specific implemen-
tation. Thus, additions and changes in optimization rules
can be done at runtime using the LC. These changes are re-
ported to the CPC, which adapts the FU compositions
accordingly.
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Fig. 1. Conceptual view of CRAWLER’s components. The logical component (LC) abstracts from the implementation of cross-layer optimizations via an easily
usable but powerful rule-based configuration language. The cross-layer processing component (CPC) realizes the optimizations given by the LC which can
be readjusted flexibly at runtime.
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Before going into further details of the architecture, we
present our design goals and briefly highlight the scope of
our approach.
2.1. Design goals

Our design is centered around the following goals:
Manageability: Cross-layer interactions should not im-

pair the key software engineering properties, such as mod-
ularity, maintainability, and usability, of the layered
protocol stack despite introducing dependencies across
non-adjacent layers. Similarly, the cross-layer architecture
should not impose additional requirements such as proto-
col dependencies when developing new protocols and sys-
tem components: cross-layer optimizations should be
easily maintainable and usable for application and system
developers without having too much knowledge about sys-
tem details and architectural requirements.

Application support: Unlike existing approaches, the
architecture should provide a unified interface for applica-
tion developers to (i) specify and add their own monitoring
and optimization needs into the system and (ii) bundle
these optimizations with their applications, without need-
ing to deal with OS level details. Moreover, it should sim-
plify the process of accessing protocol and system
information, typically placed in the OS, which today is lim-
ited to only a few interfaces and thus requires manual
inspection and adaptation of the very large OS code base.

Runtime flexibility and extensibility:The architecture
should offer flexibility that is essential for adjusting and
experimenting with different sets of optimizations, and
further, the extensibility for involving all possible proto-
cols and system components. In other words, for designing
an optimization, the exchange of information between any
number of layers and system components and the compo-
sition of any number of specific cross-layer optimizations
should be possible at runtime. To achieve this, the design
of an architecture has to offer sufficient versatility to cope
with the diversity and permanent evolution of protocols
and application requirements.

Context adaptability: The architecture should offer the
ability to (i) detect the underlying environmental changes
and (ii) respond to the changing application monitoring
and optimization demands (e.g., when starting/terminat-
ing applications), by automatically loading the adequate
set of optimizations at runtime. For example, energy saving
optimizations may not be necessary if the device is
plugged-into a power supply. This necessitates detecting
the right condition (i.e., plugged to power) and loading
the right set of optimizations (e.g., better performing but
energy-consuming optimizations).

2.2. Cross-layering in CRAWLER: design scope

CRAWLER runs on end hosts and coordinates local infor-
mation such as from the protocol stack and system compo-
nents. CRAWLER itself does not establish information
exchange among nodes in a network, such as in [14], be-
cause we believe that a monitoring and cross-layer exper-
imentation architecture should not be responsible for
establishing such information exchange mechanisms.
Rather, this is the domain of a communication protocol.
Nonetheless, a combination of such a protocol with CRAWLER

could be used to share cross-layering information between
nodes in a network. For example, in Section 4.3 we show a
use case of CRAWLER where we shared a monitored parame-
ter among neighboring nodes in an ad hoc network in or-
der to improve the detection of a jammer.
3. Architectural details

We present a goal-driven description of CRAWLER by high-
lighting, with the help of simple examples, how our design
achieves the four goals we laid out in Section 2.1.
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3.1. Goal 1: achieving managability

The LC is the interface between developers and the CPC.
Its major goal is to increase the usability and maintainabil-
ity of cross-layer optimizations for developers, allowing
them to easily express their desired optimizations without
paying too much attention to implementation details. For
this purpose, the LC is divided into four subcomponents
as shown in Fig. 2. The configuration subcomponent allows
a developer to express cross-layer optimizations on an ab-
stract level. It thus hides their implementation details for a
particular operating system. The interpreter subcomponent
is responsible for parsing and mapping this abstract
description to so-called commands. These commands in-
struct the CPC on how to realize the given cross-layer
description. In addition, these commands are stored in a
repository subcomponent that maintains a view of the cur-
rent realized cross-layer optimizations in the CPC. The
application support subcomponent allows applications to
share their variables for cross-layer optimizations. Addi-
tionally, it allows applications to add their own monitoring
and optimization needs. In the following we discuss the
first three subcomponents which are intended to meet
our design goal of manageability. We postpone discussion
on the application support subcomponent to Section 3.2
to dedicatedly describe how this subcomponent realizes
our second design goal of application support.
3.1.1. Configuration
The first step in CRAWLER’s functionality is to allow the

developers to specify their cross-layer optimizations. CRAW-

LER provides an easy to use but powerful rule-based lan-
guage for specifying optimizations in an abstract and
declarative configuration. Each rule is a behavioral descrip-
tion of a part of a cross-layer interaction such as accessing
protocol information and aggregation. Rules can be nested
within other rules to form rule chains, i.e., to develop
cross-layer optimizations. In Listing 1, we present an
example configuration with rules that specify how to ac-
cess and process protocol-stack information and when to
notify it to the application. Each line in the configuration
is a rule. Fig. 3 shows a (slightly extended) graphical repre-
sentation of this configuration. The figure is marked with
Fig. 2. The LC comprises four subcomponents. (1) The configuration is an abstra
configuration. (3) The repository saves snapshots of configuration setups, allowi
component provides an interface to applications for communication with CRAWLE
numbers which correspond to the line numbers, i.e., rules,
in the configuration.

The first rule my_rssi simply specifies which parame-
ter, determined by a unique fully qualified name, should
be accessed (see Section 3.3.2 for further details regarding
the access mechanism). The second rule my_his-
tory_of_rssi collects the History of RSSI (received sig-
nal strength indication) values, i.e., the last 4 RSSI values
of the wlan0 interface in this case. Similarly, the third rule
my_rssi_is_bad determines if the average of these RSSI
values is below a certain threshold.

So far, we have seen how computations and conditions
can be specified using rules. However, sometimes it is
desirable to react to events, such as a sudden drop in signal
strength. This notification is denoted by an arrow such as
in rules 4 and 5. The link quality condition of rule 3 is used
to inform an application about the bad link quality (rule 6)
and to reduce the sending congestion window of TCP con-
nections to 0 (rule 7), i.e., to avoid triggering its congestion
avoidance due to data corruption.

CRAWLER also allows the developers to modify or add new
rules during runtime. It recognizes these changes in the
configuration and adapts the internal composition of
cross-layer optimizations accordingly. For example, if we
want to change the signal strength threshold, we only need
to modify rule 3. We defer further discussion on dynamic
reconfiguration to Section 3.4.

Overall, the choice for a declarative and abstract lan-
guage provides accessibility for developers who do not
need to be cross-layer experts. Our language is customized
to cross-layer needs in a way that all necessary functional-
ities for any kind of cross-layer interaction can be imple-
mented. However, as already mentioned, the
configuration is only an abstract description of cross-layer
interactions that need to be realized. But beforehand, we
will explain next how the necessary information to realize
the desired optimization is extracted from the
configuration.
3.1.2. Interpreter
In the next step, such high level configurations of

cross-layer interactions need to be transformed into the
actual, resulting optimization. To this end, the interpreter
ct description of a cross-layer optimization. (2) The interpreter parses the
ng easy access to the current and past setups. (4) The application support
R in order to provide own optimizations and access to parameters.



Listing 1. A simple cross-layer signaling configuration in CRAWLER. This configuration file defines the setup illustrated in Fig. 3.

Fig. 3. A simple cross-layer configuration in CRAWLER. We change the behavior of the TCP layer and an application based on signal strength.
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subcomponent of the LC parses the configuration and maps
rules to fine-grained instructions called commands. These
commands hold instructions for the CPC on how to wire
and parameterize different functional units FUs to compose
a certain optimization. FUs are special stateful functions
that keep their private variables between calls, and that
have a uniform interface to simplify the wiring of FUs.
For example, rule 2 in Listing 1 is build from the commands
createFU (History), addParameter (my_rssi) and
addParameter (4) by wiring the corresponding FUs as
shown in Fig. 3. The handling of commands and the reali-
zation of cross-layer interactions are explained later in
Section 3.3.
3.1.3. Repository
The repository keeps track of all the changes in a config-

uration. As the name suggests, it behaves similar to a revi-
sion control system: each time the configuration changes,
the commands (as created by the interpreter) are automat-
ically committed as a new revision. As a result, several
revisions of a configuration can be stored in a preprocessed
state. The benefit of this is twofold: first, this assists CRAWLER

in switching between different optimizations without
needing to parse the rules again. In a running system, this
allows more efficient switching between preprocessed sets
of optimizations, e.g., if a certain context is available. Sec-
ond, while designing and testing new cross-layer optimiza-
tions, the repository allows the developers to roll back to a
previous, well tested and running optimization for debug-
ging purposes.

Summarizing, the declarative approach of specifying
cross-layer interactions enhances the usability and main-
tainability of CRAWLER. Non of the existing architectures sim-
plify the specification of cross-layer optimizations to a
degree where even developers who are not experts can de-
scribe cross-layer optimizations. Thus, because CRAWLER al-
lows to specify cross-layer optimization at a high level of
abstraction, it does not impose any system specific require-
ments on protocol and system developers. Hence, the col-
laboration of these three subcomponents of the LC fulfills
our design goal of manageability.
3.2. Goal 2: application support

In the previous section, we discussed how a cross-layer
developer specifies rules to describe cross-layer optimiza-
tions. However, to provide rich application support, we
also need an interface between applications and CRAWLER.
Such an interface allows developers to enable applications
and the OS to work together to make informed joint adap-
tation decisions. For example, in a handheld device, this
could allow the OS to opt for a low-power mobile connec-
tion for background always-on services and switch over to
a high-speed WiFi connection if the application requires a
high-volume streaming connection. Similarly, an applica-
tion could request a certain minimum and maximum



I. Aktas et al. / Ad Hoc Networks 13 (2014) 444–461 449
required bandwidth and the OS could inform it about the
bandwidth to be expected. The application can then choose
a suitable transmission quality.

CRAWLER provides a rich interface for developers: It en-
ables the applications to specify their needs (i) by access-
ing system information and sharing their own
information and (ii) by providing own optimizations with-
out needing to deal with implementation details of the OS
or CRAWLER.

Listing 1 presents an example of information exchange
between an application and CRAWLER in rules 4 and 6. A VoIP
application creates a (user space) variable and provides an
accessor my_appl_var1 to it. This variable is set to a cer-
tain value when the RSSI falls below a certain threshold
(rule 4). The application can then react to this change
accordingly. To make use of such a configuration, CRAWLER

applications can register variables that facilitate signaling
of states via a system-wide shared library. This only re-
quires an application to include the library’s header file
crawler.h, provide callback functions to read or write to
the application variables, and link against the library. The
interaction between CRAWLER and applications is performed
by the shared library itself.

3.3. Goal 3: flexibility and extensibility at runtime

The flexibility of CRAWLER is associated with how a cross-
layer optimization is composed and modified. CRAWLER pro-
vides a flexible wiring mechanism between FUs, the basic
building blocks of an optimization, to enable the develop-
ers in experimenting with different compositions of an
optimization. Similarly, extensibility deals with the under-
lying mechanism employed to access protocol-stack and
system-component information. CRAWLER provides stubs as
an extensible interface between cross-layer optimizations
and the OS.

3.3.1. FU wiring
FUs possess two properties which form the basis for dy-

namic reconfigurability and adaptability of cross-layer
optimizations.

First, FUs are stateful functions that maintain record of
the data and provide results based on that record each time
they are called. In contrast to stateless functions, whose
output only depend on the input and the global state of
the system, each FU keeps its private state (variables) as
long as CRAWLER runs, much like an object in an object-ori-
ented language. The output of an FU therefore depends
on input, global system state, and private state of the FU.
For example, every instance of History keeps its collected
values between calls. As long as a configuration does not
delete FUs but only changes their wiring, they will keep
their current state and collected information.

Second, FUs share a unified interface so that they can be
flexibly wired with each other. For example, by changing
rule 3 in Listing 1, we can exchange the Avg FU in Fig. 3
with Min or Max at runtime due to the uniform interface,
and still use the collected data from History. This is be-
cause a change in the wiring does not re-instantiate all
FUs. This uniform interface also facilitates easy extension
of FUs as newly designed FUs can easily be wired with
the existing ones. CRAWLER supports two mechanisms to
wire FUs, queries and events. Both types together cover
the full range of information retrieval and aggregation to
design any kind of cross-layer signaling.

Query-based Signaling: The query interface allows to
explicitly request information. If the query interface of an
FU is called, it returns the result to the inquiring FU. The
query result of an FU may depend on the result of further
FUs, leading to cascading queries. However, to reduce the
computational overhead, each FU can cache its previously
returned value and set a validity time for it. For example,
on a query the History-FU returns immediately its col-
lected and stored values instead of recollecting them. In
case of a new incoming query, the FU can then decide to re-
turn the cached value or recompute a new one.

Event-based Signaling: The query-based interface for
compositions between FUs results in a polling architecture.
To avoid unnecessary polling, CRAWLER also supports an
event-driven signaling that notifies interested FUs about
the occurrence of an event, for example a significant
change in a certain value measured by another FU.

Finally, to enhance the extensibility of the architecture,
CRAWLER also maintains a toolbox that stores FUs. It helps in
reusing generic FUs, such as Timer and History, or com-
pose more complex FUs, such as a handoff estimation, by
combining several small FUs.

Flexibility of CRAWLER is achieved with both signaling
schemes to compose FUs, the building blocks of optimiza-
tions, to allow developers to experiment and modify opti-
mization at runtime. In contrast, extensibility requires
mechanisms to adapt to evolving nature of the OS, i.e.,
new or enhanced protocols and system-components.
Therefore, this mechanisms should avoid dependencies be-
tween the cross-layer architecture and the OS. CRAWLER pro-
vides stubs as an extensible interface between cross-layer
optimizations and the OS.

3.3.2. Stubs – accessing signaling information
Stubs provide read and write access to protocol and sys-

tem information. They act as a glue element between the
cross-layer optimizations and the OS. Stubs offer a com-
mon interface and a very find-grained access to system
information: protocol and system variables have their
own get and set stubs. Thus, to access the desired proto-
col or system variable, stubs need fully qualified, i.e., un-
ique and hierarchical, names (cf. rule 1 in Listing 1). In
cases where writing values is not possible, e.g., sensors that
provide read-only variables, stubs with only get function-
ality can be used.

In CRAWLER’s runtime the CPC automatically associates
set and get FUs with each stub included in the architecture,
as shown in Fig. 3. Protocol information often changes non-
periodically and unpredictably as network conditions
change. Because a stub is accessed by CRAWLER via FUs, these
FUs can use the event-based signaling to notify other inter-
ested FUs about any change in protocol information. This
increases the responsiveness of rules to changing
conditions.

Fig. 4 shows an example of a stub that changes TCP’s
congestion control algorithm. The basic four steps to
change TCP’s congestion control algorithm are as follows:



Fig. 4. Stub for changing TCP’s congestion control algorithm works as follows: (1) While processing a packet in TCP, the function tcp_transmit_skb is
called. (2a) Here we hook into the processing and redirect the processing to the stub. (2b) In parallel (asynchronous), CRAWLER sets the adequate congestion
control algorithm via a Set-FU. (3) Based on the given value, the congestion control algorithm is selected. (4) Finally, processing continuous.
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(1) after receiving and processing a packet tcp_trans-
mit_skb is called right before delivering the packet to IP.
(2a) Here, we inject a hook that redirects the Fig. 4 shows
an example of a stub that changes TCP’s congestion control
algorithm. The basic four steps to change TCP’s congestion
control algorithm are as follows: (1) after receiving and
processing a packet tcp_transmit_skb is called right be-
fore delivering the packet to IP. (2a) Here, we inject a hook
that redirects the processing to the stub. (2b) The stub re-
ceives the current congestion control algorithm curr-

CongControl from CRAWLER via a Set-FU in parallel
(asynchronous). (3) If a change in the congestion control
algorithm is requested, TCP’s tcp_set_congestion_con-
trol algorithm is called for a certain socket. (4) After-
wards, the packet processing continues as normal. This
stub is later used in the evaluation (see Section 4.1) to
demonstrate a use case of CRAWLER.

Overall, stubs allow CRAWLER to monitor and coordinate a
diverse set of protocols, system components and applica-
tions. Moreover, with a unified wiring interface between
FUs, their different types of interconnection, and the ability
to reuse and wire further FUs, provide a very high degree of
extensibility and flexibility at runtime.
3.4. Goal 4: context adaptability

Context adaptability is one of the key features of CRAW-

LER. Application support is not possible with a static set of
rules that cannot adapt to application demands. Specifi-
cally, application specific rules might not be known at sys-
tem start time; they have to be loaded when the
application starts and removed when it terminates.

In order to dynamically add, modify, and remove rules
at runtime, CRAWLER provides the following three keywords
that can be used in the configuration:

load (rule_name): The rule rule_name is loaded at run-
time, e.g., if a developer wants to monitor the effects of an
enabled optimization. Dependencies are automatically sat-
isfied if rule_name references another rule which is not
loaded in the CPC. For example, for the configuration de-
fined in Listing 1, load (my_rssi_is_bad) will automat-
ically load my_history_of_rssi. The new rules are
composed into FU compositions as discussed in
Section 3.1.2.
unload (rule_name): The rule rule_name is unloaded at
runtime, e.g., if a developer wants again compare the sys-
tem without the certain optimization. The internal han-
dling of unloading a rule is more complex than loading it
since unloading can result in unreferenced FUs. To address
this problem, CRAWLER associates a reference counter with
each FU. As an example, unload (my_rssi_is_bad) will
also unload the rule my_history_of_rssi unless it is
used by another rule that is not listed in Listing1.

replace (rule_old, rule_new): The rule rule_old is re-
placed with rule_new at runtime. Note, to achieve this
some connections of the exchanged FU have to be rewired.

These keywords trigger the functionality to add, modify,
and remove rules at runtime. CRAWLER also provides mecha-
nisms to automatically execute the commands associated
with these keywords based on context changes such as
environmental conditions. For example, Listing 2 shows
how application specified rules are automatically loaded
or unloaded at runtime based on different conditions.
The [manual] section contains rules that are parsed by
the Interpreter but are not directly applied in the CPC.
[contextEnter] specifies which rules from the [man-

ual] section should be loaded when a certain condition
(also specified in the form of a rule) is met. Therefore, lines
12 and 13 specify that the rule setCwndAlg will be loaded
when the application sets its variable loadOpt to true.
Note that this configuration will be later used in the eval-
uation section to demonstrate the change of the congestion
control algorithm of TCP. contextExit is the opposite of
contextEnter to unload rules when a certain condition
is met. For example, in lines 16 and 17 based on the appli-
cation’s variable removeOpt all rules are unloaded.

Summarizing, by supplying keywords to load, unload,
and replace rules, CRAWLER achieves reconfigurability at run-
time. It also provides necessary support to automatically
execute these rules depending upon the conditions defined
by the developers.
4. Versatility of CRAWLER’s application area

This section focuses on how CRAWLER can be utilized for
monitoring and cross-layer adaptation purposes in diverse
networking areas. For this we show three completely dif-
ferent use cases from different research fields. First we



Listing 2. Configuration of an application-specified optimization: TCP’s congestion control algorithm is changed based on packet loss rate (PLR) and RSSI
values. If the PLR is high and the RSSI is low, TCP’s congestion control algorithm is set from TCP CUBIC to TCP Westwood. If either of the conditions is not
satisfied, the congestion control algorithm is set back to TCP CUBIC.
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start with the classical and well-known cross-layer exam-
ple, that is, TCP congestion control. Afterwards, we show
how we used CRAWLER to suggest a VoIP codec switching
scheme to improve perceived user quality. Finally, we
demonstrate CRAWLER’s monitoring and cross-layer adapta-
tion features for jamming detection and reaction.
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Fig. 5. Adapting TCP’s congestion control: The switch from CUBIC to
Westwood is performed at a packet loss rate of 4%. The error bars
represent the 95% confidence interval of 10 repeated experimental runs.
4.1. Use case: monitoring and adaptation of TCP congestion
control algorithms

To give an insight into how modeling a cross-layer
adaptation with crawler is set-up, we now present an
exemplary optimization that controls TCP’s congestion
control mechanism. The goal of this optimization is to
dynamically switch between different congestion control
algorithms, such as CUBIC [15] and Westwood [16],
depending upon the underlying network conditions. CUBIC
is the standard congestion control algorithm in the Linux
kernel since 2.6.19 due to its superior performance and
fairness properties under different network conditions.
Westwood is specifically developed for wireless communi-
cations (such as in WLAN), and provides better throughput
in challenging network conditions with high loss rates.

Our test setup consists of two PCs. One PC runs our
CRAWLER implementation and is equipped with an 802.11 g
WLAN card. We use Iperf [17] to create TCP traffic, and ne-
tem [18] to create different packet loss rates (PLRs) and to
produce repeatable results in order to stress test our archi-
tecture. The other PC connects to an 802.11 g WLAN access
point and serves as the destination for Iperf traffic.

As a first step, we model different loss conditions and
measure the TCP goodput via Iperf. The results of this mon-
itoring step can be seen in the first two curves in Fig. 5. It
can be seen that Westwood outperforms CUBIC in high
packet loss scenarios.

As a second step, we therefore specified a CRAWLER opti-
mization that switched between different congestion con-
trol algorithms at runtime without re-initializing the TCP
connection: If the packet loss rate exceeds 4% (a significant
amount for TCP) and the RSSI value falls below 60, TCP
switches from CUBIC to Westwood congestion control. A
switch back to CUBIC is initiated when the network condi-
tions become stable again. The complete configuration
script (in the form of an application-provided optimiza-
tion) is presented in Listing 2.

The effect of this optimization is shown in Fig. 5. The
variation in the results (specified by the 95% confidence
intervals) can be attributed to different environmental
conditions observed during the course of 10 repeated
experimental runs in an indoor environment with several
co-exiting WLANs deployments in the same frequency
range. Note that a switch at a lower PLR of 3% could also
improve performance of the optimization. However, as
our main goal is show an exemplary optimization, the
switch at 4% highlights its effects.

Fig. 6 shows our results for a longer experimental run,
and also highlights the possibility to load rules at runtime.
For the first 60 s, we did not load the optimization into the
CPC, as depicted by the low TCP goodput achieved during



Fig. 6. Goodput of a TCP transmission over time under varying environ-
mental conditions and congestion control algorithms. The optimization is
loaded after 60 s which triggers the switch from CUBIC to Westwood. The
switch back to CUBIC is triggered when the packet loss rate (PLR) falls
below the application-specified threshold of 4%.
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this time. The optimization is loaded at 60 s which triggers
the switch from CUBIC to Westwood and subsequently im-
proves the goodput. Similarly, at 120 s, when the PLR falls
below its 4% threshold, TCP switches back to CUBIC and
thus achieves a consistently higher goodput.

As a final step, we investigate if our on-the-fly algo-
rithm change produces undesirable side effects. For exam-
ple, the behavior of TCP’s cwnd (congestion window)
across different congestion control algorithms could lead
to unexpected behavior. To monitor the behavior during
the algorithm switch, we monitored the cwnd variable
via CRAWLER’s monitoring application by simply executing
monitorapp ‘transport.tcp.cwnd’ in the console. In
contrast, a manual setup would require changes to the ker-
nel to introduce hooks and to create an interface to access
the collected data. CRAWLER relieves the developer from
these steps and expedites the testing and monitoring of
variables and setups.

This example demonstrates the correctness of CRAWLER’s
implementation. It also shows that CRAWLER provides simple
and rapid access to system variables and parameters. A 15-
line configuration can be used to adapt TCP’s congestion
control without needing to re-initialize the end-to-end
connection. Similarly, the congestion window can easily
be monitored by executing the relevant monitoring appli-
cation of CRAWLER.
1 PCMA or the PCMU codec curves are very similar in all cases, therefore from
now on we use only the term PCM to indicate both. Similarly, we are ignoring
the marginal performance difference between other codes in for different packet
loss, jitter and bandwidth to maintain (i) the simplicity of our scheme and (ii)
focus on the viability of CRAWLER in codec switching.
4.2. Use case: VoIP codec switching

Today’s VoIP applications are bound to use only one
negotiated audio codec during the whole duration of a call.
Although some codecs are adaptable to a certain degree,
wireless networks demand even more adaptability to cope
with the underlying network conditions. In this section we
show that how CRAWLER improves the user-perceived qual-
ity of VoIP by automatically switching the codec during a
phone call. This automatic switching is based on the
observed network parameters – such as packet loss, jitter
and bandwidth – that strongly impact the user-perceived
quality of a VoIP call.

In order to objectively evaluate perceived speech qual-
ity, we rely on the PESQ tool [19,20] that rates perceived
quality with a MOS-LQO (mean opinion score – listening
quality objective) score ranging from 1 (bad quality) to 5
(excellent quality). Our test setup consist of two notebooks
running Linux Ubuntu 10.04 and a router in between. The
two notebooks are connected to the router via a 100 Mb/s
Ethernet connection. A wired connection has been chosen
to avoid uncontrollable wireless interference that can im-
pact PESQ-MOS results. The whole test has been auto-
mated to achieve repeatability and to conduct manifold
tests for credible results. We use the open source VoIP cli-
ent Linphone [21] as it provides a wide range of VoIP co-
decs. We used netem [5] to insert jitter or packet loss
into the connection, and employed traffic shaping via the
token bucket filter [9] to reduce the available bandwidth.
For each combination of codec and a certain packet loss/jit-
ter/bandwidth, we repeated the experiment 100 times.
One notebook, the sender, initiates the call and transmits
the ITU-T test file via Linphone. The other notebook, the re-
ceiver, answered the call and recorded the audio output.

Figs. 7(a and b) and 8 show our results for the codecs
GSM, Speex, PCMU (PCM with l-law encoding), and PCMA
(PCM with A-law encoding) under different network condi-
tions manipulated with the help of netem [22]. The perfor-
mance of different codecs under varying packet loss and
jitter show a similar trend. In contrast, Fig. 8 shows that
the variation in bandwidth results in a diverse behavior
for different codecs. For example, from 20 kb/s to 30 kb/s
GSM performs slightly better than the Speex. Similarly,
from 40 kb/s to 90 kb/s Speex outperforms all other codecs.
Finally, from 90 kb/s onwards, PCMU and PCMA achieve
the best results. We can therefore conclude that bandwidth
is the most suitable network parameter to characterize the
performance of the available set of codecs. We can also de-
rive a simple codec switching scheme: A VoIP call should
use Speex for a bidirectional bandwidth between 0 kb/s and
80 kb/s and PCM1 otherwise.

To implement such a switching scheme using CRAWLER,
we used Wbest [23] to measure bandwidth during a VoIP
session since Linphone does not offer such measurements.
CRAWLER gets the IP addresses of a call from Linphone and
provides it to Wbest’s bandwidth measurements. Similarly,
it gets bandwidth measurements from Wbest, calculating
using a sliding window based average, and provides it to
Linphone to initiate an appropriate codec switching. The
overall cross layer optimization for codec switching works
as follows: At the beginning of the call, CRAWLER measures
the bandwidth and initiates a call by sending a SIP-invite
message with the appropriate codec. During a call CRAWLER

monitors network conditions. If a high bandwidth-con-
suming high quality codec is used, CRAWLER checks if the
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Fig. 7. All codecs are similarly impacted, no benefit achievable by switching codecs. (a) Influence of packet loss on perceived speech quality for several voice
codecs. (b) Influence of delay jitter on perceived speech quality for several voice codecs.
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Fig. 8. Influence of available bandwidth on perceived speech quality for
several voice codecs. Codec performance clearly depends on bandwidth,
so codec switching depending on available bandwidth is sensible.
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current packet loss raises above a certain threshold to de-
cide whether to use a low bandwidth-consuming low qual-
ity codec, and vice versa. We compare our cross layer
optimization of codec switching scheme with a static use
of either Speex or PCM.
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Fig. 9. MOS-LQO comparison for our codec switching scheme and pure PCM a
values for decreasing bandwidth. At 24 s, bandwidth was reduced from 200 kb
values for increasing bandwidth. At 24 s, bandwidth was increased from 65 kb/s
Fig. 9(a) shows the results for decreasing bandwidth
from 200 kb/s to 65 kb/s after 24 s. We use the same ITU-
T test file for all experiments. In Fig. 9(a) the speech quality
of the Speex codec stay constant throughout the test, be-
cause the bandwidth limitation to 65 kb/s is still above
Speex’s requirements. On the other hand, PCM shows a
strong degradation of quality after the bandwidth reduc-
tion. Pleas note that CRAWLER correctly chooses PCM as the
initial codec. The overall effect of our codec switching
scheme can clearly be seen. The temporary degradation be-
tween 24 and 32 s can be attributed to two factors. (1) The
bandwidth decrease is detected due to frame losses, which
reduces the listening quality in the time before the switch
takes place. (2) Linphone’s current implementation reacts
to a re-INVITE codec switch with a small playback gap of
about 200 ms, which also decreases the perceived quality.
Similarly, Fig. 9(b) shows the results for increase in band-
width from 65 kb/s to 200 kb/s after 24 s. The overall effect
of our codec switching scheme can clearly be seen.

Concluding, our experiments show that the codec
switching optimization selects the specified codec properly
at the beginning and during the VoIP call. It improves lis-
tening quality compared to a static codec choice, except
for the short time required to perform the switching
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nd Speex codec in case of changing bandwidth conditions. (a) MOS-LQO
/s to 65 k/s, and our scheme switched from PCM to Speex. (b) MOS-LQO

to 200 kb/s, and our scheme switched from Speex to PCM.



Listing 3. Jamming detection rule proposed by Xu et al. [24] using signal strength consistency checks.

2 Note that RSS is not provided by consumer network cards and the RSSI
measurements are calculated differently in each brand.
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operation. However, in a real setup with long conversa-
tions and only occasional codec switches, we expect the
overall voice quality improvement to strongly outweigh
these short degradations.

4.3. Use case: coping with jamming-attacks

The shared nature of the wireless medium allows a spe-
cial kind of security attacks, the so-called jamming attacks
which target at completely shutting down the communica-
tion. Different strategies of jamming attacks have been
suggested [24–26]. These strategies can roughly be classi-
fied into basic and intelligent jammers. While intelligent
jammers try to exploit weakness in the medium access
protocol, basic jammers are protocol unaware. However,
to cope with the problem of jamming effectively, an ap-
proach based on cross-layer design is required [26] since
a jamming attack could target multiple layers simulta-
neously. Thus, several parameters from several layers have
to be correlated.

The majority of exiting strategies [24,27,28] against
jamming attacks are customized for a specific jammer in
a certain scenario. Consequently, it is difficult to use those
approaches in combination eventhough this could help in
obtaining a unified system that can fight jamming in an
adequate manner [26], i.e., where the strategy is selected
based on the scenario and jammer. CRAWLER provides the
necessary platform support to combine such strategies
for three main reasons: (i) monitoring of parameters since
it already provides access to a fair share of parameters, (ii)
correlation of parameters as CRAWLER offers a simple and ab-
stract configuration language, and (iii) the ability to add
and remove jamming detection and reaction strategies at
runtime to adapt to a certain scenario and jammer.

For example, we implemented the strategy suggested
by Xu et al. [24] as it is the most widely used approach
in the field of jamming detection for sensor networks. With
CRAWLER we tried to rebuild this detection strategy for
802.11. The strategy of Xu et al. follows a cooperative ap-
proach using the packet delivery ratio (PDR) and the radio
signal strength (RSS). The PDR is exchanged continuously
with all its one-hop neighboring sensor nodes. This base
amount of traffic also contributes to the RSS measure-
ments. The detection strategy for this approach is shown
in Listing 3. In a first step, from all neighboring nodes via
PDR exchange messages the maximum PDR is taken. Sub-
sequently, if the maximum PDR falls below a predefined
threshold, a signal strength measurement is initiated. If
this measurements also falls below another predefined
threshold, the jammer is considered being detected.

The second RSS consistency check helps to differentiate
if the PDR is low due to another influences such as
mobility. However RSS measurements (or radio signal
strength indicator (RSSI)2) in 802.11 are coupled with pack-
et reception. That is, RSSI is calculated over the preamble
and if a packet is not detected at all due to jamming, there
are no RSSI measurements. Therefore, we adapted Xu’s ap-
proach to use noise instead of RSS. This is because noise is
strongly affected in the presence of a jammer. We have also
implemented an ad hoc PDR exchange messaging scheme
where all nodes exchange their currently measured PDR
via broadcast with all their neighboring nodes.

We evaluated our detection strategy on a military test-
ing ground in Greding, Bavaria, Germany. This testing envi-
ronment was a spacious rural area permitting wireless
communication without major disturbances. The testing
scenario was as following. A military vehicle was in-
structed to escort a non governmental organization
(NGO) vehicle in order to protect the NGO vehicle from
enemies attached with jammers. Both vehicles were
equipped with x86 computers running Vyatta-Linux, CRAW-

LER and an application for jamming detection. The scenario
is shown in Fig. 10.

At the beginning both vehicles were outside of the jam-
ming affected area. The NGO and military vehicles were
20 m apart from each other and moved along a road at a
constant speed of about 20 km/h in direction to the jam-
mer. The constant jammer used a directional antenna
and an additional amplifier of 1 W enabling the jammer
to disrupt a wireless communication entirely, up to a dis-
tance of at about 460 m. The jammer was hidden next to
the road. Throughout the experiment, the vehicles ex-
changed ping messages and PDR exchange messages se-
cured by ssh connections. Beside this, no further traffic
was generated, neither by possible surrounding wireless
nodes nor other radio access technologies. After both vehi-
cles reached the jamming-affected area, our detection
strategy was able to detect the presence of the jammer
as shown in Fig. 11.

The curve shape of the PDR, Noise and RSS is very stable
outside of the range of the jammer. Communication was
not effected, i.e., all packets sent between the NGO and
military vehicle could be received. With decreasing dis-
tance to the constant jammer, both vehicles entered the
jamming-affected area. This resulted in an increase of the
noise level, �62 dbm at maximum, and in a reduced RSS
of �82 dbm at minimum. Since still some packets were re-
ceived at this stage, we could measure RSSI values. The col-
lisions between packets, sent from the embedded
computers inside the vehicle, and the jamming signal
caused the maximum PDR to drop until a PDR of 0% has
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Fig. 10. Mobile test scenario conducted in Greding, Bavaria, Germany. The military vehicle and the NGO were driving along a road, starting around 600 m
away from the constant jammer. After approximately 140 m, the vehicles reached area affected by the jammer and further approached the jammer until
they reached the it after another approximately 460 m.
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Fig. 11. Results of the first experiment of the use case scenario. Both vehicles were 20 m apart and drove with nearly constant speed of 20 km h. The
constant jammer was emitting a jamming signal of �13 dbm amplified by 1 W.
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been reached. As a result, the jammer was detected and
further countermeasures could be initiated.

In our next experiment, the vehicles stayed in jamming
range for a longer period of time. Here we gained some
new interesting insights as shown in Fig. 12. After entering
the jamming range, indicated by the red bar, the noise
starts fluctuating although the vehicles do not move. This
exhibits a periodic behavior which has also been observed
in [29] using a constant jammer and an Atheros wireless
network card. Puñal et al. assume that this is caused by
ANI which probes different noise immunity configurations
(in discrete steps) due to false signal detections. Despite
ANI, the embedded computers were not able to decode re-
ceived packets correctly or rather did not detect packets
anymore indicated by the maximum PDR at 0% and the
missing RSSI reports. After a while, the vehicles start mov-
ing again, increasing the distance to the jammer. As a re-
sult, all monitored values start recovering again.

So far, we are able to detect a jammer, but with CRAWLER

it is also similarly easy to build reaction strategies. After
detecting a jammer for this particular scenario (that we
run in the scope of a project), we informed a headquarter
via a satellite link about the presence of a jammer. Within
this project it was necessary to create SOAP-messages that
were labeled at the IP-layer. These specifically labeled
packets are treated differently by the routing protocol. To
achieve this, we filtered packets belonging to our jamming
application at the IP layer using CRAWLER, i.e., by modifying
the TOS field of IPv6 (IPv4 is also supported) packets and
fed them back to the network stack. These packets arrived
successfully at the headquarter.

To summarize, we were able to successfully detect a
jammer and react to it using CRAWLER to monitor, correlate
and manipulate protocols behavior at different layers.

5. Conflict detection support

The overall goal of a cross-layer optimization is to im-
prove a performance metric such as energy, throughput,
delay or user perceived quality of service. While we



Fig. 12. Results of the fourth experiment of the use case scenario. Both vehicles were 30 m apart and drove with nearly constant speed of 30 km h. The
constant jammer was emitting a jamming signal of �19 dbm amplified by 1 W.
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observed that running a single optimization leads to
respective performance improvements (cf. Section 4),
multiple cross-layer optimizations in parallel could lead
to unintended contradicting effects resulting in severe per-
formance degradation. In the cross layering domain this
problem is referred to as cross-layer conflicts. Although
cross-layer conflicts are a well known problem [4,8,13],
the existing cross-layer architectures fail to assist the
developers in detecting such conflicts and in finding the
right set of optimizations. In this section we present an
architectural extension of CRAWLER that classifies and
detects cross-layer conflicts. This architectural extension
provides necessary feedback to the developers regarding
conflicting cross-layer optimizations that may influence
each other. Hence, it helps the developers in resolving such
conflicts early in the experimentation phase. In the
Set

(a)

Fig. 13. Conflict classification: direct and indirect conflicts. (a) Direct conflicts
protocol. (b) Indirect conflicts: Optimizations manipulate different parameters b
following we first classify different types of cross-layer
conflicts before discussing how CRAWLER deals with them.

5.1. Classification of cross-layer conflicts

We classify cross-layer conflicts into (1) direct conflicts
and (2) indirect conflicts based on how difficult it is to de-
tect a specific conflict.

Direct conflicts occur when multiple cross-layer optimi-
zations try to manipulate the same variable in a certain
protocol as shown in Fig. 13(a). Here multiple optimiza-
tions try to manipulate a single parameter at a certain layer
via a set-FU. Hence, it is possible that two conflicting opti-
mizations have contradicting effects on the variable lead-
ing to the oscillation of a parameter, and accordingly, an
overall performance degradation. For example, an energy
Set

Set

(b)

: Multiple optimizations manipulating the same parameter in a certain
ut nevertheless affect each other.
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Fig. 15. Multiple optimizations increase the variable x. Our range FU
checks if the value is unintentionally changed twice resulting in out of
bound increase.
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related optimization is interested in saving transmission
energy by decreasing the transmission power. Conversely,
a connectivity oriented optimization is interested in keep-
ing long range connectivity by increasing the transmission
power. Hence, both these optimizations, when run in par-
allel, could lead to the oscillation of transmission power
and an overall misbehavior of the system.

Indirect conflicts are caused by multiple optimizations
that influence each other even though they do not manip-
ulate the same parameter. Hence, such conflicts are more
difficult to detect when compared with direct conflicts.
Fig. 13(b) shows variables of different protocols being
manipulated by different cross-layer optimizations. For
example, two different optimizations try to improve the
ARQ error control at TCP and MAC layers, respectively.
Two error control optimizations enabled at the same time
may lead to throughput degradations if not coordinated
properly. This is because each of the ARQ error control
causes additional overhead which decreases throughput.

5.2. Detecting direct conflicts

Since in direct conflicts several optimizations compete
for the same parameter, detecting such conflicts is rather
straightforward. The underlying idea is to determine the
number of parallel optimizations that are manipulating
the same variable. For this purpose, CRAWLER automatically
counts the number of FUs accessing a set-FU for a certain
variable. The manipulation of a certain variable by FUs ac-
quired by different optimizations is a strong indication of
the potential root cause for a conflict.

Moreover, we have implemented three FUs to further
analyze the impact of variable manipulations by different
optimizations. Hence, besides describing rules for cross-
layer optimizations, we also use CRAWLER’s description lan-
guage to detect and analyze conflicts. This process is simi-
lar to writing programming code and adding debug-
information such as assertions. In the following, we de-
scribe these FUs that enhance CRAWLER’s monitoring and
introspection capabilities.

Frequency FU (FRQ): This FU counts the number of
accesses to a variable over a certain period of time. The
higher the frequency of access to a variable, the greater is
the probability of a conflict. This is because frequent access
to a certain variable is a strong indication that two optimi-
zations are in conflict with each other with regard to the
suitable value for that variable. Hence, this conflict auto-
matically increases the number of accesses to that variable.
Fig. 14 shows how two different optimizations try to access
and manipulate a variable. The frequent changes may
occur due to the reason that the optimizations work
contradictively. The frequency FU can detect these
+ 
- 

Fig. 14. Multiple optimizations try to change the variable to frequent. Our
frequency checking FU FRQ is able to detect and report this to the
application.
frequent changes and provide necessary feedback to the
conflict monitoring application.

Range FU: This FU checks if the variable is assigned val-
ues from a certain predefined range. If, for example, two
optimizations increase the value of a variable simulta-
neously, it may result in out of bound increase resulting
in unintended misbehavior. Fig. 15 shows two optimiza-
tions try to increase a variable which is also monitored
and checked by the Range FU if the changes exceed the
predefined thresholds.

Oscillation FU: This FU observes if the values of a certain
variable are fluctuating considerably. It has two functions:
First, the FU observes whether two subsequent assign-
ments of a variable deviate beyond a certain predefined
margin, reporting a possible misbehavior. Second, it also
provides the ability to measure the scale of these deviation.
For example, if the sampling frequency of the FU is set to
high, then single peaks within a short timeframe are de-
tected as misbehavior. In contrast, if the sampling fre-
quency is set to a low value, then short peaks are not
considered but alterations over a longer period can be de-
tected as misbehavior.

Overall, these three FUs assist a developer in detecting
possible conflicts when running multiple optimizations.

5.3. Detecting indirect conflicts

Indirect conflicts can introduce complex interdepen-
dencies among variables of different protocol layers result-
ing in performance degradation in terms of metrics such as
energy, throughput, jitter or delay. To detect indirect con-
flicts CRAWLER monitors these metrics based on the recently
observed network conditions traffic conditions. For exam-
ple, we use Wbest [23] with CRAWLER to probe for current
network conditions such as bandwidth and delay.

Besides observing current network conditions, CRAWLER

also needs a first hand knowledge about the application
requirements to determine whether multiple concurrent
optimizations are in conflict with each other. For example,
the throughput decrease during a VoIP call initialization
might be irrelevant for a VoIP application but delay is
not. Therefore, the performance requirements of an appli-
cation is an essential information to decide if the perfor-
mance degradation has occurred due to an optimization
conflict. Hence, to find out the basic conditions given by
applications, we need to classify applications. For this pur-
pose, we classify different types of networking applications
to establish their basic set of requirements. Our classifica-
tion is based on the comprehensive QoS based classifica-
tion in [30].
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In our current implementation, the QoS class of an
application is statically determined when the application
is registered with CRAWLER. It keeps track of all the registered
applications and their classes, and accordingly instructs
Wbest to probe for the corresponding network require-
ments. If many applications are loaded simultaneously,
the corresponding rules for monitoring respective metrics
are established automatically by CRAWLER. If performance
deteriorates with respect to any of these metrics,
CRAWLER notifies all the registered applications regarding
the possible occurrence of a conflict among concurrent
optimizations.

To conclude, we first classified the cross-layer conflict
problem into two classes, that is, direct and indirect con-
flicts. Afterwards, we showed how we extended CRAWLER

with debugging capabilities to counter these two classes
of conflicts. To automatically detect direct conflicts, CRAW-

LER simply counts the number of accessors to a certain var-
iable. For manual debugging, we added further FUs to
provide sophisticated debugging support. For indirect con-
flicts, we extended CRAWLER with Wbest to monitor network
traffic conditions. Based on the observed network condi-
tions and application demands, CRAWLER tries to detect indi-
rect conflicts due to multiple cross-layer optimizations.

6. Implementation and architectural overhead

In this section we discuss the implementation details of
the architecture and evaluate the architectural overhead
when running CRAWLER.

6.1. Implementation

We implemented CRAWLER
3 for Linux (kernel 2.6.32). The

LC and all its subcomponents are implemented in C++. It
runs as a daemon in user space. The CPC resides in kernel
space and is implemented in C. This reduces the number
of expensive context switches between kernel and user
space during runtime. The communication between LC and
CPC takes place via flexible interfaces provided by generic
netlink sockets [31]. For using CRAWLER, applications can link
against a shared library that contains all the functionality to
interface with the LC.

The wiring between FUs is implemented using a special
data type that can contain characters, integers, boolean
values, arrays, and a struct-like compounds of these types.
So far, we have implemented about 20 FUs and 160 stubs,
with the numbers growing with every new testing setup.

6.2. Architecture overhead

We now measure the runtime overhead of our architec-
ture. CRAWLER’s runtime, the CPC, provides two main func-
tionalities: (i) registering and wiring FUs and stubs and
(ii) signaling between FUs and stubs to access protocol
and component information. The registration of FUs and
3 This article focuses on the main features of the CRAWLER architecture that
support our design goals. The source code and documentation of the whole
architecture can be accessed via http://www.comsys.rwth-aachen.de/

research/projects/crawler/
stubs is not time-critical since this only happens when a
new optimization is loaded into the system. During the
registrations, each newly created FU and stub is checked
to prevent duplicates. For each of them, this has a runtime
of O(n + m) where n and m are the number of already exist-
ing FUs and stubs, respectively.

Query-based and event-based signaling (cf. Sec-
tion 3.3.1) play a vital role in determining the processing
overhead of CRAWLER. To measure this, we use a simple
benchmark of several wired Forwarder FUs. These do
not contain any complex logic: they simply relay the query
to the next FU. The idea here is to keep the complexity of
the FUs as low as possible to measure the signaling over-
head between FUs.

Fig. 16(a) shows the results for both the signaling mech-
anisms of CRAWLER when compared with a standard Linux
function call (note the logarithmic scale on both axes).
We created chains of Forwarder FUs of different lengths,
from one to one thousand chained FUs. Afterwards, we
measured the CPU cycles required to traverse all For-

warder FUs, repeating each benchmark 100 times. The re-
sults show that query-based and event-based signaling
mechanisms introduce an overhead of a factor 2.1 and
2.8 when compared with native Linux function call, respec-
tively. However, we can clearly see that the overhead in-
creases linearly with the length of the chains.

However, this processing overhead does not increase
the processing time of network packets. To show this, we
connect two notebooks via a Gigabit Ethernet. The sender
notebook runs our CRAWLER implementation with an optimi-
zation that changes each outgoing packet by manipulating
the TTL field of the IP header. The optimization consists of
two rules: Rule 1 creates a chain of Forwarder FUs of dif-
ferent lengths. At the end of this FU chain, we added a sim-
ple FU that incremented an integer value. Rule 2 registers a
netfilter hook in the IP output path that sets the TTL to that
value. We then create different amounts of UDP traffic via
Iperf [17]. Fig. 16(b) shows the length of rule chains does
not contribute noticeably to the per-packet processing
time. This highlights the fact the runtime overhead of
CRAWLER is asynchronous to packet processing. Fig. 16(c) de-
picts the throughput measurements for the same
experiments.

Overall, these results conclude that, while CRAWLER intro-
duces processing overhead, this overhead does not deteri-
orate network performance in terms of throughput and
packet processing time.
7. Related work

A plethora of specific cross-layer solutions [4,6,32] have
been proposed that optimize a specific behavior of the sys-
tem rather than creating full-fledged architectures. The
majority of these solutions either enables cross-layer sig-
naling between two specific layers or between many layers
but in only one direction, e.g., from lower layers to upper
layers but not vice versa. For instance, PMI [33] only prop-
agates device information layer-by-layer to the upper
ayers. Similarly, ICMP messages have also been utilized
to provide feedback from lower layers to upper layers
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Fig. 16. Performance measurements of CRAWLER. (a) The signaling overhead has a linear increase of CPU cycles with increasing amount of wired FUs. (b) As
CRAWLER’s rules run asynchronously, packet processing time is independent of the amount of wired FUs. (c) Likewise, throughput is not influenced.

Table 1
Comparison of cross-layer architectures.

Architecture CLASS [9] CATS [10] MobileMAN [5] ECLAIR [11] CRAWLER

Multiple optimizations
Any-to-(m) any layers coordination
Extensibility or flexibility
Protocol stack abstraction
Manageability
Appl. support
Runtime extensibility and flexibility
Context adaptation
Context detection
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[34]. The inter-layer signaling pipe (ISP) [35] utilizes pack-
et headers to provide cross-layer feedback from upper lay-
ers to lower layers. In contrast, CRAWLER is an architecture
that facilitates realization of all these specific solutions,
potentially in parallel.

In recent years, a number of cross-layer architectures
have been proposed that facilitate signaling across all lay-
ers in both directions, i.e., any-to-any layer signaling. For
example, CLASS [9] enables direct signaling between all
layers by message passing. However, any-to-(m) any layer
signaling, i.e., addressing several layers at once, is not pos-
sible with CLASS. CATS [10] provides a management plane
that supports such any-to-(m) any layer signaling. How-
ever, CATS has a monolithic architecture that does not
specify any generic interface for signaling among different
layers and hence is unable to cope with permanent evalu-
ation of protocols and system components. MobileMAN [5]
provides a database where each layer can store protocol
information and make it accessible to other layers in a uni-
fied fashion. Thus, MobileMAN requires extensive modifi-
cations in the protocol-stack to enable such database
interactions. This limits extensibility and maintainability
of this architecture. ECLAIR [11] is the most advanced
cross-layering architecture that provides a generic inter-
face for accessing protocol stack. Its generic interface facil-
itates platform independence but it is does not support
dynamic adaptability of cross layer optimizations at
runtime.

However, the need for application support has been
emphasized in recent years to allow applications to acquire
system or protocol information. Unfortunately, this
emphasis has been limited to mere architectural concepts
[36,37], or to specific cross-layer optimizations [2,38]. Sim-
ilarly, the problem of cross-layer conflicts has been intro-
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duced in few papers [4,8,13] but a feedback for developers
has not been suggested. Finally, to the best of our knowl-
edge, the need for manageability, context adaptation and
runtime flexibility and extensibility has not been ad-
dressed by any of the research papers.

Our main departure from the existing work is that our
architecture (i) allows the developers to specify cross lay-
ers optimizations at a very high level of abstraction, (ii)
provides rich application support by enabling applications
to interact with CRAWLER and specify their own optimiza-
tions, (iii) enable runtime adaptability of cross layer opti-
mizations depending upon the underlying network
conditions, and (iv) provide the necessary support for
developers to detect cross-layer conflicts. To the best of our
knowledge, these key features are not supported by the exist-
ing cross-layer architectures as depicted in Table 1.
8. Conclusions and future work

In this article, we have presented CRAWLER, a cross-layer
architecture for wireless networks that enables flexible
and versatile adaptation of protocols, system components,
and applications. One key novelty is that CRAWLER can react
to unpredictable changes in a device’s environment by
adapting all its optimization at runtime. The rule-based
language enhances the usability and maintainability of
CRAWLER by allowing to express cross-layer optimizations
in an OS-independent fashion. Runtime reconfigurability
is achieved via the flexible wiring between different func-
tional units within an optimization. Our evaluation dem-
onstrates the utility and correctness of CRAWLER’s
implementation with help of simple use cases. It also
shows that CRAWLER does not deteriorate the network
performance parameters such as throughput and packet
processing time.

Developing novel cross-layer optimizations is our pri-
mary focus as a future work. We also want to improve
the usability of CRAWLER even further by providing a visual
configuration and monitoring component. The visualiza-
tion support for monitoring cross-layer interactions will
provide several advantages such as observing complex
cross-layer interactions and the ensuing effects.
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