
Experience of Developing an OpenFlow SDN
Prototype for Managing IPTV Networks

Christina Thorpe, Cristian Olariu, Adriana Hava, and Patrick McDonagh

Performance Engineering Lab, School of Computer Science and Informatics, University College Dublin
Email: firstname.lastname@ucd.ie

Abstract—IPTV is a method of delivering TV content to end-
users that is growing in popularity. It is a paid service, hence
the implications of poor video quality may ultimately be a loss
of revenue for the provider. Consequently, it is vital to provide
service monitoring and reconfiguration mechanisms to ensure
quality requirements set out in service level agreements are
upheld. This paper describes our experience of building an IPTV
Software Defined Network testbed that can be used to develop and
validate new approaches for service assurance in IPTV networks.
The testbed is modular and many of the concepts detailed in this
tutorial may be applied to the management of other end-to-end
services.

Keywords—Software Defined Networking, Monitoring, IPTV

I. INTRODUCTION

As the business interests involved in assuring high Quality of
Experience (QoE) for real-time, end-to-end services increase, an
emphasis is placed on the efficient and effective management of the
underpinning network. Traditional network configuration techniques,
based on distributed devices making locally optimal decisions, are
no longer adequate for these complex environments. New centralised
mechanisms are needed to bridge the gap. Software Defined Networks
(SDNs) are ideal candidates for managing real-time services: they
provide a holistic view of the entire system via a centralised controller
that can make smarter automated reconfiguration decisions using
monitoring data received from the switches. Multiple controllers can
be linked to increase the scalability of the management solution, and
federations between multiple domains can be supported (e.g. core and
access network domains).

Television is evolving to include less traditional methods of
service delivery. Satellite, cable, and terrestrial links have long been
the de facto delivery methods, however, providers have recently begun
leveraging the Internet Protocol (IP) to facilitate a new TV delivery
service called IPTV. IPTV differs significantly to classic Internet
video: IPTV is a paid subscription for the live broadcast of many
TV channels as apposed to a free download of one video. It is not
possible to buffer each channel before playback as subscribers are
not willing to wait several seconds every time they switch a channel.

Delivering high QoE is critical to maintaining customer rela-
tionships, therefore, monitoring IPTV is a key concern. Typical
IPTV networks will deliver video content continuously to thousands
of viewers simultaneously, thus, monitoring and reconfiguring such
systems is a complex problem. SDN for IPTV network management
is a rich research area; there is a lot of potential to contribute via
new metrics and mechanisms to detect and overcome video quality
issues within the core network. Several proprietary, media-aware,
network solutions are available from different network hardware
vendors (e.g. Cisco ASR 9000), however, the cost of these systems
is very prohibitive - particularly for research purposes. OpenFlow
(OF) is an open standard for SDNs that was developed by a research
group in Berkeley. It contains many powerful features for network
monitoring and reconfiguration and is extensible to support new Key

Performance Indicators (KPIs), algorithms, etc. It is open source and
can be installed on any linux operating system, offering a vendor-
neutral solution. McDonagh et. al. details our initial work on enabling
service assurance in IPTV networks using OF [1]; it proposes OF
as a good solution for IPTV management but does not include an
integrated IPTV SDN. This paper details our experience of developing
an OF SDN prototype for managing IPTV networks. Existing metrics
such as the Media Delivery Index (MDI) [2] and Media Discontinuity
Counter (MDC) were implemented in the SDN to demonstrate the
detection of poor video quality in the core network. A new mechanism
was developed to locate the root cause of video quality issues. Finally,
a new routing algorithm was developed to reconfigure the network to
improve video quality.

The remainder of this article is organised as follows: Section II
provides some technical details about OF. Section III discusses the
various components of the IPTV SDN Prototype built in this work.
Section IV focuses on the modifications made to the OF standard to
implement the IPTV SDN. Section V details the modifications made
to the Floodlight controller to support the IPTV solution. Section VI
details an experiment used to validate the prototype. Finally, Section
VII concludes this experience paper.

II. OPENFLOW (OF)
SDNs facilitate flexible and innovative environments: network

functions can be virtualised and new metrics and protocols can be im-
plemented to target specific applications, enhancing the performance
of the system and ultimately the QoE for the end users [3]. The SDN
paradigm is based on the ability to program a network i.e., the ability
to run third party code on a networking device to dictate the behaviour
of the control plane [4]. In an SDN, the physical coupling between
control and data planes, seen in traditional networks, is removed.
The intelligence and decision making is taken from the decentralised
data plane and placed in a smart centralised controller, which has
a global view of the entire network. Monitoring and state data is
collected by the controller and used to make configuration and routing
decisions, which are pushed back down to the switches. The logic in
the controller can be targeted for specific application data or services
traversing the network. For example, different routing algorithms can
be implemented in separate, but compatible, modules for voice, video,
or data services. OF is a programmable network protocol, in the form
of an open standard, that allows researchers and developers to add
network functionality and run experiments, without needing to know
the internal workings of hardware network devices. OF Switches
(OFSs) are composed of one or more flow tables. The OF Controller
(OFC) imposes policies on the switch flows. Flows contain a set of
packet fields that are used to match flows, and an action (send-out-
port, modify-field or drop) used to process the packet.

A. OF Messages and Processing
The OF protocol consists of several messages used to define the

behaviour of the network (see Table I). OF has also an OFPT ERROR
message, which is always raised with the error type and code. An OF

978-3-901882-76-0 @2015 IFIP 966



Name Description
OFC → OFS

OFPT HELLO Says ’Hello’ with supported OF version
OFPT FEATURES REQUEST Queries available ports
OFPT SET CONFIG Queries flow expirations
OFPT FLOW MOD Requests to add entry in flow table
OFPT PACKET OUT Sends a packet out on port(s)

OFS → OFC
OFPT HELLO Says Hello to the OFC with OF version
OFPT FEATURES REPLY Sends a list of features
OFPT PACKET IN Sends a missed packet to OFC
OFPT FLOW EXPIRED Informs OFS that a flow expired

TABLE I. OF MESSAGES

switch has several flow tables; when a packet is received, it enters
the processing pipeline (Figure 1).

If the packet matches an entry in the first flow table, the associated
instruction is looked up: (1) The packet can be modified with an
’apply-action’ instruction that applies a specific action immediately.
(2) The action set (initially empty) can be updated with a ’write-
action’ or ’clear-action’ instruction. The action set can only contain a
maximum of one action of a each type. (3) The metadata is updated
with a ’write-metadata’ instruction. (4) The packet can be sent to
a following table with a ’goto’ instruction (where the process starts
again). (5) If there is no ’goto’ instruction, the action set is executed
and the packet leaves the switch. (6) If it doesn’t match the table, the
packet can be sent to the controller or be dropped (depending on the
switch configuration).

There are several different OF actions. Some of them are manda-
tory in all switch implementations: (1) Output: forward to a specified
port, it must support the forwarding to reserved virtual ports: (1a)
ALL: send the packet out on every port except the ingress port and
ports which have a non-forwarding rule. (1b) CONTROLLER: send
the packet to the controller. (1c) TABLE: send the packet to the first
flow table to be processed. (1d) IN PORT: send the packet out the
ingress port. (2) Drop: drop the packet. (3) Group: process a packet
through the specified group. All other actions are optional.

Fig. 1. OF Processing Pipeline

B. OF Controllers
There are many different OFCs available for use; they have

different feature sets, different programming languages, and different
interfaces. NOX (http://www.noxrepo.org) was the first controller
software developed for OF. It is written in C++ and Python and
supports OF 1.0. It is targeted at recent Linux distributions (par-
ticularly Ubuntu 11.10 and 12.04). POX (http://www.noxrepo/pox)
is the brother of NOX, written in Python (requires Python 2.7)
with full support for OF 1.0 and partial support for OF 1.1.
POX is a command line tool with no native web interface, how-
ever, it can be used with third party interface software such
as PoxDesk (https://github.com/MurphyMc/poxdesk/wiki/Getting-

Started), DjangoFlow (https://github.com/carlio/django-flows). Ryu
(http://osrg.github.io/ryu) is also written in Python and requires multi-
ple python libraries to be installed. It uses an Apache 2.0 license and
fully supports OF versions 1.0. 1.2, 1.3, 1.4 and Nicira Extensions.
Beacon [5] is written in java; it is licensed under GPL v2 and supports
OF version 1.3, however, it is incompatible with mininet v2.0.
Trema (https://github.com/trema/trema) is written in Ruby and C; it is
licensed under GPL v2 and supports OF version 1.0. It has several re-
quirements to install. With Trema network DSL, the network topology
can be defined (does not require an external virtualisation environment
such as mininet [6]). Opendaylight (http://www.opendaylight.org) is
written in java and supports OF versions 1.0 and 1.3. It is more
than a simple controller; it is an open platform which includes
a fully pluggable controller, interfaces, protocol plug-ins and ap-
plications. Floodlight (http://floodlight.openflowhub.org) is an OF
controller written in Java that supports OF version 1.0. A Web
UI is included in Floodlight, enabled by default, and accessible
on http://localhost:8080/ui/index.html The latest version, Floodlight+,
supports only OF 1.3, but it has all the features of the previous OF
versions. As of now, the Floodlight+ controller does not work with
OF 1.0 and OF 1.3 switches at the same time.

An experiment was conducted to compare the performance of
the various different controllers with a basic L2-switch controller
and a linear topology on mininet (with Open Virtual Switch (OVS)-
like switches). A linear topology with 2 hosts was created with the
following command in mininet:

sudo mn --topo linear,2 --switch ovsk
--controller remote

The number of OFSs and hosts in the network was incrementally
increased from 2 to 40, and iperf was used to generate network
traffic for 10s between the first and last virtual host in the linear
topology. The throughput achieved is related to the performance of
the OFC, i.e., how quickly it can process ’packets in’ and push flow
entries back to the OFSs. Figure 3 shows the results of the OFC

Fig. 2. Controller Performance Experiment Topology

performance test, graphing the iperf throughput. Opendaylight does
not feature in the results because network discovery took too long
(e.g., iperf initiation took 15 minutes for 5 switches), and up to 40
switches were tested in this experiment. Ryu crashed with 40 hosts
and switches when requesting iperf. Results show that Floodlight is
a good option: it achieves the best performance in terms of network
throughput (marginally), particularly when the number of switches
and hosts is greater than 20; it also has an extensible web UI.

III. OF IPTV PROTOTYPE

A. IPTV SDN Monitoring Architecture
Figure 4 illustrates a typical IPTV delivery network architecture.

It is comprised of an IPTV content source (Super-Head End -
SH#1), which is the originating point of the IP video stream.
Multiple such sources can feed the IPTV content into the Core
Network (CN). The CN is not limited to only serving SHs, it can serve
content from Video-On-Demand (VOD) servers, local content, or
other non-IPTV services. The CN is comprised of two different types
of routers: Edge Routers (ER) and Core Routers (CR). One important
feature of the CN is the provision of path redundancy for failure

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Experience Session Paper 967



Fig. 3. OFC Performance Experiement Results

scenarios. The subscribers IPTV flows traverse the core network via
ERs and are dispatched to Set-Top-Boxes (STBs) through the Digital
Subscriber Line Access Multiplexers (DSLAMs) and Home Routers
(HRs). QoS metrics specific to video traffic can be obtained at any ER,

Fig. 4. IPTV SDN Monitoring Architecture

CR, or HR. For this work, all CRs and ERs are OF enabled (connected
to the OFC) and can be media aware; they are built with packet/flow
inspection to perform QoS monitoring. The metrics are obtained by
inspecting each video packet for its IP, UDP and MPEG-TS headers.
Per-flow metrics are recorded and pushed to the OFC, where the IPTV
provider can monitor the overall system’s performance. OF devices
can also monitor other flow, port, queue, and device level statistics.

B. OF Detectable Errors
The OF reports, used as a basis for the following detectable errors,

are referenced in the OF Specification [7]. Use cases that lead to
poor QoE for IPTV subscribers (loss, congestion, failed node) can
be broken down into simpler node or transmission line errors. The
path between the video content source and end-users is comprised
of forwarding nodes and links between them. The following is a
list of the typical errors that can be detected using an OF-enabled
IPTV delivery system. All these failures can occur more or less
simultaneously, but they are at the core of any IPTV system failure:

1) Connection to the OFC Lost/Down: The OFC pe-
riodically sends ’keepalive’ (using OFPT_ECHO_REQUEST and
OFPT_ECHO_REPLY messages) packets to connected OFSs, in order
to maintain connections. If one such connection is down, the OFC
should report this event. The OFS should also detect the loss of con-
nectivity and enter a fail-safe mode, pre-established at the installation
time, or settings set by the CM/OFC when connectivity existed.

2) One or More OFS’s Transmission Line(s) Down: The
OFS should detect when an active transmission line (other than the
link to OFC) is down. Such an error may occur when a cable was
accidentally unplugged, or the transmission line has suffered physical
damage. This error can be detected when the value of the field
ofp_port_state, bit OFPPS_LINK_DOWN = 1.

3) One or More Ports Down: The OFS should detect when one
of the ports of the physical interface is down. For example, if the port
was taken down by the administrator, or a hardware error occurred.
The OFPPC_PORT_DOWN bit should indicate that a particular port
was administratively taken down.

4) Saturated System: The input packet rate per flow can be
derived based on the flow table and the input port statistics. The
output packet rate per flow can be derived based on the OF queue
statistics. The ratio of the two rates should be 1. If the ratio >1, then
it needs to be investigated whether the node has internal forwarding
problems (system overload) or the output interfaces rate is low.

5) Poor Video Quality: Can be developed as an external module
(IPTV Module/Video Quality Device); a copy of each IPTV packet
(identified by its source and destination IP) is forwarded to this
module for header inspection (e.g. continuity counter), while the
original packet is forwarded to the appropriate output port. Using
the experimenter module, an OFS can be extended to measure and
report via the OFPST_VENDOR stats type.

IV. OF MODIFICATIONS

A. OF Node Model
Figure 5 illustrates the OFS node-model defined in this work.

Entities like ports, queue, and flow table are natively supported by
OF and a specific set of OF metrics exists for each of those. A
separate module, IPTV Module, was developed to support new light-
weight metrics for IPTV service assurance (e.g., MDI and continuity
count). The OFC and OFS were modified to receive reports for event-
based reporting. A separate dedicated device (Video Quality Device)
was developed to support a new heavy-weight IPTV metric (subject
of patent application and therefore not presented in this paper) to
perform the calculation off the switch in order to reduce the impact
on switch performance.

Fig. 5. OF Node Model

B. New Message Types
OF VENDOR synchronous messages are used to perform the com-

munication between the OFSs and the OFC e.g., the STATISTICS
messages with statistics ’type’ set to VENDOR. Various different
vendor type messages are used in the implementation of the IPTV
monitoring solution:

1) Set Configuration Message: Sent from the OFC to the OFS;
tells the OFS which IP (of the IPTV servers) to monitor.

2) Threshold Alert Message: This is sent from the OFS to the
OFC to alert that a metric has exceeded the configured threshold.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Experience Session Paper968



When the OFC receives a message of this type, it assesses whether
corrective action is possible/necessary.

3) Statistic Request/Reply Messages: The request message is
sent from the OFC to the OFS to request a statistics reply (based on
the flags). The reply message is sent from the OFS to the OFC to
report statistics data.

C. Metric Implementation
OF metrics are implemented entirely in the OF Datapath module

(responsible for table management, switch flow tables, and switch
packet processing). The implementation of new metrics in the IPTV
SDN involves the use of two parts of the OF protocol: Statistic
message (for reporting metrics) and Packet/Flow (for calculating
new metrics). The statistic message is comprised of three parts: (1)
Initialisation - called when a message for enable statistic is received.
(2) Dump - called after executing the initialisation. (3) Done - called
after dump (to clean memory). Several modifications were made to
the OF protocol to implement IPTV QoE metrics. These include:
Init : a small method was written to parse the body of the message;
create a list of requests; and save them for the dump function. A call
must be made to the init function (of the requested metric) to allocate
memory for all the variables needed for calculating the metric.
Dump : the dump functionality takes the list of requests (from the
init function) and executes them if it matches the conditions (ip
src/dst, type of metric). If they match, the reply buffer is filled with
the data (usually in the memory allocated by the init function) for this
metric. All the metrics for one type can be requested with one request
message; in this case, the type is checked to see if it is matching, and
the data is dumped.
Done : The done functionality releases the memory allocated in the
initialisation, when the metric is disabled.
Packet : The Packet function checks if the packet matches with the
condition, and runs the Deep Packet Inspection (DPI) on this packet
to calculate the metric(s). Here, the variable allocated in the init can
be used to store some additional values.

Three new metrics have been implemented in the IPTV prototype,
namely the Media Delivery Index (MDI) [2] Media Loss Rate (MLR)
and Delay Factor (DF); and Media Discontinuity Count. When
packets traverse a IP network to travel from source to destination,
they may be subject to queues, routing, and switching, causing jitter.
Buffering at the receiver is used to overcome the network jitter,
however, the cost of having buffers is that they introduce delay.
Furthermore, buffers are of a finite size, and excessive jitter will
cause them to either overflow or underflow. Both of these events
will negatively impact on IPTV user QoE [8].

The MDI uses jitter and delay to quantify QoE; it is calculated
in two parts: the MLR and the DF. The MLR is simply defined as
the number of lost or out-of-order media packets per second. The
MLR is calculated by counting the number of RTP packets received
in a switch (for each IPTV flow) to determine the difference in
the sequence number between the first received packet and the last
received. The MLR is the difference between the number of expected
packets (defined by the sequence number of the final received packet)
and received packets divided by a time interval (1 second), calculated
by (1).

MLR =
packets expected− packets received

interval time in seconds
(1)

A simple experiment was set up to validate the MLR implemen-
tation in OF. The core network topology shown in Figure 4 is used,
which consists of 3 ERs and 5 CRs. IPTV traffic is multicast from
the SHE to a video client, via the core network. The route of the
IPTV traffic is: SH#1 → E#1 → C#2 → C#5 → C#4 → E#2 →
Client. Figure 6 plots the MLR results when loss is introduced into
the network at various points: (1) 10% loss on link E#1 → C#2 (2)

Fig. 6. Media Loss Rate Validation Results

20% loss on link C#1→ C#4 (3) 30% loss on link C#4→ E#2. The
MLR increases proportionally for each percentage loss at each OFS
in the IPTV route through the core.

The DF component of the MDI is a time value indicating how
many milliseconds worth of data the buffers must be able to contain
in order to eliminate jitter. For DF, the difference between the data
sent and the data received is calculated at every packet arrival, as in
(2):

∆ = data sent− data received (2)

DF is defined by (3) and is recalculated for the packets received in a
time interval of one second.

DF = max(∆)− min(∆)

media rate
, (3)

where media rate is the maximum bit rate allowable by the encoding
process. In order to calculate ∆ in OF, the formula was modified.
Firstly, there is no trigger when the kernel receives a new packet,
only when the packet is read from the kernel queue. In order to
address this issue, the following variables were defined as in (4):

data sent =

{
Qp−Q + Pp, if Qp - Q > 0

Pp, if Qp - Q ≤ 0

}
data received =

{
Q−Qp + P , if Q - Qp > 0

P , if Q - Qp ≤ 0

} (4)

where Q is the queue size in bytes, Qp is the previous queue size,
P is the packet size and Pp is the previous packet size. Therefore ∆
can be calculated by (5).

∆ = Qp−Q + Pp− P (5)

Figure 7 shows the DF results of a second simple experiment
designed to validate the OF DF implementation. The same topology
(shown in Figure 4) is used, and the route of the IPTV traffic is:
SH#1 → E#1 → C#2 → C#3 → C#4 → E#2 → Client. Loss is
introduced into the network at different locations: (1) 20% loss on
the link between E#1 → C#2 (2) 20% loss on link between E#1 →
C#2 (3) 20% loss on link between C#4→ E#2. Results show that all
OFSs on the path of the IPTV flow report an increase in DF when
loss is introduced on an upstream link.

V. FLOODLIGHT MODIFICATIONS

FloodLight is implemented as the OFC that manages basic system
functions, such as socket connections and connection handshakes. It
is extensible by using modules and the powerful REST API. Received
packets, a list of all the switches in the network, and a list of different
MAC address connected in the network, can all be accessed through
the API. It is also possible to send any type of message to the switches
using the API.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Experience Session Paper 969



Fig. 7. Delay Factor Validation Results

A. Statistics Module
A new module was created to deal with all the statistics pro-

cessing and to make requests to all the OFSs. The class inherits
from the IFloodlightModule class, and implements a receive()
callback to get OF messages. This class also creates a Request-
Thread that is responsible for sending SET_CONFIGURATION and
STATISTIC_REQUEST messages to the switches.

B. Floodlight Messages Implementation
Several new messages were implemented to support an IPTV

SDN: The Set Configuration Message is used to enable
statistics monitoring on capable devices; it is implemented us-
ing 3 classes: (1) PelVendorHeader - inherits OFVendor,
the OF vendor/experimenter message, and adds one integer
field to the message so it is possible to have more than
one type of vendor message using only one vendor ID. (2)
SetConfigurationMessage - implements the message itself
and holds a list of different ConfigurationIPData structures. (3)
ConfigurationIPData - the structure holding each configuration
of enabled statistics.

The Statistic Request Message is implemented in
two classes: (1) StatisticRequest - inherits the OF protocol
message OFStatisticRequest, and creates the body of the
request using an instance of StatisticRequestBody. (2)
StatisticRequestBody - inherits OFVendorStatistics
and holds a list of PelStatisticRequest. Each
PelStatisticRequest represents an individual request
inside the message; it contains the following: (a) The statistic type
being requested. (b) A bit to indicate whether the statistic should be
computed for all the IPs, for a specific IP, or a range of IPs. (c) The
source and destination IP address.

The Statistic Reply is implemented using a
parser class StatisticsReplyParser, which takes a
OFStatisticMessageBase and puts all the information
from this message into a StatisticReplyBody structure type.
Inside each reply body there is a statistic value that can have
different sizes depending on the statistic type received.

C. Floodlight REST API
When started, Floodlight creates a webserver on the controller

port 8080 and (using Restlets) creates services that let the user access
information about the entire OF network. It also includes methods for
flow programming, setting static routes and many other options [9].
Various new methods were implemented inside Floodlights rest API
for configuring the switches, and extracting data for use in the user
interface:
Method 1 URL : http://server/wm/iptv/switch/{idSwitch}

/{enable}/type/{metricType}/opt/{ipSrc}/{ipDst}/{threshold}/json
Function : Send a Set Configuration message to the switch
identified by {idSwitch}, enabling if {enable} = enable or disabling
if {enable} = disable the statistics collection of the statistics type
{metricType} between the {ipSrc} and {ipDst}.Set the threshold for
this statistic as an integer value defined by {threshold}
Method 2 URL : http://server/wm/iptv/switch/{switchID}/stats/
{statType}/json
Function : List of statistic values for the switch {switchID} of the
type {statType} if {statType} = 0 then request all statistic values.
Method 3 URL : http://server/wm/iptv/switch/{idSwitch}
/{enable}/type/{metricType}/opt/{threshold}/json
Function : Send a Set Configuration message to the
switch identified by {idSwitch}, enabling if {enable} = enable
or disabling if {enable} = disable the statistics collection of the
statistics type{metricType} between all the IPs (wildcard on source
and destination). Also set the threshold limit for this statistic as an
integer value defined by {threshold}.

D. New Reconfiguration Algorithms
The three steps involved in a reconfiguration algorithm are: (1)

problem detection, (2) problem location, and (3) corrective action:
Problem Detection : The three video metrics implemented in
this work include MDC, MDI:DF, and MDI:MLR. Each metric
can be enabled in the OFC for any IPTV flow, by specifying the
source/destination IP and a metric threshold. The OFC sends a Set
Configuration message to the OFS; as the IPTV flow enters each
OF switch, all enabled metrics are calculated.
ProblemLocation : The testbed supports both periodic and event
based reporting of metrics. The decision algorithm utilises event
based reporting. Each metric is compared to the stored threshold. If
the value exceeds the configured threshold, a Statistics Reply
Message is constructed on the OFS and transmitted to the OFC.
Reports are transmitted out-of-band and therefore, it is assumed that
the probability of a lost report is negligible. When the OFC receives
the Statistics Reply Message from an OFS, it must identify
the problematic link/device. When poor quality is detected in a OFS,
all OFSs downstream will also detect and report the poor video
quality. It is assumed that all reports are received by the controller
(no loss). Therefore, the ingress link to the switch with the shortest
distance (least number of hops) to the video server is identified as
the problematic component.
CorrectiveAction : The key purpose of monitoring the OFSs is
to implement intelligent corrective actions to ensure high QoE for
end-to-end services. A routing algorithm was developed in this work
and is used to reconfigure the network; it is described in the next
section.

E. Routing Algorithm
When an OFS receives a packet whose source, destination, and

port information is unknown, it sends a ’packet-in’ to the OFC. The
controller then calculates the best route using Djikstras Algorithm
(DA) [10], and the flows are configured in all the OFSs. DA is a
shortest-path/lowest cost routing algorithm that assigns a cost/weight
on each edge. The shortest path is then calculated from each vertex
(node) to all other vertices in the graph. The mechanism of DA can
be utilised to determine the optimal route/path through a network in
terms of video quality. The idea is that when a link in a network
becomes problematic (causes poor video quality), the cost of the
corresponding edge on the graph can be increased in the attempt
to find a new route that avoids the problematic link (cost function is
currently the subject of a patent application process).

In order to implement this behaviour, the native forwarding
module in Floodlight was disabled, and another module was created
to represent of the network as a graph and to calculate the best path.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Experience Session Paper970



The reactive routing algorithm monitors LINK_DOWN events in the
network. Every time an OFS receives this notification for one of its
ports, all the flows for this OFC, and flow entries with same match
(IP source, IP destination, source and destination port) in the entire
network are deleted. This is to ensure that when the next packet
arrives, the new optimal route is calculated. If the optimal route does
not include the OFS that generated the ’packet-in’, the data contained
in this packet is injected as a ’packet-out’ in the last OFC of the path,
preventing any loss.

In the case where no route is valid, a packet flood is created so the
OFS that sent the packet-in to the OFC will send the same packet to
all output ports (except the one where the packet was received). This
is a solution for scenarios where the network topology was changed
and the OFC did not have enough time to learn the new topology:
the message is sent to the neighbours to see if the new topology was
learnt. The drawback to this mechanism is that it can eventually cause
packet duplicates, but it will suppress packet loss.

When an OFS sends a threshold report to the OFC, the OFC
stores it in a HashMap. If more than two threshold messages have
been received from an OFS within 5 seconds, the OFC will send
DELETE_FLOW messages to all the matching flows that are passing
through the OFS that sent the threshold message. This will force the
next packets with those matches to be rerouted in the network using
DA with modified weights.

VI. NETWORK RECONFIGURATION EXPERIMENT

A third experiment was conducted to validate the new reconfig-
uration mechanism in OF. The scenario considered is: a customer
subscribed to an IPTV service is experiencing a low QoE. The
route of the IPTV flow is: SH#1 → ER#1 → CR#2 → CR#3 →
CR#4 → ER#2 → DSLAM[1-3] → Client (see Figure 4). The

Fig. 8. Experimental Testbed Setup

IPTV SDN Testbed was developed using three physical machines,
including a powerful server and two laptops (Figure 8). All machines
are running ubuntu 12.04.2, and the server has a multiport NIC.
The core SDN is emulated on the server using mininet and the
Floodlight OFC. The SHE is implemented on a laptop running live555
(http://www.live555.com), and the IPTV client is on a laptop running
VLC (see Figure 8).

Congestion is introduced to the core network. CR#4 reports that
there has been loss/damage to a video flow (MLR value has exceeded
configured threshold illustrated by in red in Figure 4). This is due to
congestion between the core nodes CR#3 and CR#4. On receipt of
the alert, the OFC updates the cost of each edge in the graph and
recalculates the routes by running DA. The new optimal route is:
SH#1→ ER#1→ CR#2→ CR#1→ CR#4→ ER#2→ DSLAM[1-
3] → Client. The OFSs in the path of the IPTV flow are instructed
to delete the relevant entries from their flow tables. The next time a
packet from the flow arrives on the CR#2, it queries the new path
by sending a ’Packet In’ to the OFC. In this way, the IPTV flow is
rerouted around the congested link and the video quality is restored
(MLR value returns to 0, see Figure 9).

Fig. 9. Reconfiguration Validation Results

VII. CONCLUSION

This paper details the development of an OF IPTV SDN. It
discusses the various technologies used to create a cost-effective pro-
totype for research purposes and includes comprehensive description
of new metrics and reconfiguration mechanisms implemented in OF
and Floodlight. To date, several different novel mechanisms have been
developed and validated on the testbed, and are currently the subject
of patent applications.

ACKNOWLEDGMENT

This research is supported, in part, by Science Foundation Ireland
(SFI) via grant 08/SRC/I1403 FAME SRC (Federated, Autonomic
Management of End-to-End Communications Services - Strategic
Research Cluster, and in part, by Science Foundation Ireland grant
10/CE/I1855 to Lero - the Irish Software Engineering Research Centre
(www.lero.ie). The contribution of the following software developer
interns is gratefully acknowledged: Emmanuel Rieg, Filipe Caldas,
Julien Langlois, and Alexis Dumas.

REFERENCES
[1] P. McDonagh, C. Olariu, A. Hava, and C. Thorpe, “Enabling iptv service

assurance using openflow,” in Advanced Information Networking and
Applications Workshops (WAINA), 2013 27th International Conference
on. IEEE, 2013, pp. 1456–1460.

[2] J. Welch and J. Clark, “Rfc 4445: A proposed media delivery index,”
Massachusetts: Network Working Group, IETF, 2006.

[3] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker et al.,
“Composing software-defined networks,” in USENIX NSDI, 2013, p. 2.

[4] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny,
M. G. Rabbani, Q. Zhang, and M. F. Zhani, “Data center network
virtualization: A survey,” Communications Surveys & Tutorials, IEEE,
vol. 15, no. 2, pp. 909–928, 2013.

[5] D. Erickson, “The beacon openflow controller,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2013, pp. 13–18.

[6] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[7] “Openflow specification simulation tool.” [Online]. Available: http:
//archive.openflow.org/documents/openflow-spec-v1.1.0.pdf

[8] “Qoe iptv, understanding and interpreting mdi values,” Agilent Tech-
nologies, 2006.

[9] “Floodlight rest api.” [Online]. Available: http://www.openflowhub.org/
display/floodlightcontroller/Floodlight+REST+API

[10] S. Skiena, “Dijkstra’s algorithm,” Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica, Reading, MA:
Addison-Wesley, pp. 225–227, 1990.

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015): Experience Session Paper 971


