SOFTWARE DEFINED 5G NETWORKS FOR
ANYTHING AS A SERVICE

Network Coded Software Defined

Networking: Enabling 5G

Transmission and Storage Networks

Jonas Hansen, Daniel E. Lucani, Jeppe Krigslund, Muriel Médard, and Frank H. P. Fitzek

Jonas Hansen and Daniel
E. Lucani are with Aal-
borg University. Daniel
Lucani is also with
Chocolate Cloud ApS.

Jeppe Krigslund is with
Steinwurf ApS.

Muriel Médard is with the
Massachusetts Institute of
Technology.

Frank H. P. Fitzek is with
TU Dresden.

This work was financed
in part by the Green
Mobile Cloud project
granted by the Danish
Council for Independent
Research (Grant No. 10-
081621).

ABSTRACT

Software defined networking has garnered
large attention due to its potential to virtualize
services in the Internet, introducing flexibility in
the buffering, scheduling, processing, and rout-
ing of data in network routers. SDN breaks the
deadlock that has kept Internet network proto-
cols stagnant for decades, while applications and
physical links have evolved. This article advo-
cates for the use of SDN to bring about 5G net-
work services by incorporating network coding
(NC) functionalities. The latter constitutes a
major leap forward compared to the state-of-
the-art store and forward Internet paradigm.
The inherent flexibility of both SDN and NC
provides fertile ground to envision more effi-
cient, robust, and secure networking designs,
which may also incorporate content caching and
storage, all of which are key challenges of the
upcoming 5G networks. This article not only
proposes the fundamentals of this intersection,
but also supports it with key use cases and a
thorough performance evaluation on an imple-
mentation that integrated the Kodo library (NC)
into OpenFlow (SDN). Our results on single-
hop, multihop, and multi-path scenarios show
that gains of 3x to 11x are attainable over stan-
dard TCP and multi-path TCP.

INTRODUCTION

Communication and networking systems have
been structured in a series of layers to ease design
and, in principle, allow for novel technologies and
services to be incorporated with minimal effort.
Although this has been true for higher layers
dealing with applications and services (e.g., incor-
porating multimedia content, social networking,
and cloud applications) and lower layers dealing
with access technologies (e.g., evolving from early
mobile cellular technologies to 4G), the interme-
diate network layer control protocols have been
stagnant for several decades. In fact, this dead-
lock is due in part to the fact that multiple tech-
nologies depend on the current state of the

network to operate [1] and in part to the chal-
lenges of configuring and managing networks
based on network element operations instead of
the network services to be provided. The down-
side to the current network design and protocols
is that they were conceived with a fairly narrow
set of goals, which is now limiting the effective-
ness and feasibility of the more complex and
resource demanding applications of the upcoming
5G networks. For example, the lack of a holistic
view of the network can translate into reduced
efficiency and higher congestion in specific paths
or the inability to use multi-path techniques to
provide ultra-reliable services. This structure also
limits the adoption of verifiably optimal multicast
techniques, such as network coding (NC), at the
core of the network.

As a way to deal with some of the inefficien-
cies derived from these drawbacks, networking
theory and the Internet are currently facing two
large, game-changing trends: software defined
networking (SDN) and NC. Each provides a dis-
ruptive concept to enable more efficient and
flexible networking, and both have experienced a
proliferation of academic and industrial applica-
tions. The goal of this article is to bridge the two
concepts through fundamental analysis and
understanding of their joint potential as well as
testing their combination with a real implemen-
tation. The combination of both ideas goes
beyond marrying two buzz words. SDN offers
fertile ground to implement NC ideas and make
them widely and readily available, as well as to
help guide network coding research in terms of
realistic restrictions, such as complexity, memo-
ry, and in-network routers, as well as routers
capabilities (e.g., changing data operations on
the fly). In other words, SDN is the key enabler
for the timely implementation and deployment
of NC, initially as a virtual function next to each
communication node and in the future as an
integrated part of the SDN system.

This article provides key examples to demon-
strate the potential of NC’s recoding capabilities
and ability to mask losses and stabilize lossy
links, even without altering the end-to-end use

100

0163-6804/15/25.00 © 2015 IEEE

IEEE Communications Magazine * September 2015

of TCP. This provides a simple but critical step-
ping stone to improve current systems and open
the path to more complex protocols natively cen-
tered around network coding, such as coded
TCP (CTCP) [2]. We show that our simple
approach provides three-fold to 11-fold gains
over standard TCP and multi-path TCP [3].

SDN AND NC:
THE KEY TO 5G SERVICES?

More than providing an evolution in network
technologies, SG networks are envisioned as a
revolution. It is not just about increased data
rates with a new radio access technology, but
rather a large expansion of the network’s goals
to provide traditional services (e.g., voice, user
data), as well as radically new services: machine-
to-machine (M2M) communications with sup-
port for massive numbers of devices, millisecond
latency for communications, cloud and caching
services, high reliability, and energy efficiency.
This vision requires a system that is able to judi-
ciously allocate resources, treats storage and
transport of data as a single process, and exploits
the meshed nature of communication networks
to guarantee these requirements. This article
argues that a combination of SDN and NC is the
key to addressing these challenges.

SDN allows for a network to perform flexible
resource allocation (e.g., buffer management,
dynamic routing, exploitation of multiple paths)
beyond a single layer in the network stack (Fig.
1). To achieve this, SDN virtualizes services in
the network by separating the data transmission
and control of the network. In initial designs, the
control plane was achieved with additional con-
troller devices to allow it to evolve rapidly, while
maintaining simple and cost-effective switching
elements.!

Recent work has envisioned more refined
and distributed control mechanisms and security
aspects of SDN [4]. The de facto standard? for
the time being for SDN is provided by Open-
Flow, a commercially usable platform [1]. To
date, OpenFlow supports a series of functionali-
ties. First, it allows the control plane access to:

* The type of connection used (e.g., fiber

optic, copper wire) along with negotiated

connection speed

Hardware description and available capabil-

ities, and various statistics to each individu-

al switch, specifically:

—Port input/output in both packets and

bytes

—Data flow input/output in both packets and

bytes

—Packets dropped in both input and output

queues of each port

—Number of collisions and collision errors

detected

Second, the control plane may instruct the data

path to:

e Install data flow entries on switches and
routers

* Modify existing flow entries on switches and
routers

* Request and set features and configurations
of switches and routers

\
2 \
B
!

Transport NC
coded data

B

Caching NC B

coded data

Figure 1. 5G network with a network coded software defined network.
Seamless identification of data source, cache management, device-to-
device, or machine-to-machine communications, multi-path support, and
multi-source exploitation. The SDN controller has an overall perspective
of the network including data sources, edge caches, and base stations, and
is able to identify and manage network resources, including computational
ones for network coding. The SDN controller can identify coded frag-
ments of files in caches as well as in peer devices for orchestrating the
transmission of data to new devices interested in a specific content. Bold
lines represent connections, while red dashed lines represent data flows,

and green dashed lines represent control plane flows.

* Request update on input/output statistics
for individual switches and routers
Finally, the SDN data plane can inform the con-
trol plane about:
e Unidentified packet headers (and thus
request a new flow entry)
* Removed data flows
* Modified port status
e Errors in the data path
These functionalities allow a centralized con-
trol plane, shown in Fig. 1, to identify coding-
capable devices, link characteristics (round-trip
delay, packet loss rates), and topology to deter-
mine paths to be used and where/how much cod-
ing needs to be incorporated. The SDN controller
could also identify coded fragments of popular
files in caches as well as in peer devices for orches-
trating the transmission of data to new devices.
On the other hand, NC breaks with the store-
and-forward paradigm used in today’s networks
by encouraging intermediate nodes in the net-
work to recode incoming data packets using
algebraic operations over finite fields (e.g., a
middle device in Fig. 1 recoding and sending a
new coded packet to the upper devices). This
contrasts with standard end-to-end erasure cor-
recting codes (e.g., LT and Raptor codes), and
allows the network to generate redundancy
where it is needed instead of injecting it from
the source. In a way, NC proposes a store-code-
forward paradigm to networking. Random linear
network coding (RLNC) provides a distributed,

L https://irtf.org/sdnrg

2 There are other mecha-
nisms to configure
switches or new SDN
software projects. For
example, OpenDayLight
(http://www.openday-
light.org/) is a recent and
exciting project with a
first software release in
February 2014. However,
OpenFlow was released
in 2011 and is already
supported in commercial
switches.

IEEE Communications Magazine * September 2015

101

|
The comprehensive
view of network
conditions that is
available through
SDN can be pivotal
to deploy and man-
age NC configura-
tions and recoding
potential within the
network as well as
identifying storage
locations to bridge
users and/or devices
to their data.

3 http://lwn.net/Arti-
cles/549477/

4 https://irtf.org/nwcrg

5 https://irtf.org/sdnrg

asymptotically optimal approach to employ NC.

RLNC is based on choosing random coefficients

to create linear combinations of incoming pack-

ets. The reason behind these gains comes from
the fact that:

* The network itself does not need to transport
packets without modification, but rather a
linear combination of the original data pack-
ets, thus providing a richer set of options and
actions available to the network.

* The receivers do not need to track individu-
al packets, but instead focus on accumulat-
ing enough independent linear
combinations in order to recover the origi-
nal packets.

Although the gains have been shown in a
variety of scenarios, and implementations have
confirmed NC’s potential in practice, NC’s incor-
poration in standards and wide deployment has
been limited with some exceptions; for example,
CATWOMAN [5] is currently deployed as part
of the Linux Kernel.? Part of the limitation lies
in the difficulty of retrofitting routers and switch-
es in the network with NC functionalities. How-
ever, enabling even a limited number of such
devices with NC (e.g., new 5G equipment) can
have a large impact on performance if we are
able to identify and exploit them. SDN can ease
this process and other functionalities. Finally,
the presence of a high-performance network
coding library (kodo [6]) would ease the deploy-
ment of a multiplicity of NC strategies. Although
the base functionalities are simple — encode,
recode, and decode data packets — NC supports
a variety of code designs and configurations,
from the classical block-by-block RLNC to
online NC, which essentially allows the encoder
and recoders to use a moving window for decid-
ing which packets to include in the next linear
combination. Kodo [6] also supports systematic
NC codes, sparse RLNC, perpetual NC, and ful-
crum NC [7], providing a wide range of configu-
rations for deployment in networks.

CURRENT STATE OF AFFAIRS

Both technologies are currently discussed within
the Internet Research Task Force (IRTF) on
NC4 and SDN.5 However, the communities
actively involved in SDN and NC have had little
if any overlap in the past, which limits mutual
understanding of the challenges and capabilities
of each, and limits the opportunities to combine
the two in a meaningful way.

WHERE CAN SDN AND NC HELP?

The combination of SDN and NC brings forth
an interesting potential for the management and
operation of 5G networks. In particular, the
comprehensive view of network conditions that
is available through SDN can be pivotal to
deploy and manage NC configurations and
recoding potential within the network as well as
identifying storage locations to bridge users
and/or devices to their data. The following bene-
fits are possible by this combination:
Exploitation of multiple communication
paths: NC is particularly well suited to exploiting
multiple communication interfaces and routes
[8], which can then exploit SDN’s ability to rec-
ognize multiple communication paths between

source and destination. This is key in 5G net-
works to comply with reliability requirements as
well as appropriate management of heteroge-
neous interfaces, such as millimeter-wave
(mmWave) for increased speed, and another
technology for continuous connectivity or for
M2M purposes as in Fig. 1.

Management of data storage and caching:
SDN’s ability to virtualize and/or identify caching
and storage nodes in the network are key to
exploiting NC to enhance the impact and reduce
the storage cost of caching/storage by relying on
linearly coded packets instead of replication of the
original data per storage location/device. NC also
provides a single code for both storage and data
transmission, which is key to treating data as a sin-
gle holistic process, as seen in Fig. 1. This manage-
ment can also include the preemptive caching of
data of a user as it moves through the network
using location information. The goal is to guaran-
tee low latency for access to the user’s data.

Adaptation of redundancy based on link qual-
ity: SDN provides simple mechanisms to identify
the link quality, including packet losses, for the
transmission routes used for a flow. This capabili-
ty is particularly relevant for using NC’s recoding
capabilities to generate the right level of redun-
dancy per link, instead of introducing end-to-end
redundancy to compensate for packet losses,
which is an inherently inefficient strategy.

Assessment of system load and complexity
allocation: SDN is useful for identifying whether
a device can commit resources to recoding and
how many, since the control plane is able to
access information about the hardware of each
switch. This may allow us to choose the NC
parameters to meet the current network demands.
This is particularly relevant with novel NC
schemes that provide fluid allocation of complexi-
ty, such as fulcrum network codes [7], by perform-
ing linear combinations using different finite
fields end to end and at different nodes in the
network. The choice of the finite field has a direct
impact on the computational effort required by a
given node. This added flexibility is key to dealing
with energy efficiency in 5G networks, not only
for the infrastructure but for connected machines
(e.g., sensors, actuators) and end-user devices.
Additionally, an SDN controller could provide a
simple trade-off between computation (reduced
coding load) and communication (increased com-
munication load) in the network by deciding
whether and where to code various flows depend-
ing on load statistics obtained by SDN, while uti-
lizing the flexible SDN flow management to
accommodate such changing conditions. In a
sense, each switch can be configured to code (or
not) the incoming flows, as illustrated in Fig. 2.

IMPLEMENTATION AND TESTBED

In order to advocate for the integration of NC
into SDN, we include a set of simple network
topologies that show the benefits of this merging
of technologies. The simplicity of the topologies
further emphasizes the usability of the merged
technologies as large-scale and more complex net-
work scenarios can be broken into a collection of
these simple topologies. That is, the benefits
found in the simple topologies are readily applica-

102

IEEE Communications Magazine * September 2015

ble in complex scenarios. The network topologies
utilized for this each represent a scenario where
NC provides a potential benefit, but where an
implementation conflicts with the boundaries set
up by the structure of the network protocol stack.
Simple network scenarios include single-hop, mul-
tihop, and multi-path. Each of the scenarios are
further elucidated below.

CoDING DEVICES

A functional software defined network is neces-
sary in order to confirm the capabilities of the
developed coding in such a network. However,
network equipment capable of SDN (e.g., Open-
Flow or similar protocols) only provide limited
possibilities in terms of modification and config-
uration of capabilities. We propose a flexible
approach to evaluate the potential of the combi-
nation of NC with SDN without initiating full
integration of NC into SDN software. This is a
crucial step not only to experiment with different
strategies and schemes but to gain insight as to
the key and most promising elements that could
be included into OpenFlow or similar projects as
well as motivating switch manufacturers to sup-
port new coding features.

For this reason, a virtual network environ-
ment has been set up using Open vSwitch,® an
open source virtual switch supporting the Open-
Flow protocol [9]. A coding device in the virtual
network setup is based on the developed coding
software. Instead of integrating the coding soft-
ware directly into the Open vSwitch devices, the
coding is deployed on virtual machines. This is a
development decision based on both a limited
timeframe for development, and the fact that a
virtual machine can be substituted with a real
device without changes to the code in case a real
network scenario should be deployed. The possi-
bilities of integrating the coding software on
existing network equipment, such as a switch, is
very limited. A (virtual) machine with the coding
software deployed acts as a coding device on the
virtual network, and can be used for either
encoding, decoding, or recoding. The coding
software distinguishes between packets that need
to be coded, recoded, or decoded, and packets
that should be ignored in terms of coding.

The virtual machine utilizes virtual network
interfaces that ensures communication toward
the host operating system (OS). That is, within
the virtual machine, this device acts as a normal
network interface connected to a network, while
the host OS has the responsibility of handling
traffic to and from this interface. The virtual
interface can be included in virtual network sce-
narios specified by the host OS. Two of these
network interfaces are included in each virtual
machine. One is to be included in the virtual
software defined network scenarios, and one is
utilized for direct communication with the host
OS. The latter eases the setup and configuration
through host-side scripts without “polluting” the
investigated network scenario. This relationship
between host OS, virtual machine, and coding
software is illustrated in Fig. 2.

Deploying the coding in virtual machines nat-
urally curbs the obtainable performance com-
pared to dedicated integration directly in the
virtual switch, say, due to the introduction of

Host OS
E | Coded flow “»~_Uncoded flow
E Coder Virtual Virtual
; interface | | switch | >
H Virtual |
E machine
: Virtual
: interface Host-guest
h | communication

Figure 2. Integrating network coding into an Open vSwitch, showing the

relation between coding software, virtual machine, and host OS. A data

flow (the grey dashed line) is redirected through the coding device before
it is forwarded onto the network. The flows that do not require coding fol-
low the black dashed line straight through the switch.

additional delay for directing traffic to the virtu-
al machine, processing, and sending back to the
switch. However, we argue that a virtual imple-
mentation is an equal advocate for NC to be
integrated into a software defined network. The
virtual setup shows that only a limited amount of
coding-related instructions is needed to create a
beneficial coding approach that can be deployed
on future SDN-capable equipment.

Intermediate network nodes in the constructed
virtual network setup consist of an Open vSwitch
along with an adjacent coding device. Data flows
to be coded are then redirected from the switch
through the coding device and back to the switch,
which then forwards the coded packets appropri-
ately. The coded data flows are specified in the
coding devices using statistics data obtainable
from the switch using the capabilities of the
OpenFlow protocol, where key supported param-
eters for implementing efficient network coding
are the packet loss statistics and topology infor-
mation. Although packet loss statistics could be
obtained by other means, such as using the Sim-
ple Network Management Protocol (SNMP), the
SDN framework will allow for further system con-
figuration and control in future developments,
including route selection and complexity manage-
ment for NC functionalities. From the perspective
of the SDN controller, the controller would select
the use of the coding switch for a specific flow by
routing the data to the virtual machine and from
the virtual machine back to the router for trans-
mission to the next hop.

In general, this combination of switch and cod-
ing device imitates the behavior of a network-cod-
ing capable network node. This could be deployed
either as an overlay, for example, computation on
top of existing (but limited) SDN-capable switch-
es, or within the switch itself. Figure 2 provides a
simple illustration of how the two components,
switch and coding device, cooperate to create
coded flows within a network.

CODING SOFTWARE
The software implementation? uses Kodo [6],
which is a C++11 network coding library capa-
ble of random linear network coding (RLNC).

6 http://www.open-
vswitch.org

7

https://github.com/14gr1

010/software

IEEE Communications Magazine * September 2015

103

The coding scheme is used as forward error cor-
rection (FEC), that is, neither positive nor nega-
tive acknowledgement (ACK/NACK) is used to
ensure delivery of every packet. The encoder uses
a systematic code [10] where all the original pack-
ets are transmitted uncoded (but with a header
added by Kodo and zero-padded to the RLNC
symbol size) the first time. Throughout the per-
formance measurements we use a generation size
of 10 symbols, Galois field in use is GF (28), and
the symbol size is set to 1356 bytes. Some of the
benefits of a systematic code is lower decoding
complexity and delay [10]. Lower decoding delay
is achievable since all uncoded packets can be for-
warded directly, and having uncoded packets
reduces the decoding complexity of Gaussian
elimination, which is used to decode the RLNC
generation. Kodo supports RLNC on the fly
where packets can be added to the encoder as
they arrive. Similarly, packets can be extracted
from the decoder as soon as they are decoded,
without the need for decoding the entire genera-
tion first. One of the benefits of RLNC on the fly
is that coded packets can be transmitted before
the entire generation is fed to the encoder (i.e.,
adding redundancy on the fly). The combination
of systematic and on-the-fly coding allows the
encoder to transmit uncoded and coded packets
with minimal delay. However, using on-the-fly
coding also reduces the decoding probability com-
pared to a traditional block code. Since redun-
dancy packets can only aid decoding the symbols
that were added to the encoder at the time of
their creation, they may become useless later. For
example, a redundancy packet created at the

10 ms

° — °

20 e T T T .
L S R L T T ==== Maximum
--------- - - capacity

i\ __ — — — Theoretical coded

\ \ maximum

\ L o — -eEmpirical uncoded TCP

\ N F— Maximum,

15 el oeeeeee v Yenan rn e & RLNC 0-100%
\
|
R
) |
=3 \
+ |
310 ¢ [3*
S |
[=2]
] |
e 1
= |
9x
5hoe
\.. -
\\.5\‘.
T e——_
- —_
-——_____ -———___Y L
0 1 1 1 1
0 2 4 6 8 10
Loss probability (%)
(b)

Figure 3. Single-hop network comparing performance of TCP using net-
work coding for erasure protection, TCP without coding, as well as the
theoretical maximum of our simple coded approach and the theoretical
capacity of the channel (without protocol effects). SDN is used to detect
the link quality and adapt the redundancy introduced by the system.

beginning of a generation cannot be used to
recover a lost symbol in the last part of a genera-
tion. But without on-the-fly coding, slow or infre-
quent communication is at best problematic; for
example, in a ping scenario it would be inconve-
nient to wait for an entire generation to be filled
before sending any packets.

MEASUREMENT RESULTS

The developed software and the virtual network
environment in which the software is deployed
indicate that integration of NC as a functionali-
ty of a software defined network is indeed possi-
ble. However, this alone does not show that this
combination of technologies is actually benefi-
cial. In order to show that the proposed integra-
tion of network coding is plausible, a series of
performance measurements has been carried
out using the standard tool for network perfor-
mance measurement, iperf. As a secondary
result, this should also show that the coding
approach can be applied without breaking func-
tionality with the conventional TCP/IP network
protocol stack.

We focus on links with a mean loss rate with-
in 0 and 10 percent. Note that typical WiFi links’
mean loss rates have been reported between 0.1
and 0.5 percent and as high as 4 percent depend-
ing on hardware and drivers [11] and higher in
long-range links [12]. The mean packet loss rate
for 3G, 3.5G, and 4G networks has been found
to be in the range of 0.18-0.66 percent, 0.05-0.14
percent, and 0.03-0.30 percent, respectively [13].
The following results show that significant per-
formance gains can be found even with loss rates
below 0.5 percent using our techniques.

SINGLE-HoP

The single-hop scenario consists of two virtual
nodes, each connected to individual virtual
switches. These switches are then connected with
a virtual Ethernet connection on which delay
and loss are introduced. This simple topology
along with specified delay and packet loss is
depicted in Fig. 3a. This scenario is representa-
tive of networks where only the destination and
the source are capable of coding. Alternatively,
the network itself could provide such functionali-
ty transparently for end devices in order to pro-
vide protection against lossy parts of the network
(e.g., a satellite link).

By isolating the coding approach to a single
link between coders, the consequence of the
data recovery process within the developed cod-
ing approach is revealed. Despite the potential
ability to recover every single erasure that may
occur on the link, the performance of the trans-
ported TCP communication may not resemble
error-free TCP communication. This is due to
the inevitable delay of the error recovery phase,
from when a lost packet should have been
received to the point where it is successfully
decoded. The amount of additional interference
in terms of delay and jitter is reduced to a bare
minimum in this single-hop scenario. The chan-
nel conditions on the investigated link are then
adjusted to illustrate the tolerance of both the
TCP communication and the deployed coding.
Increasing packet loss on the link reveals the

104

IEEE Communications Magazine * September 2015

robustness added by the coding. The bandwidth
of an uncoded TCP connection is compared to
TCP connections carried by the deployed coding
approach using systematic on-the-fly RLNC. The
achievable throughput for both uncoded and
coded data flows is stated in Fig. 3b. This is
compared to the channel capacity and the theo-
retical maximum throughput for a coded flow,
found using a model for TCP throughput [14]
modified to accommodate the utilized coding
approach.

From the performance of the coded data flow
a gain of 3x is obtained already at 0.5 percent
packet loss. This performance boost increases up
to 9x at 10 percent packet loss probability. Fur-
thermore, the obtained performance of the
coded flow follows a trend similar to the theoret-
ical maximum coded throughput, showing coher-
ence between theory and practice.

Finally, note that the latency (i.e., the number
of packets in flight given the transmission rate
and round trip delay) and the packet loss rate
are the key factors to determine the optimal
choice of redundancy to be added for coding.
Thus, it is possible to develop a network coding
control algorithm that can optimize for the cur-
rent situation in the network.

It is important to note that the use of a more
advanced and integrated coding technique (e.g.,
Coded TCP [14]) would require the optimal
amount of redundancy for the specific network.
Thus, coding would not introduce unnecessary
redundancy and provide much better end-to-end
service. In fact, the use of SDN would address
the main limitation of Coded TCP, that is, the
estimation of packet losses through the network
not attributed to congestion, thus having the
potential to improve its performance with
respect to current practical demonstrations.

MUuLTIHOP

In order to illustrate the benefits of recoding, we
utilize a multihop setup where both links experi-
ence different loss probability and link delay.
This network setup is presented in Fig. 4a. This
particular setup is representative of Internet ser-
vice provider (ISP) networks, where typically the
last hop is a wireless and lossy link. Our assump-
tion is that a switch at the last mile provides the
necessary recoding for protecting against losses.
Thus, studying a single recoder has a large impli-
cation in more complex topologies, where we
abstract other hops within the network as they
are error-free for all practical purposes.

This network scenario is also representative
of mesh-like network structures, such as dedicat-
ed sensor networks, mobile ad hoc networks,
and vehicular communication networks. While
uncommon in consumer oriented networks, such
networks are expected to gain popularity in the
future with the growth of the Internet of Things
(I0oT). The setup illustrates the necessity of
intermediate coding (recoding) when all links
are prone to erasures. While prior research
efforts have already drawn this conclusion, the
setup tests the validity of this with a simple feed-
back-less coding approach using SDN to gain
knowledge of the channel conditions and struc-
ture of the network. Additionally, recoding may
introduce channel irregularities such as packet

Y

b C
25 ms U 5ms

1% 0-10%
(a)

14 & — -8 Uncoded TCP
A—ARLNC, +20%
B—@RLNC, +100%
&—--4 RLNC, +20%, recoding +20%
124 .4 #— - =& RLNC, +40%, recoding +100%|

Throughput([Mby/s)

Loss probability (b —c) (%)
(b)

Figure 4. Multihop network comparing a) uncoded TCP, RLNC without

recoding; RLNC with recoding at the intermediate node. Recoding even
after a moderate loss channel (1 percent loss rate) can provide some bene-

fits in end throughput.

reordering and additional delay and jitter. By
running TCP on top of a recoded data flow,
these recoding issues are tested in practice.

Figure 4b reveals the strength of recoding.
Apart from up to 11x gains over uncoded TCP,
recoding also reduces congestion on the first link
a — b and introduces higher achievable through-
put compared to the end-to-end RLNC coding
approaches.

Similar to the single-hop case, network char-
acteristics such as latency packet loss rate at
each link determine the optimal network coding
mechanism at the encoding and each of the
recoding nodes. Thus, developing an NC control
algorithm ran at the control plane will allow
optimal operation of the system.

MuLTI-PATH

The final investigated network scenario is a
multi-path setup, where multiple data paths span
out between nodes. The conventional methods
for communication in such scenarios is choosing
the best of the available paths. This is naturally
the simplest approach, and while the chosen
data path provides adequate capacity, it is prob-
ably also the best approach. However, some
communication scenarios may benefit from uti-
lizing several of the available data paths. Multi-
Path TCP (MPTCP) has been developed for
such scenarios, but suffers from similar behavior
toward packet loss and link delay as that of con-
ventional TCP. Using a combination of network

IEEE Communications Magazine * September 2015

105

Throughput (Mb/s)

25

10 ms

/b—\ 2%

5ms
4%

—— — Theoretical upper bound uncoded MPTCP

20i

— & — -® Uncoded MPTCP

A—ATCP RLNC, +20%

©—@ TCP RLNC, +40%

#— MPTCP Subflow RLNC +(40,20,40) %
@—@ MPTCP Subflow RLNC +(40,40,40) %
<—aMPTCP Subflow RLNC +(40,100,40) %

Loss probability, path 2 (%)
(b)

Figure 5. Multi—path network comparing the use of standard MPTCP, indi-
vidual TCP flows with RLNC loss protection, and MPTCP with protection
of RLNC on individual paths. The plot shows that the theoretical maxi-
mum for MPTCP without coding can be outperformed more than two-
fold by the use of coding, while the gain is over four-fold when comparing
to a real MPTCP implementation: a) network structure; b) multi-path net-
work performance.

coding and SDN to accommodate packet loss on
each individual path may provide similar benefits
for MPTCP as for conventional TCP in the sin-
gle-hop and recoding scenarios.

SDN is used here not only for link quality
statistics and discovery of coding nodes, but for
topology discovery. In ISP networks, this can be
representative for devices using separate tech-
nologies (e.g., 4G, WiFi) for accessing different
networks but with a common destination (e.g., a
server). In a sense, we consider that each of
those networks can be represented by a simple
model of delay and loss. Once the paths and
their characteristics have been identified, the
coding is set up to provide protection against
losses in individual paths, allowing MPTCP to
handle congestion control. This is not the most
integrated solution, but it does allow the net-
work to code and improve performance without
changing the behavior of MPTCP.

Figure 5a illustrates the multi-path scenario
investigated. This consists of one direct single-
hop path (path 2) and two indirect paths with an
additional hop. The two multi-hop paths, a — by

— cand a - b, — ¢, are denoted path 1 and
path 3, respectively.

In a multi-path scenario, the achievable
throughput of uncoded MPTCP is compared to
that of a coded approach, where RLNC is uti-
lized to protect each MPTCP subflow individual-
ly. The resulting performance is illustrated in
Fig. 5b. This also includes a theoretical upper
bound for the performance of MPTCP [15] along
with a coded conventional TCP flow, carried
over path 2. The various configurations of Coded
MPTCEP (top three curves) correspond to differ-
ent levels of redundancy introduced in the direct
link between a and ¢, that is, 20, 40, and 100
percent, while the redundancy of the two other
paths is kept fixed at 40 percent.

Due to the high sensitivity toward packet loss
and link delay, even the theoretical upper bound
for MPTCP indicates poor performance in the
multi-path network, and even the single-path
coding approach outperforms MPTCP even
though only a third of the total capacity is ava-
iable to this approach. The multi-path coding
provides a performance increase of up to 2.5x
over the theoretical MPTCP upper bound and
4.5x over the obtained MPTCP performance.

CONCLUSIONS

This article advocates the integration of network
coding as part of software defined networking as
a key to operate 5G networks more efficiently,
with higher resiliency, providing higher through-
put, and allowing control of data location to
enable low-latency services. Furthermore, we
show that the essential software packages from
each concept, OpenFlow and Kodo, are already
available and can be integrated to provide the
required functionalities to current and future
networks.

Using three basic topologies, we demonstrate
not only this integration of concepts but also
that simple coding strategies enable us to out-
perform standard TCP and multi-path TCP with-
out modifying the underlying end-to-end
transport protocols as a first step to understand-
ing their potential. To achieve this, we exploit
recoding at intermediate nodes in the network
and show that gains of 3x to 11x are attainable.

OUTLOOK

In order to validate the measurement results
using real SDN-capable switches and high-end
desktops, we recently built a testbed with 16
programmable high-performance network nodes
and one real SDN-enabled 48-port switch. These
nodes can be configured in a variety of scenar-
ios and topologies for measurement and demon-
stration purposes. Each node consists of one
NetFPGA with a 10 Gb/s PCI-Express pro-
grammable network interface (netfpga.org),
which is highly configurable and has an active
research community. The FPGA solution is
needed to allow for fast switching and routing
decisions, and high-end processors are needed
to get the network coding speeds to satisfy the
10 Gb/s links. This equipment shall be at the
core of the design and testing of 5G algorithms
and network protocols.

106

IEEE Communications Magazine * September 2015

ACKNOWLEDGMENT

This work was partially financed by the Green
Mobile Cloud project (Grant No. DFF — 0602-
01372B) granted by the Danish Council for
Independent Research and by the VELUX Vis-
iting Professor Programme 2013-2014 granted by
the VELUX Foundation.

REFERENCES

[1] N. McKeown et al., “Openflow: Enabling Innovation in
Campus Networks,” SIGCOMM Comp. Commun. Rev.,
vol. 38, no. 2, Mar. 2008, pp. 69-74, http://doi.acm.
org/10.1145/1355734.1355746

[2] M. Kim et al., “Network Coded TCP (CTCP),” Computing
Research Repository, vol. abs/1212.2291, 2012.

[3] O. Bonaventure, M. Handley, and C. Raiciu, “An
Overview of Multipath TCP,” USENIX login; vol. 37, no.
5, Oct. 2012.

[4] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards
Secure and Dependable Software-Defined Networks,”
Proc. 2nd ACM SIGCOMM Wksp. Hot Topics in Soft-
ware Defined Networking, 2013, pp. 55-60,
http://doi.acm.org/10.1145/2491185.2491199

[5] M. Hundebgll et al., “Catwoman: Implementation and
Performance Evaluation of IEEE 802.11 based Multi-
Hop Networks Using Network Coding,” 2012 IEEE VTC-
Fall, Sept 2012, pp. 1-5.

[6] M. V. Pedersen, J. Heide, and F. Fitzek, “Kodo: An Open
and Research Oriented Network Coding Library,” LNCS,
vol. 6827, 2011, pp. 145-52.

[7]1 D. E. Lucani et al., “Fulcrum Network Codes: A Code for
Fluid Allocation of Complexity,” CoRR, vol.
abs/1404.6620, 2014.

[8] A. Moreira and D. Lucani, “On Coding for Asymmetric
Wireless Interfaces,” 2012 Int’l. Symp. Network Coding,
June 2012, pp. 149-54.

[9] S. Vaughan-Nichols, “OpenFlow: The Next Generation of
the Network?,” Computer, vol. 44, no. 8, 2011, pp. 13-15.

[10] J. Heide et al., “Network Coding for Mobile Devices —
Systematic Binary Random Rateless Codes,” IEEE ICC
Wksps., 2009, June 2009, pp. 1-6.

[11] D. C. Salyers, A. D. Striegel, and C. Poellabauer, “Wire-
less Reliability: Rethinking 802.11 Packet Loss,” 2008
Int’l. Symp. A World of Wireless, Mobile and Multime-
dia Networks, June 2008, pp. 1-4.

[12] A. Sheth et al., “Packet Loss Characterization in WiFi-
based Long Distance Networks,” 26th IEEE INFOCOM,
May 2007, pp. 312-20.

[13] Y.-C. Chen et al., “Characterizing 4G and 3G Net-
works: Supporting Mobility with Multi-Path TCP,” Dept.
Comp. Sci., UMass Amherst, tech. rep. UM-CS-2012-
022, 2012.

[14] M. Kim, M. Médard, and J. a. Barros, “Modeling Net-
work Coded TCP Throughput: A Simple Model and Its
Validation,” Proc. 5th Int’l. ICST Conf. Performance
Evaluation Methodologies and Tools, Brussels, Belgium,
2011, pp. 131-40, http://dl.acm.org/citation.cfm?id=
2151688.2151704

[15] J. Cloud et al., “Multi-Path TCP with Network Coding
for Mobile Devices in heterogeneous networks,” 2013
IEEE VTC-Fall, Sept. 2013, pp. 1-5.

BIOGRAPHIES

JEPPE KRIGSLUND (jepkri@es.aau.dk) is a software developer
at Steinwurf ApS working on network coding protocols for
wireless video multicast. He was a student in the Elite Mas-
ters Programme in Wireless Communication at Aalborg
University (AAU), Denmark, where he also received his B.S.
degree in electrical engineering in 2012. His research inter-
ests revolve around wireless communications and multime-
dia transmission with work including a mix of wireless
mesh networks, network coding, video streaming, and
cooperative protocol design.

JONAS HANSEN (jh@es.aau.dk) is an industrial Ph.D. student
at Bang & Olufsen and AAU working on network coding
code design and wireless protocols for audio signals. He
was a student in the Elite Masters Programme in Wireless
Communication at AAU, where he also received his B.S.
degree in electrical engineering in 2012. His research inter-
ests are wireless communications and multimedia transmis-
sion with an emphasis on low-latency traffic and
applications.

DANIEL E. LucaNI (del@es.aau.dk) is an associate professor
in the Department of Electronic Systems, AAU. He was an
assistant professor at the University of Porto from 2010 to
2012 before joining AAU. He received his B.S. and M.S.
degrees in Electronics Engineering from Universidad Simén
Bolivar, Venezuela, in 2005 and 2006, respectively, and his
Ph.D. degree in electrical engineering from the Mas-
sachusetts Institute of Technology in 2010. His research
focuses on communications, network theory, and network
coding theory and applications.

FRANK H. P. FITzek (frank.fitzek@tu-dresden.de) is the coor-
dinator of the 5G Lab Germany and a professor at Technis-
che Universitat Dresden He received his diploma (Dipl.-Ing.)
degree in electrical engineering from RWTH-Aachen, Ger-
many, in 1997, and his Ph.D. (Dr.-Ing.) in electrical engi-
neering from the Technical University Berlin, Germany in
2002. He has received numerous awards, including the
NOKIA Champion Award five times, the NOKIA Achieve-
ment Award (2008), the Danish SAPERE AUDE research
grant (2010), and the Vodafone Innovation prize (2012).
His research focuses on wireless and mobile networks,
mobile phone programming, network coding, cross-layer
and energy-efficient protocol design, and cooperative net-
working.

MURIEL MEDARD [F] (medard@mit.edu) is the Cecil H.
Green Professor in the Electrical Engineering and Com-
puter Science Department at MIT, and leads the Net-
work Coding and Reliably Communications Group at
the Research Laboratory for Electronics at MIT. She is
the Editor-in-Chief of the IEEE Journal on Selected
Areas in Communications. She was President of the
IEEE Information Theory Society in 2012. She received
the 2009 IEEE Communication Society and Information
Theory Society Joint Paper Award, the 2009 William R.
Bennett Prize in the Field of Communications Network-
ing, and the 2002 IEEE Leon K. Kirchmayer Prize Paper
Award. She is among the most highly cited researchers
in her field. As a result, she was named one of the
World’s Most Influential Scientific Minds in 2014 by
Thomson Reuters.

|
The FPGA solution is
needed to allow for
fast switching and
routing decisions,
and high-end pro-
cessors are heeded
to get the network
coding speeds to sat-
isfy the 10 Gb/s
links. This equipment
shall be at the core
of the design and
testing of 5G algo-
rithms and network
protocols.

IEEE Communications Magazine * September 2015

107

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

