

NetAnalyzer: Statistics for
Dynamic & Static Networks

User Manual

Supervising Professor: Thomas Kunz

An ongoing project with contributions by Evan Bottomley, Cristopher Briglio, Henri Cheung, Jordan

Edgecombe and Hussain Saeed

Version 4

Carleton University

Summer 2015

2

Table of Contents

ABOUT ... 3

TITLE SCREEN .. 3

LOCATION GENERATOR .. 3

DYNAMIC STATISTICS ... 4

STATIC STATISTICS .. 5

STATISTICAL SUMMARY .. 6

SPREADSHEET CREATOR.. 7

MATLAB VISUALIZATION... 8

BUILDING THE PROGRAM .. 9

REQUIRED SOFTWARE .. 9

SETUP ... 9

RUNNING THE PROGRAM .. 11

TOPOLOGY.XML (OPNET) ...11

Location Generation ..11

Dynamic Statistics ..12

GraphViz Visualization ...12

DYNAMIC SCENARIOS (NS2) ..14

Full Statistical Run Through ..14

Statistics Summary ..15

Spreadsheet...16

STATIC SCENARIOS (NS2) ..17

Static Statistics ..17

12NODE.IMN (CORE) ..18

Location Generator ..18

ANIMATION & GRAPHS ...19

IN.PUT ...21

Example in.put ...22

STATISTICS CALCULATED .. 23

THE AVERAGE NUMBER OF NODE NEIGHBOURS IS: ...23

THE NODE(S) WITH THE MOST NEIGHBOURS IS/ARE: ...23

THE NUMBER OF NODES THAT THE NODE(S) WITH THE MOST NODE NEIGHBOURS HAVE IS: ...23

THE AVERAGE PATH LENGTH FOR ALL SOURCE-DESTINATION PAIRS (IN METERS): ...23

THE AVERAGE PATH LENGTH FOR ALL SOURCE-DESTINATION PAIRS (IN HOPS): ..24

THE NETWORK DIAMETER (IN METERS): ..24

THE NETWORK DIAMETER (IN HOPS): ...24

TOTAL NUMBER OF COMPONENTS: ...24

NODE(S) WITH THE HIGHEST BETWEENESS CENTRALITY: ...24

LINKS ADDED/LINKS BROKEN: ...24

LINK CHANGES:...25

COVERAGE (IN %):...25

NEIGHBOURHOOD INSTABILITY: ...25

CLUSTERING COEFFICIENT: ...25

DEGREE OF RANDOMNESS/PREDICTABILITY: ..25

ISSUES OR HELP ... 27

3

About
NetAnalyzer: Statistics for Dynamic & Static Networks is a program written and compiled in C++. The

program creates statistics from dynamic and static network simulations of NS2, Opnet and Core formats

using the Boost Graph Library. The program also uses MATLAB, GraphViz, and Excel to help visualize,

organize and interpret the statistics. Finally, Qt Creator is used to create a GUI.

Title Screen
The main window is contained in mainwindow.ui, mainwindow.h and mainwindow.cpp. Launching the

GUI will default to the Location Generator tab.

Location Generator

Location Generator can interpret NS2, Opnet and Core dynamic network simulations. It gives the user

the choice to generate an output file for single or multiple files at a time. In the case of multiple files, the

user must specify a folder location for the program to look through. After locating the file(s) specified,

the program will create an output folder for the scenario(s). The name of the folder has the format:

'*scenario file name* output'. The program then reads in the scenario and generates each nodes

location every second until the node becomes static, retaining the longest run time needed for the

network to become static. This information is the written to a file in a specific format. If “Full Statistical

Run” is checked, then the program will run Dynamic Statistics right after the output file is generated.

Output for the Location Generator is located in a folder named *filename* output, in the same folder as

the input file.

4

Dynamic Statistics

Dynamic Statistics reads the user specified output file from the Location Generator and creates statistics

for the user chosen run time in intervals of the given refresh rate. Using the Boost Graph Library the

following statistics are created:

 Average number of neighbors each node has

 The nodes that have the most neighbors

 The average distance between nodes

 The number of components

 The network diameter

 The nodes with the highest betweeness centrality

 The number of links changed

 The coverage of the combined nodes over time

 The network instability

 The clustering coefficients

 The degree of randomness/predictability

The statistics are then written to their own separate files within the output folder. It also gives the

option to create a graphViz visualization of the network at any given multiple of the refresh rate.

Output files are located in the same folder as the input for Dynamic Statistics

5

Static Statistics

The Static Statistics portion of the program (originally written by Hassain Saeed) reads in static network

scenarios of NS2, Opnet and Core formats. It then generates basic statistics for these files which include:

 Average number of neighbors each node has

 The nodes that have the most neighbors

 The average distance between nodes

 The number of components

 The network diameter

 The nodes with the highest betweeness centrality

The statistics are then written to their own separate files within an output folder. It also gives the

option to create a graphViz visualization of the network.

Output is located in a folder called *filename* output, in the same folder as the input file.

6

Statistical Summary

The Statistical Summary part of the program creates averaged statistics from multiple scenarios. The

program works by reading the statistics generated from Dynamic Statistics or Static Statistics for several

specific files and creates a summary of these statistics in a separate folder. The following statistics are

summarised:

 average number of neighbors each node has

 the average distance between nodes

 the number of components

 the network diameter

 the number of links changed

 the percent coverage of the area

 the average neighbourhood instability

 the average clustering coefficient

(Links summary isn't included for static scenario summaries).

The output can be found in a folder called *sequence*.summary, located in the same folder as the input

files

7

Spreadsheet Creator

The Spreadsheet Creator uses the statistics created in Dynamic Statistics or Static Statistics, as well as

Statistical Summary part of the program to create a spreadsheet that can be opened in Microsoft Office

Excel. The spread sheet brings together the specific data from all the scenarios in a visually friendly way.

It relies on the 'files.txt' output from Statistical Summary in order to identify what files to include. The

spreadsheet includes the following data (for dynamic scenarios):

 Average links created and broken per second

 Total links created and broken in desired run time

 Number of connected components (at initial and final time)

 Average number of neighbours (at initial and final time)

 Average path length in hops (at initial and final time)

 Network diameter in hops (at initial and final time)

For static scenarios:

 Number of connected components

 Average number of neighbours

 Average path length in hops

 Network diameter in hops

This portion of the program only works on NS2 scenarios with file names with the format: 'Scenario#-

#.txt'

Output is located in the *sequence*.summary folder.

8

MATLAB Visualization

Animation Graphs is a program created in MATLAB that uses the statistics created in Dynamic Statistics

for a particular scenario to create an animation of the nodes and their trajectories over time on an x-y

plain for the user desired run time as well as several graphs illustrating all the statistics. Note that only

the average clustering coefficient and neighbourhood instability are graphed, instead of the per-node

results. Currently, this function does not have MATLAB automatically execute the script, so the user

must paste the line indicated when the MATLAB window opens.

9

Building the Program

Required Software
Visual Studios 2012
 http://msdn.microsoft.com/library/dd831853.aspx
Boost Graph Library 1.54.0
 http://www.boost.org/doc/libs/1_54_0/libs/graph/doc/index.html
GraphViz 2.30.1
 http://www.graphviz.org/Download.php
MATLAB R2013a
 http://www.mathworks.com/help/matlab/index.html
Qt 5.4.2 (includes Qt Creator 3.4.1)

http:/www.qt.io/download-open-source/

Microsoft Office Excel 2007
 http://office.microsoft.com/en-ca/excel/
If Building in Linux
OpenGL/GLUT 3

http://kiwwito.com/installing-opengl-glut-libraries-in-ubuntu/
GCC 5.2
 https://help.ubuntu.com/community/InstallingCompilers

Setup

Building NetAnalyzer.exe

(At current stage of program is only compatible with windows, built using Microsoft Visual Studios 2012)

 In Visual Studio’s File menu, select New -> Project. Then in the new window that pops up, under

 Visual C++, select Win32 Console Application.

 Delete the premade source and header files (right click -> exclude from project) and add all the

necessary source and header files to the project. This includes:

 Main.cpp
 Dynamic Statistics.cpp
 Location Generator.cpp
 Static Statistics.cpp
 SpreadsheetCreator.cpp
 stdafx.cpp
 stdafx.h
 convert.h
 targetver.h

 Apply all the required settings. The Property pages can be opened by selecting View -> Property

Manager, then clicking the wrench symbol in the upper left corner.

Visual Studios Settings

The following are the setting that must be configures in Visual Studious 2012 in order to run the
program:

Configuration Manager - Configuration - Release

http://msdn.microsoft.com/library/dd831853.aspx
http://www.boost.org/doc/libs/1_54_0/libs/graph/doc/index.html
http://www.graphviz.org/Download.php
http://www.mathworks.com/help/matlab/index.html
http://www.qt.io/download-open-source/
http://office.microsoft.com/en-ca/excel/
http://kiwwito.com/installing-opengl-glut-libraries-in-ubuntu/
https://help.ubuntu.com/community/InstallingCompilers

10

Solution Configurations - Release

Property Pages - Configuration Properties - General - Character Set - Not Set

Property Pages - Configuration Properties - C/C++ - Precompiled Headers - Not Using

(make sure Configuration is set to: All Configurations)

Add Boost library (boost_1_54_0 folder) to Additional Included Directories found in:

Property Pages - Configuration Properties - C/C++ - General - Additional Included Directories

 After this you simply build the project, which will create NetAnalyzer.exe in the “Release” folder.

Building NetAnalyzerGUI.exe

 In Qt creator, select File -> New File or Project… and select Qt Widgets Application.

 Choose a location and name, then make sure that the Desktop Qt 5.4.2 MSVC2012 OpenGL 32bit

kit is selected (GCC instead of MSVC if building in Linux)

 Leave Details as the default names and finish starting the project.

 Copy the following files to the project folder, then include them

 Main.cpp

 mainwindow.cpp

 mainwindow.h

 mainwindow.ui

 errordialog.cpp

 errordialog.h

 errordialog.ui

 errordialog2.cpp

 errordialog2.h

 errordialog2.ui

 main.cpp, mainwindow.cpp, mainwindow.h and mainwindow.ui should already be included as

they overwrite the default files.

 Build and run the Net Analyzer GUI through Qt Creator

 After building both NetAnalyzer and NetAnalyzerGUI, copy the NetAnalyzer.exe to the folder

created when building NetAnalyzerGUI. Copy animations_graphs.m to the same folder. The

folder should have a name similar to “build-NetAnalyzerGUIProject-

Desktop_Qt_5_4_2_MSVC2012_OpenGL_32bit-Debug”.

 Currently, the GUI runs primarily out of Qt Creator, however Qt Creator does build

NetAnalyzerGUI.exe in the debug folder (which is in the folder from the previous step). To run

NetAnalyzerGUI.exe, you must copy Qt5Cored.dll, Qt5Guid.dll and Qt5Widgetsd.dll to the debug

folder. These can be found in the Qt folder, which is /path to Qt/Qt/5.4/msvc2012_opengl/bin.

You must also copy NetAnalyzer.exe and animations_graphs.m to the debug folder.

11

Running The Program
The following is a run through of the program using these example files:

 Examples - Dynamic - Opnet - topology.xml (Single dynamic scenario)

 Examples - Dynamic - NS2 - Dynamic (Multiple scenarios)

 Examples - Static - NS2 - Static (Multiple scenarios)

 Examples – Dynamic – Core – 12node.imn (Single dynamic scenario)

With the following examples the user should learn to run any aspect of the program.

(Different aspects of the program that are being shown may have been altered or changed since these

pictures were taken as the program was further worked on. Also, these pictures may not depict the

program running for these specific examples, please follow the written instructions to get the same

results as the examples and not what the visuals show)

topology.xml (OPNET)

Location Generation

Here, the user has given the path to topology.xml, given a transmission range of 1000 and a refresh rate

of 1 second. The maximum X and Y axis is also specified as 5000 for both. Also remember to specify the

file type in the drop down box. Clicking “Go” will proceed with the operation and begin generating the

output file: topology_out.txt.

12

Dynamic Statistics

Once the Location Generator is finished, the user should go to the Dynamic Statistics tab and select the

output file, then choose a run time. In this case, the run time will be 300, and a graphViz visual will be

created at time 150. Clicking “Go” will then proceed with collection of statistics using the given

parameters.

GraphViz Visualization

Once the GraphViz visualization has been

created, the user must now use a separate

program to create a photo of it. Within GraphViz,

the gvedit.exe application can be used to read

and output the visualizations. To start you must

locate and open this application (found in:

graphviz-2.30.1\release\bin\ gvedit.exe). Once

running, have the program open the file by going

to file -> open. Once the application has open

the file (graphViz_150.dot) the user must then

have it output the visualization as a picture.

There are a few ways to do this although the

easiest seems to be the following:

 Hit the Layout button, this button is

 located near the top left and has the shape of a man running. It can also be found within

 Graph - > Layout. Within the Output Console at the bottom of the screen it should say: working

 on...

13

 Next hit the Settings button located next to the layout button which looks like the layout button

 but with a blue box in it. It can also be found within Graph -> Settings.

 Once clicked it will bring up a menu name Dialog. Make sure its Layout Engine is dot, the Scope

 is graph, and specify your desired output file type then click OK

 Then click the Layout button two more times

 The visualization has now been output in the format that you specified

14

Dynamic Scenarios (NS2)

Full Statistical Run Through

In this example, the user will be doing multiple file analysis with the Location Generator. The user gives

the directory containing the scenario files, and a transmission range of 250 along with a refresh rate of

1. The user has also chosen to perform a full statistical run, so Dynamic Statistics will automatically be

collected for every scenario file after their output file has been generated. Clicking “Go” will have the

program begin analyzing all .txt files contained in the given directory (note: the program does not

distinguish between scenario files and other .txt files, so it is recommended that there are only scenario

files in the given directory). This is a VERY time-consuming process, considering the number of scenarios

included in the Examples.zip, and can take half an hour or even more, depending on how powerful the

user’s machine is.

15

Statistics Summary

Next, the user should go to the Statistics Summary tab

The directory containing the output is given by the user, here. Since the scenario files are formatted as

“Scenario#-#.txt”, the sequence should be Scenario to find all the output folders (note that this is case

sensitive). The user has indicated that this will be a summary of Dynamic Statistics, and that there

should be a run time of 150 seconds.

The program will then create summary statistics from all the files that match the sequence. The

summary statistics will be outputted within their own folder contained within the user specified

directory. For this example it will be Dynamic/NS2/Scenario.summary'.

16

Spreadsheet

Once the summary has been created go to the Spreadsheet Creation tab, where you will need to enter

the directory, sequence and spreadsheet type.

Here, the directory should be the same as the one given in the Statistics Summary, and so should the

sequence (which in this case is Scenario). The user has also indicated that this is going to be a

spreadsheet of Dynamic Statistics.

The program will then create an ‘.xml’ spreadsheet for all the files used in the summary and output it to

the summary folder. The file outputted for this example (Scenario.spreadsheet.xml) can be found in the

example folder located in: Dynamic/NS2/Scenario.summary

17

Static Scenarios (NS2)

Static Statistics

Select the Static Statistics tab, where the user is then prompted to fill in the necessary parameters.

The directory given will contain the verydense scenario files, and the user has given a transmission range

of 250. The user has also chosen to create a graphViz visual for each file analyzed.

The program will then create statistics for all the scenarios and output them within their own output

folders.

The user may choose to create a summary and spreadsheet for these scenarios. If so, the user must

follow the exact same procedure as with HighMobility except that the user must choose static instead of

dynamic when creating these files.

18

12node.imn (CORE)

Location Generator

Select the Location Generator tab, then click “Browse” to open a file explorer to select your .imn file

Make sure to select the CORE file type. In this case, the transmission range is 250 and the refresh rate is

1. The user has also chosen to collect Dynamic Statistics, with a run time of 150. Clicking “Go” will have

the GUI launch NetAnalyzer.exe and start analyzing 12node.imn.

Output
Console output can be found in out.put.

Note:

 This section only explains the very basics needed to run each section of the program and only

 specifies the requirements that the user must input in order to run. See Documentation file for

 more specific requirements.

19

Animation & Graphs
Selecting the MATLAB Visualization tab will prompt the user to give the output file, as well as a run time.

Here, the user has selected an output file and has chosen a run time of 0, meaning that the animation

will run until the nodes have become static. Clicking “Go” will launch the MATLAB command window, as

well as fill the empty line with the animations_graphs() function and it’s parameters.

20

Then, the user must copy and paste the indicated line into the MATLAB command window.

21

In.put
NetAnalyzer.exe is actually controlled by a plaintext file generated by the GUI, then passed to it through

a command line parameter. If NetAnalyzer.exe is launched with more or less than one parameter, it will

ask for the name of the command file. The file generated by the GUI is named in.put by default,

however the file extension doesn’t matter, only it’s formatting. It is recommended to avoid .txt

extensions, as the Net Analyzer (when running multiple file analysis on NS2 files) will attempt to analyze

all .txt files, even if they are not scenario files (which can cause crashes).

The first two lines of in.put will be an integer (from 1 to 5) which represents the desired operation, and

the path to the file/directory as a string.

The next lines change depending on what analysis is being performed.

For the Location Generator (1), there are 6 more lines. In order, they are:

1. Refresh rate (integer, 1-1,000)
2. Transmission range (integer, 1-10,000)
3. Full statistical run-through (true or false)
4. File extension (string)
5. Single or multiple files to analyze (string)
6. Run time, if doing a full statistical run-through (integer)

For the Dynamic Statistics (2), the next 3 lines are:

1. Run time of simulation (integer, 0-10,000, where 0 is “until static”)
2. Generate GraphViz visual (true or false)
3. When to generate the GraphViz visual (integer)

22

For the Static Statistics (3), the next 4 lines are:

1. Generate GraphViz visual (true or false)
2. Transmission range (integer, 1-10,000)
3. File extension (string)
4. Single or multiple files to analyze (string)

For the Statistics Summary (4), the next 4 lines are:

1. Sequence to search (string)
2. File extension (string)
3. Dynamic or Static Statistics to summarize (string)
4. Run time (integer, 1-10,000) (note: this is only relevant for Dynamic Statistics)

For Spreadsheet Creation (5), there are 2 more lines:

1. Sequence to search (string)
2. Static or Dynamic Statistics Summary (string)

Example in.put

1
C:/Users/henricheung/Documents/Scenario10-1.txt
1
250
false
.txt
Single
0

This in.put tells the Net Analyzer to run the Location Generator on Scenario10-1.txt, and that the
refresh rate is 1, with a transmission range of 250, NOT to run a full statistical analysis (only generating
the scenario10-1_out.txt file), the file extension is “.txt” and that there is only a single file to be
analyzed. Note that the GUI will produce file paths using / instead of \.

23

Statistics Calculated
This section will explain what each of the statistics created through the program mean and how they

were calculated. (This section was originally written by Hussain Saeed and Jordan Edgecombe).

The average number of node neighbours is:
What it means: Two nodes are considered neighbours if they directly connect with each other,

or in other words, if they share an edge with each other.

How it was calculated: In NS2 and Opnet, an edge is made when two nodes’ coordinates are

within the transmission range from one another, and in Core it is made when the two nodes

share the same WLAN. With Boost Graph Library, a vertex iterator can be made that can loop

through every unique node in the network. For each node, Boost Graph Library can then use an

edge iterator to see how many other nodes it is directly connected to. Each connection is then

recorded in a counter variable, and eventually this variable gets divided by the total number of

nodes to get the average number of node neighbours.

The node(s) with the most neighbours is/are:
What it means: The nodes that share the most connections with other nodes in the network

How was it calculated: While the vertex iterator loops through every single node, the ones that

have the most node neighbours are picked out and stored in a specific array. Then, after the

vertex iterator is done, this array just gets outputted.

The number of nodes that the node(s) with the most node neighbours have is:
What it means: The nodes with the most node neighbours have this number of connections

How it is calculated: While the array for the nodes with the most neighbours is being created,

another array is made to store the number of neighbours that the nodes with the most

connections have. One element of this array then gets simply outputted for this statistic.

The average path length for all source-destination pairs (in meters):
What it means: This is the average shortest distance along the edges between any two nodes,

regardless of whether or not they are directly connected to each other. To imagine what

‘shortest distance along the edges’ means, let’s say node 1 and node 3 are not connected and

that the path between them that goes through node 2 is shorter in distance than every other

possible node path between them. So let’s imagine that node 1 is connected to node 2 by an

edge that is 200 meters long and node 3 is connected to node 2 by an edge that is 150 meters

long. This program will say the distance between nodes 1 and 3 is 350 meters, no matter what

the straight line distance between them truly is.

How it is calculated: When the program reads through the input file, it takes in the x and y

coordinates for every node. Using these coordinates, the distances between directly connected

nodes are then calculated and are saved as edge weights. Then, using a Boost Graph Library

function called dijikstra_shortest_path and the vertex iterator again, the distance along the

edges between any two nodes is calculated and added to a total-sum variable. This variable is

then divided by the total number of all possible edges to get the average.

24

The average path length for all source-destination pairs (in hops):
What it means: This is the average minimum number of edges that exists between any two

nodes.

How it is calculated: The same way as was calculated in meters, except that instead of the edge

weights being the actual distances between the nodes’ coordinates, all of the edge weights are

set to 1.

The network diameter (in meters):
What it means: The longest ‘shortest distance along the edges’ between any two nodes,

regardless of whether or not they are directly connected to each other.

How it is calculated: While the dijikstra_shortest_path function found the shortest distance

along the edges between any two nodes, an if-statement was created that said that if the

shortest path was greater than the previous longest shortest path (originally set at 0 meters),

then that would become the new longest ‘shortest path along edges’. After every path was

calculated, the last path to become the new longest shortest path was then seen to be the

greatest and was then output.

The network diameter (in hops):
What it means: The largest minimum number of edges that exists between any two nodes.

How it is calculated: The same way as calculated in meters, except that instead of the edge

weights being the actual distances between the nodes’ coordinates, all of the edge weights are

set to 1.

Total number of components:
What it means: A component is a set of nodes that are all reachable to one another through a

path of edges.

How it is calculated: This statistic is calculated simply through Boost Graph Library’s

connected_components function.

Node(s) with the highest betweeness centrality:
What it means: This statistic shows the nodes that have highest amounts of shortest paths from

one node to another passing through them.

How it is calculated: Using a vertex iterator again and the Boost Graph Library function known as

brandes_betweeness_centrality, the betweeness centrality is calculated for every node in the

network. Then the nodes with the greatest values get put into a separate array, which then gets

outputted.

Links Added/Links Broken:
What it means: This statistic shows the number of links added/broken at every second of the

simulation.

How it is calculated: Using Pythagorean Theorem, the distance between each pair of nodes is

calculated. If this distance is less than or equal to the transmission range, then a link exists

between the pair.

25

 An array of 1’s and 0’s tracks where these links exist. If a link is added, then the array has a 1 at

 that point (ex: if node 0 and node 1 are connected, array[0][1] = 1 and array[1][0]=1). If a link is

 broken then a 0 is placed at that point. If an entry goes from 1 to 0, then broken links is

 increased by 1 and if an entry goes from 0 to 1 then added links is increased by 1.

Link Changes:
What it means: It is the amount of times a link gets broken or created for each node throughout
the simulation.

How it is calculated: This is simply calculated by having an array keeps track of every link change
per node by adding 1 every time a link has been added or created for that node while another
integer increments itself by two's every time a link is created or broken (by two because if a link
is always broken or created for two nodes).

Coverage (in %):
What it means: It is the percent of the defined area that has been passed through by a node at
any point in time

How it is calculated: The area is divided into a virtual grid, represented by a two-dimensional
array. During each cycle, each node increases the array value corresponding to its location by 1.
The coverage percent is determined by determining how many parts of the array have a value
greater than 0, then dividing that by the total parts and multiplying by 100. The final array is
outputted at the bottom, giving a general impression of where the nodes are concentrated as
well as allowing for depictions through MATLAB surface graphs. A separate output
(surface_graph) gives a format that can be copied into MATLAB as an array for easy visualization
of the node distribution.

Neighbourhood Instability:
What it means: It is the approximate rate at which the nodes create and break links.

How it is calculated: The instability is calculated for each node by determining how many links
were created and broken with that node, divided by the number of neighbours it has at that
point in time. The output is given in 10-cycle periods, starting with the 0-9 period. A final value
giving the average instability of all nodes over the entire period is listed at the bottom. A
separate output (average_instability) gives the average of the nodes at each point in time.

Clustering Coefficient:
What it means: It is the ratio of radio links among neighbours and the number of neighbours.

How it is calculated: The clustering coefficient is calculated for each node by determining how
many links there are between neighbours of the node, divided by the number of neighbours it
has at that point in time. A final value giving the average coefficient of all nodes over the entire
period is listed at the bottom. A separate output (average_clustering) gives the average of the
nodes at each point in time.

 The Wikipedia page http://en.wikipedia.org/wiki/Clustering_coefficient provides a decent
summary of how exactly this is determined.

Degree of Randomness/Predictability:
What it means: It is a value indicating the transition probability between states.

http://en.wikipedia.org/wiki/Clustering_coefficient

26

How it is calculated: The area is divided into a virtual grid (similar to coverage, but less
segments), each part of which has a separate subgrid surrounding it (represented by a 4D array).
Whenever a node moves, it records the starting and ending grid location, and increments values
in the corresponding main grid (starting) and subgrid (ending). At the end, it tallies up the grid
values and determines the chance of a node going from any given grid segment to another one,
then uses the equation 𝐻 = −(𝑝𝑖𝑄𝑖𝑗𝑙𝑛𝑄𝑖𝑗), where pi is the probability to stay at the starting

location i and Qij is the probability to transition from state i to state j. The H values for each
segment of the main grid are summed up and averaged, giving the final output.

27

Issues or Help
See the Documentation file for more specific information on the different aspects of the program.

