
Thomas Kunz
Systems and Computer Engineering

437

Course Overview

� Introduction and History
� Data in Wireless Cellular Systems
� Data in Wireless Local Area Networks
� Internet Protocols
� Routing and Ad-Hoc Networks
� TCP over Wireless Link

– some slides in this section are from the Tutorial on TCP for
Wireless and Mobile Hosts, prepared by Nitin Vaidya, see
http://www.cs.tamu.edu/faculty/vaidya/presentations.html

� Services and Service Discovery
� System Support for Mobile Applications

Thomas Kunz
Systems and Computer Engineering

438

Transport Protocol

� What is the role of the "Transport Layer" ?
The IP Network DOES NOT guarantee delivery !!

IP Network

T
ra

ns
po

rt
 L

ay
er

T
ra

ns
po

rt
 L

ay
er

U
pp

er
 L

ay
er

s

U
pp

er
 L

ay
er

s

Destination
Host

Source
Host

The transport layer provides more reliable delivery

Thomas Kunz
Systems and Computer Engineering

439

Two Transport Protocols

� The Internet uses 2 transport protocols

Connection-Oriented Connectionless (Datagram)

TCP UDP

� Comprehensive
� Full-duplex
� Acknowledgment
� Sequencing
� Variable length

segmentation
� Error control

� Very simple
� No error control
� No sequencing

Thomas Kunz
Systems and Computer Engineering

440

The User Data Protocol (UDP)

� UDP is much simpler protocol than TCP
� It is designed to transport individual datagrams (no sequence numbers)
� No acknowledgment
� It is used when high reliability is not needed
� The most common use is by protocols that handle name lookups
� Checksum is optional

Data

16-bit destination port16-bit source port

0 15 16 31

8
bytes

16-bit UDP checksum16-bit UDP length

Thomas Kunz
Systems and Computer Engineering

441

Overview of TCP

� TCP in the main Internet transport protocol. The UDP plays a
supporting role (mostly house keeping functions)

� The TCP performs the following functions:
– Divides the data into segments (21 to 64,000 bytes)
– The sending TCP stamps the segments with sequence numbers
– The receiving TCP acknowledges the segments
– The receiving TCP controls the flow of segments
– The TCP can flag data segments with different priorities (e.g. urgent,

externally urgent/to be pushed ..)
– TCP performs error correction

� The header of the TCP segment has several other fields and options

File or large data segment

TCP segmentHeader TCP segmentHeader TCP segmentHeader

Thomas Kunz
Systems and Computer Engineering

442

Ports and Sockets

� Communications through the Internet occurs between a "Client"
application software and the same application software running on a
"server"

� Each connection is uniquely identified by 4 addresses: (1) Client IP
address, (2) client application port #, (3) server IP address and (4)
server application port.

� Application ports on the server side are called: "Well-known Sockets".
The port number for each application is known to all hosts

Application

Application

Application

Application

Application

TCP IP TCPIP

TCPIP
Application

ports

ports

Thomas Kunz
Systems and Computer Engineering

443

TCP Features

� Virtual circuit connection
� Full Duplex. Two-way simultaneous data flow.
� Reliable. Checks the integrity of the received data
� Allows for multiple connections

IP NetworkT
C

P

T
C

P

Destination
Host

Source
Host

Destination
Host

Thomas Kunz
Systems and Computer Engineering

444

Well-known Port Numbers

WWW80

Finger Protocol79

Gopher70

SMTP25

Telnet23

FTP-data20

Reserved0

Description
Port

Number

Thomas Kunz
Systems and Computer Engineering

445

Error Control at the TCP Level

� Octet-stream-oriented error
control

� Transmissions occur in segments.
Each segment has a sequence
number. The sequence number is
the first octet of the segment

� The receiving TCP host sends an
acknowledgment. The ACK
number is the next expected data
octet.

� Data that has not been
acknowledged are re-transmitted.

IPTCP TCP

segment

Ack

segment errors

No Ack

Retransmission

Thomas Kunz
Systems and Computer Engineering

446

The TCP Header

Data

Options

16-bit TCP Checksum 16-bit urgent pointer

16-bit window size
4-bit

header
size

6-bit
reserved

F
I
N

S
Y
N

R
S
T

P
S
H

A
C
K

U
R
G

32-bit acknowledgment number

16-bit TCP Checksum

16-bit destination port16-bit source port

32-bit sequence number

0 15 16 31

20
bytes

Identifies
sequential TCP

segments

The sequence
number of the
next expected

segment

Sometimes
called "data

offset"

Flags for
various
controls

Buffer size
for

received
data

Points to
the first
byte of
urgent
data

Other options
specific to this

connection TCP
segment

Thomas Kunz
Systems and Computer Engineering

447

Transmission Control Protocol (TCP)

� Reliable ordered delivery
� Implements congestion avoidance and control
� Reliability achieved by means of retransmissions

if necessary
� End-to-end semantics

– Acknowledgements sent to TCP sender confirm
delivery of data received by TCP receiver

– Ack for data sent only after data has reached receiver

Thomas Kunz
Systems and Computer Engineering

448

Cumulative Acknowledgements

� A new cumulative acknowledgement is generated
only on receipt of a new in-sequence packet

	�
 �� ������

������

	�� 	�
 �����

��� ���

������

������

�
data ack

�

Thomas Kunz
Systems and Computer Engineering

449

Delayed Acknowledgements

� An ack is delayed until
– another packet is received, or
– delayed ack timer expires (200 ms typical)

� Reduces ack traffic

��� �! �" �#

$�%$�$

��& ��� �# �!

$�% $�'

New ack not produced
on receipt of packet 36,

but on receipt of 37

Thomas Kunz
Systems and Computer Engineering

450

Duplicate Acknowledgements

� A dupack is generated whenever an

out-of-order segment arrives at the receiver
��� �! �" �#

$�($�)

��* ��& �!���

$�($�(

Dupack
(Above example assumes delayed acks) On receipt of 38

Thomas Kunz
Systems and Computer Engineering

451

Duplicate Acknowledgements

+ Duplicate acks are not delayed
+ Duplicate acks may be generated when

– a packet is lost, or
– a packet is delivered out-of-order (OOO)

,�- .�/ .�0.�1

2�32�4

,�5 ,�- .�1.�/

2�3 2�3

Dupack on receipt of 38

Thomas Kunz
Systems and Computer Engineering

452

Number of dupacks depends on how
much OOO a packet is

,�- .�/ .�0.�1

2�32�4

,�5 ,�- .�1.�/

2�3 2�3

Dupack

,�6 ,�5 .�/,�-

2�3 2�3 2�7

New Ack

New AckNew Ack

New Ack

2�4

New Ack

DupackNew Ack

Thomas Kunz
Systems and Computer Engineering

453

Window Based Flow Control

8 Sliding window protocol
8 Window size minimum of

– receiver’s advertised window - determined by available
buffer space at the receiver

– congestion window - determined by the sender, based
on feedback from the network

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

Acks received Not transmitted

Thomas Kunz
Systems and Computer Engineering

454

Window Based Flow Control

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

Ack 5

Thomas Kunz
Systems and Computer Engineering

455

Ack Clock

9 TCP window flow control is “self-clocking”
9 New data sent when old data is ack’d
9 Helps maintain “equilibrium”
9 Congestion window size bounds the amount of

data that can be sent per round-trip time
9 Throughput <= W / RTT

Thomas Kunz
Systems and Computer Engineering

456

Ideal Window Size

9 Ideal size = delay * bandwidth
– delay-bandwidth product

9 What if window size < delay*bw ?
– Inefficiency (wasted bandwidth)

9 What if > delay*bw ?
– Queuing at intermediate routers

: increased RTT due to queuing delays
– Potentially, packet loss

Thomas Kunz
Systems and Computer Engineering

457

Delay x Bandwidth Product

18KB

122KB

549KB

1.2MB

1.8MB

7.4MB

14.8MB

Bandwidth

T1 (1.5Mbps)

Ethernet (10Mbps)

T3 (45Mbps)

FDDI (100Mbps)

STS-3 (155Mbps)

STS-12 (622Mbps)

STS-24 (1.2Gbps)

Keeping the Pipe Full

; Bandwidth & Delay x Bandwidth Product

Thomas Kunz
Systems and Computer Engineering

458

< Two sides of the same coin
– pre-allocate resources to avoid congestion
– send data and control congestion if (and when) is occurs

< Two points of implementation
– hosts at the edges of the network (transport protocol)
– routers inside the network (queuing discipline)

< Underlying service model
– best-effort
– no quality of service guarantees

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

=

Congestion Control

Thomas Kunz
Systems and Computer Engineering

459

TCP Congestion Control

> Idea
– assumes best-effort network

– each source determines network capacity for itself

– uses implicit feedback

– ACKs pace transmission (self-clocking)
> Challenge

– determining the available capacity in the first place

– adjusting to changes in the available capacity

Thomas Kunz
Systems and Computer Engineering

460

Additive Increase/Multiplicative Decrease

> Objective: adjust to changes in the available
capacity

> New state variable per connection:
CongestionWindow
– limits how much data source has in transit

– MaxWin =

MIN(CongestionWindow,AdvertisedWindow)

– EffWin = MaxWin - (LastByteSent - LastByteAcked)

Thomas Kunz
Systems and Computer Engineering

461

Additive Increase/Multiplicative Decrease

? Idea:
– increase CongestionWindow when congestion goes

down
– decrease CongestionWindow when congestion goes up

? Question: how does the source determine whether
or not the network is congested?

? Answer: implicitly through packet loss
– timeout signals that a packet was lost
– packets are seldom lost due to transmission error
– lost packet implies congestion

Thomas Kunz
Systems and Computer Engineering

462

? Algorithm:
– increment CongestionWindow by one packet

per RTT (linear increase)

– divide CongestionWindow by two whenever a
timeout occurs (multiplicative decrease)

? In practice: increment a little for each ACK
– Increment = (MSS * MSS)/CongestionWindow

– CongestionWindow += Increment

Source Destination

É

Additive Increase/Multiplicative Decrease

Thomas Kunz
Systems and Computer Engineering

463

How does TCP detect a packet loss?

@ Retransmission timeout (RTO)

@ Duplicate acknowledgements

Thomas Kunz
Systems and Computer Engineering

464

Detecting Packet Loss Using
Retransmission Timeout (RTO)
A At any time, TCP sender sets retransmission timer for only

one packet
A If acknowledgement for the timed packet is not received

before timer goes off, the packet is assumed to be lost
A RTO dynamically calculated

– Connection may be between two machines on same LAN (want
low RTO value) or two machines on opposite sides of Atlantic
(need higher RTO value)

– Network connection between two machines introduces predictable
and constant delay per packet (can use tighter bound) or highly
variable packet delay (use less tight bound to avoid unnecessary
retransmissions)

– Use observed time difference between packet sent and
acknowledgment received to estimate RTO

Thomas Kunz
Systems and Computer Engineering

465

B Karn/Partridge Algorithm

B Do not sample RTT when retransmitting
B Double timeout after each retransmission

Sender
C

Receiver

Original transmission

ACK
D E
FG
H I
JK
K

Retransmission

Sender
C

Receiver

Original transmission

ACK

D E
FG
H I
JK
K

Retransmission

L

(a)
M

(b)
M

Adaptive Retransmission

Thomas Kunz
Systems and Computer Engineering

466

Adaptive Retransmission

B Jacobson/Karels Algorithm
B New calculation for average RTT

– Diff = SampleRTT - EstimatedRTT
– EstimatedRTT = EstimatedRTT + (δ x Diff)
– Deviation = Deviation + δ(|Diff|- Deviation)
– where δ is a fraction between 0 and 1

B Consider variance when setting timeout value
– TimeOut = µ x EstimatedRTT + φ x Deviation
– where µ = 1 and φ = 4

B Notes
– algorithm only as good as granularity of clock (500ms on Unix)
– accurate timeout mechanism important to congestion control

Thomas Kunz
Systems and Computer Engineering

467

Fast Retransmission

N Timeouts can take too long
– how to initiate retransmission sooner?

N Fast retransmit

Thomas Kunz
Systems and Computer Engineering

468

Detecting Packet Loss Using Dupacks
Fast Retransmit Mechanism

N Dupacks may be generated due to
– packet loss, or

– out-of-order packet delivery
N TCP sender assumes that a packet loss has

occurred if it receives three dupacks
consecutively

Thomas Kunz
Systems and Computer Engineering

469

Congestion Avoidance and Control

Slow Star t
O initially, congestion window size cwnd = 1 MSS

(maximum segment size)
O increment window size by 1 MSS on each new ack
O slow start phase ends when window size reaches the slow-

start threshold
O cwnd grows exponentially with time during slow start

– factor of 2 per RTT
– Could be less if sender does not always have data to send

Thomas Kunz
Systems and Computer Engineering

470

Congestion Avoidance

P On each new ack, increase cwnd by 1/cwnd
packets

P cwnd increases linear ly with time during
congestion avoidance
– 1 MSS per RTT

Thomas Kunz
Systems and Computer Engineering

471

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8

Time (round tr ips)

C
on

ge
st

io
n

W
in

do
w

 s
iz

e
(s

eg
m

en
ts

)

Slow start

Congestion
avoidance

Slow start
threshold

Example assumes that
acks are not delayed

Congestion Avoidance

Thomas Kunz
Systems and Computer Engineering

472

Congestion Control

Q On detecting a packet loss, TCP sender assumes
that network congestion has occurred

Q On detecting packet loss, TCP sender drastically
reduces the congestion window

Q Reducing congestion window reduces amount of
data that can be sent per RTT
– throughput may decrease

Thomas Kunz
Systems and Computer Engineering

473

Congestion Control - Timeout

R On a timeout, the congestion window is reduced to
the initial value of 1 MSS

R The slow start threshold is set to half the window
size before packet loss
– more precisely,

ssthresh = maximum of min(cwnd,receiver’s
advertised window)/2 and 2 MSS

R Slow star t is initiated

Thomas Kunz
Systems and Computer Engineering

474

Congestion Control - Timeout

0

5

10

15

20

25

0 3 6 9 12 15 20 22 25

Time (round tr ips)

C
on

ge
st

io
n

w
in

do
w

 (
se

gm
en

ts
)

ssthresh = 8 ssthresh = 10

cwnd = 20

After timeout

Thomas Kunz
Systems and Computer Engineering

475

Congestion Control - Fast retransmit

S Fast retransmit occurs when multiple (>= 3)
dupacks come back

S Fast recovery follows fast retransmit
S Different from timeout : slow start follows timeout

– timeout occurs when no more packets are getting across

– fast retransmit occurs when a packet is lost, but latter
packets get through

– ack clock is still there when fast retransmit occurs

– no need to slow start

Thomas Kunz
Systems and Computer Engineering

476

Fast Recovery

S ssthresh =

min(cwnd, receiver’s advertised window)/2
(at least 2 MSS)

S retransmit the missing segment (fast retransmit)
S cwnd = ssthresh + number of dupacks
S when a new ack comes: cwnd = ssthreh

– enter congestion avoidance

Congestion window cut into half

Thomas Kunz
Systems and Computer Engineering

477

0

2

4

6

8

10

0 2 4 6 8 10 12 14
Time (round trips)

W
in

do
w

 s
iz

e
(s

eg
m

en
ts

)

After fast retransmit and
fast recovery window size
isreduced in half.

Receiver’s advertised window

After fast recovery

Fast Retransmit/Fast Recovery

Thomas Kunz
Systems and Computer Engineering

478

TCP and Mobile Computing

– TCP is (most?) popular transport layer protocol

– designed for wired networks
T low error rate
T requirement to share bottlenecks

– key assumptions in TCP are:
T packet loss is indication of congestion, not transmission error
T rather aggressive response to congestion is needed to ensure

fairness and efficiency

– wireless links and mobile computing violate these
assumptions:
T packets lost due to unreliable physical media
T packets can get lost due to handover

Thomas Kunz
Systems and Computer Engineering

479

TCP and Mobile Computing

– packet losses over wireless link often in bursts
U will trigger slow start rather than fast retransmit

– packet loss no indication of congestion
U reduction of congestion window will reduce throughput
U getting back to previous window size may take long

– problem caused by mismatch of wireless link properties with
assumptions underlying TCP design

– multiple suggestions to improve TCP performance:
U link-level retransmissions: improve reliability of wireless link
U network layer solutions: SNOOP
U transport layer solutions: I-TCP (indirect TCP), Mowgli
U session layer solutions: establish end-to-end session layer connection,

manages two separate TCP connections

Thomas Kunz
Systems and Computer Engineering

480

Link Layer Mechanisms
Forward Error Correction
V Forward Error Correction (FEC) can be use to

correct small number of errors
V Correctable errors hidden from the TCP sender
V FEC incurs overhead even when errors do not

occur
– Adaptive FEC schemes can reduce the overhead by

choosing appropriate FEC dynamically
V FEC does not guard/protect from packet loss due

to handover

Thomas Kunz
Systems and Computer Engineering

481

Link Layer Mechanisms
Link Level Retransmissions

W Link level retransmission schemes retransmit a
packet at the link layer, if errors are detected

W Retransmission overhead incurred only if errors
occur
– unlike FEC overhead

In general
W Use FEC to correct a small number of errors
W Use link level retransmission when FEC capability

is exceeded

Thomas Kunz
Systems and Computer Engineering

482

Link Level Retransmissions

wireless

physical

link

network

transport

application

physical

link

network

transport

application

physical

link

network

transport

application

rxmt

TCP connection
Link layer state

Thomas Kunz
Systems and Computer Engineering

483

Link Level Retransmissions
Issues

X How many times to retransmit at the link level
before giving up?
– Finite bound -- semi-reliable link layer
– No bound -- reliable link layer

X What triggers link level retransmissions?
– Link layer timeout mechanism
– Link level acks (negative acks, dupacks, …)
– Other mechanisms (e.g., Snoop, as discussed later)

X How much time is required for a link layer
retransmission?
– Small fraction of end-to-end TCP RTT
– Large fraction/multiple of end-to-end TCP RTT

Thomas Kunz
Systems and Computer Engineering

484

Link Level Retransmissions
Issues

X Should the link layer deliver packets as they
arrive, or deliver them in-order?
– Link layer may need to buffer packets and reorder if

necessary so as to deliver packets in-order

Thomas Kunz
Systems and Computer Engineering

485

Link Level Retransmissions
Issues
Y Retransmissions can cause head-of-the-line

blocking

Y Although link to receiver 1 may be in a bad state,
the link to receiver 2 may be in a good state

Y Retransmissions to receiver 1 are lost, and also
block a packet from being sent to receiver 2

Base station

Receiver 1

Receiver 2

Thomas Kunz
Systems and Computer Engineering

486

Link Level Retransmissions
Issues
Z Retransmissions can cause congestion losses

Z Attempting to retransmit a packet at the front of the queue,
effectively reduces the available bandwidth, potentially
making the queue at base station longer

Z If the queue gets full, packets may be lost, indicating
congestion to the sender

Z Is this desirable or not ?

Base station

Receiver 1

Receiver 2

Thomas Kunz
Systems and Computer Engineering

487

Link Level Retransmissions
An Early Study
[The sender’s Retransmission Timeout (RTO) is a

function of measured RTT (round-trip times)
– Link level retransmits increase RTT, therefore,

RTO
[I f errors not frequent, RTO will not account for

RTT variations due to link level retransmissions
– When errors occur, the sender may timeout &

retransmit before link level retransmission is successful
– Sender and link layer both retransmit
– Duplicate retransmissions (interference) waste wireless

bandwidth
– Timeouts also result in reduced congestion window

Thomas Kunz
Systems and Computer Engineering

488

A More Accurate Picture

[Early analysis does not accurately model real TCP
stacks

[With large RTO granular ity, interference is
unlikely, if time required for link-level
retransmission is small compared to TCP RTO
– Standard TCP RTO granularity is often large (500 ms)
– Minimum RTO (2*granularity) is large enough to allow

a small number of link level retransmissions, if link
level RTT is relatively small

– Interference due to timeout not a significant issue when
wireless RTT small, and RTO granularity large

Thomas Kunz
Systems and Computer Engineering

489

Link Level Retransmissions
A More Accurate Picture
\ Frequent errors increase RTO significantly on

slow wireless links
– RTT on slow links large, retransmissions result in large

variance, pushing RTO up

– Likelihood of interference between link layer and TCP
retransmissions smaller

– But congestion response will be delayed due to larger
RTO

– When wireless losses do cause timeout, much time
wasted

Thomas Kunz
Systems and Computer Engineering

490

RTO Variations

Packet loss

RTT sample

RTO

Wireless

Thomas Kunz
Systems and Computer Engineering

491

Large TCP Retransmission Timeout
Intervals

] Good for reducing interference with link level
retransmits

] Bad for recovery from congestion losses
] Need a timeout mechanism that responds

appropriately for both types of losses
– Open problem

Thomas Kunz
Systems and Computer Engineering

492

Link Level Retransmissions

] Selective repeat protocols can deliver packets out
of order

] Significantly out-of-order delivery can trigger
TCP fast retransmit
– Redundant retransmission from TCP sender
– Reduction in congestion window

] Example: Receipt of packets
3,4,5 triggers dupacks

6 2 5 234 1

Lost packet

Retransmitted packet

Thomas Kunz
Systems and Computer Engineering

493

Link Level Retransmissions
In-order delivery

^ To avoid unnecessary fast retransmit, link layer
using retransmission should attempt to deliver
packets “almost in-order”

6 5 4 223

6 5 2 234

1

1

Thomas Kunz
Systems and Computer Engineering

494

Link Level Retransmissions
In-order delivery
^ Not all connections benefit from retransmissions

or ordered delivery
– audio

^ Need to be able to specify requirements on a per-
packet basis
– Should the packet be retransmitted? How many times?

– Enforce in-order delivery?
^ Need a standard mechanism to specify the

requirements
– open issue (IETF PILC working group)

Thomas Kunz
Systems and Computer Engineering

495

Link Layer Schemes: Summary

When is a reliable link layer beneficial to TCP
performance?

_ if it provides almost in-order delivery
_ TCP retransmission timeout large enough to

tolerate additional delays due to link level
retransmits

_ Basic ideas:
– Hide wireless losses from TCP sender
– Link layer modifications needed at both ends of

wireless link
` TCP need not be modified

Thomas Kunz
Systems and Computer Engineering

496

Split Connection Approach

_ End-to-end TCP connection is broken into one
connection on the wired part of route and one over
wireless part of the route

_ A single TCP connection split into two TCP
connections
– if wireless link is not last on route, then more than two

TCP connections may be needed

Thomas Kunz
Systems and Computer Engineering

497

Split Connection Approach

a Connection between wireless host MH and fixed
host FH goes through base station BS

a FH-MH = FH-BS + BS-MH

b�c decfhg

Base Station Mobile HostFixed Host

Thomas Kunz
Systems and Computer Engineering

498

Split Connection Approach

a Split connection results in independent flow
control for the two parts

a Flow/error control protocols, packet size, time-
outs, may be different for each part

b�c decfhg

Base Station Mobile HostFixed Host

Thomas Kunz
Systems and Computer Engineering

499

Split Connection Approach

wireless

physical

link

network

transport

application

physical

link

network

transport

application

physical

link

network

transport

application rxmt

Per-TCP connection state

TCP connection TCP connection

Thomas Kunz
Systems and Computer Engineering

500

I-TCP

i basic idea: split communication between mobile
host (MH) and fixed host (FH) into two separate
interactions

i each connection can be tuned to accommodate the
special characteristics of the underlying physical
media
– use standard TCP between MSR and FH, both on wired

backbone
– special wireless TCP between MH and MSR, where

packet loss does not trigger congestion avoidance

Thomas Kunz
Systems and Computer Engineering

501

I-TCP: Connection Setup

<mh, mh_port, msr1, msr1_port>

<msr1, msr1_port, mh, mh_port>

move to new cell

I-TCP handoff

MH

FH

MSR1

<fh, fh_port, mh, mh_port>

<mh, mh_port, fh, fh_port>

<msr1, msr1_port, mh, mh_port>

<mh, mh_port, msr1, msr1_port>

MSR2

regular TCP

wireless TCP

<mh, mh_port, fh, fh_port>

Thomas Kunz
Systems and Computer Engineering

502

I-TCP

j throughput improved, particularly for wide-area
connections, compared to regular TCP

Connection Type No moves Overlapped cells Disjoint cells, 0
sec between

Disjoint cells, 1
sec between

Regular TCP 65.49 kB/s 62.59 kB/s 38.66 kB/s 23.73 kB/s
I-TCP 70.06 kB/s 65.37 kB/s 44.83 kB/s 36.31 kB/s

Connection Type No moves Overlapped cells Disjoint cells, 0
sec between

Disjoint cells, 1
sec between

Regular TCP 13.35 kB/s 13.26 kB/s 8.89 kB/s 5.19 kB/s
I-TCP 26.78 kB/s 27.97 kB/s 19.12 kB/s 16.01 kB/s

I-TCP performance over wide area

I-TCP performance over local area

(from: Bakre and Badrinath, “ I-TCP: Indirect TCP for Mobile Hosts” , Proceedings of the International
Conference on Distributed Computing Systems (ICDCS 15), May 1995, Vancouver, Canada, pages 136-143)

Thomas Kunz
Systems and Computer Engineering

503

Split Connection Approach:
Classification

k Hides transmission errors from sender
k Primary responsibility at base station
k If specialized transport protocol used on wireless,

then wireless host also needs modification

Thomas Kunz
Systems and Computer Engineering

504

Split Connection Approach: Advantages

l BS-MH connection can be optimized independent of FH-
BS connection

– Different flow / error control on the two connections
l Local recovery of errors

– Faster recovery due to relatively shorter RTT on wireless link
l Good performance achievable using appropr iate BS-MH

protocol
– Standard TCP on BS-MH performs poorly when multiple packet

losses occur per window (timeouts can occur on the BS-MH
connection, stalling during the timeout interval)

– Selective acks improve per formance for such cases

Thomas Kunz
Systems and Computer Engineering

505

Split Connection Approach:
Disadvantages

m End-to-end semantics violated
– ack may be delivered to sender, before data delivered to

the receiver

– May not be a problem for applications that do not rely
on TCP for the end-to-end semantics

FH MHBS

n�o

p�q

p�rp�s

t�uvxw

Thomas Kunz
Systems and Computer Engineering

506

Split Connection Approach:
Disadvantages

m BS (MSR in I-TCP) retains hard state

BS failure can result in loss of data (unreliability)
– If BS fails, packet 40 will be lost

– Because it is ack’d to sender, the sender does not buffer
40

FH MHBS

n�o

p�q

p�rp�s

t�uvxw

Thomas Kunz
Systems and Computer Engineering

507

Split Connection Approach:
Disadvantages
y BS retains hard state

Hand-off latency increases due to state transfer
– Data that has been ack’d to sender, must be moved to

new base station

FH MHBS

z�{

|�}

|�~|��

����x�

MH

New base station

Hand-off

z�{

|�}

Thomas Kunz
Systems and Computer Engineering

508

Split Connection Approach:
Disadvantages

y Buffer space needed at BS for each TCP
connection
– BS buffers tend to get full, when wireless link slower

(one window worth of data on wired connection could
be stored at the base station, for each split connection)

y Window on BS-MH connection reduced in
response to errors
– may not be an issue for wireless links with small delay-

bw product

Thomas Kunz
Systems and Computer Engineering

509

Split Connection Approach:
Disadvantages
� Extra copying of data at BS

– copying from FH-BS socket buffer to BS-MH socket buffer
– increases end-to-end latency

� May not be useful if data and acks traverse different paths
(both do not go through the base station)

– Example: data on a satellite wireless hop, acks on a dial-up channel

FH MH

data

ack

Thomas Kunz
Systems and Computer Engineering

510

Snoop: Network Layer Solution

� idea: modify network layer software at base station
� changes are transparent to MH and FH

– no changes in TCP semantics (unlike I-TCP)

– less software overhead (packets pass TCP layer only twice)

– no application relinking on mobile host
� modifications are mostly in caching packets and

performing local retransmissions across the wireless link
by monitoring (snooping) on TCP acks

� results are impressive:
– speedups of up to 20 times over regular TCP

– more robustness when dealing with multiple packet losses

Thomas Kunz
Systems and Computer Engineering

511

Snoop: Architecture

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Mobile Host Fixed HostBase Station

64 5 7 8

3 4

123

5
Snoop cache

Network Layer
plus Snoop

Physical Layer

Data Link Layer

X

X data packet X, from FH to MH

ACK X, from MH to FH

Thomas Kunz
Systems and Computer Engineering

512

Snoop: Description of Protocol

� processing packets from FH
– new packet in the normal TCP sequence:

� cache and forward to MH

– packet out-of sequence and cached earlier:
� sequence number > last ack from MH: packet probably lost, forward

it again
� otherwise, packet already received at MH, so drop

– but: original ACK could have been lost, so fake ACK again

– packet out-of sequence and not cached yet:
� packet either lost earlier due to congestion or delivered out-of-order:

cache packet and mark as retransmitted, forward to MH

Thomas Kunz
Systems and Computer Engineering

513

Snoop: Description of Protocol

� processing ACKs from MH:
– new ACK: common case, initiates cleaning up of snoop cache,

update estimate of round-trip time for wireless link, forward ACK
to FH

– spurious ACK: less than last ACK seen, happens rarely. Just drop
ACK and continue

– duplicate ACK: indicates packet loss, one of several actions:
� packet either not in cache or marked as retransmitted: pass duplicate

ACK on to FH
� first duplicated ACK for cached packet: retransmit cached packet

immediately and at high priority, estimate number of expected
duplicate ACKs, based on # of packets sent after missing one

� expected successive duplicate ACKs: ignore, we already initiated
retransmission. Since retransmission happens at higher priority, we
might not see total number of expected duplicate ACKs

Thomas Kunz
Systems and Computer Engineering

514

Snoop: Description of Protocol

� design does not cache packets from MH to FH
– bulk of packet losses will be between MH and base

– but snooping on packets generates requests for retransmissions at base
much faster than from remote FH

– enhance TCP implementation at MH with “selective ACK” option:
� base keeps track of packets lost in a transmission window
� sends bit vector back to MH to trigger retransmission of lost packets

� mobility handling:
– when handoff is requested by MH or anticipated by base station,

nearby base stations begin receiving packets destined for MH, priming
their cache

– caches synchronized during actual handoff (since nearby bases cannot
snoop on ACKs)

Thomas Kunz
Systems and Computer Engineering

515

Snoop: Performance

� no difference in very low error rate environment (bit error rate
< 5x10-7)

� for higher bit error rates, Snoop outperforms regular TCP by a
factor of 1 to 20, depending on the bit error rate (the higher,
the better Snoop’s relative performance)

� even when every other packet was dropped over the wireless
link, Snoop still allowed for progress in transmission, while
regular TCP came to a grinding halt

� Snoop provides high and consistent throughput, regular TCP
triggers congestion control often, which leads to periods of no
transmission and very uneven rate of progress

Thomas Kunz
Systems and Computer Engineering

516

Snoop: Evaluation

� most effort spent on direction FH->MH
– authors argue that not much can be done for MH->FH

� losses occur over first link, the unreliable wireless link
� Internet drops 2%-5% of IP packets, tendency rising

– assume that IP packet is lost in wired part of network:
� receiver (FH) will issue duplicate ACKs
� this should trigger fast retransmit rather than slow start (?)
� nothing is done to ensure that ACKs are not dropped over last link
� retransmission of data packet over wireless link is subject to unreliable

link and low bandwidth again

– Snoop could potentially benefit from caching packets in both
directions
� how would this differ from link-layer retransmission policy?

Thomas Kunz
Systems and Computer Engineering

517

TCP over Wireless: Summary

� Discussed only a few ideas, for a more complete
discussion, see Tutorial on TCP for Wireless and Mobile
Hosts by Nitin Vaidya,
http://www.cs.tamu.edu/faculty/vaidya/presentations.html

� Topics ignored:
– asymmetric bandwidth on uplink and downlink (for example in

some cable or satellite networks)
– wireless link extends over multiple hops, such as in an ad-hoc

network
– connections fail due to spurious disconnections or route failures in

ad-hoc networks
� Many proposals focus on downlink only
� Many proposals, most try to avoid changing TCP interface

or semantics, but more work necessary

