
Thomas Kunz
Systems and Computer Engineering

437

Course Overview

� Introduction and History
� Data in Wireless Cellular Systems 
� Data in Wireless Local Area Networks
� Internet Protocols
� Routing and Ad-Hoc Networks
� TCP over Wireless Link 

– some slides in this section are from the Tutorial on TCP for 
Wireless and Mobile Hosts, prepared by Nitin Vaidya, see 
http://www.cs.tamu.edu/faculty/vaidya/presentations.html

� Services and Service Discovery
� System Support for Mobile Applications
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Transport Protocol

� What is the role of the "Transport Layer" ?
The IP Network DOES NOT guarantee delivery !!
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The transport layer provides more reliable delivery
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Two Transport Protocols

� The Internet uses 2 transport protocols

Connection-Oriented Connectionless (Datagram)

TCP UDP

� Comprehensive
� Full-duplex
� Acknowledgment
� Sequencing
� Variable length 

segmentation
� Error control

� Very simple
� No error control
� No sequencing
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The User Data Protocol (UDP)

� UDP is much simpler protocol than TCP
� It is designed to transport individual datagrams (no sequence numbers)
� No acknowledgment
� It is used when high reliability is not needed
� The most common use is by protocols that handle name lookups
� Checksum is optional

Data

16-bit destination port16-bit source port

0 15 16 31

8
bytes

16-bit UDP checksum16-bit UDP length
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Overview of TCP

� TCP in the main Internet transport protocol.  The UDP plays a 
supporting role (mostly house keeping functions)

� The TCP performs the following functions:
– Divides the data into segments (21 to 64,000 bytes)
– The sending TCP stamps the segments with sequence numbers
– The receiving TCP acknowledges the segments
– The receiving TCP controls the flow of segments
– The TCP can flag data segments with different priorities (e.g. urgent, 

externally urgent/to be pushed ..)
– TCP performs error correction

� The header of the TCP segment has several other fields and options

File or large data segment

TCP segmentHeader TCP segmentHeader TCP segmentHeader
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Ports and Sockets

� Communications through the Internet occurs between a "Client" 
application software and the same application software running on a 
"server"

� Each connection is uniquely identified by 4 addresses: (1) Client IP 
address, (2) client application port #, (3) server IP address and (4) 
server application port.

� Application ports on the server side are called: "Well-known Sockets".  
The port number for each application is known to all hosts

Application

Application

Application

Application

Application

TCP IP TCPIP

TCPIP
Application

ports

ports
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TCP Features

� Virtual circuit connection
� Full Duplex.  Two-way simultaneous data flow.
� Reliable.  Checks the integrity of the received data
� Allows for multiple connections

IP NetworkT
C

P

T
C

P

Destination
Host

Source
Host

Destination
Host
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Well-known Port Numbers 

WWW80

Finger Protocol79

Gopher70

SMTP25

Telnet23

FTP-data20

Reserved0

Description
Port 

Number
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Error Control at the TCP Level

� Octet-stream-oriented error 
control

� Transmissions occur in segments.  
Each segment has a sequence 
number.  The sequence number is 
the first octet of the segment

� The receiving TCP host sends an 
acknowledgment.  The ACK 
number is the next expected data 
octet.

� Data that has not been 
acknowledged are re-transmitted.

IPTCP TCP

segment

Ack

segment errors

No Ack

Retransmission

Thomas Kunz
Systems and Computer Engineering

446

The TCP Header

Data

Options

16-bit TCP Checksum 16-bit urgent pointer

16-bit window size
4-bit 

header
size

6-bit 
reserved

F
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K

U
R
G

32-bit acknowledgment number

16-bit TCP Checksum

16-bit destination port16-bit source port

32-bit sequence number

0 15 16 31

20
bytes

Identifies 
sequential TCP 

segments

The sequence 
number of the 
next expected 

segment

Sometimes 
called "data 

offset"

Flags for 
various 
controls

Buffer size 
for 

received 
data

Points to 
the first 
byte of 
urgent 
data

Other options 
specific to this 

connection TCP 
segment
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Transmission Control Protocol (TCP)

� Reliable ordered delivery
� Implements congestion avoidance and control
� Reliability achieved by means of retransmissions 

if necessary
� End-to-end semantics

– Acknowledgements sent to TCP sender confirm 
delivery of data received by TCP receiver

– Ack for data sent only after data has reached receiver
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Cumulative Acknowledgements

� A new cumulative acknowledgement is generated 
only on receipt of a new in-sequence packet

	�
 �� ������

������

	�� 	�
 �����
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������

�
data ack

�
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Delayed Acknowledgements

� An ack is delayed until
– another packet is received, or
– delayed ack timer expires (200 ms typical)

� Reduces ack traffic

���  �!  �" �#

$�%$�$

��& ���  �# �!

$�% $�'

New ack not produced
on receipt of packet 36,

but on receipt of 37
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Duplicate Acknowledgements

� A dupack is generated whenever an 

out-of-order segment arrives at the receiver
���  �!  �" �#

$�($�)

��* ��&  �!���

$�( $�(

Dupack
(Above example assumes delayed acks) On receipt of 38
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Duplicate Acknowledgements

+ Duplicate acks are not delayed
+ Duplicate acks may be generated when

– a packet is lost, or
– a packet is delivered out-of-order (OOO)

,�- .�/ .�0.�1

2�32�4

,�5 ,�- .�1.�/

2�3 2�3

Dupack on receipt of 38
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Number of dupacks depends on how 
much OOO a packet is

,�- .�/ .�0.�1

2�32�4

,�5 ,�- .�1.�/

2�3 2�3

Dupack

,�6 ,�5 .�/,�-

2�3 2�3 2�7

New Ack

New AckNew Ack

New Ack

2�4

New Ack

DupackNew Ack
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Window Based Flow Control

8 Sliding window protocol
8 Window size minimum of

– receiver’s advertised window - determined by available 
buffer space at the receiver

– congestion window - determined by the sender, based 
on feedback from the network

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

Acks received Not transmitted
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Window Based Flow Control

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

2 3 4 5 6 7 8 9 10 11 131 12

Sender’s window

Ack 5
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Ack Clock

9 TCP window flow control is “self-clocking”
9 New data sent when old data is ack’d
9 Helps maintain “equilibrium”
9 Congestion window size bounds the amount of 

data that can be sent per round-trip time
9 Throughput  <=  W / RTT
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Ideal Window Size

9 Ideal size = delay *  bandwidth
– delay-bandwidth product

9 What if window size < delay*bw ?
– Inefficiency (wasted bandwidth)

9 What if > delay*bw ?
– Queuing at intermediate routers

: increased RTT due to queuing delays
– Potentially, packet loss



Thomas Kunz
Systems and Computer Engineering

457

Delay x Bandwidth Product

18KB

122KB

549KB

1.2MB

1.8MB

7.4MB

14.8MB

Bandwidth

T1 (1.5Mbps)

Ethernet (10Mbps)

T3 (45Mbps)

FDDI (100Mbps)

STS-3 (155Mbps)

STS-12 (622Mbps)

STS-24 (1.2Gbps)

Keeping the Pipe Full

; Bandwidth & Delay x Bandwidth Product
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< Two sides of the same coin
– pre-allocate resources to avoid congestion
– send data and control congestion if (and when) is occurs

< Two points of implementation
– hosts at the edges of the network (transport protocol)
– routers inside the network (queuing discipline)

< Underlying service model
– best-effort 
– no quality of service guarantees

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps FDDI

10-Mbps Ethernet

=

Congestion Control
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TCP Congestion Control

> Idea
– assumes best-effort network

– each source determines network capacity for itself

– uses implicit feedback

– ACKs pace transmission (self-clocking)
> Challenge

– determining the available capacity in the first place

– adjusting to changes in the available capacity
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Additive Increase/Multiplicative Decrease

> Objective: adjust to changes in the available 
capacity

> New state variable per connection: 
CongestionWindow
– limits how much data source has in transit

– MaxWin =

MIN(CongestionWindow,AdvertisedWindow)

– EffWin = MaxWin - (LastByteSent - LastByteAcked) 
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Additive Increase/Multiplicative Decrease

? Idea:
– increase CongestionWindow when congestion goes 

down
– decrease CongestionWindow when congestion goes up

? Question: how does the source determine whether 
or not the network is congested?

? Answer: implicitly through packet loss
– timeout signals that a packet was lost
– packets are seldom lost due to transmission error
– lost packet implies congestion
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? Algorithm:
– increment CongestionWindow by one packet 

per RTT (linear increase)

– divide CongestionWindow by two whenever a 
timeout occurs (multiplicative decrease)

? In practice: increment a little for each ACK
– Increment = (MSS *  MSS)/CongestionWindow

– CongestionWindow += Increment

Source Destination

É

Additive Increase/Multiplicative Decrease
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How does TCP detect a packet loss?

@ Retransmission timeout (RTO)

@ Duplicate acknowledgements
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Detecting Packet Loss Using 
Retransmission Timeout (RTO)
A At any time, TCP sender sets retransmission timer for only 

one packet
A If acknowledgement for the timed packet is not received 

before timer goes off, the packet is assumed to be lost
A RTO dynamically calculated

– Connection may be between two machines on same LAN (want 
low RTO value) or two machines on opposite sides of Atlantic 
(need higher RTO value)

– Network connection between two machines introduces predictable 
and constant delay per packet (can use tighter bound) or highly 
variable packet delay (use less tight bound to avoid unnecessary
retransmissions)

– Use observed time difference between packet sent and 
acknowledgment received to estimate RTO
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B Karn/Partridge Algorithm

B Do not sample RTT when retransmitting
B Double timeout after each retransmission

Sender
C

Receiver

Original transmission

ACK
D E
FG
H I
JK
K

Retransmission

Sender
C

Receiver

Original transmission

ACK

D E
FG
H I
JK
K

Retransmission

L

(a)
M

(b)
M

Adaptive Retransmission
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Adaptive Retransmission

B Jacobson/Karels Algorithm
B New calculation for average RTT

– Diff = SampleRTT - EstimatedRTT
– EstimatedRTT = EstimatedRTT + (δ x Diff)
– Deviation = Deviation + δ(|Diff|- Deviation)
– where δ is a fraction between 0 and 1

B Consider variance when setting timeout value
– TimeOut = µ x EstimatedRTT + φ x Deviation
– where µ = 1 and φ = 4

B Notes
– algorithm only as good as granularity of clock (500ms on Unix)
– accurate timeout mechanism important to congestion control
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Fast Retransmission

N Timeouts can take too long
– how to initiate retransmission sooner?

N Fast retransmit
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Detecting Packet Loss Using Dupacks
Fast Retransmit Mechanism 

N Dupacks may be generated due to
– packet loss, or

– out-of-order packet delivery
N TCP sender assumes that a packet loss has 

occurred if it receives three dupacks
consecutively
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Congestion Avoidance and Control

Slow Star t
O initially, congestion window size cwnd = 1 MSS 

(maximum segment size)
O increment window size by 1 MSS on each new ack
O slow start phase ends when window size reaches the slow-

start threshold
O cwnd grows exponentially with time during slow start

– factor of 2 per RTT 
– Could be less if sender does not always have data to send
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Congestion Avoidance

P On each new ack, increase cwnd by 1/cwnd
packets

P cwnd increases linear ly with time during 
congestion avoidance
– 1 MSS per RTT
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Congestion Control

Q On detecting a packet loss, TCP sender assumes 
that network congestion has occurred

Q On detecting packet loss, TCP sender drastically 
reduces the congestion window

Q Reducing congestion window reduces amount of 
data that can be sent per RTT
– throughput may decrease
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Congestion Control - Timeout

R On a timeout, the congestion window is reduced to 
the initial value of 1 MSS

R The slow start threshold is set to half the window 
size before packet loss
– more precisely, 

ssthresh =  maximum of min(cwnd,receiver’s
advertised window)/2 and 2 MSS

R Slow star t is initiated
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Congestion Control - Timeout
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Congestion Control - Fast retransmit

S Fast retransmit occurs when multiple (>= 3) 
dupacks come back

S Fast recovery follows fast retransmit
S Different from timeout : slow start follows timeout

– timeout occurs when no more packets are getting across

– fast retransmit occurs when a packet is lost, but latter 
packets get through

– ack clock is still there when fast retransmit occurs

– no need to slow start
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Fast Recovery

S ssthresh = 

min(cwnd, receiver’s advertised window)/2 
(at least 2 MSS)

S retransmit the missing segment (fast retransmit)
S cwnd = ssthresh + number of dupacks
S when a new ack comes: cwnd = ssthreh

– enter congestion avoidance

Congestion window cut into half
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TCP and Mobile Computing

– TCP is (most?) popular transport layer protocol

– designed for wired networks
T low error rate
T requirement to share bottlenecks

– key assumptions in TCP are:
T packet loss is indication of congestion, not transmission error
T rather aggressive response to congestion is needed to ensure 

fairness and efficiency

– wireless links and mobile computing violate these 
assumptions:
T packets lost due to unreliable physical media
T packets can get lost due to handover
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TCP and Mobile Computing

– packet losses over wireless link often in bursts
U will trigger slow start rather than fast retransmit

– packet loss no indication of congestion
U reduction of congestion window will reduce throughput
U getting back to previous window size may take long

– problem caused by mismatch of wireless link properties with 
assumptions underlying TCP design

– multiple suggestions to improve TCP performance:
U link-level retransmissions: improve reliability of wireless link
U network layer solutions: SNOOP
U transport layer solutions: I-TCP (indirect TCP), Mowgli
U session layer solutions: establish end-to-end session layer connection, 

manages two separate TCP connections
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Link Layer Mechanisms
Forward Error Correction
V Forward Error Correction  (FEC) can be use to 

correct small number of errors
V Correctable errors hidden from the TCP sender
V FEC incurs overhead even when errors do not 

occur
– Adaptive FEC schemes can reduce the overhead by 

choosing appropriate FEC dynamically
V FEC does not guard/protect from packet loss due 

to handover
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Link Layer Mechanisms
Link Level Retransmissions

W Link level retransmission schemes retransmit a 
packet at the link layer, if errors are detected

W Retransmission overhead incurred only if errors 
occur
– unlike FEC overhead

In general
W Use FEC to correct a small number of errors
W Use link level retransmission when FEC capability 

is exceeded
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Link Level Retransmissions

wireless

physical

link

network

transport

application

physical

link

network

transport

application

physical

link

network

transport

application

rxmt

TCP connection
Link layer state
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Link Level Retransmissions
Issues

X How many times to retransmit at the link level 
before giving up?
– Finite bound -- semi-reliable link layer
– No bound -- reliable link layer

X What triggers link level retransmissions?
– Link layer timeout mechanism
– Link level acks (negative acks, dupacks, …)
– Other mechanisms (e.g., Snoop, as discussed later)

X How much time is required for a link layer 
retransmission?
– Small fraction of end-to-end TCP RTT
– Large fraction/multiple of end-to-end TCP RTT
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Link Level Retransmissions
Issues

X Should the link layer deliver packets as they 
arrive, or deliver them in-order?
– Link layer may need to buffer packets and reorder if 

necessary so as to deliver packets in-order
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Link Level Retransmissions
Issues
Y Retransmissions can cause head-of-the-line 

blocking

Y Although link to receiver 1 may be in a bad state, 
the link to receiver 2 may be in a good state

Y Retransmissions to receiver 1 are lost, and also 
block a packet from being sent to receiver 2

Base station

Receiver 1

Receiver 2

Thomas Kunz
Systems and Computer Engineering

486

Link Level Retransmissions
Issues
Z Retransmissions can cause congestion losses

Z Attempting to retransmit a packet at the front of the queue, 
effectively reduces the available bandwidth, potentially 
making the queue at base station longer

Z If the queue gets full, packets may be lost, indicating 
congestion to the sender

Z Is this desirable or not ?

Base station

Receiver 1

Receiver 2
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Link Level Retransmissions
An Early Study
[ The sender’s Retransmission Timeout (RTO) is a 

function of measured RTT (round-trip times)
– Link level retransmits increase RTT, therefore, 

RTO
[ I f errors not frequent, RTO will not account for 

RTT variations due to link level retransmissions
– When errors occur, the sender may timeout & 

retransmit before link level retransmission is successful
– Sender and link layer both retransmit
– Duplicate retransmissions (interference) waste wireless 

bandwidth
– Timeouts also result in reduced congestion window
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A More Accurate Picture

[ Early analysis does not accurately model real TCP 
stacks

[ With large RTO granular ity, interference is 
unlikely, if time required for link-level 
retransmission is small compared to TCP RTO
– Standard TCP RTO granularity is often large (500 ms)
– Minimum RTO (2*granularity) is large enough to allow 

a small number of link level retransmissions, if link 
level RTT is relatively small

– Interference due to timeout not a significant issue when 
wireless RTT small, and RTO granularity large
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Link Level Retransmissions
A More Accurate Picture
\ Frequent errors increase RTO significantly on 

slow wireless links
– RTT on slow links large, retransmissions result in large 

variance, pushing RTO up

– Likelihood of interference between link layer and TCP 
retransmissions smaller

– But congestion response will be delayed due to larger 
RTO

– When wireless losses do cause timeout, much time 
wasted
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RTO Variations

Packet loss

RTT sample

RTO

Wireless
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Large TCP Retransmission Timeout 
Intervals

] Good for reducing  interference with link level 
retransmits

] Bad for recovery from congestion losses
] Need a timeout mechanism that responds 

appropriately for both types of losses
– Open problem
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Link Level Retransmissions

] Selective repeat protocols can deliver packets out 
of order

] Significantly out-of-order delivery can trigger 
TCP fast retransmit 
– Redundant retransmission from TCP sender
– Reduction in congestion window

] Example: Receipt of packets
3,4,5 triggers dupacks

6 2 5 234 1

Lost packet

Retransmitted packet
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Link Level Retransmissions
In-order delivery

^ To avoid unnecessary fast retransmit, link layer 
using retransmission should attempt to deliver 
packets “almost in-order”

6 5 4 223

6 5 2 234

1

1
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Link Level Retransmissions
In-order delivery
^ Not all connections benefit from retransmissions 

or ordered delivery
– audio

^ Need to be able to specify requirements on a per-
packet basis
– Should the packet be retransmitted? How many times?

– Enforce in-order delivery?
^ Need a standard mechanism to specify the 

requirements
– open issue (IETF PILC working group)
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Link Layer Schemes: Summary

When is a reliable link layer beneficial to TCP 
performance?

_ if it provides almost in-order delivery
_ TCP retransmission timeout large enough to 

tolerate additional delays due to link level 
retransmits

_ Basic ideas:
– Hide wireless losses from TCP sender
– Link layer modifications needed at both ends of 

wireless link
` TCP need not be modified
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Split Connection Approach

_ End-to-end TCP connection is broken into one 
connection on the wired part of route and one over 
wireless part of the route

_ A single TCP connection split into two TCP 
connections
– if wireless link is not last on route, then more than two 

TCP connections may be needed
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Split Connection Approach

a Connection between wireless host MH and fixed 
host FH goes through base station BS

a FH-MH =   FH-BS +    BS-MH

b�c decfhg

Base Station Mobile HostFixed Host
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Split Connection Approach

a Split connection results in independent flow 
control for the two parts

a Flow/error control protocols, packet size, time-
outs, may be different for each part

b�c decfhg

Base Station Mobile HostFixed Host
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Split Connection Approach

wireless

physical

link

network

transport

application

physical

link

network

transport

application

physical

link

network

transport

application rxmt

Per-TCP connection state

TCP connection TCP connection
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I-TCP

i basic idea: split communication between mobile 
host (MH) and fixed host (FH) into two separate 
interactions

i each connection can be tuned to accommodate the 
special characteristics of the underlying physical 
media
– use standard TCP between MSR and FH, both on wired 

backbone
– special wireless TCP between MH and MSR, where 

packet loss does not trigger congestion avoidance
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I-TCP: Connection Setup

<mh, mh_port, msr1, msr1_port>

<msr1, msr1_port, mh, mh_port>

move to new cell

I-TCP handoff

MH

FH

MSR1

<fh, fh_port, mh, mh_port>

<mh, mh_port, fh, fh_port>

<msr1, msr1_port, mh, mh_port>

<mh, mh_port, msr1, msr1_port>

MSR2

regular TCP

wireless TCP

<mh, mh_port, fh, fh_port>
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I-TCP

j throughput improved, particularly for wide-area 
connections, compared to regular TCP

Connection Type No moves Overlapped cells Disjoint cells, 0
sec between

Disjoint cells, 1
sec between

Regular TCP 65.49 kB/s 62.59 kB/s 38.66 kB/s 23.73 kB/s
I-TCP 70.06 kB/s 65.37 kB/s 44.83 kB/s 36.31 kB/s

Connection Type No moves Overlapped cells Disjoint cells, 0
sec between

Disjoint cells, 1
sec between

Regular TCP 13.35 kB/s 13.26 kB/s 8.89 kB/s 5.19 kB/s
I-TCP 26.78 kB/s 27.97 kB/s 19.12 kB/s 16.01 kB/s

I-TCP performance over wide area

I-TCP performance over local area

(from: Bakre and Badrinath, “ I-TCP: Indirect TCP for Mobile Hosts” , Proceedings of the International 
Conference on Distributed Computing Systems (ICDCS 15), May 1995, Vancouver, Canada, pages 136-143)
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Split Connection Approach: 
Classification

k Hides transmission errors from sender
k Primary responsibility at base station
k If specialized transport protocol used on wireless, 

then wireless host also needs modification
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Split Connection Approach: Advantages

l BS-MH connection can be optimized independent of FH-
BS connection

– Different flow / error control on the two connections
l Local recovery of errors

– Faster recovery due to relatively shorter RTT on wireless link 
l Good performance achievable using appropr iate BS-MH 

protocol
– Standard TCP on BS-MH performs poorly when multiple packet 

losses occur per window (timeouts can occur on the BS-MH 
connection, stalling during the timeout interval)

– Selective acks improve per formance for  such cases
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Split Connection Approach: 
Disadvantages

m End-to-end semantics violated
– ack may be delivered to sender, before data delivered to 

the receiver

– May not be a problem for applications that do not rely 
on TCP for the end-to-end semantics

FH MHBS

n�o

p�q

p�rp�s

t�uvxw
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Split Connection Approach: 
Disadvantages

m BS (MSR in I-TCP) retains hard state

BS failure can result in loss of data (unreliability)
– If BS fails, packet 40 will be lost 

– Because it is ack’d to sender, the sender does not buffer 
40

FH MHBS

n�o

p�q

p�rp�s

t�uvxw
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Split Connection Approach: 
Disadvantages
y BS retains hard state

Hand-off latency increases due to state transfer
– Data that has been ack’d to sender, must be moved to 

new base station

FH MHBS

z�{

|�}

|�~|��

����x�

MH

New base station

Hand-off

z�{

|�}
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Split Connection Approach: 
Disadvantages

y Buffer space needed at BS for each TCP 
connection
– BS buffers tend to get full, when wireless link slower 

(one window worth of data on wired connection could 
be stored at the base station, for each split connection)

y Window on BS-MH connection reduced in 
response to errors
– may not be an issue for wireless links with small delay-

bw product
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Split Connection Approach: 
Disadvantages
� Extra copying of data at BS

– copying from FH-BS socket buffer to BS-MH socket buffer
– increases end-to-end latency

� May not be useful if data and acks traverse different paths 
(both do not go through the base station)

– Example: data on a satellite wireless hop, acks on a dial-up channel

FH MH

data

ack
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Snoop: Network Layer Solution

� idea: modify network layer software at base station
� changes are transparent to MH and FH

– no changes in TCP semantics (unlike I-TCP)

– less software overhead (packets pass TCP layer only twice)

– no application relinking on mobile host
� modifications are mostly in caching packets and 

performing local retransmissions across the wireless link 
by monitoring (snooping) on TCP acks

� results are impressive:
– speedups of up to 20 times over regular TCP

– more robustness when dealing with multiple packet losses
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Snoop: Architecture

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Mobile Host Fixed HostBase Station

64 5 7 8

3 4

123

5
Snoop cache

Network Layer
plus Snoop

Physical Layer

Data Link Layer

X

X data packet X, from FH to MH

ACK X, from MH to FH
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Snoop: Description of Protocol 

� processing packets from FH
– new packet in the normal TCP sequence: 

� cache and forward to MH

– packet out-of sequence and cached earlier:
� sequence number > last ack from MH: packet probably lost, forward 

it again
� otherwise, packet already received at MH, so drop

– but: original ACK could have been lost, so fake ACK again

– packet out-of sequence and not cached yet:
� packet either lost earlier due to congestion or delivered out-of-order: 

cache packet and mark as retransmitted, forward to MH
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Snoop: Description of Protocol

� processing ACKs from MH:
– new ACK: common case, initiates cleaning up of snoop cache, 

update estimate of round-trip time for wireless link, forward ACK 
to FH

– spurious ACK: less than last ACK seen, happens rarely. Just drop
ACK and continue

– duplicate ACK: indicates packet loss, one of several actions:
� packet either not in cache or marked as retransmitted: pass duplicate 

ACK on to FH
� first duplicated ACK for cached packet: retransmit cached packet

immediately and at high priority, estimate number of expected 
duplicate ACKs, based on # of packets sent after missing one

� expected successive duplicate ACKs: ignore, we already initiated 
retransmission. Since retransmission happens at higher priority, we 
might not see total number of expected duplicate ACKs
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Snoop: Description of Protocol

� design does not cache packets from MH to FH
– bulk of packet losses will be between MH and base

– but snooping on packets generates requests for retransmissions at base 
much faster than from remote FH

– enhance TCP implementation at MH with “selective ACK”  option:
� base keeps track of packets lost in a transmission window
� sends bit vector back to MH to trigger retransmission of lost packets

� mobility handling:
– when handoff is requested by MH or anticipated by base station, 

nearby base stations begin receiving packets destined for MH, priming 
their cache

– caches synchronized during actual handoff (since nearby bases cannot 
snoop on ACKs)
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Snoop: Performance

� no difference in very low error rate environment (bit error rate
< 5x10-7)

� for higher bit error rates, Snoop outperforms regular TCP by a 
factor of 1 to 20, depending on the bit error rate (the higher, 
the better Snoop’s relative performance)

� even when every other packet was dropped over the wireless 
link, Snoop still allowed for progress in transmission, while 
regular TCP came to a grinding halt

� Snoop provides high and consistent throughput, regular TCP 
triggers congestion control often, which leads to periods of no 
transmission and very uneven rate of progress
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Snoop: Evaluation

� most effort spent on direction FH->MH
– authors argue that not much can be done for MH->FH

� losses occur over first link, the unreliable wireless link
� Internet drops 2%-5% of IP packets, tendency rising

– assume that IP packet is lost in wired part of network:
� receiver (FH) will issue duplicate ACKs
� this should trigger fast retransmit rather than slow start (?)
� nothing is done to ensure that ACKs are not dropped over last link
� retransmission of data packet over wireless link is subject to unreliable 

link and low bandwidth again

– Snoop could potentially benefit from caching packets  in both 
directions
� how would this differ from link-layer retransmission policy?
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TCP over Wireless: Summary

� Discussed only a few ideas, for a more complete 
discussion, see Tutorial on TCP for Wireless and Mobile 
Hosts by Nitin Vaidya, 
http://www.cs.tamu.edu/faculty/vaidya/presentations.html

� Topics ignored:
– asymmetric bandwidth on uplink and downlink (for example in 

some cable or satellite networks)
– wireless link extends over multiple hops, such as in an ad-hoc 

network
– connections fail due to spurious disconnections or route failures in 

ad-hoc networks
� Many proposals focus on downlink only 
� Many proposals, most try to avoid changing TCP interface 

or semantics, but more work necessary


