

Dijkstra’s algorithm:

Let pq be a priority queue of vertex-weight
pairs, <w, wweight>, where wweight is the
total weight of all edges on the shortest path
so far from v1 to w.

Iterate, breadth-first, starting at v1 until
a pair with v2 is removed from pq.

To keep track of total path weights, we have
a Map object, weightSum, that associates
with each vertex x the sum of the weights
on the shortest path so far from v1 to x.

Finally, predecessor, another Map object, associates
each vertex x with its predecessor on the shortest path
so far from v1 to x. That map enables us to retrieve the
shortest path when we are done.

 B

 10 18

A 2 D
 25
 7 5

 C E
 14

Find the shortest path from A to D.

Initialize weightSum and predecessor,

and add <A, 0> to pq.

 B weightSum predecessor pq
 A, 0 A <A, 0>
 10 18 B, 1000 null
 C, 1000 null
A 2 D D, 1000 null
 25 E, 1000 null
 7 5

 C E
 14

Now loop until D is removed from pq. For each pair

<w, weight sum> removed from pq, iterate over the

neighbors of w (provided that weight sum is

 <= w’s weight sum).

For each neighbor x, if w’s weight sum + weight of (w, x)

is less than x’s weight sum, then we have found a cheaper

way to get from A to x!

So replace x’s weight sum with w’s weight sum + weight

of (w, x) and insert x and its new weight sum into pq.

Also, make w the predecessor of x.

 B weightSum predecessor pq
 A, 0 A <C, 7>
 10 18 B, 10 A <B, 10>
 C, 7 A
A 2 D D, 1000 null
 25 E, 1000 null
 7 5

 C E
 14

 B weightSum predecessor pq
 A, 0 A <B, 9>
 10 18 B, 9 C <B, 10>
 C, 7 A <E, 21>
A 2 D D, 32 C <D, 32>
 25 E, 21 C
 7 5

 C E
 14

 B weightSum predecessor pq
 A, 0 A
 10 18 B, 9 C <E, 21>
 C, 7 A <D, 27>
A 2 D D, 27 B <D, 32>
 25 E, 21 C
 7 5

 C E
 14

 B weightSum predecessor pq
 A, 0 A <E, 21>
 10 18 B, 9 C <D, 27>
 C, 7 A <D, 32>
A 2 D D, 27 B
 25 E, 21 C
 7 5

 C E
 14

 B weightSum predecessor pq
 A, 0 A <D, 26>
 10 18 B, 9 C <D, 27>
 C, 7 A <D, 32>
A 2 D D, 26 E
 25 E, 21 C
 7 5

 C E
 14

During the next loop iteration, when <D, 26> is
removed from pq, we stop. The shortest path from A to
D is, according to predecessor, A, C, E, D.

