Dijkstra’s algorithm:

et pq be a priority queue of vertex-weight
pairs, <w, wweight>, where wweight iIs the
total weight of all edges on the shortest path
so far from v1 to w.

Iterate, breadth-first, starting at v1 until
a pair with v2 Is removed from pqg.



To keep track of total path weights, we have
a Map object, weightSum, that associates
with each vertex x the sum of the weights

on the shortest path so far from vl to x.



Finally, predecessor, another Map object, associates
each vertex x with its predecessor on the shortest path
so far from v1 to x. That map enables us to retrieve the

shortest path when we are done.



Find the shortest path from A to D.



Initialize weightSum and predecessor,
and add <A, 0> to pq.



welghtSum predecessor pg

A0 A <A, 0>
B, 1000 nu
C, 1000 nu
D, 1000 nu
E, 1000 nu




Now loop until D iIs removed from pg. For each pair
<w, weight sum> removed from pq, iterate over the
neighbors of w (provided that weight sum Is

<=w’s weight sum).

For each neighbor x, if w’s weight sum + weight of (w, x)
is less than x’s weight sum, then we have found a cheaper

way to get from A to x!



So replace x’s weight sum with w’s weight sum + weight
of (w, X) and insert x and its new weight sum into pq.
Also, make w the predecessor of x.



weightSum predecessor  pq

A, 0 A <C, 7>
B, 10 A <B, 10>
C,7 A

D, 1000 null

E, 1000 null




weightSum predecessor  pg

A, 0 A <B, 9>
B, 9 C <B, 10>
C,7 A <E, 21>
D, 32 C <D, 32>
E, 21 C




weightSum predecessor  pg

A0 A
B,9 C <E, 21>
C,7 A <D, 27>
D, 27 B <D, 32>
E, 21 C




weightSum predecessor  pq

A, 0 A <E, 21>
B,9 C <D, 27>
C,7 A <D, 32>
D, 27 B
E, 21 C




weightSum predecessor  pg

A 0 A <D, 26>
B, 9 C <D, 27>
C,7 A <D, 32>
D, 26 E
E, 21 C

During the next loop iteration, when <D, 26> is
removed from pq, we stop. The shortest path from A to
D is, according to predecessor, A, C, E, D.



