

Application of Priority
Queues/Heaps:

Huffman Codes

Problem:

How to compress a file without losing

information?

Compression saves space and, more

importantly, saves time.

Example:

Let m be a message of size 100,000

consisting of the letters ‘a’, ‘b’, ‘c’, ‘d’, ‘e’.

Encode m into e, a sequence of bits.

In the Unicode collating sequence, 16 bits are

allocated for each character.

If we use that encoding,

|E|, the size of E, is 1,600,000

Suppose we use a fixed number of bits

for each character. What is the

minimum number of bits needed

to encode 5 characters uniquely?

If each character is represented with the same

number of bits, 3 bits per character are needed

to encode 5 characters uniquely.

In general, the minimum number of bits needed

to encode all n characters uniquely

is the number of bits in the binary

representation of n:

ceil(log2 n)

ceil(x) returns the smallest integer greater than

or equal to x.

Here is a possible encoding:

‘a’ 000

‘b’ 001

‘c’ 010

‘d’ 011

‘e’ 100

 |E| = 100000 * 3 = 300000

Can we do better? We would like an encoding

of n characters that does not require ceil(log2n)

bits per character.

How about this:

‘a’ 0

‘b’ 1

‘c’ 00

‘d’ 01

‘e’ 10

 |E| << 300,000

 But

There is ambiguity:

001010 could be the encoding of

adda or cee or …

There is ambiguity because some

of the character encodings are prefixes of

other character encodings.

A prefix-free encoding will be unambiguous!

To get a prefix-free encoding, create

a binary tree:

Left branch for a 0 bit

Right branch for a 1 bit

Each character will be a leaf.

 0 1

 0 1 0 1

 c d b

 0 1

 a e

Since each character is a leaf, no two

characters can be on the same path from the

root, so this gives a prefix-free – and

unambiguous – encoding:

‘a’ 010

‘b’ 11

‘c’ 00

‘d’ 10

‘e’ 011

Here is another binary tree that produces

another unambiguous encoding:

 0 1

 0 1 b

 c

 0 1

 a

 0 1

 e d

Given an unambiguous encoding into E,

to determine |E|, we need to know the

frequency of each character in the original

message M.

To obtain a minimal prefix-free encoding,

create a binary tree, called a Huffman tree,

that is actually based on the frequencies of

the characters in M.

At the level farthest from the root, put

the least-frequently occurring characters.

Their encodings will have the most bits.

Suppose the frequencies are:

‘a’ 5,000

‘b’ 20,000

‘c’ 8,000

‘d’ 40,000

‘e’ 27,000

Left-branch for last

Right-branch for next-to-least

 0 1

 a c

 0 1

 a c

Now what? The sum of these frequencies is 13,000. That sum

is less than b’s frequency of 20,000, so we’ll create

2 more branches: This subtree will be at the end of the

left branch, and b will be the leaf of the right branch:

 0 1

 b

 0 1

 a c

The sum of the frequencies of this subtree is 33000, which

is greater than 27000, so this subtree should be a right

branch, with ‘e’ – frequency of 27000 – as the leaf of the

left branch.

 0 1

 e 0 1

 b

 0 1

 a c

Finally, the sum of the frequencies of this subtree is

60000, which is greater than 40000, so this subtree

should be a right branch, and ‘d’ – with a frequency of

40000 – should be the leaf of the left branch.

 0 1

 d

 0 1

 e 0 1

 0 1 b

 a c

‘a’ 1100

‘b’ 111

‘c’ 1101

‘d’ 0

‘e’ 10

“acceded” 110011011101100100

 110011011101100100 ?

 0 1

 d

 0 1

 e 0 1

 0 1 b

 a c

|E| = the sum, over all characters, of the

number of bits for the character times

the frequency of the character.

|E| = 4 * 5000 +

3 * 20000 +

4 * 8000 +

1 * 40000 +

2 * 27000

 = 206,000

We will use a priority queue to hold the

frequencies of characters and subtrees.

add: Insert the character’s frequency into the priority

 queue

removeMin: Delete the element with lowest frequency

 from the priority queue.

Each element in the priority queue consists of a

character-frequency pair (plus left, right,
parent,...).

For example, suppose the frequencies are:

(a: 34000) (b: 20000) (c: 31000) (d: 10000)

(e: 5000)

The order of the elements in the priority queue

is:

e 5000

d 10000

b 20000

c 31000

a 34000

All we really know is that getMin()
returns the highest-priority (that is,

lowest-frequency) element.

removeMin is called twice. The first element removed

becomes a left branch, the second element removed becomes a

right branch, and the sum of those frequencies is added to the

priority queue:

(: 15000) (b: 20000) (c: 31000) (a: 34000)

The Huffman tree is now:

 15000

 0 1

 e d

Again, removeMin is called twice, and the sum of those

frequencies is added to the priority queue:

(c: 31000) (a: 34000) (: 35000)

The Huffman tree is now

 35000

 0 1

 15000 b

 0 1

 e d

Again, removeMin is called twice, the elements become leaves in

a new Huffman tree, and the sum of those frequencies is added to

the priority queue:

(: 35000) (: 65000)

The Huffman trees are now

 35000

 0 1

 15000 b 65000

 0 1 0 1

 e d c a

Finally when (: 35000) and (:65000) are

removed from the priority queue and their

sum is inserted in the priority queue, the

priority queue is:

(: 100000).

The final Huffman tree is:

 100000

 0 1

 35000

 0 1

 15000 b 65000

 0 1 0 1

 e d c a

Exercise: Create a minimal, prefix-free encoding for the
following character-frequency pairs:

‘a’ 20,000
‘b’ 4,000
‘c’ 1,000
‘d’ 17,000
‘e’ 25,000
‘f’ 2,000
‘g’ 3,000
‘h’ 28,000

Note: You will need to maintain the priority queue,
ordered by frequencies.

A greedy algorithm is one in which locally

optimal choices are made. Sometimes,

as with Huffman trees, greed succeeds:

Locally optimal choices lead to a globally

optimal solution.

Specifically, by repeatedly removing the 2

lowest-frequency elements from the priority

queue, and then creating a subtree of the

Huffman tree, we end up with a minimal

(prefix-free) encoding.

