
How Fast Can We Sort?

A decision tree is a binary tree in which
each non-leaf represents a comparison
between two elements and each leaf
represents a sorted sequence of those
elements.

Left branch: Yes
Right branch: No

Example: Apply insertion sort to a1, a2, a3.

 a1 < a2?

 a2 < a3? a1 < a3?

 a1 a2 a3 a1 < a3? a2 a1 a3 a2 < a3?

 a1 a3 a2 a3 a1 a2 a2 a3 a1 a3 a2 a1

A decision tree has one leaf for each
permutation of the n elements to be sorted.

The number of permutations of n distinct
elements is ?

 n!

So a decision tree to sort n elements must
have n! leaves.

The binary-tree theorem:
For any non-empty binary tree t:

 n(t) + 1
1. leaves(t) <=
 2.0

 n(t) + 1
2. <= 2height(t)

 2.0

By the binary tree theorem, for
any non-empty tree t,

leaves (t) <= 2 height (t)

Since n! = leaves(t), we must have

n! <= 2 height (t)

which implies that

log2 (n!) <= height (t)

In the context of a decision tree, height(t)
represents the maximum number of
comparisons needed to sort the n
elements.

So log2(n!) <= the maximum number
of comparisons to sort n elements.

Therefore,

worstTime(n) >= log2(n!)

So

worstTime(n) >= n/2 log2(n/2)

log2(n!) >= n/2 log2(n/2)

So worstTime(n) is Ω(n log n) for any
comparison-based sort.

What can we say about averageTime(n)?

averageTime(n) >= average number of comparisons
 = total number of comparisons / n!

In a decision tree, what is the total number
of comparisons equal to?

averageTime(n) >= average number of comparisons
 = total number of comparisons / n!

In a decision tree, what is the total number of
comparisons equal to?

Hint: The length of each path from the root to a leaf
equals the number of comparisons in that path.

The total number of comparisons is equal
to the sum of all root-to-leaf path lengths.

Let t be a non-empty binary tree. E(t), the
external path length of t, is the sum of the
depths of all leaves in t.

For example, find the external path length
of the following binary tree:

 A

 B C

 D E R S

F G L

E(t) = 3 + 3 + 3 + 2 + 2 = 13

The external path length theorem:

Let t be a binary tree with k > 0 leaves. Then

E(t) >= (k / 2) floor (log2k).

E(t), the external path length of tree t, is
the sum of all root-to-leaf path lengths in t.
So the average number of comparisons is

E(t) / n!

In a decision tree, the number of leaves is n!.
so, by the external path length theorem,

averageTime(n) >= average # comparisons
= E(t) / n!

 >= (n! / 2) floor (log2(n!)) / n!
 = (1 / 2) floor (log2(n!))

>= (1 / 4) (log2(n!))
>= (n / 8) (log2(n / 2))

For any comparison-based sort,
averageTime(n) is Ω(n log n).

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

