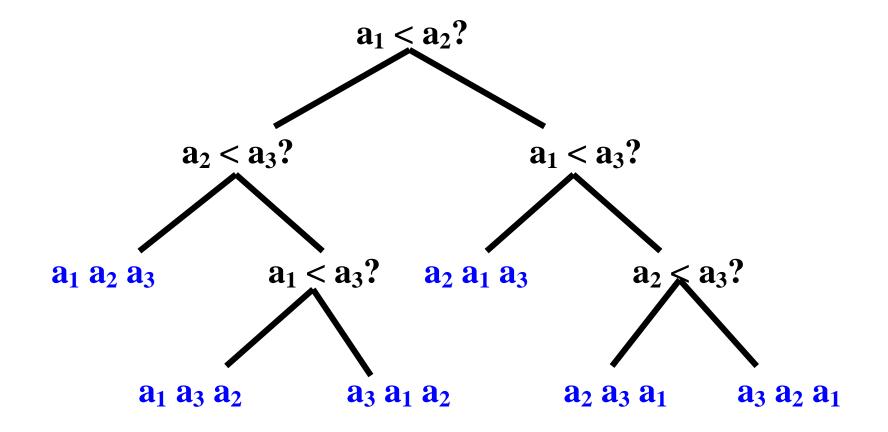
How Fast Can We Sort?

A *decision tree* is a binary tree in which each non-leaf represents a comparison between two elements and each leaf represents a sorted sequence of those elements.

Left branch: Yes Right branch: No

Example: Apply insertion sort to a1, a2, a3.



A decision tree has one leaf for each permutation of the *n* elements to be sorted.

The number of permutations of *n* distinct elements is ?

So a decision tree to sort *n* elements must have *n*! leaves.

The binary-tree theorem: For any non-empty binary tree t:

1. leaves(t) <= $\frac{n(t) + 1}{2.0}$

2.
$$\frac{n(t) + 1}{2.0} <= 2^{\text{height}(t)}$$

By the binary tree theorem, for any non-empty tree t,

leaves (t) <= $2^{\text{height (t)}}$

Since n! = leaves(t), we must have

 $n! <= 2^{height(t)}$

which implies that

log₂ (n!) <= height (t)

In the context of a decision tree, height(t) represents the maximum number of comparisons needed to sort the *n* elements.

So log₂(*n*!) <= the maximum number of comparisons to sort *n* elements.

Therefore,

worstTime(*n*) >= log₂(*n*!)

$\log_2(n!) >= n/2 \log_2(n/2)$

So

worstTime(n) >= n/2 log₂(n/2)

So worstTime(n) is $\Omega(n \log n)$ for any comparison-based sort.

What can we say about averageTime(*n*)?

averageTime(n) >= average number of comparisons = total number of comparisons / n!

In a decision tree, what is the total number of comparisons equal to?

averageTime(n) >= average number of comparisons = total number of comparisons / n!

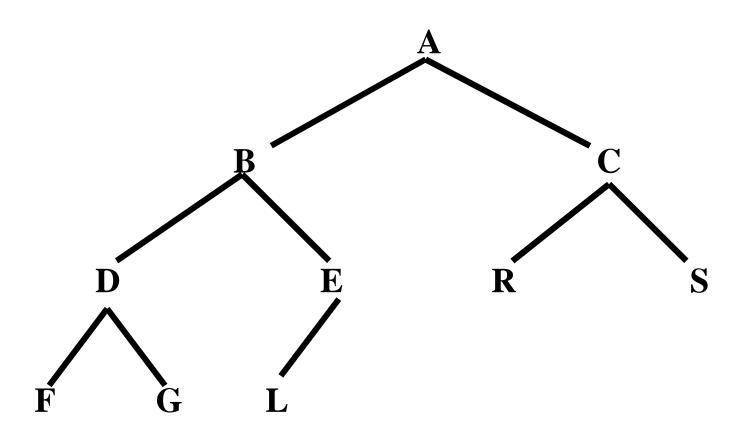
In a decision tree, what is the total number of comparisons equal to?

Hint: The length of each path from the root to a leaf equals the number of comparisons in that path.

The total number of comparisons is equal to the sum of all root-to-leaf path lengths.

Let t be a non-empty binary tree. E(t), the external path length of t, is the sum of the depths of all leaves in t.

For example, find the external path length of the following binary tree:



E(t) = 3 + 3 + 3 + 2 + 2 = 13

The external path length theorem:

Let t be a binary tree with k > 0 leaves. Then

E(t) >= (k / 2) floor (log_2k) .

E(t), the external path length of tree t, is the sum of all root-to-leaf path lengths in t. So the average number of comparisons is

E(t) / n!

In a decision tree, the number of leaves is *n*!. so, by the external path length theorem,

averageTime(n) >= average # comparisons = E(t) / n! >= (n! / 2) floor (log₂(n!)) / n! = (1 / 2) floor (log₂(n!)) >= (1 / 4) (log₂(n!)) >= (n / 8) (log₂(n / 2))

For any comparison-based sort, averageTime(n) is $\Omega(n \log n)$.