
1

RMI – Remote Method Invocation

� Introduction

� What is RMI?

� RMI System Architecture

� How does RMI work?

� Distributed Garbage Collection

� RMI & the OSI Reference Model

� Security 

� Programming with RMI

Introduction

� Low-level sockets can be used to develop 
client/server distributed applications

� But in that case, a protocol must be designed

� Designing such a protocol is hard and error-
prone (how to avoid deadlock?)

� RMI is an alternative to sockets



2

What is RMI?

� A core package of the JDK1.1+ that can be 
used to develop distributed applications

� Similar to the RPC mechanism found on other 
systems

� In RMI, methods of remote objects can be 
invoked from other JVMs

� In doing so, the programmer has the illusion of 
calling a local method (but all arguments are 
actually sent to the remote object and results 
sent back to callers)

Local v. Remote method invocation



3

Goals and Features of RMI

� seamless object remote invocations

� callbacks from server to client

� distributed garbage collection

� NOTE: in RMI, all objects must be written in 
Java!

Distributed Objects and Client-Side 
Proxy



4

Parameters and Remote Objects

� regular parameters of method invocations are 
passed by value

– they get serialized, sent over, and de-serialized, 

thus recreating a copy of the parameter

� make sure your parameters are serializable!

– as a result, modifications to such objects won’t be 

noticed by the caller!

� can be passed back as return value of the method

More on Remote Objects

� on the other hand, parameters that are remote 
objects themselves are not copied!

– RMI ensures that if such objects' methods are 

invoked by the remote object, they are in turn 

remote invocations

– in fact, the argument type should be compatible with 

the remote interface of the object, not its 

implementation

– this is how RMI achieves callbacks (discussed later)



5

Parameter Passing

� The situation when passing an object by reference or by value.

RMI System Architecture

� Built in three layers (they are all independent):

– Stub/Skeleton layer

– Remote reference layer

– Transport layer



6

The Stub/Skeleton layer

� The interface between the application layer 
and the rest of the system

� Stubs and skeletons are generated using the 
RMIC compiler

� This layer transmits data to the remote 
reference layer via the abstraction of marshal 
streams (that use object serialization)

� This layer doesn’t deal with the specifics of any 
transport

The Stub/Skeleton l

� Client stub responsible for:

– Initiate remote calls

– Marshal arguments to be sent

– Inform the remote reference layer to invoke the call

– Unmarshaling the return value

– Inform remote reference the call is complete

� Server skeleton responsible for:

– Unmarshaling incoming arguments from client

– Calling the actual remote object implementation

– Marshaling the return value for transport back to client



7

The Remote Reference Layer

� The middle layer

� Provides the ability to support varying remote 
reference or invocation protocols independent 
of the client stub and server skeleton

� Example: the unicast protocol provides point-
to-point invocation, and multicast provides 
invocation to replicated groups of objects, other 
protocols may deal with different strategies…

� Not all these features are supported….

The Transport Layer

� A low-level layer that ships serialized objects 
between different address spaces

� Responsible for:
– Setting up connections to remote address spaces

– Managing the connections

– Listening to incoming calls

– Maintaining a table of remote objects that reside in 
the same address space

– Setting up connections for an incoming call

– Locating the dispatcher for the target of the remote 
call



8

RMI and the OSI reference model

� How can RMI be described by this model?

How does RMI work?

� An invocation will pass through the 
stub/skeleton layer, which will transfer data to 
the remote reference layer

� The semantics of the invocation are carried to 
the transport layer

� The transport layer is responsible for setting up 
the connection



9

The Naming Registry

� The remote object must register itself with the 
RMI naming registry

� A reference to the remote object is obtained by 
the client by looking up the registry

Distributed Garbage Collection

� RMI provides a distributed garbage collector 
that deletes remote objects no longer 
referenced by a client

� Uses a reference-counting algorithm to keep 
track of live references in each Virtual Machine

� RMI keeps track of VM identifiers, so objects 
are collected when no local or remote 
references to them



10

Programming with RMI

� Anatomy of an RMI-based application

– Define a remote interface

– Provide an implementation of the remote interface

– Develop a client

– Generate stubs and skeletons

– Start the RMI registry

– Run the client and server

Define a Remote Interface

� It specifies the characteristics of the methods 
provided by a server and visible to clients
– Method signatures (method names and the type of 

their parameters)

� By looking at the interface, programmers know 
what methods are supported and how to 
invoke them

� Remote method invocations must be able to 
handle error messages (e.g. can’t connect to 
server or server is down)



11

Characteristics of Remote Interface

� Must be declared public

� To make an object a remote one, the interface 

must extend the java.rmi.Remote interface

� Each method declared in the interface must 
declare java.rmi.RemoteException in its throws

clause. 

Implement the Remote Interface

� The implementation needs to:

– Specify the remote interface being implemented

– Define the constructor of the remote object

– Implement the methods that can be invoked 

remotely

– Create an instance of a remote object

– Register it with the RMI registry



12

Develop a Client

� Creates a variable of type “interface” and 
assigns the result of the remote object lookup 
(after typecasting…)

� Lookup is done using registry on server

– Question: where is the class?

� Invoke remote interface methods as if object 
was local

Example Application

� See course website

� Compare to SUN-RPC example or XML-RPC 
example



13

Generate stubs and skeletons

� Use the rmic compiler (in Java versions prior to Java 
5, starting with Java 5 the Java Compiler does this)

� Place the remote interface and the stub class on the 
client side, and both the stub and skeleton on the 
server side.

– alternately, some of these files could be dynamically loaded 
(will see this later)

Start the RMI registry

� It is a naming service that allows clients to 
obtains references to remote objects



14

Run the server and client

� Run the rmi registery (default port: 1099)

� Run the server

� Run the client

More on the Registry

� it is an RMI application too!

– needs access to stubs

– set the classpath accordingly!

� binding methods can only be called by code executing 

on the same host 

� can launch programmatically
– LocateRegistry.createRegistry(int port)

� can list all registered objects
– String[] Naming.list(String address)



15

Callbacks

� to make callbacks possible:

– pass a reference of the object obj1 as a parameter of a remote 

method invocation, say on object obj2

– obj1 must implement a remote interface, and provide a stub to 

obj2, just like obj2 did to obj1

– no need to register obj1, since obj2 obtains the reference 

directly through the method invocation 

� also remember, you can’t register an object on a remote registry

– the bind() method of the registry is a good example of that

Automatic Class File Distribution

� It can seem limiting to have to deploy stub and 
skeleton files despite the fact that there is no 
direct reference to them in the source code

– same can be said of certain subclasses of method 

parameter classes

� It is possible to find and download such 
classes on demand



16

Automatic Class File Distribution

(from Java RMI Tutorial trail)

Automatic Class File Distribution: 
Automatically Obtaining Stubs



17

Automatic Class File Distribution

� RMI class loading is attempted on the following 
locations:

– the classpath

– the location that is encoded by RMI along with class 

name information

– additional codebase info specified upon execution:

java -Djava.rmi.server.codebase=http://carleton.ca/classes 

MyServerClass

Automatic Class File Distribution

� Loading classes dynamically can expose your 
machine to malicious code!
– Handling of security again Java version specific

– New versions: specify appropriate security policy file 
(see tutorial trail)

– Old versions: need to load specific security 
manager, which allows you to load classes without 
allowing them to access your system resources:
System.setSecurityManager(new RMISecurityManager());

RemoteService remoteService = new RemoteService();

Naming.bind("serviceName", remoteService);



18

Code Mobility!

� The ability to download objects along with their class 
files is a powerful concept

� you can in fact make an object "hop" from host to host 
and perform various operations

– can be useful for network management 

– can be used for distributed search

� if the itinerary and/or the behavior is decided by the 
code autonomously, we are talking about a mobile 
agent

– extra support for mobile code is provided by specialized 
platforms such as Voyager

– extra support for mobile agents is provided by platforms such 
as Aglets, Grasshopper...


