RMI — Remote Method Invocation
G

e Introduction

e What is RMI?

RMI System Architecture

How does RMI work?
Distributed Garbage Collection
RMI & the OSI Reference Model
Security

Programming with RMI

Introduction
¢]

e Low-level sockets can be used to develop
client/server distributed applications

e But in that case, a protocol must be designed

e Designing such a protocol is hard and error-
prone (how to avoid deadlock?)

e RMI is an alternative to sockets

What is RMI?

e A core package of the JDK1.1+ that can be
used to develop distributed applications

e Similar to the RPC mechanism found on other
systems

e In RMI, methods of remote objects can be
invoked from other JVMs

e |n doing so, the programmer has the illusion of
calling a local method (but all arguments are
actually sent to the remote object and results
sent back to callers)

Local v. Remote method invocation

Remote Call I

Application |

Machme & Mahine B

Goals and Features of RMI
C]

e seamless object remote invocations
e callbacks from server to client
e distributed garbage collection

e NOTE: in RMI, all objects must be written in
Javal!

Distributed Objects and Client-Side
Proxy

Client machine Server machine

Object
Client Server rd
< State
Same
Client interface LI Method
invokes » BelobiSct
a method
y / Skeleton i Interface
E invokes — ||
Proxy same method Skeleton
at object A
Client OS Server OS
| |
L
Network

Marshalled invocation
is passed across network

Parameters and Remote Objects
|

e regular parameters of method invocations are
passed by value
- they get serialized, sent over, and de-serialized,
thus recreating a copy of the parameter
e make sure your parameters are serializable!
- as a result, modifications to such objects won’t be
noticed by the caller!
e can be passed back as return value of the method

More on Remote Objects
.|

e on the other hand, parameters that are remote
objects themselves are not copied!

- RMI ensures that if such objects' methods are
invoked by the remote object, they are in turn
remote invocations

- in fact, the argument type should be compatible with
the remote interface of the object, not its
implementation

- this is how RMI achieves callbacks (discussed later)

Parameter Passing
|

e The situation when passing an object by reference or by value.

Machine A Machine B
Local | | FosaLgPlect "Remote object
reference L1 Remote 02
| reference R1 g
o
- e »/)/” \\

Client code with
RMI to server at C
(proxy)

Remote

New local | [) !
reference Copy of O1 i
invocation with

L1and R1as B Copy of R1to 02

parameters i
Machine C

Server code
(method implementation)

RMI System Architecture
G
e Built in three layers (they are all independent):
- Stub/Skeleton layer
- Remote reference layer
- Transport layer

[e] [semer |

L

Stubs ‘ Skeletons

Remote Reference Layer

Transport Layer

The Stub/Skeleton layer
.|

e The interface between the application layer
and the rest of the system

e Stubs and skeletons are generated using the
RMIC compiler

e This layer transmits data to the remote
reference layer via the abstraction of marshal
streams (that use object serialization)

e This layer doesn’t deal with the specifics of any
transport

The Stub/Skeleton |
.

e Client stub responsible for:
- Initiate remote calls
- Marshal arguments to be sent
- Inform the remote reference layer to invoke the call
- Unmarshaling the return value
Inform remote reference the call is complete
e Server skeleton responsible for:
- Unmarshaling incoming arguments from client
- Calling the actual remote object implementation
- Marshaling the return value for transport back to client

The Remote Reference Layer

.|
e The middle layer

e Provides the ability to support varying remote
reference or invocation protocols independent
of the client stub and server skeleton

e Example: the unicast protocol provides point-
to-point invocation, and multicast provides
invocation to replicated groups of objects, other
protocols may deal with different strategies...

e Not all these features are supported....

The Transport Layer
.|

e A low-level layer that ships serialized objects
between different address spaces

e Responsible for:

- Setting up connections to remote address spaces
Managing the connections
Listening to incoming calls

Maintaining a table of remote objects that reside in
the same address space

Setting up connections for an incoming call

Locating the dispatcher for the target of the remote
call

RMI and the OSI reference model
C]

e How can RMI be described by this model?

[NETWORK]

How does RMI work?
¢]

e An invocation will pass through the
stub/skeleton layer, which will transfer data to
the remote reference layer

e The semantics of the invocation are carried to
the transport layer

e The transport layer is responsible for setting up
the connection

The Naming Registry
|

e The remote object must register itself with the
RMI naming registry

e A reference to the remote object is obtained by
the client by looking up the registry

Distributed Garbage Collection
.|

e RMI provides a distributed garbage collector
that deletes remote objects no longer
referenced by a client

e Uses a reference-counting algorithm to keep
track of live references in each Virtual Machine

e RMI keeps track of VM identifiers, so objects
are collected when no local or remote
references to them

Programming with RMI
|

e Anatomy of an RMI-based application
- Define a remote interface
- Provide an implementation of the remote interface
- Develop a client
- Generate stubs and skeletons
- Start the RMI registry
- Run the client and server

Define a Remote Interface

e |t specifies the characteristics of the methods
provided by a server and visible to clients
- Method signatures (method names and the type of
their parameters)
e By looking at the interface, programmers know
what methods are supported and how to
invoke them

e Remote method invocations must be able to
handle error messages (e.g. can’t connect to
server or server is down)

10

Characteristics of Remote Interface
.]
e Must be declared public

e To make an object a remote one, the interface
must extend the java.rmi.Remote interface

e Each method declared in the interface must
declare java.rmi.RemoteException in its throws
clause.

Implement the Remote Interface
.

e The implementation needs to:
- Specify the remote interface being implemented
Define the constructor of the remote object

Implement the methods that can be invoked
remotely

Create an instance of a remote object
Register it with the RMI registry

11

Develop a Client
.|

e Creates a variable of type “interface” and
assigns the result of the remote object lookup
(after typecasting...)

e Lookup is done using registry on server
- Question: where is the class?

e Invoke remote interface methods as if object
was local

Example Application
.|

e See course website

e Compare to SUN-RPC example or XML-RPC
example

12

Generate stubs and skeletons

e Use the rmic compiler (in Java versions prior to Java
5, starting with Java 5 the Java Compiler does this)

e Place the remote interface and the stub class on the
client side, and both the stub and skeleton on the
server side.

- alternately, some of these files could be dynamically loaded
(will see this later)

[otient | sws |
Hat
Hkeleton]'.—P” Server I

Start the RMI registry
G

e It is a naming service that allows clients to
obtains references to remote objects

2 1: Regist
—>|Query RMI Registry 4 =il

Client Remote Object

F Y

3t Itvvoke Method

13

Run the server and client

|
e Run the rmi registery (default port: 1099)

e Run the server
e Run the client

More on the Registry
|

e it is an RMI application too!
- needs access to stubs
- set the c1asspath accordingly!

e binding methods can only be called by code executing
on the same host

e can launch programmatically
- LocateRegistry.createRegistry(int port)

e can list all registered objects
- String[] Naming.list (String address)

14

Callbacks
C]

e to make callbacks possible:

- pass a reference of the object obj1 as a parameter of a remote
method invocation, say on object obj2

- obj1 must implement a remote interface, and provide a stub to
obj2, just like obj2 did to obj1

- no need to register obj1, since obj2 obtains the reference
directly through the method invocation

e also remember, you can'’t register an object on a remote registry
- the bind() method of the registry is a good example of that

Automatic Class File Distribution
.

e |t can seem limiting to have to deploy stub and
skeleton files despite the fact that there is no
direct reference to them in the source code

- same can be said of certain subclasses of method
parameter classes

e |t is possible to find and download such
classes on demand

15

Automatic Class File Distribution

R

L
LY
%
b

. URL .
Web server |« - protocal

-
e
-

-

RM— |

.r"‘"’#_-r—__‘\‘

e,

Hil
Server

| S

o

-+ URL
protocol == == -P

(from Java RMI Tutorial trail)

URL
pratocol

Automatic Class File Distribution:
Automatically Obtaining Stubs
¢]

2.Client makesa
Namingloeokup call

1.5erverregis
RII remote ohject,

fon-

RMI dient

mgisty EENES

3. The registry returns an
instance of the rernote
object’s stub

clags frordthe codebase

5, The HTTT server returns
the rernate chject's stub elass

tersa
bound

"

."'.
+ Serverthat
| ; axpottad
| aremote
I ; object
|
* awa . rmi.server.cod ehage
ighttp:.-'".-'" rayHost/ oy dird [
rrg st essssseesseeeeeeeeeeeeees s
URL
location

(file, ftp, or hitp)

16

Automatic Class File Distribution
G
e RMI class loading is attempted on the following
locations:
- the classpath

- the location that is encoded by RMI along with class
name information

- additional codebase info specified upon execution:

java -Djava.rmi.server.codebase=http://carleton.ca/classes
MyServerClass

Automatic Class File Distribution

e Loading classes dynamically can expose your
machine to malicious code!
- Handling of security again Java version specific

- New versions: specify appropriate security policy file
(see tutorial trail)

- Old versions: need to load specific security
manager, which allows you to load classes without
allowing them to access your system resources:

System.setSecurityManager (new RMISecurityManager());
RemoteService remoteService = new RemoteService();
Naming.bind ("serviceName", remoteService);

17

Code Mobility!
@ ——

e The ability to download objects along with their class
files is a powerful concept

e you can in fact make an object "hop" from host to host
and perform various operations
- can be useful for network management
- can be used for distributed search

e if the itinerary and/or the behavior is decided by the
code autonomously, we are talking about a mobile
agent

- extra support for mobile code is provided by specialized
platforms such as Voyager

- extra support for mobile agents is provided by platforms such
as Aglets, Grasshopper...

18

