
1

Distributed Coordination-Based 
Systems

Need for Coordination

� so far we have mostly focused on request/response 

types of interactions between a client and a server

– means the client and server are tightly coupled

– client blocks until server delivers response

– what if the one of the parties crashes?

– what if more than two parties need to be involved?

– what if client and server are not executing at the same time?

– what if the server has asynchronous information to send to 

client?

– etc.



2

Introduction to Coordination 
Models

� A taxonomy of coordination models

� Where do Sockets/RPC/RMI fit?

Mailbox Model

� think e-mail: information is send to and stored 
in a (named) mailbox until retrieved

� mailboxes may be shared among processes 
(allows many-to-many communication)



3

Meeting Oriented

� Java event model allows for looser coupling 
between the client and the server

– the server, as an event source, does not explicitly 
know who is listening

– this is the basis of publish-subscribe

� Without such coupling, the client often has to 
keep polling the server

� TIB/Rendezvous:
– Messages transparent, applications deal with 

message semantics

– Messages are self-describing

– Processes are referentially uncoupled, 
communication is done based on subject-based 
addressing

Meeting Oriented

� The principle of a publish/subscribe system 

as implemented in TIB/Rendezvous.



4

Coordination Model (2)

� The overall architecture of a wide-area TIB/Rendezvous system: 
overlay network based on router daemons (multicast tree)

� Router daemons can be configured to filter incoming/outgoing 
subjects to improve scalability

Basic Messaging

� Attributes of a TIB/Rendezvous message field.

– Message consists of (possible zero) fields

– Messages are self-describing

– Communication is subject-based (see next slide)

The actual data stored in a fieldAny typeData

A constant indicating the type of dataConstantType

The number of elements in the case of an arrayIntegerCount

The total size of the field (in bytes)IntegerSize

A message-unique field identifierIntegerID

The name of the field, possibly NULLStringName

DescriptionTypeAttribute



5

Basic Messaging (2)

� Before sending a message, associate it with a subject 

(separate operation)

� Can include a subject for replies (sender needs to 

subscribe to reply subject to receive reply)

� Optimizations for point-to-point communication

� Communication primitives:

– Send (nonblocking)

– Sendreply (nonblocking, uses reply subject, see above)

– Sendrequest (blocking, waiting for reply)

– Receive: no! Use events and event listeners (callbacks) 

instead

Events (1)

� Processing listener events for subscriptions in 

TIB/Rendezvous.

� Listener events: subscriptions



6

Events (2)

� Processing incoming messages in TIB/Rendezvous.

Events (3)

One dispatcher per queue, by default only one queue. More control: 

create/manage multiple queues

� Priority scheduling of events through a queue group.

b) A semantically equivalent queue for the queue group with the 

specific event objects from (a).



7

Naming (1)

� Names are used to identify subjects

� To generalize subscriptions: allow wildcards in well-
formed subject names

� Examples of valid and invalid subject names:

YesMarten.R.van_Steen

No (empty label)Marten..van_Steen

YesNEWS.res.com.so

Yesftp.cuss.vu.nil

No (starts with a '.').ftp.cuss.vu.nil

YesBooks.Computer_systems.Distributed_Systems

Valid?Example

Naming (2)

� Examples of using wildcards in subject names.

NEWS.comp.so.books

NEWS.comp.ai.books

NEWS.comp.se.books

NEWS.comp.theory.books

NEWS.comp.*.books

nil.vu.cuss.ftp

nil.vu.cuss.zephyr

nil.vu.few.www

ni.vu.>

ftp.cuss.vu.nil

www.cuss.vu.nil

*.cuss.vu.nil

MatchesSubject Name



8

Synchronization (1)

� Only native ordering guarantee: FIFO per source

� Transactional messaging: separate layer in TIB/Rendezvous.

� Supports transactional grouping within a single process only!

Synchronization (2)

� The organization of a transaction in TIB/Rendezvous: 

store messages in transaction daemon until commit.



9

Reliable Communication

� Assume underlying network inherently unreliable

� Rendezvous daemon on publishing side keeps copy of 
message for at least 60 seconds

� Each outgoing message has transparent sequence 

number: receiving daemons can detect missed 

messages and ask for retransmission (based on 

protocol known as Pragmatic General Multicast):

– A message is sent along a multicast tree

– A router will pass only a single NACK for each message

– A message is retransmitted only to receivers that have asked 

for it.

Reliable Communication (2)



10

Security

� Problem: how to ensure authentication if referential uncoupling?

� Allow secure channel for point-to-point connections, assume 
existence of certificates and established shared secret key using 
Diffie-Hellman key exchange, for example)

� K: keys, R: nonce, H: hash value, signed with secret key

Generative Communication: Tuples

� Originally proposed by Gelernter in 1985 in a system 

called Linda

� Completely decouples communication entities 

referentially and temporally

� Tuple-space: persistent shared storage, processes can 

add tuples, search matching tuples, and remove tuples

– Write, read, take

� Tuples do not have a priori agreed-upon structure

� Tuple matching is called associative addressing

(retrieve tuple based on matched content)



11

Generative Communications:
Tuple-spaces

� JavaSpaces is an implementation of the concept of tuple-spaces, 

and is used by Jini

Communication Events

� Using events in combination with a JavaSpace



12

Realizing Tuple-Space

� Trivial if all coordinating processes access same 
memory:

– One centralized tuple-space

– Issues: increase performance of matching operation

� Subdivide tuple-space into tuples of same type

� Use hashing, based on first (few) fields in tuple within subspace

� If processes execute on different machines, how to 
organize an efficient distributed tuple-space

– Full replication (good for reading)

– Full distribution (good for writing)

– Partial replication

� Design of efficient wide-area tuple space as yet 
unsolved problem

Fully Replicated Tuple-Space

A JavaSpace can be replicated on all machines. The dotted lines show the 
partitioning of the JavaSpace into subspaces

a) Tuples are broadcast on WRITE

b) READs are local, but the removing of an instance when calling TAKE 
must be broadcast



13

Fully Distributed Tuple-Space

Fully Distributed JavaSpace.

a) A WRITE is done locally.

b) A READ or TAKE requires the template tuple to be broadcast in order to find a 
tuple instance

Move tuple to requesting site, locality of reference will cause good performance

Partially Replicated Tuple-Space

� Partial broadcasting of 
tuples and template tuples.

– Similar to a quorum system

� Assume tuple-spaces are 
logically organized as a grid:

– Write: all spaces in same 
row

– Read: all spaces in same 
column



14

What is Jini?

� “makes computers and devices able to quickly form impromptu 

systems unified by a network”

� based on Java (JDK1.2)

The Jini Architecture: 
Key concepts and components

� Services

� Lookup Service

� RMI

� Security

� Leasing

� Transactions

� Events



15

Jini Lookup Service

� Repository of available services

� Stores services as Java objects

� Clients download services on demand

� Note: could, in principle, use JavaSpaces, but 
decision was to implement more specific, 
specialized (and presumably more efficient) 
service as part of low-level infrastructure

How it works



16

The Jini Lookup Service (1)

� The organization of a service item
– ServiceID: globally unique 128 bit ID generated by lookup 

service

– Service: reference to remote object, access through RMI

– AttributeSets: Name-Value tuples describing service, used for 
lookup by clients

A set of tuples describing the service.AttributeSets

A (possibly remote) reference to the object implementing the service.Service

The identifier of the service associated with this item.ServiceID

DescriptionField

The Jini Lookup Service (2)

� Examples of predefined tuples for service items.

Street, organization, organizational unit, locality, state or province, 
postal code, country

Address

Floor, room, buildingLocation

Name, manufacturer, vendor, version, model, serial numberServiceInfo

AttributesTuple Type



17

Discovery Protocol

� Services/Clients need to locate a Lookup 
Server

� Jini does NOT use well-known address

� Discovery: process of finding lookup services, 
used by both Jini services and clients

� Discovery Model

– Multicast discovery for LAN

– Lookup services can also periodically broadcast 
their presence


