
1

1

CORBA

� Distributed Objects

� CORBA: Introduction and Overview

� CORBA Clients

� CORBA Servers

� CORBA Development Issues

� JavaIDL: see course website

2

Distributed Objects

� Traditional enterprise apps are self-contained,
monolithic apps

� Limited access to another’s procedures and
data

� Apply OO techniques for networked apps

� multi-tiered architecture (separation of
concerns)

� 1st, 2nd, 3rd generation systems

2

3

Distributed Objects

� Local vs. Remote objects

� An enterprise app is a collection of co-
operating objects located on different machines

4

Advantages

� Benefit from OO techniques

� Eliminates protocol design, which is error-

prone

� Convenient resource sharing

3

5

Disadvantages

� Design and Impl’n is more complex

� Multiple failure modes

� Security issues

� Use of multiple technologies

� Testing and debugging

6

Available Technologies

� Many technologies available:

� Sockets (TCP, UDP) Not OO

� RPC (not OO)

� RMI

� CORBA

4

7

CORBA Introduction

� OMG

� Current state of OMG/CORBA efforts

� Object Model

� Client Server model and issues

8

OMG - Object Mgm’t Group

� Non-profit consortium of software vendors

� Formed in 1989 by 8 companies

� Has more than 800 members now (?)

� http://www.omg.org

� Goals:
– Develop specs to provide a common framework for

distributed applications development

– Promote a heterogeneous computing environment

5

9

CORBA

� Stands for: Common Object Request Broker
Architecture

� A spec for creating distributed objects

� CORBA is NOT a programming language

� Its architecture is based on the object model

� Promotes design of applications as a set of
cooperating objects

� OMG Object Model: object is defined as what
the client could see.

10

CORBA Objects

� clients are isolated from servers by interface

� CORBA objects vs. typical objects:

– CORBA objects run on any platform

– CORBA objects can be located anywhere on the

network

– CORBA objects can be written in any language that

has IDL mapping

6

11

CORBA Architecture

� The structure of CORBA

12

ORB

� The software that implements the CORBA
specification

� Object bus that provides object location
transparency

� Responsible for mechanisms to:

– Find the object implementation of the request

– Prepare object implem’n to receive the request

– Communicate the data making up the request

7

13

ORB

� Client and object implem’n are isolated from
the ORB by an IDL interface

� all requests (local or remote) are managed by
the ORB

14

ORB

� Corba 1.0: every vendor would implement ORB
differently, interoperability problems when
communicating across ORBs

� Corba 2.0: specified GIOP, the General Inter-
ORB Protocol:
– collection of message requests ORBs can make

over a network

– GIOP maps ORB requests to different network
transports

– IIOP: Internet Inter-ORB Protocol maps GIOP
messages to TCP/IP (mandatory for all ORBs)

8

15

Corba 3

� Released in 2002

� Major upgrades:

– Java and Internet Integration

– Quality of Service Control

– The CORBAcomponent Architecture

16

CORBA Services

� Basic services that every object needs

� System level services with well-defined IDL

interfaces

� They enhance functionality supported by ORBs

9

17

CORBA Services (Examples)

� Naming Service: find an object by name and bind to it

� Event service: supports notification of events to
interested objects

� Persistent object service: provides a common set of
interfaces for managing the state of objects

� Trader service: an alternative location facility to the
naming service, finding objects by attributes in a wide-
area network

� Security service: restrict access to objects/groups of
objects to clients with appropriate privileges

18

IDL Basics

� Stands for: Interface Definition Language

� A CORBA object is specified with interface

� interface: contract between client and server

� specified in a special declarative language

� Lexical rules are same as C++ with new
keywords

� IDL mapping to programming languages (e.g.
C++, Java, etc) are provided in specs

10

19

CORBA IDL Interfaces

� IDL interface provides a description of services
available to clients

� IDL interface describes an object with:

– Attributes

– Methods with their signatures

– Exceptions

– Inheritance information

– Type and constant definitions

20

IDL Structure

module <identifier> {

<type declarations>;

<constant declarations>;

<exception declarations;

<interface definition>;

<interface definition>;

};

11

21

IDL Structure (Modules)

� At the highest level, IDL definitions are
packaged into module.

� A module is analogous to a package in Java

� Example:

module Bank {

// body

};

22

IDL Structure (Interfaces)

� An IDL interface is the definition of an object

� IDL interfaces are analogous to Java interfaces

� An interface declares the operations that the
CORBA object supports and its attributes

interface Account {

// attributes

// operations

};

12

23

IDL Structure (Interfaces)

� An interface may inherit from multiple interfaces

� It inherits all attributes and operations of its

super-interfaces

interface JointSavingsAccount:

JointAccount, SavingsAccount {

// attributes

// operations

};

24

IDL Structure (Attributes)

� They describe the variables (properties) of an
interface

� An attribute can be readonly or read-write
interface Account {

attribute string name;

readonly attribute string sin;

readonly attribute long accountNumber;

};

13

25

IDL Structure (Operations)

� They describe the methods of an interface

� They have a return type and parameters

� Parameters are flagged as:

– in: parameter is passed from client to server

– out: parameter is passed from server to client

– inout: parameter is passed in both directions

void withdraw(in unsigned long amount);

void add(in long a, in long b, out long sum);

26

IDL Structure (Exceptions)

� IDL supports user-defined exceptions

exception InsufficientFunds {

long currentBalance;

};

void withdraw(in unsigned long amount)

raises (InsufficientFunds);

};

14

27

IDL Structure (Data Types)

� IDL supports a rich variety of data types

� Primitive:
float, double, long, short (signed, unsigned), char,

long long, boolean, octet

� Complex (discussed later):
arrays, sequences, structures

28

IDL to Java Mapping

IDL Java

boolean boolean

octet byte

char char

string String

short short

long int

long long long

float float

IDL Java

double double

fixed BigDecimal

15

29

Object Adapters

� Mediate between CORBA objects and
programming language implementations

� Provide a number of services:

– Creation of CORBA objects and their references

– Dispatching requests to the appropriate servant that

provides implementation for the target object

– Activation and deactivation of CORBA objects

30

Object Adapters

� CORBA 2.0 defines the Basic Object Adapter
(BOA)

� ORB vendors discovered that BOA is
ambiguous and missing features so they
developed proprietary extensions

� This resulted in poor portability between ORBs

� The new standard is: Portable Object Adapter
(POA)

16

31

Anatomy of a CORBA-based App

� The steps involved:

– Define an interface

– Map IDL to Java (idlj compiler)

– Implement the interface

– Write a Server

– Write a Client

– Run the application

� Example: a step-by-step Hello example

32

Step 1: define the interface

� Hello.idl

module HelloApp {

interface Hello {

string sayHello();

};

};

17

33

Step 2: map Hello.idl to Java

� Use the idlj compiler (J2SE 1.3)
idlj –fall Hello.idl

� This will generate:
_HelloImplBase.java (server skeleton)

HelloStub.java (client stub, or proxy)

Hello.java

HelloHelper.java

HelloHolder.java

HelloOperations.java

34

Step 3: implement the interface

� Implement the servant:

import HelloApp.*;

class HelloServant extends _HelloImplBase {

public String sayHello() {

return “\nHello There\n”;

}

}

18

35

Step 4: implement the server

� Import statements:

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

class HelloServer {

public static void main(String argv[]) {

try {

36

Step 4: implement the server….

� Create and initialize the ORB:

ORB orb = ORB.init(argv, null);

� Create the servant and register it with ORB

HelloServant helloRef = new HelloServant();

orb.connect(helloRef);

19

37

Step 4: implement the server….

� Get the root NamingContext:

org.omg.CORBA.Object objRef =

orb.resolve_initial_references(“NameService”);

NamingContext ncRef = NamingContextHelper.narrow(objRef);

38

Step 4: implement the server….

� Bind the object reference in naming

NameComponent nc = new NameComponent("Hello", " ");

NameComponent path[] = {nc};

ncRef.rebind(path, helloRef);

20

39

Step 4: implement the server….

� Wait for invocations from clients:

java.lang.Object sync = new java.lang.Object();

synchronized(sync) {

sync.wait();

}

40

Step 4: implement the server….

� Catch the exceptions

} catch(Exception e) {

System.err.println("ERROR: " + e);

e.printStackTrace(System.out);

} // end catch

} // end main()

} // end class

21

41

Step 5: write a client

� Import statements:

import HelloApp.*;

import org.omg.CosNaming.*;

import org.omg.CORBA.*;

class HelloClient {

public static void main(String argv[]) {

try {

42

Step 5: write a client….

� Create and initialize the ORB:
ORB orb = ORB.init(argv, null);

� Create the root naming context:
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");

NamingContext ncRef =

NamingContextHelper.narrow(objRef);

22

43

Step 5: implement the client….

� Resolve the object reference in naming:

NameComponent nc = new NameComponent("Hello", " ");

NameComponent path[] = {nc};

Hello helloRef = HelloHelper.narrow(ncRef.resolve(path));

44

Step 5: implement the client….

� Call the object:
String Hello = helloRef.sayHello();

System.out.println(Hello);

� Catch exception:

} catch(Exception e) {

System.out.println("ERROR : " + e);

e.printStackTrace(System.out);

} } } // end catch, main, class

23

45

Step 6: run the application

� Run the naming service:

prompt> tnameserver

� Run the server

prompt> java HelloServer

� Run the client

prompt> java HelloClient

Hello There

prompt>

46

CORBA Clients (details)

� Initializing the ORB

� Helper classes

� Holder classes

� Exceptions

� The naming service

24

47

Initializing the ORB

� Before invoking a CORBA object, you must
first create an ORB object and initialize it

� public static void main(String argv[]) {
try { ORB orb = ORB.init(argv, null); // .. }

}

� Arguments to init():
ORB init(String[] argv, Properties props)

– argv: a list of command-line arguments to the app.

– props: programmatically specify these options

48

Initializing the ORB….

� Command-line arguments (options):

-ORBClass: that class that provides your ORB

implementation (JavaSoft’s ORB)

-ORBSingletonClass: the class that provides your
ORB singleton implementation (JavaSoft’s ORB)

-ORBInitialHost: the host where the naming service

is running (default value: localhost)

-ORBInitialPort: the port where the naming service is
running. Default value: 900

25

49

Initializing the ORB….

� Properties:

org.omg.CORBAClass

org.omg.CORBA.ORBSingletonClass

org.omg.CORBA.ORBInitialHost

org.omg.CORBA.ORBInitialPort

� How to use these?

50

Initializing the ORB….

� Properties: alternative to command-line args

� Example:

Properties props = new Properties();

props.put(“org.omg.CORBA.ORBInitialHost”, initialHost);

props.put(“org.omg.CORBA.ORBInitialPort”, initialPort);

String noArgs[] = null;

ORB orb = orb.init(noargs, props);

26

51

Helper Classes

� They provide some utility functions (narrow)

� For interface Hello in module HelloApp, a

helper class: HelloApp.HelloHelper is created

� Important method:

Hello narrow(org.omg.CORBA.Object object)

� The naming service returns an Object, you
must cast it to narrow it down….use narrow()

52

Holder Classes

� Used to implement “out” and “inout”
parameters to CORBA operations.

� Why do we need them?
void op (inout long x); // alter the value of x

� But in Java:
int x = 10; op(x); // op is not allowed to change x

� However, “out” or “inout” mean that the actual
value of the parameter will be changed.

27

53

Holder Classes

� Solution: use holder classes:

� For primitive data types: primitive holders

int x = 10;

IntHolder myx;

myx.value = x;

op(myx);

x = myx.value;

� BooleanHolder, CharHolder, StringHolder, etc

54

Holder Classes

� For user-defined types:

Employee employee = …;

EmployeeHolder emp;

emp.value = employee;

op(emp);

employee = emp.value;

28

55

Exceptions

� System exceptions

org.omg.CORBA.SystemException

� User exceptions

org.omg.CORBA.UserException

56

System Exceptions

� Those implicit, unpredictable exceptions that
can arise as a result of a CORBA failure

� System exceptions are all implemented as a
subclass of org.omg.CORBA.SystemException

� A subclass of java.lang.RuntimeException

� Therefore, any SystemException may be
implicitly thrown by a CORBA operation without
being declared in a throws clause

29

57

User Exceptions

� Those, explicit, predictable exceptions that are
documented in IDL operation declarations.

� Raised by CORBA operations in response to
specific situations (e.g. InsufficientFund)

� Implemented as a subclass of
org.omg.CORBA.UserException

� A subclass of java.lang.Exception

� Therefore, they must be explicitly handled

58

CORBA vs. RMI

� CORBA interfaces defined in IDL, RMI
interfaces are defined in Java

� CORBA is language-independent, RMI is not

� CORBA objects are not garbage collected, RMI
objects are garbage collected automatically.

� RMI does not support “out” and “inout”
operations since local objects are copied, and
remote objects passed by reference to stub

� Communication protocols: IIOP vs. RMI

30

59

The Naming Service (Client’s View)

� A tree-like directory for object references

� Much like a file system: provides directory
structure for files

� Object references are stored by name

� Each object reference-name pair is called a
name binding

� Name bindings may be organized under
naming contexts (name binding itself)

� All bindings are stored under initial naming
context (the only persistent binding)

60

The Naming Service….

� Your client’s ORB must know the name and port# of a

host running the naming service

� The naming service can either be the JavaIDL naming

service or any COS-compliant service (COS: Common

Object Services)

� To start: tnameserv –ORBInitialPort port#

– The default port number is 900

� To stop: use relevant OS command (kill, ctrl-c)

� Namespace is lost if name server halts/restarts

31

61

The Naming Service (interfaces)

� org.omg.CosNaming:

– NamingContext: primary interface to naming

service

– NameComponent: identify (name/kind) services

– BindingIterator: iterating through the contents

– Binding: a single entry in the naming service

– BindingList: a list of entries in the naming service

– BindingType: the type of an entry

62

Naming Service (NamingContext)

� Analogous to a directory on a file system

� Contains a series of named objects

� An object in a NamingContext may be another
NamingContext (analogous to subdirectory)

� A reference to the top level NamingContext
can be obtained with the ORB method:

resolve_initial_references()

32

63

Naming Service (NamingContext)

� To get a reference to an object stored under
NamingContext, use:

resolve(NameComponent namePath)

� It throws: NotFound, CannotProceed,
InvalidName

� This method returns org.omg.CORBA.Object

� Therefore, it must be narrowed to a particular
interface using a helper’s narrow()

64

Browsing the Naming Service

� The top level only….

import org.omg.CORBA.*;

import org.omg.CosNaming.*;

public class Browser {

ORB orb = ORB.init (args, null);

// obtain a reference to the naming service

org.omg.CORBA.Object nc =

orb.resolve_initial_references ("NameService");

NamingContext namingContext =

NamingContextHelper.narrow (nc);

33

65

Browsing the Naming Service….

BindingListHolder b1 = new BindingListHolder ();

BindingIteratorHolder b2 = new BindingIteratorHolder ();

// get initial content-list (retrieve up to 10, rest can be accessed

// by iterator)

namingContext.list (10, b1, b2);

// print out bindings

Binding[] bindings = b1.value;

if(bindings.length == 0) return;

66

Browsing the Naming Service….

for (int i = 0; i < bindings.length; i++) {

Binding binding = bindings[i];

NameComponent[] name = binding.binding_name;

BindingType type = binding.binding_type;

if (type == BindingType.nobject) {

System.out.println (name[0].id + "-" + name[0].kind);

} else { // BindingType.ncontext

System.out.println (name[0].id + "-" + name[0].kind + "/");

}

}

34

67

CORBA Servers

� Implement the IDL interfaces by subclassing
the appropriate pre-generated skeleton class

� Each class is called a servant

� The HelloServer Example
– Initialize the ORB

– Create initial objects (servants)

– Connect each servant to the ORB

– Bind the servants in the naming service

– Wait for connections

68

CORBA Servers (ObjectImpl)

� When a servant extends the
_interfaceObjectImpl, it is actually extending
the orb.omg.CORBA.Portable.ObjectImpl class

� This class provides a variety of helper methods
(including all methods of CORBA Object)

35

69

Naming Service (Server’s View)

� Registering/Unregistering services:
bind: register the object under the specified name

rebind: identical to bind(), but an AlreadyBound
exception won’t be thrown – existing object replaced

unbind: unregister a CORBA object

� Creating new naming contexts:
bind_new_context, new_context, bind_context

� Destroying a naming context:
destroy: destroy an empty NamingContext

70

Clearing the Naming Service

� Steps:

– Get a reference to initial naming context

– Recursively iterate through the sub naming contexts

– Call unbind

– Call destroy

36

71

Advanced IDL

� IDL supports C/C++ style comments:
// This is a comment

/* This is another comment */

� Also, it supports:
– conditionals (#if)

– defines (#define)

– includes (#include)

� idlj requires access to a C preprocessor (cpp)

72

Advanced IDL: Arrays

� IDL provides multidimensional fixed-size arrays

� The array size is fixed at compile time

� IDL arrays map directly into Java arrays

� Example:

interface Customer {

attribute string address[4]; // 1-D array

attribute short table[5][7]; // 2-D array

}

37

73

Advanced IDL: Sequences

� A sequence is a 1-D array that can be of
variable size

� Two types:

– Bounded sequences

sequence<long, 15>employee;

– Unbounded sequences

sequence<long> employee;

74

Advanced IDL: Enumerations

� The enum data type defines an enumeration

– A user-defined data type that can hold one of a fixed

set of values

� Example:
enum CreditCard { visa, amex, discover };

interface Bank {

void applyForCreditCard(CreditCard cc);

};

38

75

Enumerations (mapping to Java)

� An enum is mapped to a Java class with static variables representing the
set of values

� Example:
// IDL

enum EnumType {first, second, third};

// generated Java
public class EnumType

implements org.omg.CORBA.portable.IDLEntity {
public static final int _first = 0;
public static final EnumType first = new EnumType(_first);
public static final int _second = 1;
public static final EnumType second = new EnumType(_second);
public static final int _third = 2;
public static final EnumType third = new EnumType(_third);
public int value() {...}
public static EnumType from_int(int value) {...};
// constructor
protected EnumType(int) {...}

};

� To compare (using switch): (unknown.value() == _first)

76

Advanced IDL: Structures

� The IDL type struct defines a structure

� Use a struct to group related data together

� Example:
struct Name {

string firstName;

string lastName;

};

interface Customer { attribute Name name; };

39

77

Structures (mapping to Java)

� A struct is mapped to a Java class that
provides instance variables for the fields, and a
constructor for all values, and a null constructor

� Example:

public class Name {

public String firstName;

public String lastname;

public Name();

public Name(String firstName, String lastName);

}

78

Advanced IDL: typedefs

� A typedef is an alias, or another name for an
existing data type

� Example:
typedef long age;

interface Customer {

age howOld;

}

� Typedefs of simple data types are mapped to
the original (I.e. replaced by the more basic
type)

40

79

Advanced IDL: Constants

� 1. Within an interface:

interface Foo { const long aLong = -32; };

� Mapped to: public interface Foo {

public static final int aLong = (int) –32L; };

� 2. Not within an interface:

const string Message=“hello”;

� Mapped to: public interface Message {

public static final String Message=“hello”; };

80

Advanced CORBA Topics

� The Tie Mechanism

� Dynamic Invocation Interface (DII)

� Dynamic Skeleton Interface (DSI)

� Interface Repository (IR)

41

81

The Tie Mechanism

� All CORBA-based server programs we have seen so

far extend a CORBA skeleton (ImplBase class)
generated by the idlj compiler

� Since Java doesn’t support multiple inheritance, we

cannot inherit from a CORBA skeleton and another

class

� Inheriting from a CORBA skeleton is not
appropriate/uses up your one inheritance chance

� The tie mechanism offers an alternative to inheritance

82

How to use the tie mechanism?

� Implementation inheritance (Hello example)

– HelloServant inherits its entire implementation from

another class

– Method requests for HelloServant are delegated to

another idlj-generated class

42

83

Programming Example (Hello)

� Compile the IDL interface (Hello.idl) with the
command: idlj –fall –tie Hello.idl

� This will generate two additional classes in
the HelloApp directory

1. _HelloOperations.java (the servant implements this

interface)

2. _HelloTie.java (acts as a skeleton, receiving

requests from the ORB and delegating them to the

servant that does the actual work

84

HelloBasic

� A new class: HelloBasic.java

public class HelloBasic {

public String sayHello() {

return “Hello World\n”;

}

}

43

85

HelloServant

� HelloServant.java

class HelloServant extends HelloBasic implements

_HelloOperations {

}

86

HelloServer

� HelloServer.java

class HelloServer {

public static void main(String argv[]) {

// create and initialize ORB

…

// Create servant and register it with ORB

HelloServant servant = new HelloServant();

Hello helloRef = new _HelloTie(servant);

// connect ….etc

}

44

87

The Tie Mechanism vs. Inheritance

� Inheritance is easier as implementation objects
look like normal object references

� If object implementations are in the same
process as the client then method invocations
are cheaper (because no delegation)

88

Dynamic Invocation Interface (DII)

� IDL interfaces used by a client are determined
when the client is compiled

� Therefore, the developer is limited to using
servers that contain objects that implement
those interfaces

� This is not enough if an application (e.g. a
distributed debugger) requires the use of
interfaces that are not defined at the time the
application was developed

45

89

DII

� The solution is provided by CORBA’s DII

� DII allows an application to invoke operations from any
interface (clients use the IR to learn about unknown
object interfaces).

� Static operation requests are more efficient but DII is
good for:

– Clients issue requests for any operation (which may not be
known as compile time)

– Client operations don’t need to be recompiled in order to
access newly activated object implmnt’s

90

Dynamic Skeleton Interface (DSI)

� DSI provides a way to deliver requests from an
ORB to an object implementation without any
compile-time knowledge of the objects it is

implementing

� DSI is analogous to DII:

– DII is for the client-side

– DSI is for the server-side

46

91

Interface Repository (IR)

� IR is like a database that contains data that
describes CORBA interfaces or types

� The data in the IR is equivalent to that in an
IDL file except that data in the IR is
represented in a such a way that makes it
easier for clients to use

� Clients use the IR to learn about unknown
object interfaces and they use DII to invoke
methods on that object

