Peer-to-Peer Networking

Server
History | /%ent
Internet
Client-Server computing Q/ =
Client Client

Well known and powerful
Server provides services and resources
Multiple clients can be supported by a single server

1-Many relationship => scalability with respect to the
number of clients

e Model has dominated the architectural design of many
applications

e Examples: HTTP, DNS, FTP

History Il
|

Client-Server computing does have limitations

ISSUES

e Fault tolerance

e Central administration

e “Extreme” scalability

e Unused resources in “clients”

Peer-to-Peer Networks (P2P)

Computing paradigm where all
the nodes have equivalent
responsibilities and roles
 “neither introduces nor prohibits =
centralization” Node
* “sharing of resources through
direct communication between Internet
consumers and providers” O -]
“a network architecture where all
the available resources are N
located at the network edges” Node Node

“the opposite of client-server”

P2P Characteristics
G

Each node acts both as client and server
Nodes are autonomous

Network is dynamic

There is no centralized authority (in theory)
Network is large-scale

Nodes have to co-operate in order to retrieve a
resource or a service

P2P Benefits
O

e Efficient use of resources
e Scalability

e Reliability

e Ease of administration

e But: these benefits are not easy to achieve,
see example of mutual exclusion algorithms
on next few slides

Mutual Exclusion:
A Centralized Algorithm

e
OXOROBENOJONORENORONO

R t
Request LT oK eques’% Release
" No reply

N OK
; &
@ Queue is Q
) ﬂ empty
Coordinator

@) () ©
a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted
b) Process 2 then asks permission to enter the same critical region.
The coordinator does not reply.
c) When process 1 exits the critical region, it tells the coordinator,
when then replies to 2

A Distributed Algorithm

Enters
critical
region

¥ — .

0 0 0
8 yz oK oK oK
8 »— Enters
. 2 1 2) critical
L iz \2 OK U U region

@ (b) ©

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now enter
the critical region.

A Token Ring Algorithm

P U U e e

PEPPPPPPPP

A

(o)
(a) (b)
a) Anunordered group of processes on a network.
b) A logical ring constructed in software.
Comparison
Algorithm Messagc_es per Delay befo_re entry (in Problems
entry/exit message times)
Centralized 3 2 Coordinator crash
Distributed 2(n=1) 2(n-1) Crash of any
process
. Lost token, process
Token ring 110 o0 Oton-1 crash

Examples of P2P Systems
|

Napster

KaZaA

Gnutella

FreeNet

NeuroGrid

Chord, CAN, Tapestry
JXTA

Primary P2P research question
.

How can we efficiently and accurately discover
resources and services in a P2P network?

“centralization” and “structure” define two dimensions for
classifying P2P networks

Types of P2P Systems |
.|

Centralized Partially decentralized

| /
T S

Totally f .
decentralized %

Napster |

e Sharing of music files ﬁ iﬁ

fuiap sier
Client,

o Lists of files are uploaded to
Napster server

e Queries contain various keywords Hagsler
of required file

Index Server
o Server returns IP address of user J
e

machines having the file Iap ster

Client
Your Computer s o Sullk s

Mapster
Client

Song request

e File transfer is direct

Napster Il
.|

Y

Scalability bottleneck

Single point of failure

> Denial of Service attacks possible
> Lawsuits

Y

Gnutella |

e Sharing of any type of files

& 2002

B query: "Baby Go Home.mp3"

@™
ga® ">

e Decentralised search

-7 levels . .
depending on "time to live"

e Queries are sent to the neighbour o 3
nodes % g

e Neighbours ask their own g © =
neighbours and so on ' g - B
g a%.
e Time To Live (TTL) field on queries _': =]

. - "I've got it!*
e File transfer is direct ;
8,000 - 10,000 computers

Gnutella ll
G

> SCALABILITY (flooding)
> Cannot ensure correct results

KaZaA
G

e Hybrid of Napster and Gnutella

e Super-peers act as local search hubs

- Each super-peer is like a constrained Napster server
- Automatically chosen based on capacity and availability

e Lists of files are uploaded to a super-peer
e Super-peers periodically exchange file lists

e Queries are sent to super-peers

Freenet
]

Ensures anonymity
Decentralised search

Queries are sent to the
neighbour nodes

Neighbours ask their own
neighbours and so on

The query process is
sequential

Learning ability

€ .= D request
/q;/ = Data reply

.
|———» (®) / el Request failed

J L //

7
i@

Requester

Figure I.Typical request sequence. The request moves through the
network from node to node, backing out of a dead-end (step 3} and
aloop (step 7) before locating the desired file.

Structured P2P

* Second generation P2P (overlay) networks

« Self-organizing

» Load balanced

 Fault-tolerant

« Guarantees on humbers of hops to answer a query

- Based on a distributed hash table interface

10

Distributed Hash Tables (DHT)
|

« Distributed version of a hash table data structure

« Stores (key, value) pairs

» The key is like a filename
» The value can be file contents

» Goal: Efficiently insert/lookup/delete (key, value) pairs
» Each peer stores a subset of (key, value) pairs in the system

 Core operation: Find node responsible for a key

» Map key to node
> Efficiently route insert/lookup/delete request to this node

DHT Generic Interface
¢]

* Node id: m-bit identifier (similar to an IP address)
» Key: sequence of bytes
« Value: sequence of bytes

> Store (key,value) at the node responsible for the key

> Retrieve value associated with key (from the appropriate node)

11

DHT Applications

e —
> File sharing

> Databases
> Service discovery
> Chat service

> Publish/subscribe networks

DHT Desirable Properties
.|

> Keys mapped evenly to all nodes in the
network

»> Each node maintains information about
only a few other nodes

> Efficient routing of messages to nodes

» Node insertion/deletion only affects a few
nodes

12

Chord API
C]

Node id: m-bit identifier (similar to an IP address)
Key: m-bit identifier (hash of a sequence of bytes)
Value: sequence of bytes

API

Chord Operation |

N1

o Nodes form a circle based on
node identifiers

e Each node is responsible in
storing a portion of the keys

e Hash function ensures even
distribution of keys and
nodes in the circle

-]

N14

N21

13

Chord Operation |l

N1

Finger table
J

N3 +1 N14
Na+2 N4
Ng +4 N4
N3 +8 N21
N8 +16 N32
N8 +32 |N42

N51

N48

N42

N32

Chord Operation Il

N1

o Lookup the furthest node
that precedes the key

e Query reaches target node .
in O(logN) hops N4S

Chord Properties
|

In a system with N nodes and K keys:

> No delivery guarantees
» Poor network locality

Network Locality

Nodes close on ring can be far in the network

CAT1

15

Content Addressable Network (CAN)
|

e CAN: Internet Scale Hash table
e Interface

e |dea: associate to each node and item a unique
coordinate in an d-dimensional Cartesian space.

e Desired properties
- scalable
- operationally simple
- good performance

CAN: Basic Idea

16

CAN: Basic Idea (2)

CAN: Basic Idea (3)

17

CAN: Basic Idea (4)

CAN: Basic Idea (5)

retrieve (K;)

18

CAN Solution: Detail
C]

e Entire space is partitioned amongst all the
nodes
- Virtual Cartesian coordinate space

e Every node “owns” a zone in the overall space

e Abstraction
- store data at “points” in the space
- route from one “point” to another
- point = node that owns the enclosing zone

CAN Example: Two Dimensional Space

e Space divided

among nodes

e Each node covers
either a square or
a rectangular area
of ratios 1:2 or 2:1

19

CAN Example: Two Dimensional Space

e Space divided
among nodes

e Each node covers
either a square or
a rectangular area
of ratios 1:2 or 2:1

CAN Example: Two Dimensional Space

e Space divided
among nodes

e Each node covers
either a square or
a rectangular area
of ratios 1:2 or 2:1

20

CAN Example: Two Dimensional Space

e Space divided
among nodes

e Each node covers
either a square or a
rectangular area of
ratios 1:2 or 2:1

CAN Example: Two Dimensional Space

e Space divided
among nodes

e Each node covers
either a square or a

rectangular area of
ratios 1:2 or 2:1

21

CAN Insert: Example (1)

node l::insert(K,V)

ol

CAN Insert: Example (2)
G ———

node I::insert(K,V) o'

22

CAN Insert: Example (3)
G

node ::insert(K,V) ol

CAN Insert: Example (4)
]

node l::insert(K,V) ol

23

CAN Retrieve: Example
.|

node J:retrieve(K)

CAN Feature: Summary
G

e Data stored in the CAN is addressed by name
(i.e. key), not location (i.e. IP address)

e Question: What is missing in the procedure?

24

CAN Insert: Routing
.|

e A node maintains

state only for its

immediate ¢

neighboring nodes |
B

CAN Insert: Join (1)
.

Bootstrap
node

@ «|—2)picka
random
point (p.q)
in space

new node
1) Discover some hode "J" already in CAN

25

CAN Insert: Join (2)
L |

o
new hode
3) J routes to (p,q), discovers node N

CAN Insert: Join (3)
G
Inserting a
new node

affects only
a single

other node
and its N

immediate
neighbors ®

4) split N's zone in half... new node owns one half

new nhode

26

CAN Node Failure
C]

e Need to repair the space
- takeover algorithm

- when a node fails, one of its neighbors takes over
its zone

Only the failed node’s immediate neighbors are
required for recovery

CAN Evaluations
.

e Guarantee to find an item if in the network
e Scalability

- for a uniform (regularly) partitioned space with n nodes and d dimensions
e per node, number of neighbors is 2d

e average routing path is (dn'9)/3 hops (due to Manhattan distance routing, expected
hops in each dimension is dimension length * 1/3)

- afixed d can scale the network without increasing per-node state

e Load balancing
- hashing achieves some load balancing
- overloaded node replicates popular entries at neighbors

e Robustness

- no single point of failure (more than one neighbour may lead to target, if this
greedy strategy fails, resort to localized flooding)
- can route around trouble

27

JXTA
e

» Abbreviation of juxtaposition:

» “putting things next to each other”
> Concept of Bill Joy (Chief Scientist, Sun)
> Fairly new concept

» First talk in 15.02.2001
» Web-site (www.jxta.org) opened the 24.04.2001

> Specification defining the basic concepts for
creating P2P applications [sJxta02]

> An open-source project developed around the
specification (Project JXTA)

Aims of JXTA
S.cns?l:. MainFrame,
TinyOS, UNIX, C++
AT refridgerator, LIS |
e Interoperability TinyOS, Petl :
e Platform independence e

o Ubiquity
Mobile,
Z22\ Symbian,
@

PC,
Win2K,
Java

Mac,
MacOsX,
Python

28

JXTA Layers
.|

e Core layer: monitoring
communication, security,
membership

e Service layer

e Application layer

JXTA Peer |

e ——
> Peer

— Any networked device using JXTA

— Has a unique ID, allowing to be addressed
independently of its physical location

— Interact with each other spontaneously

— May provide network services

— May cache information

— No assumption about availability

— May have multiple network interfaces (for
sending/receiving data)

— Interact with a small number of peers

29

JXTA Peer I

Peer A

urn;jxta:uuid-0032....03

JXTA Peer Groups

— Collection of peers sharing a common interest
— Create a secure, scoped and monitored
environment
— Provide a set of core services
- Discovery service
« Membership service
« Pipe service

» Resolver service
» Monitoring service

— A peer may join several peer groups
— All peers belong to the « world peer group »

30

Summary
@ ——

e Peer-to-Peer networks are dynamic environments that
facilitate resource sharing on a large-scale

e Main research question is how to organize and retrieve
information efficiently and accurately

e Current systems use two methods: centralization and/or
structure

e Focus gradually moves towards the coordinated use of
versatile, distributed computing resources

BUT
Isn’t this what GRIDs are all about ???

31

