
1

1

Peer-to-Peer Networking

2

History I

� Client-Server computing

� Well known and powerful

� Server provides services and resources

� Multiple clients can be supported by a single server

� 1-Many relationship => scalability with respect to the
number of clients

� Model has dominated the architectural design of many
applications

� Examples: HTTP, DNS, FTP

Server

Client

Client Client

Client

Internet

2

3

History II

Client-Server computing does have limitations

ISSUES

� Fault tolerance

� Central administration

� “Extreme” scalability

� Unused resources in “clients”

4

Peer-to-Peer Networks (P2P)

Peer-to-Peer computing
• Computing paradigm where all

the nodes have equivalent
responsibilities and roles

• “neither introduces nor prohibits

centralization”

• “sharing of resources through

direct communication between

consumers and providers”

• “a network architecture where all

the available resources are

located at the network edges”

• “the opposite of client-server”

Node

Node

Node Node

Node

Internet

3

5

P2P Characteristics

� Each node acts both as client and server

� Nodes are autonomous

� Network is dynamic

� There is no centralized authority (in theory)

� Network is large-scale

� Nodes have to co-operate in order to retrieve a
resource or a service

6

P2P Benefits

� Efficient use of resources

� Scalability

� Reliability

� Ease of administration

� But: these benefits are not easy to achieve,
see example of mutual exclusion algorithms

on next few slides

4

7

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical
region. Permission is granted

b) Process 2 then asks permission to enter the same critical region.
The coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator,
when then replies to 2

8

A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now enter
the critical region.

5

9

A Token Ring Algorithm

a) An unordered group of processes on a network.

b) A logical ring constructed in software.

10

Comparison

Lost token, process
crash

0 to n – 11 to ∞Token ring

Crash of any
process

2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

Problems
Delay before entry (in

message times)

Messages per

entry/exit
Algorithm

6

11

Examples of P2P Systems

� Napster

� KaZaA

� Gnutella

� FreeNet

� NeuroGrid

� Chord, CAN, Tapestry

� JXTA

12

Primary P2P research question

How can we efficiently and accurately discover
resources and services in a P2P network?

Solution 1: Introduce some centralization

Solution 2: Introduce some structure

“centralization” and “structure” define two dimensions for

classifying P2P networks

7

13

Types of P2P Systems I

14

Napster I

� Sharing of music files

� Lists of files are uploaded to
Napster server

� Queries contain various keywords
of required file

� Server returns IP address of user
machines having the file

� File transfer is direct

8

15

Napster II

� Centralised model

� Napster server ensures correct results

� Only used for finding the location of the files

� Scalability bottleneck

� Single point of failure

� Denial of Service attacks possible

� Lawsuits

16

Gnutella I

� Sharing of any type of files

� Decentralised search

� Queries are sent to the neighbour
nodes

� Neighbours ask their own
neighbours and so on

� Time To Live (TTL) field on queries

� File transfer is direct

9

17

Gnutella II

� Decentralised model

� No single point of failure

� Less susceptible to denial of service

� SCALABILITY (flooding)

� Cannot ensure correct results

18

KaZaA

� Hybrid of Napster and Gnutella

� Super-peers act as local search hubs

– Each super-peer is like a constrained Napster server

– Automatically chosen based on capacity and availability

� Lists of files are uploaded to a super-peer

� Super-peers periodically exchange file lists

� Queries are sent to super-peers

10

19

Freenet

� Ensures anonymity

� Decentralised search

� Queries are sent to the
neighbour nodes

� Neighbours ask their own
neighbours and so on

� The query process is
sequential

� Learning ability

20

• Second generation P2P (overlay) networks

• Self-organizing

• Load balanced

• Fault-tolerant

• Guarantees on numbers of hops to answer a query

• Based on a distributed hash table interface

Structured P2P

11

21

• Distributed version of a hash table data structure

• Stores (key, value) pairs

� The key is like a filename

� The value can be file contents

• Goal: Efficiently insert/lookup/delete (key, value) pairs

• Each peer stores a subset of (key, value) pairs in the system

• Core operation: Find node responsible for a key

� Map key to node
� Efficiently route insert/lookup/delete request to this node

Distributed Hash Tables (DHT)

22

• Node id: m-bit identifier (similar to an IP address)

• Key: sequence of bytes

• Value: sequence of bytes

put(key, value)

� Store (key,value) at the node responsible for the key

value = get(key)

� Retrieve value associated with key (from the appropriate node)

DHT Generic Interface

12

23

� File sharing

� Databases

� Service discovery

� Chat service

� Publish/subscribe networks

DHT Applications

24

� Keys mapped evenly to all nodes in the
network

� Each node maintains information about
only a few other nodes

� Efficient routing of messages to nodes

� Node insertion/deletion only affects a few
nodes

DHT Desirable Properties

13

25

Node id: m-bit identifier (similar to an IP address)

Key: m-bit identifier (hash of a sequence of bytes)

Value: sequence of bytes

API
� insert(key, value)

� lookup(key)

� update(key, newval)

� join(n)

� leave()

Chord API

26

Chord Operation I

� Nodes form a circle based on
node identifiers

� Each node is responsible in
storing a portion of the keys

� Hash function ensures even
distribution of keys and
nodes in the circle

14

27

Chord Operation II

28

Chord Operation III

� Lookup the furthest node
that precedes the key

� Query reaches target node
in O(logN) hops

15

29

Chord Properties

In a system with N nodes and K keys:

� Each node manages at most K/N keys

� Bound information stored in every node

� Lookups resolved with O(logN) hops

� No delivery guarantees

� Poor network locality

30

Network Locality

Nodes close on ring can be far in the network

16

31

Content Addressable Network (CAN)

� CAN: Internet Scale Hash table

� Interface
– insert(key,value)

– value = retrieve(key)

� Idea: associate to each node and item a unique
coordinate in an d-dimensional Cartesian space.

� Desired properties
– scalable

– operationally simple

– good performance

32

CAN: Basic Idea

17

33

CAN: Basic Idea (2)

34

CAN: Basic Idea (3)

18

35

CAN: Basic Idea (4)

36

CAN: Basic Idea (5)

19

37

CAN Solution: Detail

� Entire space is partitioned amongst all the
nodes

– Virtual Cartesian coordinate space

� Every node “owns” a zone in the overall space

� Abstraction

– store data at “points” in the space

– route from one “point” to another

– point = node that owns the enclosing zone

38

CAN Example: Two Dimensional Space

� Space divided
among nodes

� Each node covers
either a square or
a rectangular area
of ratios 1:2 or 2:1

1

20

39

CAN Example: Two Dimensional Space

� Space divided
among nodes

� Each node covers
either a square or
a rectangular area
of ratios 1:2 or 2:1

1 2

40

CAN Example: Two Dimensional Space

� Space divided
among nodes

� Each node covers
either a square or
a rectangular area
of ratios 1:2 or 2:1

1

2

3

21

41

CAN Example: Two Dimensional Space

� Space divided
among nodes

� Each node covers
either a square or a
rectangular area of
ratios 1:2 or 2:1

1

2

3

4

42

CAN Example: Two Dimensional Space

� Space divided
among nodes

� Each node covers
either a square or a
rectangular area of
ratios 1:2 or 2:1

22

43

CAN Insert: Example (1)

node I::insert(K,V)
I

44

CAN Insert: Example (2)

node I::insert(K,V)

(1) a = hx(K)

b = hy(K)

I

x = a

y = b

23

45

CAN Insert: Example (3)

node I::insert(K,V)

(1) a = hx(K)

b = hy(K)

(2) route(K,V) -> (a,b)

I

x = a

y = b

46

CAN Insert: Example (4)

node I::insert(K,V)

(1) a = hx(K)

b = hy(K)

(2) route(K,V) -> (a,b)

(3) (a,b) stores (K,V)

I

x = a

y = b

24

47

CAN Retrieve: Example

node J::retrieve(K)

(1) a = hx(K)

b = hy(K)

(2) route “retrieve(K)” to

(a,b)

J

x = a

y = b

48

CAN Feature: Summary

� Data stored in the CAN is addressed by name
(i.e. key), not location (i.e. IP address)

� Question: What is missing in the procedure?

25

49

CAN Insert: Routing

� A node maintains
state only for its
immediate

neighboring nodes

50

CAN Insert: Join (1)

1) Discover some node “J” already in CAN

J

2) pick a
random

point (p,q)
in space

new node

26

51

CAN Insert: Join (2)

3) J routes to (p,q), discovers node N

J

new node

N

52

CAN Insert: Join (3)

4) split N’s zone in half… new node owns one half

J

new nodeN

Inserting a
new node

affects only
a single

other node
and its

immediate
neighbors

27

53

CAN Node Failure

� Need to repair the space

– takeover algorithm

– when a node fails, one of its neighbors takes over

its zone

Only the failed node’s immediate neighbors are
required for recovery

54

CAN Evaluations

� Guarantee to find an item if in the network

� Scalability
– for a uniform (regularly) partitioned space with n nodes and d dimensions

� per node, number of neighbors is 2d

� average routing path is (dn1/d)/3 hops (due to Manhattan distance routing, expected
hops in each dimension is dimension length * 1/3)

– a fixed d can scale the network without increasing per-node state

� Load balancing
– hashing achieves some load balancing

– overloaded node replicates popular entries at neighbors

� Robustness
– no single point of failure (more than one neighbour may lead to target, if this

greedy strategy fails, resort to localized flooding)
– can route around trouble

28

55

� Abbreviation of juxtaposition:

� “putting things next to each other”

� Concept of Bill Joy (Chief Scientist, Sun)
� Fairly new concept

� First talk in 15.02.2001

� Web-site (www.jxta.org) opened the 24.04.2001

� Specification defining the basic concepts for
creating P2P applications [sJxta02]
� An open-source project developed around the
specification (Project JXTA)

JXTA

56

Aims of JXTA

� Interoperability

� Platform independence

� Ubiquity

29

57

JXTA Layers

� Core layer: monitoring

communication, security,
membership

� Service layer

� Application layer

CORE

APPLICATION

SERVICE

58

� Peer

– Any networked device using JXTA
– Has a unique ID, allowing to be addressed

independently of its physical location
– Interact with each other spontaneously
– May provide network services
– May cache information
– No assumption about availability
– May have multiple network interfaces (for

sending/receiving data)
– Interact with a small number of peers

JXTA Peer I

30

59

JXTA Peer II

60

– Collection of peers sharing a common interest

– Create a secure, scoped and monitored
environment

– Provide a set of core services

• Discovery service

• Membership service
• Pipe service
• Resolver service
• Monitoring service

– A peer may join several peer groups

– All peers belong to the « world peer group »

JXTA Peer Groups

31

61

Summary

� Peer-to-Peer networks are dynamic environments that

facilitate resource sharing on a large-scale

� Main research question is how to organize and retrieve

information efficiently and accurately

� Current systems use two methods: centralization and/or

structure

� Focus gradually moves towards the coordinated use of

versatile, distributed computing resources

BUT

Isn’t this what GRIDs are all about ???

