
1

Socket Programming

Sockets Programming

� Client-Server Computing

� What are Sockets

� Sockets Programming in Java

� Programming Examples

2

Client/Server Computing

� Simple idea:

� Some hosts (clients, typically desk top computers) are
specialized to interact with users:

– Gather input from users

– Present information to users

� Other hosts (servers) are specialized to manage large
data, process that data

� The Web is a good example: Client (Browser) & Server
(HTTP server)

� Other examples: FTP, e-mail, …. (in essence, all early
Internet “services” were implemented using the client-
server paradigm)

Client/Server Computing

� Other examples:

– E-mail

Server
Client

Client

3

Client/Server Computing

� Other examples:

– Chatroom

Tiered Client/Server Architecture

� 1-tier: single program

� 2-tier: client/server (e.g. the Web)

� 3-tier: application logic and databases on
different servers (e.g. the Web with CGI and
databases)

4

Client/Server Communication

� Two related processes on a single machine
may communicate through a pipe

� A pipe is a pseudo-file that can be used to
connect two processes together

Client/Server Communication

� Two UNRELATED processes may
communicate through files (process A write to
a file and process B reads from it)

� But HOW two processes located on two
different machines communicate? Solution:
Berkeley sockets.

5

What are sockets

� A socket is an end point of a connection

� Or: the interface between user and network

� Two sockets must be connected before they
can be used to transfer data (case of TCP)

� A number of connections to choose from:
– TCP, UDP, Multicast

� Types of Sockets
– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW

Sockets

� Message destinations are specified as socket

addresses

� Each socket address is a communication identifier:

– Internet address

– Port number

� The port number is an integer that is needed to

distinguish between services running on the same
machine

� Port numbers between 0 .. 1023 are reserved

6

Ports

� Some “well-known” ports:

– 21: ftp

– 23: telnet

– 80: http

– 161: snmp

� Check out /etc/services file for complete list of

ports and services associated to those ports

Which transport protocol (TCP v.
UDP)

� TCP -- Transmission Control Protocol

� UDP -- User Datagram Protocol

� What should I use?

– TCP is a reliable protocol, UDP is not

– TCP is connection-oriented, UDP is

connectionless

– TCP incurs overheads, UDP incurs fewer overheads

– UDP has a size limit of 64k, in TCP no limit

7

Unix and C specific data structures

� The <netdb.h> library provides the following data
structures:

struct hostent { // for host info

char *h_name;

char **h_aliases;

int h_addrtype;

int h_length;

char **h_addr_list;

#define h_addr h_addr_list[0]

};

Unix and C specific data structures

struct servent { //service info

char *s_name;

char **s_aliases;

int s_port;

char *s_proto;

};

8

Unix and C specific data structures

� The following functions return information
about a given host or service:

struct hostent *gethostbyname (char

*hostname)

struct servent *getservbyname (char

*service, char *protocol)

UDP Socket Programming

� UDP is simple and efficient, but not reliable

� Communication takes place in a symmetric

manner: both ends send and receive
messages following an agreed upon protocol

9

UDP Socket Programming

� Since no connection is created, each message
should contain the address of the recipient.

� In Java, messages are contained in instances
of class DatagramPacket

The DatagramPacket class

� Constructors:

– One for sending datagrams:

DatagramPacket{byte buffer[], int

length, InetAddress, int port}

– One for receiving datagrams:

DatagramPacket{byte buffer[], int

length}

10

The DatagramPacket class

� The useful methods are the accessors:

InetAddress getAddress()

Int getPort()

Byte[] getData()

Int getLength()

Client/Server Socket Interaction:
UDP

close
clientSocket

Server (running on hostid)

read reply from

clientSocket

create socket,

clientSocket =

DatagramSocket()

Client

Create, address (hostid, port=x,

send datagram request

using clientSocket

create socket,
port=x, for

incoming request:
serverSocket =

DatagramSocket()

read request from

serverSocket

write reply to

serverSocket

specifying client

host address,

port number

11

Example: Java Client (UDP)

s
e

n
d

P
a

c
k
e

t

to network from network

re
c
e

iv
e

P
a

c
k
e

t

in
F

ro
m

U
s
e

r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP

socket

Output: sends
packet

Input: receives
packet

Client

process

client UDP
socket

Example: Java Client (UDP)

import java.io.*; import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception

{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];

byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket
Translate

hostname to IP
address using DNS

12

Example: Java Client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram with
data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

Example: Java Server (UDP)

import java.io.*; import java.net.*;
class UDPServer {

public static void main(String args[]) throws Exception
{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

13

Example: Java Server (UDP), cont

String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

Create datagram
to send to client

Socket Programming with TCP

� Client must contact server

� server process must first be
running

� server must have created socket
(door) that welcomes client’s
contact

� Client contacts server by:

� creating client-local TCP socket

� specifying IP address, port
number of server process

� When client creates socket: client
TCP establishes connection to
server TCP

� When contacted by client, server

TCP creates new socket for

server process to communicate

with client

– allows server to talk with multiple
clients

– source port numbers used to

distinguish clients (more in Chap
3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

14

Client/Server Socket Interaction:
TCP

wait for incoming

connection request
connectionSocket =

welcomeSocket.accept()

create socket,
port=x, for

incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from

clientSocket

close

clientSocket

Server (running on hostid) Client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

TCP Socket Communication

� Sequence of steps normally taken to set up
socket communication and exchange data
between C/S

15

o
u

tT
o

S
e

rv
e

r

to network from network

in
F

ro
m

S
e

rv
e

r

in
F

ro
m

U
s
e

r

keyboard monitor

Process

clientSocket

input

stream

input

stream

output

stream

TCP

socket

Client

process

client TCP
socket

Stream Jargon

� A stream is a sequence of

characters that flow into or out

of a process.

� An input stream is attached to

some input source for the

process, e.g., keyboard or

socket.

� An output stream is attached

to an output source, e.g.,

monitor or socket.

Socket Programming with TCP

Example client-server app:

1) client reads line from standard
input (inFromUser stream) ,

sends to server via socket
(outToServer stream)

2) server reads line from socket

3) server converts line to

uppercase, sends back to client

4) client reads, prints modified line
from socket (inFromServer

stream)

16

Example: Java Client (TCP)

Create
output stream

attached to socket

import java.io.*; import java.net.*;

class TCPClient {

public static void main(String argv[]) throws Exception

{

String sentence;

String modifiedSentence;

BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =

new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server

Example: Java Client (TCP), cont.

BufferedReader inFromServer =

new BufferedReader(new

InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}

}

Create
input stream

attached to socket

Send line
to server

Read line
from server

17

Example: Java Server (TCP)

import java.io.*; import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =

new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

Example: Java Server (TCP), cont

DataOutputStream outToClient =

new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);

}

}

}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

18

Multi-threaded Servers

� A server should be able to serve multiple
clients simultaneously

Multi-threaded Servers

� See the MTEchoServer example

19

WWW References

� SPENCER'S SOCKET SITE:
http://www.lowtek.com/sockets/ (includes
tutorials and C code/example programs)

� Java Socket Tutorial:
http://java.sun.com/docs/books/tutorial/network
ing/sockets/

� Course Website: the original Intro and
Advanced Socket tutorials, written for BSD 4.4,
which introduced the socket abstraction

Sockets Programming in Java: TCP

� Streams
– The basic of all I/O in Java is the data stream

– A pipeline of data
� put info into the pipeline (write) and get it (read)

� Programming with Sockets (TCP)
– Opening a Socket

– Creating a data input stream

– Creating a data output stream

– Closing the socket(s)

