CORBA

|
e Distributed Objects

e CORBA: Introduction and Overview
e CORBA Clients

e CORBA Servers

e CORBA Development Issues

e JavalDL: see course website

Distributed Objects
.|

e Traditional enterprise apps are self-contained,
monolithic apps

e Limited access to another’s procedures and
data

e Apply OO techniques for networked apps

e multi-tiered architecture (separation of
concerns)

e 1st, 2nd, 3rd generation systems

Distributed Objects

e Local vs. Remote objects

[E— Remote Call I hject
=
F3
o [owe |
Local | call
o o []
=
Application Vo
Machine & Machine B

e An enterprise app is a collection of co-
operating objects located on different machines

Advantages

e Benefit from OO techniques

e Eliminates protocol design, which is error-
prone

e Convenient resource sharing

Disadvantages
.|

e Design and Impl'n is more complex
e Multiple failure modes

e Security issues

e Use of multiple technologies

e Testing and debugging

Available Technologies
G

e Many technologies available:
e Sockets (TCP, UDP) Not OO
e RPC (not OO)

e RMI
e CORBA

CORBA Introduction

.]
e OMG

e Current state of OMG/CORBA efforts
e Object Model
e Client Server model and issues

OMG - Object Mgm’t Group
.|

e Non-profit consortium of software vendors
e Formed in 1989 by 8 companies

e Has more than 800 members now (?)

e http://www.omg.org

e Goals:

- Develop specs to provide a common framework for
distributed applications development

- Promote a heterogeneous computing environment

CORBA
e

e Stands for: Common Object Request Broker
Architecture

e A spec for creating distributed objects
e CORBA is NOT a programming language
e lts architecture is based on the object model

e Promotes design of applications as a set of
cooperating objects

e OMG Object Model: object is defined as what
the client could see.

CORBA Objects
.|

e clients are isolated from servers by interface

e CORBA objects vs. typical objects:
- CORBA objects run on any platform

- CORBA objects can be located anywhere on the
network

- CORBA objects can be written in any language that
has IDL mapping

CORBA Architecture

e The structure of CORBA

Client

[Object Implementation]
F 3 F Y F Y

4

Chject
Adapter

Stati IDL dynamic
Dimanic CFE Skeletoms skeleton
Interface

[ORB CORE |

ORB

.|

e The software that implements the CORBA
specification

e Object bus that provides object location
transparency

e Responsible for mechanisms to:
- Find the object implementation of the request
- Prepare object implem’n to receive the request
- Communicate the data making up the request

ORB
e

e Client and object implem’n are isolated from
the ORB by an IDL interface

e all requests (local or remote) are managed by

the ORB
[c::_m] [Ob]ect];:-lementahon] [cn:::] [Ob_]ect]mf;ementahon]
E 1 1]] : 111]]
e
ORB

e Corba 1.0: every vendor would implement ORB
differently, interoperability problems when
communicating across ORBs

e Corba 2.0: specified GIOP, the General Inter-
ORB Protocol:

- collection of message requests ORBs can make
over a network

- GIOP maps ORB requests to different network
transports

- |IOP: Internet Inter-ORB Protocol maps GIOP
messages to TCP/IP (mandatory for all ORBs)

Corba 3
C]
e Released in 2002

e Major upgrades:
- Java and Internet Integration
- Quality of Service Control
- The CORBAcomponent Architecture

CORBA Services
.

e Basic services that every object needs

e System level services with well-defined IDL
interfaces

e They enhance functionality supported by ORBs

CORBA Services (Examples)
|

e Naming Service: find an object by name and bind to it

e Event service: supports notification of events to
interested objects

e Persistent object service: provides a common set of
interfaces for managing the state of objects

e Trader service: an alternative location facility to the
naming service, finding objects by attributes in a wide-
area network

e Security service: restrict access to objects/groups of
objects to clients with appropriate privileges

IDL Basics
G

e Stands for: Interface Definition Language

e A CORBA object is specified with interface

e interface: contract between client and server
e specified in a special declarative language

e Lexical rules are same as C++ with new
keywords

e |IDL mapping to programming languages (e.g.
C++, Java, etc) are provided in specs

CORBA IDL Interfaces
C]

e |DL interface provides a description of services
available to clients

e |DL interface describes an object with:
Attributes

Methods with their signatures

Exceptions

Inheritance information

Type and constant definitions

IDL Structure
¢]

module <identifier> {
<type declarations>;
<constant declarations>;

<exception declarations;

<interface definition>;

<interface definition>;

};

10

IDL Structure (Modules)
G

e At the highest level, IDL definitions are
packaged into module.

e A module is analogous to a package in Java
e Example:
module Bank {
// body
}i

IDL Structure (Interfaces)
.|

e An IDL interface is the definition of an object

e IDL interfaces are analogous to Java interfaces

e An interface declares the operations that the
CORBA object supports and its attributes

interface Account {
// attributes
// operations

};

11

IDL Structure (Interfaces)
.|
e An interface may inherit from multiple interfaces

e It inherits all attributes and operations of its
super-interfaces

interface JointSavingsAccount:
JointAccount, SavingsAccount ({

// attributes
// operations

};

IDL Structure (Attributes)
.|

e They describe the variables (properties) of an
interface

e An attribute can be readonly or read-write
interface Account {
attribute string name;
readonly attribute string sin;
readonly attribute long accountNumber;

1

12

IDL Structure (Operations)
.|

e They describe the methods of an interface

e They have a return type and parameters

e Parameters are flagged as:
- in: parameter is passed from client to server
- out: parameter is passed from server to client
- inout: parameter is passed in both directions

void withdraw(in unsigned long amount);
void add(in long a, in long b, out long sum);

IDL Structure (Exceptions)

e ——
e |IDL supports user-defined exceptions

exception InsufficientFunds {
long currentBalance;

1

void withdraw(in unsigned long amount)
raises (InsufficientFunds);

1

13

IDL Structure (Data Types)
|

e IDL supports a rich variety of data types

e Primitive:
float, double, long, short (signed, unsigned), char,
long long, boolean, octet

e Complex (discussed later):

arrays, sequences, structures

IDL to Java Mapping
G

IDL Java IDL Java
boolean boolean double double
octet byte fixed BigDecimal
char char

string String

short short

long int

long long long

float

float

Object Adapters

|
e Mediate between CORBA objects and
programming language implementations
e Provide a number of services:
- Creation of CORBA objects and their references

- Dispatching requests to the appropriate servant that
provides implementation for the target object

- Activation and deactivation of CORBA objects

Object Adapters

G
e CORBA 2.0 defines the Basic Object Adapter
(BOA)

e ORB vendors discovered that BOA is
ambiguous and missing features so they
developed proprietary extensions

e This resulted in poor portability between ORBs

e The new standard is: Portable Object Adapter
(POA)

15

Anatomy of a CORBA-based App
|

e The steps involved:

Define an interface

Map IDL to Java (idlj compiler)
Implement the interface

Write a Server

- Write a Client

- Run the application

e Example: a step-by-step Hello example

Step 1: define the interface

N
e Hello.idl

module HelloApp {
interface Hello {
string sayHello();
b
b

16

Step 2: map Hello.idl to Java

|
e Use the idlj compiler (J2SE 1.3)

idlj —fall Hello.idl
e This will generate:

_HellolmplBase.java (server skeleton)
HelloStub.java (client stub, or proxy)
Hello.java

HelloHelper.java

HelloHolder.java

HelloOperations.java

Step 3: implement the interface
G

e Implement the servant:

import HelloApp.*;
class HelloServant extends _HellolmplBase {
public String sayHello() {
return “\nHello There\n”;
}
}

17

Step 4: implement the server
.
e Import statements:

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;

class HelloServer {
public static void main(String argv(]) {

try {

Step 4: implement the server....
G

e Create and initialize the ORB:
ORB orb = ORB.init(argv, null);

e Create the servant and register it with ORB

HelloServant helloRef = new HelloServant();
orb.connect(helloRef);

18

Step 4: implement the server....
.|

e Get the root NamingContext:

org.omg.CORBA.Object objRef =
orb.resolve_initial_references(“NameService”);

NamingContext ncRef = NamingContextHelper.narrow(objRef);

Step 4: implement the server....
G

e Bind the object reference in naming

NameComponent nc = new NameComponent("Hello", " ");
NameComponent path[] = {nc};
ncRef.rebind(path, helloRef);

19

Step 4: implement the server....

e Wait for invocations from clients:

java.lang.Object sync = new java.lang.Object();
synchronized(sync) {
sync.wait();

}

Step 4: implement the server....

e (Catch the exceptions

} catch(Exception e) {
System.err.printin("ERROR: " + e);
e.printStackTrace(System.out);

} // end catch

}// end main()
} /' end class

20

Step 5: write a client
|

e Import statements:

import HelloApp.*;
import org.omg.CosNaming.*;
import org.omg.CORBA.*;
class HelloClient {
public static void main(String argvl[]) {

try {

Step 5: write a client....
G

e Create and initialize the ORB:
ORB orb = ORB.init(argv, null);

e Create the root naming context:
org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
NamingContext ncRef =
NamingContextHelper.narrow(objRef);

21

Step 5: implement the client....
.|

e Resolve the object reference in naming:

NameComponent nc = new NameComponent("Hello", " ");
NameComponent path[] = {nc};

Hello helloRef = HelloHelper.narrow(ncRef.resolve(path));

Step 5: implement the client....

e (Call the object:
String Hello = helloRef.sayHello();
System.out.printin(Hello);

e (Catch exception:

} catch(Exception e) {
System.out.printin("ERROR : " + e);
e.printStackTrace(System.out);

}}}// end catch, main, class

22

Step 6: run the application
.|

e Run the naming service:
prompt> thameserver

e Run the server
prompt> java HelloServer

e Run the client

prompt> java HelloClient
Hello There
prompt>

CORBA Clients (details)

e
e Initializing the ORB

e Helper classes

e Holder classes

e Exceptions

e The naming service

23

Initializing the ORB

e Before invoking a CORBA object, you must
first create an ORB object and initialize it
e public static void main(String argv[]) {
try { ORB orb = ORB.init(argv, null); // .. }
}
e Arguments to init():
ORB init(String[] argv, Properties props)
- argv: a list of command-line arguments to the app.
- props: programmatically specify these options

Initializing the ORB....
G

e Command-line arguments (options):

-ORBClass: that class that provides your ORB
implementation (JavaSoft's ORB)

-ORBSingletonClass: the class that provides your
ORB singleton implementation (JavaSoft's ORB)

-ORBInitialHost: the host where the naming service
is running (default value: localhost)

-ORBInitialPort: the port where the naming service is
running. Default value: 900

24

Initializing the ORB....
e

e Properties:

org.omg.CORBACIass
org.omg.CORBA.ORBSingletonClass
org.omg.CORBA.ORBInitialHost
org.omg.CORBA.ORBInitialPort

e How to use these?

Initializing the ORB....
G

e Properties: alternative to command-line args
e Example:

Properties props = new Properties();
props.put(“‘org.omg.CORBA.ORBInitialHost”, initialHost);
props.put(“org.omg.CORBA.ORBInitialPort”, initialPort);
String noArgs[] = null;

ORB orb = orb.init(noargs, props);

25

Helper Classes
|
e They provide some utility functions (narrow)

e For interface Hello in module HelloApp, a
helper class: HelloApp.HelloHelper is created

e Important method:
Hello narrow(org.omg.CORBA.Object object)

e The naming service returns an Object, you
must cast it to narrow it down....use narrow()

Holder Classes
¢]

e Used to implement “out” and “inout”
parameters to CORBA operations.
e Why do we need them?
void op (inout long x); // alter the value of x
e But in Java:
int x = 10; op(x); // op is not allowed to change x

e However, “out” or “inout” mean that the actual
value of the parameter will be changed.

Holder Classes
G

e Solution: use holder classes:

e For primitive data types: primitive holders

intx=10;
IntHolder myx;
myx.value = x;
op(myx);

X = myx.value;

e BooleanHolder, CharHolder, StringHolder, etc

Holder Classes
¢]

e For user-defined types:

Employee employee = ...;
EmployeeHolder emp;
emp.value = employee;

op(emp);
employee = emp.value;

27

Exceptions
.|
e System exceptions
org.omg.CORBA.SystemException

e User exceptions

org.omg.CORBA.UserException

System Exceptions
I

e Those implicit, unpredictable exceptions that
can arise as a result of a CORBA failure

e System exceptions are all implemented as a
subclass of org.omg.CORBA.SystemException

e A subclass of java.lang.RuntimeException

e Therefore, any SystemException may be
implicitly thrown by a CORBA operation without
being declared in a throws clause

28

User Exceptions
.|

e Those, explicit, predictable exceptions that are
documented in IDL operation declarations.

e Raised by CORBA operations in response to
specific situations (e.g. InsufficientFund)

e Implemented as a subclass of
org.omg.CORBA.UserException

e A subclass of java.lang.Exception
e Therefore, they must be explicitly handled

CORBA vs. RMI

.
e CORBA interfaces defined in IDL, RMI
interfaces are defined in Java

e CORBA is language-independent, RMI is not

e CORBA objects are not garbage collected, RMI
objects are garbage collected automatically.

e RMI does not support “out” and “inout”
operations since local objects are copied, and
remote objects passed by reference to stub

e Communication protocols: IIOP vs. RMI

29

The Naming Service (Client’s View)
.|

e A tree-like directory for object references

e Much like a file system: provides directory
structure for files

e Object references are stored by name

e Each object reference-name pair is called a
name binding

e Name bindings may be organized under
naming contexts (name binding itself)

e All bindings are stored under initial naming
context (the only persistent binding)

The Naming Service....
.|

e Your client’'s ORB must know the name and port# of a
host running the naming service

e The naming service can either be the JavalDL naming
service or any COS-compliant service (COS: Common
Object Services)

e To start: tnameserv —ORBlnitialPort port#
- The default port number is 900

e To stop: use relevant OS command (kill, ctrl-c)
e Namespace is lost if name server halts/restarts

30

The Naming Service (interfaces)

|
e org.omg.CosNaming:

- NamingContext: primary interface to naming
service

NameComponent: identify (name/kind) services
Bindinglterator: iterating through the contents
Binding: a single entry in the naming service
BindingList: a list of entries in the naming service
BindingType: the type of an entry

Naming Service (NamingContext)
.

e Analogous to a directory on a file system

e Contains a series of named objects

e An object in a NamingContext may be another
NamingContext (analogous to subdirectory)

e A reference to the top level NamingContext
can be obtained with the ORB method:
resolve_initial_references()

31

Naming Service (NamingContexi)
@ ——

e To get a reference to an object stored under
NamingContext, use:
resolve(NameComponent namePath)
e |t throws: NotFound, CannotProceed,
InvalidName
e This method returns org.omg.CORBA.Object

e Therefore, it must be narrowed to a particular
interface using a helper’s narrow()

Browsing the Naming Service
G

e The top level only....

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
public class Browser {
ORB orb = ORB.init (args, null);
// obtain a reference to the naming service
org.omg.CORBA.Object nc =
orb.resolve_initial_references ("NameService");
NamingContext namingContext =
NamingContextHelper.narrow (nc);

32

Browsing the Naming Service....
@ ——

BindingListHolder b1 = new BindingListHolder ();
BindinglteratorHolder b2 = new BindinglteratorHolder ();

/I get initial content-list (retrieve up to 10, rest can be accessed
/I by iterator)

namingContext.list (10, b1, b2);

/[print out bindings

Binding[] bindings = b1.value;

if(bindings.length == 0) return;

Browsing the Naming Service....
G

for (inti=0;i < bindings.length; i++) {
Binding binding = bindingslil;
NameComponent[] name = binding.binding_name;
BindingType type = binding.binding_type;
if (type == BindingType.nobject) {
System.out.println (name[0].id + "-" + name[0].kind);
} else { // BindingType.ncontext
System.out.println (name[0].id + "-" + name[0].kind + "/");

}

33

CORBA Servers
C]

e Implement the IDL interfaces by subclassing
the appropriate pre-generated skeleton class

e Each class is called a servant

e The HelloServer Example
- Initialize the ORB
- Create initial objects (servants)
- Connect each servant to the ORB
- Bind the servants in the naming service
- Wait for connections

CORBA Servers (Objectimpl)
.|

e When a servant extends the
_interfaceObjectimpl, it is actually extending
the orb.omg.CORBA.Portable.Objectlmpl class

e This class provides a variety of helper methods
(including all methods of CORBA Object)

34

Naming Service (Server’s View)
.|

e Registering/Unregistering services:

bind: register the object under the specified name

rebind: identical to bind(), but an AlreadyBound
exception won’t be thrown — existing object replaced

unbind: unregister a CORBA object
e Creating new naming contexts:
bind_new_context, new_context, bind_context
e Destroying a naming context:
destroy: destroy an empty NamingContext

Clearing the Naming Service

G
e Steps:
- Get a reference to initial naming context
- Recursively iterate through the sub naming contexts
- Call unbind
- Call destroy

35

Advanced IDL
G

e |DL supports C/C++ style comments:
// This is a comment
/* This is another comment */
e Also, it supports:
- conditionals (#if)
- defines (#define)
- includes (#include)

e idlj requires access to a C preprocessor (cpp)

Advanced IDL: Arrays
|

e |IDL provides multidimensional fixed-size arrays
e The array size is fixed at compile time

e |DL arrays map directly into Java arrays

e Example:

interface Customer {
attribute string address[4]; // 1-D array
attribute short table[5][7]; // 2-D array

}

36

Advanced IDL: Sequences
.|

e A sequence is a 1-D array that can be of
variable size

e Two types:
- Bounded sequences

sequence<long, 15>employee;

- Unbounded sequences

sequence<long> employee;

Advanced IDL: Enumerations
G

e The enum data type defines an enumeration
- A user-defined data type that can hold one of a fixed
set of values
e Example:
enum CreditCard { visa, amex, discover };

interface Bank {
void applyForCreditCard(CreditCard cc);

1

37

Enumerations (mapping to Java)
.|

e An enum is mapped to a Java class with static variables representing the
set of values
e Example:
//'IDL
enum EnumType {first, second, third};
/I generated Java
public class EnumType
implements org.omg.CORBA.portable.IDLEntity {
public static final int _first = 0;
public static final EnumType first = new EnumType(_first);
public static final int _second = 1;
public static final EnumType second = new EnumType(_second);
public static final int _third = 2;
public static final EnumType third = new EnumType(_third);
public int value() {...}
public static EnumType from_int(int value) {...};
/I constructor
protected EnumType(int) {...}
b
e To compare (using switch): (unknown.value() == _first)

Advanced IDL: Structures
¢]

e The IDL type struct defines a structure
e Use a struct to group related data together

e Example:
struct Name {
string firstName;
string lastName;
|3

interface Customer { attribute Name name; };

38

Structures (mapping to Java)
.|

e A struct is mapped to a Java class that
provides instance variables for the fields, and a
constructor for all values, and a null constructor

e Example:

public class Name {
public String firstName;
public String lastname;
public Name();
public Name(String firstName, String lastName);

Advanced IDL: typedefs
G

e A typedef is an alias, or another name for an
existing data type

e Example:

typedef long age;
interface Customer {
age howOld;

}
e Typedefs of simple data types are mapped to
the original (l.e. replaced by the more basic

type)

39

Advanced IDL: Constants
C]

e 1. Within an interface:
interface Foo { const long aLong =-32; };

e Mapped to: public interface Foo {
public static final int aLong = (int) —32L; };
e 2. Not within an interface:
const string Message="hello”;

e Mapped to: public interface Message {
public static final String Message="hello”; };

Advanced CORBA Topics
.|

e The Tie Mechanism

e Dynamic Invocation Interface (DII)
e Dynamic Skeleton Interface (DSI)
e Interface Repository (IR)

40

The Tie Mechanism
]

e All CORBA-based server programs we have seen so
far extend a CORBA skeleton (ImplBase class)
generated by the idlj compiler

e Since Java doesn’t support multiple inheritance, we
cannot inherit from a CORBA skeleton and another
class

e Inheriting from a CORBA skeleton is not
appropriate/uses up your one inheritance chance

e The tie mechanism offers an alternative to inheritance

How to use the tie mechanism?
G

e Implementation inheritance (Hello example)

- HelloServant inherits its entire implementation from
another class

- Method requests for HelloServant are delegated to
another idlj-generated class

41

Programming Example (Hello)
.
e Compile the IDL interface (Hello.idl) with the
command: idlj —fall —tie Hello.idl
e This will generate two additional classes in

the HelloApp directory
_HelloOperations.java (the servant implements this

interface)
2. _HelloTie.java (acts as a skeleton, receiving
requests from the ORB and delegating them to the

servant that does the actual work

1.

HelloBasic

e A new class: HelloBasic.java

public class HelloBasic {
public String sayHello() {
return “Hello World\n”;

}
}

42

HelloServant
G
e HelloServant.java

class HelloServant extends HelloBasic implements
_HelloOperations {

HelloServer

e HelloServer.java

class HelloServer {
public static void main(String argv[]) {
// create and initialize ORB

// Create servant and register it with ORB
HelloServant servant = new HelloServant();

Hello helloRef = new _HelloTie(servant);
// connectetc

43

The Tie Mechanism vs. Inheritance
]

e Inheritance is easier as implementation objects
look like normal object references

e If object implementations are in the same
process as the client then method invocations
are cheaper (because no delegation)

Dynamic Invocation Interface (DIl)
.|

e IDL interfaces used by a client are determined
when the client is compiled

e Therefore, the developer is limited to using
servers that contain objects that implement
those interfaces

e This is not enough if an application (e.g. a
distributed debugger) requires the use of
interfaces that are not defined at the time the
application was developed

44

DIl

G
e The solution is provided by CORBA’s DI

e DIl allows an application to invoke operations from any
interface (clients use the IR to learn about unknown
object interfaces).

e Static operation requests are more efficient but DIl is
good for:
- Clients issue requests for any operation (which may not be
known as compile time)
- Client operations don’t need to be recompiled in order to
access newly activated object implmnt’s

Dynamic Skeleton Interface (DSI)
|

e DSI provides a way to deliver requests from an
ORB to an object implementation without any
compile-time knowledge of the objects it is
implementing

e DSl is analogous to DII:

- DIl is for the client-side
- DSl is for the server-side

45

Interface Repository (IR)
.|

e IR is like a database that contains data that
describes CORBA interfaces or types

e The data in the IR is equivalent to that in an
IDL file except that data in the IR is
represented in a such a way that makes it
easier for clients to use

e Clients use the IR to learn about unknown
object interfaces and they use DIl to invoke
methods on that object

46

