
A Pro-Active Mobility Management Scheme for

Publish/Subscribe Middleware Systems

By

Abdulbaset A. Gaddah

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute of Electrical and Computer Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada

December 4
th

, 2008

 Copyright 2008, Abdulbaset A. Gaddah

The undersigned recommend to the Faculty of Graduate Studies and Research

acceptance of the thesis

A Pro-Active Mobility Management Scheme for

Publish/Subscribe Middleware Systems

Submitted by:

Abdulbaset A. Gaddah

in partial fulfillment of the requirements for the degree of Doctor of Philosophy

__

Dr. Victor C. Aitken

Chair, Systems and Computer Engineering Department

Dr. Ioanis Nikolaidis

External Examiner

Dr. Thomas Kunz

Thesis Supervisor

Carleton University

December 2008

 I

Abstract

The publish/subscribe (pub/sub) interaction paradigm has recently played a central role in

the development of a large number of information dissemination applications such as stock

trading, traffic information, news tickers, and electronic auctions. Its success is mainly

attributed to its capability to decouple interacting participants, which makes it a good

candidate for the development of such applications in mobile wireless environments that

are characterized by frequent and unpredictable disconnections of participants due to

wireless channel impairments or user mobility. Most current pub/sub middleware systems

are optimized for fixed networks (i.e., users do not roam and the infrastructure itself is

fixed). Therefore, add-on protocols are needed to extend such systems to cope with the

challenges imposed by user mobility.

This thesis presents a novel and efficient mobile management scheme that is based on a

pro-active caching approach (i.e., context transfer/caching occurs prior to the subscriber’s

movement) to extend current pub/sub systems to support mobility. This approach is based

on the use of a data structure called neighbor graph, which dynamically captures the set of

next potential brokers to ensure that subscriber context remains always one hop (broker)

ahead of its current broker. The proposed approach employs “dummy” subscribers that

automate the task of context caching and removal at immediate neighboring brokers on

behalf of the actual moving subscribers. We have extended a JMS-based pub/sub system

with our pro-active caching approach and observed the incurred overhead of the approach.

This is achieved by comparing the end-to-end latency of message delivery as well as the

latency of message routing with and without enabling our pro-active caching approach.

 II

We have comprehensively evaluated the effectiveness of our proposed approach through

testbed experiments, comparing it to the state-of-the-art solutions, durable subscription-

based and reactive, proposed in the literature. The experimental results show that our pro-

active approach reduces the message loss by more than 50% and message duplication to

zero, compared to durable subscription-based approaches. The results also indicate that our

approach experiences much lower handoff latency compared to reactive approaches.

Overall, our proposed approach achieves superior performance across a range of scenarios.

We conclude our work by discussing a modeling approach that can be used to extrapolate

the performance of our approach in a near-size environment (in terms of broker and/or

subscriber population) to our experimental environment.

 III

Dedication

To my parents and wife

 IV

Acknowledgement

Million thanks to Dr. Thomas Kunz, my parents, and wife

 V

Table of Contents

List of Figure ... VII

List of Table .. I

List of Acronyms ... I

Chapter 1: INTRODUCTION...1

1.1 Background ..1

1.2 Pub/Sub Systems and Mobility: Problem Definition ...3

1.2.1 Mobility Aspects...4

1.2.2 Pub/Sub System in Wireless LANs: Mobility Issues5

1.2.3 A Scenario for Mobility Challenges ..6

1.3 Thesis Contributions and Publications ..8

1.4 Structure of the Thesis ..13

Chapter 2: PUBLISH/SUBSCRIBE OVERVIEW AND RELATED WORK.............15

2.1 Introduction..15

2.2 Pub/Sub Systems: An Overview ...16

2.2.1 System Components ...16

2.2.2 The Basic Communication Model...17

2.2.3 Subscription models..18

2.2.4 Quality of Service (QoS)...19

2.2.5 The Broker Architecture ...19

2.3 Non-Mobile Pub/Sub Systems ..21

2.4 Mobile Pub/Sub Systems ..24

2.4.1 Reactive Mobility Extensions ...24

2.4.2 Pro-active Mobility Extensions ...35

2.4.3 Durable Subscription-based Mobility Extensions38

2.5 Concluding Remarks ..42

Chapter 3: A PRO-ACTIVE CONTEXT DISTRIBUTION APPROACH FOR

SUPPORTING MOBILITY..45

3.1 Introduction..45

3.2 Pro-Active Approach for Context Distribution..46

3.3 Neighbor Graph..58

3.3.1 Definitions..59

3.3.2 Constructing Neighbor Graph ...60

3.3.3 Overhead Optimization...63

3.4 Messaging Cost ..67

3.5 Concluding Remarks ..76

Chapter 4: IMPLEMENTATION OF MOBILITY SUPPORT APPROACHES AND
EXPERIMENTAL SETUP ...78

4.1 Introduction..78

4.2 Java Message Service (JMS): An Overview..78

 VI

4.3 Implementation ..80

4.3.1 Implementing the Pro-active Mobility Support..82

4.3.2 Implementing the Reactive Mobility Support ..86

4.4 Experimental Setup ..89

4.4.1 Workload Parameters..94

4.4.2 Performance Measures..95

4.5 Concluding Remarks ..96

Chapter 5: PERFORMANCE EVALUATION OF MOBILITY SUPPORT
APPROACHES ...98

5.1 Introduction..98

5.2 Performance Evaluation and Comparison ...99

5.2.1 Mobility Support Overhead...99

5.2.2 Handoff Latency ...102

5.2.3 Overall Performance ...104

5.2.3.1 Overall performance at given publishing rates.....................................104

5.2.3.2 Overall performance at given queue sizes..108

5.2.3.3 Overall performance at given disconnection periods............................111

5.2.3.4 Overall performance at given frequency of handoffs112

5.2.3.5 Overall performance at given network bandwidths114

5.3 Random and Neighboring Mobility Patterns ...117

5.4 Concluding Remarks ..121

Chapter 6: AN ANALYTIC MODEL FOR EXTRAPOLATING THE

PERFORMANCE OF THE PRO-ACTIVE APPROACH124

6.1 Introduction..124

6.2 Description of Subscriber Mobility ...125

6.3 Modeling Random Mobility ...127

6.4 Modeling Neighboring Mobility ...132

6.5 Curve- Fitting Approach...136

6.6 Comparative Study ...137

6.6.1 Random Model Results...138

6.6.2 Neighboring Model Results ..142

6.7 Concluding Remarks ..146

Chapter 7: CONCLUSIONS AND FUTURE WORK..148

7.1 Conclusions..148

7.2 Future Work ...152

7.2.1 Load Balancing Among Brokers ...152

7.2.2 Subscription Management...154

7.2.3 Broker Topology...156

7.2.4 Publisher Mobility ..156

References ..157

 VII

List of Figure

Figure 1.1: A distributed pub/sub system in WLAN network ...5

Figure 1.2: Disconnected operation timeline ..7

Figure 2.1: Components of a pub/sub system ...17

Figure 2.2: Hierarchical broker topology..20

Figure 2.3: Peer-to-peer broker topology..21

Figure 3.1: The pro-active context distribution algorithm...48

Figure 3.2: FSM diagram for the pro-active context distribution algorithm.......................52

Figure 3.3: Subscriber mobility model ...67

Figure 3.4: Upper bound for the messaging cost ratio R1 ...72

Figure 3.5: Upper bound for the messaging cost ratio R2 with 1=
nm

ξξ74

Figure 3.6: Upper bound for the messaging cost ratio R2 with 0=
nm

ξξ75

Figure 4.1: The handoff procedure with the pro-active approach84

Figure 4.2: The handoff procedure with the reactive approach..87

Figure 4.3: A general view of experimental setup constituting the network under

consideration. ..90

Figure 5.1: Mobility support overhead ...101

Figure 5.2: The cumulative distribution of handoff latency...103

Figure 5.3: Overall performance at given publishing rates..107

Figure 5.4: Overall performance at given queue sizes...110

Figure 5.5: Overall performance at given disconnection periods.....................................111

Figure 5.6: Overall performance at a given handoff frequency113

Figure 5.7: Overall performance at given bandwidths...115

Figure 5.8: Performance of pro-active approach in RND and NBR mobility patterns118

Figure 6.1: State transition diagram for subscriber mobility model.................................127

Figure 6.2: State transition diagram for the random mobility model128

Figure 6.3: State transition diagram for neighboring mobility model133

Figure 6.4: Polynomial fit ..137

Figure 6.5: Expected number of subscribers at each broker ..139

 VIII

Figure 6.6: Throughput results for individual brokers...141

Figure 6.7: Overall throughput results with different subscriber population....................142

Figure 6.8: Expected number of subscribers at each broker in neighboring mobility.......144

Figure 6.9: Throughput results for individual brokers...145

Figure 6.10: Overall throughput results with different subscriber population..................146

 I

List of Table

Table 3.1: Parameter settings for message cost analysis ...72

Table 3.2: Estimated scheme messaging cost ratio ...73

Table 4.1: The used workload parameters ..95

Table 5.1: Handoff latency of mobility support approaches..102

Table 5.2: Subscriber throughput in the RND and NBR mobility patterns119

Table 5.3: Message loss in the RND and NBR mobility patterns120

Table 5.4: Message duplication in the random and neighboring mobility patterns121

Table 6.1: State probabilities and E(x) of subscribers .. 143

 I

List of Acronyms

API Application Programmer Interface

CEA Cambridge Event Architecture

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CTMC Continuous Time Markov Chain

DCOM Distributed Component Object Model

DSs Dispatching Servers

IDL Interface Definition Language

IEEE Institute of Electrical & Electronics Engineers

IP Internet Protocol

Java RMI Java Remote Method Invocation

Java SDK Java Standard Development Kit

JEDI Java Event-Based Distributed Infrastructure

JMS Java Message Service

JNDI Java Naming and Directory Interface

JVM Java Virtual Machine

LRU Least Recently Used

MAC Medium Access Control

MANETs Mobile Ad-Hoc Networks

Message ID Message Identification Number

 II

NBR Neighbor Mobility Pattern

NG Neighbor Graph

ORB Object Request Broker

Pub/Sub Publish/Subscribe

P2P Peer-to-Peer

QoS Quality of Service

RND Random Mobility Pattern

RMI Remote Method Invocation

SIENA Scalable Internet Event Notification Architectures

STEAM Scalable Timed Event And Mobility

TCP Transmission Control Protocol

ToPSS Toronto Pub/Sub System

WLAN Wireless Local Area Network

XML eXtensible Markup Language

 1

CC HH AA PP TT EE RR 11

 IINNTTRROODDUUCCTTIIOONN

1.1 Background

The availability of portable devices and wireless network technologies has increased our

dependence on receiving information and services through them. Users expect access to

different information and services while they are roaming. Nevertheless, the limited and

dynamic resources of the mobile computing paradigm impose several challenges that

complicate the development of mobile information dissemination systems. Users with

portable, wirelessly connected devices may frequently get disconnected from the network

due to poor network connectivity, running out of battery, or when commuting between

locations. They typically expect that data disseminated while they are disconnected will be

available and can be delivered to them upon their reconnection. These constraints highlight

the demand for middleware infrastructure, based on a flexible communication model, to

meet the dynamic and decoupled nature of the mobile computing paradigm and facilitate

the development of innovative applications.

While the traditional request/reply middleware systems like CORBA, DCOM, and Java

RMI have proved their suitability in fixed networks, it becomes apparent that such systems

are not adequate to seamlessly address the requirements of mobile computing systems

[1][2]. Most of these existing systems are based on synchronous and point-to-point

communication models that mainly impose a tight coupling between the sender and

 2

receiver participants. In such a classical pull-based model, a pull-consumer, requesting

instantaneous updates of information, would require to continuously poll the information

sink (the server), thereby resulting in server resource contention and network overload and

congestion. Moreover, the high dynamicity of information suppliers is not supported in

pure pull-based approaches, as new suppliers can only be discovered by exhaustively

searching the network. This can be very costly in a large-scale network and is almost

impossible in the mobile wireless context where a permanent network connection is not

always guaranteed. Finally, traditional middleware platforms were designed with the

assumptions that the terminals are powerful, stationary and will be permanently connected.

These assumptions are unrealistic in mobile wireless domains as the mobile units are often

resource poor, travel across different access points, and inter-communicate through

extremely fluctuated connectivity. Therefore, this drives the need for an information

dissemination model that can support the dynamicity of the mobile computing paradigm.

The publish/subscribe (or pub/sub) paradigm is largely recognized as one of the most

effective way to model information dissemination applications [3], where publishers are

event producers, subscribers are event consumers, and brokers are event dispatchers. The

decoupling of publishers and subscribers in time, space, and flow in the pub/sub paradigm

makes it highly scalable and flexible by hiding all explicit dependencies between the

interacting parties. Time, space, and flow decoupling allow the publisher and subscriber

parties to communicate without being connected simultaneously, being aware of each

other, and being blocked while producing or consuming events. Pub/sub systems can also

efficiently filter and disseminate a significant amount of data to a large number of

subscribers. Hence, the loose coupling inherent in pub/sub-based middleware systems

 3

along with their inherently asynchronous and anonymous features make them a good

candidate for supporting mobile wireless settings in a natural manner.

Given the potential of the pub/sub paradigm, the past few years have witnessed the

development of a tremendous number of pub/sub middleware systems that vary along

many directions. Most of them have focused on event dissemination in fixed networks (i.e.,

clients do not roam and the infrastructure itself is fixed). Some of these directions have

covered fundamental issues: the expressiveness of the subscription language, routing, and

filtering techniques. Others have considered and proposed some approaches to implement

pub/sub systems with flexible and scalable, distributed architectures. While extensive

research on such systems has been conducted [4][5][6][7][8][9], both in industry and in

academia, for fixed networks, comparatively little research has recently focused on

extending these systems to mobile, wireless domains [10][11]. The main interest of our

research is to extend current pub/sub systems to better support subscriber’s mobility. The

extension is described in the context of Java Message Service (JMS) [12][13], one of the

most widely accepted messaging system standards. The JMS semantics and features are

briefly described in Chapter 4.

This chapter is organized as follows. Section 1.2 motivates this work and defines the

research problem addressed in this thesis. Section 1.3 lists the contributions of this thesis.

Section 1.4 provides a roadmap for the remaining chapters.

1.2 Pub/Sub Systems and Mobility: Problem Definition

There is currently a great deal of interest in pub/sub systems due to their high flexibility

and scalability in dynamic distributed environments. As discussed earlier, the semantic

 4

characteristics of pub/sub systems make them a desirable choice for mobile information

dissemination applications. First, the interacting parties can operate in the system without

being aware of each other. Second, they can always be plugged in and out of the system

without impacting each other directly. Third, the pub/sub paradigm is better adapted than

the traditional point-to-point paradigm to cope with unannounced disconnected operation,

which characterizes mobile wireless environments. Most existing pub/sub systems are

optimized for fixed networks and have not considered the issues imposed by subscriber

mobility. They assume (1) permanent network connectivity and that (2) information

publishers and subscribers are stationary. Hence, this indicates a pressing need to extend

pub/sub systems to the mobile wireless domain, which is the area of interest of this work.

Although the lower layers (such as link-layer and IP-layer) are conceptually the “right

layers” to express the context of mobility support, the lower-layer mobility mechanisms

have not been widely accepted and deployed for a variety of reasons: protocol stack

modification, infrastructure change, considerable changes in the mobile host’s kernel, and

inherent operational complexity. The application-layer mobility protocols on the other

hand can easily remove the major drawbacks of the lower-layer solutions and provide

better mobility solution for the next-generation heterogeneous networks. This motivates

our choice to solve the mobility problem at the application-layer (a detailed discussion

about the motivation of our choice is presented in Section 4.3).

1.2.1 Mobility Aspects

Mobility, as described in [14] falls in two different and orthogonal aspects refereed to as

code (or logical) and host (or physical) mobility: Code mobility refers to the migration of a

code fragment (or mobile agent) autonomously from one host to another across the

 5

networks. Host mobility refers to the movement of mobile terminals from one access point

to another. The two aspects of mobility are different in terms of how their mobility is

handled. Although both mobility aspects are interesting and challenging, our research work

has considered only the second aspect of mobility for two reasons. First, current mobile

information dissemination applications are mainly designed to reside permanently on

mobile hosts. Second, host mobility represents the majority of mobility scenarios.

1.2.2 Pub/Sub System in Wireless LANs: Mobility Issues

As indicated earlier, the broker topology of a pub/sub system can be either centralized or

distributed. To reflect mobility scenario and to meet scalability aspects, this research

focuses on a pub/sub system that is deployed as a distributed network of brokers. Figure

1.1 shows the architecture of such a system in a mobile wireless LAN network.

Figure 1.1: A distributed pub/sub system in WLAN network

A mobile client that can be either a producer or a consumer of messages or both connects

to one of several distributed brokers through a wireless access point. The wireless access

points form the boundary of the distributed communication service and maintain

 6

connections to the clients. The message brokers run on stationary machines that are located

within the fixed network infrastructure. They are interconnected through a set of routers to

form a distributed communication service. As our research interest is limited to manage

subscriber mobility, we only focus on the mobility challenges from this prospect. Publisher

mobility, discussed in [15][16] is beyond the scope of this research.

The vision of being connected to the same broker all the time is not valid any longer.

Mobile subscribers may disconnect from one broker and reconnect to another broker while

they are roaming. Due to the handoff procedure, subscribers may go through a temporary

blackout period. There is also a possibility for the subscribers to get frequently

disconnected from the network due to the absence of network connectivity or running out

of battery. During such blackout periods, subscribers will loss their ability for receiving

messages. This may result in missing some or all of their messages. Hence, mobility and

temporary disconnections are the major problems that need to be managed by a pub/sub

system. Limited bandwidth environments can be another challenging issue that may

prevent or delay message delivery. Broker performance is also a major concern when

extending pub/sub systems to the mobile wireless domain. The broker may become a

performance bottleneck due to the extra load imposed by dealing with the above issues.

1.2.3 A Scenario for Mobility Challenges

In this research, we focus on the use of the durable subscription model [12][13] adopted by

JMS-based pub/sub systems as it represents a good candidate for supporting disconnected

operation. Durable subscriptions allow the brokers to track inactive subscribers and deliver

their messages when they become active again. However, durable subscriptions, in the

absence of a mobility management scheme, can face several challenges in mobile wireless

 7

environments as described in the following scenario. A timeline of a durable subscriber

that goes through an interval of disconnecting and reconnecting to a different broker is

shown in Figure 1.2.

t1 t2 t3

At broker A1 At broker A2
Disconnected

Disconnect Reconnect

t1 t2 t3

At broker A1 At broker A2
Disconnected

Disconnect Reconnect

Figure 1.2: Disconnected operation timeline

During t1 interval, the subscriber is connected to broker A1 and can receive messages that

match its subscription(s). By the end of the t1 interval, the subscriber disconnects from

broker A1 for some reasons and reconnects to broker A2 after interval t2. During this time,

the broker A1 will keep locally buffering the messages that the subscriber would have

received if it had been connected. When the subscriber reconnects to the broker A2, it needs

to resubmit the same copy of its subscription(s) to A2 in order to receive messages. At the

beginning of the t3 interval, the broker A2 starts routing messages to the subscriber based

on the submitted subscription(s). Broker A2 does not have any previous knowledge about

the former subscription(s) that had been attached to the old broker. Also, broker A2 cannot

retrieve the former subscription(s) since it has no information about the location of the old

broker. As a result, the subscriber will end up losing all the messages that were generated

during t2.

In the previous scenario, as the subscriber migration is transparent to the system, broker A1

will have inactive subscription(s) that initiate the buffering activity. Such activity can

happen quite often in the mobile environment as the mobile subscribers frequently move

 8

from one broker to another without removing their subscriptions. Even worse, they may

leave the original broker and never come back again and hence the broker perpetually

keeps buffering the messages. Moreover, the mobile subscribers may occasionally lose

their network connectivity due to poor wireless connections, triggering buffering activity.

Thus, each broker may end up having a large number of inactive subscriptions and has to

track their corresponding messages. As buffering messages for disconnected subscribers

puts a substantial overhead on the broker, the overall system performance may gradually

degrade to the point of failure.

Let us consider the scenario when the disconnected subscriber reconnects to the original

broker (broker A1) after it has been connected to a different broker (broker A2). By default,

broker A1 will stop the buffering activity for that subscriber and start routing the buffered

messages to the subscriber. Since the broker is not aware of the messages that have been

delivered by the other broker, the subscriber may receive duplicated messages, which may

be problematic for some applications. Also, such duplications will flood the wireless

channel and consume a significant amount of the channel bandwidth. The results of a pure

durable subscription-based scheme, presented in Chapter 5, demonstrate the negative

impact of such mobility scenarios on the system performance.

1.3 Thesis Contributions and Publications

This thesis presents the results of a broad-range study on research problems related to

extending current pub/sub middleware systems to support subscriber mobility. The first

contribution is a general survey of the state-of-the-art of research in pub/sub middleware

domain. The review includes a general description of a representative set of pub/sub

systems found in the literature and a deep investigation of the internal mechanism of the

 9

proposed solutions for extending pub/sub systems to support mobility, presenting some of

their drawbacks. As part of our preliminary work, we have investigated and analyzed the

behavior of pub/sub primitives and their reliability cost in a non-mobile, wireless

environment. In particular, we focused on two subscription models supported by JMS-

based pub/sub systems, nondurable and durable, that respectively provide low and high

levels of reliability. The reliability cost is evaluated and compared with baseline data

collected on a local-area, wired network. The study gave us valuable insights into the

sensitivity of performance to the primitives supporting high reliability of message delivery.

The results of our previous/preliminary work are presented in [17][18]. Others [19][20]

have evaluated different JMS-based pub/sub systems and showed consistent results. The

other contributions of this thesis are as follows:

A Pro-Active Context Distribution and Caching Scheme

This thesis presents a comprehensive and efficient mobility management scheme to extend

current pub/sub middleware systems to operate in the mobile wireless environments. The

main objective of the proposed scheme is to guarantee that all the published messages are

successfully delivered to all interested subscribers in their publishing order regardless of

the current location (broker) of the mobile subscribers. The proposed mobile management

scheme is based on a pro-active caching approach that is initiated whenever a mobile

subscriber hands off to a new broker. The pro-active approach depends on the use of a data

structure, called neighbor graph, which is used to predict the set of next potential brokers

where the subscriber context should be transferred prior to the subscriber’s movement. The

neighbor graph is automatically created and regularly updated to eliminate outlier

neighbors. Whenever the mobile subscriber disconnects from its original broker due to its

 10

mobility or poor network connectivity, the set of next potential brokers are notified and

requested to buffer the subscriber messages, using a subscriber’s previously transferred

context. The pro-active approach employs dummy (or virtual) subscribers that buffer

messages on behalf of the actual moving subscribers. Accordingly, subscriber messages

will be always available for the mobile subscriber at its next potential location.

Analytical Model for Messaging Cost

An analytical study has been carried out that captures the messaging cost of the proposed

approach and the alternative solutions found in the pub/sub literature as it is of key interest

to understand the overhead imposed by the proposed approach. Through this study, we

present the messaging cost ratio between the different solutions and show the scenarios

when the pro-active approach would have smaller messaging cost than the other solutions.

Implementation and Experimental Work

We show a prototype implementation of the proposed pro-active solution and the reactive

solution and provide a detailed description to their core components. We then present our

experience in evaluating the effectiveness of the proposed approach using a simplified but

reasonable experimental testbed that is sufficient for the purpose of this research work:

exploring the effectiveness of our solution and compare it to the alternative solutions. An

extensive number of experiments are conducted to study the performance of our proposed

approach under different workload conditions and mobility models, comparing it to the

state-of-the-art solutions found in the literature. The experimental results show that our

approach reduces the message loss by more than 50% and message duplication to zero,

compared to durable subscription-based approaches. The results also indicate that our

 11

approach experiences much lower handoff latency compared to reactive approaches. The

proposed approach overall shows superior performance across a range of scenarios.

Analytical Models for Extrapolating the Pro-Active Performance

An analytical model is developed to extrapolate the performance of our proposed pro-

active scheme in a near-size environment (in terms of broker and/or subscriber population)

to our experimental environment, using performance data obtained from our experiments.

We first use the analytical model to derive the expected number of subscribers for a given

broker topology, mobility model, and overall subscriber population, based on continuous-

time Markov chains (CTMC). Next, we present how to extract performance-related data

through curve-fitting from our testbed results. These curves relate the average number of

subscribers with a performance metric of interest, here the per-broker throughput. The

approach can be generalized to other performance metrics. Using these two steps, we can

then extrapolate the throughput of the pro-active approach in a near-size environment to

our experimental environment. This is an essential step as we were not able to achieve this

experimentally due to the limitations of our experimental testbed.

Parts of this thesis appeared in the following publications:

1. T. Kunz, A. Gaddah, and L. Li, "Mobility support in a P2P system for

publish/subscribe applications", to appear in Mobile Peer-to-Peer Computing for Next

Generation Distributed Environments: Advancing Conceptual and Algorithmic

Applications, edited by Boon-Chong Seet, to be published by IGI Global (USA), 28 pp

in ms, accepted September 2008.

 12

2. L. Li, A. Gaddah ,and T. Kunz, "Mobility Support in a Tactical P2P Publish/Subscribe

Overlay", to appear in Proceedings of the 27th International Conference for Military

Communication, (MILCOM2008), San Diego, CA, USA, November 2008.

3. A. Gaddah and T. Kunz, "Subscriber Mobility in Pub/Sub Systems: Pro-active vs.

Reactive Handoffs", to appear in Proceedings of the 4th IEEE International Conference

on Wireless and Mobile Computing, Networking and Communications (WiMob 2008),

Avignon, France, October 2008.

4. A. Gaddah and T. Kunz, "A Pro-active Mobility Extension for Pub/Sub Systems",

Proceedings of the First International Conference on Mobile Wireless Middleware,

Operating Systems, and Applications, Innsbruck, Austria, February 2008.

5. A. Gaddah and T. Kunz, "Performance of Pub/Sub Systems in Wired/Wireless

Networks", in Proceedings of 64th IEEE Vehicular Technology Conference (VTC'06),

Montreal, Canada, pages 1-5, September 2006.

6. T. Kunz and A. Gaddah, "Adaptive Mobile Applications", in Encyclopedia of

Information Science and Technology, edited by Mehdi Khosrow-Pour, pp. 47-52, Idea

Group Publishing 2005, ISBN 1-59140-553-X. Second edition published September

2008, ISBN 978-1-60566-026-4.

7. A. Gaddah and T. Kunz, "Evaluating the Impact of Application Design Factors on

Performance in Publish/Subscribe Systems over Wireline and Wireless Networks",

Technical Report SCE-05-14, Department of Systems and Computer Engineering,

Carleton University, Ottawa, Canada, August 2005.

 13

8. A. Gaddah and T. Kunz, "Does Modern Middleware Address Mobile Computing

Requirements?", in Proceedings of the 8th World Multi-Conference on Systemics,

Cybernetics and Informatics, Orlando, USA, Vol. 5, pp. 493-499, July 2004.

9. A. Gaddah and T. Kunz, "Why Current Middleware Fails for Mobile Peer-to-Peer

Computing", NATO IST-030/RTG-012 Workshop on the Role of Middleware in

Systems Functioning over Mobile Wireless Networks, Wachtberg, Germany, August

2003.

10. A. Gaddah and T. Kunz, "A Survey of Middleware Paradigms for Mobile Computing",

Technical Report SCE-03-16, Department of Systems and Computer Engineering,

Carleton University, Ottawa, Canada, July 2003.

1.4 Structure of the Thesis

This thesis is organized as follows.

CChhaapptteerr 22:: provides a general overview of pub/sub systems and a more detailed review of

a representative set of these systems found in the literature. In particular, it discusses the

most well-known approaches that have been proposed to extend the pub/sub systems to the

mobile wireless environment. This chapter concludes by discussing the drawback of these

approaches.

CChhaapptteerr 33 provides a detailed description of our proposed approach that aims to extend

current pub/sub systems to operate on mobile wireless environments.

CChhaapptteerr 44 provides an introduction to JMS, describes the experimental setup, and presents

the prototype implementation of our proposed solution.

 14

CChhaapptteerr 55 describes the evaluation results of our proposed solution and the alternative

solutions along with detailed analysis and comparison.

CChhaapptteerr 66 presents an analytical model that can be used to extrapolate the performance of

the proposed approach and a comparative study for the analytical and experimental results.

CChhaapptteerr 77 summarizes the achieved work and offers a list of topics for the future work.

 15

CC HH AA PP TT EE RR 22

PPUUBBLLIISSHH//SSUUBBSSCCRRIIBBEE OOVVEERRVVIIEEWW AANNDD

RREELLAATTEEDD WWOORRKK

2.1 Introduction

This chapter presents a general overview of pub/sub systems and a more detailed review of

a representative set of these systems found in the general literature. The last few years have

witnessed the development of a tremendous number of pub/sub systems that are mainly

designed for event dissemination in fixed environments. Many research communities have

proposed and described techniques to develop such systems with a flexible and scalable,

distributed architecture. They have also addressed some fundamental issues related to the

expressiveness of the subscription language, event routing, and filtering techniques. While

the existing pub/sub systems are well established in the fixed domain, they have been

recently considered for the mobile wireless context. Unfortunately, mobility support has

not yet been investigated in much detail in such systems. A narrow spectrum of research

has recently been conducted to extend pub/sub systems to mobile environments, using

different methodologies. For simplicity, the reviewed systems are classified into two

categories: non-mobile and mobile pub/sub systems. We have covered the most popular

systems that belong to these categories. However, our main attention is given to the later

systems as our research focus is devoted to systems that recently have been extended to

support subscriber mobility. We discuss their characteristics and limitations in terms of

their mobility extensions.

 16

This chapter is organized as follows. Section 2.2 provides a general overview of pub/sub

systems. Section 2.3 describes the research efforts related to the pub/sub systems

optimized for the fixed environments. Section 2.4 presents different mobility support

extensions that are proposed to extend pub/sub systems to mobile wireless environments.

Section 2.5 gives a summary of this related work.

2.2 Pub/Sub Systems: An Overview

The general objective of any pub/sub system is to disseminate information from senders to

interested receivers, in an anonymous, decoupled way. Such a common general behavior is

implemented with different flavors in actual systems known in the pub/sub literature. In

this section, we provide a general overview of pub/sub systems, by first describing the

participants to the system and their roles and then highlighting the various semantical

features (or properties) supported by pub/sub systems.

2.2.1 System Components

A generic pub/sub-based system (or Event Notification Service) consists of a set of broker

(or dispatcher) nodes organized into an overlay network that forwards messages from the

publishers to the interested subscribers. The clients of this system are classified based on

their roles into publishers, which are information producers, and subscribers, which are

information consumers. The interaction takes place by passing messages (or events) from

publishers to interested subscribers through the broker nodes. Brokers coordinate

themselves in order to route information to all interested subscriber clients. Publishers

notify the outside world about the occurrence of certain events. Subscribers that are

interested in receiving particular sets of messages can express their interest by means of

subscriptions. Upon receiving a new message, the broker node matches the message

 17

against all the subscriptions and then forwards it to all interested subscribers. Messages are

forwarded to the subscribers in an asynchronous manner. Thus, the architecture of a

pub/sub system depends basically on a mediated node that manages subscriptions as well

as the delivery of messages and acknowledgements. Figure 2.1 illustrates the basic

components of a pub/sub system.

Figure 2.1: Components of a pub/sub system

2.2.2 The Basic Communication Model

The strength of the pub/sub communication model lies in the full decoupling of message

publishers from subscribers in time, space, and flow [21]. The communication model is

decoupled in time, because simultaneous interactions between publishers and subscribers is

not required; decoupled in space, because publishers and subscribers do not need to know

the identity of each other; decoupled in flow, because publishers are not blocked while

publishing messages and subscribers can asynchronously receive messages while

performing some concurrent activity. The decoupling of message publishers and

subscribers makes pub/sub systems highly scalable and flexible by removing all explicit

dependencies between the interacting participants. Indeed, it makes the resulting

communication model well adapted to highly dynamic distributed environments that are

asynchronous by nature, such as mobile computing environments [22].

 18

2.2.3 Subscription models

Pub/sub systems are based on two different subscription models: topic-based (or subject-

based) and content-based (or property-based). In the topic-based model, subscribers may

register to one or more topics and thus receive all the messages delivered to those topics.

Subscribers that share the same topic will receive a copy of each message within that topic.

Although topic-based subscriptions are simple and easy to implement, they represent a

static scheme that offers only limited expressiveness. The content-based model on the

other hand extends the notion of topics by using a subscription scheme that is based on the

actual content of the desired messages. Such a scheme allows subscribers to assign certain

queries on the message properties as part of their subscriptions. Hence, subscribers are able

to receive selective sets of messages published on a particular topic. It should be noted that

messages do not rely on an explicit destination address set by the publishers. Instead, they

are routed to the end destination based on their content. While a content-based model

allows subscribers to select messages of interest, an efficient and scalable filtering

mechanism is still an open issue.

Besides the topic-based and content-based models, JMS-based pub/sub systems support

nondurable and durable subscription models. Nondurable subscriptions allow subscribers

to consume messages as long as they are active. If a nondurable subscriber disconnects

from the network, it will then miss all the published messages during the period of its

inactivation. Nondurable subscriptions maintain low levels of reliability as the JMS broker

does not keep records of inactive subscribers. At the same time, they impose lower

overheads as the published messages are not buffered persistently for inactive subscribers.

Durable subscriptions provide high levels of reliability at the cost of higher overhead. If a

 19

durable subscriber becomes inactive for a certain period of time, the JMS broker retains all

the messages for the subscriber until it reactivates and consumes them. Therefore, durable

subscriptions naturally support disconnected operations in a mobile environment.

2.2.4 Quality of Service (QoS)

The degrees of the QoS offered by the broker vary in different pub/sub-based systems. The

most common QoS features supported in such middleware systems are briefly described.

Persistence generally guarantees that messages will not be lost upon failure of the

messaging system. Such messages are logged in an external storage until it is confirmed

that they are consumed successfully. Priorities are offered to ensure that messages with

higher priorities get processed before other messages. The priority levels and the way they

are applied differ from one messaging system to another. Transactions are a set of

operations grouped together into atomic blocks that are either entirely committed or safely

rolled back. If any of the operations in a block fails the whole transaction will be re-

processed.

2.2.5 The Broker Architecture

The broker architecture can be either centralized or distributed. A centralized architecture

consists of a single broker entity that connects several publisher and subscriber clients.

This central entity is potentially a performance bottleneck and a single point of failure.

This affects system scalability and limits the use of centralized architectures to small-scale

deployments. In a distributed architecture, a set of distributed brokers collaborate in

collecting subscriptions and forwarding messages to the interested subscribers. Publishers

and subscribers are not attached to a single broker entity; instead, they are distributed over

several interconnected brokers. This can potentially reduce the network load and improve

 20

system scalability. The distributed brokers can be organized in several topologies that

differ in terms of their strategies in routing subscriptions and messages. Two different

broker topologies are presented in Figures 2.2 and 2.3.

Figure 2.2: Hierarchical broker topology

In a hierarchical (or multicast) topology, the brokers are organized in a forwarding tree that

has a root broker and several downward brokers. Excluding the root broker, each broker is

considered as a client to the broker at the upward level of the hierarchy. Subscribers may

connect to any broker regardless of the location of the corresponding publishers in the

hierarchy. Whenever a new subscription is received, the broker forwards it upward to the

root broker. Each broker on the way from the subscriber to the root broker stores a copy of

the subscription. When a message is received by a broker, it is forwarded to the broker’s

parent. The message is also matched against all the stored subscriptions. This includes any

subscriptions from downstream brokers. The broker forwards the message to any interested

children (subscriber/broker) only if the matching result is true. Thus, messages are always

forwarded upward to the root broker, and downward towards any interested subscribers. In

this topology, each broker node is a critical point of failure. Also, parent brokers are

potentially overloaded as they perform extra work for their children.

 21

Figure 2.3: Peer-to-peer broker topology

A peer-to-peer (or broadcast) topology consists of a set of brokers that are connected in the

form of symmetrical peers. Their communication model supports a bi-directional flow of

subscriptions and messages. Each broker is responsible for a subset of subscriptions. A

publisher sends a message to any broker that it is connected to. That broker than becomes

responsible for propagating the message to all other brokers in the topology. When a new

message enters the system, each broker checks the message against its own subscriptions

and forwards it as necessary. It is apparent that the matching and forwarding overhead is

reduced compared to the previous topology. This is because each broker needs to match

messages against a portion of subscriptions. In this topology, the network will be flooded

by the generated messages since they travel to all brokers.

2.3 Non-Mobile Pub/Sub Systems

This section describes the research efforts related to pub/sub systems optimized for the

fixed environments. In such systems, subscribers are assumed to be stationary and the

infrastructure itself is fixed. As a result, many research activities are aimed to enhance the

functionality and performance of these systems in the fixed-domain. They have suggested

several techniques that address some fundamental issues related to, but not limited to,

 22

system scalability, event matching, event routing, subscription expressiveness, and event

distribution in a large-scale system. Next, we briefly describe some of these systems.

Hermes [23] is a distributed pub/sub system that consists of two main components, event

clients and event brokers. The event clients represent both event publishers/subscribers

and interact with the event brokers by using asynchronous message-passing (XML). The

event brokers contain the entire implementation of the services that are used by the event

clients. The main role of the brokers is to route events based on their content to all

interested subscribers. To reduce network traffic, event filtering is done at the event

publishers (source-side filtering).

Herald [24] is considered as an event notification service that is deployed as a self-

configuration federation of peers. It consists of publishers, subscribers, and rendezvous

points. Rendezvous points act as service access points for clients, allowing the clients

connected to the same access point to communicate with each other. Herald does not

support event filtration and it is not clear whether or how multiple rendezvous points can

be interconnected to form a distributed implementation.

CORBA Notification Service [25] is a standard for the implementation of an event

service built on top of CORBA ORB. The standard defines the IDL interfaces for three

types of components that are involved in an event-based interaction. These are the event

supplier, the event consumer, and the event channels. Event suppliers and consumers can

be directly connected or mediated by an event channel that allows multiple suppliers to

interact with multiple consumers asynchronously. The CORBA Notification Service

supports a record-based event model. The channel can either be aware of the structure of

the events (typed approach) or not (untyped approach). The CORBA-compliant event

 23

channels that are currently available on the market mostly present a centralized

architecture.

The Toronto Pub/Sub System (ToPSS) [26] focuses on developing an efficient content-

based pub/sub system for high speed event notification. The matching engine kernel is the

core of the ToPSS system. The kernel implements a minimal predicate language on top of

which different higher-level subscription languages are modeled. A-ToPSS [27] project

introduces the notion of approximate matching that extends the kernel’s predicate

language. The semantics of this matching is mainly based on some probability and fuzzy

set theories that measure the possibility and necessity with which the publication satisfies

the expectation expressed by a subscription.

Gryphon [28] is a distributed messaging system that focuses on defining efficient

algorithms to match events against content-based subscriptions and limiting the network

traffic concerning event delivery. The system supports a record-based event model and a

compound expression-based subscription approach. Upon receiving an event, each

dispatcher executes a matching algorithm to determine the set of neighbors (other

dispatchers or application agents) that are interested in receiving the events. Currently,

there is no attention paid to how subscriptions are distributed to all event dispatchers. It is

assumed that dispatchers are somehow informed of the subscriptions issued by all the

connected active objects.

TIB/Rendezvous [29] is a commercial infrastructure used to create and maintain large,

distributed, event-based applications. It offers several features including reliable and

scalable distribution of events. TIB/Rendezvous uses a three-level hierarchical event

dispatcher. Each node runs a TIB/Rendezvous daemon that is in charge of filtering events

 24

for the agents running in that node. The TIB/Rendezvous daemons interact with each other

by means of broadcast messages. TIB/Rendezvous exploits subject-based addressing and

does not offer full addressability of content-based messaging. Each event has an associated

subject that plays the role of a special field.

2.4 Mobile Pub/Sub Systems

This section describes different mobility extensions proposed to extend pub/sub systems to

mobile wireless environments. These extensions are based on techniques that differ in their

methodologies as well as the environment in which they operate. The proposed extensions

can be classified into three categories: reactive (or fetching), pro-active (or prefetching),

and durable subscription-based (or logging) extensions. In reactive extensions, mobility is

supported by fetching subscriber messages from the old broker just after the subscriber

reconnects to the new broker. In pro-active extensions, mobility support is achieved by

transferring and caching subscriber context just after disconnected operation takes place. In

durable subscription-based extensions, all the published messages are logged at every

broker visited by the subscriber, irrespective of its current active subscriptions. In the

following subsections, we present the most significant systems with different mobility

extensions that belong to one of these three classes.

2.4.1 Reactive Mobility Extensions

To the best of our knowledge, JEDI (Java Event-Based Distributed Infrastructure) [10] is

the first proposed pub/sub system that natively supports subscriber mobility. The JEDI

system exploits a set of dispatching servers (DSs), organized in a tree structure to simplify

event routing. To support mobility, JEDI provides two operations: moveIn and moveOut. A

subscriber may temporarily disconnect from its event dispatcher by invoking the moveOut

 25

operation, change its location, and reconnect possibly to a different DS by invoking the

moveIn operation. The DS maintains temporary storage of events during the disconnection

period and forwards the stored events to the interested subscribers when they reconnect

again. Since the subscriber may reconnect to a different DS, the new DS needs to directly

engage with the old one to retrieve all the subscriptions and events for that subscriber.

A drawback of this work is that JEDI cannot dynamically adapt the routing strategy to

changes in the pattern of communication which results from mobility. JEDI DSs are

specifically connected in a rather fixed tree (new DSs can only be added as leafs of the

tree) and events are routed along this tree to travel from publishers to subscribers. The

system is not capable of dynamically reconfiguring the topology of the dispatching tree to

cope with changes in the networking environment (e.g. link breaks) or to changes in the

overall workload (e.g. adding or removing DSs at runtime). Also, the tree-topology of

JEDI is not scalable to a high number of DSs since the root node can become a critical

bottleneck [30]. In [16], the authors argue that the cost of reconfiguring the multicast tree

may be greater than the gains from having events take the shortest path. In addition,

mobility support is not transparent to the applications, and even unrealistic as subscribers

often can only react after having been relocated.

Cugola et al. [31] define an extension to JEDI to adapt the routing strategy to the changes

in the communication pattern introduced by subscriber mobility. They propose a leadership

election and group management protocol to use a different and dynamically built

dispatching tree. The idea of their implementation model is based on existing multicast IP

algorithms. When a dispatcher, named D, receives a subscription from a component, it

checks if such a subscription has been already received. If this is not the case, it updates its

 26

internal tables and broadcasts the subscription to all other dispatchers. Upon receiving the

subscription, each dispatcher updates its tables by storing the subscription information and

a reference to D. Any equivalent subscription to the one propagated by D is not broadcast

by any dispatcher in the hierarchy. Instead, it is delivered directly to D. D has implicitly

become the leader of a group of subscribers. It maintains the access of other subscribers to

the group and the distribution of group members in a tree. When an event is published, if

the publisher is not part of the corresponding group of subscribers, the event is directly

delivered to the group leader. In turn, the leader broadcasts it to all its neighbors in the

dispatching tree. If the publisher belongs to the subscriber group, its dispatcher can

immediately initiate the propagation of the event along the dispatching tree.

The potential downside of this approach is that leadership clashes may occur during the

group startup as two (or more) equivalent subscriptions are independently broadcasted by

different dispatchers in the graph. Due to subscriber mobility, the system needs to update

the routing information on the dispatching tree. In the high mobility scenarios, this update

can be very costly from the performance perspectives. The authors have assumed that

components always disconnect in an announced way, which is not the most common

scenario in mobile environments.

SIENA (Scalable Internet Event Notification Architectures) messaging system has been

recently extended to support client mobility [32][33]. SIENA initially aims to maximize

expressiveness of the filtration mechanism without sacrificing scalability of the routing

mechanism. It is implemented as a distributed network of brokers that can be organized

either in a hierarchical or a peer-to-peer topology. Each SIENA broker maintains a

dynamic routing table for pub/sub data and broadcasts subscriptions to all brokers in the

 27

network. The mobility extension of SIENA is very similar to the JEDI approach. It is based

on independent, fixed proxy components that run at various access points (brokers) of the

pub/sub system. Each subscriber uses a local library that is linked with its applications to

mediate some of the requests sent to the system, and to interact with the proxies during the

handoff procedure. Each proxy temporarily buffers messages for disconnected subscribers,

and transfers their subscriptions and messages when they are reconnected to a new access

point (broker). Mobility service proxies use a synchronization mechanism designed to

minimize the loss and duplication of messages during the handoff procedure. The old and

new brokers interact directly to perform a handoff protocol that transfers the buffered

messages from the old proxy to the new one, and eventually to the interested subscribers.

Although the reported experimental results have shown the applicability of this approach

in supporting subscriber mobility, they are limited to the narrow evaluation of a single

mobile subscriber roaming across the network. This limits the value of their results, since

their approach never needs to transfer large volume of messages between brokers. The

existence of proxy components in the system may affect the overall performance if they are

heavily utilized. In Siena, publishers first generate advertisements (information about the

type of events intend to publish) to create an event dissemination tree. The system then

broadcasts these advertisements through the entire network of brokers. Such a global

broadcasting may increase the system overhead and affect its performance. During the

handoffs, the merge operation takes place to merge the buffered messages from the queue

of the old and new brokers. Eliminating duplicated messages during this operation is

discarded due to its cost and complexity. Therefore, the system suffers from the issue of

duplicated messages. Also, the mobility service is manually trigged by the subscribers and

 28

involves several operations before they can be relocated. This is inapplicable in the

wireless environments where the connection can be suddenly lost.

Farooq et al. [34][35] report their experience in evaluating the performance of SonicMQ

[36], a commercial pub/sub system based on JMS, in a cellular environment using

emulation environments. The goal of their research is to extend pub/sub systems in such a

way that it can provide high performance under high frequency of handoffs and error prone

wireless channels. They propose a middleware-level handoff protocol to manage

subscriber mobility from one broker to the other. A component called Handoff Manager is

located on each broker node to handle subscribers’ mobility. The subscribers are

responsible for locally storing the address of the last broker to which they were connected.

When the subscribers disconnect from the network and reconnect again, instead of

connecting directly to the broker, they first connect to the Handoff Manager. A sequence of

interactions is performed by the Handoff Manager entities located on the old and new

broker nodes.

Their approach is similar to the one introduced by [32][33]. The only difference is that the

mobility support service (Handoff Manager) is integrated with the broker into a single

entity instead of being run as a separate entity. This adds additional load on the broker and

makes it awkward to support mobility under high frequency of disconnection and

reconnection operations. This approach also does not hide the implementation details of

mobility support from the applications, as some modifications are required at the

application level. It is not clear how the Handoff Manager eliminates duplicated messages

and arranges the messages in the publishing sequence. Their performance study does not

show any results related to the overhead cost of such procedures. As indicated by [32],

 29

message coordination can be costly due to the high frequency of handoffs in mobile

settings. Hence, their proposed solution does not guarantee the delivery of ordered and

duplicate-free messages. This work partially overcomes the problem of message loss as a

result of the way in which the Handoff Manager was implemented.

CEA (Cambridge Event Architecture) [37] supports asynchronous operation by means of

events, event classes, and event occurrences. CEA follows a publish-register-notify

paradigm with event object classes and source-side filtering based on parameter templates.

It incorporates standard platform technology: IDL for publishing events and automatic stub

generation for event notification. In CEA, an object has a register method in its interface,

and interested parties can register interest in any event class. Moreover, access control is

performed at event registration; the service does not allow a client without appropriate

authority to register, and events that the service will notify are subject to restriction. When

an event occurs, the service matches it against a stored template associated with each

registration and each client whose template matches is notified of the event. To address the

issues of mobility, CEA defines intermediate services, called event mediators. A mediator

can prevent a mobile subscriber from missing events of interest while disconnected from

the networked systems. The mediator registers interest with the required event sources on

behalf of the mobile subscriber and buffers the event notification it receives from these

sources. It also keeps track of the mobile subscriber’s location and forwards the buffered

events to the mobile subscriber at the new location.

CEA has mainly focused on extending widely used platforms like CORBA, RMI, or

DCOM, to support asynchronous operation. The proposed extension exploits two types of

event notification: direct source-to-client and mediated. One of the drawbacks of the direct

 30

notification is the lack of mobility support. Furthermore, the event source is potentially

overloaded as it performs template matching along with event generation and delivery.

Although the mediated approach provides support for subscriber mobility, it is not clear

how the mobility support service is implemented. This work is also limited in that it does

not allow multiple mediators to be interconnected in an arbitrary topology, essentially

limiting the scalability of the architecture.

The REBECA notification service has recently been extended to support physical and

logical mobility [38][39]. Physical mobility refers to the subscriber movement between

different access points (brokers) in the system. While moving physically, the subscriber

terminal may leave the coverage area of one access point and move into the reach of

another access point. In contrast, logical mobility refers to the subscriber mobility within

the coverage area of the same access point (broker). It offers a certain form of location

awareness within the notification service to support location-dependent applications. The

subscriber’s movement is reflected in and mapped to changing subscriptions only. As the

scope of our research is limited to the physical mobility, we will only discuss the mobility

support related to this aspect. The basic idea of supporting physical mobility in REBECA

depends on maintaining a “virtual counterpart” of a moving subscriber at the last visited

broker until some broker at a new location takes over and then merges the “actual” and

“virtual” subscriber such that message loss and duplication are avoided. As a subscriber

detects the change of broker, it automatically re-issues a subscription along with the

sequence number of the last received notification. As a result, the new broker will detect

the movement of this subscriber and starts the relocation process by notifying its

neighboring brokers. The new broker finds the junction of delivery paths to the new and

 31

old brokers by inspecting its routing table and its list of received advertisements, and

compared it to the received subscription. It then sends a fetching request to the old broker

to retrieve the subscriber messages. The old broker sends all the events buffered in the

virtual counterpart of the moving subscriber starting with the sequence number provided

initially by the subscriber to the new broker. Messages are routed through the junction to

reach the new broker, and eventually the subscriber.

The authors do not justify why mobile subscribers cannot maintain the information about

the last visited broker. Their approach depends on locating the junction broker in the

broker network in order to process handoff requests. This can significantly complicate their

algorithm and increase the handoff latency particularly in a large-scale network. It is most

likely the junction broker gets overloaded, as all the fetched messages travel to the new

broker through it. This may impact the system performance, particularly when the

population of the moving subscribers increases. The proposed solution is based on a

reactive manner, i.e. the handoff process occurs only after the mobile subscriber reattaches

to the new broker, and hence incurs substantial performance overheads in mobile

environments. There are currently no results that evaluate the performance of the physical

mobility support to show its applicability and overhead cost.

Wang et al. [40] proposed a mobility management protocol for pub/sub systems, called

multi-hop handoff (MHH) protocol, to achieve reliable and ordered delivery of messages to

mobile subscribers with a minimized cost (in terms of message loss and duplication). In

MHH, when a mobile subscriber disconnects from the system, the subsequently incoming

messages will be buffered at the subscriber’s last visited broker. Once the subscriber

reconnects to a new broker, subscription and message migration are performed in parallel.

 32

The subscriber’s subscription(s) are moved hop-by-hop along the path from the last visited

broker to the new broker. As for the message migration, the last visited broker forwards the

locally buffered messages for the moving subscriber to the new broker, and all the brokers

on the path collect the in-transit messages and directly transfer them to the new broker.

Two different types of subscriber mobility are suggested, namely proclaimed and silent

mobility models. In the former model, the mobile subscriber informs the system of its new

destination before its movement, while in the later model, the mobile subscriber

disconnects from the system without prior notice and has to keep track of the identifier of

the last-visited broker. In both models, state transfer takes place after the subscriber

reconnects to the new broker.

The proposed MHH protocol is similar to the one introduced by [32][33] discussed earlier.

The only difference is that the message migration between the old and new broker is

immediately suspended once the mobile subscriber disconnects before the handoff process

ends. This is to avoid the frequent movement of undelivered messages between the

brokers. In general, the suggested protocol will introduce high handoff latency as it may

take a long time for the new broker to receive the subscriber’s subscription(s) as well as its

messages upon reconnection, particularly when the network is congested or is large. High

frequency of subscriber mobility may greatly increase the overhead on the network traffic

as the buffered messages for the moving subscriber will be frequently moved between

different brokers. This may significantly result in furthering the handoff latency.

Hu et al. [41] addressed subscriber mobility in a distributed content-based pub/sub system.

They mainly focus on the transactional semantics required by a mobile subscriber (i.e., a

subscriber who wishes to disconnect from an original broker and reconnect to a new broker

 33

in the overlay as part of a transaction). They first identified the transactional semantics for

a mobile subscriber and outlined the transactional concerns at various layers, focusing on

the subscriber movement and routing protocol layers. We will limit our discussion to the

subscriber layer movement protocol as it is within the scope of this thesis. The proposed

subscriber movement protocol, that satisfies the defined transactional semantics, involves a

conversation between the original and the target broker as described next. A mobile

subscriber who wishes to migrate sends a MOVE message to the system indicating the

target broker it wishes to moves to. The original broker in this case sends message (1) to

the target broker that includes some information about the moving subscriber such as its ID

and subscriptions. When the target broker receives message (1) and decides to server the

subscriber, it initializes a transaction state for the subscriber and then issues message (2)

that contains the same information received from the original broker. Message (2) executes

the routing table reconfiguration protocol to maintain valid routing configuration states

during subscriber movement. If the target broker does not accept the subscriber, it sends a

reject message (3) to the original broker. In this case, the original broker will notify the

system and the move request submitted by the subscriber will be aborted. When the

original broker receives message (2), it stops the subscriber and sends message (4) to the

target broker, containing the buffered messages for the moving subscriber. When the target

broker receives message (4), it dispatches it to the new subscriber that accordingly merges

the delivered messages with those stored locally at the target broker.

The proposed mobility management protocol requires the system to reconfigure the routing

tables of all the brokers on the path from the original to the target broker. Such a behavior

in the high mobility scenarios can be very costly from a performance perspective. In

 34

addition, message transfer between the brokers may drastically increase the load on the

network, thereby degrading the overall performance. The proposed subscriber mobility

protocol is mainly based on the assumption that subscribers have advance knowledge

about their target brokers and move in an announced way. Such an assumption is an

uncommon scenario in mobile wireless environments and hence limits the applicability of

the proposed protocol to relocate subscribers’ states between brokers but not supporting

the physical mobility of the subscribers. Although the reported results show the overhead

cost of the proposed protocol, there are currently no results that evaluate the performance

of the protocol in terms of message loss/duplication during routing table reconfiguration.

Tarkoma and Kangasharju [42] discussed their experience in investigating the safety

and cost of handoff protocols for pub/sub clients in content-based routing networks. The

upper and lower bound costs of handoff protocols were determined for three different

topologies, refereed to as generic mobility support, acyclic graphs, and rendezvous-based

topologies. The authors also discussed the impact of completeness and incompleteness of

the routing topology on the cost of handoffs. The reported formal study gives valuable

insight into the engineering of efficient and mobility-safe handoff protocols. Through this

study, three techniques were proposed to improve mobility support in pub/sub systems:

overlay-based routing, rendezvous points, and completeness checking. Overlay-based

addressing prevents the content-based flooding problem. It abstracts the communication

used by the pub/sub system from the underlying network-level routing and enables the

system to cope with network-level routing errors and node failures. Rendezvous points

simplify mobility by allowing better coordination of topology updates. Completeness

checking ensures that subscriptions and advertisements are fully established (complete) in

 35

the topology. This is needed to perform the covering optimization.

Although the discussed mobility protocols gives a reasonable set of engineering guidelines

for the development of efficient handoff protocols in content-based pub/sub systems, they

are not intended to suggest new solutions to support subscriber mobility. This is different

from our work as we introduce a new approach for managing subscriber mobility. The

reported results are limited to a single performance metric (i.e., message cost), which is not

sufficient to completely evaluate the impact of different protocols and topologies in dealing

with mobile pub/sub clients.

2.4.2 Pro-active Mobility Extensions

Burcea et al. [30] identify and classify the factors that affect the performance of a pub/sub

system intended to support subscriber mobility. They also formalize a number of mobility

algorithms for distributed pub/sub systems with the objective of optimizing the costs posed

by disconnected operations. These mobility algorithms are referred to as prefetching,

logging, home-broker, and subscriptions-on-device. They are largely different in terms of

their methodology for optimizing the mobility costs. We limit our discussion here to the

prefetching algorithm as it belongs to the category of pro-active extensions. Prefetching is

similar to the extension proposed by [10], except that the subscriptions and events transfers

occur when the subscriber disconnects from its original broker. This minimizes the latency

of the state-transfer between the old and new broker and reduces the number of events that

need to be transferred over the network.

The effectiveness of prefetching algorithm is based on the successful approximation of the

next subscriber’s destination (broker), which is not considered in their solution. Instead, a

 36

pre-defined mobility pattern is used to define target brokers for prefetching. In contrast,

our pro-active approach makes use of a data structure, called neighbor graph, which

automatically identifies the next potential target brokers. As a part of the prefetching

algorithm, the subscriber context (subscriptions/events) is removed from its original broker

once it has disconnected. Thus, it cannot support a reconnect operation to the same broker.

Our pro-active approach takes into consideration this type of operation, which may occur

due to the loss of wireless connectivity. Although the authors measure the performance of

prefetching in terms of network load, they have not considered other performance metrics

such as message loss, message duplication, and overall throughput. Furthermore, they have

not evaluated the prefetching mechanism to multiple brokers. This limits the applicability

of their achieved results. The proposed prefetching algorithm is not appropriate for

supporting fast handoffs as the prefetching takes place just after the mobile subscriber

disconnects from its original broker. Due to high network latency or very fast mobility,

such a scheme may fail to support subscriber mobility as the subscriber may reach its new

destination prior to the arrival of its subscriptions and events from its previous broker. In

our approach, the subscriber context is always transferred prior to the subscriber movement

to support fast handoffs.

Cilia et al. [43] have proposed two forms of mobility extensions that exploit per-

subscriber proxies and distributed buffers to improve the bootstrapping process. The first

extension uses the knowledge of future mobility patterns to harness possible subscriber

movements and attach to potential future locations before the subscriber application needs

the data. The second form of extension is based on distributed buffers and a mechanism

that allows to access notifications from the past. We mainly focus on the former extension

 37

since it belongs to the pro-active category. The idea of such an extension is to implement

per-subscriber caching at potential future locations. When the subscriber disconnects from

the network, a virtual counterpart is created, establishing per-subscriber caches in the

network to forward buffered events to the subscriber when it eventually arrives at its

destination.

The authors do not provide any concrete results that demonstrate the applicability of their

proposed extensions. They only provide a high level description of the basic architecture of

their extensions. Similar to the previously discussed scheme, the mobility prediction has

not been considered in the proposed solution. It is not clear how their extension deals with

the propagated subscriptions after the subscriber hands off and whether subscriptions are

kept locally for potential future reuse as adopted by our pro-active approach to reduce the

propagation overhead. The proposed extension is also similar to the previous extension as

their pre-subscription approach takes place while the mobile subscriber is disconnected.

This may affect the adequacy of their approach in supporting fast handoffs as discussed

earlier. The mobility extension is based on a per-subscriber caching mechanism that may

overload the hosted broker. Subscribers may have similar interest in receiving certain

events and hence caching events per subscriber increases the possibility of storing similar

messages on the same broker. This increases the load on the broker in terms of memory

usage and processing time. Our pro-active approach benefits from subscription similarity

as it uses a shared buffer to cache a single copy of each message that matches similar

interests of multiple subscribers. Moreover, scenarios such as permanent and long interval

disconnections, which may occur due to subscriber crashes/failures, are not considered in

their work. The performance of the active subscribers may get affected due to the overhead

 38

of the continuous per-subscriber caching process. In our pro-active approach, we take care

of such scenarios using a timeout interval that allows our approach to reclaim the buffer

space and minimize the overhead of caching process. The accuracy of their approach (in

terms of message loss) depends on the interval that is required to transfer subscriber

subscriptions and create per-subscriber proxies. This is because the latency of this process

is not considered in the proposed extension. In contrast, our pro-active scheme takes into

account such latency as it caches/transfers events, published during subscription activation

process, to the next potential brokers.

2.4.3 Durable Subscription-based Mobility Extensions

JMS (Java Message Service) [12][13] is a set of APIs developed by Sun Microsystems. It

aims at representing the standard, common interface for Java messaging systems. A brief

overview of JMS characteristics is given in Chapter 4. To support disconnected operation,

JMS supports a particular type of subscription, called durable subscription. Durable

subscriptions allow subscribers to receive messages generated while they are disconnected.

Messages are stored persistently and delivered to the subscribers when they become active.

JMS does not specify how the messaging server is implemented (i.e., as centralized

component or through a set of distributed dispatchers). We have reviewed several

implementations of JMS, including OpenJMS [44], Joram [45], FiornaMQ [46], JBossMQ

[47], and JavaSMQ [48]. We were not able to find complete and functional support for

subscriber mobility. Durable subscriptions and persistent messages can provide a partial

solution.

Podnar and Lovrek [49] proposed a mobility extension based on persistent notifications

that require the delivery of valid notifications just after the activation of a new subscription

 39

in the systems. Each broker is responsible for storing the received notifications in a

persistent buffer and then forwards them to interested subscribers and neighboring brokers.

These notifications are removed once their validity period expires. The broker also

maintains a list of valid notifications that have been sent to subscribers and brokers. When

a subscriber reconnects to the system, the broker activates its subscriptions and delivers the

valid stored notifications. The subscriber must provide a list of the previous received

notifications to avoid duplicated notifications.

This approach clearly creates extra traffic in the broker network, and increases the usage of

broker memory and processing time. Due to the costly buffering process, the overhead on

the distributed brokers can be significantly increased. This may result in degrading the

system’s performance. Also, the number of lost notifications can increase as the buffer

space drains quickly or the notifications become invalid due to a large disconnection

interval. Duplicated messages can be received when the mobile subscriber reconnects to

the old broker after moving to a new one. The preliminary experimental results do not

reveal the performance of the proposed extension with respect to message loss and

duplication.

The Elvin system [11] in its latest version has added extensions to support disconnected

operation in mobile environments. A prototype Elvin ‘proxy’ has been developed to store

events persistently for disconnected subscribers and forward them upon subscriber’s

reconnection. The proxy model extends the standard Elvin system by introducing proxies

which act as normal subscribers to the Elvin server and as a proxy server to subscribers.

Subscribers thus connect directly to a proxy server rather than the Elvin server itself to

receive their events. The proxy server maintains a permanent connection with the Elvin

 40

server and remains subscribed on the behalf of all subscribers. Any events forwarded by

the Elvin server to the proxy server while the subscribers are disconnected are stored at the

proxy side until the subscribers reconnect again. The Elvin system provides a quenching

feature that allows message producers to obtain information about consumers’ requests to

limit their message generations to only messages of consumer interest. Elvin currently

supports both local and wide area federation of Elvin servers so as to cooperate in routing

events to subscribers.

The main disadvantage of this work is that the system capability is limited to supporting

disconnected operation. Mobility between proxies has not been considered. If a mobile

subscriber disconnects and migrates from its home proxy, it cannot reconnect to another

proxy who is nearby. It is compulsory for the subscriber to reconnect to the same proxy

each time. This potentially increases the network load and reduces the system performance.

STEAM (Scalable Timed Events And Mobility) [50] is a pub/sub notification service

designed specifically for MANETs. It supports three different types of event filter: subject,

proximity, and content filters. The combination of these filters is mainly aimed to address

the problems related to highly mobile application components that communicate using

wireless technology in an ad hoc mode. In STEAM, messages are only visible to the

subscribers that are in the same geographical area of the publisher. In other words, STEAM

offers a special form of location-aware publishing service, where information is expressed

relative to the publisher location. The STEAM implementation is particularly tailored to

MANETs and takes advantage of a proximity-based group communication service [51]

that uses the number of hops traveled by messages at the MAC networking layer to

approximate distance.

 41

Subject and proximity filters are deployed on the producer side. The matching process

adds extra load on the producer entity and may affect its performance. A single producer

has to match the potentially large number of events for every subscribed consumer.

Content filters are applied on the consumer side instead of deploying them on the producer

side. This results in the distribution of the matching load from a single producer entity to a

number of consumers. Hence, each consumer has to deal with a small number of content

filters. This approach introduces extra additional overhead on the network link due to the

propagation of unwanted events to consumers that are eventually discarded by the content

filter. Failed and temporarily unavailable entities and connections are characteristics of

wireless networks. A mechanism needs to be provided to ensure event delivery during such

circumstances.

Huang and Garcia-Molina [22] have reviewed possible models that can be used to extend

pub/sub systems to operate in a mobile wireless context. They present a basic model for

the deployment of such systems for wireless environments and identify some of the issues

that would arise during such a deployment. Huang and Garcia-Molina have also studied

the problem of extending pub/sub systems to mobile ad hoc networks [52]. They proposed

a greedy algorithm, SHOPPARENT, which constructs an optimal pub/sub tree for routing

information from the source to all interested subscribers in a fully distributed fashion.

Although the discussed models provide a reasonable set of guidelines for extending

pub/sub systems to wireless environments they are not aimed to address specific issues

related to subscriber mobility. Instead, these models provide a rich abstraction for dealing

with system failures, message loss, and disconnections. One of the issues in addressing

these problems is finding a suitable evaluation environment, which is not defined by the

 42

authors. Regarding their work in wireless ad-hoc pub/sub systems, the proposed algorithm

can deal only with certain aspects of mobility. It does not consider reliability and high

mobility aspects. Their target operating environment is one with occasional

reconfigurations, followed by periods of stability allowing the pub/sub tree to be

constructed. Thus, nodes may occasionally miss their events, especially when they move

constantly at high speeds. The authors assume in their algorithm that a node is willing and

able to take on any number of children. This assumption may affect the performance of

that node since too many events will pass through it. They also assume that only the root

node can publish new events, which seems a limiting assumption.

2.5 Concluding Remarks

With the growing popularity of mobile devices, there is an urgent need to extend current

pub/sub systems to mobile wireless settings. Although extensive work has been conducted

on pub/sub systems for the fixed networks, comparatively few research has focused on

these systems in the mobile wireless domains. In this chapter, we have reviewed a number

of proposed solutions that aim to support subscriber mobility in pub/sub systems. We have

classified the proposed mobility extensions based on the methodology of their solutions:

reactive, pro-active, and durable subscription-based. We have also surveyed a number of

representative pub/sub systems that do not support mobility. However, we believe that they

offer some functionality that is relevant to the discussion presented in this chapter.

The main lessons we have learned from the reviewed work indicate that the proposed

extensions to the pub/sub systems have achieved their goals with different degrees of

success. However, several technological problems related to pub/sub mobility management

support need to be investigated. We still miss effective strategies to design and implement

 43

an efficient mobility support which can guarantee that no events will be lost or duplicated

when a subscriber hands off from one access point to the other. The current proposed

extensions are not transparent to the application layer and are manually trigged by the

subscribers. They are also limited in terms of their performance and efficiency. Mobility

support in [11][32], for instance, relies on a central proxy that may become a performance

bottleneck and induces significant network traffic due to potential triangular routing.

With respect to these issues, our work focuses on extending pub/sub systems to meet

subscriber mobility aspects as a primary goal. The main objective of such an extension is

not only supporting subscriber mobility in a transparent manner but that should also ensure

high performance under high frequency of handoffs. We need also to evaluate the impact

of the proposed solution on the system performance. To achieve this goal, we use the most

widely accepted messaging system standard, Java Message Service (JMS) [12][13], as a

base platform for our research activities.

As discussed previously, the pub/sub system can be implemented as a set of distributed

brokers that are organized either in a hierarchical or a peer-to-peer topology. In such

distributed models, performance can be strongly affected when the traffic needed for

achieving mobility support or coordinating brokers becomes considerably high. In this

respect, we argue that an appropriate strategy for reducing such traffic is a necessary

condition to achieve the expected levels of performance. This strategy should be flexible

and scalable to meet its objectives without affecting the existing features of a distributed

notification service. To this extend, it is a critical issue to identify the most promising

strategy that can minimize the overhead of network traffic without negatively impacting

the system behavior.

 44

Different from other proposed pro-active solutions, we make use of a data structure, called

neighbor graph, which automatically captures the set of potential brokers that are most

likely to be the next-hop broker of the mobile subscribers. In our approach, the subscriber

context is also transferred prior to the subscriber movement (i.e., before the occurrence of

disconnect operation) to support fast handoffs. Besides to handoff, our proposed pro-active

approach supports a reconnect operation to the same broker, which may occur due to the

loss of wireless connectivity. The propagated subscriptions are locally stored for potential

future reuse and only deleted when it is necessary to reduce the propagation overhead. Our

pro-active solution takes advantage of subscription similarity as it uses a shared buffer to

cache a single copy of each message that matches similar interests of multiple subscribers.

This can significant reduce the load on the brokers in terms of memory usage and

processing time. Scenarios such as permanent and long interval disconnections, which may

occur due to subscriber crashes/failures, are supported in our pro-active approach using a

timeout interval that allows our approach to reclaim the buffer space and minimize the

overhead of caching process. Our pro-active approach also takes into account the network

latency as it caches/transfers events, published during subscription activation process, to

the set of next potential brokers. This is necessary to avoid message loss that may occur

due to high network latency. We have evaluated the mechanism of our pro-active approach

in respect of multiple brokers and used variety of performance metrics.

 45

CC HH AA PP TT EE RR 33

AA PPRROO--AACCTTIIVVEE CCOONNTTEEXXTT DDIISSTTRRIIBBUUTTIIOONN

AAPPPPRROOAACCHH FFOORR SSUUPPPPOORRTTIINNGG MMOOBBIILLIITTYY

3.1 Introduction

Little attention has been recently given to extend pub/sub systems to operate in mobile

wireless environments. The most common choice for extending these systems is based on a

reactive approach (i.e., context transfer occurs only after the mobile subscriber hands off

to the new broker). This approach considerably increases the network load since the actual

messages need to be transferred between the brokers to support subscriber mobility. It also

imposes high handoff latency that may not be acceptable by many applications needing

fast handoffs among brokers to maintain the quality of the communications. A different

technique that has been proposed for mobility support is based on a durable subscription-

based approach (i.e., every broker locally buffers all the published messages irrespective of

its current active subscriptions). This may result in increasing the overall overhead of

distributed brokers due to the costly buffering process, and thus degrade the system’s

performance. It also drains the buffer space quickly, resulting in a high message loss rate.

Increasing the buffer size may reduce message loss, but on the other hand will increase

message duplication and diminish the overall throughput.

In this chapter, we propose a novel and efficient approach to extend pub/sub middleware

systems to support subscriber mobility and to provide fast handoffs. The core idea of this

 46

approach is largely based on a mechanism which intelligently transfers/caches subscriber

context (its actual subscriptions) one hop (broker) ahead of its current broker in a pro-

active fashion (i.e., context transfer/caching occurs prior to the subscriber movement). As

it is difficult to predict the subscriber’s movement, we need to identify the set of potential

next brokers without examining the brokers’ topology and manually creating the set. In

this regard, we introduce a data structure, called neighbor graph, which forms the basis for

our pro-active approach as it dynamically identifies the candidate set of brokers to which

subscriber context should be pro-actively transferred and cached. Each broker over time

learns about its immediate neighbors; thus, only these neighbors will receive/cache the

subscriber context prior to the occurrence of handoffs. We also present an analytical model

that can be used to capture the messaging cost as it is of key interest to provide insights

into the overhead imposed by different solutions (our proposed solution as well as the

alternative solutions proposed in the pub/sub literature) to support subscriber mobility.

This chapter is organized as follows: Section 3.2 describes our pro-active approach in

detail. Section 3.3 presents a data structure, called neighbor graph, which forms the basis

for our approach. Section 3.4 presents some guidelines for overhead optimizations. Section

3.6 introduces an analytical model for messaging cost. Section 3.6 concludes this chapter.

3.2 Pro-Active Approach for Context Distribution

This section describes the pro-active context distribution approach that aims to cope with

subscriber mobility at significantly minimized cost in terms of message loss/duplication,

processing overhead, and handoff latency. Our proposed approach achieves its objectives

by transparently managing subscriptions and incoming messages, both while the subscriber

is disconnected or/and during its handoff process. Subscriptions in this approach can be

 47

either in active or passive modes. Active subscriptions are the ones used for matching the

published messages to the subscribers’ interests and only those matched messages can be

either routed to the interested subscribers or cached for future use. Passive subscriptions on

the other hand do not enforce any message routing or caching and simply ignore incoming

messages. Initially, a subscriber submits an active subscription to a broker to consume its

messages. Then a passive copy of this subscription is propagated to all immediate neighbor

brokers. Once the subscriber disconnects from the original broker, the propagated copies

of the subscription become active. When the subscriber reconnects to the broker, other

propagated subscriptions become passive again.

The pro-active context distribution algorithm can be decomposed into the following three

phases: 1) transfer(cache) subscriptions to(at) the neighbor brokers; 2) activate(deactivate)

subscriptions and cache messages locally; 3) deliver messages and reset cache. Figure 3.1

presents the pseudocode for the algorithm. Although each broker in the system locally

executes a copy of this algorithm, the provided description describes the algorithm from

the viewpoint of the initial broker Bj. The following notation is used in the description:

• S: denotes a subscriber who is potentially mobile.

• Bj: denotes the initial hosted broker for subscriber S.

• Bi: denotes the next-hop broker to Bj.

• Neighbor(Bj): denotes the set of neighbor brokers of Bj.

• Sub(S): denotes the subscriptions related to subscriber S.

• Msgs(S): denotes the actual messages of subscriber S.

• Context(S): denotes the information (subscriptions/messages) of S.

• NBR_List(Bi): denotes the neighbor list of broker Bi.

• Timeout(S): denotes a chosen time Ttimeout for managing the context of a disconnected

subscriber S. When Ttimeout expires, subscriber context is garbage collected (Ttimeout ≥

the average disconnection interval at all brokers).

 48

Pro-active Context Distribution Algorithm – executed on broker (Bj)

Case 1: Initial connection

 IF subscriber S connects to Bj THEN

 FOR all Bi ∈ Neighbor(Bj) DO

 Forward Sub(S) to Bi

 ENDFOR

 ENDIF

Case 2: Subscriber disconnects

 IF subscriber S disconnects from Bj THEN

 FOR all Bi ∈ Neighbor(Bj) DO

 Activate Sub(S) stored at Bi

 Forward Msgs(S) to Bi stored during Sub(S) activation

 ENDFOR

 ENDIF

Case 3: Subscriber reconnects

 IF subscriber S reconnects to Bj THEN

 FOR all Bi ∈ Neighbor(Bj) DO

 Deactivate Sub(S) stored at Bi

 ENDFOR

 ENDIF

Case 4: Subscriber moves out to a peer broker

 IF subscriber S hands off to Bk from Bj THEN

 FOR all Bi ∈ Neighbor(Bj) and Bi ≠ Bk DO

 IF Bi ∉ NBR_List(Bk)THEN

 Delete Context(S) stored at Bi

 ELSE

 Deactivate Sub(S) stored at Bi

 ENDIF

 ENDFOR

 ENDIF

Case 5: Subscriber moves in from a peer broker

 IF subscriber S hands of to Bj from Bk THEN

 IF Sub(S) is not in Bj buffer THEN

 Obtain Context(S) stored at Bi

 ENDIF

 FOR all Bi ∈ Neighbor(Bj) DO

 IF Bi ∉ NBR_List(Bk)THEN

 Forward Sub(S) to Bi

 ENDIF

 ENDFOR

 ENDIF

Case 6: Subscriber unsubscribes

 IF subscriber S unsubscribes from Bj THEN

 FOR all Bi ∈ Neighbor(Bj) DO

 Delete Context(S) stored at Bi

 ENDFOR

 ENDIF

Case 7: Subscriber context obtained

 IF Bj obtains Context(S) from neighbors THEN

 Buffer Context(S) at Bj

 ENDIF

Case 8: Subscriber times out

 IF Bj triggers Timeout(S) THEN

 FOR all Bi ∈ Neighbor(Bj) DO

 Delete Context(S) stored at Bi

 ENDFOR

 ENDIF

Figure 3.1: The pro-active context distribution algorithm

 49

Our designed algorithm makes a few assumptions about the target pub/sub system. The

algorithm assumes a set of dedicated brokers organized in a general graph (or peer-to-peer)

topology to form a distributed communication service. The peer brokers (connected by

wireline elements and have unique identification numbers) communicate directly with each

other via reliable and authenticated TCP connections to exchange messages/subscriptions.

Our algorithm also assumes the adoption of the flooding strategy to steer message

dissemination to the brokers. This assumption is based on papers such as [8][28] that

strongly recommend this strategy in highly mobile environments as mapping content-based

pub/sub systems on top of IP Multicast (topic-based) results in an explosion of multicast

group. Alternative strategies, adopted by Hermes [23], Gryphon [28], and SIENA [32][33],

drastically increase the load on the root broker that potentially becomes a performance

bottleneck. Security has not been addressed in conjunction with our proposed pro-active

approach as it is out of the scope of this thesis. It is expected that previously proposed

techniques can be used also for this context. An overview of generic security techniques

proposed for the pub/sub systems was introduced in [53][54]. We assume that there are no

failures at the pub/sub routing layer (broker nodes and their links) since the development

of fault-tolerant pub/sub protocols [55] is out of the scope of this thesis. However, we later

provide a general guideline on how the proposed algorithm can cope with the failures in

the broker network. Both permanent and temporary mobile subscriber crashes are allowed.

Such failures are considered as special cases of disconnect operations that can be masked

by the proposed algorithm. This algorithm is also based on the assumption that the brokers

are distributed in the same geographical neighborhood region and subscribers may

reconnect to the closest broker to their current locations. This assumption is essential to

 50

support emerging location dependent services (i.e., messages forwarded to the mobile

subscribers depend on its current location) and to reduce the network overheads. In this

algorithm, we assume that the subscribers always keep their original subscriptions and do

not change them while disconnect from or/and reconnect to the system. Our algorithm is

only limited to manage subscriber mobility, and is not concerned about publisher mobility,

which has been explored by others [15][16]. Unlike subscribers, there is no specific

information that the publisher would miss during the period of its disconnection.

We next give a stepwise description of the proposed algorithm. Although it is intended to

serve multiple mobile subscribers that are connected to the same broker, for simplicity, we

only describe the algorithm from the viewpoint of an individual subscriber.

Case 1 starts when a subscriber S connects to a certain broker Bj in the system. Broker Bj

sends a passive copy of the subscriber’s subscription Sub(S) to each immediate neighbor

Neighbor(Bj). Each neighbor Bi locally stores Sub(S). In the meantime, broker Bj routes the

published messages to subscriber S throughout its active subscription.

Case 2 starts when subscriber S temporarily disconnects from the network due to poor

network connectivity or a handoff. If broker Bj does not receive a generic ping reply from

S, after a certain time, it will consider S as temporarily disconnected and thus sends an

activate request to each immediate neighbor Bi. Broker Bj also needs to forward stored

messages, during the subscription’s activation, to its neighbors. This is necessary to avoid

message loss that may occur due to the activation latency. Following the activation of

Sub(S), the brokers Bi will locally buffer all the incoming messages that match Sub(S). It

should be noted that the ID of the last message consumed by S (for each subscription) is

enclosed with the activation request and thus only the messages with higher IDs are stored.

 51

Similarly, broker Bj keeps buffering the messages for S as S may reconnect to Bj again.

Case 3 starts when subscriber S reconnects to the same broker Bj. This results in sending a

deactivate request from Bj to its neighbors Bi, informing them to deactivate Sub(S) (change

subscription’s mode to passive), end the caching process, and clean up their local buffers.

In the meantime, broker Bj delivers all buffered messages to subscriber S.

Case 4 starts when subscriber S hands off to a peer broker Bk. Broker Bk informs Bj that S

reconnected to it. Thus, broker Bj requests its neighbors Bi either to delete the context of S

from their buffers or deactivate Sub(S), excluding broker Bk. Broker Bk is excluded because

S takes control over Sub(S) and uses them to consume its messages directly from Bk.

Brokers Bk and Bj exchange the list of their neighbor graphs to reduce the overhead of

context transfer. Throughout these lists, broker Bj can decide which Sub(S) should be

deleted and which Sub(S) should be deactivated for later use by broker Bk. Similarly,

broker Bk can identify which Sub(S) should be forwarded to its neighbors. Neighbor

brokers typically exchange their lists whenever an edge is added or deleted from their lists.

Case 5 starts when subscriber S hands off to broker Bj from broker Bk. Broker Bj first

checks if Context(S) is available in its buffer. If it is not found in the buffer, then broker Bj

will inform broker Bk to send the subscriber context. This may occur in two different cases:

1) broker Bk is not a neighbor of broker Bj. Thus, broker Bj has no information about the

subscriber S. 2) subscriber S is the first to visit broker Bj from its neighbor Bk. If Context(S)

is found in the buffer of broker Bj, similar actions to case 1 will be performed.

Case 6 starts when subscriber S removes its subscription(s) from broker Bj. As a result,

broker Bj requests its neighbors Bi to delete Context(S) from their buffers.

 52

Case 7 starts when broker Bj receives the subscriber context from neighbors Neighbor(Bj).

The subscriber context (messages/subscriptions) will be stored in a persistent buffer. Note

that Bj cannot receive messages without having the corresponding subscriptions for them.

Case 8 starts when subscriber S disconnects from broker Bj for long interval. When the

disconnected time reaches a timeout interval Ttimeout, broker Bj informs its neighbors Bi to

delete Context(S) from their buffers. This is a necessary task as buffering and managing the

Context(S) can severely affect the broker performance.

 Figure 3.2 depicts a simplified finite state machine (FSM) diagram that describes the

dynamic behavior of a mobile subscriber as discussed previously (see Figure 3.1).

∉∈

∉

∈

Figure 3.2: FSM diagram for the pro-active context distribution algorithm

 53

Next we describe several situations where concurrency can be an issue in the proposed pro-

active context distribution algorithm and how the algorithm can cope with them. Although

we avoid any concurrent access to the same subscription object(s) in our algorithm, there

are several cases where such scenario may potentially occur due to network latency or/and

delayed response of overloaded brokers, resulting in race condition issues. Here the race

conditions appear when two concurrent operations, initiated by two different brokers, are

intended to change the state of the same subscription(s) (e.g., activate, deactivate, or delete

states). This can easily lead to an inconsistent state among the same subscription(s) copies

stored at neighbor brokers, and hence impact the performance of the pro-active approach.

Next we describe some scenarios where race conditions can possibly be raised. When a

mobile subscriber S enters the MoveOut state, shown in Figure 3.2, broker Bj sends a

deactivate request to the neighbor brokers Bi that are also neighbors of broker Bk. It may

happen that subscriber S disconnects from Bk at the same time Bj issued the deactivate

request. In this case, Bk also needs to send an activate request to its neighbors Bi. Due to

the previously mentioned delays, concurrent operations (deactivate and activate) can be

possibly applied on the same subscription(s) at neighbor brokers Bi to change their current

state(s). This results in a race condition issue that may cause an inconsistent/inappropriate

state among the subscriber subscription(s). Consider the case when the subscription(s) are

activated to support the movement of subscriber S from Bk and then deactivated based on

the request issued by Bj. Such inappropriate subscription state leads to the use of reactive

method as a recovering mechanism to support subscriber mobility. To remedy the race

condition issues, we have integrated the broker ID with the propagated subscription(s) to

indicate which broker has the control to deactivate or delete the activated subscription(s).

 54

The integrated ID is frequently updated using the activate request received from the most

recent broker that hosted the moving subscriber. Looking at the previous scenario, Bj

would not be allowed to deactivate the subscription(s) since Bk gained control of the

subscription(s) just after performing the activate request. This keeps the subscription(s) in

a consistent/appropriate state and eliminates the overhead of the reactive method.

Similarly, race conditions may occur in the MoveOut state, when the subscriber S hands off

to broker Bk. In this case, broker Bj needs to issue a delete request to remove subscriber

subscription(s) from its neighbor brokers Bi (that are currently not broker’s Bk neighbors)

once it is informed by Bk about the subscriber’s handoff. It may happen that one or more of

those brokers become broker’s Bk neighbors just after notifying Bj. Bk does not need to

propagate a copy of the subscriber subscription(s) to the new added neighbors since it has

previous knowledge (through exchanging neighbor graph lists) that there are previously

propagated copies of the same subscription(s) at those neighbors. Thus, if the subscriber S

disconnects from its current broker Bk and an activate request is sent by Bk to its neighbors,

we may end up having a race condition issue due to the concurrent requests sent by Bk and

Bj (activate and delete requests). The broker ID can help to control such situation. When

the activate request is performed, broker Bk gains the control over the subscription(s) and

thus the delete request is ignored. Note that in case the activate request could not find the

subscription(s), Bk will be notified and asked to deliver the subscriber context prior to its

arrival.

Similar race conditions may occur in the unsubscribe state shown in Figure 3.2. If a

subscriber S hands off to broker Bk and just after the old broker Bj has been informed, the

subscriber S has decided to unsubscribe from the system. Thus, the neighbor brokers of Bj

 55

and Bk may receive concurrent requests (deactivate and delete). In this scenario, the delete

request will fail if it gets executed before the deactivate request as broker Bj still gains the

control over the active subscription(s). This leads to having a number of unnecessary

subscriptions in the system. Note that the deactivate request disables the control attribute

(broker ID) and hence subscription(s) can be removed. To manage this race condition, the

delete operation here can have a special privilege to remove subscriptions without

examining the control attribute of the subscriptions since the subscriber is leaving for

good. A subscriber timing out is an alterative situation where a race condition may occur in

the unsubscribe state. Consider the scenario when a subscriber S disconnects from broker

Bj and then hands off to broker Bk. If Bj for some reasons has not been informed about the

subscriber movement, it will send a timeout request to the neighbors once the timeout

interval is reached, deleting the subscriber subscription(s). If subscriber S disconnects from

Bk and at the same time Bj reaches timeout interval, we most probably end up with a race

condition issue caused by concurrent requests (activate and delete). This race condition can

be handled by using the control attribute (broker ID) as discussed earlier. Note that the

delete request here does not have a special privilege to ignore the control attribute as with

the previous scenario.

It is not an easy task to determine the concurrency issues as they are not always obvious. In

the previous description, we provided some of the scenarios that we are aware of them.

Others might be present but we believe they can be masked in similar way.

Although the pub/sub fault-tolerance is out of the scope of this thesis, we next provide a

general guideline on how the proposed pro-active context distribution algorithm can cope

with the failures in the broker network. As indicated previously, subscriber failures/crashes

 56

are considered as special cases of disconnect operations and hence will not be discussed

here. Since we assume the links between peer brokers are reliable, we focus on broker

failures and ignore other failures such as message loss. Two methods can be used to detect

broker failures. The first method is based on generic ping (or heart beat) messages that

neighbor brokers exchange. Each broker periodically sends ping messages to its immediate

neighbor brokers. If a broker has not received a pig reply from a neighbor broker for a

certain period of time, it assumes that the broker has failed. The second method of failure

detection can be achieved during subscription propagation. If a broker cannot establish a

TCP connection after a certain period of time, it assumes that the neighbor broker has

failed. Although the connection between two brokers may fail, we assume here that the

underlying network can fix the failed route before connection establishment times out.

When a broker detects that one of its neighbor broker has failed, it will remove the edge of

that broker from its neighbor list and propagates the updated list to the rest of its neighbor

brokers. As mentioned in case 4 previously, neighbor brokers exchange their neighbor lists

whenever a delete or add edge operation is performed on their lists. This prevents the

broker from making the effort to propagate subscription(s) arrived after the failure

detection to the failed broker(s). The sender broker also stops sending ping messages to the

failed broker(s) after being detected, and accordingly reduces the load of periodically

sending ping messages to the neighbor brokers. Each failed broker has to announce about

its recovery to its previous neighbor brokers (stored in a persistent storage) as it completely

recovers from its failure. In such a way, the previously failed brokers can be added again to

the neighbor lists of their neighbor brokers and carry on with their dedicated tasks. The

announcement messages also can be used to reconcile any conflict/inconsistent state that

 57

may occur among the subscriptions due to the failures. Here we assume that subscriptions

are stored in a persistent database and can be accessed when the failed brokers recover.

Each recovered broker needs to maintain separate lists for subscriptions received form its

neighbor brokers using the unique broker ID enclosed with the subscription information.

As discussed earlier, the broker ID indicates the broker who has the control attribute (such

as deactivate or delete) over the subscriptions. These lists are propagated to the neighbor

brokers as a part of the announcement messages. The receiver brokers (who receive these

messages) decide how the subscriptions should be reconciled. This can be done by

comparing the states of the received subscriptions with their identical copies stored at the

receiver brokers and determining what operations (delete, activate, or deactivate) should be

performed on the subscriptions stored at the recovered brokers. The recovered brokers may

also need to take an action toward the subscriptions that were used by the connected

subscribers before its failure. Such subscriptions need to be deleted from the recovered

broker and its neighbors if the subscriptions’ owners do not reconnect again. Also, if the

failed broker activates some subscriptions before its failure, these subscriptions will

enforce the message buffering process and cannot be timed out as the failed broker is the

responsible for this action. Hence, it might be useful to allow the subscriptions propagated

from the failed brokers to deactivate/delete themselves after a certain period of time. The

main problems that arise in case of broker failure are the message loss and the overhead

incurred by the use of the reactive method. Consider the case when a subscriber hands off

to a recovered broker and the subscriber context has not been forwarded to this broker due

to its failure. In this case, the reactive method is used to fetch the subscriber context. If the

old broker has failed before the fetching process and other neighbors do not have a copy of

 58

the subscriber context, the subscriber will end up losing its messages.

3.3 Neighbor Graph

The neighbor graph (or proximity graph) is an efficient and well-known technique in many

research fields (e.g., data mining, data compression, multimedia databases, and information

retrieval) that typically make use of a neighbor graph for the purpose of neighborhood

search. A neighbor graph is basically a geometrical structure that uses the concept of

neighborhood to identify the closest items (e.g., points, nodes, objects, clusters) to another

given item. Several works in connection with the notion of neighbor graph were found in

the literature. In [56], the neighbor graph is utilized as a search structure to provide a faster

searching method in high-dimensional data sets. In [57], the authors present a number of

proximity searching algorithms using the k-nearest neighbor graph as the data structure for

searching in metric spaces. In [58], an efficient method is proposed for updating a neighbor

graph to improve searching in multi-dimensional spaces. In this thesis, we make use of the

neighbor graph idea for a different purpose, identifying the mobility graph of mobile

subscribers.

The effectiveness of our proposed pro-active caching approach largely depends on the

successful approximation of the subscriber’s movement between the distributed brokers.

For a better chance of success, the broker Bj can approximate a set of potential brokers that

are most likely to be the next-hop target of the mobile subscriber S. This approximation

can be achieved, for instance, through observations of the mobility patterns of subscribers.

We therefore make full use of a data structure, called neighbor graph, which provides the

abstractions to achieve this goal. The neighboring relationship between distributed brokers

can be represented by an undirected neighbor graph, which contains a number of edges (or

 59

mobility paths) that connect every broker to each of its neighbors. Hence, the neighbors of

a given broker (or vertex v) in the graph correspond to the set of potential next brokers. A

neighbor graph is undirected if the represented neighboring relationship among the brokers

is reflective. In other words, if a mobile subscriber travels from broker B1 to B2 or vice

versa, we then connect B1 and B2 with a single undirected edge. As the mobile subscribers

in our experimental testbed are allowed to travel in a bidirectional way, we choose to use

an undirected graph to represent the mobility paths between the brokers. A directed graph

does not correctly reflect the mobility patterns (see Chapter 4) used in our experimental

testbed. Under the assumption of bidirectional mobility, undirected edges allow to more

pro-actively learn about neighboring relationships. For scenarios with strict unidirectional

mobility patterns, a presentation based on directed edges may be more advantages, as this

will reduce the size of the neighborhood and therefore the overhead imposed by our

approach. The neighbor graph forms the basis for our pro-active approach and is used as a

means for pre-loading the subscriber context (subscriptions) one hop (broker) ahead of its

current broker prior to the movement of mobile subscriber.

3.3.1 Definitions

Neighboring relation: two brokers Bi and Bj can form a neighboring relation if it is possible

for a subscriber S to reestablish its connection through a direct motion path between the

physical locations of Bi and Bj. The neighboring relation between a set of distributed

brokers forms the basis for the creation of the neighbor graph and depends on the

distribution of the brokers in the network topology as discussed later.

Broker Neighboring Graph: an undirected graph G = (V, E), where V is the vertex set of

all brokers, V = {B1, B2,, Bk}, and E is a set of unordered distinct pairs of edges, e =

 60

{Bi, Bj} where Bi ≠ Bj. We say that vertices Bi and Bj ∈ V have a neighboring relation if

{Bi, Bj} ∈ E. We thus define the set of all Bi neighbors in G as follows: Neighbor(Bi) =

{Bik : Bik ∈ V, (Bi, Bik) ∈ E}.

3.3.2 Constructing Neighbor Graph

The neighbor graph is utilized as a data structure for capturing the potential mobility graph

of mobile subscribers. One way of constructing the graph is to allow individual subscribers

to capture their own mobility graphs and offer them to the brokers upon their connections.

Generating the neighbor graph in such a way has several drawbacks. Mobile subscribers

presumably use portable devices (with limited capability in terms of CPU and memory) to

interact with the distributed brokers in the backbone network. Hence, the task of capturing

the mobility graph by subscribers adds additional load on these devices; leading to degrade

their performance especially in a large-scale network where the size of the global neighbor

graph is large. Each mobile subscriber needs repeatedly to submit its global graph upon its

connection to the target broker. This may result in consuming a considerable amount of

bandwidth and lead to congesting the wireless channel particularly with a large subscriber

population. Brokers in the pro-active approach need to acquire knowledge about the local

view of the complete graph (i.e., subset of neighbor brokers). Thus, forwarding the global

view to the target brokers indeed adds substantial load on the system since some of the

brokers captured in the global graph are not immediate neighbors to the target brokers.

This leads to wasting the resources of some brokers that most likely will not be the next-

hop brokers of the mobile subscribers. Also, every broker needs to separately deal with

(e.g., store, search, and update) the graphs of individual subscribers, which may complicate

and increase the overhead of processing the pro-active approach. Thus, we choose to allow

 61

individual brokers (typically runs on machines with high capabilities) to automatically

build the neighbor graph that captures the local view of their immediate neighbor brokers.

In addition, building subscriber-specific neighbor graphs will prevent subscribers to benefit

from common movement patterns, which get reinforced as different subscribers migrate

between specific brokers.

The neighbor graph can be constructed either in a static manner (i.e., manually created

once and never changes over time) or in a dynamic manner (i.e., automatically generated

and adaptively changes according to the mobility pattern). A static neighbor graph is

problematic as it fails to adapt itself to the dynamic changes in the mobility pattern and/or

broker topology. The neighbor graph also can be maintained either in a centralized manner

(i.e., a single server stores the entire neighbor graph) or in a distributed manner (i.e., each

broker stores a local view of the neighbor graph). A centralized neighbor graph has a

scalability limitation and update difficulty. Thus, we considered a dynamic and distributed

manner for generating the neighbor graph.

Several possibilities were proposed in the literature [56][57][58] for constructing neighbor

graphs. One of the common techniques to various neighbor graph construction approaches

is based on distances calculation between items. This is basically seeking for each item if

the other items in the space are in its proximity. In this thesis, we adopt a different

methodology for constructing the neighbor graph that mainly relies on subscriber mobility.

Two complementary methods can be applied by each broker to effectively learn the edges

in the neighbor graph. The first method is to attach the address of the old broker with the

reconnection request sent by the mobile subscriber to the new broker, thus establishing the

neighboring relation between the two brokers. The second method is to use the request for

 62

context transfer received from another broker to establish the relationship. This request is

usually received whenever the subscriber context is not present at that broker. Such a case

may occur in two scenarios: 1) when the first subscriber moves through some motion path

between two brokers; 2) when a subscriber disconnects (voluntarily or involuntarily) from

the network and potentially moves to various locations to reconnect to any other broker in

the coverage area. When applying these methods, some outlier edges (the ones that do not

correctly model the neighboring relation) may be added to the graph. The neighbor graph

may also hold some unused edges that are created through rarely used paths. The impact of

the outlier and unused edges on the performance of our pro-active approach can be

significant due to the additional overhead required to cache the subscriber context over

time. It is thus essential to remove such edges from the graph over time. In this regard, a

timestamp-based Least Recently Used (LRU) method is used to ensure the correctness and

freshness of the graph. It is clear that the autonomous creation of the graph makes it self-

adaptive to dynamism in the neighboring relation (e.g., adding/deleting brokers, changing

network topology, changing user behavior, etc.). Each broker independently builds and

locally stores a subgraph of the complete graph of all broker nodes. The following

pseudocode is used to build the local view of the graph at each broker in a LRU manner.

Here, we refer to the broker that executes the algorithm as Bcurrent.

• Receive a reconnection request: If a mobile subscriber S moves to Bcurrent from Bi,

Bcurrent induces the edge {Bi, Bcurrent} in its list of neighbors with a timestamp.

• Receive a context transfer request: If Bcurrent receives a context transfer request from Bi,

it will add the edge {Bi, Bcurrent} to its list of neighbors with a timestamp.

• Edge-removal: If none of the above edge-addition operations is performed through a

motion path between Bi and Bcurrent within a given time T, the stored edge {Bi, Bcurrent}

will be removed from the list of neighbor graph. T ≥ the average frequency interval of

edge-addition operations at all broker nodes.

 63

Since the neighbor graph is initially an empty graph, the majority of handoffs, based on our

creation algorithm, cause edge-insertion during the early age of the graph, thereby reducing

its benefit in our proposed pro-active approach. Also, a mobile subscriber performing the

first handoff along an edge, which is not in the graph, will miss its messages, as the graph

fails to provide information about the potential next brokers. To avoid the cost of this

period, the first mobile subscriber to cross over an edge will receive its context in reactive

fashion. This will be gradually changed to pro-active fashion as the edges are added to the

graph. To reduce the creation period, the process of edge-insertion occurs during the

receipt of context transfer request by the old broker and reconnection request by the new

broker. In our experiments, we have used this method to create the neighbor graph.

3.3.3 Overhead Optimization

Although the pro-active approach drastically reduces network traffic overhead (message

transfer among the brokers), it introduces an additional overhead on the pub/sub network

due to replicating subscriptions at different brokers. This overhead is mainly imposed by

the caching process that is initiated whenever a mobile subscriber disconnects from its

current broker and is linear with the number of disconnected subscribers as well as the

length of their disconnection periods. This most likely results in degrading the overall

performance and negatively affects the overall gain of this approach. Approximately, the

total message overhead required to support a handoff operation is equal to the sum of two

quantities: the cost of propagating subscriptions and caching messages. Equation 3.1 shows

this relation.

Total cost = Propagation cost + Caching cost (3.1)

 64

Equation 3.2 reflects the cost of propagating subscriptions, which is a linear function of the

number of subscriptions (K) owned by a subscriber. For each subscription Sx, one copy of

the subscription message is sent to N immediate neighboring brokers.

Propagation cost = KN (3.2)

Subscription covering [59] is a key technique to quench the subscription propagation,

thereby minimizing the propagation overhead and optimizing the size of the routing tables.

This results in significant improvements in the routing performance. Given two

subscriptions S1 and S2, we say that S1 covers S2 (denoted S1 ⊇ S2) if and only if any

message matching S2 also matches S1. The mechanism of subscription covering is as

follows: when a subscription Sx is received by a broker B, it is only necessary to propagate

Sx to all Neighbor(B) if and only if broker B has not previously propagated another

subscription
'

x
S that covers Sx. Equation 3.3 models this using a binary function covering

that requires two arguments (Sx and B) and returns either 0 (subscription Sx is covered by

some other subscription
'

x
S at broker B and thus obviating propagation) or 1 (subscription

Sx is not covered at broker B and propagation is necessary).

Optimized Propagation cost = KN),(
11

<=−∑∑
==

N

B
x

K

S

BSCoveringN (3.3)

The overhead of caching messages is a function of the publication rate Prate, the length of

disconnection time Dtime, and the number of neighboring brokers N. Equation 3.4 depicts

this relation. To reduce this overhead, the broker’s degree (the number of its outward

edges) can be bounded by a fixed upper bound (M) or ignoring rarely used edges. The

 65

caching cost can be significantly reduced if we can perfectly predict the next location of

the mobile subscriber.

Caching cost =)),((
11

∑∑
==

−××
N

B
x

K

S
timerate

BSCoveringNDP (3.4)

We next define two metrics that model the accuracy/overhead of a neighbor graph. The

false negative of a neighbor graph, denoted as Fneg, is the probability that a mobile

subscriber performs a handoff along an edge e that is not in the neighbor graph list. This

probability of miss reflects the overhead of reactively transferring the subscriber context

between the old and new brokers. Equation 3.5 models the false negative probability that

occurs due to the failure of the neighbor graph to provide information about the potential

next brokers during a finite interval []tt ,∆− .

],[

],[
)(

tthandoffofNumber

ttinsertionedgeofNumber
tF

neg ∆−

∆−
= (3.5)

In Equation 3.5, the numerator corresponds to the number of times we add new edges in

the graph list during a finite period of time []tt ,∆− at a broker, whereas the denominator

represents the number of observed handoff operations at the same broker and within the

same interval. If Fneg(t) > 0, this indicates that the first handoff performed along an edge e

has not benefited from the use of the neighbor graph. This situation can be observed during

the initial phase of building the neighbor graph and thus the miss of the neighbor graph

during this phase is high (i.e., Fneg(t) ≈ 1). However, the probability of miss decreases

gradually and gets closer to zero as the system reaches its steady state. The miss of the

complete mobility pattern may become equal to zero (Fneg(t) = 0) if and only if the

 66

neighbor graph is a subset of the mobility pattern during the entire interval of []tt ,∆− . To

reduce the miss/overhead of the neighbor graph, we use the context transfer request along

with the reconnection request to add edges in the graph as discussed earlier. This will

speed up the creation of the graph and benefit future mobile subscribers that handoff along

the previously missed edge from the graph.

The false positive of a neighbor graph, denoted as Fpos, is the probability that we wasted

resources in using the neighbor graph during a finite period []tt ,∆− . The neighbor graph

may hold a number of unnecessary edges that not just waste memory but trigger

unnecessary actions, thereby degrading the performance of the proposed approach. These

actions include subscription propagations and message caching that increase the overhead

of the pro-active approach without gaining any benefit. Equation 3.6 reflects the time ratio

in which unnecessary edges can reside in the graph to the sum of the residence time of all

edges in the graph.

[]
EealloftimeresidenceofSum

TttremovaledgeofNumber
tF

pos ∈

×∆−
=

,
)((3.6)

In Equation 3.6, the numerator is the total number of edge-removal during an interval

[]tt ,∆− multiplied by an edge-removal timeout T while the denominator is the total time

of the set of all edges e ∈ E that reside in the neighbor graph during []tt ,∆− . If Fpos(t) > 0,

this indicates that there are unnecessary edges in the neighbor graph. To avoid the

overhead of unnecessary edges, the edge-removal timeout T should be carefully selected. A

well chosen value of T is the one that can continuously make the neighbor graph reflecting

the up-to-date mobility pattern.

 67

3.4 Messaging Cost

In this section, we present an analytical model that can be used to capture the messaging

cost as it is of key interest to understand the overhead imposed by different approaches to

support subscriber mobility. A simplified but reasonable mobility model is considered for

this goal, as depicted in Figure 3.3, where a mobile subscriber moves between four

different states,
3210

,,, SSSS :

S0

S1

S2 S3

λ1α12

λ0α01

λ0α02

λ2

λ1α13

λ1α10

λ0α03

λ3

Figure 3.3: Subscriber mobility model

S0: The subscriber connects to a broker.

S1: The subscriber disconnects from its current broker.

S2: The subscriber hands off to a broker that is not a neighbor of its original broker.

S3: The subscriber hands off to a broker that is a neighbor of its original broker.

The residence time in each state 3,2,1,0, =iSi is an exponentially distributed random

variable with parameter 3,2,1,0, =i
i

λ . We further consider parameters 3,2,1,0,, =ji
ij

α ,

which are defined as the probability of a mobile subscriber moving from the state i to state

j. Thus, we have 1
3

0

=∑
=j

ij
α . Note that .1

3020
== αα

 68

Let },,,{)(
3210

SSSStX ∈ denote a process that tracks the subscriber in the overlay network.

)(tX can be modeled as a continuous time Markov process. By sampling the random

process)(tX after time instance τkt
k

= , where)/1(
i

λτ << , for 3,2,1,0=i , the new

sampled process)(
k

tX is a Markov chain [60] in the state space {0,1,2,3}, defined by the

transition probability matrix:

























−

−

−

−

=Ρ

33

22

1131121110

0030020010

100

010

1

1

pp

pp

pppp

pppp

ααα

ααα

 (3.7)

Where
τλi

i
ep

−
−= 1 , for i=0,1,2,3. For a given network setup, with the mean residence

time as i
i

∀,/1 λ , and the roaming probability as ji
ij

∀∀ ,,α , the sampling time interval τ

can be empirically obtained.

Messaging cost for managing the subscriber mobility is the metric of interest here, which is

defined as the average cost per transition. This is also the average cost per round from S0 to

S0, because all the transitions leaving state S0 will come back to S0, which can be computed

as:

ij

j

ij

i

i
C θαπ ∑∑

∀∀

= (3.8)

Where
i

π , which is also written as either
r

i
π ,

p

i
π or

d

i
π to represent the stationary

distribution of the state i for the reactive, pro-active and durable-based schemes,

respectively.
ij

θ denotes the messaging cost for moving from state i to state j.

 69

Case a: In the reactive mobility management scheme, there are only messaging costs when

a mobile subscriber moves from state S2 to S0 and from S3 to S0. Denoting the cost for the

transmission of all the buffered messages from an old broker to a new one as
1_m

ξ and the

control messages required to establish the transmission between the two as 1_sξ , we have

1_1_3020 sm
ξξθθ +== . In general,

1_m
ξ is much bigger than

1_s
ξ .

Case b: In the pro-active mobility management scheme, messaging costs are given in

matrix (3.9).

























+

+
=Θ

000

000

0

0000

2_2_

2_

2_

sm

s

bbns

ξξ

ξ

ξξξξ
 (3.9)

Here
n

ξ ,
2_m

ξ and
2_s

ξ respectively represent the cost of buffering messages for the

moving subscriber at the neighbor brokers, fetching messages from the old broker when

the subscriber hands off to a broker that is not a neighbor of its previous broker, and

sending control messages used to initiate the two previous process. The cost of
n

ξ can be

almost trivial in some cases. If the broker that needs to buffer the published messages for a

mobile subscriber S who is currently disconnected from the network happens to serve other

subscribers with similar interest to the same messages of S, the cost of
n

ξ will virtually be

zero. We will evaluate these cost values in more details later. When the subscriber hands

off to a non-neighbor broker (moves from the state
3

S to
0

S), the pro-active scheme fails to

support subscriber mobility and a reactive mechanism is used instead to fetch subscriber

 70

messages from the old broker. The cost of
2_m

ξ may in fact be different from
1_m

ξ as the

messages buffered at one of the neighboring brokers, which is closer to the current broker

than the subscriber’s old broker, can be fetched. In general,
2_s

ξ is similar to
1_s

ξ , and are

much smaller than the other messaging costs:
1_m

ξ ,
2_m

ξ , and
n

ξ .

Case c: For the durable-based scheme, the messaging cost for any state transition is

consistent, denoted as
3_nij

ξθ = , where
3_n

ξ represents the messaging cost for all the

brokers in the network that store messages for the mobile subscriber.
3_n

ξ increases when

the number of brokers or their network grows.

From Equation (3.8), we obtain the average messaging cost for the reactive
r

C , pro-active

p
C , and durable-based

d
C schemes as follows:

))((
321_1_

rr

smr
C ππξξ ++= (3.10)

p

m

ppp

s

p

np
C

32_321012_1
)(πξππαπξπξ ++++= (3.11)

3_nd
C ξ= (3.12)

Assume
mmm

ξξξ ==
2_1_

, which is often the worst case for the pro-active approach. Since

1_s
ξ and

2_s
ξ (the cost of control messages) are much smaller than

n
ξ and

m
ξ (the cost of

buffering and retrieval messages), we neglect their costs in our analytical model. Then the

pro-active scheme would incur less messaging cost than the reactive and durable-based

schemes only when (3.13) and (3.14) are satisfied, respectively.

 71

p

m

prr

n 1332
/)(πξπππξ −+< (3.13)

))(/(
313_

p

nm

p

nn
πξξπξξ +< (3.14)

Given ΠΡ=Π , where []
3210

ππππ=Π , and 1
3

0

=∑
=i

i
π , the steady state probability

is computed as:

























3

2

1

0

π

π

π

π

=

























+

+

ϕααα

ϕααα

ϕα

ϕ

/)(

/)(

/

/

210130103

310120102

32001

321

ppp

ppp

ppp

ppp

 (3.15)

Where
32001321310120102210130103

)()(pppppppppppp αααααααϕ +++++=

Therefore, we can use (3.13) and (3.14) to compute the upper bound ratios R1 and R2 for

mn
ξξ / and

3_
/

nn
ξξ , respectively, as follows:

pprr
R

13321
/)(ππππ −+= (3.16)

())/(1
312

p

nm

p
R πξξπ += (3.17)

Only when the ratio of messaging cost
1

/ R
mn

<ξξ and
23_

/ R
nn

<ξξ , the average

messaging cost of the pro-active scheme will be smaller than the reactive and durable-

based schemes, respectively.

 72

Table 3.1: Parameter settings for messaging cost analysis

0
/1 λ {60, 120, 300, 420, 600} (seconds)

1
/1 λ {10, 30, 60, 90, 300} (seconds)

2
/1 λ 0.05 seconds (for durable scheme), 0.32 seconds (for pro-active scheme)

and 3.29 seconds (for reactive scheme), obtained from the testbed results

3
/1 λ 0.05 seconds (for durable scheme) and 3.29 seconds (for the other two

schemes)

τ 1ms ()/1(
i

λτ << , for 3,2,1,0=i)

 01
α

02
α

03
α

10
α

12
α

13
α

Case 1 0.1 0.7 0.2 0.4 0.4 0.2

Case 2 0.2 0.4 0.4 0.1 0.7 0.2

Case 3 0.2 0.7 0.1 0.2 0.7 0.1

Case 4 0.2 0.6 0.2 0.3 0.6 0.1

Case 5 0.4 0.5 0.1 0.3 0.5 0.2

Setting the parameters for the model as illustrated in Table 3.1, we plot the upper bound of

ratio R1 for sec600/1
0

=λ , as show in Figure 3.4. Varying
0

/1 λ does not notably change the

result.

0

0.4

0.8

1.2

1.6

2

2.4

2.8

10 30 60 90 300

Average Disconnected Time (Sec.)

R
a
ti

o
 R

1

Case 1

Case 2

Case 3

Case 4

Case 5

Figure 3.4: Upper bound for the messaging cost ratio R1

 73

It can be seen from Figure 3.4 that, for case 1, where the mobile subscriber disconnects

from the broker network for an average of 30 seconds after staying connected for an

average of 10 minutes, the pro-active scheme would have a smaller overall messaging cost

than the reactive scheme if mn ξξ 80.0< ; and for case 5, the pro-active scheme would incur

smaller messaging overhead than the reactive scheme if mn ξξ 19.0< .

n
ξ is the cost incurred when the neighboring brokers of the original subscriber broker’s

start to buffer the messages for the moving subscriber as a pro-active action to support the

subscriber movement to one of these brokers. If, on average, it takes
1

N more sends of

each published message to complete this task, the bandwidth requirement of
n

ξ as

“send/sec” can be denoted as
111

/ λλξ MN
n

= , where M is the average publishing rate of

the subscribed messages. Similarly,
132

/ λλξ MN
m

= where
2

N is the average number of

sends for each buffered message that needs to be fetched from the old broker to the new

one.
2

N is at least 1. Taking 1
2

=N to have a best case for the reactive scheme and a set of

1
N , we have

311
// λλξξ N

mn
= . Referring to the parameters of

1
/1 λ and

3
/1 λ , the resulting

mn
ξξ / is presented in Table 3.2.

Table 3.2: Estimated scheme messaging cost ratio

1
N

mn
ξξ / for

1
/1 λ ={10, 30, 60, 90, 300} (seconds)

1.3 {0.4277, 0.1426, 0.0713, 0.0475, 0.0143}

1.5 {0.4935, 0.1645, 0.0823, 0.0548, 0.0164}

1.7 {0.5593, 0.1864, 0.0932, 0.0621, 0.0186}

2 {0.6580, 0.2193, 0.1097, 0.0731, 0.0219}

For all the selected
1

N in Table 3.2,
mn

ξξ / is smaller than the upper bound R1 in cases 1, 2,

3, and 4 as depicted in Figure 3.4. For these cases, the pro-active scheme will have a lower

 74

overall messaging cost than the reactive scheme. If 7.11 ≤N , the pro-active scheme incurs

lower overall messaging cost than the reactive scheme for all the listed cases.

Similarly, we plot the upper bound of ratio R2 for 1=
nm

ξξ and 0=
nm

ξξ , as show in

Figures 3.5 and 3.6, respectively. 1=
nm

ξξ reflects the worse-case for the pro-active

scheme as the messaging cost of fetching the buffered messages from the old broker is

equal to the messaging cost of buffering messages at the neighboring brokers. 0=
nm

ξξ

indicates the best-case for pro-active scheme as the mobile subscriber always moves

between the neighboring brokers. Substituting these values in Equation 3.17, we obtain the

ratio graph for the two cases using the parameters presented in Table 3.1. The plotted

figures are obtained for sec60/1
0

=λ as larger values for
0

/1 λ depicted much higher ratio

for the durable-based scheme.

0

10

20

30

40

10 30 60 90 300

Average Disconnected Time (Sec.)

R
a
ti

o
 R

2

Case 1

Case 2

Case 3

Case 4

Case 5

Figure 3.5: Upper bound for the messaging cost ratio R2 with 1=
nm

ξξ

 75

0

10

20

30

40

50

60

10 30 60 90 300

Average Disconnected Time (Sec.)

R
a
ti

o
 R

2

Case 1

Case 2

Case 3

Case 4

Case 5

Figure 3.6: Upper bound for the messaging cost ratio R2 with 0=
nm

ξξ

It can be seen from Figure 3.5 that, for case 1, where the mobile subscriber disconnects

from the broker network for an average of 30 seconds after staying connected for an

average of 1 minute, the pro-active scheme would have a smaller overall messaging cost

than the durable-based scheme if 3_95.13 nn ξξ < ; and for case 5, the pro-active scheme

would incur smaller messaging cost than the durable-based scheme if 3_51.5 nn ξξ < .

Similarly, Figure 3.6 shows that, for case 1, the pro-active scheme would have a smaller

overall messaging cost than the durable-based scheme if 3_10.21 nn ξξ < ; and for case 5,

the pro-active scheme would incur smaller messaging cost than the durable-based scheme

if 3_02.6 nn ξξ < .

For the durable-based scheme, one can denote MN
n 33_

=ξ where
3

N is the number of

extra sends to ensure that all brokers store each published message. Therefore, we have

31/
3_

NN
nn

=ξξ . We assume here that
13

NN < , which is a best case for the durable-

 76

based scheme. Taking 2
3

=N and a set of
1

N , 4,5.3,3,5.21 =N , the resulting
3_

/
nn

ξξ are

as follows: 1.25, 1.5, 1.75, and 2. For all the selected
1

N , 3_/ nn ξξ is smaller than the upper

bound R2 for 1=
nm

ξξ and 0=
nm

ξξ , in almost all cases as depicted in Figure 3.5 and

3.6. For these cases, the pro-active scheme will have a lower overall messaging cost than

the durable-based scheme.

The analytical model reveals the messaging cost properties in the different mobility

management schemes, and shows that the pro-active scheme may potentially incur a

smaller messaging cost than both the reactive and durable-based approach.

3.5 Concluding Remarks

In this chapter, we presented our proposal for extending mobility in pub/sub middleware

systems. We first introduced the most common approaches that were proposed to support

subscriber mobility. We then introduced our pro-active context distribution algorithm that

aims to cope with subscriber mobility. This is achieved by propagating the subscriber

context to all neighbor brokers ahead of the subscriber movement. We also presented the

data structure, called neighbor graph, which forms the basis for our pro-active approach.

We discussed the creation and maintenance of neighbor graphs and how the edges of the

neighbor graph can be automatically learned. We analyzed the overhead imposed by the

pro-active approach and the use of the neighbor graph and provided some optimization

strategies that can reduce the overhead of our proposed approach. Finally, we presented an

analytical model that can be used to capture the messaging cost of our proposed scheme

and the alternative solutions found in the literature. The analytical results show that for a

broad-range of parameters the pro-active scheme seems to incur a smaller messaging cost

 77

compared to the alternative solutions, which makes it favorable for supporting subscriber

mobility. These results are promising enough to justify the actual implementation of the

mobility support schemes, comparing them in an experimental testbed using a range of

performance metrics.

 78

CC HH AA PP TT EE RR 44

IIMMPPLLEEMMEENNTTAATTIIOONN OOFF MMOOBBIILLIITTYY SSUUPPPPOORRTT

AAPPPPRROOAACCHHEESS AANNDD EEXXPPEERRIIMMEENNTTAALL SSEETTUUPP

4.1 Introduction

In this chapter, we provide a general overview of the Java Message Service (JMS) that

forms the basis for implementing the mobility support solutions and present the prototype

implementation of the pro-active and reactive approaches. We then describe the

experimental setup used in this research to evaluate these approaches. The description

provides some details about the different components in the setup including publishers,

subscribers, and mobility patterns. It also motivates the selection of performance metrics

and parameters used in this thesis.

This chapter is organized as follows: Section 4.2 provides a brief description of the Java

Message Service (JMS) that forms the basis for our research activities. Section 4.3 presents

the prototype implementation of the mobility support approaches. Section 4.4 illustrates

the experimental setup. Section 4.5 summarizes this chapter.

4.2 Java Message Service (JMS): An Overview

This research is based on one of the most popular messaging system standards called Java

Message Service (JMS) [12][13]. The motivations for selecting JMS as our base platform

in this research come from surveying a set of representative pub/sub middleware systems.

JMS is a collection of Java APIs that offer a common way for Java applications to create,

 79

send, and receive messages in a reliable manner. It supports several features that lend

themselves well to the mobile, wireless environment. Next we briefly describe some of

these features. Readers are refereed to [12][13] for detailed descriptions.

Although JMS supports pub/sub and point-to-point communication models, this research

focuses only on the former. The pub/sub model is based on the use of topics to send and

receive messages. Messages are delivered to topics by publishers and then consumed by all

the registered subscribers. Subscribers may register to one or more topics and hence

receive all the messages delivered to those topics. Subscribers that share the same topic

will receive a copy of each message within that topic. They learn about the available topics

through the Java Naming and Directory Interface (JNDI).

JMS adopts two subscription models, nondurable and durable. Nondurable subscriptions

maintain low levels of reliability since the JMS broker does not keep records of inactive

subscribers. Durable subscriptions on the other hand offer high levels of reliability at the

cost of higher overhead. They instruct the JMS broker to retain all the messages for

disconnected subscribers until they reconnect. This research considers the use of durable

subscriptions as they naturally support disconnected operations in the mobile domains.

JMS provides two message consumption models, synchronous and asynchronous. The

synchronous model is supported by explicitly invoking the receive() method. Once the

method is invoked, the subscriber is blocked until the messages are received or the method

timeout is reached. The asynchronous model is achieved by registering an event listener

object with a subscriber. This object acts as an asynchronous event handler for messages

and encapsulates only one method called onMessage(). This method contains the necessary

action to be taken when the subscriber receives the messages. In this work, messages are

 80

consumed in asynchronous manner.

JMS supports content-based routing by the use of message selectors. With the help of

message selectors, subscribers can receive a particular set of messages and thus optimize

the bandwidth usage. A message selector is an object of type String that is used to hold

conditional expressions. Subscribers can specify their message selectors as a part of their

subscriptions’ arguments. Hence, each message needs to be parsed and matched against the

selection syntax before it can be routed. This work considers the use of this feature.

JMS messages are published either in nonpersistent or persistent mode. The nonpersistent

mode maintains low levels of reliability as the JMS broker does not log the messages in a

stable storage. The persistent mode on the other hand provides higher levels of reliability

since all messages are logged in external storage until it is confirmed that they are

consumed successfully. In this research, messages are published in a persistent mode.

JMS offers three acknowledgement modes, DUPS_OK, AUTO, and CLIENT. DUPS_OK

minimizes the overhead on the system as it does not prevent message duplication. AUTO

adds extra overhead to the system as it grantees that messages are delivered once-and-only-

once. The system automatically acknowledges the receipt of a message as soon as it has

been consumed. CLIENT is similar to the AUTO except that the acknowledgement has to

be done manually. A subscriber acknowledges the message receipt by explicitly invoking

the acknowledge() method. We have used the AUTO mode in this research.

4.3 Implementation

 Several mobility management solutions have been proposed by the mobile computing

community in the recent years. Although they share similar interests of location

 81

transparency, they are considerably different from each other due to their design and

implementation choices. Existing mobility solutions can be generally classified based on

their operating layers: link layer, IP layer, transport layer, and application layer [61]. As

indicated in [61], most of the link-layer, IP-layer, and transport-layer solutions require

considerable changes (upgrades) in the kernel-level of the mobile host’s operating system

and the network infrastructure. These are some of the primary reasons behind their limited

acceptance and deployment. On the other hand, the application-layer mobility solutions

overcome these drawbacks while providing an efficient way to make a mobile host always

reachable for message dissemination. However, they incur considerable overhead in terms

of the delay involved with the application level processing. Also, one of the main

motivations behind the existence of the application-layer mobility solutions is the

requirement for a finer level of granularity. The application-layer solutions can support

host (physical) and code (or logical) mobility, whereas the lower-layer solutions are

limited to host mobility. Placing mobility solutions at the application-layer can naturally

provide a solution that can be used to solve the mobility management for vertical and

horizontal handoff in heterogeneous wireless networks. It is also the only way to explicitly

answer whether the application logic would benefit from properties such as

durable/persistent messaging. In a pub/sub system, as the network backbone is composed

of distributed application-level brokers, the application-layer is a natural choice to provide

the most function of mobility management and minimize the changes of the end systems.

Accordingly, in our work, we choose to build the proposed mobility management scheme

at the application-layer so that the existing pub/sub systems can be easily extended to

support subscriber mobility.

 82

We next provide a high-level description of the prototype implementation of the pro-active

and reactive approaches. Although many implementations of JMS [44][45][46][47][48] are

available in the public and commercial domains, in this thesis, JavaSMQ [48] is selected as

our base platform for our work activities. JavaSMQ is considered a robust, reliable, and

scalable JMS implementation that achieves a competitive performance to existing pub/sub

systems [12][13]. We implemented the core of both approaches in Java and extended the

chosen JMS implementation accordingly. The implementation of the durable subscription-

based approach is not described in this section since it is a built-in feature of all JMS

implementations. Next we present the prototype implementation of the pro-active and

reactive approaches.

4.3.1 Implementing the Pro-active Mobility Support

The core idea of implementing the pro-active mobility support is to replicate dummy (or

virtual) subscription(s) that correspond to the moving subscriber at its prospective future

locations (brokers). When the mobile subscriber moves out from its current location, the

dummy subscriptions are activated at every neighboring location. This semantic allows the

dummy subscriptions to listen and buffer messages of the moving subscriber prior to its

arrival to the next potential location. Once the subscriber moves in to its new location, the

buffered messages are delivered to it in an arranged order. Thus, a mobile subscriber is

typically surrounded by a number of replicated dummy subscriptions that are intended to

support its mobility to a particular location. Note that the replicated dummy subscriptions

are frequently altered as the mobile subscriber moves in the real world. New dummy

subscriptions are replicated at those locations that move within the subscriber’s range and

the old ones that are out of the range are garbage collected.

 83

A prototype of the pro-active approach is implemented within an independent layer of

proxies between the subscribers and their brokers. This layer is mainly responsible for

replicating dummy subscriptions at the next future brokers to manage the messages of the

moving subscribers. It also dynamically identifies the set of immediate brokers where these

dummy subscriptions should be replicated. A single proxy process runs with each broker to

manage subscriber mobility from one broker to the other. Note that the proxy layer is

completely transparent to the brokers and the applications. The proxy process implements

broker and proxy interface components that are respectively used to interact with the local

broker process and the remote proxy processes through separate message queues. We have

integrated a monitoring component with the broker process to track the subscribers’ states

(e.g., (re)connect, disconnect, handoff, and unsubscribe) as well as the ID of the last

message consumed by the subscriber. The monitoring component regularly notifies a

listening method (that is part of the broker interface) about the current state of each

subscriber. A similar method (that is part of the proxy interface) is used to listen to the

notifications coming from the remote proxy processes. Both methods start to listen as soon

as the proxy process starts up. Every broker is configured to apply the Oldest Message

Overwriting Policy when its buffer gets filled. Also, each subscriber has to keep track in a

log file of the last broker to which it was connected. Figure 4.1 depicts the handoff using

the pro-active approach. A stepwise description is given next to explain the operations

performed during the handoff procedure.

 84

Proxy Process

Broker Process

Monitoring

Broker Process

Monitoring

Subscriber Subscriber

Neighbors

Table

Subscriptions

Table

13

. . .

. . .
. . .
. . .

Proxy Process

Subscriptions

Table
. . .
. . .

Neighbors

Table
. . .
. . .

12B

2A
3

4

5,

67A

7B

8,

10

9
12A

1112B

Proxy Process

Broker Process

Monitoring

Broker Process

Monitoring

Subscriber Subscriber

Neighbors

Table

Subscriptions

Table

13

. . .

. . .
. . .
. . .

Proxy Process

Subscriptions

Table
. . .
. . .

Neighbors

Table
. . .
. . .

12B

2A
3

4

5,

67A

7B

8,

10

9
12A

1112B

Figure 4.1: The handoff procedure with the pro-active approach

Steps 1 to 2B: When a mobile subscriber connects to a broker, the monitoring component

checks the subscriber’s state and reports connect-state to the proxy process via its broker

interface. The monitoring component identifies this state by checking the value of the last

visited broker enclosed with the reconnection request (Null means a new connection). In

the meanwhile, messages are forwarded directly to the mobile subscriber based on its

expressed interests.

Steps 3 and 4: The proxy subsequently retrieves a copy of the subscriber’s subscriptions

from the subscription’s table and inspects the neighbor table to identify the set of

neighboring brokers.

Steps 5 and 6: The proxy process, through its proxy interface, propagates a copy of the

subscriptions to all immediate neighbors, and instructs its proxy peers to locally store the

forwarded subscriptions and to set their modes to inactive.

 85

Steps 7A to 10: If the broker process, after a certain time, does not receive a generic ping

reply from the mobile subscriber, it will consider the subscriber as temporarily

disconnected and accordingly the monitoring component will report disconnect-state along

with the ID of the last consumed message to the proxy process. In the meanwhile, the

broker process starts locally buffering messages for the disconnected subscriber. Then, the

proxy process will requests its neighboring peers to activate the dummy subscriptions that

correspond to the disconnected subscriber to buffer messages on its behalf. Following the

activation request, the proxy keeps forwarding the stored messages to its neighbors until

the receipt of this request is acknowledged by its peers. This is a necessary step to avoid

message loss that may occur due to the activation latency. The ID of the last message

consumed by the mobile subscriber (for each subscription) is enclosed with the activation

request and therefore only the messages with higher IDs are stored at the next potential

brokers to prevent message duplication.

Steps 11 to 12B: When the mobile subscriber hands off to a new broker, the monitoring

component inspects the subscriber’s state and reports handoff-state to the proxy process.

This state is recognized by matching the current and previous broker addresses. Note that

the previous broker address is sent along with the reconnection request submitted by the

mobile subscriber. This is because each subscriber keeps track of the last visited broker,

which is required in some cases: building the neighbor graph, applying reactive approach

before the creation of the graph, and distinguishing the handoff from reconnect states. At

the same time, the new broker delivers the buffered messages to the mobile subscriber in

order.

Step 13: The proxy process informs the previous proxy peer that the mobile subscriber has

 86

just moved to a new broker and subsequently the previous proxy notifies its neighbor peers

to deactivate the subscriber subscriptions and to delete its messages.

It is worth mentioning that mobile subscribers may (voluntarily/involuntarily) disconnect

for a long period. This action may greatly affect the behavior of the neighboring brokers as

they are required to buffer messages for disconnected subscribers, which might never show

up again. Under this situation, the monitoring component tracks the disconnection period

of each subscriber. If a timeout T is reached before obtaining a reconnection reply, a

deletion request will be sent to all the proxy peers to delete the subscriber context. The

timeout T should be equal to or greater than the average disconnection period at all

brokers.

4.3.2 Implementing the Reactive Mobility Support

The implementation of the reactive mobility support is similar to the ones described in the

literature [10][32][35] and shares as much code and data structures as possible with the

pro-active mobility support. This provides us with a fair comparison and baseline indicator

to evaluate the adequacy of our proposed approach. The main idea of the reactive approach

involves uncoupling and retrieval of messages from the old broker that previously was

serving the mobile subscriber. When the messages arrive at the new broker, they will be

merged with the subscriber messages stored at the local buffer of the new broker, ordered,

and delivered to the mobile subscriber.

A prototype of the reactive approach is implemented by running a proxy process with each

broker entity to manage subscribers’ mobility. Note that the proxy process is largely

independent from the target broker. Every broker maintains a single buffer that is used to

 87

buffer the messages of all disconnected subscribers. To optimize buffer space usage, the

Oldest Message Overwriting Policy is applied to control which messages should be

overwritten when the buffer is filled up. Each mobile subscriber uses a mobility service

library that is attached to the subscriber application. This library mediates the subscriber

requests made to the target broker and is used to interact with the proxy process during the

occurrence of connect/disconnect operations. When the mobile subscriber disconnects

from its current broker, the proxy process creates a proxy object that takes control over the

subscriber subscriptions at that broker in order to manage the subscriber messages. Once

the subscriber reconnects and receives the buffered messages, the proxy object is garbage

collected. Note that each subscriber keeps track in a log file of the last broker to which it

was connected. This is required as the new broker needs to communicate with the old

broker to fetch the subscriber messages. Figure 4.2 shows the handoff under the reactive

approach. A stepwise description is given next to explain the operations performed during

the handoff procedure.

Proxy Process

Broker Process

Subscriber

Subscriptions

Table

13

. . .

. . .

Subscriptions

Table
. . .
. . .

23

11

1

6A

15

10

4

12

9

6B

514

Mobility

Library

Subscriber

Mobility

Library

Proxy

Object

Broker Process
7

8

Proxy

Object

Proxy ProcessProxy Process

Broker Process

Subscriber

Subscriptions

Table

13

. . .

. . .

Subscriptions

Table
. . .
. . .

23

11

1

6A

15

10

4

12

9

6B

514

Mobility

Library

Subscriber

Mobility

Library

Proxy

Object

Broker Process
7

8

Proxy

Object

Proxy Process

Figure 4.2: The handoff procedure with the reactive approach

 88

Steps 1 to 3: When a mobile subscriber initially submits a registration request to a broker,

the mobility library intercepts this request to get a copy of the subscriber’s subscription(s)

and to capture the address of the target broker. The mobility library uses a log file to store

this information at the subscriber side. When the registration phase is completed, the

subscriber receives its messages directly from the broker that it has registered with.

Step 4: As the mobile subscriber disconnects from its current broker, the broker process

will notice this (i.e., through the use of generic ping reply) and accordingly starts buffering

messages for the disconnected subscriber. As durable subscriptions are used to express the

subscriber’s interests, the proxy process is not involved in the buffering process.

 Step 5: When the mobile subscriber reconnects to a new broker after some time, instead of

connecting directly to the broker it first connects to the proxy process running at that

broker. This connection is performed by the subscriber’s mobility library that passes the

subscriber’s information (i.e., the address of the previous broker and the subscriber’s

subscriptions) along with the connect request.

Steps 6A to 9: The local proxy process, on behalf of the subscriber, requests the remote

proxy process to forward all the buffered messages for that subscriber. Information about

the subscriber’s subscriptions is enclosed with this request. Meanwhile, the local proxy

process creates a proxy object that subscribes with the local broker process using the

received subscriptions. The broker process locally stores all the messages published during

the message transfer procedure performed between the old and new brokers.

Steps 10 to 13: When the remote proxy is requested to fetch the subscriber messages, it

creates a proxy object that takes control over the subscriber’s subscriptions with the help of

 89

the forwarded information. This proxy object first deactivates the subscriptions to end the

caching process and then starts forwarding the subscriber messages to the local proxy

process. After all the messages are delivered to the local proxy, the proxy object deletes the

subscriber’s subscriptions as well as their corresponding messages.

 Steps 14 and 15: The local proxy process merges the locally and remotely received

messages and delivers them to the mobile subscriber in their publishing order. Finally, the

local proxy process deletes the proxy object and reconnects the mobile subscriber to its

new broker to directly consume messages from it. One point worth mentioning here is that

the connections between the local and remote proxies are not permanent and only occur as

the result of a handoff.

4.4 Experimental Setup

For our experimental study, we have selected JavaSMQ, a JMS-based pub/sub system, as

our base platform (described in Section 4.3). We performed all our experiments on a

dedicated network of ten Intel based Pentium 4 nodes running RedHat 9, inter-connected

by a 100 Mbps switch. Six nodes were used for running six instances of the JMS broker

with default configuration values. This work considers the distribution of these brokers in a

simple in-building scenario as shown in Figure 4.3 (left-side). The dotted lines represent a

potential path of motion whereas the square boxes show the placement of broker nodes.

Figure 4.3 (right-side) shows the general view of experimental network environment. In

our experimental setup, the topology of application-level messaging brokers }6,,1{ BB L is

modeled as an undirected general (or peer-to-peer) graph. Two brokers may communicate

directly only if they are connected by an edge as shown in Figure 4.3.

 90

Corresponding graph of experimental topology

B1

B4

B2 B6

B3

B5

P1

Wireless Emulator

S1 S2

Figure 4.3: A general view of experimental setup constituting the network under consideration.

A router node was used for running a wireless network emulator. One node was used for

running a single, stationary message publisher P1. The remaining two nodes (S1 and S2)

were used for running multiple subscribers. Subscribers that share the same machine run in

separate threads and establish independent connections, but use the same Java Virtual

Machine and JMS client library. The JVM used for running our experiments is Sun SDK

1.4.2, started with the options –Xms64m and –Xmx256m as a minimum and maximum

heap size. Although this is a limited configuration, it is sufficient for the purpose of this

research: evaluating different mobility support approaches.

A mobile subscriber in this setup represents an application running on a mobile terminal

that transparently moves from one broker to the other. It initially registers with one of the

six JMS brokers by the means of durable subscriptions. Through a mobility scenario, the

mobile subscriber keeps randomly moving between the six distributed brokers during the

 91

course of the experiments. In our experiments, a maximum of two hundred subscriber

threads were created and executed on two stationary machines. Subscribers are initially

split evenly between the six distributed brokers. However, due to mobility, this number

fluctuates over time, resulting in brokers serving a relatively large number of subscribers at

times while at other times the broker may serve only a small number of subscribers.

In our setup, a single stationary publisher is used to inject messages in the broker network.

Each generated message is assigned a single selector value ranging from 0 to 99. The

selector values are randomly generated with uniform distribution. Similarly, each

subscriber expresses its interest in receiving messages within a specific selector range that

is also randomly, uniformly generated to be 1/5
th
 of the total selector range.

All the communications between the subscribers and the brokers are tunneled through an

emulated wireless channel that is created by using a network emulator called NistNet [62].

NistNet is a popular software tool that is implemented as a kernel module extension to the

Linux operating system. It can be used to emulate various network environments. We used

NistNet to model the characteristics of an IEEE 802.11 wireless LAN network based on a

set of configuration parameters such as packet delay, packet loss, packet duplication, and

network bandwidth. All these parameters were set to the most commonly used values

characterizing IEEE 802.11 wireless LAN networks [63][64][65][66][67].

We developed two mobility patterns, random and neighboring, to gauge how the mobility

support approaches react to dynamism in the wireless LAN environment. These patterns

model the general behavior for a mobile subscriber that frequently moves around, but it

also settles down for a period of time between each movement. This period should be long

enough to allow the mobile subscribers to benefit from the use of mobility support

 92

approaches. Note that the considered patterns reflect a limited form of subscriber mobility.

For example, we do not consider scenarios in which the subscribers move at certain

speeds, to specific directions, or/and within predefined distances. The random pattern

models subscribers that randomly select new target brokers for every move independently

and uniformly over the set of all six brokers. In this pattern, we assume that subscribers are

free to move directly to any broker placed in a particular geographical location. The

neighboring pattern on the other hand reflects subscribers that move to the neighboring

brokers (locations) every timeslot independently and uniformly over a set of neighboring

brokers. In this pattern, restricted physical mobility is assumed due to obstructions and thus

subscribers can only move to neighboring broker locations. The considered patterns reflect

average subscriber behavior as the mobility parameters are selected uniformly and depict

subscribers who experience short disconnection periods while roaming. Although our pro-

active approach is particularly targeting neighboring mobility, we use the random mobility

pattern to evaluate the behavior of our approach in the worst-case scenario. The random

pattern introduces many outlier edges (i.e., ones that do not model an immediate neighbor)

in the neighbor graph tables and thus incurs the overhead of using the reactive approach at

the additional expense of wasting the neighbors’ buffer space and processing time. Also,

all the brokers in the random pattern have probabilistically the same maximum number of

neighbors. This results in increasing the overhead of supporting disconnect operations at

each broker.

In the considered mobility patterns, each subscriber alternates between three different

mobility states: connect, disconnect, and handoff. While a subscriber is in the connect

state, it can consume its messages from a uniformly selected broker. Each subscriber

 93

remains in this state for a randomly generated, exponentially distributed time with a mean

of Tβ seconds. With an equal probability, a subscriber either moves to disconnect or

handoff state. The disconnect state reflects the case of signal breakdown due to poor

network connectivity. A subscriber remains in this state for a randomly generated,

exponentially distributed time with a mean of Tδ seconds. With a similar probability, the

subscriber moves either back to the connect state and reconnects to the same broker or

goes to the handoff state. The handoff state corresponds to the case when a subscriber

moves out of the covered area of its previous broker. After staying in this state for a

randomly generated, exponentially distributed time with a mean of Tα seconds, the

subscriber moves back to the connect state and reconnects to a different broker. Subscriber

mobility is described in more details in Chapter 6.

The reported results were captured from the measurement data obtained under different

workloads. Each experiment was run for a duration that was long enough to reach a steady

state. We ensured that the publisher and subscriber machines were not the bottlenecks in

our experiments. We kept both CPU and memory utilizations at less than 65% and 38%

respectively, thereby preventing publisher and subscriber bottlenecks from impacting the

system performance. Each broker machine was fully dedicated to running a single instance

of the JMS broker. Similarly, the CPU and memory utilizations of the broker machines

were kept at less than 75% and 60% respectively in high overhead scenarios (maximum

publication rate and/or large subscriber population) to prevent performance bottleneck.

Before running any experiment, topic destinations and message stores were purged and

reinitiated to start each test with a clean slate. Before executing each experiment, we make

sure that the clocks of the publisher and subscriber machines are synchronized as it is

 94

required to calculate the end-to-end latency of message delivery. Network delays for

establishing subscribers’ connections are not included in our results.

4.4.1 Workload Parameters

• Publishing rate: the number of messages per second sent to the distributed brokers in a

synchronized manner. To control the publishing rate, we used different sleep times (2,

1.5, 1, .5, and 0 seconds) between any two consecutive messages.

• Number of subscribers: the total number of subscribers that are served by the

distributed brokers. We have varied the number of subscribers from 10 to 200, with

initially evenly assigning subscribers to the six brokers.

• Queue size: the maximum buffer space in Mbytes that is used to temporarily store the

received messages. Queue sizes of 1, 2, 3, and 4 Mbytes per-broker were used.

• Message selector: the selector pattern that expresses the subscriber’s interest. As

discussed earlier, the message selectors are randomly generated to be 1/5th of the total

range of message selector values.

• Network bandwidth: the total available bandwidth that can be utilized to route

messages from the brokers to the subscribers. Two values, 1Mbps and 11Mbps, were

used to respectively reflect the effect of low and high wireless bandwidth

environments.

• Disconnect interval (Tδ): the mean time interval during which the subscriber is

disconnected from its current broker. Mean values of 12 and 24 seconds were used.

• Connect interval (Tβ): the mean time interval during which the subscriber is connected

 95

to a particular broker. Mean values of 60 and 150 seconds were used.

• Handoff interval (Tα): the mean time interval during which the subscriber switches

over to a different broker. Mean values of 1.5 and 3 seconds were used.

Table 4.1 summaries the workload parameters with their ranges and default values. Unless

otherwise stated, experiments were conducted using the default values.

Table 4.1: The used workload parameters

Workload Parameters Input Values Default Values

Number of subscribers 10, 50, 100, 150, and 200 200

Sleep time 2, 1.5, 1, .5, and 0 seconds 0 seconds

Network bandwidth 1Mbps and 11Mbps 11Mbps

Queue size 1, 2, 3, and 4 Mbytes 1 Mbytes

Disconnect interval (Tδ) 12 and 24 seconds 12 seconds

Connect interval (Tβ) 60 and 150 seconds 60 seconds

Handoff interval (Tα) 1.5 and 3 seconds 3 seconds

Selector pattern 1/5th of the total range 1/5th of the total range

4.4.2 Performance Measures

• Subscriber throughput (Ts): the total number of messages received per second. It is

obtained by adding up the number of messages received by individual subscribers and

dividing by the total duration of the experiment.

• Broker throughput (Tb): the total number of messages forwarded per second from

individual brokers to a number of subscribers. It is obtained by adding up the number

of messages forwarded by each broker and dividing by the total duration of the

experiment.

• Percentage of message loss (L): the percentage of missed messages (due to buffer

overflow and/or packet loss in wireless channel) by all the subscribers. It was obtained

by calculating the difference between the total published and received messages and

 96

then dividing by the total published messages.

• Percentage of message duplication (D): the percentage of duplicated messages

received by all the subscribers. It is obtained by dividing the total duplicated messages

by the total received messages.

• End-to-end latency (E): the time (in seconds) that it takes a message to travel from the

publisher to the subscriber end. It is obtained by adding up the latency of each message

and dividing the total by the total number of received messages.

• Message processing time (M): the time that it takes the broker to process messages. It

is obtained by adding up the processing time of each message and then dividing the

total by the total number of forwarded messages.

• Handoff latency (H): the time (in seconds) between sending the reconnect request and

receiving the first message of the subscriber at its new broker. It is obtained by adding

up the latency of each handoff and dividing the total by the total number of handoffs.

4.5 Concluding Remarks

This chapter presented a general overview of some JMS features that are considered in the

implementation of the mobility support approaches, referred to as reactive and pro-active

approach. We also provided a high-level description of the prototype implementation of

these approaches. The description includes details about the different components of each

approach and their roles in achieving the ultimate objective: supporting subscriber

mobility. The reactive mechanism involves message transfers from the old to the new

broker during each handoff. The message transfers occur only after the mobile subscriber

has reattached to the new broker. In contrast, the pro-active mechanism ensures that the

 97

subscriber context (mainly subscriptions) always remain one hop (broker) ahead of its

current broker. Message transfer is not part of the pro-active mechanism since the virtual

(proxy) subscribers are employed to buffer messages using the previously transferred

context of the moving subscribers. We finally presented a detailed description of our

experimental setup that is used to evaluate the mobility support approaches.

 98

CC HH AA PP TT EE RR 55

PPEERRFFOORRMMAANNCCEE EEVVAALLUUAATTIIOONN OOFF MMOOBBIILLIITTYY

SSUUPPPPOORRTT AAPPPPRROOAACCHHEESS

5.1 Introduction

This chapter provides a comprehensive experimental performance evaluation of the pro-

active mobility support approach. To gain better insights into the effectiveness of our

proposed approach, two mobility support approaches, durable subscription-based and

reactive, are used as baseline solutions. We conducted an extensive number of experiments

to explore the adequacy of our pro-active approach in supporting mobility and to compare

its behavior to the state-of-the-art solutions. We studied the effect of subscriber mobility

on message delivery using different workload parameters and with respect to several

performance metrics. As described previously, the durable subscription-based approach

requires each broker to continuously store all the published messages irrespective of its

current active subscribers. The reactive approach involves message transfer from the old to

the new broker after the handoff of a mobile subscriber. The pro-active approach ensures

that subscriber messages always remain one hop (broker) ahead of its current broker.

This chapter is organized as follows: Section 5.2 presents and discusses the performance

results of the mobility support approaches based on the random mobility pattern. Section

5.3 compares the performance of the mobility support approaches using the random and

neighboring mobility patterns. Section 5.4 concludes this chapter.

 99

5.2 Performance Evaluation and Comparison

In this section, we evaluate and compare the performance of the pro-active, reactive, and

durable subscription-based approaches in terms of overall subscriber throughputs, end-to-

end latency, handoff latency, message loss, and duplication. Unless otherwise stated, the

results shown next were obtained using the random mobility pattern and the default input

values listed in Table 4.1, Chapter 4. All the results presented next are the averages over 5

runs. To describe the reliability of the achieved results, we plot the 95% confidence

interval on top of each data point.

5.2.1 Mobility Support Overhead

We evaluate the overhead of the pro-active, reactive, and durable subscription-based

approaches in terms of two different metrics: the end-to-end latency (E) of the messages

and the overall throughput (Ts) of the subscribers. These metrics provide a good indicator

of the overhead incurred for supporting mobility from the prospective of end subscribers.

To study this overhead under different workload conditions, we varied the total number of

subscribers, served by the brokers, from 10 to 200 and observed the performance of the

three mobility support approaches.

Figure 5.1 shows how pro-active, reactive, and durable-based approaches compare in

terms of the end-to-end latency (E) and the overall throughput (Ts) with the increase of the

subscriber population. From the graph, we can note that the reactive latency is by far the

highest and proportionally increases with the most subscriber populations (50 to 200). A

large portion of this latency is due to the message overhead (i.e., message transfer between

the old and new brokers) imposed by the semantics of the reactive approach. During the

handoffs, many messages may travel along one or more brokers before they reach their end

 100

destinations. This is because some of the subscribers may hand off prior to the completion

of message transfer process. We observed that the message overhead accounts for almost

(37% - 42%) of the total consumed messages (i.e., the percentage of messages consumed

via state transfer protocol) in the reactive approach with 200 subscribers. This implies that

networks designed with enough capacity to serve stationary subscribers will need to almost

double their capacities. The pro-active approach experiences much lower latency than the

reactive approach as it has almost no message overhead. This is mainly because almost all

the messages are routed to their end destinations through their original brokers (i.e. brokers

who received messages directly from the publisher). In other words, the traffic required to

transfer messages to neighbor brokers in order to avoid message loss due to the latency of

subscription activation request is much smaller than the traffic imposed by state transfer in

the reactive approach. Finally, the durable-based approach shows the lowest latency as it

has no message overhead. From the figure, the three approaches show a proportional

relation between the end-to-end latency and most subscriber populations (50 to 200). This

is an expected behavior as increasing the number of subscribers adds additional load on the

system; thereby increasing the latency.

 101

0

250

500

750

1000

1250

10 50 100 150 200

Number of Subscribers

T
h

ro
u

g
h

p
u

ts
 (

T
s
)

M
s
g

s
/S

e
c

0

1

2

3

4

5

E
n

d
-t

o
-E

n
d

 L
a
te

n
c
y
 (

E
)

S
e
c
o

n
d

s

Durable (Ts) Reactive (Ts) Pro-active (Ts)

Durable (E) Reactive (E) Pro-active (E)

Figure 5.1: Mobility support overhead

The figure shows that the durable-based approach achieves the lowest throughput among

the three. This is due to the overhead of the continuous message caching process adopted

by this approach. Pro-active’s throughput, by transferring subscriber context ahead of its

movement, is the highest, as it caches messages on-demand and almost has zero message

overhead. The reactive approach falls in between the other approaches, as it has higher

message overhead than the pro-active approach and lower message caching overhead

compared to the durable-based approach. From the graph, we observe that the population

of subscribers has a direct impact on the throughput of the three approaches. This can be

noticed if we compare the reduction in the difference between any two successive data

points of the durable-based bars. This indicates that the durable-based approach is more

sensitive to the subscriber population among the three.

 102

5.2.2 Handoff Latency

We evaluate the handoff latency (H) under different workload conditions. We define the

handoff latency as the time, in seconds, between sending the reconnect request and

receiving the first message of the corresponding subscriber at its new broker. Table 5.1

shows the averages handoff latency, in seconds, experienced by the three approaches with

an increasing population of subscribers (from 10 to 200).

Table 5.1: Handoff latency of mobility support approaches

 Average handoff latency (seconds)

Number of subscribers Durable-based Reactive Pro-active

10 0.035 0.697 0.030

50 0.036 0.653 0.084

100 0.040 0.841 0.139

150 0.044 0.919 0.224

200 0.049 1.141 0.259

From the table, we can note that the handoff latency increases proportionally with the

increase in the subscriber population. As expected, the subscriber population has a direct

impact on the preparation time for the broker to route messages and hence increases the

handoff latency. The above table also shows that the reactive approach experiences much

higher latency compared to the pro-active and durable-based approaches. The reason for

suffering this higher latency is that every handoff causes the entire messages for the

moving subscriber to be read from the buffer, transferred to the new broker, merged with

the messages in the new broker, and eventfully delivered to the subscriber. As a result,

each subscriber has to wait for a while before it can receive the first message. On the other

hand, the pro-active and durable-based approaches maintain much lower handoff latencies

than the reactive approach since messages can be routed to the corresponding subscribers

 103

as soon as they join the new broker. The pro-active handoff latency is almost completely

due to switching over dummy subscription(s) control to the mobile subscriber. When the

mobile subscriber takes over the subscription(s), all neighbor brokers should be notified

about the arrival of the mobile subscriber. Due to this overhead, the durable-based

approach shows lower latency than the pro-active approach.

To provide better insights to the handoff latency of the three approaches under different

workload conditions, the cumulative distribution graph of the handoff time observations is

shown in Figures 5.2. From the figure, the reactive approach’s latency is by far the highest

among the three; almost 60% of the handoffs take more than 1.2 seconds. In contrast,

almost 60% of the handoffs take less than .35 and .05 seconds with the pro-active and

durable-based approaches, respectively. The observed results confirm that the pro-active

and durable-based approaches can provide fast handoffs since the subscriber context is

always ready at its new broker prior to its movement, but respectively require mobility

prediction and large buffer space.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

Time (seconds)

C
u

m
u

la
ti

v
e
 d

is
tr

ib
u

ti
o

n
 o

f
h

a
n

d
o

ff
s
 (

H
) Durable Reactive Pro-active

Figure 5.2: The cumulative distribution of handoff latency

 104

5.2.3 Overall Performance

We evaluate the overall performance of the three mobility support approaches in terms of

message loss, message duplication, and overall subscriber throughput. The results of these

metrics are given as a function of publication rate, queue size, disconnection period,

handoff frequency, and network bandwidth. This allows us to analyze conditions under

which, if any, one approach can perform better than the others.

5.2.3.1 Overall performance at given publishing rates

To study the effect of publication rate on the pro-active, reactive, and durable-based

approaches, we varied the sleep time between any consecutive published messages (from 0

to 2 seconds).

Figure 5.3(a) depicts that, among the three approaches, the reactive approach shows the

worst message loss (L) results that also increases with the maximum publication rate (0

sleep time). This is largely due to the overhead of message transfer between the old and

new broker, which increases with maximizing the publication rate. Based on the

disconnection period, the old broker may discard some messages from its buffer when it

fills up. As a result, only a portion of the subscriber messages will be transferred to the

new broker during the state transfer process. Furthermore, when the mobile subscriber

moves to a new broker, it has to wait for a while (more than 1.2 seconds with possibility of

60%) to fetch its messages from the old broker. During this waiting time, the new broker

keeps caching messages for the migrated subscriber. The caching time can be drastically

increased at the new broker if the subscriber moves out prior to the arrival of its messages

from the old broker. This time keeps increasing at each new broker until the messages

reach the mobile subscriber. This results in a significant message loss as many messages

 105

will be discarded from the brokers’ buffers due to space limitation. The message cost to

forward stored messages is a function of the publication rate and disconnection period.

Since the message cost increases with larger publication rates, more messages will be

dropped from the buffers of the old and new broker. Among the remaining approaches, the

durable-based approach depicts higher sensitivity to message loss and shows a linear

relation with the publication rate. In this approach, message loss is fully attributed to the

continuous caching of messages. This leads to overflowing the brokers’ buffers and thus

many messages will be discarded. Due to short disconnection periods, the durable-based

approach depicts much lower message loss compared to the reactive approach. The pro-

active approach, by storing messages on-demand (i.e., only when the subscriber

disconnects) and transferring context early, shows lower message loss. Although this

approach imposes extra costs in terms of wasting the neighbors’ buffers and processing

time, it pays off in terms of its overall performance.

From Figure 5.3(b), we note that the durable-based approach demonstrates the highest

message duplication (D) among the three mobility support approaches. This is due to the

fact that subscribers may consume identical messages from all previously visited brokers.

As shown later, the durable-based approach is sensitive to message duplication with high

frequency of handoff (default setting) since it increases the odds of consuming identical

messages from different brokers. The reactive approach shows much lower percentages of

message duplication than the durable-based approach as its semantics limit the odds of

consuming identical messages between the old and new broker during state transfer. In

addition to this, the reactive approach has low sensitive to message duplication with the

high frequency of handoffs. The pro-active approach shows zero message duplication in all

 106

cases as it enforces all the neighbor brokers to cache only messages with an ID higher than

the ID of the last message consumed by a disconnected subscriber.

Figure 5.3(c) shows that the pro-active has superior overall throughput, compared to the

durable-based and reactive approaches. It is expected that the pro-active approach shows

considerable improvement since it prevents message duplication and minimizes message

loss. In the random mobility pattern, all the brokers have probabilistically the same number

of neighbors. This results in increasing the cost of supporting disconnection operations at

each broker. However, the overhead of this approach pays off well in various publication

rates compared to the other approaches. From the same figure, we also observe that the

durable-based and reactive approaches demonstrate comparable throughput results for the

low publication rates. Low publication rates along with short disconnection periods result

in little transfer, not incurring a very high overhead of state transfer performed at each

broker in the reactive approach.

 107

(a) % of message loss (L) at given publication rate

0

2

4

6

8

10

12

2 1.5 1 0.5 0

Sleep Time (seconds)

P
e
rc

e
n

ta
g

e
s
 o

f
M

s
g

 L
o

s
s
 (

L
)

Durable Reactive Pro-active

(b) % of message duplication at given publication rate

0

10

20

30

40

50

60

2 1.5 1 0.5 0

Sleep Time (seconds)

P
e
rc

e
n

ta
g

e
s
 o

f
M

s
g

 D
u

p
li
c
a
ti

o
n

 (
D

)

Durable Reactive Pro-active

(c) Overall subscriber throughputs (Ts) at given publication rate

0

200

400

600

800

1000

1200

2 1.5 1 0.5 0

Sleep Time (seconds)

T
h

ro
u

g
h

p
u

ts
 (

T
s
)

M
s
g

s
/S

e
c

Durable Reactive Pro-active

Figure 5.3: Overall performance at given publishing rates

 108

5.2.3.2 Overall performance at given queue sizes

To observe the sensitivity of each mobility support approach to the available buffer space,

we varied the queue size (from 1 Mbyte to 4 Mbyte) of each distributed broker in the

network topology.

Figure 5.4(a) shows an inversely-proportional relationship between the queue size and the

message loss rates in the three approaches. With an increase in the queue size, more

messages can be accommodated and remain longer in the queue, accordingly decreasing

message loss. This implies that the queue size has a direct impact on the system behavior

and should be carefully selected. Increasing queue size beyond a threshold that provides

zero message loss will only increase the overhead on the system without any reduction in

message loss. The reactive approach demonstrates the worst message loss results among

the three approaches due to the same reason described in Section 5.2.3.1. This indicates

that the reactive approach is more sensitive to the queue size than the other approaches.

We suspect that such sensitivity is due to the large residence interval of the messages in the

queue during state transfer of migrated subscribers. Moreover, message loss may occur at

the old and new brokers in every state transfer. The two remaining approaches illustrate

much lower message loss with the selected queue sizes because messages are queued for

much shorter durations as they are always ahead of their subscribers. In contrast to the

reactive approach, only message loss occurred at the new broker does count during the

handoffs. The pro-active approach demonstrates superior results in terms of message loss

compared to the durable-based approach since it optimizes the buffer space usage by only

caching messages on-demand. Therefore, the results of message loss form almost a

constant relationship with the selected queue sizes.

 109

As expected, a linear relationship is shown in Figure 5.4(b) between the queue size and the

results of message duplication in the reactive and durable-based approaches. This is

because large queues can store more messages and thus a larger percentage of duplicated

messages can be received from multiple brokers. This clearly can be seen in the durable-

based approach since identical messages can be consumed from all the previously visited

brokers. Lower percentages are experienced in the reactive approach, where duplicated

messages often occur between the old and new brokers. It can also be noted that the pro-

active approach successfully eliminates message duplication in all cases.

From Figure 5.4(c), we note that the throughput of the durable-based and reactive

approaches decreases gradually with the increase of the queue size. This is mainly due to

the significant increase of messages duplication in both approaches with larger queue sizes.

On the other hand, larger queues reduce message loss, which in turn increases the

subscriber throughput. As a result, we see a slow decrease in the overall throughput of the

two approaches. The pro-active approach shows the highest throughput results among the

three approaches as it prevents message duplication and minimizes message loss. It shows

almost constant throughput results with the selected queue sizes due to the elimination of

message duplication. The durable-based approach performs the worst as it suffers from a

high percentage of message duplication.

 110

(a) % of message loss (L) at given queue size

0

2

4

6

8

10

12

1 2 3 4

Queue Size (MBytes)

P
e
rc

e
n

ta
g

e
s

 o
f

M
s
g

 L
o

s
s
 (

L
)

Durable Reactive Pro-active

(b) % of message duplication at given queue size

0

10

20

30

40

50

1 2 3 4

Queue Size (MBytes)

P
e
rc

e
n

ta
g

e
s
 o

f
M

s
g

 D
u

p
li
c
a
ti

o
n

 (
D

)

Durable Reactive Pro-active

(c) Overall subscriber throughputs (Ts) at given queue size

0

250

500

750

1000

1250

1 2 3 4

Queue Size (MBytes)

T
h

ro
u

g
h

p
u

ts
 (

T
s

)
M

s
g

s
/S

e
c

Durable Reactive Pro-active

Figure 5.4: Overall performance at given queue sizes

 111

5.2.3.3 Overall performance at given disconnection periods

To study the effect of the disconnect interval on the behavior of the durable-based,

reactive, and pro-active approaches, we varied the mean (δT) of the disconnect time.

Figure 5.5(a) and 5.5(b) respectively depict the reported results with means of 12 and 24

seconds.

(a) Disconnect interval of 12 seconds

0

3

6

9

12

15

18

Durable Reactive Pro-active

Mobility Support Approaches

P
e
rc

e
n

ta
g

e
s
 o

f
D

 a
n

d
 L

0

250

500

750

1000

1250

T
h

ro
u

g
h

p
u

ts
 (

T
s
)

M
s
g

s
/S

e
c

Duplication (D) Loss (L) Throughputs (Ts)

(b) Disconnect interval of 24 seconds

0

2

4

6

8

10

12

14

Durable Reactive Pro-active

Mobility Support Approaches

P
e
rc

e
n

ta
g

e
s
 o

f
D

 a
n

d
 L

0

200

400

600

800

1000

1200
T

h
ro

u
g

h
p

u
ts

 (
T

s
)

M
s
g

s
/S

e
c

Duplication (D) Loss (L) Throughputs (Ts)

Figure 5.5: Overall performance at given disconnection periods

 112

From the figures, we note that the three mobility support approaches show similar trends

with respect to the overall throughput. With a larger disconnect interval, the throughput

results tend to slightly decrease. This is attributed to the increase of the message loss rate.

The percentage of message loss increases almost by a factor of three when doubling the

mean disconnect time (24=δT) in the durable-based and pro-active approaches. This

implies that these approaches are more sensitive to the disconnect interval than the reactive

approach. This is because they rely on caching messages at multiple brokers in the network

and thus quickly drain the buffer space. However, the pro-active approach shows lower

sensitivity as it only buffers messages on-demand. We expect that the throughput of the

reactive approach will be noticeably diminished with larger disconnect interval as more

messages need to be transferred from the old to the new broker. As we found that a large

portion of message loss occurs at the old broker, the overhead of state transfer is bounded

by the buffer size, resulting in an insignificant decrease in the throughput results.

5.2.3.4 Overall performance at given frequency of handoffs

Figure 5.6(a) and 5.6(b) show the results of the three mobility approaches with low and

high frequency of handoffs. We used the mean connect time of 60 and 150 seconds in the

high and low handoff frequency levels, respectively. Hence, the number of handoffs is

reduced by almost 40% in the low frequency level compared to the high frequency level.

 113

(a) Low frequency of handoff operations

0

3

6

9

12

15

Durable Reactive Pro-active

Mobility Support Approaches

P
e
rc

e
n

ta
g

e
s
 o

f
D

 a
n

d
 L

0

250

500

750

1000

1250

1500

T
h

ro
u

g
h

p
u

ts
 (

T
s
)

M
s
g

s
/S

e
c

Duplication (D) Loss (L) Throughputs (Ts)

(b)High frequency of handoff operations

0

3

6

9

12

15

18

Durable Reactive Pro-active

Mobility Support Approaches

P
e
rc

e
n

ta
g

e
s
 o

f
D

 a
n

d
 L

0

250

500

750

1000

1250

T
h

ro
u

g
h

p
u

ts
 (

T
s

)
M

s
g

s
/S

e
c

Duplication (D) Loss (L) Throughputs (Ts)

Figure 5.6: Overall performance at a given handoff frequency

From the figures, we note that the overall throughputs of the pro-active and durable-based

approaches slightly increase with the low handoff frequency. This is a result of reducing

the caching overhead adopted by the two approaches. This can be clearly observed in the

significant reduction of the message loss and duplication in the two approaches.

 114

Surprisingly, the overall throughput of the reactive approach has not improved in the low

handoff scenario shown in Figure 5.6(a). In the high handoff scenario presented in Figure

5.6(b), mobile subscribers connect with each broker for a short period and may reconnect

back to their old brokers before the completion of the state transfer. This results in

transferring a small number of messages between the old and new broker, but occurs quite

often due to the high frequency of handoffs. In the low handoff scenario, we found that

most mobile subscribers migrate to new locations after the completion of the state transfer.

The low handoff scenario presents the full cost of state transfer, although it occurs less

frequently than the high handoff scenario. For this reason, the throughput results remain

almost similar in the high and low handoff frequency scenarios. The low handoff scenario

shows higher message loss as the overhead of state transfer here is high. This is due to the

completion of the state transfer protocol in the most cases of the low handoff frequency. In

such scenario, all the buffered messages will be transferred from the old to the new broker.

Therefore, more messages will be discarded from the buffer of the new broker. In the high

handoff scenario, subscribers may move back to the original broker sometimes before even

the state transfer takes place due to the high load/latency of the old broker/network.

5.2.3.5 Overall performance at given network bandwidths

Two bandwidth values, 1Mbps and 11Mbps, are used to study the effect of network

bandwidth on the performance of the three mobility support approaches. The bandwidth

values of 1Mbps and 11Mbps respectively reflect low and high wireless bandwidth

environments. Figure 5.7(a) and 5.7(b) show the overall subscriber throughputs Ts, the

percentages of message loss L, and the percentages of message duplication D as

experienced by the low and high bandwidth scenarios, respectively.

 115

(a) Network bandwidth of 1Mbps

0

5

10

15

20

25

30

35

40

Durable Reactive Pro-active

Mobility Support Approaches

P
e
rc

e
n

ta
g

e
s
 o

f
D

 a
n

d
 L

0

50

100

150

200

250

300

350

400

T
h

ro
u

g
h

p
u

ts
 (

T
s
)

M
s
g

s
/S

e
c

Duplication (D) Loss (L) Throughputs (Ts)

(b) Network bandwidth of 11Mbps

0

3

6

9

12

15

18

21

Durable Reactive Pro-active

Mobility Support Approaches

P
e

rc
e

n
ta

g
e
s

 o
f

D
 a

n
d

 L

0

200

400

600

800

1000

1200

T
h

ro
u

g
h

p
u

ts
 (

T
s
)

M
s
g

s
/S

e
c

Duplication (D) Loss (L) Throughputs (Ts)

Figure 5.7: Overall performance at given bandwidths

From the graphs, we note that the three approaches show lower throughput results with the

low bandwidth scenario as expected, as the wireless channel can carry only a limited

number of messages per second to the subscribers. Interestingly, we noticed that although

the channel was totally utilized, the total consumed messages by all the subscribers were

 116

less than the actual capacity of the channel (1Mbps). As the channel bandwidth in such

scenarios becomes the bottleneck, messages will take a longer time to be received and

acknowledged by the subscribers. This leads to resending the same message several times

before it gets acknowledged, and hence results in delivering a noticeable amount of

duplicated messages. This may explain why the percentages of message duplication are

high in the low bandwidth scenario. In addition to wasting a large amount of bandwidth,

redelivering duplicated messages will congest the wireless channel and thus increase the

overall delay.

The figures also show that the three approaches experience message loss with the low and

high bandwidth scenarios. The results in the graphs depict that the three approaches show

relatively higher message loss with the high bandwidth scenario. The main reason for this

is attributed to the total available bandwidth. With higher wireless bandwidth, the broker

can accept and buffer more messages as the publisher and subscribers’ throughputs depend

on the total available bandwidth. Message discarding hence occurs more often than with

the low bandwidth scenario due to the limitation of buffer space. It should be noted that a

portion of the total percentage of message loss is attributed to the characterization of the

wireless channel (i.e., % of packet drop) as well as the handoff procedure.

From Figure 5.7(a) and 5.7(b), we observe that the pro-active approach shows superior

results in terms of overall throughputs, message loss, and duplication. This is a result of

preventing message duplication, reducing message loss by caching messages on-demand,

and hiding message overhead by propagating message ahead of the subscriber movement.

The durable-based approach shows the worst results among the two remaining approaches

as it suffers from a high percentage of message duplication, thereby degrading the overall

 117

throughputs. This is due to the overhead of caching messages continuously at each broker

visited by the subscriber, irrespective of its current active subscriptions. The reactive

approach falls in between the other approaches, as it has higher message overhead than the

pro-active approach and lower message caching overhead compared to the durable-based

approach. It should be noted that the reactive approach demonstrates much higher

percentages of message loss than the other approaches in both bandwidth scenarios. This is

because the overhead of state transfer does not pay off in terms of message loss with short

disconnection interval (default setting 12 seconds) as depicted in Figures 5.5(a) and 5.5(b).

The durable-based and pro-active approaches, on the other hand, benefit from short

disconnection intervals as they store fewer messages and therefore only a small number of

messages will be discarded from the buffers.

5.3 Random and Neighboring Mobility Patterns

Next we evaluate and compare the performance of the pro-active approach in the random

(RND) and neighboring (NBR) mobility patterns in terms of message processing time (M)

and individual broker throughput (Tb). Figure 5.8 shows the results of the selected metrics

in the random (RND) and neighboring (NBR) mobility patterns: the left y-axis presents

broker throughput (Tb) and the right y-axis shows message processing time (M). The

presented results correspond to the individual brokers (Bi) used in our experimental

network topology described in Figure 4.3, Chapter 4.

 118

0

50

100

150

200

250

300

350

400

B1 B2 B3 B4 B5 B6

Distributed Brokers

T
h

ro
u

g
h

p
u

ts
 (

T
b

)
M

s
g

s
/S

e
c

0

200

400

600

800

1000

1200

1400

1600

M
e
s
s
a
g

e
 P

ro
c
e
s
s
in

g
 T

im
e
 (

M
)

m
s

RND Pattern (Tb) NBR Pattern (Tb)

RND Pattern (M) NBR Pattern (M)

Figure 5.8: Performance of pro-active approach in RND and NBR mobility patterns

From Figure 5.8, we can observe that the pro-active approach shows lower message

processing times in the neighboring mobility pattern with all brokers. This is a good

indicator of the overhead reduction due to limiting the mobility prediction to the (true)

neighbor brokers. This results in reducing the number of immediate neighbors of each

broker and therefore improves the performance of the pro-active approach. For example,

broker B5 shows the lowest message processing time among all the brokers because it has

only one neighbor broker B3. In the random pattern, broker B5 shows higher processing

time as it has 5 neighbor brokers and needs to buffer messages for each disconnected

subscriber at one of these neighbors. We can also observe that broker B5 depicts much

lower throughput results in the neighboring pattern. Since broker B5 has only one neighbor

broker, the number of subscribers visiting broker B5 is much less than in the case in the

random pattern. Therefore, broker B5 routes fewer messages to the overall subscribers. In

contrast, brokers B3 and B6 have the largest number of neighbors (4 neighbors each)

among all the brokers and show the highest throughput results. This is attributed to the fact

 119

that these brokers are visited by a large number of subscribers due to the neighboring

mobility pattern. Thus, many messages are routed through these brokers (hot spots traffic).

The remaining section presents and compares the behavior of the three mobility support

approaches using the random (RND) and neighboring (NBR) mobility patterns and the

default input values listed in Table 4.1, Chapter 4. Three different performance metrics are

used to evaluate the performance of the three approaches: the overall subscriber throughput

(Ts), message loss (L), and message duplication (D). We used different subscriber

populations (10, 100, and 200) to investigate the overall performance of the three

approaches under different workload conditions. Tables 5.2, 5.3, and 5.4 show the obtained

results of the selected metrics.

Table 5.2: Subscriber throughput in the RND and NBR mobility patterns

 Durable-based Reactive Pro-active

Subscribers RND NBR RND NBR RND NBR

10 86.99 86.28 92.39 90.53 108.90 124.72

100 589.33 574.32 664.39 663.63 810.26 957.32

200 806.81 791.74 980.77 953.17 1172.77 1420.26

From Table 5.2, we note that the pro-active approach show superior throughput results in

the random and neighboring mobility patterns, compared to the other approaches. As we

expected, the pro-active approach in the neighboring mobility pattern depicts a noticeable

improvement in the throughput results compared to the results achieved in the random

mobility pattern. This is because each broker in this pattern has fewer neighbors compared

to the scenario in the random pattern (brokers have probabilistically the same, maximum

number of neighbors). As a result, the overhead (subscription propagation and message

caching) of the pro-active approach significantly decreases and hence subscriber

throughput improves. In contrast, the throughput results of the remaining approaches show

 120

a slight decrease with the various subscriber populations as shown in Table 5.2. We

suspect that such behavior is due to the increased load on the central brokers (brokers that

have a large number of immediate neighbors) that may become performance bottlenecks.

In the pro-active approach, we found the overhead on the central brokers has not increased

and is always less than the overhead in the random pattern, as shown in Figure 5.8.

Table 5.3: Message loss in the RND and NBR mobility patterns

 Durable-based Reactive Pro-active

Subscribers RND NBR RND NBR RND NBR

10 4.78 3.13 3.65 5.14 2.25 1.26

100 5.14 4.06 8.92 7.03 0.86 0.72

200 4.56 3.51 9.62 9.44 0.58 0.51

Table 5.3 shows that the pro-active, durable-based, and reactive approaches demonstrate a

slightly lower percentage of message loss in the neighboring mobility pattern. This is due

to the fact that some brokers’ buffers (central brokers) are heavily utilized, but not others.

In the random pattern, all the brokers’ buffers experience almost similar (and high) buffer

utilization. An interesting observation is that the percentage of message loss of the pro-

active approach decreases gradually with the increase of subscriber population in both

mobility patterns. With larger populations, the probability of having similar interest among

the subscribers increases. This leads to a significant reduction in the caching overhead of

the pro-active approach as one copy of each message can be stored for many subscribers.

As a result, message loss decreases with the increase of subscriber population as shown in

the above table. The durable-based approach shows an approximately similar percentage

of message loss with the increase in the subscriber population. Although the durable-based

approach benefits from the similarity of interest, its caching overhead is almost constant

with different population sizes. This can be attributed to the continuous caching process

 121

adopted by this approach. In contrast, the reactive approach does not benefit from the

similarity of interest as it does not reduce the overhead of state transfer. During the

handoffs, state transfer has to be performed individually for every moving subscriber and

hence its overhead increases proportionally with the subscriber population. Thus, message

loss increases with the increase of the overhead imposed by subscriber population.

Table 5.4: Message duplication in the random and neighboring mobility patterns

 Durable-based Reactive Pro-active

Subscribers RND NBR RND NBR RND NBR

10 11.35 12.10 0.80 1.52 0.0 0.0

100 12.01 11.68 1.70 0.85 0.0 0.0

200 17.05 16.97 2.13 1.90 0.0 0.0

From Table 5.4, we observe that the message duplication is slightly decreased in the

neighboring (NBR) mobility pattern of the durable-based and reactive approaches. The

pro-active approach shows zero message duplication in both mobility patterns as it keeps

track of the last consumed message by each subscriber and only buffers messages with

higher ID than the last consumed message. From the three previous tables, we can

conclude that the neighboring mobility model improves the performance of the pro-active

approach in terms of overall throughput, message loss, and duplication. The two remaining

approaches have not shown a significant difference in their performance results when using

either the random or the neighboring mobility pattern.

5.4 Concluding Remarks

In this chapter, we presented the implementation and evaluation of three mobility support

approaches: the reactive, pro-active, and durable-based approaches. Each approach uses a

different mechanism to achieve its goals. The reactive approach involves message transfer

from the old to the new broker during each handoff. The message transfer occurs only after

 122

a mobile subscriber migrates to a new broker. In contrast, the pro-active approach ensures

that subscriber context (subscriptions/messages) always remain one hop (broker) ahead of

its current broker. The durable-based approach requires each broker to continuously buffer

all the published messages irrespective of its currently active subscribers.

The reactive, pro-active, and durable-based approaches were evaluated and compared in

terms of different performance metrics: end-to-end latency, handoff latency, message loss,

message duplication, overall subscriber throughput, individual broker throughput, and

message processing time. These performance metrics are evaluated using random and

neighboring mobility patterns along with a set of workload parameters, such as number of

subscribers, publishing rate, queue size, disconnection interval, handoff frequency, and

network bandwidth, to study under which conditions one approach may perform better

than another. The performance results of the three approaches were compared to gain a

better insight into the behavior of each approach in supporting subscriber mobility.

Our evaluation results have shown that the reactive approach suffers from high message

overhead due to state transfer. As a result, it shows much higher end-to-end latency of

message delivery compared to the other approaches. The pro-active approach shows a

comparable end-to-end latency to the durable-based approach since it has almost no state

transfer overhead. The pro-active approach depicts superior throughput results among the

three approaches as it performs state transfer before the subscriber movement and buffers

messages on-demand. The durable-based approach shows the worst throughput results,

among the three approaches, as it suffers from high message duplication and caching

overhead. Comparing the handoff latency of the three approaches, the reactive approach

shows more pronounced handoff latency than the others. This is because the subscriber

 123

messages need to be fetched from the old broker before the subscriber can consume any

message at its new broker and this may take some time, particularly with a congested

network or overloaded brokers. In contrast, the pro-active and durable-based approaches

experience much lower handoff latency and hence they can provide fast handoff required

by some applications to maintain the quality of the connections.

In general, the experimental results have shown that the pro-active approach successfully

eliminates message duplication and significantly minimizes message loss compared to the

other two approaches. The reactive approach shows higher sensitivity to message loss with

short disconnection period. This is because the overhead of concurrent state transfer does

not pay off when transferring a small number of messages. The durable-based approach

results in higher message duplication as the subscribers can consume identical messages

from previously visited brokers. Moreover, it is sensitive to message loss with large

disconnection intervals due to the continuous message caching.

 The pro-active approach benefits, in terms of subscriber throughput, from the neighboring

mobility pattern due to limiting the mobility predication to neighboring brokers. This can

significantly reduce the overhead of the pro-active approach and hence improve its

performance. In contrast, the reactive and durable-based approaches have not shown any

significant improvement when subscriber mobility is limited to the neighboring brokers.

This is because the overhead of these approaches remain more or less constant.

 124

CC HH AA PP TT EE RR 66

AANN AANNAALLYYTTIICC MMOODDEELL FFOORR EEXXTTRRAAPPOOLLAATTIINNGG TTHHEE

PPEERRFFOORRMMAANNCCEE OOFF TTHHEE PPRROO--AACCTTIIVVEE AAPPPPRROOAACCHH

6.1 Introduction

In this chapter, we present an analytical model that can be used to extrapolate the

performance of our proposed pro-active approach in a near-size environment (in terms of

broker and/or subscriber population) to our experimental environment, using performance

data obtained from our experiments. The general approach for performance approximation

is as follows: most performance metrics are a function of the number of active subscribers

at each broker. We thus first describe how to analytically derive the expected number of

subscribers for a given broker topology, mobility model, and overall subscriber population,

based on continuous-time Markov chains (CTMC). We next show how to extract

performance-related data through curve-fitting from our testbed results. These curves relate

the average number of subscribers with a performance metric of interest, here the per-

broker throughput. The approach can be generalized to other performance metrics. Using

these two steps, we can then extrapolate the throughput of the pro-active approach in a

near-size environment to our experimental environment. This is an essential step as we

were not able to achieve this experimentally due to the limitations of our experimental

environment. Given the two sets of performance results reported in Chapter 5, we will

validate our approach by deriving key parameters such as the fitted curve based on one set

of experiments (using a random mobility pattern) and use it to approximate the results of

 125

the second set of experiments, using a neighboring mobility pattern.

In the next two sections, we present two Markov models that reflect the random and

neighboring mobility patterns of a mobile subscriber. From the two Markov models, we

calculate the expected number of subscribers at each broker. We then introduce a curve-

fitting approach that is used to calculate the throughput of individual brokers using the

expected number of subscribers obtained from the Markov models. We describe our

analytical results and compare them against a selected set of our experimental results

described in Chapter 5.

This chapter is organized as follows: Section 6.2 gives a brief description of the general

model of subscriber mobility. Section 6.3 and 6.4 respectively describe continuous-time

Markov chains (CTMC) for modeling the random and neighboring mobility patterns.

Section 6.5 demonstrates the selected curve-fitting approach. Section 6.6 shows and

compares the analytical and experimental results. Section 6.7 summarizes this chapter.

6.2 Description of Subscriber Mobility

We consider a distributed pub/sub system composed of a set of brokers { }NbbB ,,1 L=

that communicate by exchanging control messages to support subscriber mobility using a

pro-active approach. For convenience in demonstrating our analytical model, we assume

that the distributed brokers are homogenous (i.e., all brokers are identical and have the

same statistical behavior). A mobile subscriber enters to connect state S1, shown in Figure

6.1, when it initially connects to one of the distributed broker bi to receive its messages.

The connection time is a random variable, denoted by TC, and is assumed to have an

exponential distribution with pdf given by)exp()(ttf
CT ββ −= , where β is the

 126

reciprocal of the mean of TC, []CTET =β . The mobile subscriber remains in state S1 for a

randomly generated, exponentially distributed time with the mean of βT seconds. For

generating exponential variates of the connection time TC, we have used the following

function
β

)ln(t
TC

−
= , where t is a random variable uniformly distributed on the interval

[0,1]. With an equal probability, the mobile subscriber either moves to disconnect state S2

or handoff state S3. Similarly, the disconnection and handoff times are also random

variables, denoted by TD and TH, respectively. The pdf of TD and TH are given by

)exp()(ttf
DT δδ −= and)exp()(ttf

HT αα −= respectively. The mean of TD is

[]DTET =δ whereas the mean of TH is []HTET =α . Exponential variates of TD and TH are

generated by the same function used with TC. The disconnect state S2 reflects the case of

signal breakdown due to poor network connectivity while the handoff state S3 reflects the

case of moving to a different coverage area. The mobile subscriber remains in state S2 for a

randomly generated, exponentially distributed time with a mean of δT seconds. With an

equal probability, the mobile subscriber either moves back to the connect state S1 and

reconnects to the same broker or goes to the handoff state S3. Moving from state S2 to S3

reflects the case when the mobile subscriber disconnects from the network voluntarily or

involuntarily and finds itself in a different coverage area. In contrast, moving from state S1

to S3 corresponds to the case when the subscriber enters a new coverage area while he/she

is roaming. After staying in state S3 for a randomly generated, exponentially distributed

time with a mean of αT seconds, the subscriber moves to state S1 and reconnects to a

different broker. During the handoffs, the new destination (broker) is uniformly selected

from the available brokers. Figure 6.1 depicts the state diagram for subscriber mobility

 127

model along with the means of the residence times (,, δβ TT and αT) and the quantities of

the departure rates (,
2

1
,

2

1

δβ TT
 and

αT

1
) at/from each state.

Figure 6.1: State transition diagram for subscriber mobility model

In this chapter, we use continuous-time Markov chains (CTMC) to model subscriber

mobility between a set of brokers (states). This is due to the fact that we have a discrete

state space of brokers (i.e., countable state space H},{1,S …=) and the sojourn times

(holding time in one state before moving to another) are exponentially distributed. We

have used CTMC to model the random and neighboring mobility patterns described in

Chapter 4. The next two sections describe in detail how CTMC is used to model these two

mobility patterns.

6.3 Modeling Random Mobility

In this section, we describe the random mobility pattern in which a mobile subscriber has

the freedom to move to one of N brokers that are available in the system. The target broker

is selected randomly and uniformly. Here we assume that the mobile subscriber can

connect only to one broker at a time. The state space of subscriber mobility thus can be

 128

defined by the number of connect states (brokers) and a single disconnect and handoff

state. We denoted the state with the variable S that takes integer values in the set

H},{1,… , where 2NH += . Hence, the transition states of the random mobility model

can be presented by an H-state Markov chain, as shown in Figure 6.2.

Figure 6.2: State transition diagram for the random mobility model

The aim of this model is to calculate the average number of subscribers at each state. This

is required to approximate the throughput of individual brokers as described later. In

Figure 6.2, states{ }1 and{ }2 correspond to the handoff and disconnect states, respectively.

The rest of the states{ }H,,3 L represent the connect states. Therefore, the state space S of

the random model is given by { }HS ,,1L= . The arrows in the graph depict the subscriber

mobility between different states while the parameters ,,δα and β represent the transition

(departure) rates from state{ }1 , { }2 , and { }H,,3 L , respectively.

We now proceed to identify the rate matrix M (also know as infinitesimal generator matrix)

of state space S according to the state transition diagram shown in Figure 6.2. Then we

calculate the state probabilities Hii ,1, = L,π , and accordingly the probabilistic behavior

 129

of the subscriber mobility can be completely described. Since the cardinality of S is H ,

M is an HH× matrix, whose entries denote the transition rates between different states.

The diagonal rates of the M-matrix, iim , , are negative and given by

Himm
H

ij
j

jiii ≤≤−= ∑
≠
=

1
1

,, , whereas the off-diagonal rates are positive. The sum of each

row is equal to zero, i.e. Himm ii

H

ij
j

ji ≤≤=+∑
≠
=

10,

1

, . The interpretation for the

elements of M-matrix is as follows: jim , denotes the departure rate of the mobile

subscriber from state i to state j, Sji ∈, . Then the HH × M-matrix of the corresponding

random CTMC is described as

.

2000

0200

0020

0002

)1(

0





































−

−

−

−

+−

−

=

βββ

βββ

βββ

βββ

δδδδδδ

ααααα

L

MOMMMMM

L

L

L

L

L

N

N

M

Let Hi,πi ,,= L1 , be the stationary state probability that the mobile subscriber is in state

i. Accordingly, the H-element row vector []Hπππππ L321= represents the H

stationary state probabilities that satisfy the matrix equation

.0=Mπ (6.1)

 130

It should be noted that the sum of stationary state probabilities is equal to one,

1
1

=∑
=

H

i

iπ (6.2)

Since the mobile subscriber moves to one of the connect states Hi ,,3 L= without any

specific preferences and its mobility follows a symmetrical behavior in terms of arrival and

departure, the stationary state probabilities Hi,πi ,, = L3 are all equal. We denote the

state probability of being in any one of these states by P. Therefore, we have

HP πππ ==== L43 , resulting in

121

1

=++=∑
=

NP
H

i

i πππ (6.3)

By solving the first and second matrix equations of 6.1, we obtain the state probabilities,

1π and 2π , of the handoff and disconnect states, respectively.

.
)1(

)2(
1 P

N

N

α

β
π

+

+
= (6.4)

.
)1(

2 P
N

N

δ

β
π

+
= (6.5)

By substituting 1π and 2π into Equation 6.3, we obtain the state probability, P, of being in

any of the connect states i, 6,,1 L=i as follows










++++

+
=

αδβδβα

αδ

)1()2(

)1(

NNNN

N
P (6.6)

 131

Let β be the transition (departure) rate from any connect state i, Hi ,,3 L= , and βT be

the mean sojourn (connect) time at any connect state i. Thus,

.
2

1

β

β
T

= (6.7)

Let δ be the transition (departure) rate from the disconnect state }2{ , and δT be the mean

sojourn (disconnect) time at state }2{ . Thus,

.
)1(

1

δ

δ
TN +

= (6.8)

Let α be the transition (departure) rate from the handoff state }1{ , and αT be the mean

sojourn (handoff) time at state }1{ . Thus,

.
1

α

α
NT

= (6.9)

The constant values (2, N+1, and N) shown in the denominators of the previous three

equations reflect the number of possible destination states from the current state.

The expected number []ixE of subscribers at any connect state i, Hi ,,1 L= , follows the

binomial distribution, since the presence of each subscriber at state i is a Bernoulli

experiment with probability of success iπ and probability of failure ()iπ−1 . Let K be the

total number of subscribers in the system. Hence, the expected number of subscribers at

any connect state i, Hi ,,3 L= , is given by

() () () 







−=








−=

−−

x

K
PP

x

K
ix

xKxxK

i

x

i 11} stateat are ssubscriber Pr{ ππ . This leads to

 132

[]
αδβδβα

αδ

)1()2(

)1(

++++

+
===

NNNN

N
KKPxEn ii

. (6.10)

Similarly, we can obtain the expected number of subscribers at handoff state }1{ , 1n , and

disconnect state }2{ , 2n . Hence, we have

[] .
)1()2(

)2(

)1(

)2(
111 









++++

+
=









+

+
===

αδβδβα

βδ

α

β
π

NNNN

N
KP

N

N
KKxEn (6.11)

and

[] .
)1()2()1(

222 








++++
=









+
===

αδβδβα

βα

δ

β
π

NNNN

N
KP

N

N
KKxEn (6.12)

For a sanity check on the binomial calculations, we have summed up the total expected

numbers of subscribers at all states, which should be equal to K. Hence, we have

K

NNNN

NN

NNNN

N

NNNN

N

KnNnn
i

=



























++++

+

+
++++

+
++++

+

=++

αδβδβα

αδ

αδβδβα

βα

αδβδβα

βδ

)1()2(

)1(

)1()2(

)1()2(

)2(

21
 (6.13)

6.4 Modeling Neighboring Mobility

In this section, we describe the neighboring mobility model, which is a special case of the

random mobility model, presented in Section 6.3. In this model, a mobile subscriber, based

on its current state, can only move to one of its neighbor states, where the selected

neighbor is chosen according to the uniform distribution. Here we also assume that the

mobile subscriber can connect only to one broker (state) at a time. The neighboring model

 133

under consideration reflects the same six-broker network topology presented in Chapter 4,

Figure 4.3. The restriction on the possible brokers the subscriber can move to from its

current broker is modeled by substituting single disconnect and handoff states by multiple

disconnect and handoff states, a pair for each broker. Hence, the state space S of the

neighboring model includes six connect states i, 6,,1 L=i , six disconnect states j,

6+= ij , and six handoff states k, 12+= ik . As a result, the state space S is defined by

{ }18,,1 L=S . The transition states of the neighboring mobility model can accordingly be

presented by the 18-state Markov chain shown in Figure 6.3.

Figure 6.3: State transition diagram for neighboring mobility model

The arrows in the graph depict subscriber mobility between different states while the

 134

parameters β , δ , and 18,,13, L=iiα correspond to the transition (departure) rates

from the connect, disconnect, and handoff states, respectively. Based on the transition state

diagram shown in Figure 6.3 and the mean sojourn time at each state, we can determine the

values of the parameters (β , δ , and iα) as follows:

β

β
T2

1
= (6.14)

δ

δ
T2

1
= (6.15)

α

α
TEi

i

1
= (6.16)

In the above three equations, the mean sojourn time at any connect, disconnect, and

handoff states is denoted by βT , δT , and αT , respectively, while the number of possible

destinations from any connect or disconnect states is denoted by the constant 2. Similarly,

the number of possible destinations (neighbors) from any handoff state i, 18,,13 L=i is

denoted by iE .

We next determine the M-matrix (rate matrix) of the state space S. Then we can calculate

the state probabilities 18, ,1, = Liiπ , to identify the probabilistic behavior of subscriber

mobility. As the cardinality of S is 18, the M-matrix has 1818× entries that denote the

transition rates based on the state transition diagram shown in Figure 6.3. The M-matrix of

the corresponding neighboring continuous-time Markov chains (CTMC) is given by

 135





































































































−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

=

184000000000000018181818

01700000000000001700

0016200000000016001600

000154000000001515150150

00001430000000140014014

0000013200000013000130

0000020000000000

0000002000000000

0000000200000000

0000000020000000

0000000002000000

0000000000200000

0000000000200000

0000000000020000

0000000000002000

0000000000000200

0000000000000020

0000000000000002

ααααα

αα

ααα

ααααα

αααα

ααα

δδδ

δδδ

δδδ

δδδ

δδδ

δδδ

βββ

βββ

βββ

βββ

βββ

βββ

M

Let 18, ,1, = Liiπ , be the stationary state probability that the mobile subscriber is in state

i. As a result, the 18-element row vector
[]18321 πππππ L=

 represents the 18

stationary state probabilities that satisfy the matrix equation shown in Equation 6.1, and

their summation is equal to one, i.e. 1
18

1

=∑
=i

iπ . Note that the elements of vector π ,

6, ,1, = Liiπ , 127, ,, = Liiπ , and 1813, ,, = Liiπ are the state probabilities of the

connect, disconnect, and handoff states, respectively. These state probabilities can be

obtained by solving the matrix equation indicated in Equation 6.1.

After identifying the state probabilities, we can readily calculate the expected number of

subscribers, []ixE , at any connect state i, 18,,1 L=i , in a similar manner to that described

in Section 6.3. Let K be the total number of subscribers in the system. Hence, the expected

 136

number of subscribers at any state i is given by

{ } () ()













−= −

x

K
ix

xK
i

x
i ππ 1 stateat are ssubscriber Pr . This leads to

[] .iii KxEn π== (6.17)

6.5 Curve- Fitting Approach

In this section, we use a curve-fitting approach that typically creates an equation from

some observed data. This approach can relate, with a percentage of error, throughput to the

average number of subscribers at a broker by assigning a single function across the entire

range of data. As a result, the generated function can be used to numerically extrapolate

near future outcomes. There are several curve fit forms we could chose from to generate a

function that provides the “best” fit (i.e., the curve with minimum error between the

generated curve and date points, usually referred to as least-square error). In this research,

we have chosen the polynomial curve-fitting approach since it shows the best fit, among

the other generic forms we have tried, for our observed data. Using EXCEL, we fit a 3rd

degree polynomial curve. Note that the observed data used for generating the curve is

collected from the experiments of our general mobility model (random model) described in

Chapter 5. It is also collected from all the brokers used in our experimental setup. Figure

6.4 shows the generated polynomial fitting-curve.

From the curve fitting shown in Figure 6.4, we obtain the following polynomial equation

that can be used to extrapolate the throughput of individual brokers as a function of the

expected number of subscribers x.

 137

1.7111 +(12.362)x + (0.2256)x -(0.0019)x =y 23 (6.18)

The value of 9198.02 =R , depicted in the graph, is an indicator from 0 to 1 that reveals

how closely the estimated values for the fitting-curve correspond to the observed data. A

fitting-curve is more reliable when its 2
R (known as R-squared or the coefficient of

determination) value is at or near 1.

y = 0.0019x
3
 - 0.2256x

2
 + 12.362x + 1.7111

R
2
 = 0.9198

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60

Number of Subscribers

T
h

ro
u

g
h

p
u

ts
 (
T

s
)

Figure 6.4: Polynomial fit

6.6 Comparative Study

In this section, we apply our approach to derive expected throughput results for each

broker under both the random and neighboring mobility model, and compare them to the

experimental results described in Chapter 5. The CTMC models allow us to determine the

expected number ()xE of subscribers at each state in both models. Then, we determine the

expected throughput results via Equation 6.18 for each individual broker. For all the

reported results in this section, we used fixed values (60=βT seconds, 12=δT seconds,

and 3=αT seconds) for the mean sojourn (residence) time of connect, disconnect, and

 138

handoff states, respectively, in both mobility models described in this chapter. These

values correspond to the used values in our experimental setup. Unless otherwise stated,

the total number of subscribers (K) in the system was set to 200 and the total number of

brokers N was set to 6. Therefore, the size of the state space S is 82 =+= NH in the

random model and 18 in the neighboring model.

6.6.1 Random Model Results

We first compare the analytical and experimental results in terms of the expected number

of subscribers at each broker for a validity check of our analytical model. Using the mean

sojourn (residence) times indicated earlier, we can identify the departure rate from each

state. From Equations 6.7, 6.8, and 6.9, we get

.181 and ,841,1201 === αδβ

Now we describe the numerical solution for the set of equations (6.4, 6.5, and 6.6) using

the obtained departure rates ()αδβ and ,, . First we use Equation 6.6 to obtain the state

probability of being in connect state (P), which is equal for all connect states as discussed

previously. Hence, we have 147679.0=P . Similarly, we can use Equations 6.4 and 6.5 to

obtain the state probability of being in the handoff and disconnect states 1π and 2π ,

respectively. Thus, we have 088608.0 ,025316.0 21 == ππ . We verify that the obtained

state probabilities satisfy Equation 6.3, i.e.

.1147679.0)6(088608.0025316.021

8

1

=++=++=∑
=

NP

i

i πππ

 139

According to Equation 6.10, the expected number of subscribers at any connect state i,

Hi ,,3 L= , will then be obtained by 147679.0×= Kn
i

 subscribers/broker. Figure 6.5

shows the expected number of subscribers at each broker with varying the total number of

subscribers, }200,150,100,50{=K . The doted lines represent the experimental results

while the sold lines correspond to the analytical results. From the graph, we note that the

analytical and experimental results in most cases are close. The averages of the

experimental results do fluctuate due to their random nature. From measuring a 95%

confidence interval, these averages have small confidence intervals that are almost

identical in length for the runs with the same number of subscribers and overlap the upper

and lower bounds of the expected numbers obtained from the analytical model. This

indicates that the differences between the analytical and experimental results are not

statistically significant. This gives us much confidence in the use of our analytical model to

determine the expected number of subscribers at each state.

K=100

K=150

K=200

K=50

0

5

10

15

20

25

30

35

B1 B2 B3 B4 B5 B6

Distributed Brokers

E
(x

)
o

f
S

u
b

s
c
ri

b
e
rs

K
=

T
o

ta
l

N
u

m
b

e
r

o
f

S
u

b
s
c
ri

b
e
rs

Figure 6.5: Expected number of subscribers at each broker

 140

We next describe the numerical results obtained from the random model presented in

Section 6.3. The expected number of subscribers/broker for a total subscriber population of

200 is obtained by 5358.29147679.0200 =×=in as indicated above. The approximated

throughput of each broker is computed by substituting in into Equation 6.18. Thus, the

throughput at each broker is given by msgs/sec218.983y = . We plot y (the approximated

throughput result) along with the experimental throughput results for the random model in

Figure 6.6 and 6.7.

The lines across the data bars in the next figures represent the upper and lower bound of a

95% confidence interval for average throughputs. To calculate this confidence interval, we

applied a different approach due to the small sample size of our experimental results. Thus,

the following formula used to obtain the confidence interval of 95%,
n

s
tX ×± 2α ,

where X is the sample mean, s is the standard deviation, n is the sample size, and 2αt is

the t-value with an area of 2α to its right. The upper and lower bound of the analytical

throughput results are captured in a different way. The normal approximation to the

binomial distribution can be used to calculate the upper and lower bound of the number of

subscribers that can be found at any instance with probability of 95% at each broker. Using

these bounds in Equation 6.18, we obtained the upper and lower bound of the analytical

throughput results. It should be noted that before applying the normal approximation, a

certain condition must be met as indicated in [68] (i.e., []KPKPKP ,0)1(2 ∈−±).

The normal approximation fails to provide the upper and lower bound of the expected

number of subscribers if this condition has not satisfied, which is the case when K equals

 141

10 and 50. This explains the reason for not plotting the upper and lower bound of the

analytical throughput results with these subscriber populations in the presented graphs.

0

50

100

150

200

250

B1 B2 B3 B4 B5 B6

Distributed Brokers

T
h

ro
u

g
h

p
u

ts
 (

M
s
g

s
/S

e
c
)

Analytical Results Experimental Results

Figure 6.6: Throughput results for individual brokers

 Figure 6.6 shows the analytical and experimental throughput results for individual brokers

with a subscriber population of 200. From measuring a 95% confidence interval for both

sets of results, we note that the confidence intervals of the experimental results overlap all

the corresponding intervals of the analytical results. This indicates that the differences

between the analytical and experimental results are not statistically significant. From the

graph, we also note that the analytical results show relatively higher results compared to

the experimental results. This can be attributed to the fact that each broker will have a large

number of proxy subscribers that buffer messages on behalf of the moving subscribers. As

a result, the throughput of individual brokers (especially ones run on machines with lower

hardware configurations such as B3 and B4) can be noticeably affected due to the overhead

imposed by the proxy subscribers. Such overhead is typically higher in the random model

than in the neighboring model as the later model restricts subscriber mobility between

immediate neighbors, thereby having a lower number of proxy subscribers. Our analytical

 142

model can be refined in the future to take the number of proxy subscribers at each broker

into consideration.

0

200

400

600

800

1000

1200

1400

1600

10 50 100 150 200
Number of Subscribers

T
h

ro
u

g
h

p
u

ts
 (

M
s
g

s
/S

e
c
)

Analytical Results Experimental Results

Figure 6.7: Overall throughput results with different subscriber population

Figure 6.7 illustrate the overall throughput results achieved with the increase of the

subscriber population. From the graph, we note that the analytical and experimental results

are very close for the small subscriber population. We also observe that the difference

between the two sets of results increases with the increase of subscriber population. We

conjecture that as the subscriber population increases, the overhead of proxy subscribers at

each broker increases gradually. Therefore, the overall throughput results can be affected

due to the overhead imposed by the proxy subscribers. This is not observed with a small

population of subscriber as the impact of the proxy subscribers is much reduced.

6.6.2 Neighboring Model Results

We next compare the expected number of subscribers/broker obtained from the analytical

model with the results from our testbed for the neighboring mobility model. Using the

mean sojourn (residence) times indicated earlier, we can determine the departure rate from

 143

each state. From Equations 6.14, 6.15, and 6.16, we get

{ }.121,31,61,121,91,61 and ,241,1201 1813 === →αδβ

Now we describe the numerical solution for the matrix equation indicated in 6.1 using the

obtained departure rates ()1813 and ,, →αδβ . To solve the matrix equation, we basically

plug in the rate values shown above in the 1818 × M-matrix presented earlier and then find

the solution for the matrix equation, which belongs to the null space of the matrix M.

Solving Equation 6.1, we can obtain the state probability for the different states, and then

the expected number of subscribers can be found by multiplying each state probability by

the total number of subscribers K. Table 6.1 presents the state probabilities of the six

connect states 6,,1, L=iiπ and the total state probability of disconnect and handoff states

DHπ along with the expected number of subscribers (for a total subscriber population of

K) at the connect states 6,,1, L=in
i

 and at the disconnect and handoff states
DH

n .

Table 6.1: State probabilities and E(x) of subscribers

State Probabilities Expected Number of Subscribers

1209.0

2198.0

0549.0

1099.0

2198.0

1648.0

1099.0

6

5

4

3

2

1

=

=

=

=

=

=

=

DH
π

π

π

π

π

π

π

1209.0)(

2198.0)(

0549.0)(

1099.0)(

2198.0)(

1648.0)(

1099.0)(

66

55

44

33

22

11

×==

×==

×==

×==

×==

×==

×==

KxEn

KxEn

KxEn

KxEn

KxEn

KxEn

KxEn

DHDH

 144

We computed the expected number of subscribers/broker, as indicated in Table 6.1., for the

total subscriber populations, K={50,100,150,200} and plotted the analytical and

experimental results for the six brokers, as shown in Figure 6.8, to validate our analytical

model. The doted lines correspond to the experimental results while the sold lines

represent the analytical results. From the graph, we observe that the analytical and

experimental results in most cases are close. Similar to the case of the random mobility

model, the CTMC approach results in accurate values of the expected subscriber

population across different brokers.

K=100

K=150

K=200

K=50

0

5

10

15

20

25

30

35

40

45

B1 B2 B3 B4 B5 B6

Distributed Brokers

E
(x

)
o

f
S

u
b

s
c
ri

b
e
rs

K
=

T
o

ta
l

N
u

m
b

e
r

o
f

S
u

b
s
c
ri

b
e
rs

Figure 6.8: Expected number of subscribers at each broker in neighboring mobility

We now describe the numerical results obtained from the neighboring model presented in

Section 6.4. The expected number of subscribers/broker for a total subscriber population of

200 is obtained by],,,[,200
61 DH

πππππ L=× as indicated in Table 6.1. Figure 6.8

shows the expected numbers for K=200. Based on the expected subscriber populations, the

approximated throughput of each individual broker can now be obtained using Equation

 145

6.18. Figure 6.9 depicts a plot of the throughput results along with the corresponding

experimental results obtained for the neighboring model.

0

50

100

150

200

250

300

350

B1 B2 B3 B4 B5 B6

Distributed Brokers

T
h

ro
u

g
h

p
u

ts
 (

M
s
g

s
/S

e
c
)

Analytical Results Experimental Results

Figure 6.9: Throughput results for individual brokers

From the graph, we note that the analytical and experimental results are close for most

brokers. We also observe that the analytical results show relatively lower throughput

results with the central brokers, brokers with a large number of neighbors (B3 and B6),

compared to the experimental results. Generally, the central brokers will be visited by a

larger number of subscribers than other brokers, and from the curve depicted in Figure 6.4,

we observe that there is a greater variation across the experimental data points with the

increase in the average number of subscribers. This can be the reason why brokers B3 and

B6, that serve the highest average number of subscribers, experience the largest deviation

between the analytical and experimental results. Another reason can be attributed to the

fact that central brokers B3 and B6 have a larger number of active proxy subscribers that

buffer messages on behalf of the actual moving subscribers. Thus, the actual subscribers

can consume more messages during their connect intervals, resulting in higher

 146

throughputs.

0

300

600

900

1200

1500

10 50 100 150 200

Number of Subscribers

T
h

ro
u

g
h

p
u

ts
 (

M
s
g

s
/S

e
c
)

Analytical Results Experimental Results

Figure 6.10: Overall throughput results with different subscriber population

Figure 6.10 shows the achieved throughput results with the increase of the subscriber

population. From the graph, we note that the analytical and experimental results are very

close with small subscriber populations (10 and 50) while the difference between the two

sets of results increases with the increase of the subscriber population, making the

analytical results relatively lower than the corresponding experimental results. In contrast

to the random mobility model, the total number of proxy subscribers is much less in the

neighboring mobility model due to limiting the mobility prediction to the (true) neighbor

brokers. This results in reducing the overhead of the pro-active approach, accordingly

improving the overall throughput results.

6.7 Concluding Remarks

The main objective in this chapter is to develop an approach that can extrapolate the

performance of our proposed pro-active approach, in terms of message throughput, in a

near-size environment to our experimental environment and to validate this model. To

 147

achieve this goal, we used continuous-time Markov chains (CTMC) to develop analytical

models that reflect the mobility patterns under consideration, referred to as a random and

neighboring, since the subscriber mobility model satisfies the characteristics of CTMC. To

help understand the analytical model, we first presented a brief description of the

subscriber mobility model. In Section 6.3 and 6.4, we developed the random and

neighboring models using Markov chains to calculate the expected number of subscribers

at each state (broker) under steady-state. Then we used a curve-fitting approach to

approximate the throughput of individual brokers. Finally, we compared our analytical and

experimental results. Most of the analytical and experiential results were close; however, in

some cases the results were relatively different which can be attributed to the shape of the

fitted curve and also due to the fact that the active proxy subscribers are not taken into

consideration when developing the analytical model as discussed in Section 6.6.2. It should

be noted that the analytical model developed to model the neighboring mobility is designed

for a specific topology and cannot be used to approximate the performance in a different

topology. Therefore, if we want to analytically investigate a larger/different topology, we

will have to proceed in the same manner described in this chapter. In contrast, the

analytical model developed for the general mobility model (random model) can be used to

extrapolate the performance in a near-size environment (in terms of broker and/or

subscriber population) to our experimental environment.

 148

CC HH AA PP TT EE RR 77

CCOONNCCLLUUSSIIOONNSS AANNDD FFUUTTUURREE WWOORRKK

7.1 Conclusions

The pub/sub paradigm is recognized as one of the most effective ways to model

information dissemination applications [3]. The features of the paradigm and its peculiar

advantages have been under discussion for some time and now are consolidated concepts.

However, realizing the pub/sub-based systems in mobile wireless domains still remains a

challenging problem, although it has been lately under investigation by many researchers

[8][9][10][11]. Based on this observation, in this thesis we proposed a set of contributions

aiming, on one hand, at identifying the key ideas for extending current pub/sub systems to

support subscriber mobility, on the other, to suggest new problems and directions that

motivate further research in the pub/sub area.

This thesis proposes a comprehensive and efficient mobile management scheme to extend

current pub/sub middleware systems to operate in the mobile wireless environments. The

main objective of the proposed scheme is to guarantee that all the published messages are

successfully delivered to all interested subscribers in their publishing order regardless of

the current location (broker) of the mobile subscribers. The proposed mobile management

scheme is based on a pro-active caching approach that is initiated whenever a mobile

subscriber hands off to a new broker. The pro-active approach depends on the use of a data

structure, called neighbor graph, which is used to predict the set of next potential brokers

 149

where the subscriber context should be transferred prior to the subscriber’s movement. The

neighbor graph is automatically created and regularly updated to eliminate the outlier

neighbors. Whenever the mobile subscriber disconnects from its original broker due to its

mobility or poor network connectivity, the set of next potential brokers are notified and

requested to buffer the subscriber messages using its previously transferred context. The

pro-active approach employs virtual (or proxy) subscribers to cache messages on behalf of

the moving subscribers. Accordingly, subscriber messages will be always ready for the

mobile subscriber at its next potential location.

A general review of middleware systems literature helped in guiding this thesis research.

Pub/sub (or event notification service) middleware system was selected as the general

theme for the research. As part of our preliminary work, we have studied in detail the

behavior of a JMS-based pub/sub system deployed in a mobile wireless environment. The

study gave us insights into the characterization of the system and identified the effect of

different mobility factors on the performance. These insights led to the choice of research

topic and scope, namely, pro-active mobile management scheme for pub/sub systems. The

effectiveness of the proposed scheme was then evaluated and compared to the alternative

solutions proposed in the literature. Testbed experiments were conducted to validate and

further study the performance of our proposed scheme. In additional, an analytical model

was introduced to extrapolate the performance of the proposed pro-active approach in a

near-size environment (in terms of broker and/or subscriber population) to our

experimental environment. In the following a summary of the contributions of the thesis is

given.

 150

1. A detailed survey was conducted to define the major challenges of mobile computing

systems and to evaluate the traditional and modern middleware solutions based on a set

of requirements. A number of observations were made about the reviewed solutions

that would be useful in designing future solutions targeted specifically for mobile

computing applications (see references [1][69][70]).

2. In Chapter 1, we described the research problem in detail and identified some of the

challenges that current pub/sub systems face when they are deployed in mobile

wireless environments.

3. In Chapter 2, we provided a general overview of the pub/sub systems and a deep

review to a representative set of these systems that motivated our selection of Java

Message Service (JMS) as our base platform in this thesis work. We discussed the

characteristics and limitations of these systems in terms of their proposed mobility

extensions.

4. In Chapter 3, we presented the proposed pro-active solution for supporting subscriber

mobility in current pub/sub systems and described its design and functionality. We also

presented a data structure, called neighbor graph, which forms the base of the proposed

approach as it is used to anticipate subscriber mobility. Next we showed some

optimization techniques that can be used to reduce the overhead of the proposed

approach. Finally, we presented a simplified analytical model that captures the

messaging cost of the proposed approach and the alternative solutions and showed the

cost ratio between them. This provides insight into the overhead imposed by the pro-

active approach with respect to its counterparts. (presented in [71][72][73])

 151

5. In Chapter 4, we briefly reviewed the advantages and features of JMS, emphasizing

most on the ones used during our testbed experiments. Then we provided a high-level

description of the prototype implementation of the pro-active and reactive solutions.

Finally, we described in detail the setup of our experimental study.

6. In Chapter 5, we evaluated and analyzed the performance of the proposed pro-active

approach using the testbed described in Chapter 4 and compared its behavior to the

state-of-the-art solutions, reactive and durable subscription-based. The experimental

results show that our approach reduces the message loss by more than 50% and

message duplication to zero, compared to durable subscription-based approaches. The

results also indicate that our approach experiences much lower handoff latency

compared to reactive approaches. Overall, the proposed approach shows superior

performance across a range of scenarios. (presented in [71][72][73])

7. In Chapter 6, we developed an analytical model that can be used to extrapolate the

performance of the proposed pro-active approach in a near-size environment (in terms

of broker and/or subscriber population) to our experimental environment. Given the

two sets of performance results reported in Chapter 5 for random and neighboring

mobility patterns, we validated our approach by deriving key parameters such as the

fitted curve based on one set of experiments (using a random mobility pattern) and use

it to approximate the results of the second set of experiments (using a neighboring

mobility pattern).

 152

7.2 Future Work

Although the experimental results shown in Chapter 5 provide confidence in the behavior

and expectations of the pro-active approach, there are some other ideas for possible

directions for future research that need yet to be carried out to improve the behavior of the

proposed approach in supporting subscriber mobility. We conclude the thesis by proposing

some of these ideas.

7.2.1 Load Balancing Among Brokers

Pub/sub systems are usually implemented as a distributed set of interconnected brokers to

support large numbers of subscribers and high volumes of messages spread across a

network. A subscriber uses one of the brokers in the pub/sub system to subscribe to

messages of interest. The system does not provide full knowledge about the load levels of

the brokers and thus subscribers may end up using overloaded brokers while there are

others with light loads that can serve them better. A similar issue may occur when

subscribers move from one broker to the others while they are roaming. With the absence

of an efficient broker selection policy, the system may have several performance

bottlenecks that can significantly degrade its overall performance.

• Selection of initial broker: The task of selecting an appropriate initial broker from a set

of distributed brokers to better serve the subscriber is a critical issue as the messaging

load between the brokers can be substantially different. This issue can also be seen in

systems that use for example a server replication approach to improve system

scalability. To achieve better performance, it may be necessary to select an appropriate

server from a set of replicas. Hence, it is worthwhile to investigate the performance

impact of this issue and define a selection policy to initially identify an appropriate

 153

broker based on predefined criteria such as the number of hosted subscribers per broker

and the number of hops between a subscriber and its hosting broker. We believe that

the highest priority for the selection policy should be given to the first criteria as it has

a direct impact on the brokers’ loads. The effect of using the selection policy should

also be validated by measuring performance metrics such as system throughput,

message processing time, and memory consumption. One suggested avenue for broker

selection can be via a centralized proxy server that periodically collects the load

information of all the brokers in the system. Subscribers initially connect to the system

via the proxy server that selects and attaches them with the appropriate broker based on

this load information in the proxy. Another avenue is to perform the selection process

in a distributed manner. Brokers in the system periodically exchange their loading

information. Instead of directly attaching to brokers, subscribers first connect to an

independent proxy component that runs on each broker. Based on the selection criteria,

the proxy either admits the subscribers or transfers them to an appropriate broker in the

system.

• Handing off between brokers: Due to subscribers’ mobility, subscribers may attach to

different brokers in the system. Thus, some brokers at a given time may become

overloaded as they serve a large number of subscribers while others have light loads.

Also, mobile subscribers may often connect to certain brokers in the system due to

their repetitive mobility patterns. This may result in propagating a large number of

subscriptions to certain neighboring brokers that may already be overloaded. Hence, it

would be useful to extend the broker selection policy to be used during handing off

between brokers and propagating subscriptions to the predicted neighborhood brokers

 154

as their load sometimes become too imbalanced. It would be interesting to investigate

the performance gain from integrating the selection policy with the proposed pro-active

scheme in general. As discussed previously, either a centralized or distributed proxy-

based solution can be used to implement broker selection. An alternative solution to the

proxy-based solution would be for each broker to flood its load information into the

network (limiting the scope to a relatively small number of hops) and having the

subscribers select the best broker based on the retrieved information. Such an approach

has several drawbacks. Subscribers are attached to the pub/sub system via a wireless

network that usually has limited bandwidth. These broker advertisements require a

reasonable amount of bandwidth and the wireless channel can be flooded with such

advertisements and become a performance bottleneck. As a result, the overall

throughput can be significantly degraded. Due to the high loss rate of wireless

networks, some of the advertisements can be lost and hence subscribers may make

wrong decision about the best broker. The selection process adds additional load on the

subscribers’ terminals that usually have limited capability.

7.2.2 Subscription Management

A key issue in large-scale pub/sub systems with a large number of mobile subscribers is

how to efficiently propagate their subscriptions to the neighboring brokers. Brokers need

such subscriptions in order to buffer incoming messages for disconnected subscribers.

Unnecessary proliferation of subscriptions throughout the system may add significant

overheads, particularly on network bandwidth requirements and serving time at the

brokers. Existing systems [74][75] discuss the issue of passing subscriptions among the

brokers in their systems, although they are connected via a high-speed wired links. This

 155

would be more problematic in our pro-active approach since it requires forwarding

subscriptions to all neighboring brokers. Subscriptions propagation consumes some of the

network bandwidth and may flood the network. This can reduce the publication rates and

in turn diminish the subscribers’ throughputs. Each broker maintains a list of its hosted

subscriptions that is stored in memory. A large list of subscriptions will increase memory

consumption, leading to slower message matching, and increased latency for message

delivery. This is a serious issue because timely delivery of messages is important in many

systems. The scalability issue could be viewed in terms of the number of subscribers

attached to the brokers, or more critically the number of passed subscriptions in the

system. This can be translated into monitoring the impact on neighboring brokers as the

number of disconnected subscribers and forwarded subscriptions increases. An interesting

direction for future work is to add an effective mechanism to reduce and avoid any

unnecessary propagation of subscriptions. A suggested approach to achieve this is to

consider covering relationships among subscriptions. If a newly admitted subscription X is

covered by an existing subscription Y, then X is not sent to the neighboring brokers since Y

can be used to store all messages matching X. Note that subscription Y cannot be removed

unless it is not in use by any other subscriber. This decreases the number of subscriptions

propagated in the system. Applying this process at every broker can result in a great

reduction in the number of propagated subscriptions. Also, the numbers of remove,

deactivate, and activate control messages will be reduced as well as the size of subscription

lists, leading to faster delivery. Another approach is to summarize subscription descriptions

and propagate compact descriptions to save network bandwidth. Every broker can use the

compact information to locally create unavailable subscriptions.

 156

7.2.3 Broker Topology

This thesis used a peer-to-peer (or general graph) topology of brokers, shown in Figure

2.3, Chapter 2. However, different interconnection topologies such as a hierarchical or

hybrid (i.e., combination of peer-to-peer and hierarchical) topology can be used to form a

distributed communication service. It is an interesting direction for future work to explore

the behavior of the proposed pro-active approach in different broker topologies when the

mobile subscribers connect to the distributed brokers through a dynamic mobile wireless

environment with high frequency of handoffs. As shown in the analysis study conducted

by [59], using a hierarchal topology of brokers can exhibit significant performance issues

that may lead to different performance trade-offs with respect to the mobility management

schemes,, resulting in an interesting problem to probe.

7.2.4 Publisher Mobility

Publisher mobility is another interesting direction for future work that recently attracts the

attention of some researchers. Subscriber mobility is managed via some operations that

incur brokers to locally store publications for the disconnected subscriber and replay them

to the subscriber when it reconnects to the network. In contrast, there are no special

operations to manage publisher mobility. Unlike disconnected operation with subscriber

mobility, there is no specific information that the publisher would miss during the period

of its disconnection. This might be the reason that no new protocols have been proposed

for supporting publisher mobility.

 157

References

[1] A. Gaddah and T. Kunz, "Does Modern Middleware Address Mobile Computing

Requirements?", In Proceedings of the 8th World Multiconference on Systemics,

Cybernetics and Informatics (SCI2004), Orlando, USA, July 2004,Vol. 5, pp. 493-

499.

[2] D. Grigoras, "Challenges to the Design of Mobile Middleware Systems", In

Proceedings of the international Symposium on Parallel Computing in Electrical

Engineering (PARELEC'06), Washington, DC, IEEE Computer Society, September

2006, pp. 14-19.

[3] S. Behnel, L. Fiege, and G. Muhl, "On Quality-of-Service and Publish-Subscribe", In

Proceedings of the 26th IEEE international Conference on Distributed Computing

Systems Workshops (ICDCSW'06), Washington, DC, USA, July 2006, IEEE

Computer Society, pp. 20-25.

[4] Y. Diao, P. Fischer, M. Franklin, and R. To, "YFilter: Efficient and Scalable Filtering

of XML Documents", In Proceedings of the 18th International Conference on Data

Engineering (ICDE 2002), San Jose, California, February 2002, pp. 341-342.

[5] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, "SCRIBE: A Large-Scale

and Decentralized Application-Level Multicast Infrastructure", IEEE Journal on

Selected Areas in Communications (JSAC), Vol. 20, No. 8, October 2002, pp. 100-

110.

[6] A. Carzaniga, D. Rosenblum and A. Wolf, "Achieving Expressiveness and Scalability

in an Internet-Scale Event Notification Service", In Proceedings of the 19th ACM

Symposium on Principles of Distributed Computing (PODC 2000), Portland, OR,

July 2000, pp. 219-227.

 158

[7] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, "Efficient Filtering in

Publish-Subscribe Systems Using Binary Decision Diagrams", In Proceedings of the

23rd International Conference on Software Engineering (ICSE 2001), Toronto,

Canada, May 2001, pp. 443-452.

[8] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom and D. Sturman,

"Exploiting IP Multicast in Content-Based Publish/Subscribe Systems", In

Proceedings of 1FIP/ACM International Conference on Distributed Systems

Platforms and Open Distributed Processing (Middleware 2000), New York, NY,

April 2000, pp. 185-207.

[9] Y. Zhao and R. Strom, "Exploiting Event Stream Interpretation in Publish-Subscribe

Systems", In Proceedings of the 20th ACM Symposium on Principles of Distributed

Computing (PODC 2001), Newport, RI, August 2001, pp. 219-228.

[10] G. Cugola, E. Nitto, and A. Fuggetta, "The JEDI Event-Based Infrastructure and its

Application to the Development of the OPSS WFMS", IEEE Transactions on

Software Engineering, Vol. 27, September 2001, pp. 827–850.

[11] P. Sutton, R. Arkins, and B. Segall, "Supporting Disconnectedness-Transparent

Information Delivery for Mobile and Invisible Computing", In Proceedings of the 1st

International Symposium on Cluster Computing and the Grid(CCGRID2001),

Washington, DC, May 2001, pp. 277-285.

[12] Sun Microsystems, "Java Message Service Specification 1.1", Technical Report, Sun

Microsystems, 2002.

[13] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, "Java Message Service",

Sun Microsystems Inc., April 2002.

[14] P. Bracchi, and V. Cortellessa, "A Framework to Model and Analyze the

Performability of Mobile Software Systems", In Proceedings of the 4th international

Workshop on Software and Performance (WOSP'04), Redwood Shores, California,

January 2004, pp. 243-248.

 159

[15] V. Muthusamy, M. Petrovic, D. Gao, and H. Jacobsen, "Publisher Mobility in

Distributed Publish/Subscribe Systems", In Proceedings of the Fourth international

Workshop on Distributed Event-Based Systems (DEBS) (ICDCSW'05), Vol. 04,

Washington, DC, IEEE Computer Society, June 2005, pp. 421-427.

[16] V. Muthusamy, M. Petrovic, and H. Jacobsen, "Effects of Routing Computations in

Content-Based Routing Networks with Mobile Data Sources" In Proceedings of the

11th annual international conference on Mobile computing and networking

(MobiCom'05), New York, NY, USA, August 2005, pp. 103–116.

[17] A. Gaddah and T. Kunz, "Performance of Pub/Sub Systems in Wired/Wireless

Networks", In Proceedings of 64th IEEE Vehicular Technology Conference (VTC),

Montreal, Canada, September 2006, pp. 1-5.

[18] A. Gaddah and T. Kunz, "Evaluating the Impact of Application Design Factors on

Performance in Publish/Subscribe Systems over Wireline and Wireless Networks",

Technical Report SCE-05-14, Carleton University, Ottawa, Canada, August 2005.

[19] R. Henjes, M. Menth, and C. Zepfel, "Throughput Performance of Java Messaging

Services Using WebsphereMQ", In Proceedings of the 26th IEEE international

Conference on Distributed Computing Systems workshops (ICDCSW'06),

Washington, DC, July 2006, IEEE Computer Society, pp. 26-32.

[20] M. Menth, R. Henjes, C. Zepfel, and S. Gehrsitz, "Throughput Performance of

Popular JMS Servers", SIGMETRICS Performance Evaluation Review, Vol. 34, No.

1, June 2006, pp. 367-368.

[21] P. Eugster, P. Felber, R. Guerraoui and A. Kermarrec, "The Many Faces of

Publish/Subscribe", ACM Computing Surveys, Vol. 35, No. 2, June 2003, pp. 114-

131.

[22] Y. Huang and H. Garcia-Molina, "Publish/Subscribe in a Mobile Environment",

Wireless Networks Journal, Special Issue on Pervasive Computing and

Communications, Vol. 10, No. 6, November 2004, pp. 643-652.

 160

[23] P. Pietzuch and J. Bacon, "Hermes: A Distributed Event-Based Middleware

Architecture", In Proceedings of the 1st International Workshop on Distributed

Event-Based Systems (DEBS'02) in Conjunction with the 22nd International

Conference on Distributed Computing Systems (ICDCS'02), Vienna, Austria, July

2002, pp. 611-618.

[24] L. Cabrera, M. Jones, and M. Theimer, "Herald: Achieving a Global Event

Notification Service", In Proceedings of the 8th Worksop on Hot Topics in Operating

Systems (HoTOS-VIII'01), Elmau, Germany, May 2001, pp. 87-94.

[25] P. Gore, R. Cytron, D. Schmidt, and C. O'Ryan, "Designing and Optimizing a

Scalable CORBA Notification Service", In Proceedings of the ACM SIGPLAN

Workshop on Languages, Compilers and Tools for Embedded Systems (LCTES'01),

Snow Bird, Utah, US, May 2001, pp. 196-204.

[26] G. Ashayer, H. Leung, and H. Jacobson, "Predicate Matching and Subscription

Matching in Publish/Subscribe Systems", In Proceedings of the 22nd International

Conference on Distributed Computing Systems (ICDCS'02), Washington, DC, July

2002, pp. 539-548.

[27] H. Liu and H. Jacobsen, "A-ToPSS – a Publish/Subscribe System Supporting

Approximate Matching", In Proceedings of the 28th International Conference Very

Large Databases (VLDB'02), Hong Kong, August 2002, pp. 1107-1110.

[28] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and D. Sturman,

"An Efficient Multicast Protocol for Content-Based Publish/Subscribe Systems", In

Procedding of the 19th IEEE International Conference on Distributed Computing

Systems (ICDCS'99), Washington, DC, May 1999, pp. 262-272.

[29] TIBCO, "TIB/Rendezvous Concept", Available at http://www.tibco.com, Last Visited

June 2007.

 161

[30] I. Burcea, H. Jacobsen, E. Lara, V. Muthusamy, and M. Petrovic, "Disconnected

Operation in Publish/Subscribe Middleware", In Proceedings of the 2004 IEEE

International Conference on Mobile Data Management (MDM'04), Berkeley,

California, January 2004, pp. 39-50.

[31] G. Cugola and E. Nitto, "Using a Publish/Subscribe Middleware to Support Mobile

Computing", In Proceedings of the Workshop on Middleware for Mobile Computing,

Heidelberg, Germany, November 2001, pp. 1-5.

[32] M. Caporuscio, A. Carzaniga, and A. Wolf, "Design and Evaluation of a Support

Service for Mobile, Wireless Publish/Subscribe Applications", IEEE Transactions on

Software Engineering, Vol. 29, No. 12, December 2003, pp. 1059-1071.

[33] M. Caporuscio, A. Carzaniga, and A. Wolf, "An Experience in Evaluating

Publish/Subscribe Services in a Wireless Network", In Proceedings of the 3rd

International Workshop on Software and Performance in Conjunction with

International Symposium on Software Testing and Analysis (ISSTA'02), Rome, Italy,

July 2002, pp. 128-133.

[34] U. Farooq, E. Parsons, and S. Majumdar, "Performance of Publish/Subscribe

Middleware in Mobile Wireless Networks", In Proceedings of the 4th International

Workshop on Software and Performance (WOSP'04), Redwood City, California,

January 2004, pp. 278-289.

[35] U. Farooq, S. Majumdar, and E. Parsons, "High Performance Middleware for Mobile

Wireless Networks", In Mobile Information Systems Journal, Volume 3, Issue 2, June

2007, pp. 107-132.

[36] Sonic Software Inc., "SONICMQ", Available at http://www.sonicsoftware.com, Last

Visited in June 2007.

[37] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M.

Spiteri, "Generic Support for Distributed Applications", IEEE Computer, Vol. 33, No.

3, March 2000, pp. 68-77.

 162

[38] A. Zeidler and L. Fiege, "Mobility Support with REBECA", In Proceedings of the

23rd International Conference on Distributed Computing Systems (ICDCSW'03),

Providence, RI, May 2003, pp. 354-361.

[39] G. Muhl, A. Ulbrich, K. Herrmann, and T. Weis, "Disseminating Information to

Mobile Clients Using Publish-Subscribe", In Proceedings of the IEEE Internet

Computing, Vol. 8, No. 3, June 2004, pp. 46-53.

[40] J. Wang, J. Cao, J. Li, and J. Wu, "MHH: A Novel Protocol for Mobility

Management in Publish/Subscribe Systems", In Proceedings of the 2007 International

Conference on Parallel Processing (ICPP'07), IEEE Computer Society, September

2007, Washington, DC, pp. 54-61.

[41] S. Hu, V. Muthusamy, G. Li, and H. Jacobsen, "Transactional Mobility in Distributed

Content-Based Publish/Subscribe Systems", Technical Report, Middleware Systems

Research Group, University of Toronto, April 2008.

[42] S. Tarkoma and J. Kangasharju, "On the Cost and Safety of Handoffs in Content-

Based Routing Systems", Computer Networks: the International Journal of Computer

and Telecommunications Networking, Vol. 51, No. 6, April 2007, pp. 1459-1482.

[43] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. Buchmann, "Looking into the Past:

Enhancing Mobile Publish/Subscribe Middleware", In Proceedings of the 2nd

international Workshop on Distributed Event-Based Systems (DEBS'03), San Diego,

California, June 2003, ACM Press, New York, NY, pp. 1-8.

[44] The OpenJMS Group, "OpenJMS", Available at http://openjms.sourceforge.net, Last

Visited in June 2007.

[45] ObjectWeb, "Joram", Available at http://www.objectweb.org/joram, Last Visited in

June 2007.

[46] Fiorano Software Inc., "FioranoMQ", Available at http://www.fiorano.com, Last

Visited in June 2007.

 163

[47] JBoss Group, "JBoss", Available at http://www.jboss.org, Last Visited in June 2007.

[48] Sun Microsystems, "Java System Message Queue", Available at

http://www.sun.com/software, Last Visited in June 2007.

[49] I. Podnar and I. Lovrek, "Supporting Mobility with Persistent Notifications in

Publish/Subscribe Systems", In Proceedings of the 3rd International Workshop on

Distributed Event-based Systems (DEBS'04), Edinburgh, Scotland, UK, May 2004,

pp. 80 -85.

[50] R. Meier and V. Cahill, "STEAM: Event-Based Middleware for Wireless Ad Hoc

Networks", In Proceedings of the 22nd International Conference on Distributed

Computing Systems Workshops (ICDCSW'02), Vienna, Austria, June 2002, pp. 639-

644.

[51] R. Meier and V. Cahill, "Exploiting Proximity in Event-Based Middleware for

Collaborative Mobile Applications", In Proceedings of the 4th IFIP International

Conference on Distributed Applications and Interoperable Systems (DAIS'03), Paris,

France, 2003, pp. 285-296.

[52] Y. Huang and H. Garcia-Molina, "Publish/Subscribe Tree Construction in Wireless

Ad Hoc Networks", In Proceedings of the 4th International Conference on Mobile

Data Management (MDM'03), Melbourne, Australia, January 2003, pp. 122-140.

[53] M. Srivatsa, and L. Liu, "Securing Publish-Subscribe Overlay Services with

EventGuard", In Proceedings of the 12th ACM Conference on Computer and

Communications Security (CCS'05), Alexandria, VA, USA, November 2005, ACM,

New York, NY, pp. 289-298.

[54] C. Wang, A. Carzaniga, D. Evans, and A. Wolf, "Security Issues and Requirements

for Internet-Scale Publish-Subscribe Systems", In Proceedings of the 35th Annual

Hawaii International Conference on System Sciences (HICSS'02), Vol. 9,

Washington, DC, USA, January 2002, IEEE Computer Society, pp. 303-310.

 164

[55] G. Picco, G. Cugola, A. Murphy, "Efficient Content-Based Event Dispatching in the

Presence of Topological Reconfiguration", In Proceedings of the 23rd International

Conference on Distributed Computing Systems (ICDCS'03), Politecnico di Milano,

Italy, May 2003, pp. 234-243.

[56] O. Virmajoki and P. Franti, "Divide-and-Conquer Algorithm for Creating

Neighborhood Graph for Clustering", In Proceedings of the 17th International

Conference on Pattern Recognition (ICPR'04), IEEE Computer Society, Washington,

DC, August 2004, pp. 264-267

[57] R. Paredes and E. Chavez, "Using the k-Nearest Neighbor Graph for Proximity

Searching in Metric Spaces", In Proceedings of the 12th International Conference on

String Processing and Information Retrieval (SPIRE'05), Buenos Aires, Argentine,

November 2005, pp. 127-138.

[58] H. Hacid and A. Zighed, "An Effective Method for Locally Neighborhood Graphs

Updating", In Proceedings of the 16th International Conference on Database and

Expert Systems Applications (DEXA'05), Copenhagen, Denmark, August 2005, pp.

930-939.

[59] A. Carzaniga, D. Rosenblum and A. Wolf, "Design and Evaluation of a Wide-Area

Event Notification Service", ACM Transactions on Computer Systems, Vol. 19, No.

3, August 2001, pp. 332–383.

[60] R. Howard, "Dynamic Probabilistic Systems – Volume I: Markov Models", New

York: Dover, 1971.

[61] N. Banerjee, W. Wei, and S. Das, "Mobility Support in Wireless Internet", In IEEE

Wireless Communications Journal, Vol.10, No.5, October 2003, pp. 54-61.

[62] National Institute of Standards and Technology, NIST Network Emulation Tool,

Available at http://snad.ncsl.nist.gov/itg/nistnet/index.html, Last visited June 2007.

[63] IEEE, "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications", IEEE Standard 802.11, 1999.

 165

[64] M. Balazinska and P. Castro, "Characterizing Mobility and Network Usage in a

Corporate Wireless Local-Area Network", In Proceedings of the 1st International

Conference on Mobile Systems, Applications, and Services (MobiSys'03), San

Francisco, California, May 2003, pp. 303-316.

[65] J. Yin, X. Wang, and D. Agrawal, "Modeling and Optimization for Wireless Local

Area Network (WLAN)", Computer Communications Journal, Special Issue on

Performance Issues of Wireless LANs, PANs, and Ad Hoc Networks, vol. 28, No. 10,

June 2005, pp. 1204 -1213.

[66] A. Mishra, M. Shin, and W. Arbaugh, "An Empirical Analysis of the IEEE 802.11

MAC Layer Handoff Process", In ACM SIGCOMM Computer Communications

Review (SIGCOMM'03), Vol. 33, No. 2, April 2003, pp. 93-102.

[67] N. Gupta and P. Kumar, "A Performance Analysis of the IEEE 802.11 Wireless LAN

Medium Access Control", Communications in Information and Systems, Vol. 3, No.

4, September 2003, pp. 279-304.

[68] L. Richard, T. James, " Probability and Statistics for Engineers", Duxbury Press,

April 4th 1994, ISBN 0534209645.

[69] A. Gaddah and T. Kunz, "Why Current Middleware Fails for Mobile Peer-to-peer

Computing", NATO IST-030/RTG-012 Workshop on the Role of Middleware in

Systems Functioning over Mobile Wireless Networks, Wachtberg, Germany, August

2003.

[70] A. Gaddah and T. Kunz, "A Survey of Middleware Paradigms for Mobile

Computing", Technical Report SCE-03-16, Department of Systems and Computer

Engineering, Carleton University, Ottawa, Canada, July 2003.

[71] A. Gaddah and T. Kunz, "Subscriber Mobility in Pub/Sub Systems: Pro-active vs.

Reactive Handoffs", to appear in Proceedings of the 4th IEEE International

Conference on Wireless and Mobile Computing, Networking and Communications

(WiMob 2008), Avignon, France, October 2008.

 166

[72] A. Gaddah and T. Kunz, "A Pro-active Mobility Extension for Pub/Sub Systems", In

Proceedings of the First International Conference on Mobile Wireless Middleware,

Operating Systems, and Applications, Innsbruck, Austria, February 2008.

[73] L. Li, A. Gaddah, and T. Kunz, "Mobility Support in a Tactical P2P

Publish/Subscribe Overlay", to appear in Proceedings of the 27th International

Conference for Military Communication, (MILCOM2008), San Diego, CA, USA,

November 2008.

[74] G. Li, S. Hou, and H. Jacobsen, "A Unified Approach to Routing, Covering and

Merging in Publish/Subscribe Systems Based on Modified Binary Decision

Diagrams", In Proceedings of the 25th IEEE international Conference on Distributed

Computing Systems (ICDCS'05), Washington, DC, June 2005, IEEE Computer

Society, pp. 447-457.

[75] Z. Shen, S. Aluru, and S. Tirthapura, "Indexing for Subscription Covering in Publish-

Subscribe Systems", Technical Report TR-2005-07-2, Department of Electrical and

Computer Engineering, Iowa State University, July 2005.

