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Abstract 

 

The thesis proposes a delay asymmetry correction (DAC) model to enhance the IEEE 

1588 synchronization protocol. The purpose of this work is to mitigate the effects of 

unpredictable packet delay variations (PDV), which cause asymmetric link delays on 

timing packets, in order to improve the synchronization accuracy of the slave clock with 

respect to the master clock. This is done by computing the time difference between the 

master and the slave clock in the presence of traffic in a network. The NS-2 results 

indicate that the proposed solution improves the slave accuracy by measuring the correct 

offset value in a slave clock for asymmetric communication link delays. The solution 

results show that the slave clock is able to achieve high synchronization accuracy in the 

presence of various bi-directional traffic loads, network congestions, and temporary 

network outage. Furthermore, when there is a routing path change due to the failure in the 

network, the solution also improves the accuracy of the slave clock with respect to the 

master clock. However, the proposed solution does not perform well when it is 

incorporated with the AOCM model.  
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1    Chapter: Introduction 

1.1 Overview 

A network consists of computers, routers, switches and other devices, all of which 

rely on clocks. For a successful communication between these devices, clocks play a 

significant role in maintaining the same global time across network devices. Now the 

question arises how these clocks maintain global time with each other. The short answer 

is synchronizing them.  In essence, clock synchronization is setting the time on two or 

more clocks to be identical. Every node on the network must count time in the same way 

and every node has to agree when time “zero” occurs [1].  Clocks are typically made 

from inexpensive oscillator circuits, or battery backed quartz crystals. Each of these 

clocks tends to drift due to inherent instabilities in the source of oscillator, in addition to 

environmental factors such as temperature, aging, manufacturer imprecision, air pressure, 

mechanical pressure etc. [5]. If the network clocks are not synchronized, unexpected 

things may start to happen: data could be lost, processes could fail, security could be 

compromised, legal implications could be faced and most importantly the organizations 

could lose credibility with customers and their business partners [2]. Synchronization 

requires communications between individual clocks to check whether their deviation is 

tolerable and whether the clock needs to be corrected. It takes time to go through the 

process of correcting time and maintaining the accuracy of time relative to another clock. 

The correction mechanism to synchronize individual clock is a challenging task and is a 

limiting factor in how accurately two clocks maintain a common time. IEEE 1588v2, 

known as Precision Time Protocol (PTP) [17], is an industry standard clock 

synchronization protocol that enables to transfer timing information over packet switched 
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networks. It is widely used both in wire-line and wireless network environments due to 

its low cost implementations in networked measurement and control systems.  

The objective of the thesis is to study different approaches that can be used to 

synchronize clocks in the network. To understand the problems explicitly, various factors 

need to be investigated which deteriorate the synchronization accuracy in a network. We 

propose a solution to achieve high synchronization accuracy. This also involves 

understanding why the clocks drift, what are the factors affecting the synchronization 

accuracy, the stability of the clock oscillators, and what can be done to counter those 

factors. 

1.2 Contributions 

The contributions of this thesis include the following: 

 A Delay Asymmetry Correction (DAC) Model is proposed for the clock 

synchronization problem. The proposed work aims to enhance the IEEE 1588 

protocol by computing the time difference between the master and the slave clock 

in the presence of traffic in a network. The purpose of this work is to mitigate the 

effects of unpredictable packet delay variations (PDV), which cause asymmetric 

link delays on timing packets in order to improve the synchronization accuracy of 

the slave clock with respect to the master clock. The initiative revolves around the 

idea of incorporating the DAC model with the conventional IEEE 1588 

synchronization protocol.  

 The proposed solution further extends to coordinate multiple master clocks 

through a single slave clock, which may be connected through multiple networks. 

The rationale of the extension is to support multiple master clocks instead of 
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selecting a grandmaster clock. The proposed solution ensures that the slave clock 

receives at least one good offset sample from one of these master clocks within 

defined update frequency interval for maintaining high synchronization accuracy 

between the slave and the master clocks.  

 The proposed solution also integrates the Adaptive Oscillator Correction Method 

(AOCM) [4], which is modified to support the proposed DAC model. AOCM is 

locked to both the master clock and the slave clock that aims to compensate for 

the temperature and ageing effects of the oscillator and hence, to improve the 

accuracy and stability of the slave clock during holdover mode. 

 The proposed solution is implemented in Network Simulator 2 (NS-2.34), and 

relies on a two stage filtering methods.  

 NS-2 test cases are implemented according to an ITU-T document [3] covering 

various network loads and network conditions. The test cases are run to evaluate 

the proposed solution and the results are analyzed. 

 The NS-2 results indicate that the proposed solution improves the slave accuracy 

by measuring the correct offset value in a slave clock for asymmetric 

communication link delays. The solution results show that the slave clock is able 

to achieve high accuracy in the presence of various bi-directional traffic loads, 

network congestions, and temporarily network outage. Furthermore, when there is 

a change in the routing path due to the failure in the network, the solution also 

improves the accuracy of the slave clock with respect to the master clock.  

However, the slave accuracy deteriorates when the AOCM model is incorporated with 

the DAC model. 
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1.3 Outline of the Thesis 

The chapters of this thesis are organized in the following manner: 

Chapter 2 provides background information about the elements affecting the clock 

accuracy and stability. It reviews different protocols that are commonly used to improve 

clock accuracy. It also describes the IEEE 1588 protocol including the network factors 

affecting clock synchronization. 

Chapter 3 reviews the state-of-the-art literature related to the performance of 

IEEE 1588 clock synchronization to account for the delay asymmetry and packet delay 

variation effects in terms of clock accuracy. 

Chapter 4 presents the proposed solution to the clock synchronization problem 

using the IEEE 1588 protocol. It also discusses the details of the proposed algorithm 

implemented in NS-2. 

Chapter 5 presents the simulation results using the proposed solution from 

Chapter 4. The test cases are derived from an ITU-T standard document [3]. 

Chapter 6 scrutinizes the direct effects of various parameters on the slave clock 

synchronization and provides the analytical explanation. 

Chapter 7 concludes the thesis and provides the directions for possible future work.  
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2    Chapter: Background Information 

In this chapter, background information related to clock synchronization is 

presented. The first section of this chapter introduces crystal oscillators, a frequently 

deployed clock source. This section also discusses the factors affecting the stability and 

accuracy of a clock oscillator. The second section focuses on different network protocols 

that can be used to improve clock accuracy, signifying the importance of the IEEE 1588 

synchronization protocol in terms of its accuracy. The third section presents the details of 

the IEEE 1588 synchronization protocol. Section four reviews the elements affecting the 

clock synchronization accuracy in a network. Finally this chapter is concluded with a 

brief overview of a clock agent implemented in NS2. 

2.1  Crystal Oscillators 

Oscillators are an important component of radio frequency and digital devices. 

The time keeping elements like digital clock, radio, computer, cell phones as well as test 

and measurement equipment, such as counters, signal generators and oscilloscope are 

driven by an oscillator stabilized by a crystal resonator. A crystal oscillator is an electric 

circuit used for generating an electrical signal with a very precise frequency determined 

by the piezoelectric material. The piezoelectric material converts the electrical impulses 

to mechanical stress which is subject to the very high mechanical resonances of the 

crystal and vice versa. The frequency is commonly used to keep track of time to provide 

a stable clock signal. The clock accuracy and stability depend on the underlying crystal 

oscillator as frequency source and frequency control components [5]. Furthermore, the 

degree of frequency stability and the required level of quality of crystal oscillators differ 

according to the application. The major factors affecting the accuracy of the oscillator are 
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temperature and aging. Oscillators are inherently not perfect even if there are no 

temperature and aging effects. An oscillator frequency deviates from its nominal 

frequency by a given amount, measured in PPM (Part-Per-Million) or PPB (Part-Per-

Billion), and the deviation is more pronounced for cheaper oscillators. 

Temperature is a significant factor which affects the stability of crystal oscillators. 

Different angels of crystal cuts produce different frequency-temperature characteristic. In 

general, it is observed that oscillator frequency stability exhibits a cubic dependency on 

temperature [6]. The frequency drifts typically are -100ppm to +100ppm for the 

temperature range of -60ºC to +100°C. The term drift refers to several phenomena where 

a clock does not run at the exact same speed compared to another clock. 

Aging is referred as the change of the crystal oscillator frequencies according to 

the operational time. In general, the aging effect is not linear. However, the aging effect 

for a short period of time such as 24 h can be considered as linear effect on frequency 

stability [5, 6]. The frequency drifts due to aging are up to 30ppm for a 25 day period. 

2.2 Network Synchronization 

Network synchronization ensures that all terminal devices in a network maintain 

the notion of global time from one source. To achieve such high accuracy clocks, various 

timekeeping techniques have been studied over the past few decades.  

The pioneering work in this area was reading remote clocks in networks, 

proposed by Dutch scientist Flaviu Cristian in 1989, which deals with unbounded random 

message delays [7]. The proposed method was useful to improve the precision of both 

internal and external synchronization algorithms. In this method, each client sends a 

message to the remote server asking for the current time. Upon arrival of a response, the 
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sender calculates the round trip time (RTT) as the difference between the transmission 

and reception times. One of the key features of this algorithm relies on a series of 

measurements so that at least one measurement encountered the smallest amount of 

traffic. Logically, the chosen measurement is the one with least RTT.   

Another approach was the distributed clock synchronization algorithm, known as 

Berkley algorithm, developed by Gusella and Zatti at the University of California, 

Berkley in 1989, discussed in [8]. The method describes the upper and lower bounds on 

the accuracy of the time synchronization based on a master-slave hierarchy in a local area 

network. By implementing the algorithm, the results show that it may achieve better 

synchronization accuracy at a lower cost comparing with other synchronization 

algorithms till then.  

Network Time Protocol (NTP) is one of the most prominent time synchronization 

methods over four generations of NTP to the present, proposed by Mills and the Internet 

Engineering Task Force (IETF) group [9]. Initially NTP was designed to distribute time 

information in a network for systematic dissemination of national standard time 

throughout the Internet via wire or radio. The latest version of NTP, NTPv4 [10], is 

widely used to synchronize the local clocks of a computer system over packet-switched 

networks with variable latency to the order of less than a millisecond or two relative to 

Coordinated Universal Time (UTC). The main attractive features of NTP are its 

scalability, robustness to failure, self-configuration in a large multi-hop networks and 

ubiquitous development. NTP is a layered client-server architecture based on UDP (User 

Datagram Protocol) messages, which synchronize the clocks in a hierarchical manner.  

The NTP subnet model introduced a number of widely accessible primary time servers, 
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which are also synchronized by using wire or radio to national standards. The objective 

of the NTPv4 protocol is to convey timekeeping information from these primary servers 

to secondary time servers and clients via both private networks and the public Internet. 

One of the major problems with NTP is that it does not consider network latencies and 

buffering for precise timing applications. On a NTP-based LAN network, the clock 

accuracy reduces to 1 to 2 milliseconds due to latency and jitter added by the network 

devices. The clock accuracy further drops to 1 to 20 milliseconds in NTP-based WAN 

networks [11].  Furthermore, the latest implementation of NTPv4 does not meet the 

higher precision requirements for next generation synchronization architecture such as 

LTE (Long Term Evolution) or 4G wireless backhaul network [12, 13, and 14]. For 

instance, the deployments of LTE or 4G systems require a time/phase synchronization 

accuracy within 1µs and frequency synchronization accuracy within 50ppb to 16ppb [15].  

One of the emerging alternatives to NTP is the Precision Time Protocol (PTP), 

defined by IEEE Standard 1588, which was published first in November 2002 [16].  This 

protocol was originally developed by Agilent Technologies between 1990 and 1998 for 

testing and industrial automation applications. PTP offers high accuracy and the cost 

effectiveness of NTP by using existing Ethernet network supporting multicast 

communications. The protocol makes it possible to achieve synchronization accuracy in 

the order of sub-microsecond range.  A new version of IEEE 1588 was published in 2008 

with advanced features and improved performance [17]. The IEEE 1588 protocol 

overcomes most of the NTP latency and jitter issues through hardware time stamping at 

the physical layer of the network. It is important to note that the standard performs very 

well when the network delays are symmetric. As a matter of fact, though, packet network 
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delays are not symmetric and the one way latency in each direction may be different. In 

order to minimize the impact of asymmetry, PTP introduced specialized elements known 

as IEEE 1588 boundary clocks and transparent switches with added functionalities to 

preserve accuracy [17]. With the addition of boundary clocks or transparent switches, the 

protocol is able to achieve accuracy in the range of 20 to 100 nanoseconds in a LAN 

network and less than 10 microseconds in a WAN environment [18]. A comparison of 

NTP, IRIG (Inter-Range Instrumentation Group) time code and IEEE 1588 is provided in 

Figure 1 [11, 19]. IRIG provides synchronization over a dedicated cable to carry timing 

information between IRIG clocks. 

 

Figure 1: Comparison of the Synchronization Accuracy of NTP, IRIG and IEEE 1588 [11] 

IEEE 1588-2008 PTP also provides an evolutionary step towards the deployment of the 

next generation synchronization architecture [15]. Next generation network (NGN) 

infrastructure combining traditional TDM (Time Division Multiplexing) core networks 

and packet-based IP backhaul networks based on Ethernet is seen as the future in the 

telecommunication networks. In addition, there are situations where GPS is not an 

appropriate synchronization source for traditional synchronization methods particularly 

for fast-moving objects and in-building Pico-cell applications. PTP is an excellent 

candidate for GPS backup and as a redundant synchronization source for CDMA/LTE 

Macro-cells. The PTP system allows for setting/maintaining time/phase synchronization 
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of Radio Access Networks (RAN) such as CDMA, LTE and in-building Pico-cell 

synchronization.  Moreover, IEEE 1588-2008 has been widely studied in various fields 

such as power distribution networks, wireless sensor network, telecommunications 

networks, and military applications [20]. The detailed functionalities of IEEE 1588-2008 

including the node, system and necessary communication properties to support PTP will 

be discussed in the next section. 

2.3 IEEE 1588: Precision Time Protocol (PTP) 

The clocks in a PTP system are structured into a master-slave hierarchy based on 

time keeping capability and the traceability of its time source. IEEE 1588 PTP aims to 

achieve sub-microsecond synchronization of real-time clocks in components of a 

networked distributed measurement and control system [17]. The basic principle of PTP 

is that the most precise clock in the network has the ability to synchronize all other 

clocks. The most precise clock is the master clock, which determines the reference time 

for the entire system; also referred to as Grand Master Clock. The master serves as the 

reference clock for one or more slave clocks.  The process of selecting the master in the 

network is performed using PTP’s Best Master Clock (BMC) algorithm, which is applied 

by each participating nodes at specific intervals [17]. A master node transmits UDP 

multicast messages to the slaves at configurable intervals, while slaves respond to the 

master via unicast messages. Every slave uses the timing information to adjust their local 

clock with reference to their master.  

The synchronization between the master and the slave clock relies on the 

exchange of timing messages. The standard [17] defines two types of timing messages: 

event and PTP general messages. Event messages require an accurate timestamp while 
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sending and receiving the event messages. On the other hand, general messages do not 

require accurate timestamps. The set of event messages consists of  

 Sync 

  Delay_Req 

  Pdelay_Req and  

 Pdelay_Resp  

The set of general messages include the followings: 

 Announce 

 Follow_Up 

 Delay_Resp  

 Pdelay_Resp_Follow_Up,  

 management and  

 Signaling.  
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2.3.1 Synchronization Mechanisms 

IEEE 1588 [17] defines two mechanisms for synchronization in a master-slave 

hierarchy. The first method is called the Delay Request-Response mechanism which uses 

the PTP event messages. This approach relies on mean delay knowledge, i.e. half of the 

round trip delay, in order to correct the time difference between two clocks. The second 

method is the peer delay mechanism which uses Pdelay_Req, Pdelay_Resp, and if 

required Pdelay_Resp_Follow_Up messages. The details of the former approach are 

discussed as follows. 

The Delay Request-Response Mechanism is the basic synchronization mechanism 

in the IEEE 1588 standard to synchronize clocks in a master-slave hierarchy. The basic 

principle of this method relies on measuring the time difference between the master and 

the slave clock, which is then used to synchronize a slave to the master clock. Figure 2 

shows the basic pattern of synchronization message exchange to synchronize a slave 

clock to the master clock. 
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Figure 2: Basic Synchronization Message Exchange in Delay Request-Response Mechanism [17] 

The message exchange pattern between the master and slave is as follows: 

 The master sends a Sync message to the slave and notes the transmission time t1 

 The slave receives the Sync message and notes the time of reception t2 

 The master conveys to the slave the timestamp t1 by: 

o Embedding the timestamp t1 in the Sync message. This requires some sort 

of hardware processing if highest accuracy and precision are desired. 

o Embedding the timestamp t1 in a Follow_Up message. 

 The slave sends a Delay_Req message to the master and notes the transmission 

time t3.  

 The master receives the Delay_Req message and notes the time of reception t4. 



 14 

 The master conveys to the slave the timestamp t4 by embedding it in a 

Delay_Resp message. 

At the end of this exchange of timing messages, the slave clock possesses all four 

timestamps t1, t2, t3, and t4. All these timestamps can be used to compute the offset of the 

slave clock with respect to the master clock and the mean propagation time of the 

messages between two clocks, which is the mean of t-ms and t-sm in Figure 2. The mean 

propagation time and the offset can be calculated using following equations: 

𝑀𝑒𝑎𝑛 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
  𝑡2 − 𝑡1 +  𝑡4 − 𝑡3  

2
 

                                                    =
  𝑡2 − 𝑡3 +  𝑡4 − 𝑡1  

2
 

𝐶𝑙𝑜𝑐𝑘 𝑂𝑓𝑓𝑠𝑒𝑡 𝑂𝑠 = 𝑡2 − 𝑡1 −𝑀𝑒𝑎𝑛 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 

         =
  𝑡2 − 𝑡1 −  𝑡4 − 𝑡3  

2
 

The clock offset is directly applied to the time stamp of the slave clock [5], as follows: 

𝑆𝑙𝑎𝑣𝑒′𝑠 𝑁𝑒𝑤 𝑇𝑖𝑚𝑒 𝑆𝑡𝑎𝑚𝑝 = 𝑆𝑙𝑎𝑣𝑒 ′𝑠 𝑂𝑙𝑑 𝑇𝑖𝑚𝑒 𝑆𝑡𝑎𝑚𝑝 − 𝐶𝑙𝑜𝑐𝑘 𝑂𝑓𝑓𝑠𝑒𝑡(𝑂𝑠) 

The computation of an offset and the propagation time assumes that the master-to-slave 

and the slave-to-master propagation times are equal. Any asymmetry in propagation time 

introduces an error into the computed value of the clock offset. The computed mean 

propagation time also differs from the actual propagation times due to the asymmetry 

[17]. 
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2.4 IEEE 1588: Factors Affecting Synchronization Performance 

IEEE 1588 [17] devices are capable enough for achieving highly accurate clock 

synchronization. Nonetheless, it is important to recognize the key factors that directly 

affect the network synchronization performance. 

2.4.1 Asymmetric Delay 

Asymmetric delay is one of the major sources of error of transferring time from 

one clock to another. In PTP packet based networks, timing packets are exchanged 

between the master and the slave clock for the purpose of computing the time difference. 

If the packet exchange delay on the master-to-slave direction and the slave-to-master 

direction are identical, the offset can be computed precisely since the delays will cancel 

each other. Unfortunately, the path delay does vary between the master-to-slave direction 

and the slave-to-master direction, which is referred to as asymmetric delay. The 

synchronization accuracy is affected by the asymmetric delays in such a way that the 

degree of accuracy is one half of the asymmetric latencies. To make it worse, asymmetric 

delays may introduce by the packet delay variation (PDV), which is very difficult to 

characterize. Moreover, changes in the routing path on a longer time scale will also 

introduce differences in latency. These fluctuations will further aggravate the asymmetry 

problem. 

Packet delay variation (PDV) or delay jitter in timing packets is another 

significant factor that deteriorates the synchronization accuracy severely in the IEEE 

1588 system. PDV occurs as a result of queuing delays experienced by the timing packets 

at switching hubs such as routers, switches, cables and other hardware that exists between 

clocks. Queuing delays are very much dependent on the traffic load, topology of the 
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network and the path reconfiguration of the network. Packets received on a port are 

placed temporarily in a queue until they can be sent out. The whole process happens 

extremely fast unless the forwarding port is busy transmitting data packets. As a result, 

the fluctuation of queuing delays introduces PDV leading to timing errors in the path 

between two clocks. Considering the quality of service (QoS) and setting the timing 

packets to be the highest priority are effective in reducing queuing delay. However, 

queuing delay due to a single packet that has already started to transmit is unavoidable. In 

a switching hub with a Fast Ethernet interface, queuing delay varies by up to 122.4 µs if 

only one packet with a maximum transfer unit (MTU) size of 1518 bytes is in the buffer 

at the instance of arrival of a timing packet [21]. Another source of timing fluctuation is 

the equipment needed to translate between communication protocols in the networks [18, 

22]. 

2.4.2 Timing Packet Rate 

An increase in the rate of timing packets generally increases the synchronization 

performance but may reduce the effective throughput of a system [23]. More frequent 

transmission of timing packets might increase the accuracy of synchronization. But it also 

increases the overhead in the network, particularly when more network traffic exists. On 

the other hand, shortening the transmission interval leads to diminishing returns. So, the 

transmission frequency of timing packet is a considerable factor in order to balance 

between the desired accuracy of synchronization and the achievable throughput. 

2.4.3 Process of Time Stamping 

The time transfer latency problem is associated with processing of timing packets 

by the operating systems. How and where the timestamps are generated are key factors to 
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affect the time synchronization accuracy. Unlike hardware based time stamping, if the 

packet exchanges are instantaneous there will be no delay and the time difference can be 

computed accurately. On the other hand, a software based PTP slave program operates at 

the application layer of the server. A software based PTP computes the time difference in 

order to adjust the local clock.  When a PTP message traverses the protocol stack in a 

node, it is queued in the buffer to process, which is a fluctuating value and will affect the 

synchronization accuracy. To achieve the best possible results, the IEEE 1588 time 

stamps should be generated in hardware or the timestamp should be captured as close as 

possible to the hardware or the NIC card [24].     

2.4.4 Oscillator Quality 

The synchronization accuracy also depends on the drift rate of the local oscillator. 

Temperature and aging are the major driving factors for oscillator drift as discussed in 

Section 2.1. Oscillator drift can be mitigated by using higher quality oscillators or by 

driving time from a more accurate source, such as GPS. However, higher quality 

oscillators and GPS may not be cost effective in terms of capital expenses, CAPEX. The 

PTP system must support a higher packet transmission rate in order to alleviate the drift 

of the local oscillator. 

2.5 NS-2 Clock Model 

Network Simulator 2 (NS-2) is an open source network simulation tool [25]. NS-2 

is one of the prominent tools particularly designed for conducting research in computer 

communications networks. The primary use of NS-2 is to simulate various types of 

network protocols such as TCP, UDP, multicast protocols, routing algorithms, traffic 

source behavior, queue management mechanisms, etc. over wired and wireless 
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environments. It is an object-oriented, discrete event driven simulator written in C++ and 

the Otcl language [36]. We choose NS-2 because it facilitates to study network effects 

elaborately such as network congestion, temporary network outage, network path 

reconfigurations and many more, which are very difficult to model in other simulation 

tools, for instance MatLab.  

Furthermore, other simulation tools do not have a clock model which is affected 

by temperature and aging effects. As described in Section 1 of this chapter, a clock 

oscillator starts to drift due to the environmental changes such as temperature and aging 

effect. Keeping this in mind, a clock agent is implemented by a prior student in NS2 via a 

C++ class hierarchy. Our proposed work extends the current model of such a clock agent. 

The details of the implementation of such a clock agent can be found in [4]. The major 

features of the implemented clock agent are summarized as follows:  

 A basic version of IEEE 1588 synchronization protocol as discussed in Section 

2.3.1.1 is implemented in NS-2 using a master-slave hierarchy. 

 A clock agent is implemented with an initial value to act as a master or slave 

clock. The master clock has the ability to synchronize itself to a highly accurate 

GPS signal with a GPS noise of 20 ns RMS (Root Mean Square) jitter on a 1pps 

edge. Similarly, a slave clock has the ability to synchronize itself with the master 

clock using the IEEE 1588 protocol [17]. 

 The clock agent provides a way to capture the time stamps and natural rates of the 

clock at a regular interval. The natural rate determines the drifts of the clock w.r.t. 

to a reference clock, which is affected by temperature and aging effects.  
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 The implementation also provides the self-correcting Adaptive Oscillator 

Correction Model (AOCM) for both the master and the slave clock to account for 

the linear aging effects and linear or quadratic temperature effects, adopted from 

[26]. 

The implementation also considers locked and holdover periods for both the master and 

the slave clocks to reflect a network outage for master-GPS and master-slave connections 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

3    Chapter: Literature Review 

This chapter provides a survey of research literature related to the clock 

synchronization models and performance of IEEE 1588 clock synchronization. Section 1 

will focus on the fundamental limitations for synchronizing clocks over wired and 

wireless networks. Section 2 will review the performance of IEEE 1588 using only 

software assisted time stamping. The performance of IEEE 1588 using only hardware 

assisted time stamping will be discussed in Section 3. Finally, this chapter will be 

concluded with a motivation for our work in this area.  

3.1 Fundamental Limitations of Clock Synchronization 

Freris et al. [27], and Nikolaos et al. [28] analyzed the feasibility of clock 

synchronization and also characterized the fundamental limitations for synchronizing 

clocks over wired and wireless network. To study the problem, the authors assumed a 

simple clock model called affine clock which ran at a constant speed, not necessary with 

identical speed. Each clock is characterized by its relative speed i.e. skew with respect to 

a reference clock (i.e. master clock) as well as its offset. In addition, another model is 

considered for delays as the sum of a transmitter-dependent delay, receiver-dependent 

delay, and a known electromagnetic propagation delay. The authors only considered 

noiseless communication, where latencies are deterministic and time-invariant but 

unknown between any two nodes. Given these assumptions, the uncertainty set is 

characterized. The authors have shown the following impossibility results: 

I. Using one master and one slave clock, it is shown that the determination of 

unknown clock offsets and link delays, particularly one way latency, is impossible 

even for the ideal scenario where neither offset nor skews drift with time.  
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II. When a single master clock coordinates with multiple slaves or a single slave 

clock coordinates with multiple master clocks, the study showed that it is possible 

to estimate all nodal skews and round trip times correctly between every pair of 

nodes. But delays and offsets of the nodes cannot be determined exactly by 

characterizing the uncertainty set because of (n-1) unknown offsets, where n is the 

total number of nodes. The authors remarked that the delays can be estimated up 

to one unknown offset for each node except the reference clock (i.e. master 

clock). 

III. Even considering causality, i.e. packets cannot be received before they are 

transmitted, the same results are established as above. It does not reduce the 

region of uncertainty which is unbounded.  

As a remark, the authors mentioned that if there is a known asymmetry in the delays that 

can be characterized, a unique solution exists. Also, the authors did not consider any 

temperature and ageing effects in this study. 

3.2 Performance of IEEE 1588: Software Assisted Time Stamping 

This section provides a literature survey related to the software assisted time stamping to 

assess the performance of the IEEE 1588 protocol.  

3.2.1 IEEE 1588 Synchronization using a Queuing Estimation Method 

T. Murakami et al [21] proposed a queuing estimation method by using probing 

packets to improve the synchronization accuracy with the IEEE 1588 protocol. 

Synchronization accuracy suffers due to the packet delay variation (PDV), which occurs 

at the queuing buffer in a switch/ router. The objective of the proposed method is to 
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estimate the occurrence of delay jitter in timing packets and filtering out the packets 

with delay jitter. To implement such a technique, a modified message sequence is added 

to the conventional IEEE 1588 protocol. According to the proposed mechanism, it is 

assumed that the inter packet gap is Ti. Occurrence of delay jitter at the i-th packet in the 

group (2 ≤ i ≤ Np) is estimated with the following criteria: 

1. 𝐼𝑓  𝑇𝑎𝑟𝑟  𝑖−1 − 𝑇𝑑𝑒𝑝  𝑖−1  > 𝜕𝑇 𝑜𝑟  𝑇𝑎𝑟𝑟  𝑖−1 − 𝑇𝑑𝑒𝑝  𝑖−1   < −𝜕𝑇  ; 

 𝑑𝑒𝑙𝑎𝑦 𝑗𝑖𝑡𝑡𝑒𝑟 𝑜𝑐𝑐𝑢𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑐𝑘𝑒𝑡. 

 2.𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,𝑑𝑒𝑙𝑎𝑦 𝑗𝑖𝑡𝑡𝑒𝑟 𝑑𝑖𝑑 𝑛𝑜𝑡 𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑐𝑘𝑒𝑡                              

The threshold ∂T is selected based on clock resolution and accuracy of the clock. Based 

on the estimation, the packet that has the smallest transmission delay is used for time 

adjustment. The authors performed experiments using the OPNET discrete event 

simulator. To configure the network topology, one master and one slave clock is 

considered and two switches are employed between the master and the slave clock. As 

result, it is shown that the accuracy of the slave clock is remarkably improved by using 

the proposed method. It also reduced the adverse impact of delay jitter on 

synchronization accuracy. However, the proposed method is effective only if at least 

some timing packets with no delay jitter are able to reach to the slave nodes periodically. 

In addition, this work does not deal with temperature and ageing effects.  

3.2.2 IEEE 1588 Synchronization in a Congested Network: Packet Delay 

Distribution Estimation Method 

T. Murakami et al [32] proposed a packet distribution estimation method to 

improve clock synchronization with IEEE 1588. In this work, the authors also adopted 
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the queuing estimation method [21] to suppress synchronization error in a heavily 

congested network. The proposed work relies on switching between two packet selection 

schemes, which depend on the defined threshold and window size of a target bin. A 

packet with no queuing delay is used to adjust the clock. The authors used the OPNET 

discrete event simulator to evaluate the performance of their packet filter techniques. To 

explain the network scenario, one master and one slave clock is used and four 

intermediate switches are employed between the master and the slave clock. The 

performance of the slave clock is evaluated in the presence of symmetric constant cross 

traffic, as described in ITU-T G.8261 (traffic model 2) [3]. The estimated result reflects 

the actual delay distribution which is effective for selecting the mode of distribution. 

The findings of this experiment are summarizes as follows:  

I. When the mean traffic load is 50%, the slave clock is synchronized with the 

master clock by using the queuing delay estimation method. When the mean 

traffic load reached 80%, the slave continued its synchronization by applying the 

packet delay distribution filtering mechanism.  

II. The proposed mechanism improved the synchronization accuracy in the presence 

of traffic. When symmetric cross traffic is applied, the fluctuation in timing error 

is within 5 µs. On the other hand, the slave maintains synchronization within 15 

µs, when asymmetric cross traffic with sudden large changes is applied. The 

authors mentioned that the clock offset error is around 100 µs if the delay 

asymmetry correction is not applied. In the simulation, initial frequency offset in 

the slave clock is 1 ppm.  
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However, similar to [21], the proposed mechanism did not consider temperature and 

ageing effect that also have adverse impact on clock synchronization accuracy.  

3.2.3 IEEE 1588 Synchronization: Asymmetric Communication Link in Packet 

Transport Network 

S. Lv et al. [33] presented an enhanced IEEE 1588 time synchronization method 

to estimate the correct offset between the master and the slave clock. Considering the 

asymmetric latency, the proposed algorithm is based on an additional procedure named 

OffsetCorrection for computing the offset. The proposed OffsetCorrection mechanism 

relies on an additional message exchange added to the conventional IEEE 1588 

procedure. The performance of the proposed method is evaluated by simulations with 

several assumptions: initial offset between master and slave clock is 50 s, the end-to-end 

delay of master-to-slave direction is 25 ms. Considering the asymmetric delay, the ratios 

of end-to-end delay of master-to-slave direction and slave-to-master direction range from 

1:1 to 8:1. The result shows that the error between the estimated and the ideal value 

changes from 0.3 µs to 2.8 µs. The proposed method also shows better performance with 

the transparent clock mechanism described in [17]. However, the authors did not consider 

any standard traffic profile to evaluate the performance of the proposed method. In 

addition, they also did not consider any temperature and ageing effects. 

3.2.4 IEEE 1588 Synchronization using Fixed Delay Ratio 

Z. Du et al. [34] proposed an enhanced end-to-end transparent clock (E2E TC) 

mechanism with a fixed delay ratio in order to correct the time of the slave clock with 

respect to the master clock. A transparent clock provides an accurate distribution of the 

PTP protocol across multiport network components such as bridges, routers and switches. 
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The E2E TC does not act as a master or slave, but forwards all messages just as a normal 

switch.  The proposed mechanism uses two rounds of message exchange. The rationale of 

introducing the additional message is to capture the difference between the ideal and real 

values of the residence time referred as Residence Time Error (RTE). The residence time 

in a transit node is a random variable uniformly distributed in the range of 200 ns to 1 ms. 

The proposed approach relies on several assumptions, details will be found in [34]. The 

performance of the proposed method is evaluated by computer simulations and compared 

with the traditional approach of the IEEE 1588v2 and the E2E TC scheme defined in the 

IEEE 1588 standard. The bias error of the slave clock is used to compare the above 

mentioned algorithms. The bias error is calculated as the difference between the 

calculated offset and the actual offset. The initial offset and the frequency accuracy of the 

slave clock are assumed to be 50ms and 100ppm respectively. The network is composed 

of five E2E TC devices between the master and the slave clock. The fixed delay ratio is 

set 1.2 to 3, and the upper limits of RTE are set to 100 ns, 1 µs, and 10 µs. The results are 

summarized as follows: 

I. When the fixed short term frequency stability of the TC clocks is 10 ppb, the 

maximum bias error of the conventional IEEE 1588 method is about 1ms, and the 

value of the TC scheme is about 100 ns. In contrast, the proposed mechanism 

exhibits less than 10 ns bias error.  

II. When the short term frequency stability of the TC clocks varies, the maximum 

bias error of the proposed approach and TC scheme are about 100 ns, whereas the 

conventional method displays 1 ms bias error.  
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However, the proposed method is not compatible with the original standard to ensure the 

coexistence and smooth evolution. Furthermore, replacing the legacy transit nodes 

(routers and switches) with a TC device is not a realistic approach in terms of capital 

expenses, CAPEX. 

 

3.2.5 IEEE 1588 Synchronization: Dynamically Changing Asymmetric Wireless 

Links 

S. Lee et al. [35] proposed an enhanced IEEE 1588 synchronization algorithm to 

compensate the offset error due to the dynamically changing data rate of wireless links. 

The data rate changes dynamically due to the movement of the mobile stations, the 

shared pipe characteristics of the conventional packet oriented wireless technologies, and 

the asymmetric duplexing method. The proposed mechanism relies on calculating the 

asymmetric ratio by introducing several new parameters of a dynamically changing 

wireless link between the master and the slave clock. In general, conventional cellular 

base stations allocate the data rate for uplink and downlink based on the available 

bandwidth, the air condition, and its associated buffers status. In the proposed method, 

the mobile station stores the data rate for each IEEE 1588 message traversing the wireless 

switch. The performance of the proposed mechanism is evaluated using computer 

simulation. The initial offset between the master and the slave clock is 25.2 ns.  

The result shows that the bias error of the proposed method is reduced to 1 ps, 

whereas the bias error of the conventional IEEE 1588 [17] is roughly 100 μs. The bias 

error is calculated as the difference between the calculated offset and the actual offset. 
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The authors did not consider network congestion and path reconfiguration in the network 

to evaluate the performance of the proposed approach.  

3.2.6 Combined IEEE 1588 and Adaptive Oscillator Correction Model 

W. Ahmed et al. [4] proposed a solution that combines the traditional IEEE1588 

protocol and the adaptive oscillator correction model (AOCM). The solution suggests a 

basic implementation of the IEEE 1588 protocol using the Delay Request-Response 

mechanism to synchronize the slave clock with respect to the master clock in a network. 

The solution also extends the AOCM model to train a slave clock locked to the master 

clock and apply that training model to correct the slave clock during the network outage 

or temporarily network failure. The extension of the AOCM model to the slave clock also 

intends to correct the temperature and ageing drifts of the oscillator and thus to improve 

the accuracy and stability of the clock. Here, using the IEEE 1588 protocol, the 

calculated offset in a slave clock with respect to the master clock is used to generate a 

correction signal as well as to train the AOCM model. 

To implement such an approach, the IEEE 1588 protocol and the AOCM model for the 

master and the slave clock are implemented in NS-2. A clock agent is implemented in 

NS-2 to simulate a real clock having drifts due to temperature and aging effects [4]. To 

evaluate the performance of this work, test cases from an ITU-T document covering 

various network conditions and network loads are implemented [3]. The experimental 

findings are summarized as follows: 

I. A slave to master synchronization accuracy of 1 μs is achieved after 306 

synchronization updates from master to slave clock with 95 % confidence. The 

results indicate that the more the slave clock rates deviate (positively or 



 28 

negatively) from the master clock, the worse is the slave accuracy w.r.t the master 

clock on average and vice versa. It also shows that the higher the IEEE 1588 

synchronization frequency, the higher is the slave accuracy w.r.t the master clock 

and vice-versa. 

II. The proposed solution improves the slave clock accuracy up to 10 times in the 

absence of traffic in the networks, depending on the length of the slave clock 

training period. 

III. Considering traffic in the network, the results show that the slave accuracy is 

affected by the asymmetric latencies such that the degree of accuracy is half of the 

asymmetric latencies. 

IV. When an asymmetric traffic such as 40% load in the master-to-slave direction and 

30% load in the slave-to-master direction is increased to 100% in both directions 

to cause network congestion, the slave accuracy relatively improves because of 

relatively less asymmetric latencies. 

V. When there is a network outage and the AOCM corrections are applied on the 

slave clock, the stability of the slave clock improves compared to the case when 

the AOCM correction is not applied. However the slave synchronization accuracy 

remains poor. The results indicate that the slave accuracy decreases as the 

network outage period increases. 

However, the author did not take the initiative to correct the asymmetry latency issue in 

terms of the slave clock accuracy. 
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3.3 Performance of IEEE 1588: Hardware Assisted Time Stamping 

This section provides a literature survey related to the hardware assisted time stamping to 

evaluate the performance of the IEEE 1588 protocol.  

3.3.1 IEEE 1588v2 Synchronization using Multicast Mechanism in a Packet 

Network 

L. Xie et al. [29] proposed a multicast mechanism supported by the hardware over 

a packet network in order to improve the synchronization accuracy between the master 

and the slave clock. The proposed method focused on factors such as the location of the 

time stamps, frequency difference, delay asymmetry and error accumulation, which 

affects the synchronization accuracy. To implement such an approach, the authors 

considered all transparent clocks, which are used in the packet network and the master 

clock provides a stable reference time. The findings of the experiment are summarized as 

follows: 

I. The slave clock frequency is synchronized to the master clock within 100 ppb 

after 3 synchronization intervals and the convergence period of the frequency 

synchronization is roughly 9 s. The frequency stability of the slave clock is about 

10 ppb after the convergence period. The result also shows that the PTP starts up 

and performs initial clock reset after the first 21 synchronization intervals. 

II. The slave clock time is synchronized to the master within 100 ns after 9 s and the 

convergence period of the time synchronization is roughly 9 s as well. The time 

offset between the master and slave clock remains within 50 ns after the 
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convergence period. This is mainly caused due to the frequency difference and 

delay measurement errors. 

The authors did not consider other major factors such as temperature and ageing effects, 

which affects the synchronization accuracy. The authors also did not mention about the 

traffic load and the ratio of asymmetric link delays to evaluate the performance of the 

proposed concept.  

3.3.2 IEEE 1588v2 Clock Synchronization using Controlled Packets 

B. Mochizuki et al. [30] proposed a new mechanism in order to eliminate PDV 

effects on timing packets. The proposed method relies on a multiplexing process between 

the IEEE 1588 SYNC packet and the background traffic. The authors assumed that the 

background traffic source can be back pressured [31] to generate the idle time (i.e. 

headroom) so that the timing packet does not incur any queuing delay in the network.  

The idea is to store the background packets in the local buffer by the multiplexing state 

machine integrated with the master clock and transmit them in a regular way when no 

SYNC packets need to be transmitted. As the scheduled time of SYNC packet 

approaches, the state machine starts the gap timer. As soon as the gap timer expires, it 

suspends background traffic transmission and sends the SYNC packet. The gap timer is 

calculated by each SYNC packet to make sure the channel is free. The multiplexing state 

machine is implemented in FPGA. The experimental finding shows that packet delays 

over a 16 hop network range lie between 28.7 µs and 30 µs with a standard deviation of 

170 ns. If the SYNC packet does not have any coordination with the background traffic, 
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packet delay ranges from 98.5 µs to 274.4 µs with a mean delay of 215.5 µs, and a 

standard deviation of 30.5 µs. 

Since real time traffic is unpredictable, there is a possibility that more than 2 background 

packets are transmitted simultaneously when multiple packets are delayed. The authors 

did not focus on such situation. Moreover, the performance of the proposed method is 

evaluated with one traffic source only, which does not model a realistic network scenario. 

3.4 Motivation 

To conclude from the literature survey, the IEEE 1588 protocol plays a significant 

role to provide a high degree of accuracy and precision both in wired and wireless 

networks. Unlike NTP, it has the flexibility either by performing a regular message 

exchange or enhances itself further using the transparent clocks and/or the hardware-

assisted time stamping for high precision and accuracy. From the literature survey, we 

have observed that various filtering techniques have been investigated to improve the 

slave accuracy with respect to the master clock in a network. A major focus dealt with 

asymmetric latencies and PDV, which deteriorates the synchronization accuracy severely. 

In order to overcome the degradation of synchronization performance, additional 

messages are appended with the conventional IEEE 1588, which may induce additional 

overhead. The performance of the IEEE 1588 protocol has been evaluated for a master-

slave hierarchy without explicitly looking at the variation of the network conditions such 

as the variation of bi-directional traffic loads or network congestions, which lead to 

timing errors between the master and slave clocks. In addition, none of the published 

work attempted to correct the time difference when routing changes, caused by failure in 

the network and temporary network outage as well. Furthermore, none of the authors 
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demonstrate how a single slave clock will coordinate with multiple master clocks 

connected through multiple networks. This leaves an opportunity for future work to 

enhance the performance of the slave clock with respect to the master clock under a high 

traffic load in a network. Combined IEEE 1588 and AOCM method [4] provides the self 

correcting mechanism for both the master and the slave clock to reflect a network outage 

or temporary network failure for master-to-GPS and master-to-slave connections 

respectively. This work also considered the temperature and aging effects and 

investigated the slave clock performance covering various network loads. However, the 

slave accuracy is not good in the existence of traffic in the network. The objective of this 

thesis is to enhance the IEEE 1588 protocol by compensating the adverse effect of 

unpredictable packet delay variation on timing packets. The proposed solution further 

extends to support multiple master clocks connected through multiple networks having 

PDV or asymmetric latency effects as well. The resulting model also incorporates the 

adaptive oscillator correction method [4] on slave clocks such that when the slave clock 

receives IEEE 1588 synchronization updates, it trains an adaptive model. Finally, the 

proposed solution can then be evaluated for various test cases according to the variation 

of bi-directional traffic loads, network congestion, routing changes and temporary 

network outage. 
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4    Chapter: Proposed Work 

In this chapter, we propose an enhanced IEEE 1588 clock synchronization 

algorithm, which combines the conventional IEEE 1588 protocol with a Delay 

Asymmetry Correction (DAC) Model. The goal of this proposed work is to achieve high 

accuracy by determining the correct offset value in a slave clock for asymmetric 

communication link delays. This chapter mainly focuses on the details of the proposed 

DAC model with flowcharts.  

4.1 Overview of the Proposed Solution 

The proposed work aims to enhance the IEEE 1588 protocol by computing the 

time difference between the master and the slave clock in a network. The focal point of 

this proposed work is to mitigate the effect of unpredictable packet delay variation on 

timing packets, which deteriorates the synchronization accuracy. The difference between 

the delays in the forward direction (master-to-slave) and the reverse (slave-to-master) 

direction depends on the characteristics or states of the networks. More specifically, 

asymmetric delays are introduced by the traffic loads, network topology, routing path 

reconfiguration and many more, which are very difficult to characterize in general. As 

mentioned earlier in Chapter 2, PDV is caused at the queuing buffer in switching hubs 

such as routers, switches, and other hardware that exists between clocks. The fluctuation 

of queuing delay depends on the processing time of the current data packet when the 

timing packet arrives at the "busy" router/switch. Hence, the variations in latencies are 

simply random both in the forward and the reverse direction. The timing error for the 

legacy IEEE 1588 algorithm will increase with the degree of asymmetric latency between 

the forward direction and the reverse direction. Therefore, it is very evident that the 
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asymmetric latencies affect the synchronization accuracy severely between two clocks in 

a packet network. The solution is based on the idea of incorporating the proposed delay 

asymmetry correction (DAC) model with the traditional IEEE 1588 synchronization 

protocol. The proposed solution exchanges the basic time stamped messages of IEEE 

1588 protocol between the master clock and the slave clock using the Delay Request-

Response Mechanism as discussed in Section 2.3.1. However, based on a metric we will 

introduce, offsets that are deemed to have been acquired using a message exchange that 

experienced very asymmetric latencies will be filtered out. The proposed solution further 

extends to support multiple master clocks with a single slave clock. In a real world 

scenario, a single master clock might coordinate with multiple slaves or a single slave 

clock might coordinate with multiple master clocks using multiple network connections. 

Keeping this in mind, a new equation is developed so that all master clocks initiate IEEE 

1588 message exchange systematically. Hence the slave clock may be able to avoid not 

getting updates for a long period of time. Thus, it is possible to achieve high 

synchronization between the master and the slave clocks in a network. 

Furthermore, the synchronization accuracy suffers due to different initial offsets, 

different oscillator rates, as well as the environmental factors such as the temperature and 

ageing effects which cause drifts both in the master and the slave clocks. Considering all 

of these factors, the proposed solution also integrates the Adaptive Correction Oscillator 

Method (AOCM) [4] to both the master clock and the slave clock. The purpose is to 

compensate the temperature and ageing effects of the local oscillator and hence to 

improve the accuracy and the stability of the clock during holdover mode. The master 

clock is locked to a GPS signal for its reference time and the slave clock is also locked 
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with the master clock in order to receive the IEEE 1588 synchronization updates from 

master clocks at regular intervals to keep the slave accuracy high. The adaptive model is 

trained to compensate the drifts due to its rate, temperature and ageing effects. When the 

GPS signal is lost or the slave clock is temporarily disconnected from the master clock 

due to some network outage, the timing module enters into the holdover mode and then 

the synchronization accuracy depends on the quality of the local oscillator [4]. In this 

situation, the correction signal obtained from the AOCM trained model is used to correct 

the rate of the master oscillator, when the master clock loses its connection to the GPS 

signal. Furthermore, the slave clock has two kinds of holdover periods, which are termed 

as micro-holdover period and macro holdover period. A micro-holdover period for a 

slave clock is the time interval during which the slave clock is waiting for its next 

IEEE1588 synchronization update from its master clock. A macro-holdover period for a 

slave clock is the time interval during which the slave clock is temporarily disconnected 

from the master clock due to some network outage. The correction signal obtained from 

the AOCM trained model is used in both cases to adjust the slave oscillator. 

In a nutshell, the proposed solution aims to achieve high synchronization accuracy 

by applying our proposed DAC model with the legacy IEEE1588 protocol considering 

the PDV across a network in the presence of various traffic loads. The aforementioned 

method reduces the offset error, which is caused by asymmetric latencies of the 

communication links. 
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4.2 Delay Asymmetry Correction (DAC) Model 

The DAC model is used to determine good samples in order to update the slave 

clock correctly under heavy traffic load in the network. The proposed DAC model is 

using a two stage filtering method.  In the first stage, we use the delay asymmetry ratio 

between the master and the slave clock differences, called R, which we also refer to as 

‘R’ test. It is worth mentioning that the term ‘R’ test mentioned in the thesis does not 

refer to the statistical test of the same name. The second stage relies on updating the 

samples which pass the first test.  The rationale of this DAC model is to ensure that only 

good samples are used to update the slave clock so that the synchronization accuracy 

remains high. Moreover, this process not only involves filtering out bad samples. We also 

save a notion of good updates, so that we can apply these saved values when we have no 

samples from the IEEE 1588 protocol. Otherwise the slave clock would run uncorrected 

for potentially long periods of time. The flowchart of the proposed DAC model is as 

follows: 
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Figure 3: Flowchart of the Proposed DAC Model 

As an explanation of the above flowchart, first, the master clock and the slave clock will 

exchange the basic timing messages based on the delay request-response mechanism 
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defined in the IEEE 1588 Std. [17]. The timing message sequences are shown in the 

following Figure 4.   

 

Figure 4: IEEE 1588 Timing Diagram 

Let X be the transmission time from the master to the slave clock and Y be the 

transmission time from the slave to the master clock. X ≠ Y, when latencies are 

asymmetric. The master to the slave time difference, 𝑡𝑚2𝑠  is defined as the time 

difference between the receiving timestamp of the slave clock (i.e.𝑡2) and the sending 

timestamp of the master clock (i.e.𝑡1). Similarly, 𝑡𝑠2𝑚   corresponds to the time difference 

between the receiving time stamp of the master clock (i.e. 𝑡4) and the sending timestamp 

of the slave clock (i.e. 𝑡3), 𝑡𝑚𝑑  is the mean propagation delay between the master and the 

slave, the offset is represented by  𝑡𝑜𝑓𝑓𝑠𝑒𝑡  . 𝑡𝑚2𝑠 and 𝑡𝑠2𝑚  are defined as follows: 

𝑡𝑚2𝑠 =  𝑡2 −  𝑡1     ………. (1) 

𝑡𝑠2𝑚  = (𝑡4 −  𝑡3)    ………. (2) 
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The offset is calculated using IEEE 1588 message sequences as follows:  

Offset, 𝑡𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑡2 −  𝑡1 −  𝑀𝑒𝑎𝑛 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  

                          =  [ 𝑡2 −  𝑡1 −  (𝑡4 −  𝑡3)]/2    ………………….. (3) 

Where, Mean Propagation time, 𝑡𝑚𝑑 = [ 𝑡2 −  𝑡1 +  (𝑡4 −  𝑡3)]/2   ……….. (4) 

Since the nature of the network traffic is unpredictable and may shift over time, the 

dominant delay might vary either in the forward direction (master-to-slave) or in the 

reverse direction (slave-to-master). If the clocks were perfectly synchronized, we could 

actually measure X and Y, but the timestamps are based on clocks that are not perfectly 

synchronized. Therefore, we can only estimate X and Y using the delay asymmetry ratio, 

R. The ratio, R, represents the estimated delay asymmetry ratio between the master to the 

slave clock difference (i.e. 𝑡𝑚2𝑠) and the slave to the master clock difference (i.e 𝑡𝑠2𝑚  ).  

So, the estimated delay asymmetry ratio,  𝑅 = 𝑡𝑚2𝑠  /  𝑡𝑠2𝑚               …………. (5) 

     =  𝑡2 −  𝑡1 /(𝑡4 −  𝑡3)     

     = (Offset + X) / (- Offset + Y) …… (6) 

Equation 6 includes both the offset and the actual transmission time of timing packets. It 

should be noted that the estimated delay asymmetry ratio, R, will provide an indication of 

asymmetric latencies, in particular when the clock offset is small relative to the actual 

transmission delay.   

However, a boundary condition, 0.97 < 𝑅 < 1.03, is introduced as part of 

estimating good samples. To explain the feasibility of boundary condition, the cumulative 

distribution function (CDF) with respect to the ratio (R) is depicted in Figure 5. Here, the 

slave clock is drifting 100ppb faster than the master clock and the synchronization 

frequency is 1 second. The data of Figure 5 are collected for 24 hours of simulation time 
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when 80% static traffic load is introduced in the forward direction and 20% static traffic 

load in the reverse direction. 

 

Figure 5: CDF w.r.t the Ratio (R) 

From Figure 5, the distribution shows that about 21% samples fall below a ratio of 0.97 

and about 53% samples fall below a ratio of 1.03. Thus, approximately 32% of all 

samples lie within the defined boundary  0.97 < 𝑅 < 1.03, when latencies are deemed to 

have been symmetric between master-to-slave and slave-to-master directions. The 

remaining 68% samples experienced significant delay differences between the master 

clock and the slave clock due to the presence of traffic in the network. We believe that it 

is possible to achieve high synchronization accuracy of the slave clock in the presence of 

bursty traffic by using 32% of all samples within 3% variance. Since the distribution is 
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plotted under high traffic load, there is a good possibility to receive more samples under 

less traffic loads. 

The calculated offset values which pass the ‘R’ test, are fed into a 2
nd

 stage filter, 

named as update sample filter. As the name suggests, the 2
nd

 stage filter is implemented 

to ensure that only good samples are used to update the slave clock to keep the 

synchronization high. It has been observed that some clock packets passed the ‘R’ test 

with higher or lower offset values than the anticipated offset. So, those timing packets are 

considered as outlier samples. The slave accuracy could be severely affected when it is 

updating with an outlier. Table 1 shows exemplary one set of data which passed the ‘R’ 

test. These data are also collected with 80% traffic load in the forward direction and 20% 

traffic load in the reverse direction. The slave clock is drifting 100ppb faster than the 

master clock and the synchronization frequency is 100s. Thus, the maximum clock 

difference would be 10 μs, assuming the slave clock could be perfectly synchronized in 

each synchronization interval. Total simulation time is 24 hours and 8640 samples are 

generated during that period of time. 

Table 1: Statistical Data Collected from ‘R’ Test only 

Simulation 

time (s) 

Ratio (R) Calculated Offset 

(μs) 

Synchronization 

Intervals 

Saved offset 

= Offset/Sync 

Interval(μs) 

Clock 

Difference 

(μs) 

1 1.00 0.0 1 0 0.0 

201 1.02 20 2 10 0.0 

701 1.02 10 5 2 0.0 

19101 0.98 -8.14 184 -0.044 1482.1 
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It is evident from the ratio column that the calculated offsets listed in Table 1 passed the 

‘R’ test. Only 3 samples passed the ‘R’ test out of 8640 samples. We are not considering 

the first sample as it is used to set the time of the slave clock, i.e., correct for initial clock 

differences between the master and the slave. In addition, the accumulated offset may not 

be the anticipated offset in the very first second. However, the second sample passed the 

‘R’ test with an offset value of 10 μs after 2 synchronization intervals. The number of 

synchronization interval is counted since the last successful update. The slave clock is 

updated according to that sample value and then a saved offset value is calculated. 

Similarly, the slave clock is updated with the third sample. It is noticeable that the third 

sample passed the ‘R’ test after 5 additional synchronization intervals with an offset 

value of 10 μs. The slave clock is updated and the calculated saved offset is 2 μs. The 

saved offset should be close to the actual offset in order to update the slave clock 

correctly when highly asymmetric latencies exist. Otherwise, clock difference will 

accumulate over time. The slave clock is updated with that saved offset for the next 183 

intervals. As a result, the clock difference is increased to about 1464 μs. The fourth 

sample appears after 184 intervals with an offset value of -8.14 μs, which is an outlier. 

The slave clock is updated with that sample and the saved offset is calculated according 

to that sample. Afterwards, none of the samples passes the ‘R’ test, even if a good sample 

appears after a long interval as the calculation of ‘R’ becomes distorted at some point. ‘R’ 

is an approximation of the undefined asymmetry ratio and subject to significant distortion 

when the offset is roughly on the same order of magnitude as the one-way latencies (i.e. 

X or Y). Hence, the saved offset is used to update the slave clock and the slave clock 

difference accumulates until the end of the simulation. Thus, it is necessary to restrain 
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those outliers before updating the slave clock. Therefore, an update sample filter is 

implemented to suppress outliers and smooth the sequence of incoming samples. Finally, 

the filtered samples are fed into AOCM to train its model in order to reduce the current 

drift of the slave clock according to the correction value obtained from the AOCM 

model. It is also essential to provide good samples to train the AOCM model. Otherwise, 

the clock accuracy will suffer due to training this correction model with noisy or poor 

samples. Thus, these two filtering mechanisms ensure that AOCM trains the model with 

good samples only. 

However, as soon as the slave clock realizes that the latencies are highly 

asymmetric due to the existence of traffic flows and the calculated offset does not pass 

the ‘R’ test, the recently calculated offset value is replaced with a previously stored offset 

value. Such a stored offset value has previously passed both filtering stages.  Finally, the 

slave clock adjusts the time according to the saved offset value. The detail flowchart of 

the update sample filter is illustrated in Figure 6: 
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Figure 6: Flowchart of the Update Sample Filter 

As mentioned earlier, the offset samples which pass the ‘R’ test are fed into the update 

sample filter as input offsets, 𝑌𝑡 . Three new equations, namely new offset (𝑌𝑛𝑒𝑤 ), forecast 

offset (𝐹𝑡), and another boundary condition are introduced in order to restrain the outliers. 

According to the input offset, the total amount of slave clock adjustment to be applied is 

the new offset, 𝑌𝑛𝑒𝑤  . The new offset is computed as the multiplication of the sync 
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intervals with the saved offset value, which is then added with the recent input offset. The 

new offset is calculated as follows: 

𝑌𝑛𝑒𝑤 =  𝐼 − 1 ∗ 𝑌𝑠𝑎𝑣𝑒𝑑 _𝑂𝑓𝑓𝑠𝑒𝑡 + 𝑌𝑡……….. (7) 

Following the input offset, the forecast offset, 𝐹𝑡 , is calculated for the upcoming offset. 

The forecast value is computed as the multiplication of the sync interval with the saved 

offset value, which is formulated as follows: 

𝐹𝑡 = 𝐼 ∗ 𝑌𝑠𝑎𝑣𝑒𝑑 _𝑂𝑓𝑓𝑠𝑒𝑡    ………... (8) 

Since the computation of the forecast process entirely depends on the saved offset value, 

it is essential to make sure that the saved offset is a good value. To set the forecasting 

procedure in motion, a boundary condition is introduced, which is defined as follows:  

𝑎𝑏𝑠(𝐹𝑡) ∗ 0.90 < 𝑎𝑏𝑠 𝑌𝑛𝑒𝑤  < 𝑎𝑏𝑠(𝐹𝑡) ∗ 1.10 ……. (9) 

The boundary condition defined in Equation 9 compares the newly calculated offset value 

with the forecast value in order to suppress outliers. If the newly calculated offset value 

passes the boundary condition, the offset to be applied for the slave clock adjustment is 

Yt. We are also keeping a track record of all successful clock adjustments for calculating 

the saved offset as well as spreading out the adjustments over time. The saved offset 

value is defined as the average of all previous saved offsets with the total numbers of 

successful clock adjustments, computed as follows: 

𝑌𝑠𝑎𝑣𝑒𝑑 _𝑂𝑓𝑓𝑠𝑒𝑡 =  𝑌𝑠𝑢𝑚 /𝐴 ……… (10) 

Where A is the total number of successful adjustments and 𝑌𝑠𝑢𝑚 =  𝑌𝑛𝑒𝑤 /𝐼 ; I is the sync 

interval. 

However, if the newly calculated offset value does not pass the boundary condition, the 

offset, 𝑌𝑡 , is replaced with the saved offset, 𝑌𝑠𝑎𝑣𝑒𝑑 _𝑂𝑓𝑓𝑠𝑒𝑡 . Finally, the slave clock is 
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updated with the saved offset value, 𝑌𝑠𝑎𝑣𝑒𝑑 _𝑂𝑓𝑓𝑠𝑒𝑡 . In a nutshell, both the ‘R’ test and 

update sample filter are used to determine only good samples to update the slave clock 

correctly. These two filters also ensure that the synchronization accuracy between the 

master and the slave clock remains high.   

The next section is going to focus on the extension of the proposed mechanism, 

through which a single slave clock supports multiple master clocks connected through 

multiple networks having asymmetric latencies due to the presence of traffic in the 

networks. 

4.3 Supports for Multiple Master Clocks in NS-2 

As mentioned earlier, a single slave clock might coordinate with multiple master 

clocks connected through multiple networks. The solution suggests that all master clocks 

will start to exchange IEEE 1588 messages with the slave clock according to the 

following equation: 

1 + 𝑚 ∗  
𝑋

𝑁
  ………………. (11) 

Where X is the synchronization frequency, N is the total number of master clocks,  

and m = 0,1,2,… . . N − 1.  

This process enables the slave clock to update its time more frequently. In other words, 

the slave clock does not need to rely on the saved offset for a longer period of time. It is 

worth mentioning that the synchronization frequency for the slave clock is the same as 

the IEEE 1588 update frequency (i.e. X seconds) received from the master clock. For 

instance, a slave clock is connected with two master clocks (Master 0 and Master 1) in a 
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network. Figure 7 illustrates the timing messages sequence between the slave clock and 

two master clocks.  

 

Figure 7: Timing Diagram for Multiple Master Clocks using IEEE 1588 Messages 

Let the synchronization frequency be X seconds. If master (0) starts to exchange 

IEEE 1588 messages at time m0_t1, master (1) will initiate to exchange IEEE 1588 

messages at time (𝑚0_𝑡1 + 𝑋/2)  (i.e. m1_t1) seconds. Hence, the slave clock will be 

able to receive an update message every X/2
 
seconds instead of X seconds. Since the 

network condition is random, there is a possibility that the states of the network between 

the master clock and the slave clocks may be different. In this situation, we expect to 

receive at least one good offset sample from one of these master clocks within the 

defined update frequency interval in order to update the slave clock correctly. Thus, we 

do not need to rely on saved offset values for a long period of time to update the slave 

clock. Consequently, we expect to have a relatively good saved value.  
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The offset is calculated using the IEEE 1588 timing diagram 9 as follows:  

Offset w.r.t Master (1):  

 m1_𝑡𝑜𝑓𝑓𝑠𝑒𝑡 =  m1_𝑡2 −  m1_𝑡1 −  (m1_𝑡4 −  m1_𝑡3)]/2   --------- (12) 

Offset w.r.t Master (2):  

m2_𝑡𝑜𝑓𝑓𝑠𝑒𝑡 =  m2_𝑡2 −  m2_𝑡1 −  (m2_𝑡4 −  m2_𝑡3)]/2   ---------- (13) 

The delay asymmetry correction mechanism will follow the proposed DAC model as in 

the case of a single master clock. 

The performance of the proposed solution is evaluated by implementing it in the 

NS-2 simulator [25]. For this purpose, a clock agent implemented in NS-2 [4] is used, 

which is able to simulate a real network clock having drifts due to temperature and 

ageing effects. A clock agent can be attached to an NS-2 node. The details for creating a 

clock agent with different parameters configuration in a TCL (Tool Command Language) 

script are discussed in [4]. According to the proposed solution, the DAC model is also 

implemented in NS-2 in conjunction with IEEE 1588 protocol. In addition, it integrated 

the AOCM model for the master and slave clocks implemented in NS-2. Finally, NS-2 

test cases are implemented according to the ITU-T document [3] covering various 

network disturbance loads and network conditions. The results of these experiments are 

discussed in the next chapter.  

 

4.4 Summary 

This chapter proposes a Delay Asymmetry Correction (DAC) Model to enhance the 

traditional IEEE 1588 synchronization protocol for asymmetric communication links. 

The proposed solutions are summarized as follows: 
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 The DAC model is proposed to achieve high synchronization accuracy by 

determining the correct offset value in a slave clock for asymmetric 

communication link delays. The initiative revolves around the idea of 

incorporating the DAC model with the conventional IEEE 1588 synchronization 

protocol. The proposed DAC model relies on two consecutive filtering methods 

named as the ‘R’ test and Update sample filter, which make sure that only good 

samples are used to update the slave clock. 

 The filtering process of the proposed work does not only filter out bad samples, it 

also saves a notion of good updates for calculating a saved offset value. The latter 

value is used when the slave clock does not receive (good) samples from the IEEE 

1588 protocol. 

 Furthermore, the proposed solution further extends to support multiple master 

clocks updating a single slave clock. The rational of the extension is to support 

multiple master clocks instead of selecting a grand master clock. To do so, a new 

equation is developed. The solution suggests that the master clocks will initiate 

IEEE 1588 message exchange according to that equation for achieving high 

synchronization accuracy between the slave and the master clocks. 

 The proposed solution also integrates the Adaptive Oscillator Correction Model 

(AOCM) in order to compensate temperature and aging effects of the oscillator 

and hence, to improve the stability of the slave clock during holdover mode. 
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5    Chapter: Simulation Results 

In this chapter, the performance of the proposed DAC model is evaluated. The 

results are obtained using NS-2 simulations by measuring the synchronization accuracy 

of the IEEE 1588 protocol combined with the proposed DAC model. First, the generic 

NS-2 simulation set up is discussed. The test cases in this chapter are designed according 

to the ITU-T G.8261 document [3], covering various network loads and network 

conditions and their effect on the slave clock synchronization. While we tested the 

proposed scheme for all test cases in this document, this chapter only presents a subset of 

the results, with the reminder, showing similar characteristics, summarized in the 

appendix. The test cases are divided into the following categories: 

 A test case with no traffic is discussed in Section 5.2. 

 Test cases with data traffic are introduced in the network using different load 

profiles discussed in Section 5.3. 

Furthermore, in this chapter, we do not consider temperature and aging effects, nor do we 

enable AOCM on the slave clock. 

5.1 Simulation Setup 

The network topology shown in the following Figure 8 is used in all simulations 

test cases unless a different topology is specified in a test case. The network topology 

consists of a master node n0 connected to a slave node n3 with two intermediate nodes n1 

and n2, making it a 3 hop topology. Two traffic sources are also introduced. One of the 

traffic sources is node n4, which sends traffic to node n5. Another traffic source is node 

n5, with traffic destined to node n4.  
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Figure 8: Network Topology 

By default, the following values are used for different simulations parameters for all test 

cases unless a different value is explicitly specified in a test case.  

 Bandwidth of Duplex links = 1 Mb  

 Propagation delay between two adjacent nodes = 100 ns  

 Simulation run time = 24 hours  

 Master clock rate = 1 (running at the same rate as ref. clock)  

 Slave clock rate = 1.0000001 (100 ppb faster than ref. clock)  

 IEEE 1588 synchronization frequency = 1 s  

 Number of hops (between master and slave clocks) = 3 hops 

 Slave node temperature effect when enabled = 5ppb/75°C with quadratic term 

equal to -0.00031966ppb/°C2 

 Slave node aging effect when enabled = 3ppb/3days 

 Adaptive Model on Slave Clock (when enabled) 
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o Training period (locked mode) = AOCM will train its model only with those 

values which passes both the ‘R’ test and the update sample filter.  

o Holdover period (unlocked mode) = Not considered  in current setup. 

o AOCM frequency = 1s 

Note: The AOCM frequency of 1 second applies to the holdover period of the slave clock 

only. The clocks of both master and slave nodes start ticking at a simulation time of 1s 

and stop when the simulation ends. 

5.1.1 Traffic Models Description 

There are two traffic models described in Appendix VI in ITU-T G.8261 [3]. One 

of the traffic models is data centric traffic model, where the majority of the traffic is data. 

Another traffic model is voice centric, where the majority of the traffic is voice. First, we 

will use data centric traffic model to evaluate the performance of the slave clock 

synchronization accuracy w.r.t the master clock of the IEEE 1588 protocol. The results 

with voice centric traffic model are discussed in the Appendix C. Both of these traffic 

models are discussed in the subsequent subsections. 

5.1.1.1 Data Centric Traffic Model 

In data centric traffic model, 60% of the load must be based on packets of 

maximum size while the remaining 40% of packets are a mix of minimum and medium 

size.  

Hence the packet size profile can be summarized as below: 

 60% of the load must be maximum size packets (1518 bytes) 

 30% of the load must be minimum size packets (64 bytes) 

 10% of the load must be medium size packets (576 bytes) 
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5.1.1.2 Voice Centric Traffic Model 

Voice centric traffic model is based on the typical traffic characteristics of the 

wireless access networks. According to 3GPP, the access traffic is composed of 

conversational (voice), streaming (audio-video), interactive (e.g., http) and background 

(sms, e-mail) traffic. It is known that in wireless network, 80% to 90% of the traffic is 

conversational voice traffic, with the average call lasting from 1 minute to 2 minutes. To 

model this traffic, 80% of the load should be based on packets of fixed small size 

constant bit rate (CBR), and 20% based on packets with a mix of medium and maximum 

size.  

Hence the packet size profile can be summarized as below: 

 80% of the load must be minimum size packets (64 bytes) 

 15% of the load must be maximum size packets (1518 bytes) 

 5% of the load must be medium size packets (576 bytes) 

In both these traffic models, maximum size packets (1518 bytes) will occur in 

bursts lasting between 0.1 s and 3 s. For each burst event, the burst length will be selected 

randomly using an identically independent uniformly distributed random generator. The 

network load of the traffic profile is individually described in the test case description 

whenever required. 

5.1.2 Metrics Collected 

In general, for each test case, the key performance data collected is as the 

maximum clock difference in each synchronization window, which is plotted versus 

simulation time (in hours). In addition, statistics for several other parameters are collected 

for each test case and provided in a separate table. Each test case is run 50 times unless it 
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is explicitly mentioned and total simulation time is 24 hours. To show the worst-case 

behavior, rather than averaging clock differences per synchronization window, we plot 

the maximal value for each synchronization window across all 50 repetitions. 

5.1.3 Slave Clock Synchronization 

The slave clock synchronization accuracy is measured with respect to the master 

clock in the network. We assume that the master clock is perfectly synchronized with the 

reference clock, i.e. GPS. Since the IEEE 1588 synchronization happens every 1 second 

(default synchronization window), the slave clock drifts from the master between the 

configured synchronization interval. Therefore, the maximum slave drift in each 

synchronization window can be used to determine the slave clock accuracy. Hence, the 

absolute difference and maximum of the maximum difference (in ns) in each 

synchronization window between the time stamps of the slave node and the master node 

is considered. 

5.2 Test Case with No Traffic 

The test case presented in this section is run with no traffic in the network using 

the topology shown in Figure 8. From the following Figure 9, the result shows that the 

delays experienced by the IEEE 1588 synchronization packets are symmetric and do not 

affect the IEEE 1588 synchronization accuracy. As the slave clock is drifting by 100 ppb, 

we could expect that during a synchronization window of 1 second the slave would 

deviate from the master or reference clock by 100 ns and each synchronization step 

perfectly synchronizes the slave, which indeed is what Figure 9 shows. 
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Figure 9: Slave Clock Accuracy w.r.t the Master clock- No Traffic in the Network 

5.3 Test Cases with Traffic 

The test cases presented in this section are run by introducing data traffic using 

different traffic load profiles. The network topology shown in the Figure 8 and the traffic 

model described in Section 5.1.1 are used. First, the slave clock accuracy is measured 

with a single simulation run without imposing the proposed DAC model. Later on, the 

slave clock accuracy is measured considering the proposed DAC model, using 50 

repetitions. Each test case demonstrates the effects of various load profiles on the slave 

clock accuracy. The traffic in the forward direction (master-to-slave) is introduced at 

node 4 and destined to node 5. Similarly, the traffic in the reverse direction (slave-to-

master) is introduced at node 5 and destined to node 4. Statistics for several parameters 
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are provided in a separate table in order to examine the effects of the various filtering 

stages. As mentioned, we are not considering any temperature and aging effects in order 

to evaluate the performance of the slave clock here. Only a few test cases are presented. 

The additional test cases for the data centric traffic model are described in Appendix B. 

5.3.1 Static Packet Load– with the IEEE 1588 Message Sequences only 

5.3.1.1 Description 

In the first test case with traffic scenario, the traffic model described in Section 

5.1.1, a static network load of 80% in the forward direction (master-to-slave) and 20% in 

the reverse direction (slave-to-master) are introduced for 24 hours, starting at a 

simulation time of 1 second and stopping at time 24 hours of the simulation time. The test 

case examines the performance of the slave clock synchronization accuracy using IEEE 

1588 message sequences only with a static network load in both directions. 

5.3.1.2 Results 

Figure 10 shows the slave clock difference with respect to the master clock before 

applying the proposed DAC model and the difference of delays experienced (forward - 

reverse) when a static packet load is introduced between the slave and the master clock. 
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Figure 10: Slave Clock Synchronization using the IEEE 1588 Message Sequences only 
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5.3.1.3 Discussion 

From Figure 10, the slave to the master clock difference is as high as 7439 μs and the 

average slave accuracy is about 2173 μs before applying the DAC model, which indicates 

that the slave synchronization accuracy deteriorates significantly in the presence of traffic 

in the network. With 80% static traffic load in the forward direction and 20% static load 

in the reverse direction, the delay difference (forward - reverse) can be as high as 14660 

μs and the average delay difference is about 4364 μs level. The resultant difference 

implies that the delays experienced by the IEEE 1588 synchronization packets are highly 

asymmetric. Thus, it is evident that the slave clock inaccuracy introduced by the traffic is 

in direct relationship with the asymmetric latencies in such a way that the degree of 

inaccuracy is half of the asymmetric delays. 

5.3.2 Static Packet Load – with the Proposed DAC Model 

5.3.2.1 Description 

In this test case, the first test case with a static packet load is repeated, this time 

filtering IEEE updates with the proposed DAC model. The NS-2 TCL script of this test 

case is described in Appendix A.  

5.3.2.2 Results 

Figure 11 shows the slave clock synchronization w.r.t the master clock, when a static 

packet load is introduced between the slave and the master clock with DAC model 

applied on the slave clock. Statistical data are provided in Table 2.  
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Figure 11: Slave Clock Synchronization with Static Packet Load-DAC Model Applied on the Slave 

Clock 

Table 2: Statistical Data for Static Packet Load 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  22664 (26.23%) 

Avg. no. of samples passed the update sample filter 21895 (25.34%) 

Max. of the max. interval between  

successive successful updates (seconds) 

81.87 s 

Avg. of the avg. clock accuracy 99.71 ns 

Max. Of the max. clock difference (ns) with DAC model 99.80 ns 
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5.3.2.3 Discussion 

From Figure 11, the result shows that the maximum of the maximum slave clock 

difference is about 99.80 nanoseconds level. The resultant difference implies that the 

slave clock accuracy improved significantly in the presence of heavy traffic load in the 

network, much lower than the one shown in Figure 10. It is worth mentioning that we are 

not comparing the performance of the proposed DAC model with other solutions except 

IEEE 1588 message sequence only as shown in Figure 10. Because if we get the slave 

synchronization accuracy to 100 ns, that is as good as we can make it considering given 

parameters (i.e. 1 second synchronization interval, 100 ppb faster drift of the slave clock 

w.r.t the master clock). Thus, every time we get a result close to 100 ns, we got the best 

possible performance of the proposed DAC model. However, with 80% static traffic load 

in the forward direction and 20% static traffic load in the reverse direction for 24 hours 

simulation period, more than 73% samples are highly asymmetric. Here, saved offset 

plays a crucial role to keep the synchronization accuracy high between the two clocks. 

According to the Equation 10 mentioned in the delay asymmetry correction mechanism, 

the saved offset is calculated as the average of all previously calculated saved offset 

values to spread out the adjustments over time. When the slave clock realizes that the 

latencies are highly asymmetric due to the existence of data traffic, it replaces the 

recently calculated offset value with the saved offset value. Finally, the slave clock is 

updated with the saved offset value. Therefore, the slave clock synchronization accuracy 

remains high between the slave and the master clock. From the statistics provided in 

Table 2, the average of the average slave clock accuracy is about 99.71 nanoseconds, 

which also indicates the improvement of the slave clock accuracy w.r.t the master clock. 
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Moreover, about 27% samples passed the ‘R’ test and about 26% samples are used 

directly to update the slave clock. It is evident from the statistics that the synchronization 

accuracy is improved significantly despite of having more than 73% samples collected in 

highly delay-asymmetric conditions, and having an additional 1% samples fail to pass the 

second test. In addition, the maximum of the maximum interval between successive 

successful update is about 82 seconds. It indicates that the slave clock is updated 

frequently with the calculated offsets, which passed both the filters. As a result, the slave 

synchronization accuracy remains high until the end of the simulation time. Since we are 

considering the maximum of the maximum slave clock difference in each 

synchronization window in Figure 11 and the statistics are collected as the average of 

absolute values, therefore to understand more clearly, the slave clock difference w.r.t the 

master clock is produced again in Figure 12 for a single simulation run. Statistical data 

are provided in Table 3. 
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Figure 12: Slave Clock Synchronization with Static Packet Load -Single Run 

Table 3: Statistical Data for Static Packet Load - Single Run 

Total no. of samples  86400 

Total no. of samples passed the ratio ( R) test  23480 (27.18%) 

Total no. of samples passed the update sample filter 22591 (26.15%) 

Maximum. interval between  

successive successful updates (seconds) 

30 s 

Last successful update received at (Simulation time) 86401 s (24.00 Hours) 

Average slave accuracy 99.69 ns 

Max. clock difference with DAC model 99.75 ns 
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5.3.3 Slave Clock Synchronization with Sudden Large and Persistent Changes in 

Traffic Load 

5.3.3.1 Description 

In this test case, network load is introduced, which varies with time. Using the load 

profile shown in Figure 13, the traffic is introduced at a simulation time of 1second and 

stopped at a simulation time of 24 hours. Here in the forward direction (master-to-slave), 

the network load is changing between 80% and 20% every hour, while in the reverse 

direction (slave-to-master), the network load is changing between 50% and 10%. The test 

case examines the effects of large and persistent changes in network load on the slave 

clock synchronization with DAC model enabled on the slave clock. 

 

Figure 13: Load Profile Demonstrating Sudden Large and Persistent Changes in Traffic Load [3] 

5.3.3.2 Results 

Figure 14 shows the slave clock synchronization accuracy with respect to the master 

clock with the DAC model applied on the slave clock following the network load profile 

described in Section 5.3.3.1. Statistical data are provided in Table 4. 
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Figure 14: Slave Clock Synchronization with Sudden Large and Persistent Changes in Traffic Load 

Table 4: Statistical Data for Sudden Large and Persistent Changes in Traffic Load 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  33472 (38.74%) 

Avg. no. of samples passed the update sample filter 32882 (38.06%) 

Max. of the max. interval between  

successive successful updates (seconds) 

59 

Avg. of the avg. clock accuracy 99.98 ns 

Max. Of the max. clock difference (ns) with DAC model 229.5 ns 

5.3.3.3 Discussion 

From Figure 14, the maximum of the maximum clock difference between the slave and 

the master clock is about 230 nanoseconds. The slave clock accuracy is increased to 230 
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nanoseconds due to updating the slave clock with a relatively small saved offset value for 

a long period of time. As a result, the difference is accumulated over time. A similar 

effect is observed at times 4 hours, 7 hours, and 18 hours of the simulation time. Since 

the saved offset is calculated as the average offset correction over time, the slave clock 

may be under-corrected or over-corrected due to updating the clock with a relatively 

small or large saved offset value compared to the anticipated offset. In this case, the slave 

accuracy may increase or decrease depending on the applied value. However, from the 

statistics provided in Table 4, the average of the average slave accuracy is about 100 

nanoseconds, which implies that the slave clock is able to maintain high accuracy with 

persistent change in the network load in both directions. About 39% samples passed the 

‘R’ test and about 38% samples are used directly to update the slave clock. It reflects that 

about 1% samples did not pass the 2
nd

 stage filter and about 61% samples experienced 

highly asymmetric latencies. In both of these cases, the saved offset values are used to 

update the slave clock. In addition, the maximum of the maximum interval between 

successive successful update is 59 seconds, which indicates that the slave clock is 

updated frequently with the calculated offset, which passed both the filters.  

5.3.4 Summary 

The test cases in this chapter have been run using different traffic load profiles and 

varying network conditions applied on the slave clock. In a nutshell, the results are 

summarized as follows: 

 The slave clock synchronization accuracy deteriorates severely without 

considering the DAC model. The slave accuracy is one half of the asymmetric 

latencies experienced due to the presence of traffic in the network. 
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 In the case of data centric traffic, the slave clock synchronization accuracy w.r.t 

the master clock is improved significantly for all the test cases with the DAC 

model applied on the slave clock. Both the ‘R’ test and the update sample filter 

ensure that only “good” offset values under high traffic load are used to update 

the slave clock. When a large percentage of samples experiences highly 

asymmetric latencies, saved offset plays a vital role to keep the synchronization 

accuracy high. 

 In the case of network congestions, and temporarily network outage are presented 

in Appendix B, the slave clock achieved high synchronization accuracy w.r.t the 

master clock.  

 In the case of routing path reconfiguration due to the failure in the network also 

presented in Appendix B, the slave clock shows high synchronization accuracy at 

the nanoseconds level for the data centric traffic model.  
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6    Chapter: Sensitivity Analysis 

In this chapter, we will scrutinize the direct effects of various parameters on the 

slave clock synchronization. Section 6.1 describes the traffic profile, which is used in all 

test cases in this chapter for examining the effects of the slave clock performance. 

Section 6.2 focuses on the performance of the slave clock accuracy, when it is 

coordinating with multiple master clocks. Section 6.3 also examines the effects on the 

slave clock accuracy with different parameters, such as synchronization frequencies, 

drifts and initial offsets. Finally this chapter is concluded by examining the temperature 

and the aging effects on the slave clock and AOCM is used to compensate the 

temperature and ageing effects of the local oscillator. The slave and the master clocks are 

connected as shown earlier in Figure 8 using the parameters mentioned in the simulation 

set up section (Section 5.1), unless a different topology and parameters are specified in a 

test case. Total simulation time is 24 hours for all the test cases. The results are collected 

with a single simulation run for all the test cases. 

6.1 Traffic Profile 

The data centric traffic model described in Section 5.1.1 is considered in this chapter. All 

the test cases in this chapter assume 40% of network load in the forward direction 

(master-to-slave) and 30% network load in the reverse direction (slave-to-master). At 7 

hours of simulation time, network load is increased to 100% in both directions for 100 s, 

and then restored to the previous levels. 
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6.2 Effect on a Slave Clock with Multiple Master Clocks 

6.2.1 Description 

The network topology shown in Figure 15 is used to evaluate the performance of the 

slave clock accuracy w.r.t the multiple master clocks.  

 

Figure 15: Network Topology using Multiple Master Clocks 

The network topology consists of two master nodes n0 and n1 connected to a slave node 

n4 with two intermediate nodes in each domain. Two traffic sources are introduced in 

each domain. In the master-0 and the slave domain, one of the traffic sources is node n7, 

which sends traffic to node n8 and vice versa. Similarly, node n9 and n10 are considered 

as the traffic sources for the master-1 and the slave domain. Node n9 sends traffic to node 

10 and vice versa. The parameters mentioned in the simulation set up section (Section 

5.1) are used in this test case, except for the IEEE 1588 synchronization frequency. 10 

seconds IEEE 1588 synchronization frequency is considered in this test case. Both the 

master clocks initiate the IEEE 1588 message exchange according to the Equation 11, 
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described in Section 4.3. The data are collected as the average values of the slave clock 

accuracy w.r.t each master clock.  

6.2.2 Results 

Figure 16 shows the slave clock synchronization accuracy w.r.t both the master clocks. 

40% of network load is introduced in the forward direction and 30% load in the reverse 

direction with the increment of network load to 100% in both directions for 100 s, and 

then restored. In addition, statistics for several parameters are collected for each domain 

and provided in Table 5. 

 

Figure 16: Slave Clock Synchronization Accuracy w.r.t both the Master Clocks 
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Table 5: Statistical Data with Multiple Master Clocks 

 Master 0 Master 1 

Total no. of samples  8640 8640 

Total no. of samples passed the ratio ( R) test  8640 (100%) 6020 (69.68%) 

Total  no. of samples passed the update 

sample filter 

8639 (99.99%) 6015 (69.62%) 

Maximum interval between successive 

successful updates (seconds) 

10 s 80 s 

Last successful update received at simulation 

tine  

86401s (24 Hours) 86396s (23.99 Hours) 

The average slave accuracy 500 ns 496 ns 

Maximum clock difference (ns) with DAC 

model 

500 ns 500 ns 

 

6.2.3 Discussion 

From Figure 16, the maximum slave clock synchronization accuracy w.r.t both the master 

clocks is 500 ns. The resultant difference implies that the slave clock accuracy is 

improved 2 times having two master clocks. Since the slave clock is drifting 100 ppb 

faster than both the master clocks and the synchronization frequency is 10 s, the 

maximum offset would be 1 μs. From the statistics provided in Table 5, the average slave 

clock accuracy is 500 ns, which indicates that the slave clock accuracy remains high until 

end of the simulation time. It is noticeable that almost 100% samples passed both the ‘R’ 

test and the update sample filter in the master-0 domain, while about 70% samples are 

used directly to update the slave clock correctly w.r.t the master-1 domain. In addition, 
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the maximum intervals between successive successful updates are 10 s for master-0 

domain and 80 s for master-1 domain, which also indicates that the slave clock is updated 

frequently with the calculated offsets. Therefore, it is evident that the slave clock 

received at least one good sample from one of these master clocks within the defined 

update frequency interval in order to update the slave clock correctly. Thus, the slave 

clock does not rely on the saved offset value for a long period of time. 

6.3 Effects at Different Parameters 

In this section, the effects on the slave clock synchronization w.r.t the master clock are 

observed using different parameters, such as synchronization frequencies, drifts and 

initial offsets on the slave clock. The data are collected as the maximum value for each 

synchronization frequency. It should be noted that all results are collected after 

stabilization period of 900 s, as described in [3]. In addition, all results are plotted with 

logarithmic scales for both axes, unless it is explicitly mentioned. 

6.3.1 IEEE 1588 Synchronization Frequency 

6.3.1.1 Description 

In this test case, a slave clock is connected with a master clock as shown in Figure 8 and 

the IEEE 1588 synchronization frequency is varied using the values of 1s, 5s, 10s, 50s, 

100s, and 1000s. Here the slave clock is drifting at a fixed rate of 100ppb.  

6.3.1.2 Result 

Figure 17 shows the maximum slave synchronization accuracy w.r.t the master clock at 

different IEEE 1588 synchronization frequencies. 
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Figure 17: Effects on Slave Clock Synchronization-Varying IEEE 1588 Synchronization Frequency 

6.3.1.3 Discussion 

From Figure 17, the effects of varying synchronization frequency values can be seen on 

the slave clock accuracy. The result shows that a higher synchronization frequency 

(lower time value) provides better clock synchronization. The higher synchronization 

frequency increases the possibility of receiving updates from the master clock more 

frequently and hence improves the slave accuracy. The slave clock achieves high 

synchronization accuracy with the synchronization frequency values of 1 s, 5 s, 10 s, 50 

s, and 100 s. If the synchronization updates are received less frequently (i.e. 1000 s or 

more), the slave clock synchronization accuracy severely depends on the existing traffic 

load in the network. According to the DAC model, the longer the slave clock waits for 
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receiving synchronization updates from the master clock, the fewer the number of 

samples that pass the ‘R’ test. Thus, the slave clock will be updated with the saved offset 

value and the difference will be accumulated over time as well. Moreover, the calculation 

of ‘R’ will be distorted if the clock difference is roughly on the same order of the 

magnitude of the one way latency, which is the case for the 1000 s synchronization 

frequency. 

6.3.2 Slave Clock Rates 

6.3.2.1 Description 

In this test case, we are considering that the slave clock is drifting faster than the master 

clock. The slave clock drifting rate is varied using the values of 1 ppb, 10 ppb, 100 ppb, 1 

ppm, 10 ppm, and 100 ppm. Here the slave clock synchronization frequency is 1s. 

6.3.2.2 Result 

Figure 18 shows the maximum slave synchronization accuracy w.r.t the master clock at 

different drifting rates. 
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Figure 18: Effects on Slave Clock Synchronization-Varying Slave Clock Rates 

6.3.2.3 Discussion 

From Figure 18, the effects of varying the slave clock drifting rate can be seen on the 

slave clock accuracy. The result shows that a lower drifting rate values provide better 

clock synchronization. According to the rates considered in this test case, the maximum 

clock difference would be 1 ns, 10 ns, 100 ns, 1μs, 10 μs, and 100 μs per synchronization 

period for the drifting rate of 1 ppb, 10 ppb, 100 ppb, 1 ppm, 10 ppm, and 100 ppm 

respectively. The slave clock achieves high synchronization accuracy with the drifting 

rate values of 1 ppb, 10 ppb, 100 ppb, and 1 ppm. It is noticeable that the slave clock 

maximum difference is increased to 3 μs for 100 ppb drifting rate. The rationale behind 

this is that the slave clock is updated with a saved offset value for a long period of time 
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and the difference is accumulated over time. When the slave clock drifting rate is higher 

than 1ppm (i.e. 10 ppm, 100 ppm), none of the offsets passed the ‘R’ test and the 

calculation of ‘R’ is distorted at some point because the offset is in the same order of the 

magnitude as the one way latency. Hence, the slave clock is updated with default saved 

offset value until the end of the simulation time. Therefore, the clock difference is 

accumulated until 24 hours of the simulation time.  It has been observed that almost 

similar results are obtained while the slave clock is drifting slower than the master clock 

with the values mentioned in this test case. 

6.3.3 Slave Clock Initial Offsets 

6.3.3.1 Description 

In this test case, the slave clock initial offset is varied using the values of 1 s, 5 s, 10 s, 20 

s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, and 100 s. Here the slave clock synchronization 

frequency is fixed at 1s and the slave clock is drifting 100ppb faster than the master 

clock. Therefore, the maximum slave clock difference would be 100 ns after the 

stabilization period of 900 s.  

6.3.3.2 Result 

Figure 19 shows the maximum values for slave clock synchronization at different initial 

offsets. 
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Figure 19: Effects on Slave Clock Synchronization-Varying Slave Initial Offsets 

6.3.3.3 Discussion 

From Figure 19, the effects of varying initial offset values can be seen on the slave clock 

accuracy. The result shows that different initial offsets do not affect on the slave 

synchronization accuracy. The maximum clock difference between the slave and the 

master clock is bounded within 100 ns for all the values except for 1 second initial offset. 

The slave clock difference is increased to about 123 ns when it is off by 1 s. This is 

because we update the slave clock with a saved offset value for a long period of time. 

Therefore, we can state that the slave clock is able to achieve high synchronization 

accuracy with different initial offset values. 
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6.4 Temperature and Aging Effect on a Slave Clock with AOCM 

In this section, first, we are examining the temperature and the aging effects on the slave 

clock using different network conditions. Later on, AOCM is introduced to mitigate both 

the temperature and the aging effects on the slave clock. We have a slave clock having 

both temperature and aging effects connected to a master clock. The oscillator of the 

master clock has no drifts due to the temperature and aging effects and therefore runs 

perfectly. A linear temperature effect of 5ppb/75°C with quadratic term equal to -

0.00031966ppb/°C2 with an 8 hour cyclical temperature profile shown in Figure 20 and a 

linear aging effect of 3ppb/day are used on the slave clock [4]. Other parameters are used 

from the simulation set up section (Section 5.1). 

 

Figure 20: Temperature Profile [4] 
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The temperature profile represents the temperature values (i.e. coefficients) observed at 

the clock oscillator [4, 26]. The range of the temperature variation is 60°C over an 8 hour 

cycle. We are using 3 cycles of temperature variations to study the effect of temperature 

over shorter simulation time periods. Thus, we artificially condensed the daily 

temperature cycle. The temperature range is large enough to represent a real working 

environment. For instance, if a BTS located in a desert, the average temperature might be 

very hot in day time. The 8 hour cycle guarantees that the simulation results are obtained 

fast enough.  

6.4.1 Temperature and Aging Effect on a Slave Clock 

6.4.1.1 Description 

In this test case, the accuracy of a slave clock with the temperature and the aging is 

presented. The purpose is to examine the temperature and aging drifts on the slave clock 

accuracy under various network conditions. 

6.4.1.2 Results 

Figure 21 shows the temperature and the aging effects on the slave clock accuracy when 

the slave and the master clocks are running at the same rate. Figure 22 also shows the 

temperature and the aging effects when the slave clock is drifting 100 ppb faster than the 

master clock. In both of these cases, there is no traffic in the network and the DAC model 

is enabled on the slave clock. Figure 23 shows the temperature and the aging effects on 

the slave clock with the traffic profile described in Section 6.1, and the DAC model is 

enabled on the slave clock. Here the slave clock is drifting 100 ppb faster than the master 

clock. 



 79 

 

Figure 21: Slave Clock Accuracy with the Same Drifting Rate w.r.t the Master Clock – Temperature 

and Aging Effects 

Table 6: Statistical Data with the Temperature and Aging Effects with the Same Drifting Rate 

Total no. of samples 86400 

No. of samples passed the ratio ( R) test  26261 

No. of samples passed the update sample filter 2 

Max. difference (ns) with DAC model 47 μs 
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Figure 22: Both Temperature and Aging Effects on the Slave Clock with 100 ppb faster Drift 

Table 7: Statistical Data with the Temperature and Aging Effects with 100 ppb Faster Drift 

Total no. of samples per run 86400 

No. of samples passed the ratio ( R) test  86400 (100%) 

No. of samples passed the update sample filter 86400 (100%) 

Max. interval between successive successful updates (seconds) 1 s 

Max. Of the max. clock difference (ns) with DAC model 105 ns 
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Figure 23: Both Temperature and Aging Effects on the Slave Clock with Traffic Profile and 100 ppb 

Faster Drift 

Table 8: Statistical Data for the Temperature and Aging Effects with Traffic Profile and 100 ppb 

Faster Drift 

Total no. of samples per run 86400 

No. of samples passed the ratio ( R) test  41225 (47.71%) 

No. of samples passed the update sample filter 40654 (47.05%) 

Max. interval between successive successful updates (seconds) 65 s 

Max. Of the max. clock difference (ns) with DAC model 122 ns 
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6.4.1.3 Discussion 

The figures show that the temperature and the aging effects on the slave clock accuracy 

using different network conditions. In all of the results, the temperature effect follows the 

pattern of the temperature profile shown in Figure 20: the clock drifts faster when it is hot 

and drifts slower when it is cold. The figures also demonstrate the cumulative effect of 

the temperature and the aging drifts on the slave clock accuracy. However, from Figure 

21, the slave accuracy increased to 47 μs, when the slave and the master clock are drifting 

at the same rate. The resultant difference is increased due to updating the slave clock with 

a relatively small saved offset value for a long period of time. Since there is no traffic in 

the network and the slave clock is drifting at the same rate with the master clock, the 

maximum slave drift would be 5 ppb with a linear temperature effect of 5ppb/75°C with 

quadratic term equal to -0.00031966ppb/°C2 with 8 hour cycle temperature profile shown 

in Figure 20 and a linear aging effect of 3ppb/day. If the temperature fluctuations are on 

the same order of the magnitude of the offset, the proposed scheme, particularly the 

forecast procedure does not work well. It is worth mentioning that the proposed scheme 

works well when offset is the dominant source of the slave clock drift due to the inherent 

frequency offset of a crystal oscillator. From the statistics provided in Table 6, only 2 

samples passed the 2
nd

 stage filter, which indicates the poor performance of the 

forecasting due to the larger temperature variation than the slave clock drift. A similar 

result is observed when the traffic is introduced in the network and the slave and the 

master clocks are drifting at the same rate. From Figure 22, the maximum slave accuracy 

is 105 ns when the slave clock is drifting 100 ppb faster than the master clock. The 

resultant difference is fluctuating from 95 ns to 105 ns within an 8 hour cycle due to the 
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temperature variations used in the temperature profile. The resultant difference implies 

that the slave clock achieved high accuracy when the slave clock drift is the dominant 

factor, rather than the temperature variations. From the statistics provided in Table 7, all 

of the samples passed both filters and are used directly to update the slave clock. In 

addition, the maximum interval between successive successful updates is 1 s. It implies 

that the slave clock is updated with the calculated offset value during every 

synchronization event in order to achieve the high synchronization accuracy. An almost 

similar result is obtained when the traffic profile is introduced, shown in Figure 23. The 

maximum clock difference is about 121 ns. The resultant difference is the cumulative 

effect of temperature, aging drifts and the traffic load in the network. The saved offset 

value is used to update the slave clock for a long period of time when the latencies are 

highly asymmetric. From the statistics provided in Table 8, about 48% samples passed 

the ‘R’ test and about 47% samples passed the 2
nd

 test filter. In addition, the maximum 

interval between two successive successful updates is 65 seconds, which indicates that 

the slave clock is updated frequently with the calculated offset values. 

6.4.2 Effect of AOCM on Slave Clock 

6.4.2.1 Description 

In this test case, adaptive corrections are applied on the slave clock in locked mode only. 

In locked mode, AOCM will train its model only with those values which passed both the 

‘R’ test and the update sample filter. In this test case, we are not considering a holdover 

mode such as temporary network outage between the master and the slave clock. 
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6.4.2.2 Results 

Figure 24 shows the slave clock synchronization w.r.t the master clock with AOCM 

applied on the slave clock. Statistics are provided in Table 9. 

 

Figure 24: Slave Clock Synchronization with AOCM Corrections in Locked Mode only 

Table 9: Statistical data with AOCM 

Total no. of samples  86400 

Total no. of samples passed the ratio ( R) test  766 (0.89%) 

Total no. of samples passed the update sample filter 90 (0.10%) 

Maximum. interval between  

successive successful updates (seconds) 

4030 s (1.12 Hours) 

Last successful update received at (Simulation time) 85422 s (23.73 Hours) 

Max. clock difference with DAC model 2.4 ms 
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6.4.2.3 Discussion 

From Figure 24, the slave to the master clock difference is about 2.4 milliseconds with 

AOCM correction applied on the slave clock. The resultant difference increases with time 

due to updating the slave clock with a small saved offset value for a long period of time. 

The AOCM does both training and correction when a sample passes both the ‘R’ test and 

the update sample filter.  Hence, the AOCM correction is applied to the slave clock rate 

in order to compensate the drift of the slave clock, caused by temperature and aging 

effects. The proposed model cannot forecast well due to making correction on the slave 

clock rate while it trains the model. From the statistics provided in Table 9, less than 1% 

sample passed the ‘R’ test. It implies that more than 99% samples are highly asymmetric 

and the slave clock is updated with the saved offset value. Therefore, the difference is 

accumulated over time, which is reflected in Figure 24.  

6.5 Summary 

The test cases in this chapter examine the effects of various parameters on the slave clock 

synchronization accuracy w.r.t the master clock.  The experimental findings are 

summarized as follows: 

 The slave clock accuracy improved 2 times when it is coordinating with two 

master clocks in a network. Having multiple master clocks, the slave clock does 

not need to rely on the saved offset value for a long period time in order to update 

itself. 

 The higher (lower time) the IEEE 1588 synchronization frequency, the higher is 

the slave synchronization accuracy w.r.t the master clock. If the IEEE 1588 
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synchronization frequency is more than 100s, the slave synchronization accuracy 

is severely affected.  

 The more the slave clock rates deviates (either positively or negatively) from the 

master clock, the worse is the slave clock accuracy w.r.t the master clock on 

average. The slave clock synchronization accuracy deteriorates when the slave 

rate deviates (positively or negatively) by more than 1ppm. 

 Varying initial offset values do not affect the slave synchronization accuracy w.r.t 

the master clock. 

 The slave accuracy deteriorates when the temperature variation is large compared 

to the drift. The slave accuracy improved significantly when the slave clock drift 

is the dominant factor, rather than the temperature variations. 

 The proposed model cannot forecast well due to making corrections on the slave 

clock rate while it trains the AOCM model. 

 

 

 

 

 

 

 

 

 

 



 87 

7    Chapter: Conclusions and Future Work 

7.1 Conclusions 

The conclusions of the thesis work are presented as follows: 

 A Delay Asymmetry Correction (DAC) Model is proposed for the clock 

synchronization problem. The proposed work enhances the IEEE 1588 protocol 

by computing the time difference between the master and the slave clock in the 

presence of traffic in a network. The first step of the thesis is to mitigate the 

effects of unpredictable packet delay variations (PDV), which cause asymmetric 

link delays on timing packets between the slave and the master clocks. The next 

step extends to coordinate multiple master clocks through a single slave clock, 

which may be connected through multiple networks. Finally the DAC model 

integrates the AOCM model for compensating both the temperature and ageing 

effects of the oscillator. 

 The proposed solution is evaluated by implementing it in the NS-2 simulator. Test 

cases are also implemented based on an ITU-T document covering various 

network loads and network conditions. The NS-2 results indicate that the 

proposed solution improves the slave accuracy by measuring the correct offset 

value in a slave clock for asymmetric communication link delays.  

 The solution results show that the slave clock is able to achieve high accuracy in 

the presence of various bi-directional traffic loads and network conditions. In the 

case of data centric traffic model, the slave clock synchronization accuracy w.r.t 

the master clock is improved significantly for all the test cases with the DAC 

model applied on the slave clock.  
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 In the case of voice centric traffic model, sometimes the slave accuracy is affected 

severely under high traffic load, particularly for the case of 80% load in the 

forward direction and 20% load in the reverse direction. In general, the key 

problem is the lower amount of bursty traffic (i.e. 15%) in the network. But the 

slave accuracy improved significantly when the amount of bursty traffic is 

increased to 50% of the network load. A similar result is observed with multiple 

master clocks in the network.  

 The solution results also show that the slave clock achieved high synchronization 

accuracy in the presence of network congestions, and temporarily network outage 

for both traffic models. Furthermore, when there is a routing path change due to a 

failure in the network, the solution also improves the accuracy of the slave clock 

with respect to the master clock. Both the ‘R’ test and the update sample filter 

ensure that only “good” offset values under high traffic load are used to update 

the slave clock. 

 When a high percentage of samples are collected in highly delay-asymmetric 

conditions, the saved offset plays a vital role to keep the synchronization accuracy 

high.  

 The slave accuracy is increased by a factor of two when having two master clocks 

in the network. The slave clock received at least one good update from one of 

these master clocks in each synchronization period. 

 The higher (lower time) the IEEE 1588 synchronization frequency, the higher is 

the slave synchronization accuracy w.r.t the master clock.  
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 The more the slave clock rates deviate (either positively or negatively) from the 

master clock, the worse is the slave clock accuracy w.r.t the master clock on 

average.  

 Varying initial offset values does not affect the slave synchronization accuracy 

w.r.t the master clock. 

 The slave accuracy deteriorates when the temperature variation is large compare 

to the drift. The slave accuracy improved significantly when the drift is the 

dominant factor. 

 The proposed solution cannot forecast well when it is integrated with the AOCM 

model due to making corrections on the slave clock rate while it trains the model. 

7.2 Future Work 

Some suggestions are presented here to enhance the thesis work in future. 

 The solution uses a basic IEEE 1588 message exchange structure by incorporating 

two filtering methods to ensure that only good samples are used to update the 

slave clock in order to achieve high synchronization accuracy. One of the major 

limitations of this work exists in the calculation of ‘R’ test. The calculation of ‘R’ 

is an approximation of the undefined asymmetry ratio and subject to significant 

distortion, when the offset is roughly on the same order of magnitude as the one-

way latencies. This issue can be solved by enhancing the IEEE 1588 

synchronization protocol. One suggestion for this is to append additional 

messages for calculating the exact ratio so that the DAC model initializes with 

good sample.  
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 The solution does not perform well when AOCM corrections are applied on the 

slave clock. The problem with the DAC model is that it cannot forecast well when 

correcting the slave clock rate while it trains the model. The forecasting procedure 

is very sensitive and depends on the parameters that are used. This issue can be 

solved by changing the forecasting procedure in the DAC model so that it can 

inter-operate with temperature and aging effects and with the AOCM model as 

well. This can be done by continuously monitoring the calculated offsets and 

computing the correctional rate from the slope of the most recent set of calculated 

offsets. Another solution is to introduce Holt’s linear exponential smoothing 

(LES) technique or autoregressive integrated moving average (ARIMA) methods, 

which are very effective for forecasting based on the recent trend of time series 

data.  
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Appendices 

Appendix A  : NS-2 TCL Examples 

The NS-2 TCL scripts presented in this appendix use a master node n0 connected with a 

slave node n3 with two intermediate nodes n1 and n2, resulting in the 3 hops topology as 

shown in Figure 8. Two traffic sources are also introduced. One of the traffic sources is 

node n4, which sends traffic to node n5 and vice versa. All the clocks used have no initial 

offsets in the rate i.e. initially all tick at the same time as the reference clock (simulation 

time), but they are not drifting at the same rate. Clock m1 is a master clock agent 

connected with node n0 and clock s1 is a slave clock agent connected with node n3. The 

slave clock s1 is drifting 100 ppb faster than the master clock m1. No temperature and 

aging effects are enabled in the clock agents. The detail descriptions of the clock 

parameters can be found in [4]. The traffic profile described in Section 5.3.1.1 is 

implemented in the scripts. Node n4 generates 80% static packet load, which sends traffic 

to node n5 (i.e. Master-to-Slave). Similarly, node n5 generates 20% static packet load, 

which sends traffic to node n4 (Slave-to-Master). 

A.1 NS-2 TCL Script Code for Data Centric Traffic Model 

In this test case, a TCL script for data centric traffic model, which is described in Section 

5.1.1.1, is presented with the static traffic load described in Section 5.3.1.1. 

NS-2 TCL Script 

set ns [new Simulator] 

 

#Open a trace file 

set tracefd [open clktest1d.tr w] 

$ns trace-all $tracefd 

set nf [open clktest1d.nam w] 
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$ns namtrace-all $nf 

set graphData [open graphData.txt w] 

 

#Define a 'finish' procedure 

proc finish {} { 

        global ns graphData nf tracefd         

 $ns flush-trace 

close $nf     

close $tracefd     

close $graphData      

 exit 0 

} 

 

#Create nodes 

set n0 [$ns node] 

set n1 [$ns node] 

set n2 [$ns node] 

set n3 [$ns node] 

set n4 [$ns node] 

set n5 [$ns node] 

 

#Link configurations 

$ns duplex-link  $n0 $n1  1Mb  100ns  DropTail 

$ns duplex-link  $n1 $n2  1Mb  100ns  DropTail 

$ns duplex-link  $n2 $n3  1Mb  100ns  DropTail 

$ns duplex-link  $n1 $n4  1Mb  100ns DropTail 

$ns duplex-link  $n2 $n5  1Mb  100ns  DropTail 

 

#Define a 'timeout' function for the class 'Agent/Clock' 

Agent/Clock instproc timeout {ts rate eff_rate} { 

# NOTE: rate is natural rate of clock and eff_rate is effective rate (after applying RLS 

correction) of the clock 

 global ns graphData  

 $self instvar node_ 

 variable nodeID [$node_ id] 

 puts $graphData "[$node_ id]  $eff_rate $ts [$ns now] "  

} 

 

 

# Generate bursts lasting between 0.1 s to 3 s 

set rng1 [new RNG] 

$rng1 seed [lindex $argv 0] 

set burstDuration [new RandomVariable/Uniform] 

$burstDuration set min_ 0.1 

$burstDuration set max_ 3 

$burstDuration use-rng $rng1 
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# ***** 80% "Static" packet load in the Forward Direction (Master-to-Slave)***** 

 

# 60% of the load based on maximum sized packet (1518 bytes) generated at node 

n4, which sends traffic to node n5  

 

#Create a UDP agent and attach it to node n4 

set udp4a [new Agent/UDP] 

$udp4a set packetSize_ 1518 

$ns attach-agent $n4 $udp4a 

 

# Create a CBR traffic source, which will generate bursty traffic and attach it to udp4a 

set cbr4a [new Application/Traffic/CBR] 

$cbr4a set packetSize_ 1518 

$cbr4a set rate_ 0.96Mb  

$cbr4a attach-agent $udp4a 

 

#Create a Null agent (a traffic sink) and attach it to node n5 

set null5 [new Agent/Null] 

$ns attach-agent $n5 $null5 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp4a $null5 

 

# 30% of the load based on small sized packet (64 bytes) generated at node n4, 

which sends traffic to node n5  

 

#Create a UDP agent and attach it to node n4 

set udp4b [new Agent/UDP] 

$udp4b set packetSize_ 64 

$ns attach-agent $n4 $udp4b 

 

# Create a CBR traffic source and attach it to udp4a 

set cbr4b [new Application/Traffic/CBR] 

$cbr4b set packetSize_ 64 

$cbr4b set rate_ 0.24Mb 

$cbr4b attach-agent $udp4b 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp4b $null5 

 

# 10% of the load based on medium sized packet (576 bytes) generated at node n4, 

which sends traffic to node n5  

 

#Create a UDP agent and attach it to node n4 
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set udp4c [new Agent/UDP] 

$udp4c set packetSize_ 576 

$ns attach-agent $n4 $udp4c 

 

# Create a CBR traffic source and attach it to udp4c 

set cbr4c [new Application/Traffic/CBR] 

$cbr4c set packetSize_ 576 

$cbr4c set rate_ 0.08Mb 

$cbr4c attach-agent $udp4c 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp4c $null5 

 

# ***20% "Static" packet load in the Reverse Direction (Slave-to- Master)**** 

 

# 60% of the load based on maximum sized packet (1518 bytes) generated at node 

n5, which sends traffic to node n4  

 

#Create a UDP agent and attach it to node n5 

set udp5a [new Agent/UDP] 

$udp5a set packetSize_ 1518 

$ns attach-agent $n5 $udp5a 

 

# Create a CBR traffic source, which will generate bursty traffic and attach it to udp5a 

set cbr5a [new Application/Traffic/CBR] 

$cbr5a set packetSize_ 1518 

$cbr5a set rate_ 0.48Mb   

$cbr5a attach-agent $udp5a 

 

#Create a Null agent (a traffic sink) and attach it to node n4 

set null4 [new Agent/Null] 

$ns attach-agent $n4 $null4 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp5a $null4 

 

# 30% of the load based on small sized packet (64 bytes) generated at node n5, 

which sends traffic to node n4  

 

#Create a UDP agent and attach it to node n5 

set udp5b [new Agent/UDP] 

$udp5b set packetSize_ 64 

$ns attach-agent $n5 $udp5b 

 

# Create a CBR traffic source and attach it to udp5b 

set cbr5b [new Application/Traffic/CBR] 
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$cbr5b set packetSize_ 64 

$cbr5b set rate_ 0.06Mb 

$cbr5b attach-agent $udp5b 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp5b $null4 

 

# 10% of the load based on medium sized packet (576 bytes) generated at node n5, 

which sends traffic to node n4  

 

#Create a UDP agent and attach it to node n5 

set udp5c [new Agent/UDP] 

$udp5c set packetSize_ 576 

$ns attach-agent $n5 $udp5c 

 

# Create a CBR traffic source and attach it to udp5c 

set cbr5c [new Application/Traffic/CBR] 

$cbr5c set packetSize_ 576 

$cbr5c set rate_ 0.02Mb 

$cbr5c attach-agent $udp5c 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp5c $null4 

 

#Create master clock agent  

set m1 [new Agent/Clock] 

$m1 set offset 1 

$m1 set rate 1 

$m1 set timeToDisplayInfo 1 

$m1 set masterClock 1 

$m1 set gpsSignal 0 

$m1 set enableRLS 0 

$m1 set enableLockedRLS 0 

$m1 set RLSFreq 0 

$m1 set tempProfileName -1 

$m1 set ageing 0 

$m1 set driftInterval 1 

$m1 set enable1588Logs 1 

$ns attach-agent $n0 $m1 

 

# Create a slave clock agent 

set s1 [new Agent/Clock] 

$s1 set offset 1 

#slave clock rate is 100 ppb (100 ns) faster than the master clock 

$s1 set rate 1.000000100 

$s1 set timeToDisplayInfo 1 
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$s1 set masterClock 0 

$s1 set gpsSignal 0    

$s1 set enableLockedRLS 0  

$s1 set enableRLS 0    

$s1 set RLSFreq 0 

$s1 set tempProfileName -1 

$s1 set driftInterval 1 

$s1 set timeStampReqFreq 1 

$s1 set masterAddr 0  

$s1 set masterPort 0  

$s1 set enable1588Logs 1 

$s1 set enable1588Delays 0 

$ns attach-agent $n3 $s1 

 

#*****Schedule events: Traffic in the Forward Direction (Master-to-Slave)***** 

 

set rng [new RNG] 

$rng seed [lindex $argv 0] 

set u [new RandomVariable/Uniform] 

$u set min_ 0 

$u set max_ 1 

$u use-rng $rng 

 

#Schedule events for bursty traffic as cbr4a agents 

set simTime4a_ 1 

while {$simTime4a_  < 86400.00 } { 

 set burstTime4a_ [$burstDuration value] 

 set startTime [expr [expr ([$u value]) + {$simTime4a_ }]] 

 $ns at  $startTime "$cbr4a start" 

 set simTime4a_ [expr $startTime + $burstTime4a_ ] 

 #puts " CBR Traffic Stops at $simTime4a_" 

 $ns at $simTime4a_ "$cbr4a stop" 

 set simTime4a_ [expr {$simTime4a_ + $burstTime4a_}] 

} 

 

#Schedule events for cbr4b and cbr4c agents will continue until 24 hours 

$ns at [expr [expr ([$u value]) + 1.0]] "$cbr4b start" 

$ns at 86400.00 "$cbr4b stop" 

$ns at [expr [expr ([$u value]) + 1.0]] "$cbr4c start" 

$ns at 86400.00 "$cbr4c stop" 

 

#*****Schedule events: Traffic in the Reverse Direction (Slave-to-master)***** 

#Schedule events for bursty traffic as cbr5a agents 

set simTime5a_ 1 

while {$simTime5a_ < 86400.00 } { 

 set burstTime5a_ [$burstDuration value] 
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 #puts [format " Burst Time at Node n5 is %-4.3f  " $burstTime5a_] 

 set startTime [expr [expr ([$u value]) + {$simTime5a_ }]] 

 $ns at  $startTime "$cbr5a start" 

    set simTime5a_ [expr $startTime + $burstTime5a_ ] 

 $ns at $simTime5a_ "$cbr5a stop" 

 set simTime5a_ [expr {$simTime5a_ + $burstTime5a_}] 

} 

 

#Schedule events for cbr5b and cbr5c agents will continue until 24 hours 

$ns at [expr [expr ([$u value]) + 1.0]] "$cbr5b start" 

$ns at 86400.00 "$cbr5b stop" 

$ns at [expr [expr ([$u value]) + 1.0]] "$cbr5c start" 

$ns at 86400.00 "$cbr5c stop" 

 

#Schedule events for clock agents 

$ns at 1.0 "$m1 start" 

$ns at 1.0 "$s1 start" 

 

$ns at 86401.05 "$m1 stop"   

$ns at 86401.05 "$s1 stop" 

$ns at 86401.1 "finish" 

 

#Run the simulation 

$ns run 

A.2 NS-2 TCL Script Code for Voice Centric Traffic Model 

In this test case, a TCL script for voice centric traffic model, which is described in 

Section 5.1.1.2, is presented with the static traffic load described in Section 5.3.1.1. The 

results of this test case are discussed in Appendix C. 

NS-2 TCL Script 

set ns [new Simulator] 

 

#Open a trace file 

set tracefd [open clktest1v.tr w] 

$ns trace-all $tracefd 

set nf [open clktest1v.nam w] 

$ns namtrace-all $nf 

set graphData [open graphData.txt w] 
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#Define a 'finish' procedure 

proc finish {} { 

        global ns graphData nf tracefd         

 $ns flush-trace 

close $nf     

close $tracefd     

close $graphData      

 #exec nam clktest1v.nam & 

 exit 0 

} 

 

#Create nodes 

set n0 [$ns node] 

set n1 [$ns node] 

set n2 [$ns node] 

set n3 [$ns node] 

set n4 [$ns node] 

set n5 [$ns node] 

 

#Link configurations 

$ns duplex-link  $n0 $n1  1Mb  100ns  DropTail 

$ns duplex-link  $n1 $n2  1Mb  100ns  DropTail 

$ns duplex-link  $n2 $n3  1Mb  100ns  DropTail 

$ns duplex-link  $n1 $n4  1Mb  100ns DropTail 

$ns duplex-link  $n2 $n5  1Mb  100ns  DropTail 

 

#Define a 'timeout' function for the class 'Agent/Clock' 

Agent/Clock instproc timeout {ts rate eff_rate} { 

 global ns graphData  

 $self instvar node_ 

 variable nodeID [$node_ id] 

 puts $graphData "[$node_ id]  $eff_rate $ts [$ns now] "  

} 

 

# Generate bursts lasting between 0.1 s to 3 s 

set rng1 [new RNG] 

$rng1 seed [lindex $argv 0] 

set burstDuration [new RandomVariable/Uniform] 

$burstDuration set min_ 0.1 

$burstDuration set max_ 3 

$burstDuration use-rng $rng1 

 

# ****** 80% traffic load in the forward direction (Master-to-slave) ****** 

 

# 15% of the load based on maximum sized packet (1518 bytes) generated at node 

n4, which sends traffic to node n5  
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#Create a UDP agent and attach it to node n4 

set udp4a [new Agent/UDP] 

$udp4a set packetSize_ 1518 

$ns attach-agent $n4 $udp4a 

 

# Create a CBR traffic source, which will generate bursty traffic and attach it to udp4a 

set cbr4a [new Application/Traffic/CBR] 

$cbr4a set packetSize_ 1518 

$cbr4a set rate_ 0.24Mb  

$cbr4a attach-agent $udp4a 

 

#Create a Null agent (a traffic sink) and attach it to node n5 

set null5 [new Agent/Null] 

$ns attach-agent $n5 $null5 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp4a $null5 

 

# 80% of the load based on minimum sized packet (64 bytes) generated at node n4, 

which sends traffic to node n5  

 

#Create a UDP agent and attach it to node n4 

set udp4b [new Agent/UDP] 

$udp4b set packetSize_ 64 

$ns attach-agent $n4 $udp4b 

 

# Create a CBR traffic source, which will generate bursty traffic and attach it to udp4a 

set cbr4b [new Application/Traffic/CBR] 

$cbr4b set packetSize_ 64 

$cbr4b set rate_ 0.64Mb 

$cbr4b attach-agent $udp4b 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp4b $null5 

 

# 5% of the load based on medium sized packet (576 bytes) generated at node n4, 

which sends traffic to node n5  

 

#Create a UDP agent and attach it to node n4 

set udp4c [new Agent/UDP] 

$udp4c set packetSize_ 576 

$ns attach-agent $n4 $udp4c 

 

# Create a CBR traffic source and attach it to udp4c 

set cbr4c [new Application/Traffic/CBR] 

$cbr4c set packetSize_ 576 
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$cbr4c set rate_ 0.04Mb 

$cbr4c attach-agent $udp4c 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp4c $null5 

 

# ***20% "Static" packet load in the reverse direction ( Slave-to-Master)*** 

 

# 15% of the load based on maximum sized packet (1518 bytes) generated at node 

n5, which sends traffic to node n4  

 

#Create a UDP agent and attach it to node n5 

set udp5a [new Agent/UDP] 

$udp5a set packetSize_ 1518 

$ns attach-agent $n5 $udp5a 

 

# Create a CBR traffic source, which will generate bursty traffic and attach it to udp5a 

set cbr5a [new Application/Traffic/CBR] 

$cbr5a set packetSize_ 1518 

$cbr5a set rate_ 0.06Mb   

$cbr5a attach-agent $udp5a 

 

#Create a Null agent (a traffic sink) and attach it to node n4 

set null4 [new Agent/Null] 

$ns attach-agent $n4 $null4 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp5a $null4 

 

# 80% of the load based on minimum sized packet (64 bytes) generated at node n5, 

which sends traffic to node n4  

 

#Create a UDP agent and attach it to node n5 

set udp5b [new Agent/UDP] 

$udp5b set packetSize_ 64 

$ns attach-agent $n5 $udp5b 

 

# Create a CBR traffic source and attach it to udp5b 

set cbr5b [new Application/Traffic/CBR] 

$cbr5b set packetSize_ 64 

$cbr5b set rate_ 0.16Mb 

$cbr5b attach-agent $udp5b 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp5b $null4 
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# 5% of the load based on medium sized packet (576 bytes) generated at node n5, 

which sends traffic to node n4  

 

#Create a UDP agent and attach it to node n5 

set udp5c [new Agent/UDP] 

$udp5c set packetSize_ 576 

$ns attach-agent $n5 $udp5c 

 

# Create a CBR traffic source and attach it to udp5c 

set cbr5c [new Application/Traffic/CBR] 

$cbr5c set packetSize_ 576 

$cbr5c set rate_ 0.01Mb 

$cbr5c attach-agent $udp5c 

 

#Connect the traffic source with the traffic sink 

$ns connect $udp5c $null4 

 

#Create master clock agent  

set m1 [new Agent/Clock] 

$m1 set offset 1 

$m1 set rate 1 

$m1 set timeToDisplayInfo 1 

$m1 set masterClock 1 

$m1 set gpsSignal 0 

$m1 set enableRLS 0 

$m1 set enableLockedRLS 0 

$m1 set RLSFreq 1 

$m1 set tempProfileName -1 

$m1 set ageing 0 

$m1 set driftInterval 1 

$m1 set enable1588Logs 1 

$ns attach-agent $n0 $m1 

 

#  Create slave clock agent 

set s1 [new Agent/Clock] 

$s1 set offset 1 

#slave clock rate is drifting100 ppb (100 ns) faster than the master clock 

$s1 set rate 1.000000100 

$s1 set timeToDisplayInfo 1 

$s1 set masterClock 0 

$s1 set gpsSignal 0    

$s1 set enableLockedRLS 0  

$s1 set enableRLS 0    

$s1 set RLSFreq 0 

$s1 set tempProfileName -1 

$s1 set driftInterval 1 
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$s1 set timeStampReqFreq 1 

$s1 set masterAddr 0  

$s1 set masterPort 0  

$s1 set enable1588Logs 1 

$s1 set enable1588Delays 0 

$ns attach-agent $n3 $s1 

 

#*****Schedule events: Traffic in the Forward Direction (Master-to-Slave)***** 

set rng [new RNG] 

$rng seed [lindex $argv 0] 

set u [new RandomVariable/Uniform] 

$u set min_ 0 

$u set max_ 1 

$u use-rng $rng 

 

#Schedule events for bursty traffic as cbr4a agents 

set simTime4a_ 1 

while {$simTime4a_  < 86400.00 } { 

 set burstTime4a_ [$burstDuration value] 

 set startTime [expr [expr ([$u value]) + {$simTime4a_ }]] 

 $ns at  $startTime "$cbr4a start" 

 set simTime4a_ [expr $startTime + $burstTime4a_ ] 

 #puts " CBR Traffic Stops at $simTime4a_" 

 $ns at $simTime4a_ "$cbr4a stop" 

 set simTime4a_ [expr {$simTime4a_ + $burstTime4a_}] 

} 

 

#Schedule events for cbr4b and cbr4c agents will continue until 24 hours 

$ns at [expr [expr ([$u value]) + 1.0]] "$cbr4b start" 

$ns at 86400.00 "$cbr4b stop" 

$ns at [expr [expr ([$u value]) + 1.0]] "$cbr4c start" 

$ns at 86400.00 "$cbr4c stop" 

 

#*****Schedule events: Traffic in the Reverse Direction (Slave-to-master)***** 

 

#Schedule events for bursty traffic as cbr5a agents 

set simTime5a_ 1 

while {$simTime5a_ < 86400.00 } { 

 set burstTime5a_ [$burstDuration value] 

 #puts [format " Burst Time at Node n5 is %-4.3f  " $burstTime5a_] 

 set startTime [expr [expr ([$u value]) + {$simTime5a_ }]] 

 $ns at  $startTime "$cbr5a start" 

     set simTime5a_ [expr $startTime + $burstTime5a_ ] 

 $ns at $simTime5a_ "$cbr5a stop" 

 set simTime5a_ [expr {$simTime5a_ + $burstTime5a_}] 

} 
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#Schedule events for cbr5b and cbr5c agents will continue until 24 hours 

$ns at [expr [expr ([$u value]) + 1.0]] "$cbr5b start" 

$ns at 86400.00 "$cbr5b stop" 

$ns at [expr [expr ([$u value]) + 1.0]] "$cbr5c start" 

$ns at 86400.00 "$cbr5c stop" 

 

#Schedule events for clock agents 

$ns at 1.0 "$m1 start" 

$ns at 1.0 "$s1 start" 

$ns at 86401.05 "$m1 stop"   

$ns at 86401.05 "$s1 stop" 

$ns at 86401.1 "finish" 

 

#Run the simulation 

$ns run 
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Appendix B  : Additional Test Cases Results for Data Centric Traffic Model 

In this appendix, additional test cases results with data centric traffic model, which are 

not covered in Chapter 5, are presented. 

B.1 Slave Clock Synchronization with the Slow Change in Network Load over an 

Extremely Long Timescale 

Description 

In this test case, we demonstrate a slow change in network load over an extremely long 

timescale between the master and the slave clock. Using the traffic model described in 

Section 5.1.1.1, the load profile is depicted in Figure 25. The traffic load is introduced at 

a simulation time of 1 second and stopping at a simulation time of 24 hours. Here in the 

forward direction (master-to-slave), the network load is smoothly changing from 20% to 

80% with 1% increments every 12 minutes and back over a 24 hours period. In the 

reverse direction, the network load is smoothly changing from 10% to 55% with 1% 

increments every 16 minutes and back over a 24 hours period. The test case examines the 

effects of slow changes in network load over a long period of time on the slave clock 

synchronization with a DAC model enabled on the slave clock. 
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Figure 25: Load Profile Demonstrating Slow Changes in Network Load over an Extremely Long 

Time Scale [3] 

Results 

Figure 26 shows the slave clock synchronization accuracy with respect to the master 

clock with the DAC model applied on the slave clock following the load profile described 

in Appendix B.1.1. Statistical data are provided in Table 10. 
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Figure 26: Slave Clock Synchronization with Slow Changes in Network Load - using the DAC Model 

Table 10: Statistical Data for Slow Changes in Network Load 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  42965 (49.73%) 

Avg. no. of samples passed the update sample filter 42308 (48.97%) 

Max. of the max. interval between  

successive successful updates (seconds) 

2367 s (0.66 hours) 

Avg. of the avg. clock accuracy 193 ns 

Max. Of the max. clock difference (ns) with DAC model 12.4 μs 
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Discussion 

From Figure 26, the maximum of the maximum clock difference between the slave clock 

and the master clock is 12.4 μs with the slow changes in the network load. The resultant 

clock difference is bounded within 100 ns until 9 hours of the simulation time. At 9 hours 

of the simulation time, the slave clock is under-corrected with a relatively small saved 

offset value for a long period of time. Hence, the clock difference is accumulated over 

time and increased to about 1.8 μs. A similar effect is observed at 12.3 hours of the 

simulation time. The synchronization packets experienced highly asymmetric latencies 

due to 80% load in the forward direction and 55% load in the reverse direction. Hence, 

the slave clock is under-corrected with the saved offset value for a long period of time. 

As a result, the clock difference is accumulated over time and increased to about 12.4 μs. 

This effect continues until 14 hours of the simulation time. As soon as the slave clock is 

updated with a calculated offset value that passed both the filters, the clock difference 

reduced to 100 ns and continues until end of the simulation time. From the statistics 

provided in Table 10, about 50% samples passed the ‘R’ test and about 49% samples are 

used directly to update the slave clock. In addition, the average of the average slave 

accuracy is about 193 ns. It indicated that the slave clock achieved high accuracy with the 

slow change in the network load over an extremely long period of time scale. 

B.2 Slave Clock Synchronization with the Temporary Network Outages and 

Restoration 

Description 

In this test case, we demonstrate a temporary network outage and restoration between the 

slave and the master clock. Using the traffic model described in Section 5.1.1.1, the 
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traffic load is introduced at a simulation time of 1 second and stopped at a simulation 

time of 24 hours. Here 40% of network load is introduced in the forward direction 

(master-to-slave) and 30% load in the reverse direction (slave-to-master). It also 

demonstrates temporary network outages for 100 seconds, where the slave clock is 

disconnected from the master clock. Network connection is removed at time 12 hours and 

continued until 12.028 hours of the simulation time, and then the network connection is 

restored. The test case examines the ability of the slave clock to survive network outage 

and recover on restoration. 

Results 

Figure 27 shows the slave clock synchronization accuracy with respect to the master 

clock with the DAC model applied on the slave clock. Statistical data are provided in 

Table 11. 

 

Figure 27: Slave Clock Synchronization with the Temporary Network Outage and Restoration 
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Table 11: Statistical Data for Temporary Network Outage and Restoration 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  40192 (46.52%) 

Avg. no. of samples passed the update sample filter 39441(45.65%) 

Max. of the max. interval between  

successive successful updates (seconds) 

119 s 

Avg. of the avg. clock accuracy 99.70 ns 

Max. Of the max. clock difference (ns) with DAC model 100 ns 

 

Discussion 

From Figure 27, the maximum of the maximum clock difference between the slave and 

the master clock is about 100 ns. The resultant clock difference implies that the slave 

clock achieved high accuracy w.r.t the master clock with temporary network outage and 

restoration. The slave clock is temporarily disconnected from the master clock for 100 s, 

starts at a simulation time of 12 hours and continues until 12.028 hours. Hence, the slave 

clock did not receive any updates from the master clock during that period of time, and 

the slave clock is updated with the saved offset value while it was disconnected. 

Therefore, the slave accuracy remains high w.r.t the master clock until the end of the 

simulation time. From the statistics provided in Table 11, about 47% samples passed the 

‘R’ test and about 46% samples are used directly to update the slave clock. In addition, 

the maximum of the maximum interval between successive successful update is 119 s. It 

reflects that the slave clock was disconnected from the master clock for 100 seconds and 

updated with the saved offset value during that period of time. Moreover, the average of 
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the average slave clock accuracy is about 99.70 ns. It indicates that the slave accuracy 

remains high w.r.t the master clock until the end of the simulation time 

B.3 Slave Clock Synchronization with the Temporary Network Congestion and 

Restoration 

Description 

In this test case, we demonstrate temporary network congestion and restoration between 

the slave and the master clock. Using the traffic model described in Section 5.1.1.1, the 

traffic load is introduced at a simulation time of 1 second and stopped at a simulation 

time of 24 hours. Here 40% of network load is introduced in the forward direction 

(master-to-slave) and 30% load in the reverse direction (slave-to-master). At 7 hours of 

the simulation time, network load is increased to 100% in both directions for 100 s, then 

restored. The test case examines the ability of the slave clock to survive temporary 

congestion in a packet network. 

Results 

Figure 28 shows the slave clock difference with respect to the master clock with the DAC 

model applied on the slave clock. Statistical data are provided in Table 12. 
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Figure 28: Slave Clock Synchronization with the Temporary Network Congestion and Restoration 

Table 12: Statistical Data for Temporary Network Congestion and Restoration 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  41184(46.67%) 

Avg. no. of samples passed the update sample filter 39647(45.89%) 

Max. of the max. interval between  

successive successful updates (seconds) 

22 s 

Avg. of the avg. clock accuracy 99.70 ns 

Max. Of the max. clock difference (ns) with DAC model 127 ns 
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Discussion 

From Figure 28, the maximum of the maximum clock difference between the slave and 

the master clock is about 127 ns. The resultant clock difference implies that the slave 

accuracy w.r.t the master clock is high with temporary network congestion and recovers 

on restoration. The clock difference is bounded to 100 ns until 14.75 hours of the 

simulation time. At time 14.75 hours of the simulation time, the clock packets 

experienced highly asymmetric latencies and the slave clock is updated with a small 

saved offset value for a long period of time. Thus, the difference between the anticipated 

offset value and the saved offset value is accumulated over time and is increased to about 

127 ns. A similar effect is observed at time 17 hours of the simulation time. From the 

statistics provided in Table 12, about 47% samples passed the ‘R’ test and about 46% 

samples are used to update the slave clock. In addition, the maximum of the maximum 

interval between successive successful update is 22 s and the average of the average slave 

accuracy is about 99.7 ns. It is evident that the slave clock is updated frequently with the 

calculated offset, which passed both the filters and hence, the slave clock is maintaining 

high accuracy w.r.t the master clock. 

B.4 Slave Clock Synchronization - Re-route Network Traffic to Bypass One 

Switch 

Description 

In this test case, we demonstrate re-routing traffic (in both directions) to bypass one 

switch between the slave and the master clock. Using the traffic model described in 

Section 5.1.1.1, the traffic load is introduced at a simulation time of 1 second and stopped 

at a simulation time of 24 hours. Here 40% of the network load is introduced in the 
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forward direction (master-to-slave) and 30% load in the reverse direction (slave-to-

master). Network traffic is re-routed for 5 minutes to bypass one switch, starting at 10 

hours of the simulation time and continues until 10.083 hours, and then restored to the 

original path. The test case examines the effects of re-routing network traffic to bypass 

one switch, which causes a step change in the packet network delay.  

The network topology shown in Figure 29 is used to evaluate the performance of the 

slave clock accuracy w.r.t the master clock.  

 

Figure 29: Network Topology for Re-routing Traffic to Bypass One Switch 

The network topology consists of a master node (n0) connected to a slave node (n4) with 

three intermediate nodes n1, n2, and n3. Two traffic sources are introduced. One of the 

traffic sources is node n5, which sends traffic to node n6. Another traffic source is node 

n6, with traffic destined to node n5. By default, network traffic follows the route n5 → 

n1→ n2 → n3 → n6 and vice versa. At 10 hours of the simulation time, network traffic is 

re-routed from n5 → n1→ n7 → n8 → n3 → n6 and vice versa for 5 minutes and then 

restored to the original path. The parameters mentioned in the simulation set up section 
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(Section 5.1) are used in this test case. In addition, Distance Vector (DV) routing protocol 

is used for dynamically re-routing network traffic. 

Results 

Figure 30 shows the slave clock synchronization accuracy with respect to the master 

clock with the DAC model applied on the slave clock. Statistical data are provided in 

Table 13. 

 

Figure 30: Slave Clock Synchronization- Re-route Network Traffic to Bypass One Switch 
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Table 13: Statistical Data for Re-routing Network Traffic to Bypass One Switch 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  24321 (28.15%)  

Avg. no. of samples passed the update sample filter 21886 (25.33%) 

Max. of the max. interval between  

successive successful updates (seconds) 

41s 

Avg. of the avg. clock accuracy 99.95 ns 

Max. Of the max. clock difference (ns) with DAC model 100 ns 

 

Discussion 

From Figure 30, the maximum of the maximum clock difference between the slave and 

the master clock is 100 ns. The resultant clock difference implies that the slave accuracy 

w.r.t the master is high with re-routing network traffic to bypass one switch. From the 

statistics provided in Table 13, about 28% samples passed the ‘R’ test and about 25% 

samples are used directly to update the slave clock. In addition, the maximum interval 

between successive successful updates is 41 seconds. It indicates that the slave clock is 

updated frequently with the calculated offset value. Moreover, the average of the slave 

accuracy is 99.55 ns. It implies that the saved offset value is very close to the anticipated 

offset value. As a result, the slave accuracy remains high until end of the simulation time. 
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B.5 Slave Clock Synchronization - Re-route Network Traffic to Bypass Three 

Switches 

Description 

In this test case, we demonstrate re-routing traffic (in both directions) to bypass three 

switches between the slave and the master clock. Using the traffic model described in 

Section 5.1.1.1, the traffic load described in the previous Appendix B.4 is introduced at a 

simulation time of 1 second and stopped at a simulation time of 24 hours. The test case 

examines the effects of re-routing network traffic to bypass three switches, which causes 

a step change in the packet network delay.  

The network topology shown in Figure 31 is used to evaluate the performance of the 

slave clock accuracy w.r.t the master clock.  

 

Figure 31: Network Topology for Re-routing Traffic to Bypass Three Switches 

The network topology consists of a master node (n0) connected to a slave node (n6) with 

five intermediate nodes n1, n2, n3, n4, and n5. Two traffic sources are also introduced. 

One of the traffic sources is node n7, which sends traffic to node n8. Another traffic 
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source is node n8, with traffic destined to node n7. By default, network traffic follows the 

route n7 → n1→ n2 → n3 → n4 →n5 → n6 and vice versa. At 10 hours of the 

simulation time, network traffic is re-routed from n7 → n1→ n9 → n10 → n11→ n12 → 

n5 → n6 and vice versa for 5 minutes and then restored to the original path. The 

parameters mentioned in the simulation set up section (Section 5.1) are used in this test 

case. In addition, Distance Vector (DV) routing protocol is used for dynamically re-

routing network traffic. 

Results 

Figure 32 shows the slave clock synchronization accuracy with respect to the master 

clock with the DAC model applied on the slave clock. Statistical data are provided in 

Table 14. 

 

Figure 32: Slave Clock Synchronization- Re-route Network Traffic to Bypass Three Switches 
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Table 14: Statistical Data for Re-routing Network Traffic to Bypass Three Switches 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  24549 (28.41%)  

Avg. no. of samples passed the update sample filter 15657 (18.12%) 

Max. of the max. interval between  

successive successful updates (seconds) 

49s 

Avg. of the avg. clock accuracy 99.65 ns 

Max. Of the max. clock difference (ns) with DAC model 200 ns 

 

Discussion 

From Figure 32, the maximum of the maximum clock difference is about 200 ns. The 

slave clock accuracy is increased to 200 ns as it is updated with a saved offset value, 

while the network traffic is re-routed through a new link. The slave clock accuracy is 

bounded within 100 ns before changing the routing path. When the original path (i.e. n7 

→ n1→ n2 → n3 → n4 → n5 →  n6 and vice versa) is disconnected due to the failures in 

the network, DV routing protocol takes some time to calculate and set up a new path. 

Hence, the clock packets experienced highly asymmetric delays and saved offset values 

are used to update the slave clock. Thus, the difference between the anticipated offset 

value and the saved offset value is accumulated over time and increased to 200 ns. As 

soon as the slave clock is updated with the calculated offset value which passed both the 

filters, the clock difference is reduced to 100 ns. At 14 hours of the simulation time, the 

slave clock is updated with a relatively small saved offset value for a long period of time, 

the clock difference increased to about 130 ns. From the statistics provided in Table 14, 

about 28% samples passed the ‘R’ test and about 18% samples are used directly to update 
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the slave clock. In addition, the average of the average slave accuracy is 99.65 ns, which 

indicates that the slave clock achieved high accuracy with re-routing network traffic to 

bypass three switches. The maximum of the maximum interval between successive 

successful update is 41 s, which reflects that the slave clock is updated frequently. 
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Appendix C  : Test Cases Results with Voice Centric Traffic Model  

In this appendix, test cases with voice centric traffic model, which is described in Section 

5.1.1.2, are presented. The network topology shown in Figure 8 is used to evaluate the 

performance of the slave clock, unless a different topology is specified in a test case. 

C.1  Slave Clock Synchronization with Static Packet Load for Voice Centric 

Traffic Model 

Description 

In this test case, the first test case with a static packet load described in Section 5.3.1.1 is 

repeated using the voice centric traffic model. The performance of the slave clock 

accuracy with respect to the master clock is evaluated with static network load in both 

directions.  

Results 

Figure 33 shows the slave clock synchronization accuracy with respect to the master 

clock when a static packet load is introduced between the slave and the master clock with 

DAC model applied on the slave clock. Statistical data are provided in Table 15. 
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Figure 33: Slave Clock Synchronization with Static Packet Load-using Voice Centric Traffic Model 

Table 15: Statistical Data for Static Packet Load – using Voice Centric Traffic Model 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  21427 (24.80%) 

Avg. no. of samples passed the update sample filter 13180 (15.25%) 

Max. of the max. interval between  

successive successful updates (seconds) 

6463 s 

Avg. of the avg. clock accuracy 10 μs 

Max. Of the max. clock difference (ns) with DAC model 8.8 s 
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Discussion 

From Figure 33, the maximum of the maximum clock difference between the slave and 

the master clock is about 8.8 seconds. The clock difference is increased to 8.8 seconds 

because the algorithm initializes the DAC model with a very large offset value (i.e. 97.7 

μs), compared to the anticipated offset value (i.e. 100 ns). Hence, the calculated saved 

offset is 97.7 μs as well. Afterward, none of the samples passed both tests. Hence the 

slave clock is updated with the saved offset value and the calculation of ‘R’ is distorted at 

some point. The calculation of ‘R’ is subject to significant distortion when the offset is 

roughly on the same order of magnitude as the one-way latency because ‘R’ is an 

approximation of undefined asymmetry ratio. In this situation, none of the samples pass 

the ‘R’ test even if a good sample appears after a long interval. It is worth mentioning 

that the slave accuracy deteriorated due to having less bursty traffic in the voice centric 

traffic model (i.e. 15%), compared to the data centric traffic model (i.e. 60%) described 

in Section 5.1.1.1. In addition, the resultant difference is the worst case scenario, which 

does not happen all the time. We are collecting the data as the maximum of the maximum 

clock difference in each synchronization window for 50 simulations run, so the maximum 

of the maximum value appeared in Figure 33. It has been observed that the DAC model is 

initialized with large offset value for 2 simulations runs out of the 50 runs only. In 

another runs, none of the offset passed the ‘R’ test and the slave is updated with default 

offset value (i.e. 0). Therefore, the accumulated clock difference is 8.6 milliseconds. The 

remaining 46 simulations run are as expected. About 25% samples passed the ‘R’ test and 

about 15% samples are used directly to update the slave clock, shown in Table 15. As a 

result, the average of the average slave accuracy is 10 μs.  An almost similar result is 
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observed for the test case with sudden large and persistent changes in network load 

described in Section 5.3.3.1 using the voice centric traffic profile. We believe that the 

DAC model will perform better if the amount of bursty traffic is relatively high. Thus, an 

additional traffic profile is presented in Appendix D, where various amounts of bursty 

traffic will be introduced to determine the minimum percentage of bursty traffic through 

which the slave clock is able maintain the high accuracy. Another solution is to introduce 

multiple master clocks. In this case, the slave clock may receive at least one good sample 

from one of these master clocks in order to update the slave clock. We will repeat this test 

case with multiple master clocks and with an additional traffic model for evaluating the 

slave synchronization accuracy, presented in Appendix C.5 and Appendix D respectively.  

C.2 Slave Clock Synchronization with the Slow Change in Network Load for 

Voice Centric Traffic Model 

Description 

In this test case, slow change in network load over an extremely long timescale as 

described in Appendix B.1 is repeated considering the voice centric traffic model. The 

performance of the slave clock accuracy with respect to the master clock is evaluated 

with a slow change in network load in both directions. 

Results 

Figure 34 shows the slave clock synchronization accuracy with respect to the master 

clock, when a slow change in network load is introduced between the slave and the 

master clock with DAC model applied on the slave clock. Statistical data are provided in 

Table 16. 
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Figure 34: Slave Clock Synchronization with Slow Changes in Network Load -using Voice Centric 

Traffic Model 

Table 16: Statistical Data for Slow Changes in Network Load – using Voice Centric Traffic Model 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  1773 (2.05%) 

Avg. no. of samples passed the update sample filter 1672 (1.94%) 

Max. of the max. interval between  

successive successful updates (seconds) 

15900 s (4.42 hours) 

Avg. of the avg. clock accuracy 25 μs 

Max. Of the max. clock difference (ns) with DAC model 244 μs 
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Discussion 

From Figure 34, the maximum of the maximum clock difference between the slave clock 

and the master clock is about 244 μs. The resultant difference implies that the slave clock 

is updated with a relatively small saved offset value for a long period of time. At the very 

beginning of the simulation, the slave clock is updated with the calculated offset values 

when we have a 20% load in the forward direction and 10% load in the reverse direction. 

As the network load is increased by 1% in both directions, fewer samples passed the ‘R’ 

test. So, the saved offset is used to update the slave clock. Hence the difference between 

the saved offset value and the anticipated offset value is accumulated over time. The 

slave clock accuracy further deteriorated and could not recover when the synchronization 

packets experienced highly asymmetric latencies due to 80% load in the forward 

direction and 55% load in the reverse direction. Similar to the previous test case, the 

resultant clock difference is the worst result out of 50 simulations run. However, from the 

statistics provided in Table 16, about 2% samples passed the ‘R’ test and less than 2% 

samples passed the 2
nd

 stage filter. It is evident that the DAC model relies on the saved 

offset value for a long period of time since about 98% samples are highly asymmetric. 

Therefore, the average of the average slave clock accuracy is 25 μs.  

C.3 Slave Clock Synchronization with the Temporary Network Outages and 

Restoration using Voice Centric Traffic Model 

Description 

In this test case, the test case with temporary network outage and restoration described in 

Appendix B.2 is repeated considering the voice centric traffic model. The performance of 
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the slave clock accuracy with respect to the master clock is evaluated with temporary 

network outage and restoration. 

Results 

Figure 35 shows the slave clock synchronization accuracy with respect to the master 

clock, when temporary network outage and restoration is introduced between the slave 

and the master clock with DAC model applied on the slave clock. Statistical data are 

provided in Table 17. 

 

Figure 35: Slave Clock Synchronization with Temporary Network Outage and Restoration - using 

Voice Centric Traffic Model 
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Table 17: Statistical Data for Temporary Network Outage and Restoration – using Voice Centric 

Traffic Model 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  40736 (47.15%) 

Avg. no. of samples passed the update sample filter 39342 (45.54%) 

Max. of the max. interval between  

successive successful updates (seconds) 

187 s 

Avg. of the avg. clock accuracy 101 ns 

Max. Of the max. clock difference (ns) with DAC model 1.06 μs 

 

Discussion 

From Figure 35, the maximum of the maximum clock difference between the slave and 

the master clock is about 1 μs. The resultant difference is increased to 1 μs due to 

updating the slave clock with a relatively small offset value for a long period of time. As 

a result, the difference accumulates over time. The slave accuracy is bounded within 100 

ns until 3 hours of the simulation time. At 3 hours of the simulation time, synchronization 

packets experienced highly asymmetric latencies and the saved offset value is used for a 

long period of time for updating the slave clock. Thus, the accumulated clock difference 

is 450 ns. A similar effect is observed at 7 hours, 8 hours, 9 hours, 15 hours, 21 hours, 

and 23 hours of the simulation time. It should be noted that these effects appeared from 

different simulations runs. In all of these cases, the slave clock is recovered as soon as it 

is updated with the calculated offset, which passed both the filters. From the statistics 

provided in Table 17, about 47% samples passed the ‘R’ test and about 45% samples 

passed the update sample filter. In addition, the average of the average slave accuracy is 
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101 ns. It indicates that the slave clock achieved high accuracy when it did not receive 

synchronization updates from the master clock due to temporary network outage. The 

maximum of the interval between successive successful update is 187 seconds. It implies 

that the slave clock is updated frequently. 

C.4 Slave Clock Synchronization with Temporary Network Congestion and 

Restoration using Voice Centric Traffic Model 

Description 

In this test case, the test case with temporary network congestion and restoration 

described in Appendix B.3 is repeated considering the voice centric traffic model. The 

performance of the slave clock accuracy with respect to the master clock is evaluated 

with temporary network congestion and restoration. 

Results 

Figure 36 shows the slave clock synchronization accuracy with respect to the master 

clock, when temporary network congestion and restoration is introduced between the 

slave and the master clock with DAC model applied on the slave clock. Statistical data 

are provided in Table 18. 
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Figure 36: Slave Clock Synchronization with Temporary Network Congestion and Restoration - 

using Voice Centric Traffic Model 

Table 18: Statistical Data for Temporary Network Congestion and Restoration – using Voice Centric 

Traffic Model 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  36040.1 (41.7%) 

Avg. no. of samples passed the update sample filter 34120 (39.5%) 

Max. of the max. interval between  

successive successful updates (seconds) 

12455 s (3.46 hours) 

Avg. of the avg. clock accuracy 146.57 ns 

Max. Of the max. clock difference (ns) with DAC model 13.05 μs 
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Discussion 

From Figure 36, the maximum of the maximum clock difference between the slave and 

the master clock is about 13 μs. The resultant difference is increased to 13 μs due to 

updating the slave clock with a relatively small offset value for a long period of time. The 

clock difference is bounded within 100 ns until 7 hours of the simulation time with 40% 

network load in the forward direction and 30% load in the reverse direction. At 7 hours of 

the simulation time, when asymmetric traffic load (e.g. 40% forward, 30% reverse) is 

increased to 100% for 5 minutes in both directions to cause temporary network 

congestion, the clock difference is increased to 3 μs, much lower compare to the 

maximum of the maximum value, 13 μs. The rationale behind this is that the asymmetric 

latencies are relatively reduced during that period of time when the network experiences 

100% load in both directions. From the statistics provided in Table 18, about 41% 

samples passed the ‘R’ test and about 39% samples passed the update sample filter. In 

addition, the average of the average slave accuracy is 147 ns. It indicates that the slave 

clock achieved high accuracy with temporary congestion in the network. The maximum 

of the interval between successive successful update is about 3.46 hours. It implies that 

few samples are used directly to update the slave clock for one of the simulation runs.  

C.5 Slave Clock Synchronization with Re-routing Network Traffic to Bypass One 

Switch using Voice Centric Traffic Model 

Description 

In this test case, the test case with re-routing network traffic to bypass one switch 

described in Appendix B.4 is repeated considering the voice centric traffic model. The 



 131 

network topology shown in Figure 29 is used to evaluate the performance of the slave 

clock accuracy with respect to the master clock.  

Results 

Figure 37 shows the slave clock synchronization accuracy w.r.t the master clock, when 

re-routing network traffic to bypass one switch is introduced between the slave and the 

master clock with DAC model applied on the slave clock. Statistical data are provided in 

Table 19. 

 

Figure 37: Slave Clock Synchronization with Re-routing Network Traffic to Bypass One Switch – 

using Voice Centric Traffic Model 
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Table 19: Statistical Data for Re-routing Network Traffic to Bypass One Switch – using Voice 

Centric Traffic Model 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  24630 (28.5%) 

Avg. no. of samples passed the update sample filter 23460 (27.2%) 

Max. of the max. interval between  

successive successful updates (seconds) 

511 s 

Avg. of the avg. clock accuracy 240 ns 

Max. Of the max. clock difference (ns) with DAC model 17.6 μs 

 

Discussion 

From Figure 37, the maximum of the maximum clock difference between the slave and 

the master is about 18 μs. The resultant clock difference is increased to 18 μs due to 

updating the slave clock with a relatively small saved offset value for an extended period 

of time. At 10 hours of the simulation time, network traffic is re-routed for 5 minutes. 

Hence the clock packets experienced severe delays due to changing and setting up a new 

routing path. From the statistics provided in Table 19, about 28% samples passed the ‘R’ 

test and about 27% samples are used directly to update the slave clock. It has been 

observed that a large percentage of samples (i.e. about 42%) passed the ‘R’ test before re-

directing network traffic and few amount of samples passed the ‘R’ test after changing 

the routing path. As a result, the slave clock is updated with the saved offset value and 

the difference between the anticipated offset value and the saved offset value is 

accumulated over time. The average of the average slave accuracy is 240 ns, which 

reflects that the slave clock is able to maintain high accuracy when network traffic is re-
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routed to bypass one switch. An almost similar result is observed when network traffic is 

re-routed bypassing three switches. 

C.6 Slave Clock Synchronization with Static Packet Load using Multiple Master 

Clocks for Voice Centric Traffic Model 

From Appendix C.1.3, we observed that the slave accuracy deteriorates with high traffic 

load using the voice centric traffic model, particularly when the network experiences 

80% static traffic in the forward direction and 20% static traffic in the reverse direction. 

So, we will examine the performance of the slave clock having multiple master clocks 

with high traffic load in the network. 

Description 

In this test case, the test case with static packet load described in Section 5.3.1.1 is 

repeated using the voice centric traffic model. The network topology shown in Figure 15 

is used to evaluate the performance of the slave clock accuracy with respect to multiple 

master clocks. The parameters mentioned in the simulation set up section (Section 5.1) 

are used in this test case, except the IEEE 1588 synchronization frequency. 2 seconds 

IEEE 1588 synchronization frequency is considered in this test case. Both the master 

clocks initiate the IEEE 1588 message exchange according to the Equation 11, mentioned 

in Section 4.3. The data are collected as the maximum of the maximum values of the 

slave clock accuracy with respect to each master clock. 

Results 

Figure 38 shows the slave clock synchronization accuracy w.r.t both the master clocks, 

when the network has an 80% static packet load in the forward direction and a 20% load 
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in the reverse direction. The DAC model is applied on the slave clock. Statistical data are 

provided in Table 20. 

 

Figure 38: Slave Clock Synchronization with Static Packet Load w.r.t both the Master Clocks -using 

Voice Centric Traffic Model 
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Table 20: Statistical Data for Static Packet Load using Multiple Master Clocks (Voice Centric 

Traffic Model) 

 Master 0 Master 1 

Total no. of samples per run 43200 43200 

Average no. of samples passed the ratio ( R) test  43200 (100%) 7961 (18.43%) 

Average no. of samples passed the update sample filter 43158 (99.90%) 7620 (17.64%) 

Max. of the max.  interval between successive 

successful updates (seconds) 

2 s 338 s 

Avg. of the avg. clock accuracy 100 ns 102 ns 

Max. of the max. clock difference (ns) with DAC 

model 

100 ns 3.62 μs 

 

Discussion 

From Figure 38, the maximum of the maximum slave clock accuracy w.r.t both the 

master clocks is about 3.6 μs. The resultant clock difference is increased to 3.6 μs 

because of initializing the DAC model after a long period of time, which is referred as 

stabilization period. Hence the slave clock is updated with the default saved offset value 

(i.e. 0) and the difference is accumulated over time according to the slave clock drifting 

rate. The slave accuracy is bounded within 100 ns until 5.5 hours of the simulation time. 

At time 5.5 hours, the synchronization packets experienced highly asymmetric delays and 

the slave clock is updated with the saved offset value for a long period of time. Thus the 

slave clock difference w.r.t the master clocks is increased to 500 ns. A similar effect is 

observed at 21 hours, 22 hours and 23 hours of the simulation time. From the statistics 

provided in Table 20, about 100% samples passed both the ‘R’ test and the update sample 



 136 

filter w.r.t the first master clock (i.e. master 0). About 18.5% samples passed the ‘R’ test 

and about 17.5% samples are used directly to update the slave clock w.r.t the second 

master clock (i.e. master 1). Hence it is evident that the slave clock received at least one 

good sample from one of these master clocks (here first master clock) within the defined 

update interval in order to adjust the slave clock correctly. In addition, the maximum 

intervals between successive successful updates are 2 s w.r.t the master-0 and 338 s w.r.t 

the master-1. It indicates that the slave clock is updated frequently with the calculated 

offsets. Thus, the slave clock does not rely on the saved offset value for a long period of 

time. Moreover, the average of the average slave accuracy is about 100 ns w.r.t both the 

master clocks. It implies that the slave clock achieved high accuracy having two master 

clocks in the network and resolved the initialization problem stated in Appendix C.1.3 for 

the voice centric traffic model by providing more diversity. In addition, the slave 

accuracy is improved 2 times having two master clocks with static packet load in both 

directions.    
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Appendix D  :  Test Case Result with an Additional Traffic Model – 3 

In this appendix, test cases with an additional traffic model are presented. The slave 

accuracy suffers when only a small fraction of bursty traffic exists in the network, as was 

the case with the voice-centric traffic model. So, an additional traffic model is introduced 

to determine the minimum percentage of bursty traffic through which the slave clock is 

able maintain the high accuracy all the time.  

D.1 Network Traffic Model - 3 Descriptions 

In this traffic model, we introduce three different scenarios. First, 70% of the network 

load is based on small size (64 bytes) CBR packets and 30% of the load is based on 

maximum size (1518 bytes) packets. Second, 60% of the network load is based on CBR 

packets and 40% of the load is based on maximum size packets. Finally, 50% of the 

network load is based on CBR packets and 50% of the load is based on maximum size 

packets. It should be noted that the maximum size packets occur in bursts lasting between 

0.1 s to 3 s. 

D.2 Slave Clock Synchronization with Static Packet Load for Traffic Model – 3 

Description 

In this test case, the first test case with a static packet described in Section 5.3.1.1 is 

repeated using traffic model-3. The performance of the slave clock is evaluated using 

varying percentage of bursty traffic with static packet loads in both directions. 
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Results 

Figure 39 shows the slave clock synchronization accuracy w.r.t the master clock when 

70% of the network load is based on CBR packets and 30% of the load is bursty traffic. 

Figure 40 also shows the slave clock synchronization accuracy w.r.t the master clock 

when 60% of the load is based on CBR packets and 40% of the load is bursty traffic. 

Figure 41 also shows the slave clock synchronization accuracy w.r.t the master clock 

when 50% of the load is based on CBR packets and 50% of the network load is bursty 

traffic. In all of these cases, a static packet load is introduced between the slave and the 

master clock with DAC model applied on the slave clock. Statistical data are provided in 

Table 21, Table 22, and Table 23 respectively. 
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Figure 39: Slave Clock Synchronization with Static Packet Load -using 30% Bursty Traffic 

Table 21: Statistical Data for Static Packet Load (Traffic Model-3) - using 30% Bursty Traffic 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  18600 (21.53%) 

Avg. no. of samples passed the update sample filter 15493 (17.93%) 

Max. of the max. interval between  

successive successful updates (seconds) 

1421 s 

Avg. of the avg. clock accuracy 3.12 ms 

Max. Of the max. clock difference (ns) with DAC model 160 ms 

 



 140 

 

Figure 40: Slave Clock Synchronization with Static Packet Load -using 40% Bursty Traffic 

Table 22: Statistical Data for Static Packet Load (Traffic Model-3) - using 40% Bursty Traffic 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  21852 (25.29%) 

Avg. no. of samples passed the update sample filter 17936 (20.76%) 

Max. of the max. interval between  

successive successful updates (seconds) 

4817 s (1.34 hrs) 

Avg. of the avg. clock accuracy 10.04 ms 

Max. Of the max. clock difference (ns) with DAC model 725 ms 
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Figure 41: Slave Clock Synchronization with Static Packet Load -using 50% Bursty Traffic 

Table 23: Statistical Data for Static Packet Load (Traffic Model-3) - using 50% Bursty Traffic 

Total no. of samples per run 86400 

Avg. no. of samples passed the ratio ( R) test  23321 (26.99%) 

Avg. no. of samples passed the update sample filter 21429 (24.8%) 

Max. of the max. interval between  

successive successful updates (seconds) 

31s 

Avg. of the avg. clock accuracy 99.95 ns 

Max. Of the max. clock difference (ns) with DAC model 100 ns 
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Discussion 

The figures show that the maximum of the maximum clock difference between the slave 

and the master clock using different percentage of bursty traffic with static packet loads 

in both directions. In Figure 39, the maximum of the maximum clock difference is about 

160 ms when 30% of the network load is bursty traffic. The resultant difference is 

increased, compared to Figure 41 because the algorithm initializes the DAC model with a 

large offset value, compared to the anticipated offset value. A similar effect is observed 

in Figure 40 when 40% of the network load is bursty traffic. In both of these cases, the 

slave clock is updated with a relatively small saved offset value until the end of the 

simulation time. Thus, the difference between the saved offset value and the anticipated 

offset value is accumulated over time. It is worth mentioning that the resultant differences 

are the worst case scenarios, which do not happen all the time. In both of these cases, it 

has been observed that the DAC model is initialized with large offset value for 2 

simulations runs out of 50 runs. The remaining 48 simulations runs are as expected. 

However, when the amount of bursty traffic is increased to 50% of the network load, the 

maximum of the maximum clock difference is about 100 ns. The resultant clock 

difference implies that the slave clock achieved high accuracy when half of the network 

load is bursty traffic. From the statistics provided in Table 21, Table 22, and Table 23, as 

the percentage of bursty traffic increases, the average percentage of samples also 

increases, which passed both tests. When the network load has 30% bursty traffic, the 

minimum number of samples passed both the ‘R’ test and the update sample filter are 

about 22% and about 18% respectively on average. In the case of 50% bursty traffic of 

the network load, about 27% samples passed the ‘R’ test and about 25% samples are used 
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directly to update the slave clock. In addition, the maximum interval between successive 

successful updates is 31 seconds for 50% bursty traffic of the network load, much less 

compared to the 30% and 40% bursty traffic of the network load. It indicates that the 

maximum interval between successive successful updates decreases with the increments 

of the percentage of bursty traffic of the network load. Moreover, the average of the 

average slave accuracy is 99.95 ns when half of the network load is bursty traffic, much 

less compared to the 30% and 40% bursty traffic of the network load. It implies that the 

slave accuracy remains high until end of the simulation time when 50% of the network 

load is bursty traffic. Finally, we can state that if the amount of bursty traffic is 50% of 

the applied load, then the slave clock is able to achieve high synchronization accuracy 

w.r.t the master clock. 
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