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Abstract

Applications of wireless sensor network (WSN) often expect knowledge of the precise

location of the nodes. One class of localization protocols patches together relative-

coordinate, local maps into a global-coordinate map. These protocols require some

nodes that know their absolute coordinates, called anchor nodes. While many factors

influence the node position errors, in this class of protocols, using Procrustes Analysis,

the placement of the anchor nodes can significantly impact the error. Through sim-

ulation, using the Curvilinear Component Analysis (CCA-MAP) protocol, we show

the impact of anchor node placement and propose a set of guidelines to ensure the

best possible outcome, while using the smallest number of anchor nodes possible. Sci-

entists and researchers using sensor networks are thus enabled to focus on the sensed

data with confidence in the node localization results.
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Chapter 1

Introduction

Scientists, engineers, and researchers use wireless sensor networks (WSN) for a wide

array of applications. Many of these applications rely on knowledge of the precise

position of each node. While some may only require relative coordinates within

the network, most biological, geophysical, and other scientific applications require

coordinates on a global coordinate system. Perhaps the obvious solution is for each

node in the network to be equipped with GPS or other location positioning services.

However, constraints on cost, power consumption, as well as visibility of satellites

dictate the need for an alternative solution.

Many protocols have been proposed [1–3] to calculate relative positions amongst

the nodes of a network. They vary in the required network functionality in terms of

radio ranging or range-free. Radio ranging involves specialized hardware to measure

the distance between nodes based on physical data like signal strength or transmission

delays. Procrustes analysis [4] is a common method to convert from relative to global

coordinates, requiring some of the nodes to have a local source of global coordinates.

This can be achieved by operators recording the global coordinates during network

deployment, by embedding a GPS receiver in a subset of the nodes, or some other

source. We call these enhanced nodes anchors. Here, we explore the effect of anchor

1
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node placement within the network on the overall localization errors, on a network-

wide basis. This provides network planners with a set of general rules to minimize

the number of anchor nodes required while avoiding poor node localization, allowing

scientists to assume a maximum position error during their own research. Further,

based on application requirements of location accuracy, planners can minimize the

cost of the network associated with anchor nodes by using the minimum number and

best position.

1.1 Motivation

During previous work designing localization protocols, researchers often choose an-

chors at random within the network [5, p.11] [2, p.2]. Sometimes, they simulate the

network multiple times with different anchors in order to statistically exclude anchor

node placement from their results.

Our initial investigations and simulations demonstrate that indeed the placement

of anchor nodes in the network does have an often dramatic effect on the location

error. The four plots shown in Figures 1.1 and 1.2 graphically establish that anchor

node position does make a difference. Each plot shows the same network with a

different choice of three anchors. A line is drawn between the actual and calculated

position of each node to visualize the localization error. The circles show the radio

range of each anchor, and a triangle is drawn between the three anchors for clarity.

The four plots shown are taken from a set of 100 randomly chosen anchor sets.

While the first two choices, shown in Figure 1.1, have reasonable errors, the third

choice, in Figure 1.2a, has an error more than twice the mean error of the first.

Further, the fourth choice, in Figure 1.2b, has an extremely poor performance, more

than ten times that of the first choice. The four anchor set triangles shown do not
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Figure 1.1: Reasonable localization results
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immediately show an obvious progression that could explain this dramatic change in

error. We find it interesting that there is an incremental increase in error between

these four anchor sets resulting in a full order of magnitude difference between good

and bad cases, and thus requires the investigation presented in this thesis.

Since there is a chance that the localization errors can be large due to anchor

node placement, scientists and engineers need to know what degree of accuracy the

localization algorithm provides. In practical terms, this information can be useful

in many cases. First of all, if a network designer has an existing sensor network or

is planning to deploy one, they need to know where to place the anchor nodes to

ensure localization accuracy. While the freedom of where to place the anchor nodes

may be constrained due to physical factors, the network designer still must be able to

choose anchor placements wisely. Secondly, even if the network is already deployed,

the guidelines can provide confidence that the localization results are good enough

and the research resulting from the sensed data itself is valid with respect to location

of the sensed data.

1.2 Thesis Contribution

Although some papers have touched upon anchor node placement, we have yet to come

across a comprehensive study of the anchor node placement using Procrustes analysis.

This thesis provides a comprehensive study of possible anchor node placements and

their effects on overall network localization accuracy.

Specifically, this thesis establishes two guidelines based on metrics that a user

of a wireless sensor network can calculate at any time during network planning or

deployment, based on information readily available to them. These guidelines provide

a way to exclude extremely poor localization results and ensure that the localization
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results fall within a range of errors that are statistically insignificant. We do not

address a variety of other possible factors that may may also influence localization

error, although these are discussed briefly in Chapter 7.

At a high level, the guidelines are a result of the fact that the probability of

extremely high location error results from anchor nodes being roughly in a geograph-

ically straight line. As the anchor nodes are spread out from a straight line, the

probability of high errors decreases, leaving network designers a relatively simple

chore when choosing anchor nodes locations.

While this thesis is a comprehensive study of anchor node placements when using

Procrustes analysis, we focus on a specific set of network design assumptions. First,

we assume the network planners want to minimize the number of anchors since they

consume more power and cost more. Therefore, we use the minimum number of

anchors of three to provide two-dimensional coordinates. Further, we assume that

range-free algorithms are preferred to avoid dealing with multi-path and other radio

effects as well as to limit the required hardware and power requirements on each

node in the network. For that reason, our simulations use range-free techniques.

Nonetheless, the guidelines presented here are agnostic to whether the underlying

localization algorithm uses range-based or range-free techniques. Finally, we assume

that the network density is sufficient to provide a fully connected network, meaning

that there is a single connected graph of all the nodes in the network.

1.3 Methodology

Many localization protocols and algorithms provide a set of relative coordinates

that are then transformed into global coordinates. For the purpose of this re-

search, we chose CCA-MAP [3, 5] as the algorithm to provide simulation results.
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A Matlab c© simulation of this algorithm already existed [3], and was modified to

provide the necessary output statistics presented here. CCA-MAP is described in

more detail in Section 2.2.3.

1.4 Thesis Organization

A brief background of Wireless Sensor Networks and localization protocols in general

are presented in Chapter 2. Chapter 3 presents the limited related work on anchor

node placement. Chapter 4 contains various proposed anchor node placement meth-

ods and summaries of how they perform. The cause of the extreme edge cases comes

to light in Chapter 5. Chapter 6 discusses various other factors. Chapter 7 gives

some ideas for future work, including other factors that effect localization error and

Chapter 8 summarizes the results of this study.



Chapter 2

Overview of Wireless Sensor Networks

and Localization

2.1 Wireless Sensor Networks

A wireless sensor network (WSN) consists of a set of nodes tasked with sensing en-

vironmental phenomenon at or near each node. Nodes communicate via radios to

send their data back to a central acquisition system. Nodes are typically small, cheap

devices and are designed with power efficiency in mind to prolong the lifetime of the

network’s ability to collect data. Nodes are often distributed in the field of interest

randomly, sometimes even by dropping them from the air, as on a military battle-

field. Other times, they are placed in specific, but unknown a priori, locations, as in

placing them in bird nests [6]. Or, they may be rolled into a transportation tunnel

to give firefighters and emergency crews current information about heat and oxygen

levels [7].

A number of issues arise when designing a WSN. Each node must be able to

communicate with other nodes and send data to a central collection site. Each node

must know what time it is, for purposes of data sampling, and often for routing

8
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protocols as well. Further, each node must know where it is so spatial data can

be properly correlated. Location can also be useful for geographic routing protocols.

This thesis focuses on determining the location of each node as accurately as possible.

2.2 Localization Protocols

There are two general classes of localization protocols: ranging and range-free. Rang-

ing protocols rely on information from the radio. With this information, a fairly

accurate network topology can be built. Ranging techniques can use a variety of

metrics to build the network topology. These include Time-of-Arrival (TOA), like

GPS [8], Time-Differential-of-Arrival (TDOA) [9], Angle-of-Arrival (AOA) [10], or

Received-Signal-Strength-Indicator (RSSI) [11].

However, the special hardware and power requirement to perform these ranging

techniques is counter to the goal of low-cost, low-power nodes, and thus we exclude

ranging protocols from our study. Regardless, if a ranging protocol does build a

relative map, and then does a post-processing step by mapping this relative map to

a global map based on a subset of anchor nodes, the results of this thesis apply to

ranging as well as range-free protocols.

Range-free protocols do not rely on any specialized hardware for additional in-

formation. Rather, they rely solely on network connectivity, specifically knowledge

of their direct neighbors. Often, a node will collect information about their direct

neighbors’ neighbors as well, known as two-hop information. Knowledge of each fur-

ther node requires more information to be shared and therefore transmitted between

nodes, thus requiring more power for radio transmission. It is for this reason that

only one-hop or possibly two-hop knowledge is preferred.



10

2.2.1 Ad Hoc Positioning System

Niculesu, et al. propose a distributed localization algorithm known as Ad Hoc Po-

sitioning System (APS) [1]. It is similar to GPS in that is uses triangulation to

determine node positions. In APS, each node maintains a table of distances to each

anchor. The distance can be represented as a hop count, estimated distance using

RSSI, or Euclidean distance. As a distributed algorithm, each node determines its

own position based on the distances to the anchor nodes. Thus, APS does not per-

form well in anisotropic network, that is networks with holes or ”C” shapes in the

topology, because the communication distance can be far greater than the geometric

distance between two nodes.

In its simplest form, APS uses a propagation technique called DV-HOP to de-

termine distances between nodes. DV-HOP is based on classical distance vector

exchange from general network protocols like TCP/IP. Each node maintains a table

of hop counts between all known nodes. Each node exchanges this table only with

its direct neighbors. When an anchor has discovered a hop count to another anchor,

the anchor estimates the average distance for each hop since it knows the absolute

location of itself and the other anchor. This correction factor is sent to the entire

network. DV-HOP thus minimizes the amount of data that must be transmitted in

the network.

Further, APS can employ a propagation technique called DV-distance. DV-

distance is similar to DV-hop except that it uses RSSI to determine each hop distance

and sends this distance instead of hop count. This difference allows DV-distance to

effectively detect holes and curves in the network as each anchor can see that the

transmission path between them is larger than the Euclidean distance.
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2.2.2 MDS-MAP

Shang, et al. attempt to correct the errors introduced by APS and other distributed

algorithms through a centralized localization algorithm called MDS-MAP(C) [2],

where the C is for centralized. MDS-MAP(C) is divided into three phases. In phase

one, shortest path distances or hop counts are exchanged via a distance vector ex-

change, similar to APS. This provides a rough estimate of the distance between each

pair of sensors. In phase two, multi-dimensional scaling (MDS) is applied, result-

ing in a relative map. MDS is a general data analysis tool originating from psy-

chophysics [2, p.2] to transform data from many to few dimensions. In simple terms,

MDS takes a set of distances between points and creates a structure that fits those

distances. Often, it is used for general data visualization. In this case, the relative

map conforms closely to the pair-wise distances provided. In phase three of MDS-

MAP(C), the relative map is transformed into a global coordinate system using at

least three anchors using the Procrustes algorithm. Procrustes is described in more

detail in Section 4.2.

The authors provided a modified, distributed version, MDS-MAP(P) [12]. This

variation simply divides the network into smaller, more manageable sections so that

the algorithm can be performed locally, with the limited node resources available.

Each local map is then patched together, and hence the P for patched. The patching

part of the algorithm is not distributed. Local map merging begins at a randomly

selected node’s local map, and chooses the local map with the most overlapping nodes.

The process continues until all the local maps are merged together.

2.2.3 CCA-MAP

Li, et al, propose a similar style algorithm to MDS-MAP called CCA-MAP [3, 5].

It is similar in that it generates relative, local maps of sections of the network and



12

then patches them together into a global coordinate system. CCA-MAP improves

on MDS-MAP in that the algorithm is more efficient. MDS is a non-linear reduction

algorithm and has a computational cost of O(n3), where n is the number of nodes in

each local map. The size of each local map is dependent on the radio range which

affects the number of neighbors for each sensor node. Further, the algorithm could be

run in a centralized way, which means that n becomes the total number of nodes in the

network. CCA [13] on the other hand, is a self-organized neural network performing

quantization and non-linear projection. CCA-MAP has a total computational cost of

O(n2). CCA runs in a series of iterations, where each iteration has a computational

cost of O(n).

CCA-MAP has four phases. In the first phase, each node builds a local map of

nodes within R hops. For that local map, the shortest distance matrix is accumulated,

as in APS and MDS-MAP. The second phase involves performing the CCA algorithm

itself on each local map, generating relative coordinates for each node in the local map.

In phase three, the local maps are merged together, as in MDS-MAP(P), and finally,

in phase four, the relative coordinates are transformed into absolute coordinates based

on the known coordinates of the anchor nodes, as described in Section 4.2. Phase

four can only be performed with a minimum of three anchors for 2D space or four

anchors for 3D space.

CCA-MAP is flexible as to where computations can be performed. Local map

calculations can be performed at the nodes themselves, if computing resources al-

low, or outsourced to more powerful gateway nodes or a central server. Local map

merging can be performed in parallel at selected nodes in the network, or again at a

central server. Further, if in any sub-map sufficient anchors are found, then absolute

coordinates can be calculated.



Chapter 3

Related Work on Anchor Node Placement

While much attention has been paid to localization accuracy and computational effort,

the importance of intelligent anchor node placement is often recognized, but dismissed

as future study.

3.1 Empirical Evidence

Often, authors will come across anchor placement by accident and discuss it based

on their own empirical evidence. Shang, et al. [2, p.964] and Li, et al. [3, p.11] both

choose anchors at random within the network. Although, Shang, et al., do mention

that a co-linear set of anchors chosen in one example ”represents a rather unlucky

selection”, without supporting evidence of why this is unlucky.

Earlier work by Doherty, et al. [14] requires anchor nodes to be placed at the

edges, and ideally at the corners of the network. In this case, however, the algorithm

is a simple constraint problem. One constraint requires that all the unknown nodes

be placed within the convex hull of the anchors, and therefore, better results are

obtained when anchors are at the corners.

13
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3.2 Explicit Studies of Anchor Node Placement

While few, there have been a some explicit studies of anchor node placement. Hara,

et al. [15], propose a method of choosing anchor node locations to achieve a specific

accuracy target. The proposal, however, only applies to rectangular network areas

and that anchor nodes must be placed at the center of a sub-rectangle of the original

rectangle when divided into equal sized rectangles. Further, it assumes simple RSSI-

based localization.

Ash, et al. [16], provide analytical proof that placing anchor nodes uniformly

around the perimeter of a network provides the best results, in the absence of any

other information about the sensor node positions. However, again this assumes a

rectangular network, and more importantly a simple localization algorithm like [14]

or other multi-lateration techniques. When using all inter-node distances at once, as

in MDS-MAP and CCA-MAP, this analysis breaks down.

Karl and Willig dedicate an, albeit short, sub-chapter to the Impact of anchor

placement in their book [17, p.247-248]. Referencing [14] and [18], again they defer

to perimeter anchor placement as the optimal choice. Unfortunately, the technique

proposed involves adaptive deployment, whereby a mobile node with absolute posi-

tioning available, like GPS, wanders through the network and attempts to determine

the optimal anchor placements as it travels. For the purposes of a priori planning,

this technique is not feasible.

Cheng, et al. [19] present a novel technique to handle the effects of adverse anchor

placement, specifically in clumps. The algorithm, HyBloc, is a hybrid of MDS and

proximity-distance map (PDM) [20]. HyBloc combines the two algorithms to draw

on the best aspects of each. Namely, PDM is shown to have good performance in

anisotropic networks, while MDS performs well even with few anchors. Anisotropic
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networks have irregular shapes or holes in the network connectivity. HyBloc, there-

fore, works by using MDS to add artificial, secondary anchor nodes in specific isotropic

areas of the network, and then uses PDM to complete the overall localization for the

entire network.

Another study focuses on the effect of indoor conditions and anchor placement as

it relates to RSSI and other radio propagation measurements [21]. The experiments

were conducted in a small, enclosed space, and anchor nodes were placed either on

the ceiling or the floor of the room. The study concludes that anchor nodes on the

ground are better for monitoring moving people in the room, the extension of which

is that anchor nodes need to be in the same plane as the nodes they are being used

to locate.

3.3 Summary of Related Work

Overall, the previous studies on anchor placement are limited. Specifically, they focus

on particular use cases and assumptions that are different from the ones here. The

overarching theme of the studies, though, is to place the anchors at the edges of

the network. Despite the different assumptions, this idea makes sense from a purely

geometric point of view, and is therefore used as the initial basis of hypotheses in this

thesis.



Chapter 4

Optimal Anchor Node Placements

4.1 Measuring Location Error

Before searching for the best anchor node placement we must first define what best

means, in terms of location error. First of all, location error is the distance between

the actual and calculated position of each node, measured as a factor of radio radius

(or range). Since this study addresses range-free networks, and thus relies solely on

network connectivity, the actual units of distance do not matter for general study.

What is important to the protocol is how many other nodes in the network fall within

the radio radius of a given node. The average number of nodes within range of each

node is known as network density.

Every network has its own application requirements, and thus there are many op-

tions for what statistics to examine for accessing the quality of locations and therefore

what best means. The simplest criteria is to look at the mean location error across

all nodes in the network. This is the basis for the results in this study. However,

this assumes that all nodes in the network must be used in the final results. If the

network designers know which nodes have poor locations, they may wish to exclude

16
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these nodes from the final results. Therefore, if the economics of the network de-

ployment allow, it may be beneficial to look at the best, for example, 80% of nodes

in the network. In practice, the designers do not know which nodes to exclude, so

this study also attempts to identify a correlation between a particular node’s position

relative to the anchor nodes and its localization error. However, no such correlation

was determined in our studies.

Other metrics to consider would the minimum or maximum location error in the

network. In both of these cases, it isolates a single, arbitrary node from the entire

network as the key for the results. The node with minimum error would almost always

be an anchor node or a sensor node very close to an anchor node, further skewing

the results. Therefore, while we could use other metrics to determine the best anchor

placement, we use the mean location error of all nodes in the network. This hopefully

provides the most inclusive and comprehensive result.

4.2 Coordinate Transformation

To understand the various hypotheses for the best anchor placement, a basic un-

derstanding of how the transformation from local to global coordinate systems is

required. After the local networks have been calculated and patched together into a

single cohesive network, the anchor nodes are then used. Using Procrustes [4] analy-

sis, a linear transformation of translation, reflection, orthogonal rotation, and scaling

is determined for the anchor nodes from the calculated to known coordinates. The

transformation is chosen by minimizing the sum of squared errors for the resulting

coordinates. Specifically, given actual anchor coordinates, Y , Procrustes gives a trans-

formation as shown in Equation 4.1 that minimizes the difference between the actual
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coordinates and the calculated coordinates, Z. In the equation, b is a scalar com-

ponent, T is the rotation/reflection component, and c is the translation component,

each determined by the Procrustes analysis. The rotation/reflection component, T ,

is discussed in more detail in Section 5.1.1.

Z = b ∗ Y ∗ T + c (4.1)

For example, take a random anchor set, as shown in Figure 4.1. The figure shows

the three triangles, which are the local anchor coordinates, the actual global coor-

dinates, and the predicted coordinates after applying the calculated transformation

from local anchor coordinates to actual anchor coordinates. This demonstrates that

the transformation calculated by Procrustes is not perfect, as the actual and calcu-

lated coordinates do not align exactly.

The transformation is then applied to all nodes in the network by simply replacing

Y in Equation 4.1 with the local coordinates for the entire network. Therefore, how

well the anchor nodes transformation captures the overall local network variability

dictates how good the final locations will be.

4.3 Methodology

In order to assess anchor node placement, a series of hypotheses are presented. Each

hypothesis is centered around a metric that can be calculated from the anchor nodes

themselves, or other data the network designer might have before deploying the net-

work or when analyzing the localization results. In other words, none of the hypothesis

would require extra information that must gathered about the sensor nodes or their

actual locations.
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For the purposes of testing each hypothesis, randomly generated networks of vary-

ing sizes are used. Unless otherwise specified, all nodes are randomly placed within a

square area with an overall density of one node per unit area. For example, a 20x20

square area will have 400 randomly placed nodes. Anchor sets are chosen by identi-

fying all possible sets via n choose k, where n is the number of nodes in the network

and k is the number of nodes per anchor set. For example, in a 20x20 network of 400

nodes, and three nodes per anchor set, there are a possible 10,586,800 choices. From

the total set of possible anchor sets, a random selection is made. For the data in

this chapter, 1,000 anchor sets are randomly chosen. Choosing anchor sets from the

n choose k population excludes the possibility of choosing the same anchor set more

than once. To view all the Matlab c© code for simulations and plots see Appendix A.

4.4 Anchor Node Placement Metrics

Almost as important as knowing which factors effect localization is knowing which

factors to ignore. The following is a summary of hypotheses of anchor node placement

factors that show no or little significant correlation to location error. The data in the

following graphs is taken from a random selection of 1000 anchor sets of three nodes

each for the network shown in Figure 4.2. The node placement is random within the

20 by 20 square unit area, and all nodes have a radio range of 2.5 units, providing a

completely connected network.

4.4.1 Anchor Node Error

The first hypothesis is to choose nodes as anchors that we expect to have high location

accuracy. Because we are trying to provide an a priori design technique for network

planners, the information chosen to reach this goal must be something the network
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planner can determine before any localization has been performed. For this purpose

we choose the number of one-hop neighbors. On average, increased network density

results in higher localization accuracy [2, 3]. Since the range-free algorithms depend

heavily on network connectivity, the theory is that nodes with more neighbors will

have lower location errors. The lower error in the anchors themselves should then

translate into a more accurate transformation of the entire network.

Figure 4.3a plots the sum of unique one-hop neighbors for all anchor nodes versus

mean localization error. The irregularity of the curve disproves the hypothesis. Fur-

ther, the correlation coefficient, with 95% confidence intervals, is extremely low, less

than 0.1. Based on these statistics, choosing anchors in denser parts of the network

does not translate into better network-wide localization accuracy.

We also explore if having anchors with lower localization error translates into lower

localization error across the network. Figure 4.4a plots the mean error of the anchor

nodes themselves versus the mean error for all nodes in the network. This essentially

measures how well the transformation generated by Procrustes analysis matches the

target. The erratic plot and low correlation coefficient suggests there is no foundation

for this hypothesis.

In both plots, it is clear that a small subset of the anchor placements lead to

far greater error than the norm. Later, we will explore the cause of these outliers,

but for the time being, we exclude them from the analysis as shown in Figure 4.3b

and Figure 4.4b. Determining which data points are outliers is quite obvious since

the gap between the normal case and the small set of outliers is distinct. Therefore,

rather then using a statistical calculation for the exclusion, all anchor sets with mean

location error greater than two are excluded.

Even after the outliers are excluded, no pattern emerges and the correlation coef-

ficients remain extremely low. Further, the line of best fit has a low r-squared value
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of 0.02. Higher order best fits also show no clear correlation.

4.4.2 Network Area Coverage

As suggested in related studies in Chapter 3, an optimal anchor placement is to have

the anchors as far apart as possible, around the edges of the network. The rationale

behind this hypothesis, in the context of this study, is that if a wider area of the

network is covered by the anchor nodes, then the resulting calculated transformation

will take into account more network variations.

One way to determine how close the anchors are to the perimeter of the network

is to measure how far apart the anchors are from each other. The further apart they

are, they closer they are to the edge and the more network area they cover. For

statistical purposes, the sum of the distance between each pair of anchors is taken. I

describe this as the sum of distances of the anchors instead of the perimeter of the

triangle formed because this hypothesis investigates if the further apart the anchors

are from each makes a difference. Further, the sum of distances scales for the case

of more than three anchor nodes, whereas the meaning of perimeter will change the

desired description. Figure 4.5 shows an example for both the three and four anchor

node case. For the three node case, it is equal to the perimeter of the triangle.

More generically, for more nodes, as shown here for four, it is the sum of all pairwise

distances.

Figure 4.6a shows the sum of distances for each anchor set versus mean localization

error for that anchor set. The plot shows that again there is low correlation between

the distance between anchors and the location calculation. Further, the outliers are

spread relatively evenly regardless of distance between anchor nodes, and thus this is

not a good indicator of an outlier.

When the outliers are excluded, as shown in Figure 4.6b, a moderate level of
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correlation is seen, with a much clearer line of best fit. The only moderate, 0.48,

correlation coefficient can be explained by the lower bound for location error. There is

a virtually straight line across the bottom of the data indicating that, at any distance

between anchors, the lower bound of mean location error can be reached. However,

as the distance increases between the anchor nodes, the probability of getting a high

location error decreases.

Even if the sum of distances of the anchors is high, it is possible for two anchors

to be very close together and far from the third. Therefore, the minimum distance

between a pair of anchors is shown in Figure 4.7a. Again, the correlation coefficient

is low at 0.20. However, it does appear that the outliers are slightly more likely to

appear when the minimum distance between a pair of anchors is low. Further, when

outliers are excluded, as shown in Figure 4.7b, the coefficient is 0.32, slightly lower

than that of the sum of the distances, implying that sum of the anchor distances is a

better indicator of localization performance than minimum anchor distance.

4.4.3 Anchor Node Triangle

Continuing the trend of trying to show some increased correlation between the anchor

coverage and location error and based on speculative statements by Shang in [2, p.4]

presented in Section 3.1, we propose and examine two additional metrics attempting

to measure collinearity of the anchor nodes: the area and height of the anchor node

triangle. For height, we calculate the height in each direction of the triangle, and use

the shortest value. Both metrics can be extended to more anchor nodes. Figure 4.8

shows a simple example of calculating the area and minimum height of a triangle.

Figure 4.9 plots the area of the triangle formed by the three anchor nodes versus

mean location error. This metric can also be extended to more anchor nodes, by using

the area of the polygon formed by the anchor nodes. Figure 4.10 does the same for the
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shortest triangle height. The first observation from the two plots is that the outlier

cases are more tightly correlated to anchor area and height than any of the other

metrics. The outlier points are all closer to the y-axis rather then being spread across

the plot. This is explored further in Section 5.2. Secondly, after removing outliers, the

anchor area has a slightly higher correlation coefficient than anchor height, indicating

that anchor area is a slightly better predictor than anchor height.

4.5 Best Anchor Node Placement

Analyzing all the metrics discussed above, the best indicator of a good anchor place-

ment is the sum of the distance between anchor nodes, once the outliers are excluded.

This metric is best because it has the highest correlation to the mean location error.

Avoiding the outlier case is discussed in detail in Chapter 5. Practically speaking, this

means that network designers can choose between proposed anchor placements and

use the measured distance between them to provide guidance about which placement

will result in the least amount of error.

Figure 4.11 uses data from 20 networks, each occupying an area of 20x20 units

with a radio range of 2.5 units. The networks have a density of one node per unit

squared, but all nodes are randomly placed in each network. 5,000 anchor sets of

three nodes each are chosen from the randomly placed nodes. The outliers are then

removed from the data and the sum of distance between the anchors is plotted against

the mean location error. The data is then grouped into two-unit intervals and a mean

is calculated for each interval, to generate a histogram of the data. A horizontal bar

through the mean of each interval displays the width of that histogram interval.

Further, a 95% confidence interval of the mean value is shown as a vertical bar.

This plot shows us that as the sum of distances between the anchors approaches ten
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times the radio range, the differences in location error are statistically insignificant.

Therefore, network designers can choose anchors nodes locations at their convenience,

as long as they meet this criteria. The actual asymptote value depends on other

factors, like network density and will be discussed further in Chapter 7.



Chapter 5

Avoiding the Worst Anchor Node

Placements

As seen in the previous chapter, there are some anchor node placements that are

significantly worse than the average case. In this chapter, we explore in more detail

the cause of these outliers and more importantly, is this condition detectable a priori

and hence preventable in the real world.

5.1 Effects of Procrustes Analysis

Figure 5.1a shows a network map of an example outlier anchor node placement for

a random network. A line is drawn between the real location and the calculated

location for each individual node. The length of this line is the location error. For

purposes of comparison, Figure 5.1b is a randomly chosen non-outlier case, where

the node difference lines are short, representing low localization error. However, in

the outlier case, the node difference lines criss-cross the network along a clear, single

angle. This visual representation suggests the reflection component of the final linear

transformation is to blame for the extremely poor, outlier results.

35
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5.1.1 Transformation Reflection and Rotation

Unfortunately, simply disabling the reflection component of the Procrustes transfor-

mation algorithm does not solve the problem. The output of the Procrustes algorithm

is a linear transformation which includes a rotation or reflection matrix, as discussed

in Section 4.2. If the determinant of that matrix is +1, then the resulting transfor-

mation has a rotation, with an angle as in Equation 5.1.

det (T ) = +1 ⇒ Rotation with T =











cos θ − sin θ

sin θ cos θ











(5.1)

If the determinant is -1, then the resulting transformation has a reflection com-

ponent across a line at an angle as shown in Equation 5.2.

det (T ) = −1 ⇒ Reflection with T =











cos 2θ sin 2θ

sin 2θ − cos 2θ











(5.2)

Figure 5.2 shows the rotation and reflection distributions of two different net-

works, for a random set of anchor sets for each network. In both networks, and

with consistency across others, the bulk of the data points have the same angle of

either rotation or reflection, while the outliers have the opposite property with a wide

variance in the angle. However, in different networks, it is not consistently either

rotation or reflection that leads to poor localization results. Therefore, relying on the

determinant of the transformation is not a sufficient indicator for a network designer

knowing that an outlier case has been detected and that the localization results are

essentially useless.
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Figure 5.2: Rotation and reflection versus location error
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5.1.2 Transformation Scaling and Translation

For completeness, we explore the possibility that the scaling or translation component

of the linear transformation is causing the issue. In Figure 5.3, the scale component,

b, of the Procrustes analysis is plotted against the mean location error for the same

two networks as shown above for reflection and rotation in Figure 5.2. While there is

an apex of the data around a particular scalar value where the minimum localization

error is seen, the outliers can also have this same scalar value. Therefore, the scaling

component is not a good indicator of extremely poor localization performance.

Likewise, Figure 5.4 plots the horizontal, x, and vertical, y, translation compo-

nents, c, against the mean location error. As with the other transformation com-

ponents, there is concentration around a natural value in x and y that gives best

localization performance. The fact that these x and y values overlap in Figure 5.4a

is a coincidence. However, much like for the scaling factor, while outlier localiza-

tion errors are the only values that occur away from this natural value, the outliers

also occur around that value as well. Therefore, it is not possible to classify an an-

chor set as one of the outlier cases based on the translation component of the linear

transformation it produces.

5.1.3 Procrustes Dissimilarity

The Procrustes algorithm itself provides a measure of the dissimilarity. Specifically,

it is the minimized value of sum of squared errors [4]. As shown in Figure 5.5, it is not

a good indicator of the transformation as it pertains to the entire network. This is

because the Procrustes algorithm is only performed on the anchor nodes themselves

and for those nodes themselves, the transformation is good.
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Figure 5.3: Transformation scalar component versus location error
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5.2 Outlier Indicators

As shown above, there unfortunately is no direct indicator that a particular anchor set

generates a transformation with an incorrect angle. Therefore, network designers must

avoid all anchor sets that could potentially generate such an angle. As demonstrated

in Section 4.4.3, the area or height of the triangle formed by the anchor nodes is a

good indicator of the possibility of a poor transformation angle. These two metrics

are explored in Figures 5.7 and 5.6, respectively. This time, the x-axis is a log scale to

better show the outlier cases. Also, the area and height have been adjusted as a factor

of radius. Further, 95% confidence intervals are shown for the mean localization error

of each 0.1r increment of both area and height. A solid horizontal line is shown throw

each mean value, indicating the width of the increment, since it can be difficult to

visualize on a log scale. The horizontal dashed line indicates the cutoff for what are

considered outliers, based on the large gap in data points. The vertical dashed line

indicates the first interval in which there are no outliers. As the area and height

increase, the mean localization error decreases, as does the confidence interval of that

mean.

Upon comparing the two plots, it is clear that the minimum height metric is far

more stable when it comes to predicting outliers than the area metric. This is based

on the observation that the mean localization error monotonically decreases with

increased minimum height, while the mean localization error relative to area is far

more erratic. Further, there are some outlier cases after the first interval of triangle

area that has no outliers. A triangle with small area might provide a false-positive

indication of an outlier. After careful thought, this result is not unexpected since

height of a triangle geometrically exposes collinearity better than simply area of a

triangle.

Based on the minimum height statistics, we can now give network designers a
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metric of how collinear is too collinear for a set of anchor nodes. The raw statistics

indicate that if the triangle formed by the anchor nodes has a minimum height greater

that 0.6 times the radio range, then there is very low probability of getting an extreme

outlier case were the calculated locations are actually reflected or rotated across the

network. However, also in the data shown, there are some near-outlier cases beyond

this point. While these cases are not of the extreme nature discussed, it may be

worthwhile to give a margin of error here to avoid these cases as well. Therefore, we

assert that the triangle formed by the anchor nodes should have a minimum height

equal to the radio range of the network.



Chapter 6

Effects of Network Topology

6.1 Node Distance from the Anchors

Of great assistance to network designers would be to know in which regions of the

network to expect poor localization performance. With this information, and if the

anchor placement is constrained, they could either avoid placing nodes in the expected

poor area, or take into account the higher expected localization errors in the analysis

of the data.

Figure 6.1 shows a different view of errors within two sample networks in attempt

to find a correlation between sensor node location and each node’s location error,

especially based on relative location to the anchor nodes. The plot, instead of showing

a line representing the localization errors as in other figures presented in this study,

the error at each node is used to interpolate a grid of location errors throughout the

area of the network. A contour plot, based on that interpolated grid, is then shown

in the figure. The anchor nodes are shown, with their radio range shown as a dashed

circle.

Figure 6.1 shows two random networks, with the same anchor node placements.

In general, the region around the anchor nodes themselves has better localization
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performance, shown with darker color. However, there is quite a large variability

in errors throughout the network. This simple example demonstrates that, unfortu-

nately, no significant geographic correlation between location error and anchor node

placement can be ascertained. As shown in Section 4.4.1, the localization error has

almost no correlation with the density of nodes around anchor nodes or the error of

the anchor nodes themselves. Therefore, the lack of correlation of any sensor node’s

location relative to the anchor nodes is not surprising.

However, there are likely other factors, such as network density, algorithm pa-

rameters to the underlying localization protocol of CCA-MAP, or yet undiscovered

factors, that may be masking any it may be possible, correlation to the location of

a sensor node relative to the anchor nodes. Therefore, with future study, it may be

possible to remove the effect of these other factors to reveal a pattern based on anchor

placement.

6.2 Applicability to Varying Network Topologies

So far, we have examined anchor node placement for a continuous square network,

with randomly placed nodes. However, in the real world, networks are not alway so

simple. There are often regions in the network where it is not possible to put nodes,

due to physical barriers like lake, buildings or access to property. In this section, we

look at how the results thus far apply to C-shaped and long, narrow pipeline network

topologies.

6.2.1 C-Shape Network Topology

A C-shape network consists of a relatively square region with an empty area on one

side, as shown in Figure 6.2. In terms of anchor placement requirements, we do not
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Figure 6.2: Example of C-shape network topology

expect any difference between the recommendations presented for square networks.

To show that there is no difference between C-shape and square network topolo-

gies, 10 random C-shape networks with 5,000 anchor sets each were simulated in the

same manner as the square networks. Figure 6.3a shows the location error relative

to the sum of the distances between the anchors, as in Section 4.5. As expected,

the mean location error flattens out as the sum of distances between anchor nodes

reaches about 10 times the radio range as was the case with the square network.

There is a slight increase in the floor of the mean location error as compared with the
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square network, but this has to do with the performance of the CCA algorithm in the

presence of the empty region of nodes in the network. The increase in mean location

error at the end of the plot, and specifically the increase in the confidence interval,

is caused by the small sample size in the random selection of anchor set with a very

high distance between nodes.

Similarly, the same criteria for eliminating the outlier localization results also

holds for C-shape topology as it did for square in Section 5.2. Figure 6.3b shows that

as long as the minimum height of the triangle formed by the anchors nodes is greater

than the radio range, then the outlier case can be avoided, as is the case for a square

network.

6.2.2 Pipeline Network Topology

In some applications, the network region has very little depth to it, such as when

monitoring a gas pipeline or along a highway or railroad line. The extreme case is

where there is a single node placed along a straight axis. As we have shown, this is

the worst possible scenario, as it is the most likely way to cause the outlier condition

for localization. In that case, it is worthwhile to explore the possibility of other

localization techniques, such as GPS at each node, or recording the location as the

nodes are placed.

However, when there is a bit of depth to the network, as shown in Figure 6.4, there

is still the possibility of good localization results. To demonstrate the importance of

having an anchor node triangle height of at least the radio range, Figures 6.5 and 6.7

show mean location error for four different networks, with increasing network depth,

but the same length.

As before, we attempt to distinguish the outlier case with a plot of the sum of

distance between anchors. Figure 6.5 shows that as the network has a larger depth,
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Figure 6.4: Example of pipeline network topology

the floor of possible localization errors drops. In particular, when the network depth

is only 1, the floor is about 0.5r, whereas when the depth is 4 units, or twice the radio

range, the floor drops to roughly 0.25r. Also, as the sum of the distance increases and

the network depth is greater than the radio range, the outlier cases become apparent.

Interestingly, the outlier cases have a much lower mean localization error in a

pipeline topology. Figure 6.6 shows two sample anchor sets that demonstrate the

difference in localization performance when the anchors are clumped together versus

spread apart. When the anchor nodes are clumped together, the calculated positions

remain in a straight line, as the expected results do, but the algorithm cannot de-

termine the correct angle that line should take. However, since the lines do cross

where the anchor nodes are clumped, the line is grounded to a relatively accurate

level, when compared with the square networks. For this reason, the outlier case, in

general, has lower error in a pipeline topology. Nonetheless, it is poor performance,

and is likely not useful in most applications.

The plots of minimum triangle height in Figure 6.7 show that for networks with a

depth less than the radio range, the separation of good and outlier cases is impossible

to distinguish. Specifically, when the network depth is 1 units, half the radio range,

the mean localization error is basically flat across all triangle heights possible. As

it becomes possible to have anchor sets forming a triangle with height more than

the radio range, localization performance drops down to normal levels, below 0.5r,
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Figure 6.5: Sum of distance between anchors vs. mean location error for random
pipeline 25-by-1,2,3 and 4 unit networks with 200 nodes, 1,000 anchor sets each, and
a radio range of 2.0 units
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Figure 6.7: Minimum height of anchor triangle vs. mean location error for random
pipeline 25-by-1,2,3 and 4 unit networks with 200 nodes, 1,000 anchor sets each, and
a radio range of 2.0 units

when the triangle height is also greater than the radio range. However, the minimum

triangle height no longer appears to be a good indicator of outlier cases.

In the end, even though the results are better when the depth of the pipeline

is more than the radio range, it is impossible to reliably avoid the outlier condition.

Therefore, for a pipeline topology, we recommend to use a different class of localization

algorithms that does not rely on transforming local coordinates into global coordinates

with anchor nodes. If no other algorithms are possible, we recommend making the
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network as deep as possible and to spread the anchors as apart along the length of

the pipeline as possible.



Chapter 7

Other Factors

So far, we have examined anchor placement as the sole factor impacting localiza-

tion error. We set out here to show that there are indeed other factors that play a

significant role in determining localization performance.

In the following example, the same anchor set is used in four different random

networks. Figure 7.1 shows two non-outlier cases. The mean error for each network,

despite using the same anchor set, is different. What is surprising is the degree to

which they are different: 37%. Figure 7.2 shows two more networks with the same

anchor set. This time, both of the plots reveal outlier cases. Despite using the same

anchor set, the localization performance differs significantly. While we have shown

that anchor placement does play a role in the localization performance, these simple

examples clearly show that there are significant other factors affecting the localization

error.

These results show that there is significant variation in localization results across

networks, when the anchor set is geographically fixed. In other words, the absolute

anchor positions are not enough to predict localization errors. Therefore, it is clear

there are other factors besides anchor placement effecting the resulting location errors.

A key piece of future work is to isolate and analyze these other factors. However,
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since the outlier case itself is undetectable in the absence of extensive ground truth

data, the best we can hope for is a way to minimize the probability beyond analyzing

the height of the anchor node triangle by studying what these other factors might be.

Some of these factors have been previously explored. Network connectivity level is

highlighted in [5]. Connectivity level is a factor of both node density and radio range.

During this work, we discovered the node chosen to start the local map patching also

has an effect on the end result, although not always significant. Another option worth

exploring is whether different deployment options of CCA-MAP will impact the mean

localization accuracy. For example, as described in [3], very accurate localization

results are possible if neighborhood information of all nodes is collected centrally and

CCA-MAP applied to the global connectivity matrix. Given the inherent flexibility

in how CCA-MAP can be deployed, calculating relative local maps at each node, at

some cluster heads, or centrally, may result in significantly different mean localization

errors.



Chapter 8

Conclusion

8.1 Summary and Contribution

This study provides two key guidelines for network designers and users of wireless

sensor networks when choosing anchor node positions or assessing the quality of lo-

calization results. Namely, make sure that the sum of the distance between anchor

nodes is at least ten times the radio range and that the minimum height of the triangle

formed by the anchor nodes is at least equal to the radio range. Further, the larger

these two metrics are, the lower the mean location error of the network will be, on

average, and the lower the probability of using an anchor set that will cause extremely

poor localization performance. Effectively, this means do not put the anchor nodes

in a straight line or close to each other. We have further shown that these criteria

apply to network topologies where the overall network area is two-dimensional, but

fails when the network topology approaches one-dimension, meaning it is extremely

narrow compared with the radio range, for example when monitoring pipelines or

roads.

While the simulations in this study use the CCA-MAP algorithm, the results

apply to any protocol in which a local coordinate system is transformed into a global
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coordinate system using a set of anchor nodes with Procrustes analysis. Further,

the scope of the study extends beyond wireless sensor network protocols and can be

applied to any transformation problem where a small subset of points is used as the

basis to transform a set of points.

8.2 Future Work

While we have provided some recommendations for anchor placement, there are a

few key areas where future study could enhance the results. First, an examination of

the other factors affecting localization performance would be beneficial, as described

in Chapter 7. Specifically, analysis of the results presented here, as they are affected

by network connectivity levels. A raw examination of other as of yet undiscovered

factors could also uncover ways to further improve localization accuracy. Second,

expanding these results to three-dimensions may benefit some network designers.

For example, a sensor network may be deployed through a high-rise building or on

a bridge. While we expect that results to be similar, it is worthwhile to confirm.

Outside the scope of sensor networks and the physical world, these results could

also apply to any dimension of data. This would effectively be an exhaustive study

of Procrustes analysis where a set of data in one coordinate system is transformed

into another coordinate system based on a subset of known points. Last, finding

other methodologies besides Procrustes analysis to provide a transformation between

local and global coordinates. This may be especially beneficial if applied to pipeline

topologies specifically.
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Appendix A

Matlab c©Simulation Code

All source code used to simulate CCA-MAP and generate resulting data can be found

in Google c©Code. The code was originally written by Li Li and modified for the

purposes of readability and different output data and plots.

The primary files are:

• ccaconfig.m: Property file to setup the network shape, number of anchor sets,

anchor placement, radio range and other simulation parameters.

• simcca.m: Generate and simulate a network over the configured number of

anchor sets and output a suite of statistical plots.

• multisimcca.m: Generate and simulate a configured number of networks, with

the same exact anchor sets and output a suite of statistical plots.

• indicator.m: Outputs a suite of statistical plots for a set of previously run output

directories from simcca.m. This allows combining multiple networks and their

anchor sets into a single analysis.

See http://code.google.com/p/sim4j/source/browse/#svn/trunk/thesis/

matlab for details.

67

http://code.google.com
http://code.google.com/p/sim4j/source/browse/#svn/trunk/thesis/matlab
http://code.google.com/p/sim4j/source/browse/#svn/trunk/thesis/matlab

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	 Introduction
	Motivation
	Thesis Contribution
	Methodology
	Thesis Organization

	 Overview of Wireless Sensor Networks and Localization
	Wireless Sensor Networks
	Localization Protocols
	Ad Hoc Positioning System
	MDS-MAP
	CCA-MAP


	 Related Work on Anchor Node Placement
	Empirical Evidence
	Explicit Studies of Anchor Node Placement
	Summary of Related Work

	 Optimal Anchor Node Placements
	Measuring Location Error
	Coordinate Transformation
	Methodology
	Anchor Node Placement Metrics
	Anchor Node Error
	Network Area Coverage
	Anchor Node Triangle

	Best Anchor Node Placement

	 Avoiding the Worst Anchor Node Placements
	Effects of Procrustes Analysis
	Transformation Reflection and Rotation
	Transformation Scaling and Translation
	Procrustes Dissimilarity

	Outlier Indicators

	 Effects of Network Topology
	Node Distance from the Anchors
	Applicability to Varying Network Topologies
	C-Shape Network Topology
	Pipeline Network Topology


	 Other Factors
	 Conclusion
	Summary and Contribution
	Future Work

	List of References
	Appendix Matlab©Simulation Code

