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Abstract

In this work, we design and analyze transmission range assignments for broadcast-

ing in wireless multi-hop networks. Moreover, we study different features of wireless

networks. We consider network scenarios in which the exact location of the nodes is

known and others where the nodes location is known probabilistically. For the for-

mer, we propose optimal and near-optimal algorithms to solve the Minimum-Energy

Broadcasting problem for linear (one-dimensional) networks. We further extend our

solutions to encompass cross networks, in which the nodes are located on two per-

pendicular lines. The proposed algorithms have polynomial-time complexity, and are

shown to perform better than previously known algorithms (for some cases, they are

the first polynomial-time solutions).

For probabilistic networks, we propose a transmission range assignment such that

for a given average total consumed power, the linear network is connected with high

probability. We then analyze some features of these networks, including derivation

of exact formulas for the probability of connectivity of any location of the network

to the source, the hop-count probability mass function (pmf) of an arbitrary location

of the network, and the pdf of the maximum coverage (last reachable distance from

the source) for a given number of hops. The proposed analyses are applicable to

networks with non-identical transmission range assignments, where the nodes are

placed independently and identically according to a Poisson distribution with an

arbitrary density function.

Based on the derived formulas, we then propose localization and location verification

methods. We show that our proposed localization method not only has a competitive

performance for a range-free method, but also outperforms range-based methods with

a local distance measurement error of 10% or more. Furthermore, the proposed

location verification protocol is shown to have better results compared to the existing

verification systems that also use the hop-count information. We also evaluate the

proposed schemes in the presence of Rician fading and show that their performance

is rather robust with respect to the change in the fading parameter.
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Chapter 1

Introduction

1.1 Motivation

Wireless ad-hoc networks have attracted more interest in recent years due to their

numerous applications [2–4]. In these networks, broadcasting mechanisms are used

for data exchange purposes, e.g., disseminating important messages or path discovery

information in routing algorithms [5]. Studying different features of wireless networks

such as reliability, energy-efficiency and delay, helps in analyzing and designing such

networks, e.g., to guarantee an acceptable level of quality of service (QoS). Reliability

can be translated to the probability of connectivity of the network. Delay and energy-

consumption are related to the multi-hop structure and transmission range assignment

of the network [6–8].

In this research, we first approached the Minimum-Energy Broadcasting problem.

This problem focuses on finding a transmission range assignment for all the nodes

in the network such that the total consumed energy for broadcasting data from one

specific node (a.k.a the source node) to all the other nodes is minimized [9]. A

transmission range assignment defines the range each network node has to transmit

the data with. In this problem, the exact location of the nodes is known1.

We further extended our research to include cases where the knowledge of the exact

location of the nodes is not available, and the locations are known probabilistically.

For the probabilistic model, we proposed a transmission range assignment such that

1In actual wireless ad-hoc networks (except for mesh networks) the network topology can be as-
sumed to be fixed in finite, periodical time-frames. One has to solve the minimum-energy broadcast-
ing problem for each time-frame. This results in the need to obtain low time complexity algorithms
for finding the solution for that problem.

1



CHAPTER 1. INTRODUCTION 2

for a given average total consumed power, the network is connected with high prob-

ability. Furthermore, we derived exact formulas for the probability of connectivity of

any location of the network to the source, the hop-count2 probability mass function

(pmf) of an arbitrary location of the network, and the probability density function

(pdf) of the maximum coverage (last reachable distance from the source) for a given

number of hops. Using the techniques described in [7] and [8] (as just two examples),

the derived formulas can be used to estimate the delay that the data experiences to

be delivered to all the nodes within a desired coverage range. Moreover, as we show

later, this information is used to localize nodes (i.e., estimating the location of the

nodes), and verify location claims made by nodes in an ad-hoc network.

In wireless ad-hoc networks, location information of network nodes is essential to

support location-based services. Some examples of location-based services are: track-

ing events and targets (especially in wireless sensor networks), supporting geographic

routing protocols, and providing enhanced security protection mechanisms. Local-

ization protocols have been proposed to derive a node’s location without the use of

localization hardware (such as GPS receivers), and thus to reduce the node’s cost.

Localization enables signal processing algorithms to make inference in the spatial do-

main about the environment in which they are placed [10]. For an extensive survey

on localization algorithms see [11, 12]. Furthermore, localization is a key element

in location verification algorithms [13, 14]. Location verification mechanisms use the

location information to verify a claimed location [15]. These mechanisms are used to

confront attacks which take advantage of a lack of location information. For example,

malicious nodes can advertise false positions to alter the routing paths, etc. More-

over, location verification enables location-based access control [16], where the users

with verified locations can access particular resources according to a given policy.

In the most part of our research, we considered one-dimensional wireless ad-hoc net-

works where the nodes are located on a line. Linear networks are used, for example,

to model the wireless communication in a vehicular ad hoc network (VANET), where

the data transmission is along a road [17], or to model sensor networks, where the

sensors are distributed in a one-dimensional sensor field [18]. An example of a lin-

ear VANET is a platoon of vehicles, where all the vehicles follow a leading vehicle

(for example, a truck). Each vehicle is equipped with adaptive cruise control (ACC),

to maintain its speed while using radar to keep a safe distance from the vehicle in

2For any location in the network, the hop-count is considered as the number of hops needed for
the data to travel from the source to that specific location.
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front of it [19]. In such a scenario, the leader broadcasts the information through a

wireless channel to all the vehicles, in order to inform them of any turns or braking ac-

tions [20]. For an extensive survey on different communication protocols in VANETs

see [21]. An example of a linear sensor network would be one to monitor and main-

tain power grids for ensuring high quality and reliability of power supply and also to

monitor pipelines [22, 23]. We addressed the minimum-energy broadcasting in cross

networks as well. Cross networks can be used in VANETs and sensor networks used

for monitoring power grids and pipelines. Further extension of the minimum-energy

broadcasting problem is known to be non-deterministic polynomial-time (NP) hard

(for D-dimensional spaces with D ≥ 2), [6, 24,25].

It should be noted that the effort to make the communication system consume less

energy (i.e., be more energy-efficient) is commonly understandable for sensor net-

works (as they run on battery), while there are some controversies for applying it

to VANETs. The reason for those disagreements is that vehicles with a combustion

engine are often considered to have an infinite amount of energy as the battery is

constantly being charged while the engine runs. The reality is that with moving more

towards electric vehicles, this will not be the case anymore. Also, one should always

try to enhance the energy consumption of any system, to be less harmful to the en-

vironment (being more green), and to save energy for other tasks that need energy,

and can perform better with higher energy budget.

1.2 Our Contributions

In this thesis, we first proposed transmission range assignments to reduce the energy

consumption of wireless ad-hoc networks. The consumed energy of a node is assumed

to be a direct function of the transmission range of that node. There are some other

aspects to the energy consumption of a wireless device, such as the used coding,

modulation, etc., but this research just focuses on the effect of transmission range of

the nodes on energy consumption.

We proposed two centralized and one distributed solution for the minimum-energy

broadcasting problem in linear networks. The proposed optimal solution finds the

exact transmission range assignment for minimum-energy broadcasting, and has time

complexity O(N2), where N is the number of network nodes. This improves the time
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complexity O(N3) of existing solutions. The other centralized algorithm is linear-

time and finds an approximation of the optimal solution. Furthermore, we proposed

a simple distributed range assignment algorithm for energy-efficient broadcasting. We

demonstrated that on average both the linear-time approximation and the distributed

algorithm are almost as efficient as the optimal range assignment for networks with

uniformly distributed nodes. The distributed algorithm would be of particular interest

not only because of its distributed nature, but also for its very low time complexity

(constant in network size), and the small amount of network knowledge that each node

requires to perform the algorithm (only the distances to the adjacent neighbors).

In addition to solving the minimum-energy broadcasting problem for linear networks,

we obtained the optimal and some sub-optimal solutions for this problem for the net-

works located on a cross. Our solutions consist of an algorithm which finds the optimal

assignment, and a near-optimal algorithm with close to optimal energy consumption.

Moreover, we present a distributed algorithm that gives acceptable results. We show

that the optimal solution for cross networks can be found in polynomial time, but

has high time complexity (O(N8) or O(N12)). Our proposed near-optimal algorithm

achieves near optimal results, and the proposed distributed algorithm performs close

to the BIP (and BIP with sweep) algorithm for this kind of networks. The proposed

algorithms have very low time complexity (O(N) for the centralized near-optimal

algorithm and O(1) for the distributed algorithm). Furthermore, we proved that our

distributed algorithm has the same outcome as the MST algorithm for networks on

a cross, but with much lower time complexity (O(1) instead of O(N2)).

We also showed that the proposed distributed algorithm can be used for more general

two-dimensional networks, where the nodes are located on a grid. The grid is not

necessarily a square grid, but it has to have perpendicular line-segments. For these

networks again, the proposed distributed algorithm is shown to perform close to

the BIP (and BIP with sweep) algorithm, with much less time complexity and in a

distributed manner. In addition to the consumed energy of the assignments, we also

studied the number of hops needed for each node to receive the data for the first time

(a.k.a., the hop-count of that node) for different assignments, and compare them.

To generalize our study, we considered wireless ad hoc networks in which the nodes are

distributed according to a non-homogeneous Poisson distribution with an arbitrary

density function. It should be noted that a network with uniform node distribution is
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a special case of the networks discussed here (with constant density Poisson distribu-

tion). For this kind of networks, we proposed a transmission range assignment. For

a given average power consumption, the proposed assignment can achieve a higher

probability of connectivity compared with an identical transmission range assignment

commonly used in the literature, e.g., in [1]. Furthermore, we showed that the pro-

posed assignment, on average, has bounded contention levels3, while the contention

level for the identical assignment can take much larger values.

We analyzed some major features of linear wireless ad hoc networks with Poisson

spatial distribution of nodes with arbitrary density function. We derived exact for-

mulas for the probability of connectivity of any location of the network to the source,

the hop-count pmf of an arbitrary location of the network, and the pdf of the maxi-

mum coverage (last reachable distance from the source) for a given number of hops.

Fig. 1.1 illustrates two network realizations along with the transmission ranges of the

nodes. In our study, the transmission ranges of the nodes can be non-identical. In

the network realization shown in Fig. 1.1(a), the hop-count of x, h(x), needed for the

data to be transmitted from the source node to location x is 4. We have h(x) = 5 in

the network realization shown in Fig. 1.1(b). We derive the pmf of h(x) for all the

locations 0 < x ≤ L of a linear network with length L. Furthermore, we derive the

pmf of the number of hops needed for a node located at one end of the network to

receive a message from a node at an arbitrary location of the network.

x (a) 

x (b) 

source 

source 

Figure 1.1: (a) Network realization in which h(x) = 4. (b) Network realization in
which h(x) = 5.

Using the obtained pmf of h(x), we propose a localization protocol that provides the

pdf of the location of a node, given that it receives the message with a certain number

of hops. Furthermore, we use our hop-count analysis to verify a location claim by

calculating its plausibility.

3Contention level is defined as the number of simultaneous signal receptions in any location of
the network.



CHAPTER 1. INTRODUCTION 6

This study, to the best of our knowledge, is the first to derive exact formulas for the

analysis of wireless networks, as described above. In [26], the analysis is based on

Gaussian approximation and in [27], it is based on a recursive formulation that does

not lend itself to a non-recursive closed form. Moreover, both [26] and [27] perform the

analysis only for the identical transmission range assignment. In our work, however,

the range assignment is more general.

We show that our analysis obtains better localization results compared with [28–30],

and even better than range-based methods when their local distance measurement has

a typical error (i.e., more than 10%). Furthermore, our analysis results in improving

the outcome of [13] for location verification, as we provide exact, and not approximate,

formulas for the pmf of the hop-count random variables. This work, to the best of our

knowledge, is the first to derive exact formulas for the hop-count analysis of wireless

networks, as described above.

In addition to localization and location verification, our hop-count analysis can be

used in studying efficiency of broadcasting mechanisms in wireless networks. Studying

different features of wireless networks, such as energy-efficiency and delay, helps in

analyzing and designing such networks, e.g., to guarantee an acceptable level of quality

of service (QoS).

1.3 Published and Submitted Work

The following list of published and submitted works summarizes the peer-reviewed

papers that appeared as a result of this work.

1.3.1 Published Journal Papers

• M. R. Ataei, T. Kunz, A. H. Banihashemi, ”Localization and location verifi-

cation in non-homogeneous one-dimensional wireless ad-hoc networks,” IEEE

Journal on Selected Areas in Communications, Special Issue on Location-

Awareness for Radios and Networks, vol. 33, no. 7, May 2015.

• M. R. Ataei, A. H. Banihashemi, T. Kunz, ”An energy-efficient transmission

range assignment for 1-D wireless networks,” IEEE Wireless Communications

Letters, vol. 2, no. 5, pp. 543-546, October 2013.
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• M. R. Ataei, A. H. Banihashemi, T. Kunz, ”Low-complexity energy-efficient

broadcasting in one-dimensional wireless networks,” IEEE Transactions on Ve-

hicular Technology, vol. 61, pp. 3276-3282, September 2012.

1.3.2 Submitted Journal Paper

• M. R. Ataei, A. H. Banihashemi, T. Kunz, ”Energy-Efficient Broadcasting for

Cross Wireless Ad-Hoc Networks,” Submitted to IEEE Transactions on Wireless

Communications.

1.3.3 Published Conference Papers

• M. R. Ataei, A. H. Banihashemi, T. Kunz, ”Minimum-energy broadcasting for

cross wireless ad-hoc networks,” Proceedings of IEEE ICC 2015, London, UK,

June 8-12, 2015.

• M. R. Ataei, T. Kunz, A. H. Banihashemi, ”Localization in non-homogeneous

one-dimensional wireless ad-hoc networks,” Proceedings of IEEE ICC 2015,

London, UK, June 8-12, 2015.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. The previous researches done on the

subjects of this thesis are explained in Chapter 2. In Chapter 3, we discuss our

solutions for the minimum-energy broadcasting problem in linear networks. The

proposed solutions for this problem in cross networks is presented in Chapter 4.

We move on to the networks with probabilistic nodes locations, by first proposing a

transmission range assignment in Chapter 5 to attain high probability of connectivity.

The other features of this kind of networks are studied in Chapter 6. In Chapter 7

we demonstrate two applications of the obtained analysis, which are localization and

location verification. A summary of what we have done so far, along with some

suggested future research are presented in Chapter 8.



Chapter 2

Previous Works

2.1 Energy-Efficient Broadcasting

Given a specific source node that broadcasts the data to all the other nodes of the

network, the problem of determining a set of retransmitting nodes and their cor-

responding transmission ranges, such that the sum of consumed node energies is

minimized, is known as the minimum-energy broadcast problem. This problem is

known to be NP hard for D-dimensional spaces with D ≥ 2, [6,24,25]. One property

that makes this problem hard is the wireless multicast advantage [31], i.e., reception

of the transmitted data by multiple nodes within the range of a single transmission.

There have been many works on solving this problem. For an extensive survey on the

existing works on minimum-energy broadcasting (as a special case of multicasting)

one can see [32].

For linear networks, the authors of [33] solved the problem of finding a range as-

signment for N nodes in a linear network for broadcasting from a specific node to

all the other nodes with minimum energy. In [33], the nodes locations on the line

are arbitrary and the source node is assumed to be known. It is also assumed that

the network topology is known and available for solving the problem. The algorithm

proposed in [33] has time complexity O(N3)1. More recently, there have been some

studies [34,35] focusing on the same problem with additional constraints. In [34], the

condition that all the nodes have to receive data in at most h hops has been added,

and the proposed algorithm has time complexity O(hN2). In [35], the same problem

is solved with the assumption that the consumed energy in each node depends not

1By definition, f(x) = O(g(x)) if and only if there exists a positive constant a such that for all
sufficiently large values of x, we have |f(x)| ≤ a|g(x)|.

8
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only on the transmission range of the node but also on an arbitrary positive weight as-

signed to the node. The problem is solved with algorithms of time complexity O(N3)

for the unconstrained case (i.e., h = N − 1) and O(hN4) for the h-hop constrained

case.

Some studies aimed to solve the minimum-energy broadcasting problem heuristically

for general D-dimensional (with D ≥ 1) networks. The broadcast incremental power

(BIP) algorithm, with time complexity O(N3) [31, 36], is one of the most commonly

used methods for the energy-efficient broadcasting problem in 2-D networks. In [37],

it is shown that the approximation ratio2 of BIP, unlike some other well-known algo-

rithms, e.g., shortest-path tree (SPT) [38], is a constant (does not depend on the total

number of the nodes in the network). This constant is superior to the approximation

ratio of the other algorithms also studied in [37]. In BIP, the goal is to construct a

Minimum Spanning Tree (MST) of the network graph3 starting from the source, and

adding new nodes one by one to the tree. The cost function, which is to be minimized

in the construction, is the incremental cost of adding each additional node. This in-

cremental cost is defined as the minimum additional power required of some node in

the current tree to reach the new node. Recently in [39], the time complexity and

the lower-bound of the approximation ratio of the BIP algorithm are strengthened.

According to [39] the BIP algorithm has time complexity O(N2).

A modification to BIP, called sweep, is proposed in [31, 36], to improve the power

consumption. In this procedure, unnecessary transmissions are eliminated. It is

shown in [40] that the time complexity of the sweep procedure is also O(N2).

Another frequently cited method for energy-efficient broadcasting is the algorithm

based on finding the Euclidean MST of the graph representing the network rooted at

the source node [41]. The network graph is constructed by considering the nodes of

the network as vertices of the graph. There is an edge between any two nodes, with

weight equal to the Euclidean distance between the nodes. In this algorithm, the

MST of the network graph is found (e.g., using Prim’s algorithm). In the MST-based

range assignment, for each node, the maximum weight of the edge between that node

and its children4 is assigned as the node’s transmission range, i.e.,

2The ratio of the energy consumption of a given assignment to that of the optimal assignment is
called the approximation ratio of that assignment.

3The MST of a graph is the spanning tree with weight less than or equal to the weight of every
other spanning tree of that graph.

4For any node in a tree, the nodes directly below it in the tree hierarchy are called the children
of that node.
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RMST (i) = max
u:(i,u)∈MST

{d(i, u)}, (2.1)

where RMST (i) denotes the assigned range to node i, and the notation (i, u) is used

to denote the edge between nodes i and u in the MST, where i is the parent of u.

The Euclidean distance between nodes a and b is denoted by d(a, b).

The MST-based algorithm has time complexity O(N2) [41]. As the nodes are mostly

placed randomly in the network, the assumption of having unique weights for the

edges of the corresponding network graph is commonly used. This assumption results

in having a unique MST for the graph with probability one. Therefore the MST-

based range assignment is unique. In [42, 43] it is shown that even for 2-D networks

with special topologies, i.e., when the nodes are located at the intersection points

of a square grid, the MST-based range assignment is far from optimal. It is worth

mentioning that the MST-based range assignment is the optimal solution for the

minimum-energy broadcasting problem in wired networks. The performance of BIP

is shown to be better than that of the MST algorithm for general 2-D wireless networks

[31,36].

Papers [25], [6], and [44] studied the range assignment when the network graph is

connected, i.e., each network node is connected to every other node via some path.

This assignment is called a complete range assignment. The study in [25] focused

on D-dimensional networks with D ≥ 2, where every path between any two nodes

consists of at most h hops. In [6], Kirousis et al. presented a dynamic programming

algorithm with O(N4) time complexity for finding a minimum cost complete range

assignment, where the nodes are located on a line and the distances between the

nodes are arbitrary. In [44], a minimum cost complete range assignment solution was

found for linear networks with an algorithm with time complexity O(N3), improving

the time complexity of the algorithm of [6] by a factor of N .

2.2 Probabilistic Networks

For the case where only the node distribution along the network is known, rather

than the exact location of the nodes, the goal usually is to determine the transmis-

sion range assignment such that the network is connected with high probability. In
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most cases, the problem is studied under the assumption that the nodes are uniformly

and independently distributed along the line, and that all the nodes have the same

transmission range [45], [46]. In [45], it is shown that for a linear network of length

L, where the density of the uniformly distributed nodes is λ, the network will be

connected with probability one as the length of the network goes to infinity, if all the

nodes have an identical transmission range5 r greater than ln(λL)
λ

. Santi et al. [46]

provided both upper and lower bounds for the identical transmission range r under

the same network assumptions. They demonstrated that if rN is Ω(L ln(L))6, where

N is the number of the nodes in the network of length L, then with probability one

the network will be connected. In [47], the nodes, which are considered to be vehi-

cles, perform a distributed algorithm to estimate the local density of the nodes in the

network. The algorithm uses the mobility pattern of a node (vehicle) and is based on

the stopping time of that node. The nodes adjust their transmission ranges according

to the estimated density in a manner similar to that of [46]. Non-asymptotic results

for a linear network of N nodes with density λ and with exponentially distributed

distances between the nodes are also available [48], which indicate that the network

will be connected with a probability greater than Pc, if r ≥ − ln(1−P 1/(N−1)
c )
λ

. Given the

node density λ and the network length L, the value of r can thus be determined for

a value of Pc arbitrarily close to one. In [49], an exact equation for the probability

of having at most c clusters in a linear network with uniform node distribution and

identical transmission range is given. When c = 1, this equation gives the probability

of connectivity for the network. Papers [50,51] studied the connectivity properties of

one-dimensional wireless networks operating in Rayleigh fading and lognormal shad-

owing environments. The authors of [51] used the model in [50] to obtain connectivity

properties for a VANET. They studied the effects of traffic flow and vehicle speed on

the probability distribution of the connectivity distance. Both [50] and [51] consid-

ered identical transmission range for all the nodes of the network with homogenous

Poisson distribution of the nodes.

More recently, in [1, 52–55], arbitrary node distribution in linear networks was con-

sidered. In [52], a stochastic traffic model for VANETs in signalized urban road

systems is proposed. The proposed model composed of the fluid model and stochas-

tic model. The fluid model is used to compute the average density of vehicles, while

5The transmission range assignment where all the nodes in the network transmit the data with
the same transmission range.

6By definition, f(x) = Ω(g(x)) if and only if g(x) = O(f(x)).
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the stochastic model takes into account the random behavior of individual vehicles.

The authors validated the non-homogeneous Poisson distribution of the nodes on a

road against empirical data in Central London. The same authors in [53] analyzed

the connectivity dynamics of vehicular ad-hoc networks in the same network model.

They determined the probability that the communication network is connected, i.e.,

each node can communicate with every other node through a multi-hop path, while

all the nodes have identical transmission ranges. In [54], an arbitrary node distribu-

tion was considered, and it was shown that for a continuous density function f(x),

where the number of nodes in the network, N , goes to infinity, τf,N = 1
inf{f(x)}

log(N)
N

is

the critical transmission range, where inf{·} denotes the infimum value. This means

that if every node in the network has a transmission range greater than τf,N , the

network will be connected with probability one. It was further shown in [55] that

for the networks with vanishing density functions a strong threshold does not exist.

In [1], the authors considered a linear ad hoc network, where all the nodes used an

identical transmission range. For an arbitrary spatial distribution of network nodes,7

they calculated the exact probability of connectivity of any location in the network

to the source, which is assumed to be located at one end of the network.

2.3 Broadcasting Features Analysis

Aside from transmission range assignment, some works study the features of broad-

casting mechanisms in wireless networks. In [26], the authors considered a linear

wireless networks with uniform node distribution and identical transmission range

assignment. For this network, they first obtained an approximation of the expected

value and the standard deviation of the maximum possible distance covered in a single

hop. Then they used these values to estimate the expected value and the standard

deviation of the maximum coverage with multiple hops, which they modeled by a

Gaussian random variable. Furthermore, they used this random variable to give an

estimate of the hop-count distribution of an arbitrary location of the network.

To the best of our knowledge, there are a limited number of works studying hop-

count probabilities in wireless networks [27, 56]. An estimation for the hop-count

pmf in one-dimensional networks with identical transmission range assignment for

7The model used in [1] is implicitly based on Poisson distribution of network nodes with arbitrary
density.
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all the uniformly distributed nodes of the network is presented in [56]. In [27], the

authors analyzed the performance of Minimum Connected Dominating Set (MCDS)

broadcasting in one-dimensional networks, with identical transmission range for all

the nodes, in which only the nodes in the MCDS8 retransmit the data. They derived

the pdf of the maximum physical distance from the broadcast source reached by the

kth hop. They used the derived recursive formulas to obtain the mean distance and

the number of nodes reached after a given number of hops, and the mean number

of hops before the broadcast stops. Contrary to these papers, our analysis results

presented here hold for more general node distributions and in cases where nodes do

not use identical transmission ranges.

Our proposed localization protocol is range-free. Range-free algorithms do not need

to measure the distance or angle information between unknown nodes and land-

marks [11]. Range-based algorithms, on the other hand, must have the ability to

measure the range of wireless signal transmissions. Some well-known ranging tech-

niques are received signal strength indication (RSSI) and time of arrival (TOA) (or

time difference of arrival (TDOA)) [57]. Although range-based protocols are gener-

ally more accurate than range-free protocols, their performance depends on the local

distance measurement error of the ranging approach they use [58]. It is shown that

for some cases, the local measurement error can be in the order of the transmission

range of the nodes [59]. In [60], the authors calculated this error to be around 25% of

the transmission range for the IEEE 802.15.4a UWB protocol analyzed in [61]. Even

for transmission ranges as small as 0.6 to 18 meters, the local distance measurement

error can be in the range of 0.5 to 10 meters [62]. In RSSI, the strength of the re-

ceived signal is used to calculate its distance from the transmitter [63]. In TOA the

distance between two nodes is calculated using the time the signal takes to propagate

from one point to another. In TDOA, radio signal and ultrasound pulses are sent

simultaneously, and using the time difference of the arrivals of the two signals, the

distance between the sender and the receiver is calculated [57].

One of the most frequently cited methods that use the hop-count information for

localization is DV-Hop [28] which is range-free. In this method, the anchors (aka

8The MCDS is the subset of connected nodes with minimum cardinality such that each node in
the network is connected to a node in this subset. For a one-dimensional network, the MCDS can
be recursively obtained by starting from the source and including in the MCDS, step by step, the
farthest node within the transmission range of the previously inserted node.
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reference nodes, beacon nodes, landmarks), which are either deployed at known lo-

cations or equipped with GPS devices, know the distance between themselves. They

estimate the average length for one hop as the ratio of the distance to another anchor

to the total number of hops needed to reach that anchor. The network nodes use

these average hop distances to estimate their location (knowing the location of the

anchors, and the hop-count to receive the message from each anchor).

Recently, in [30], a range-free approach, called DV-RND, based on DV-Hop is pro-

posed. In this approach, instead of estimating the distance between two neighboring

nodes, the authors defined the neighborhood distance between the two nodes. The

neighborhood distance depends on the number of nodes covered by both nodes, and

the number of nodes within each node’s range. They then calculated the regulated

neighborhood distance (RND) of all the neighboring nodes in the network, where

RND of two neighboring nodes is the mean of the neighborhood distance of those

nodes. The accuracy of the calculated RND depends on the assumption that the

nodes are uniformly distributed between the two neighboring nodes. Localization of

a node is performed using the sum of all the RNDs of any two nodes between all the

anchors and that node. As a result, the amount of RND information needed to be

exchanged among the nodes to obtain their location is quite large.

It is shown in [64] that most of the range-free localization protocols that do not

attempt to assign a distance to a hop, but use connectivity as a constraint when

jointly localizing all nodes, such as Multi-Dimensional Scaling (MDS) and Curvilinear

Component Analysis (CCA), perform poorly in the networks with linear topology.

The range-based methods proposed in [65,66] take into account the inaccurate range

measurements of a single hop transmission. The inaccuracies are characterized by

modeling the range measurements as a set of pdf’s. In [65], the errors in distance es-

timations are modeled as normal random variables. When an unknown node receives

a packet from an anchor node, its location pdf can be calculated. By receiving more

packets from different anchors, the pdf of the location of the node is refined. More

recently, in [66], the computational complexity of the probabilistic approach of [65]

was reduced by using the Fast Fourier Transform (FFT).

Hop-count analysis can also be useful in securing wireless networks via location verifi-

cation methods [13]. The probabilistic location verification (PLV) algorithm proposed

in [13] uses the pmf of the hop-count from a location to a verifier, which is located

at a fixed location. The verifiers are nodes equipped with PLV, and they determine
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plausibility of the claimed location of a node, and a central authority gives an ap-

propriate trust level to those claimed locations based on the calculated plausibility

probabilities. The authors of [13] used the hop-count formulas they obtained in [56],

and their analysis provides an estimation for the hop-count pmf, and is not exact.

Analyzing the hop related properties can be used in the end-to-end delay analysis of

wireless networks [7, 8]. In [7], the end-to-end delay of wireless line networks with

known node locations is analyzed. The end-to-end delay analysis for two-dimensional

wireless networks with known or random (uniformly distributed) node locations is

presented in [8]. Furthermore, hop related properties can be useful in securing wire-

less networks via location verification methods [13, 14]. The probabilistic location

verification (PLV) algorithm proposed in [13, 14] takes advantage of the probabilis-

tic dependence of the hop-count for a specific location and the distance between the

source and that location. The verifier nodes, equipped with PLV, determine the

plausibility of the claimed location of a node, and based on the calculated plausibility

probabilities, a central authority gives an appropriate trust level to those claimed

locations.



Chapter 3

Energy-Efficient Broadcasting for Linear

Networks

In this chapter, we investigate the transmission range assignment for N wireless nodes

located on a line (a linear wireless network) for broadcasting data from one specific

node to all the nodes in the network with minimum energy. Our goal is to find a

solution that has low time complexity and yet performs close to optimal. We propose

an algorithm for finding the optimal assignment (which results in the minimum energy

consumption) with time complexity O(N2). An approximation algorithm with time

complexity O(N) is also proposed. It is shown that, for networks with uniformly

distributed nodes, the linear-time approximate solution obtained by this algorithm

on average performs practically identical to the optimal assignment. Both the optimal

and the near-optimal algorithms require the full knowledge of the network topology

and are thus centralized. We also propose a distributed algorithm of negligible time

complexity, i.e., with time complexity O(1), which only requires the knowledge of

the adjacent neighbors at each wireless node. Our simulations demonstrate that

the distributed solution on average performs almost as good as the optimal one for

networks with uniformly distributed nodes.

In our formulation, we pose no limit on the number of hops and assume that the

consumed energy by each node is a function of the node’s transmission range. The

system model and the problem formulation is described in Section 3.1. In Section 3.2,

we propose our algorithms for energy-efficient broadcasting. The first algorithm finds

a near-optimal solution to the problem with time complexity O(N). The second al-

gorithm finds an optimal solution and has time complexity O(N2). Note that both

algorithms are significantly less complex than the algorithm of [33] which has a time

16
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complexity O(N3). Similar to the algorithms of [6,25,33–35,44], both proposed algo-

rithms require the full knowledge of the network topology and are thus centralized.

Finally, the last algorithm proposed in this work is a distributed one with negligible

time complexity of O(1). To be implemented in each node of the network, this al-

gorithm requires only the knowledge of the adjacent neighbor(s) of the node. This

is much easier to attain compared to the amount of knowledge required for the cen-

tralized algorithms, i.e., the full knowledge of the network topology. Furthermore,

this simplifies the implementation of the algorithm in mobile scenarios, where nodes

only need to track their two closest neighbors. In Section 3.3, we present simulation

results on the performance of the proposed algorithms. The contents of this chapter

have been published as [67].

3.1 System Model

We consider a set of N nodes placed on a line having indices {1, 2, . . . , N} from left

to right, and a specific node with index s among them as the source. The source

node s broadcasts data to all the other nodes in the network. This is to be performed

in an energy-efficient multi-hop fashion. To solve the minimum-energy broadcasting

problem, we need to assign a transmission range to each node so that the total

consumed energy is minimized. A node is assumed to have symmetric coverage on

both sides up to its transmission range and any other node located in the transmission

range of this node can receive the transmitted data. In this work, similar to [6, 25,

33–35,44–48,54,55], we do not consider the effects of interference caused by wireless

communication among the nodes, and shadowing and fading, and also the overhead

of obtaining information about the nodes’ locations.1

A range assignment R is a function R : {1, . . . , N} → R+, where R(i) is the assigned

transmission range to node i. We denote the consumed energy of the range assignment

R by cost(R) and assume that it can be calculated, up to a constant multiplicative

1Ignoring the interference can be justified by assuming that a scheduling scheme would ensure
that simultaneous interfering transmissions will not occur. For ignoring fading/shadowing, one
can assume that the transmissions occur in an environment with no obstacles, where the signals
experience negligible fading/shadowing. If fading/shadowing is not ignored, then each link between
different nodes of the network would experience a different loss and thus a different relationship
between the distance and the consumed energy. This will change the system model compared to the
one discussed in this work and is beyond the scope of this correspondence.
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factor, using the following equation:

cost(R) =
N∑
k=1

Rα(k), (3.1)

where α is the path-loss exponent whose value is normally between 2 and 6 [3]. By

using the Minimum Energy Range Assignment (denoted by R∗), every node in the

network will receive the data transmitted by the source node with the minimum

possible cost.

3.2 Energy-Efficient Range Assignments

In a linear network, each node has at most two immediate neighboring nodes, one on

each side. We call these two nodes the adjacent neighbors of a node. In the sequel,

we refer to the adjacent neighbor that is further away from the source as the next

adjacent neighbor of a node.

Let us first consider a case where the source node is on one end of the network. There

is a trivial optimal solution for this case [33]. In the optimal solution, the transmission

range of each node, except the node which is at the other end of the network with

respect to the source node, is equal to the distance to its next adjacent neighbor. For

example if s = 1, the optimal solution will be as following:

R∗(i) = d(i, i+ 1) for i = 1, . . . , N − 1 (3.2)

R∗(N) = 0,

where d(i, i+ 1) is the distance between nodes i and i+ 1.

This result is obtained by using the fact that for any given set {a1, a2, · · · , aW} of

positive numbers, where W is an arbitrary integer, and for any α ≥ 2, we have:(
W∑
k=1

ak

)α

≥
W∑
k=1

aαk . (3.3)

Hence, in the rest of the chapter, we assume that the source node is not at one end

of the network (s 6= 1, N). Since nodes 1 and N do not have next adjacent neighbors

to send data to, their transmission range in the optimal solution will always be zero.

We divide the whole set of nodes excluding nodes 1 and N into two sets L and R,
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where:

L = {i : 1 < i ≤ s} and R = {i′ : s ≤ i′ < N}. (3.4)

We denote s by sL when it is in L, and by sR when it is in R.

The following lemma forms the basis of the proposed algorithms. Its proof is by

contradiction and straight-forward.

Lemma 1. In the minimum-energy range assignment, the transmission range of a

node i is either zero or greater than or equal to the distance between i and its next

adjacent neighbor.

The minimum possible positive range of node i, M(i), can be calculated as:

M(1) = M(N) = 0, M(i) =

 d(i, i− 1) for i ∈ L,

d(i, i+ 1) for i ∈ R.
(3.5)

For i = s, there are two values of M(i) corresponding to sL and sR, respectively.

3.2.1 Near-Optimal Range Assignment with Linear Time

Complexity

For networks with known topology, we can save energy by preventing some nodes

from transmission. These are the nodes with receivers located in the transmission

range of other nodes. Fig. 3.1 shows an example of this situation. Node b receives

the data from s and as b needs to transmit the data at a power level that can reach

its next adjacent neighbor (node c), the data also reaches nodes a and d. Hence

R(a) = R(d) = R(c) = 0.

The focus of our proposed near-optimal algorithm is on finding the nodes that can

save energy by not transmitting, while the other nodes only transmit at a power level

that is needed for their next adjacent neighbors to receive the data.

The pseudo-code for this algorithm is given as Algorithm 2.1: Near-Optimal Linear-

Time Algorithm, that has the output RNO as the range assignment. In this algorithm,

we find the nodes with maximum other-side coverage on each side, and we decide to

have one of them sending, while keeping the unnecessary nodes from transmitting.
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a bs
(Source)

cd

Figure 3.1: In an energy-efficient range assignment, some nodes do not need to
transmit.

Algorithm 2.1 Near-Optimal Linear-Time Algorithm
Input: exact location of all the nodes

Output: RNO (near-optimal transmission range assignment)

1: determine the sets L and R
2: for i = 1 to N do

3: Cov(i) = M(i)− d(s, i)

4: end for

5: mL = arg maxk {Cov(k)} for k ∈ L
mR = arg maxk′ {Cov(k′)} for k′ ∈ R

6: denote by lL the left-most node in the opposite side coverage of mR, and denote

by lR the right-most node in the opposite side coverage of mL

7: calculate the costs:

costR =


cost∗ if lR = s
sL∑
k=1

Mα(k) +
N∑

k=lR

Mα(k) if lR > s

costL =


cost∗ if lL = s
lL∑
k=1

Mα(k) +
N∑

k=sR

Mα(k) if lL < s
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where

cost∗ = max{M(sL),M(sR)}α +
N∑
k=1
k 6=s

Mα(k)

8: if costR ≤ costL then

9:

RNO(i) =

 M(i) i ∈ {1, . . . , sL, lR, . . . , N}

0 i ∈ {sR + 1, . . . , lR − 1}

10: else

11:

RNO(i) =

 M(i) i ∈ {1, . . . , lL, sR, . . . , N}

0 i ∈ {lL + 1, . . . , sL − 1}

12: end if

In Steps 2 to 4 of Algorithm 2.1: Near-Optimal Linear-Time Algorithm, node s has

two opposite side coverage values, each corresponding to one of its roles as sL or sR,

i.e., Cov(sL) = M(sL) and Cov(sR) = M(sR). Note that in Step 6, lR or lL can

be the source node s. In Step 7, the two costs correspond to two different ways of

sending data from s to all the nodes in the network. The costR (costL) is for the case

where some nodes on the right (left) hand side of the source receive the data from

mL (mR) and thus do not need to receive the data from their neighbor.

The following theorem is easy to prove.

Theorem 1. The near-optimal algorithm has a time complexity of O(N).

In this section, we assumed that the transmission range of a node is either equal to

zero or equal to the distance to its next adjacent neighbor. For finding the optimal

range assignment in the next section, we will use the fact that each node can have

transmission range equal to zero or its distance to any node in the network (N possible

values). Among all these possible assignments, we will prove that by searching a

limited space the optimal solution can be found.
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3.2.2 Optimal Range Assignment

The following theorem states some important facts about R∗.

Theorem 2. The range assignment R∗ satisfies the following conditions:

1. There exists at most one node (denoted by bm) with transmission range greater

than M(bm).

2. If bm exists, it receives the data from s via the nodes in between s and itself

(i.e., it does not receive the data via a node on the opposite side of the source).

3. If bm exists, R∗(bm) ≥ max(d(bm, lR), d(bm, lL)).

Proof. We prove each statement as follows:

1. First we should note that the necessary condition for any node i to have R∗(i) >

M(i) is that by transmitting at this higher power, it must have a receiver

on the opposite side of the source. Otherwise, using Equation (3.3), another

range assignment with less consumed energy can be found. The proof then

follows from the same arguments made in Lemmas 3 and 4 of [33]. This is done

by substituting the concept of a root-crossing node in [33] with a node with

R∗(i) > M(i) in our context, and noticing that the children of a node in [33]

are receivers of that node in our study. A node is called a root-crossing node

in [33] if it has a receiver belonging to the other side of the source node (i.e.,

the side that it does not exist on). The children of a node in [33] denote all the

receivers of that node.

Here we present a sketch of the proof. Assume there exist more than one node

i with R∗(i) > M(i). For those of the nodes with increased range (transmission

range greater than their M(.) value), which are on the same side of the source,

we can assign R∗(i) = M(i) except for one with the most number of receivers

on the other side. By doing so, there will remain at most two nodes on opposite

sides with increased range. Denote theses nodes by a and b. At least one of

them does not transmit beyond the farthest same-side receiver of the other one,

as if they both can do, we will have R∗(a) > R∗(b) and R∗(a) < R∗(b). Consider

node b as the one without any other-side receivers beyond the farthest same-

side receiver of node a. In the process of transmitting data to node a, all the

other-side receivers of node b will receive data. Therefore, increasing R∗(b) from
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M(b) will not be beneficial. Hence, there exists at most one node (denoted by

bm) with transmission range greater than M(bm).

2. This is a direct result of Lemmas 3 and 4 of [33], which indicate that the optimal

solution contains exactly one root-crossing node, i.e., if bm exists, it is the only

root-crossing node.

3. The proof for this part is by contradiction. Suppose that node bm exists and is

on the left side of the source (the proof for the right side is similar).

First, we prove that if R∗(bm) < d(bm, lR), the assignment R∗ cannot be opti-

mal. There can be more than one node having lR in their transmission range.

We denote the right-most node among those nodes on the left side of the source

sending data to lR by mRL. If bm is on the left side of mRL, then since bm

receives the data from s via the nodes in between s and itself (including node

mRL), node lR receives data from mRL. The other possibility is for bm to

be on the right side of mRL (in between nodes s and mRL). In this case,

since M(mRL) ≥ d(mRL, lR) > d(bm, lR) > R∗(bm), node bm cannot trans-

mit to the left receiver of node mRL, so node mRL still needs to transmit

(R∗(mRL) = M(mRL)), which implies that lR will be covered by the transmis-

sion from mRL. Hence with R∗(bm) < d(bm, lR), node bm cannot transmit data

beyond node lR on the right side of the source. Since all the nodes from s to

lR can receive the data from mRL, node bm has no receivers on its opposite

side. Using Equation (3.3), we can easily show that by using the near-optimal

range assignment RNO, all the nodes can still receive the data with a lower cost,

contradicting the optimality of the range assignment.

Now suppose that R∗(bm) < d(bm, lL). Note that since d(bm, lR) ≥ d(bm, s),

if node bm is on the left side of node lL, we will have: R∗(bm) < d(bm, lL) ≤
d(bm, s) ≤ d(bm, lR) which results in a contradiction as previously discussed. We

continue the proof for the case that node bm is in between nodes s and lL. Denote

the left-most node on the right side of the source having lL in its transmission

range by mLR. Also denote the last same-side receiver of node mLR by lsm

(which is on the right side of the source). Since d(bm, lsm) > M(mLR) =

d(mLR, lsm) ≥ d(mLR, lL) > d(bm, lL) > R∗(bm), node bm cannot transmit to

node lsm, so node mLR still needs to transmit (R∗(mLR) = M(mLR)). Node

mLR is a root-crossing node, and since there cannot be two root-crossing nodes
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in the optimal solution, node mLR does not receive the data via a node on the

other side of the source (e.g., node bm). Therefore node bm has no receivers

on the opposite side, and it has no receivers beyond node lL, and since all the

nodes in between nodes s and lL receive the data from node mLR, we can assign

zero to the transmission range of node bm. This results in reducing the energy

consumption of R∗, which contradicts its optimality.

We showed that R∗(bm) ≮ d(bm, lR) and R∗(bm) ≮ d(bm, lL), therefore R∗(bm) ≥
max(d(bm, lR), d(bm, lL)), and this completes the proof.

The following corollary is obtained based on the second and third propositions of

Theorem 2.

Corollary 1. If node bm exists in R∗, then

cost(R∗) =



(R∗(bm))α + EL + ER if bm = s,

∑s−1
k=bm

dα(k, k + 1)+

(R∗(bm))α + EL + ER if 1 < bm < s,

∑bm−1
k=s dα(k, k + 1)+

(R∗(bm))α + EL + ER if s < bm < N ,

(3.6)

where EL =
∑rL−1

j=1 dα(j, j + 1) and ER =
∑N−1

j′=rR
dα(j′, j′ + 1) in which rL and rR

denote the last left-side and right-side receivers of node bm, respectively.

For reducing the time complexity of the optimal algorithm, we introduce two arrays

and one matrix as follows. Let CS be an array of size N + 1, where CS[i] (i =

1, . . . , sL, sR, . . . , N) is the cost of sending data from node s to node i via the nodes

in between them. Construction of this array is performed by the following recursive
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equations, having time complexity of O(N).

CS[sL] = CS[sR] = 0, (3.7)

CS[i] =

 CS[i+ 1] +Mα(i+ 1) 1 ≤ i < sL,

CS[i− 1] +Mα(i− 1) sR < i ≤ N.

Similarly, we can compute another array CE of size N + 1, where CE[i] (i =

1, . . . , sL, sR, . . . , N) is the cost of sending data from node i to the end node on

its side, via the nodes in between them. Using the following recursive equations, we

can construct CE with time complexity O(N) in time.

CE[1] = CE[N ] = 0, (3.8)

CE[i] =

 CE[i− 1] +Mα(i) 1 < i ≤ sL,

CE[i+ 1] +Mα(i) sR ≤ i < N.

Denote by LR a 2 × N matrix in which column i contains the indices of the last

same-side and other-side receivers of node i (denoted by rSi and rOi, respectively),

when the transmission range of node i is equal to max(d(i, lL), d(i, lR)). Note that

constructing this matrix has a time complexity of O(N2).

The pseudo-code for the optimal algorithm is given in Algorithm 2.2: Optimal Algo-

rithm. The algorithm has the output R∗ as the optimal range assignment. In this

algorithm, using arrays CS, CE and the matrix LR, we find the node bm (if it exists),

and accordingly, we assign the ranges of the other nodes by just keeping the neces-

sary ones to transmit. If no node bm exists, this algorithm gives the same output as

Algorithm 2.1: Near-Optimal Linear-Time Algorithm.

Algorithm 2.2 Optimal Algorithm
Input: exact location of all the nodes

Output: R∗ (optimal transmission range assignment)

1: construct arrays CS, CE and the matrix LR

2: perform Algorithm 2.1: Linear-Optimal Linear-Time Algorithm

3: COST = Cost(RNO)

4: for all b ∈ {1, . . . , N} do

5: read nodes rOb and rSb from matrix LR
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6: cost(b, rOb, rSb) = CS[b] + [max(d(b, rOb), d(b, rSb))]
α + CE[rSb] + CE[rOb]

7: if cost(b, rOb, rSb) < COST then

8: COST = cost(b, rOb, rSb)

9: bm = b, rO = rOb and rS = rSb

10: end if

11: denote the next adjacent neighbors of nodes rOb and rSb by nan(rOb) and

nan(rSb), respectively

12: if either nan(rOb) or nan(rSb) exists then

13: select the one which is closer to node b (e.g. nan(rSb))

14: replace the element of LR containing rSb with nan(rSb)

15: if d(b, nan(rOb)) = d(b, nan(rSb)) then

16: replace the element containing rOb in LR with nan(rOb)

17: Goto 5

18: end if

19: end if

20: end for

21: if no node bm has been found then

22: R∗ = RNO

23: else

24: R∗(bm) = max(d(bm, rO), d(bm, rS))

25: R∗(i) = M(i) for all i from s up to bm, and from rO and rS to both ends of

the network correspondingly

26: R∗(k) = 0 for all the remaining nodes k

27: end if

cost(R∗) = COST

Theorem 3. Obtaining R∗ by Algorithm 2.2: Optimal Algorithm, has time complexity

O(N2).

3.2.3 Distributed Range Assignment

In the last algorithm, every node just knows the distances to its adjacent neighbors.

The amount of required information in this case is much less than that of the previous

scenarios. Since each node only requires local information, this algorithm can be

implemented in a distributed manner.
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In the proposed distributed algorithm, each node should wait till it receives data from

one of its adjacent neighbors. It then transmits the data to its other neighbor. The

range assignment RD for this algorithm is thus:

RD(s) = max{M(sR),M(sL)}, (3.9)

RD(i) = M(i) for i 6= s.

If we assume that the N nodes are located on a line according to a uniform distribu-

tion, and independent of one another, then the distances between the adjacent nodes

are independent and identically distributed (i.i.d.) random variables {D1, ..., DN−1},
where Di denotes the distance between nodes i and i+ 1. If the network length and

the number of the nodes go to infinity, these random variables have an exponential

distribution, denoted by exp(λ) with the probability density function given by λe−λx

for x ≥ 0, where λ is the density of the nodes on the line. For a finite-length network,

with a finite number of nodes, we approximate the inter-node distances to have the

same exponential distribution. Under such assumptions, the expected total cost of

the distributed range assignment can be approximated as follows.

Expected Cost '
N−1∑
k=1

k 6=s−1,s

E[(Dk)
α] + E[(max{Ds−1, Ds})α] ' α!

λα

(
N − 1− 1

2α

)
. (3.10)

3.2.4 Identical Transmission Range

When the distances between the nodes are drawn i.i.d. from exp(λ), a simple solution

to the transmission range assignment, for maintaining the network connectivity with

a given probability Pc, is to assign an identical transmission range R(Pc) to all the

nodes in the network. This assignment must satisfy the following inequality:

R(Pc) ≥
− ln(1− P 1/(λL−1)

c )

λ
. (3.11)

Note that Equation (3.11) is similar to the one given in [48] where L is approximated

by N/λ. By ignoring the term -1 in λL − 1, and using the first two terms of the

Taylor series of P
1/(Lλ)
c for variable 1/L in the neighborhood of zero, we obtain the
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following approximation for the lower bound of the identical transmission range:

Rl(Pc) ≈
ln( −λL

ln(Pc)
)

λ
. (3.12)

The range assignment in Equation (3.12) can be used when the only available in-

formation about the network is its density and length. Moreover, using this range

assignment, there is no guarantee that the network will in fact be connected. On

the other hand, the condition of the network being connected is in general stronger

than the condition required for a specific source node in the network to broadcast its

message to all the other nodes in the network.

3.3 Numerical Results

The simulation results are presented for networks with N nodes distributed uniformly

and independently over a line of length L. In simulations, we assume λ = N/L and

α = 2. For each simulation point corresponding to a given density λ, 10, 000 random

networks are generated. For the results comparing the different algorithms, we run

the algorithms on exactly the same networks and obtain the average of the total

consumed energy over the 10, 000 networks.

In Fig. 3.2, we compare the energy consumption of the identical transmission range

assignment of Section 3.2.4 (for different Pc values) with those of the near-optimal

range assignment of Section 3.2.1, the optimal range assignment of Section 3.2.2 and

the distributed range assignment given in Section 3.2.3 for a network with L = 5000

meters. As can be seen in Fig. 3.2, in general, the total consumed energy decreases

as the density of the nodes increases. This can be explained by Equation (3.3), where

nodes with closer distance to each other can communicate with less energy over a

given distance compared to nodes that are further apart. The proposed assignments

significantly outperform the identical transmission range assignment, even for a Pc

value as small as 0.85. Interestingly, both the linear-time near-optimal algorithm and

the distributed algorithm perform practically the same as the optimal algorithm over

the whole range of network densities. For the distributed algorithm, the simulation

results and the analytical results from Equation (3.10) are almost identical.

To obtain a more detailed picture of the relative energy consumption of the proposed

algorithms, we have plotted the histogram of the normalized difference between their
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Figure 3.2: Comparison of the energy consumption of different range assignments.

consumed energy for λ = 0.03 in Fig. 3.3. The normalized difference between the

energy consumption of range assignments R1 and R2 is defined as:

max(cost(R1), cost(R2))−min(cost(R1), cost(R2))

min(cost(R1), cost(R2))
. (3.13)

Fig. 3.3 demonstrates that the normalized difference between the energy consump-

tion of the three proposed algorithms is rather small (less than 10%) for the simu-

lated cases. The simple distributed algorithm and the linear near-optimal algorithm

consume at most 9% and 6% more energy than the complex optimal algorithm, re-

spectively.

Although the difference between the energy consumption of the more complex range

assignment algorithms compared to less complex ones is rather small in networks with

uniformly distributed nodes, there exist network topologies where such differences
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Figure 3.3: The histogram of the normalized differences between the energy con-
sumptions of the proposed optimal, linear near-optimal and distributed algo-
rithms for λ = 0.03.

are large. Fig. 3.4 illustrates two examples of such topologies. In both examples, we

assume that ε1, ε2 � r1, r2, and that ε1 ' ε2, for simplicity. In the network given in

Fig. 3.4(a), assuming that r1 ≥ r2 + ε1 + ε2, and r1 ' r2, the normalized difference in

energy consumptions of the linear near-optimal and distributed algorithms, calculated

by (3.13), is about 100%.

In the network given in Fig. 3.4(b), assuming that r1 ≤ r2 + ε1 + ε2 and r1 + ε1 ≥
r2 + ε2, in the optimal range assignment, node s sends data to node c, that in turn

transmits data to nodes a, b and d. In the linear near-optimal range assignment, node

s transmits data to node d, and thus also covers nodes c and b. Node b then transmits

data to node a. Assuming r1 ' r2, the normalized difference between the consumed

energy of the optimal and the linear near-optimal algorithms is about 100%.
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Figure 3.4: Network topologies where the difference between the consumed energy
of different algorithms (linear near-optimal vs. distributed in (a), and optimal
vs. linear suboptimal in (b)) can be large.

Finally in Fig. 3.5, we show the histogram of the distance d(bm, s) between node bm in

the optimal solution and the source node for 10, 000 generated networks with λ = 0.03.

This corresponds to the same scenarios used for Figs. 3.2 and 3.3. The histogram of

Fig. 3.5 shows that for the majority of cases, node bm does not exist. In most of

the remaining cases, the distance d(bm, s) is relatively small, with the maximum

distance less than 30% of the length of the network. These are the main reasons

behind the small difference among the energy consumption of the three proposed

range assignments in the simulated scenarios as reflected in Figs. 3.2 and 3.3. A

careful inspection of Figs. 3.3 and 3.5 also demonstrates that although there exist

some cases where d(bm, s) is relatively large (about 0.3L), the difference in energy

consumption is relatively low (less than 10%). The reason is that in such cases

although energy is saved in the optimal solution through the coverage of opposite

side nodes by node bm, node bm itself consumes a large amount of energy due to its

large transmission range.
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Figure 3.5: The histogram of the distance between node bm and the source node for
λ = 0.03.



Chapter 4

Energy-Efficient Broadcasting for Cross

Networks

In Chapter 3, we solved the minimum-energy broadcasting problem for linear net-

works. In this chapter, we propose solutions for the same problem, but for cross

networks, where the nodes are located on two perpendicular lines. Our solutions

consist of an algorithm which finds the optimal range assignment in polynomial time

(O(N12)), a near-optimal algorithm with linear time complexity (O(N)), and a dis-

tributed algorithm with time complexity O(1). To the best of our knowledge, this is

the first study presenting an optimal solution for the minimum-energy broadcasting

problem for a 2-D network (with cross configuration). We compare our algorithms

with the broadcast incremental power (BIP) algorithm, one of the most commonly

used methods for solving this problem with time complexity O(N2). We demonstrate

that our near-optimal algorithm outperforms BIP, and that the distributed algorithm

performs close to it. Moreover, the proposed distributed algorithm can be used for

more general two-dimensional networks, where the nodes are located on a grid con-

sisting of perpendicular line-segments. The performance of the proposed near-optimal

and distributed algorithms tend to be closer to the optimal solution for larger net-

works. We prove that the optimal, near-optimal and distributed algorithms perform

the same in the asymptotic regime where N tends to infinity.

4.1 System Model

We consider a set of N nodes (denoted by N ) located on a cross, including a specific

node, s, as the source. We assume that the exact location of the nodes is known. The

33
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source node can be located anywhere on the cross and broadcasts the data to all the

other nodes in the network. This is to be performed in an energy-efficient multi-hop

fashion.

We assume that all the nodes are equipped with an omnidirectional transmitter.

Moreover, in our study, similar to [6,24,25,31,36,40–43,67], we do not consider other

issues such as channel contention and interference.

To solve this broadcasting problem, we need to assign a transmission range to each

node so that the total consumed energy is minimized, while the data is delivered

to all the nodes of the network. A transmission range assignment R is a function

R : N → R+, where R(i) is the assigned transmission range to node i ∈ N . We denote

the consumed energy of the range assignment R by cost(R) and assume that it can

be calculated, up to a constant multiplicative factor, using the following equation:

cost(R) =
∑
k∈N

Rα(k), (4.1)

where α is the path-loss exponent whose value is normally between 2 and 6 [3]. By

using the Minimum-Energy Range Assignment (a.k.a, Optimal Range Assignment),

denoted by R∗, every node in the network will receive the data transmitted by the

source node with the minimum possible cost.

A node is assumed to have circular coverage up to its transmission range, and any

other node located in the transmission range of this node can receive the transmitted

data. Some definitions and notations are presented in Fig. 4.1.

According to the circular transmission range of the nodes, as shown in Fig. 1, for

every node a ∈ N , we have R(a) = covRsame(a) ≥ covR⊥(a) ≥ covRoppo(a).

In the following, we provide some definitions needed throughout the chapter.

Definition 1. A cross network has five segments, as shown in Fig. 4.2. Segments I,

III, IV and V are half-lines, while Segment II is the line-segment bounded by the source

node and the intersection of the two perpendicular lines. For any node a ∈ N \ {s},1
we denote the segment on which it is located by Sa.2

1For any two sets A and B, notation A \ B denotes the set of all elements which are members of
A but not members of B.

2By definition, the source node is not on any segment.



CHAPTER 4. ENERGY-EFFICIENT BROADCASTING FOR CROSS ... 35

a 

Figure 4.1: Some definitions/notations for networks on a cross.

s 

I II 

IV 

III 

V 

Figure 4.2: Segmentation of cross networks.

Definition 2. On each segment, the closest node to the source node is called the first

node of that segment. The last node of a segment is the node farthest away from the

source on that segment. We denote the first node and the last node of any segment S
by fS and lS , respectively.3

3If Segment II is empty, we assume that node s takes all the functionalities of node lII.
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We denote the set of nodes N \ {s, lII, fIII, fIV, fV} by N̂ .

Definition 3. Node a is after node b on the same segment, if Sa = Sb and d(s, a) >

d(s, b). For these two nodes, we say node b is before node a.

Definition 4. For any node a ∈ N \ {s}, we call the first node after a on Sa, the

next adjacent neighbor of node a, and we denote it by na. Furthermore, we define

M(a) = d(a, na). If node a is the last node on its segment, as it does not have a next

adjacent neighbor, we define M(a) = 0.

Fig. 4.3 illustrates the next adjacent neighbor of some nodes in a cross network.

Figure 4.3: The next adjacent neighbors of nodes a, b, c, d and e.

Definition 5. For assignment R, we say that node a ∈ N \ {s} has increased

(transmission) range, if R(a) > M(a).

Definition 6. In a cross network utilizing transmission range assignment R, for any

node a ∈ N \ {s}, we call the set of all nodes located after node a on Sa, that are

within the transmission range of node a, the same-segment receivers of node a.

We call the set of nodes on segments other than Sa that are within the transmission

range of node a, the other-segment receivers of node a. The union of these two

sets for node a is called the receivers of node a.
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Definition 7. In a cross network utilizing transmission range assignment R, for any

two nodes a, b ∈ N , node b receives the data via a path (starting from the source

node) containing node a, if for node b to receive the data, node a has to transmit with

R(a)(6= 0). In other words, if node a does not transmit, node b will not receive the

data (at all). We show this relationship by b
R← a. We show the case where node b

can receive the data even if node a does not transmit by b
R8 a.

This concept is important to note, because a node has to receive the data first to be

able to transmit it to other nodes. So, if b
R← a, first node a has to transmit the data

with R(a), then node b will be able to transmit it to other nodes.

Also note that for nodes a and b, the relation b
R← a does not necessarily mean that

node b receives the data in just one hop from node a. It means that the data travels

through node a to get to node b, and this is the only way for node b to receive it.

Another important property of this concept is that for any two nodes a, b ∈ N , we

can have either a
R← b or b

R← a, and not both. But we can have a
R8 b or b

R8 a or

both.

Definition 8. In a cross network utilizing transmission range assignment R, we call

those receivers b of node a ∈ N , the intended receivers of a, if for all of them,

we have b
R← a. We denote the set of intended receivers of node a with transmission

range R(a) by IRa .

4.2 Proposed Range Assignments

In the following, we explain our proposed range assignments, starting from the optimal

one, followed by the near-optimal assignment and finally the distributed one.

4.2.1 Optimal Range Assignment

One of our main contributions is to prove that in the optimal range assignment, there

exists a small (and independent from N) set of nodes with increased transmission

range, and the other nodes have either 0 or the distance to their next adjacent neighbor

as their transmission range. Also, we provide an algorithm with polynomial time

complexity in N to find the optimal assignment for the nodes on a cross.

An upper bound of eight on the number of nodes with increased transmission range

in the optimal range assignment is established in the following theorem.
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Theorem 4. In the optimal range assignment for a cross network, denoted by R∗,

there exist at most three nodes with increased transmission range in N̂ . All the other

nodes in N̂ have either 0 or the distance to their next adjacent neighbor as their trans-

mission range. The optimal transmission range of a node in the set {s, lII, fIII, fIV, fV}
can be equal to its distance to any other node in the network.

For proving this theorem, we first introduce some lemmas.

Lemma 2. For any node a ∈ N , if R∗(a) 6= 0, then IR
∗

a 6= ∅.

Lemma 3. For any given set {a1, a2, · · · , aW} of positive numbers, where W is an

arbitrary integer, and for any α ≥ 2, we have:(
W∑
k=1

ak

)α

≥
W∑
k=1

aαk . (4.2)

Corollary 2. To transmit data on a line from node a to node b with minimum energy

consumption, the data has to be transmitted hop by hop using the nodes in between

transmitter and receiver. This means that node a transmits the data to node na, and

node na transmits to its next adjacent neighbor, and so forth till the data reaches node

b. We denote this transmission scheme by a 99K b, where all the nodes from a up to

b use their M values as their transmission ranges.

Lemma 4. In a cross network utilizing transmission range assignment R, if node

a ∈ N \{s} receives the data, all the nodes before it on its segment have also received

the data.

Proof. This is a direct result of the circular transmission range assumption of the

nodes.

Corollary 3. In a cross network utilizing transmission range assignment R, for nodes

a, b ∈ N \ {s} where Sa = Sb, and node b is after node a, we have a
R8 b.

Lemma 5. In a cross network utilizing transmission range assignment R, for nodes

a ∈ N \ {s} and c ∈ N , if a
R← c, then we have b

R← c for all nodes b after node a on

Sa.

Proof. The proof is by contradiction. Suppose for two nodes a and b on the same

segment, where node b is after node a we have a
R← c, but b

R8 c. This means that if

node c does not transmit the data, then node a will not receive it, but node b receives

it from another path. This contradicts Lemma 4.
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The contraposition of Lemma 5 gives us the following corollary.

Corollary 4. In a cross network utilizing transmission range assignment R, if b
R8 c

for node b ∈ N \{s}, then we have a
R8 c for all nodes a before node b on its segment.

Throughout the chapter, we implicitly use the following lemma.

Lemma 6. In a cross network utilizing transmission range assignment R, any node

a ∈ N is the intended receiver of at most one other node.

Lemma 7. In a cross network utilizing transmission range assignment R, if for nodes

a, b ∈ N we have b
R8 a, then the intended receivers of node a on any segment S (if

any exists) are after the last receiver of b on S, which is denoted by rRb,S (if this node

exists).

Proof. Node b receives the data via a path that does not contain node a, so if node

a does not transmit, node b and (according to Lemma 4) all the nodes from fSb up

to b on segment Sb receive the data. Having the circular transmission range of the

nodes in mind, we can see that when node b transmits the data, all the nodes from

fS (if S 6= Sb) or node b (if S = Sb) up to rRb,S on segment S receive the data. So

all of the nodes from fS to rRb,S on segment S, receive the data even if node a does

not transmit. Hence they are not in the set IRa . Therefore, for node a to have some

intended receivers on segment S, they have to be after node rRb,S .

Lemma 8. For every node a ∈ N̂ , R∗(a) is either zero or greater than or equal

to M(a). Furthermore, if this node has an increased transmission range, i.e., if

R∗(a) > M(a), it must have at least one intended receiver on a segment other than

Sa.

Proof. According to Lemma 2, node a does not have 0 < R∗(a) < M(a), if it has no

intended receivers. Using contradiction, suppose R∗(a) < M(a), while it has some

intended receivers. This implies that node a does not have any receivers on Sa, so

all the nodes in IR
∗

a are on other segments. We denote the farthest receiver of node

a when it transmits with R∗(a) by rR
∗

a . For the node k defined below, we have
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d(a, rR
∗

a ) > d(k, rR
∗

a ).

k =



s, if a is on Segment I;

s, if a is on Segment II; 4

fIII, if a is on Segment III;

fIV, if a is on Segment IV;

fV, if a is on Segment V.

(4.3)

Since node a does not have any same-segment receivers, if we have another assignment

R with R(a) = 0, R(k) = max{R∗(k), d(k, rR
∗

a )}, and R(i) = R∗(i), ∀i ∈ N \ {k, a},
all the nodes will receive the data, but less energy will be consumed. This contradicts

the optimality of R∗.

The proof of the next part is also by contradiction. Suppose R∗(a) > M(a), but all

of the intended receivers of node a are on its own segment. According to Corollary 2,

and since all the intended receivers of node a are on the same line, by using a 99K rR
∗

a,Sa

the data will be delivered to all the intended receivers of node a with less energy. In

this case node a does not have increased range, which contradicts our assumption.

Lemma 9. In a cross network utilizing transmission range assignment R, a node on

one of the Segments III, IV or V does not have intended receivers on Segment II.

Proof. As a result of the circular transmission range assumption of the nodes, if a

node on one of the Segments III, IV or V receives the data, all the nodes on Segment

II have already received the data.

Lemma 10. Consider a cross network that utilizes a range assignment R, for which

R(a) 6= 0 and R(b) 6= 0 for nodes a, b ∈ N̂ (node a being closer to source, if they are

on the same segment). If node a has an intended receiver after the last same-segment

receiver of node b (node rRb,Sb), then assignment R is not the optimal assignment.

Proof. The proof is by contradiction. Suppose R = R∗, and node a ∈ N̂ has an

intended receiver after the last same-segment receiver of node b ∈ N̂ . All the same-

segment receivers of node b are within the transmission range of node a. Three cases

4If node a is located on Segment II, it must have R∗(a) > M(a) to cover some nodes on Segments
III, IV or V. Hence, if 0 < R∗(a) < M(a), all the other-segment receivers of a are located on Segment
I.
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may exist:

1) Nodes a and b are on the same segment and covRsame(a) ≥ covRsame(b).

2) Node a is on a segment aligned to the segment of node b.

3) Node a is on a segment perpendicular to the segment of node b.

Case (1): According to Corollary 3, a
R8 b. The whole transmission circle of node b

is within the range of node a. So all the receivers of b can receive the data from a,

i.e., IRb = ∅, which contradicts the optimality of assignment R (Lemma 2).

Case (2): For node a to have an intended receiver on Sb, we can not have Sa = III

and Sb = II (according to Lemma 9). For the other cases, node a having an intended

receiver after rRb,Sb , results in having the whole circular range of b within the range of

a. Hence, all the receivers of b can receive the data from a. To be sure about the

reception of data by node a, we define node k as follows:

k =



s, if b is on Segment I, and a is on either Segments II or III;

fIII, if b is on Segment III, and a is on Segment II;

s, if b is on Segment III, and a is on Segment I;

fIV, if b is on Segment IV, and a is on Segment V;

fV, if b is on Segment V, and a is on Segment IV.

(4.4)

We can have another assignment, R′, with R′(b) = 0, R′(i) = R(i), ∀i ∈ N \ {k, b},
and R′(k) = max{d(k, roRb ), R(k)}, where roRb denotes the farthest other-segment

receiver of node b when it transmits with R(b). Note that since k
R8 b (Corollary 3),

node b has no effect on the delivery of data to node k. Using R′ all the nodes will

receive the data with less energy, which contradicts the optimality of assignment R.

Case (3): Similar to the previous case, and according to Lemma 9, for node a to have

an intended receiver on Sb, we can not have Sa = IV or Sa = V, while Sb = II. Define
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node k′ as follows:

k′ =



s, if b is on Segment I, and a is on either Segments IV or V;

fIII, if b is on Segment III, and a is on either Segments IV or V;

fIV, if b is on Segment IV, and a is on one of the Segments I, II or III;

fV, if b is on Segment V, and a is on one of the Segments I, II or III.

(4.5)

We can have another assignment, R′, with R′(b) = 0, R′(i) = R(i), ∀i ∈ N \ {k′, b},
and R′(k′) = max{d(k′, roRb ), R(k′)}, where roRb denotes the farthest other-segment

receiver of node b when it transmits with R(b). Note that since k′
R8 b (Corollary

3), node b has no effect on the delivery of data to node k′. Using R′ all the nodes

will receive the data with less energy, which contradicts the optimality of assignment

R.

The following corollary is a direct result of Lemma 10.

Corollary 5. If node a ∈ N̂ does not have increased transmission range, and node

na receives the data from another node, then R∗(a) = 0.

Lemma 11. Consider a cross network that utilizes the optimal assignment R∗. For

nodes a, b ∈ N̂ , if R∗(a) > M(a) and R∗(b) > M(b), we have either a
R∗← b or b

R∗← a.

Proof. The proof is by contradiction. Suppose nodes a and b have increased range,

and we have a
R∗8 b and b

R∗8 a. Since nodes a and b have increased range, according

to Lemma 8, they must have intended receivers on segments other than their own.

According to Lemmas 7 and 10, none of them has other-segment intended receivers

on Sa and Sb. For any of the other segments, e.g., S, using Lemma 7, the intended

receivers of node a on S have to be after rR
∗

b,S and the intended receivers of node b on

S have to be after rR
∗

a,S , which is impossible and contradicts our assumption.

Lemma 12. In a cross network, utilizing R∗, a node in N̂ with increased transmission

range on Segment II must have at least one intended receiver on Segment I.

Proof. The proof is by contradiction. Suppose node a on Segment II, has increased

range in R∗, but does not have any intended receivers on Segment I. According to

Lemma 8, node a must have at least one intended receiver on either Segments III,
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IV or V. In this case, we can have another assignment, R, with R(i) = R∗(i), ∀i ∈
N \{lII, a}, R(a) = d(a, lII),

5 and R(lII) = max{R∗(lII), d(lII, r
R∗
a )}, where rR

∗
a denotes

the farthest intended receiver of node a when it transmits with R∗(a). By using R, the

data will be sent to all the nodes with less energy, which contradicts the optimality

of R∗.

Lemma 13. In a cross network, utilizing R∗, at most one node in N̂ with increased

transmission range exists on Segment II.

Proof. The proof is by contradiction. Suppose in R∗ two nodes in N̂ with increased

range exist on Segment II. We denote the node closer to the source by a, and the

node closer to the intersection by b. We know that a
R∗8 b (based on Corollary 3), so

according to Lemma 11, we have b
R∗← a.

According to Lemma 12, both nodes a and b must have intended receivers on Segment

I. Since a
R∗8 b, the intended receiver of node b on Segment I is after node rR

∗
a,I on

Segment I (Lemma 7). This results in having the whole transmission circle of node

a being inside the transmission circle of node b. To minimize energy (according to

Corollary 2) for delivering data from a to b, we can use a 99K rR
∗

a,II (or a 99K b, if node

b is before node rR
∗

a,II), while all the other nodes transmit as before. This way all the

nodes receive the data, but node a does not have increased range, which contradicts

our assumption.

Lemma 14. For a cross network utilizing the optimal assignment R∗, no more than

two nodes with increased range exist on a segment.

Proof. We first study some properties of the case where in R∗, two nodes from N̂ on

one segment have increased transmission range. Then we show that no other node

with increased range in R∗ can exist on that segment.

Assume nodes a and b have increased range and node a is before node b on the same

segment. According to Lemma 8, these two nodes must have some intended receivers

on other segments. We know that a
R∗8 b (based on Corollary 3), so according to

Lemma 11, we have b
R∗← a.

According to Lemma 7, the intended receivers of node b on any segment must be after

the last intended receiver of a on that segment. If node b has any intended receivers

5We can have a 99K lII to save even more energy. For this, we must have no other nodes with
increased range on Segment II, which is proved in Lemma 13.
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on the segment aligned to its segment, the whole transmission circle of node a will

fall into the range of node b. In this case we just need to deliver the data from node

a to node b, and node b transmits the data to all the other-segment receivers of node

a. To minimize energy (according to Corollary 2) for delivering data from a to all

its same-segment receivers (when it transmits with R∗(a)) we can use a 99K rR
∗

a,Sa (or

a 99K b, if node b is before node rR
∗

a,Sa , and b covers the rest), while all the other nodes

transmit as before. Note that, according to Corollary 5, the nodes from na up to rR
∗

a,Sa

that do not have increased range (i.e., except for node b, if b is before rR
∗

a,Sa), have zero

as their transmission range, and have no effect on the delivery of data to other nodes.

This means that all the nodes receive the data while node a does not have increased

range, which contradicts our assumption. Therefore, the only possible case is that

node a has some intended receivers (beyond the range of b) on the aligned segment

to its segment, and node b has some intended receivers (beyond the range of a) on

(one of the) perpendicular segments to its segment (except for Segment II, according

to Lemma 9).

Now, we prove that no other node with increased range exists on segment Sa. We

showed in Lemma 13 that no more than one node with increased range exists on

Segment II. So, the proof of this lemma for Segment II is already given. Two other

cases for the segment of interest remain:

1) Segment I.

2) One of the Segments III, IV or V.

Case (1): If node a just has intended receivers on Segment II, then node b has an

intended receiver on another segment, which results in covering the whole transmission

circle of node a, which as we showed before, is not possible. This means that node

a has some intended receivers on Segments III, IV, or V. The rest of the proof is by

contradiction. Suppose nodes a, b and c, all located on Segment I, have increased

range. Without loss of generality, assume that node c is after node b, which is after

node a. According to Corollary 3, a
R∗8 c and b

R∗8 c. For node c to have increased

range, according to Lemma 8, it has to have some intended receivers on other segments

rather than Sc. If node c has an intended receiver on one of the other segments,

according to Lemma 7, that node is after the last intended receiver of nodes a and b

on that segment. Due to the circular shape of transmission range of nodes, if node c

has any intended receivers on other segments, all the intended receivers of node b on

other segments will fall into the range of node c, and we just need to deliver the data
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from node b to all its same-segment receivers. To minimize the energy, according to

Corollary 2, we can use b 99K rR
∗

b,Sb (or b 99K c, if node c is before node rR
∗

b,Sb), while all

the other nodes transmit as before, in which node b does not have increased range.

This contradicts our assumption.

Case (2): According to Lemma 9, the nodes on Segments III, IV and V do not have

intended receivers on Segment II. Using the same approach as in case (1), while

ignoring Segment II, the lemma can be proved.

Lemma 15. Consider a cross network that utilizes the optimal assignment R∗. If a

node with increased range exists on Segment II, then the nodes on Segments III, IV

and V do not have intended receivers on Segment I.

Proof. The proof is by contradiction. Suppose node a with increased range is located

on Segment II, and node b on one of the Segments III, IV or V has intended receivers on

Segment I. We know that a
R∗8 b (due to the circular transmission ranges of the nodes),

so according to Lemma 7, the intended receivers of node b on Segment I are after

node rR
∗

a,I . We can have another assignment, R, with R(i) = R∗(i), ∀i ∈ N \ {lII, a},
R(a) = d(a, lII),

6 and R(lII) = max{R∗(lII), d(lII, r
R∗
a )}, where rR

∗
a denotes the farthest

receiver of node a on Segments III, IV and V, when it transmits with R∗(a). By

using R, the data will be sent to all the nodes with less energy, which contradicts the

optimality of R∗.

Lemma 16. Consider a cross network that utilizes the optimal assignment R∗. If

two nodes with increased range exist, each on one of the Segments I and II, then there

is no other node with increased range.

Proof. Suppose nodes a and b with increased range are located on Segments I and II,

respectively. According to Lemma 12, node b has an intended receiver on Segment I.

If a
R∗8 b, then according to Lemma 7, the intended receivers of b on Segment I are

after the last same-segment receiver of a, which, according to Lemma 10, contradicts

the optimality of R∗. So we have a
R∗← b.

According to Lemma 7, the intended receivers of node a on any segment are after the

last intended receiver of b on that segment. If node b does not have any receivers on

Segments III, IV and V, or node a has some intended receivers on either Segments

II or III, the whole transmission circle of node b will fall into the range of node a.

6We can have a 99K lII to save even more energy.
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In this case, we just need to deliver the data to node a, and node a transmits the

data to all the receivers of node b. Using another transmission range assignment R,

with R(i) = R∗(i), ∀i ∈ N \ {s, b}, R(b) = 0, and R(s) = max{R∗(s), d(s, rR
∗

a,I )},
all the nodes receive the data with less energy, which contradicts the optimality of

R∗. Therefore, the only possible case is that node b has some intended receivers on

Segment III, and node a has some intended receivers (beyond the range of b) on (one

of the) Segments IV and V.

Now suppose that we have a third node with increased range (denoted by c). There

will be four cases for the location of node c:

1) Node c is on Segment I.

2) Node c is on Segment II.

3) Node c is on Segment III.

4) Node c is on either Segments IV or V.

Case (1): Without loss of generality, we assume that node c is after node a. According

to Corollary 3, a
R∗8 c, and since we have a

R∗← b, so we have b
R∗8 c. For node c to

have increased range, according to Lemma 8, it has to have some intended receivers

on other segments rather than Sc. If node c has an intended receiver on one of the

other segments, according to Lemma 7, that node is after the last intended receiver

of nodes a and b on that segment. If node c has any intended receivers on another

segment, all the intended receivers of node a on other segments will fall into the range

of node c, and we just need to deliver the data from node a to node c. To minimize

the energy, according to Corollary 2, we can use a 99K rR
∗

a,I (or a 99K c, if node c is

before node rR
∗

a,I ), while other nodes transmit as before. According to Lemma 10, no

nodes on Segments II, III, IV, or V have receivers after rR
∗

a,I . Hence node c receives the

data from the nodes on its segment. This way, all the nodes receive the data, while

node a does not have increased range. This contradicts our assumption. So this case

is not possible.

Case (2): In Lemma 13, we showed that this case is not possible.

Before discussing the remaining cases, we prove that for a node d on either Segments

IV or V, if we have d
R∗← a, node d does not cover all the receivers of node b on

Segment III.

The proof is by contradiction. Suppose for node d, located on one of the Segments

IV or V, we have d
R∗← a, and also all the receivers of b on Segment III are in the

range of node d. Using another transmission range assignment R, with R(i) = R∗(i),
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∀i ∈ N \ {s, b}, R(b) = 0, and R(s) = max{R∗(s), d(s, rR
∗

b,I )}, all the nodes receive

the data7 with less energy, which contradicts the optimality of R∗.

Also, note that for any node c on Segments III, IV or V, we have b
R∗8 c (Lemma 9).

Since the nodes on Segments III, IV or V do not have intended receivers after rR
∗

b,I

on Segment I (Lemma 15), node a does not receive the data via a path containing a

node on Segments III, IV or V. So for the remaining two cases, we have b
R∗8 c and

a
R∗8 c, which according to Lemma 11, results in having c

R∗← b and c
R∗← a.

Case (3): We have c
R∗← a. Node a has no intended receivers on Segment III. So, for

a node (e.g., c) on Segment III, we have c
R∗← a, if c is after rR

∗

b,III, and a node (e.g., d)

on a segment other than Segments I and II exists that d
R∗← a and d transmits to the

nodes after rR
∗

b,III. Otherwise, if c is within the range of b, we will have c
R∗8 a. Also,

if c is after rR
∗

b,III and node d does not exist, we will have c
R∗← e, where e is a receiver

of node b on Segment III, which results in c
R∗8 a. But we proved that if such node

(node d on one of the Segments IV or V, for which we have d
R∗← a) exists, it does not

cover all the receivers of node b on Segment III. So this case is not possible.

Case (4): We have c
R∗← a and c

R∗← b. According to Lemmas 9 and 15 node c has

no intended receivers on Segments I and II. The other-segment intended receivers of

node c on the two other remaining segments are after the last receivers of nodes a

and b on those segments, according to Lemma 7. In both cases, all the receivers of

node b on Segment III fall into the range of node c.8 We proved that if such a node

(node d = c on one of the Segments IV or V, where (d = c)
R∗← b) exists, it does not

cover all the receivers of node b on Segment III. So this case is not possible.

Proof of Theorem 4. Two cases may happen:

1) A node with increased range does not exist on Segment II.

2) A node with increased range exists on Segment II.

Case (1.a):

First we consider the case where only one node on any segment (except for Segment

II) has increased range in R∗. Suppose there are four nodes with increased range in

R∗, and each node is located on one of the Segments I, III, IV and V. Denote these

7Node a receives and transmits to all the nodes covered by R∗(a) and R∗(b) on Segments IV and
V (including Sd). Node d receives and transmits to all the nodes covered by R∗(b) on Segment III.
The rest of the nodes receive the data similar to when we use R∗.

8If c has intended receivers on the perpendicular segment to its segment, we have covR
∗

⊥ (c) >
covR

∗

oppo(b). If c has intended receivers on the aligned segment to its segment, we have covR
∗

⊥ (c) ≥
covR

∗

oppo(c) > covR
∗

⊥ (a) > covR
∗

⊥ (b) ≥ covR∗

oppo(b).
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nodes by a, b, c and d. Each of these nodes has to have some intended receivers on

other segments than its own segment (Lemma 8). Without loss of generality, and

according to Lemma 11, assume b
R∗← a, c

R∗← b (which results in c
R∗← a) and d

R∗← c

(which means d
R∗← a and d

R∗← b). So we have a
R∗8 d, b

R∗8 d and c
R∗8 d. According to

Lemmas 7 and 10, node d does not have intended receivers on Sa, Sb and Sc. Since

the nodes on Segments III, IV and V do not have intended receivers on Segment

II (Lemma 9), the only possible case is that node d is on Segment I and has some

intended receivers on Segment II. This means that if node d does not transmit, some

nodes on Segment II will not receive the data. Therefore, all the nodes on Segments

II, IV and V will not receive the data (circular transmission of the nodes results in

reception of data by all the nodes on Segment II before all the nodes on Segments

III, IV and V). This contradicts with d
R∗← a, d

R∗← b and d
R∗← c. Therefore, node d

does not have any intended receivers on other segments, which according to Lemma 8

contradicts the optimality of R∗. So, in this case, at most three nodes with increased

range exist in R∗.

Case (1.b):

Now assume that in R∗, two nodes from N̂ on one segment (except for Segment

II) have increased transmission range. Assume nodes a and b have increased range

and node a is before node b on the same segment. In the proof of Lemma 14, we

showed that b
R∗← a. Also, we showed that the only possible case is that node a has

some intended receivers on the aligned segment to its segment,9 and node b has some

intended receivers (beyond the range of a) on (one of the) perpendicular segments to

Sa.
Before further discussion, we prove that for a node d on a segment perpendicular to

Sa, if we have d
R∗← b, node d does not cover all the receivers of node a on a segment

aligned to Sa.
The proof is by contradiction. Suppose for node d, located on a perpendicular segment

to Sa, we have d
R∗← b, and also all the receivers of a on a segment aligned to Sa are

in the range of node d. Using a 99K rR
∗

a,Sa (or a 99K b, if node b is before node rR
∗

a,Sa),

while all the other nodes transmit as before, all the nodes in the network receive the

data.10 This way, node a does not have increased range, which is a contradiction.

9If Sa = I, this aligned segment is just Segment III (see proof of Lemma 14).
10Node b receives and transmits to all the nodes covered by R∗(a) and R∗(b) on the perpendicular

segments to Sa (including Sd). Node d receives and transmits to all the nodes covered by R∗(a) on
a segment aligned to Sa. The rest of the nodes receive the data similar to when we use R∗.
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Now suppose that we have a third node with increased range (denoted by c). There

will be four cases for the location of node c (except for Segment II):

1.b.i) Node c is on the same segment as nodes a and b, i.e., segment Sa.
1.b.ii) Node c is on the segment aligned to the segment of nodes a and b.

1.b.iii) Node c is on a segment perpendicular to the segment of nodes a and b, on

which node b has intended receivers.

1.b.iv) Node c is on a segment perpendicular to the segment of nodes a and b, on

which node b does not have any intended receivers.

Case (1.b.i): This case is not possible, according to Lemma 14.

Case (1.b.ii): First we prove that c
R∗← a. Using proof by contradiction, we assume

c
R∗8 a. We know that node a has intended receivers on Sc. According to Lemma 7,

the intended receivers of a on Sc are after the last same-segment receiver of c, which,

according to Lemma 10, contradicts the optimality of R∗. Thus we have c
R∗← a.

Now we prove that b
R∗8 c. Suppose node c does not transmit. Since we have a

R∗8 c,

node a receives the data, and transmits it. If node b is within the range of node

a, then b will receive the data as well, and obviously we have b
R∗8 c. According to

Lemma 10, no nodes on other segments have receivers after rR
∗

a,Sa . If node b is after

rR
∗

a,Sa , it still receives the data via the nodes on its segment. So, in this case also, we

have b
R∗8 c.

Since b
R∗8 c, based on Lemma 11 we have c

R∗← b. This implies node c is not within

the range of a. Node b has no intended receivers on Sc. So, for node c we have c
R∗← b,

if c is after rR
∗

a,Sc , and a node (e.g., d) on a segment other than Sa and Sc exists that

d
R∗← b and d transmits to the nodes after rR

∗
a,Sc . If c is after rR

∗
a,Sc and such node d does

not exist, we will have c
R∗← e, where e is a receiver of node a on Sc, which results in

c
R∗8 b. Therefore, node d on one of the perpendicular segments to Sa and Sc exists,

and we have d
R∗← b. Node d covers all the receivers of node a on segment Sc. This

contradicts what we proved before studying the cases. Therefore, this case is not

possible.

Case (1.b.iii): First we prove that c
R∗← b. Using proof by contradiction, we assume

c
R∗8 b. We know that node b has intended receivers on Sc. According to Lemma 7

the intended receivers of b on Sc are after the last same-segment receiver of c, which,

according to Lemma 10, contradicts the optimality of R∗. So we have c
R∗← b.

Knowing b
R∗8 c, and using Corollary 4, we have a

R∗8 c. So, according to Lemma

11, c
R∗← a. If node c has an intended receiver on Sa, according to Lemma 7, it
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transmits to a node after the last same-segment receiver of a, which, according to

Lemma 10, contradicts the optimality of R∗. So, node c has no intended receiver on

Sa. The intended receivers of node c on the other remaining segments are after the

last receivers of nodes a and b on those segments, according to Lemma 7. This results

in having all the receivers of node a on the segments aligned to Sa to fall into the

range of node c.11 Similar to the Case (1.b.ii), if such node (node d = c on one of the

perpendicular segments to Sa, where (d = c)
R∗← b) exists, it does not cover all the

receivers of node a on the segments aligned to Sa. So this case is not possible.

Case (1.b.iv): First we prove that c
R∗8 a. Using proof by contradiction, we assume

c
R∗← a, and thus a

R∗8 c. If node c does not transmit, node a receives the data, and

transmits it. Using the same approach as in case (1.2), we have b
R∗8 c. So, according

to Lemma 11, we have c
R∗← b. Similar to the previous case, node c can not have

increased range, as it does not have any intended receivers on other segments.

So, Case (1.b.iv) requires c
R∗8 a. According to Lemma 11, we have a

R∗← c, which

based on Lemma 5 results in b
R∗← c.

Now, using contradiction, we prove that no fourth node with increased range can

exist. Suppose a fourth node with increased range, denoted by d, exists. We showed

in the previous cases that node d can not be on Sa, the segment aligned to Sa or

the segment perpendicular to Sa on which node b has some intended receivers, while

we have two nodes with increased range on Sa. It cannot be on Segment II as well.

Therefore, node d is on the same segment as node c (Sc). Rename the nodes c and

d so that node d be after node c. Similar to the approach we used to prove c
R∗8 a,

we prove that d
R∗8 a. Hence according to Lemmas 5 and 11, we have a

R∗← d and

b
R∗← d. Also we know that c

R∗8 d (Corollary 3). The intended receivers of node d on

any segment are after the last intended receiver of c on that segment. Similar to the

discussion we had for nodes a and b, here the only possible case is that node d has

intended receivers on one the perpendicular segments to Sd. If we use c 99K rR
∗

c,Sc (or

c 99K d, if node d is before node rR
∗

c,Sc), while all the other nodes use the same ranges,

all the nodes receive the data12 with less energy. This contradicts the optimality of

11If c has intended receivers on the perpendicular segment to its segment, we have covR
∗

⊥ (c) >
covR

∗

oppo(a). If c has intended receivers on the aligned segment to its segment, we have covR
∗

⊥ (c) ≥
covR

∗

oppo(c) > covR
∗

⊥ (b) > covR
∗

⊥ (a) ≥ covR∗

oppo(a).
12All the receivers of c on the perpendicular segments to Sc are covered by d. The receivers of c

on the aligned segments to Sc are covered by d (if the aligned segment is Segment II) or b (which
receives the data from d). That’s because according to Lemma 7, the intended receivers of node b
on those segments are after the last intended receiver of c on them.
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R∗.

Case (2): If a node with increased range exists on Segment I, then according to

Lemma 16, no more nodes with increased range exist. For the rest of the proof, we

assume that no node with increased range exists on Segment I.

First, consider the case where only one node on each of the Segments III, IV and

V has increased range in R∗. The proof is by contradiction. Suppose there are four

nodes with increased range in R∗, and each node is located on one of the Segments

II, III, IV and V. Denote these nodes by a, b, c and d, where node a is located on

Segment II. According to Lemmas 9 and 15, nodes b, c and d do not have intended

receivers on Segments I and II. Without loss of generality, and according to Lemma

11, assume c
R∗← b, d

R∗← c (which results in d
R∗← b). So we have b

R∗8 d and c
R∗8 d.

According to Lemmas 7 and 10, node d does not have intended receivers on Sb and

Sc. Therefore, node d does not have any intended receivers on other segments, which

according to Lemma 8 contradicts the optimality of R∗. So, in this case, at most

three nodes with increased range exist in R∗.

Now, we consider the case where more than one node with increased range may exist

on each of the Segments III, IV and V. According to Lemma 14, no more than two

nodes with increased range exist on each segment. Also, according to Lemma 13, we

have at most one node with increased range on Segment II. So, assume nodes a and b

on one of the Segments III, IV or V have increased range, while we have a node with

increased range on Segment II. We assume that node a is before b. Hence, according

to Corollary 3 and Lemma 11, we have b
R∗← a. If these two nodes are on Segment III,

as they can not have intended receivers on Segments I and II (Lemmas 9 and 15),

they both have intended receivers on Segments IV and V. Node b having intended

receivers on (one of the) Segments IV and V results in having the whole transmission

circle of a within range b, which means that node a does not need to have increased

range. This contradicts our assumption, so this case can not happen. If nodes a and b

are on one of the Segments IV or V (e.g., Segment IV), as they can not have intended

receivers on Segments I and II (Lemmas 9 and 15), they have intended receivers on

Segments III and V. Similar to the approach used in cases (1.1), (1.2) and (1.3), we

can prove that no other node with increased range exists. So, in this case, at most

three nodes with increased range exist in R∗.

To find R∗, one has to search among all the possible assignments, constructed from

all the possible combinations of the nodes with increased transmission range and the
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values of their transmission ranges. Based on Theorem 4, one needs to consider all

the possible combinations of three nodes chosen from N̂ , i.e.,
(
N−5

3

)
choices, and for

each such node, all the N possible range values including zero. For the nodes in the

set {lII, fIII, fIV, fV} too, each node can take any of the N possible range values. For

the source node s, all the non-zero range values can be selected. To describe the eight

nodes with possible increased range, we first define set T to contain all the possible

choices for the three nodes from set N̂ , and concatenate each of the possible choices

for the three nodes with the nodes lII, fIII, fIV, and fV. Therefore, each member

t ∈ T is denoted by {t1, t2, t3, t4, t5, t6, t7}, where t1, t2 and t3 represent the three

chosen nodes, and t4, t5, t6, and t7 denote the nodes lII, fIII, fIV, and fV, respectively.

Set T has (at most)
(
N−5

3

)
members. To search all the possible ranges for each of

the three selected nodes from N̂ , and also the nodes in the set {s, lII, fIII, fIV, fV}, we

construct the set C = N 8. Each member of C, which is denoted by c, is considered as

an 8-tuple of form (c0, c1, c2, c3, c4, c5, c6, c7). The range of the source node is equal to

d(s, c0), and the range of node tj (for 1 ≤ j ≤ 7) is equal to d(tj, cj).

To account for the order in which nodes on different segments transmit data, we also

need to search among all the 5! = 120 different segment orderings. We define set P to

contain all the possible permutations of the Segments {I,II,III,IV,V}. Each segment

ordering p = (p1, p2, p3, p4, p5) ∈ P contains the labels of the segments in the order

they have to be checked. On each segment, we assign ranges to the nodes starting

from the first node up to the last node on that segment. For the source node and the

seven nodes from set T , the range is already assigned as discussed before. For each

remaining node, we assign its M value to the range, if the next adjacent neighbor

of the node has not received the data yet, otherwise, zero is assigned as the range

(based on Corollary 5).

Since all possible assignments do not result in the delivery of data to all the nodes,

we need to construct the desired assignments in a way that the delivery of data to

all the nodes is guaranteed. This is done by using received labels (label r). If a node

receives the data, we tag it by label r. An assignment in which a node without this

label exists, will be ignored. The optimal assignment is the assignment among all the

constructed assignments which has the minimum cost.

To reduce the time complexity of the algorithm, we define N2 sets Ri,j, ∀i, j ∈ N .

Each set Ri,j contains all the nodes that are within the transmission range of node

i, when R(i) = d(i, j). Construction of each of these sets can be done in O(N) time.
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Hence, all these sets can be acquired with time complexity O(N3). Note that the

construction of these sets is performed before the execution of the algorithm, and

thus does not introduce any additional time complexity to the algorithm.

The pseudo code of the algorithm that finds the optimal transmission range assign-

ment (i.e., R∗) is given as Algorithm 1: Optimal Range Assignment. In this algorithm,

by constructing sets P , T , C andRi,j, ∀i, j ∈ N , we search for the at most three nodes

with increased range. In the process of finding the nodes with increased range, we

assign ranges to all the nodes of the network. We then choose the assignment with

the minimum energy consumption as the optimal assignment.

Algorithm 1 Optimal Range Assignment
Input: exact location of all the nodes
Output: R∗ (optimal transmission range assignment)

1: assign cost∗ = +∞
2: construct sets P, T , C and Ri,j ,∀i, j ∈ N
3: for all t ∈ T do
4: for all c ∈ C do
5: for all p ∈ P do
6: clear transmission range assignment R
7: erase the r labels of all the nodes
8: tag node s with label r
9: assign R(s) = d(s, c0)

10: calculate cost(R) = Rα(s)
11: tag all the nodes in set Rs,c0 with label r
12: for k = 1 to 5 do
13: for all nodes n on segment pk (from the first node to the last node) do
14: if node n has not received the data yet (i.e., does not have label r) then
15: stop and go to next p
16: else if n = tj for 1 ≤ j ≤ 7 then
17: assign R(n) = d(n, cj)
18: tag all the nodes in set Rn,cj with label r
19: else if node nn exists and does not have label r then
20: assign R(n) = M(n)
21: tag all the nodes in set Rn,nn with label r
22: else
23: assign R(n) = 0
24: end if
25: update cost(R) = cost(R) +Rα(n)
26: end for
27: end for
28: if all the nodes receive the data and cost(R) < cost∗ then
29: assign cost∗ = cost(R) and R∗ = R
30: end if
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31: end for
32: end for
33: end for

Theorem 5. Algorithm 1: Optimal Range Assignment, finds R∗ with time complexity

O(N12).

Proof. There are O(N11) choices for the selection of nodes in the set T , and range

assignments from C. For each such choice, there are N − 8 remaining nodes whose

range is assigned as either zero or their M value.

A Lower Bound on the Optimal Energy Consumption

In this section, we add a node, denoted by o, to the intersection of the cross network,

and then find the optimal transmission range assignment of the new network. In

the following theorem, we prove that the optimal solution of this new network can

be used to obtain a lower bound on the optimal energy consumption of the original

network.

Theorem 6. The optimal transmission range assignment of a cross network, with

at least one node on either Segments III, IV or V, in which a node is added to the

intersection has cost smaller than or equal to the cost of the optimal transmission

range assignment of the original network.

Before proving the above theorem, we state the following definition and theorem,

which are valid for any wireless network.

Definition 9. Consider a wireless network (of any dimension) in which a source

node broadcasts the data to all the other nodes. Furthermore, consider the set of all

possible transmission range assignments that guarantee delivery of data to all nodes in

the network. The covered space of that network consists of the union of all subspaces

in which a potential receiver will receive the data for any of these transmission range

assignments.

Note that no restriction on the shape of the coverage area of the nodes is assumed in

the above definition. As long as the space is covered by all the transmission range

assignments that guarantee delivery of data to all nodes in the network, the definition

and the following theorem are valid.
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Theorem 7. If some nodes are added to the covered space of a wireless network of

any dimension (in which a source node broadcasts the data to all the other nodes),

the cost of the optimal transmission range assignment of the new network is less than

or equal to that of the original network (without the added nodes).

Proof. According to the definition of the covered space of a network, for the new

network (with the added nodes), all the range assignments of the original network

(defined for the original nodes of the network) deliver the data not only to all the

original nodes, but also to the added nodes as well. Adding the new nodes will result

in being able to have some additional range assignments to deliver the data to all the

(original and new) nodes of the network. So the set of all the range assignments of

the new network contains all the range assignments of the original network plus those

new assignments. The optimal transmission range assignment of the new network has

the minimum cost among all the range assignments, which means it is smaller than

or equal to the cost of the optimal range assignment of the original network.

Finding the covered space of the networks is not a simple task, but for some cases,

like adding a node to the intersection of a cross network (with at least one node on

either Segments III, IV or V), it is easy to see that the node is actually added to a

point which belongs to the covered space of the network.

Proof of Theorem 6. Since we assume circular transmission range for the nodes, de-

livering the data to the node(s) located on Segments III, IV and V results in the

delivery of the data to a potential node located at the intersection. Hence, for all the

assignments of a cross network (with at least one node on either Segments III, IV or

V), a node located at the intersection is in the covered space of the network. The

proof then follows from Theorem 7.

Theorem 8. Finding the optimal transmission range assignment of the network with

an added node at the intersection of a cross network has time complexity O(N9).

Proof. For the new networks, we denote the set of nodes, containing all the nodes

from the original network plus the added node o, as N new = N ∪ {o}. We substitute

the sets N and N̂ by sets N new and N new \ {s, o}, respectively. We also replace all

the nodes in the set {lII, fIII, fIV, fV} by the added node o. By making these changes,

we can easily see that all the lemmas, corollaries and Theorem 4 presented in Section

4.2.1 are valid for the new network. In this new setting, since four nodes each with
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N possible ranges are substituted by only one such node, the search space will be

reduced by a factor of N3. This results in having a time complexity O(N9).

4.2.2 Near-Optimal Range Assignment With Linear Time

Complexity

The focus of the proposed sub-optimal algorithm is to find the nodes that can save

energy by not transmitting, whereas the other nodes only transmit at a power level

that is needed for their next adjacent neighbors to receive the data. As we will find

out later, this algorithm performs close to optimal. In the following, we thus refer to

it as being “near-optimal.”

Similar to the optimal algorithm, and to check all the segment orderings, we define

set P to contain all the 120 possible permutations of the Segments {I,II,III,IV,V}.
For any node n on each of the ordered segments, we assign R(n) = M(n), if node

nn has not received the data through the previously assigned transmission ranges.

Otherwise, we assign R(n) = 0. Here, unlike the optimal algorithm, and to reduce

time complexity, we do not construct sets Ri,j. Instead, we just find the receivers of

a fixed number of nodes (not a function of N). This has time complexity O(N).

To guarantee the delivery of data to all the nodes, we check the first node of Segments

III, IV and V to see if it receives the data or not. If not, we change the range of node

sn13 in the set {s, lII, fIII, fIV, fV} so that it delivers the data to the first node of the

segment of interest. If Segment II is empty, we assume that node s takes all the

functionalities of node lII.

The near-optimal algorithm is described in Algorithm 2: Near-Optimal Linear-Time

Algorithm. It has output RNO as the near-optimal range assignment. In this algo-

rithm we assign the M(.) values to the nodes. We then reassign the transmission

range of the nodes with unnecessary transmission back to zero, to save energy.

Algorithm 2 Near-Optimal Linear-Time Algorithm
Input: exact location of all the nodes
Output: RNO (near-optimal transmission range assignment)

1: assign costNO = +∞
2: construct set P
3: for all p ∈ P do
4: clear transmission range assignment R
5: erase the r labels of all the nodes

13See line 30 of Algorithm 2: Near-Optimal Linear-Time Algorithm, for definition.
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6: tag node s with label r
7: assign R(s) = d(s, fp1), where fp1 denotes the first node on segment p1

8: calculate cost(R) = Rα(s)
9: tag all the receivers of node s with label r

10: for k = 1 to 5 do
11: for all nodes n on segment pk (from the first node to the last node) do
12: if node n has not received the data yet (i.e., is not tagged by label r) then
13: stop and go to next p
14: else if node nn exists and does not have label r then
15: assign R(n) = M(n)
16: tag node nn with label r
17: else
18: assign R(n) = 0
19: end if
20: update cost(R) = cost(R) +Rα(n)
21: end for
22: find mpk

⊥ = arg max
m on segment pk

{covR⊥(m)},mpk
oppo = arg max

m on segment pk

{covRoppo(m)}
23: if pk = I then
24: find mI

II = arg max
m on Segment I

{R(m)− d(s,m)}14

25: else if pk = II then
26: find mII

I = arg max
m on Segment II

{R(m)− d(s,m)}15

27: end if
28: tag all the nodes that receive the data from nodes mpk

⊥ , mpk
oppo, mI

II, or mII
I (if they

exist) with label r
29: if pk 6= I and pk+1 ∈ {III,IV,V} and node fpk+1

has not received the data yet
then

30: reassign R(sn) = d(sn, fpk+1
), where sn =

lII, if pk = II

s, if pk = II, and Segment II is empty

fpk , otherwise

31: tag all the nodes that receive the data from node sn with label r
32: if pk ∈ {III,IV,V} then
33: reassign R(i) = 0 for all nodes i 6= sn on segment pk, for which node ni is a

receiver of node sn
34: end if
35: end if
36: end for
37: if all the nodes receive the data and cost(R) < costNO then

14Node mI
II denotes the node among all the nodes on Segment I, that has the maximum coverage

on Segment II.
15Node mII

I denotes the node among all the nodes on Segment II, that has the maximum coverage
on Segment I.
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38: assign costNO = cost(R) and label RNO = R
39: end if
40: end for

4.2.3 Distributed Range Assignment

In the distributed algorithm, every node in set N̂ just needs to know the distance

to its next adjacent neighbor. In this algorithm, the source node transmits the data

to its two adjacent neighbors in Segments I and II (we will discuss the case where

Segment II is empty later), by having a transmission range sufficient to reach the

farthest one. Any node a ∈ N̂ waits to receive the data for the first time, then

transmits the data to its next adjacent neighbor, i.e., with range M(a).

If a ∈ {lII, fIII, fIV, fV}, in addition to its next adjacent neighbor, node a has to

consider the other three nodes in this set as well. The graph consisting of the nodes

in the set {lII, fIII, fIV, fV}, and all the possible edges between them, is denoted by

G♦, and is illustrated in Fig. 7.2.16 We refer to this graph as the diamond graph.

lII 

fIV 

fIII 

fV 

Figure 4.4: The graph G♦, for which its MST is needed to be found in each of the
nodes in the set {lII, fIII, fIV, fV}.

All the nodes in the set {lII, fIII, fIV, fV} calculate the MST of the graph G♦, e.g.,

using Prim’s algorithm. The transmission range of each of the nodes in the set

{lII, fIII, fIV, fV} is then selected as the largest of the maximum length of the node’s

connected edges in the MST of G♦ and its distance to its next adjacent neighbor.

If Segment II is empty, node s replaces node lII and its range is the largest of the

16If Segment II is empty, node lII will be replaced by node s.
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maximum length of its connected edges in the MST of G♦ and its distance to node

fI.

The distributed range assignment, denoted by RD, is thus given by:

RD(s) =

 max{d(s, fI), d(s, fII)}, if Segment II is not empty;

max{d(s, fI),maxu:(s,u)∈MST (G♦){d(s, u)}}, if Segment II is empty,

(4.6)

RD(a) = max{M(a), max
u:(a,u)∈MST (G♦)

{d(a, u)}}, for a ∈ {lII, fIII, fIV, fV},

RD(a) = M(a), otherwise.

It is easy to see that the distributed range assignment results in all the network

nodes receiving the data. The following theorem shows that the proposed distributed

algorithm, with time complexity only O(1), results in the same range assignment as

the algorithm of [41], with time complexity O(N2).

Theorem 9. The distributed transmission range assignment RD, is the same as the

transmission range assignment of the MST-based algorithm of [41] for the cross net-

work.

Proof. First we find the MST of the graph corresponding to a cross network. The

graph consists of the nodes, as its vertices, and there exists an edge between any two

nodes of the network, with weight equal to the distance between them. We assume

that the weights of the edges are different, and the MST is unique. In the following,

we use the cut17 property of MST, which states that for any cut in the graph, if the

weight of an edge crossing the two partitions of the cut is strictly smaller than the

weights of all other crossing edges, then this edge belongs to the MST of the graph

(for more detail, see, e.g., Theorem 23.1 of [69]). A direct corollary of the cut property

(described as Corollary 23.2 in [69]) is that if we partition a graph into disjoint sets

of vertices, the edge with the minimum weight among all the crossing edges (in the

original graph) between any two disjoint partitions belongs to the MST of the graph.

So one way to construct the MST of a graph is to partition it into disjoint vertex

17A cut [V,V] is a partition of the vertices of a graph into two disjoint subsets V and V that are
joined by at least one edge [68].
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sets, find the MST of the subgraph induced by each set, and link the MST’s via the

minimum weight crossing edge between them.

We partition the network graph into seven (or five, if Segment II is empty) partitions.

The set of partitions consists of the source node alone as one partition, graph G♦as

another partition, and five (or four) other partitions each consisting of just the re-

maining nodes of each segment (i.e., one partition for each segment). If Segment II

is empty, node s will be a node in G♦, and there will be only five partitions.

The MST of the s only partition is s itself, and we already discussed the MST of the

G♦ partition. For any node a ∈ N̂ , we define set Va to contain node a and all the

nodes after that on segment Sa. Set Va contains all the nodes (in set N̂ ) on segment

Sa, that are not in set Va. Consider cut [Va,Va] for the subgraph of segment Sa. Since

all the vertices of this subgraph are on a straight line, the minimum weight (distance)

edge crossing [Va,Va] is between nodes a and b, where nb = a. This edge, according

to the cut property of MST, belongs to the MST of the network graph. Using the

same approach for all the cuts of a subgraph, we find all the connecting edges, which

all together construct a spanning tree of the subgraph. All these edges have to be

included in the MST of each subgraph, and no other edge is necessary for forming a

spanning tree. By connecting the different partitions of the graph using the minimum

weight (distance) edge between any two partitions the MST of the network graph is

obtained. The connecting edge of partition of Segment I and partition of s is the

edge between s and fI. Also, the edge between s and fII is the edge between partition

s and partition of Segment II (if Segment II is not empty). The three remaining

segment partitions are connected to the partition of G♦ by the edges between the

first nodes of each segment (members of partition G♦) and the second nodes of the

same segments (each member of a different partition). We root the tree at s.

In the MST-based transmission range assignment, every node transmits with the

range equal to the maximum edge weight (distance) to its children. By observing

the way that the MST of the network graph is constructed, we can see that the

MST-based transmission range assignment is exactly the same as the distributed

transmission range assignment.
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4.3 Special Case: Source at the Intersection

In this section, we consider cross networks in which the source node is located at

the intersection of the two lines.18 In such networks, we assume that Segment II

still exists, but is empty. Hence, node s takes all the functionalities of node lII.

Furthermore, all the nodes in the set {lII, fIII, fIV, fV} are replaced by the source

node s. By doing this, we can see that all the lemmas, corollaries and Theorem

4 presented in Section 4.2.1 are valid for this special-case network. Since, for this

network, five nodes (s, lII, fIII, fIV, fV), each with N possible ranges are substituted

by only one such node (s), the search space will be reduced by a factor of N4. This

results in having the time complexity of O(N8).

4.4 A More General Case: Grid Networks

We can use the proposed distributed algorithm to find a cost-efficient transmission

range assignment for grid networks with perpendicular line-segments. The structure

of the grid can be arbitrary, e.g., the one shown in Fig. 7.3.

Figure 4.5: A possible structure for grid networks with perpendicular line-segments.

To apply the proposed distributed algorithm, we assume that there is at least one

node on each line-segment of the network. This allows for the construction of dia-

mond graphs for each intersection of the network. One can then run the distributed

18The work in this section is described with more details in [70].
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algorithm on each intersection of the grid network similar to what was done for cross

networks. There may exist multiple diamond graphs, and the MST of each of them

has to be obtained. Note that this can be done in parallel, as there is no dependency

between the different diamond graphs and their MST’s.

In Section 4.6, we compare the distributed algorithm to BIP (with and without the

sweeping procedure), for a two by two square grid network, and show that the per-

formance difference between the two algorithms is rather small, even though our

algorithm is distributed and with time complexity O(1), while BIP is centralized and

with time complexity O(N2).

4.5 Asymptotic Analysis

In this section, we study the properties of the cross networks in the asymptotic regime

where the number of network nodes tends to infinity. This analysis is used to show

that when a large number of nodes are distributed uniformly in the network, the

difference between the cost of different algorithms is small. We perform the analysis

in two steps.

Step 1:

We prove that for cross networks, in which the distance between any two nodes on a

line of the network is less than a constant value δ, the difference between the cost of

the worst range assignment, i.e., the distributed assignment, and the best one, i.e.,

the optimal assignment, is upper bounded by a linear function of δα. Furthermore,

we show that the nodes with increased range are in a certain vicinity of the source,

or the intersection.

Step 2:

We prove that cross networks with uniformly distributed nodes on any fixed total

length L, can exist, in which the distance between any two nodes on a line of the

network is less than any constant value δ ≤ L with probability 1− ε, where ε depends

on the number of nodes in the network, i.e., N . Furthermore, we show that such

networks exist for any (fixed) values of L and δ asymptotically almost surely (a.a.s.

for short).19

19This means that for any (fixed) value of L and δ ≤ L, when N goes to infinity, the probability
1− ε converges to one.
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4.5.1 Step 1:

We consider cross networks where the distance between any two nodes on a segment

is less than a constant value δ. This means that there exists no empty interval

with length δ or more on each of the perpendicular lines. Hence, there exist at

least dd(n1,n2)
δ
e − 1 20 nodes, between any two nodes n1 and n2. The data can be

transmitted from node n1 to node n2 via the nodes between them (n1 99K n2), in at

most dd(n1,n2)
δ
e hops. The length of each hop is at most δ. Thus the cost of sending

data by n1 99K n2 is at most dd(n1,n2)
δ
eδα (based on Corollary 2). Using this result,

we present the following theorems.

Theorem 10. For a cross network, if the distance between any two nodes on each

line of the network is less than a constant value δ, the difference between cost(RD)

and cost(R∗) is less than Kδα, where K is a constant less than 128, in general, and

less than 36 for the special case where the source node is located at the intersection.

Proof. We denote the difference between cost(RD) and cost(R∗), caused by node a

with increased range, or the source node, by Da. When node a transmits the data

with R∗(a), all the receivers of a will receive the data with cost (R∗(a))α. On the

other hand, delivering the data to all those nodes (i.e., the receivers of a in the

optimal assignment), using the distributed assignment results in a different energy

consumption, which we denote by CostDa . So, we have Da = CostDa − (R∗(a))α.

We consider the following four cases for node a to calculate Da.
1) Node a is the source node.

2) Node a is located on Segment I.

3) Node a is located on Segment II.

4) Node a is located on one of the Segments III, IV or V.

We use the following inequality for the optimal assignment throughout the proof:

R∗(a) > (dR
∗(a)

δ
e − 1)δ. (4.7)

Case (1): We have two sub-cases:

1.1) All the receivers of s when it transmits with R∗(s) are on Segments I and II.

1.2) Node s has some receivers on Segments III, IV or V, when it transmits with

R∗(s).

20Notation dre denotes the smallest integer greater than or equal to r.
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Case (1.1): For the distributed approach, node s transmits to nodes fI and fII with

range at most δ. Then we have fI 99K rR
∗

s,I and fII 99K rR
∗

s,II. Knowing that d(fS , r
R∗
s,S) ≤

R∗(s), ∀S ∈ {I,II}, we have:

CostDs ≤ (2dR
∗(s)

δ
e+ 1)δα, (4.8)

and thus

Ds < (2dR
∗(s)

δ
e+ 1)δα − ((dR

∗(s)

δ
e − 1)δ)α (4.9)

α≥2⇒ Ds < 4δα.

Case (1.2): Based on the assumption of having no empty δ-length section, node lII

is located in the δ-neighborhood of the intersection. In the distributed assignment,

node s transmits with range at most δ to reach its neighbors. We have fII 99K lII, then

node lII transmits to nodes fIII, fIV, and fV with range at most
√

2δ, and fS 99K rR
∗

s,S ,

∀S ∈ {I,III,IV,V}.
We know that d(fS , r

R∗
s,S) ≤ R∗(s), ∀S ∈ {I,IV,V}. Also, d(fII, lII) + d(fIII, r

R∗
s,III) ≤

R∗(s). Hence, we have:

CostDs ≤ (4dR
∗(s)

δ
e+ 1 + (

√
2)α)δα. (4.10)

This results in:

Ds < (4dR
∗(s)

δ
e+ 1 + (

√
2)α)δα − ((dR

∗(s)

δ
e − 1)δ)α (4.11)

2≤α≤6⇒ Ds < 16δα.

Case (2): Similar to the previous case, we consider the following two sub-cases:

2.1) All the receivers of a when it transmits with R∗(a) are on Segments I and II.

2.2) Node a has some receivers on Segments III, IV or V when it transmits with

R∗(a).

Case (2.1): We have:
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Da < (2dR
∗(a)

δ
e+ 1)δα − ((dR

∗(a)

δ
e − 1)δ)α (4.12)

α≥2⇒ Da < 4δα.

Case (2.2): In the distributed algorithm the data is sent from fII to lII. Having in

mind that d(fII, lII) + d(fIII, r
R∗
a,III) ≤ R∗(a), we have:

Da < (4dR
∗(a)

δ
e+ 1 + (

√
2)α)δα − ((dR

∗(a)

δ
e − 1)δ)α (4.13)

2≤α≤6⇒ Da < 16δα.

Case (3): Here, node a can be a node with increased range, or node lII, which covers

some nodes on other segments. Similarly, we have two sub-cases:

3.1) All the receivers of a when it transmits with R∗(a) are on Segments I and II.

3.2) Node a has some receivers on Segments I, III, IV or V, when it transmits with

R∗(a). Note that according to Lemma 12, in the optimal assignment, node a must

have some receivers on Segment I.

We can see that for case (3.1), Equation (4.12), and for case (3.2), Equation (4.13) is

valid.

Case (4): Node a can be a node with increased range, or node fSa , and it covers some

nodes on other segments. Following the same approach as in previous cases, one can

show that Inequality (4.13) holds for this case as well.

The maximum difference between the two costs cost(RD) and cost(R∗) happens

if there are three nodes with increased range, and all the nodes in the set

{s, lII, fIII, fIV, fV} cover more than one node. By considering the worst case for

each of these eight nodes, and ignoring the effects that the transmission of data by

each of them has on the receivers of the other nodes, we can obtain the following

rather loose upper bound on cost(RD)− cost(R∗).

cost(RD)− cost(R∗) < Kδα, (4.14)

where K ≤ 128.

For the case where the source node is located at the intersection, the following two
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cases for node a are considered to calculate Da.
1) Node a is the source node.

1) Node a is not the source node.

Case (1): For the distributed approach, node s transmits to nodes fS , ∀S ∈
{I,II,III,IV} with range at most δ. Then we have fS 99K rR

∗
s,S , ∀S ∈ {I,II,III,IV}.

Obviously, d(fS , r
R∗
s,S) ≤ R∗(s), ∀S ∈ {I,II,III,IV}. Therefore:

CostDs ≤ (4dR
∗(s)

δ
e+ 1)δα. (4.15)

Using Equations (4.7) and (4.15), we have:

Ds < (4dR
∗(s)

δ
e+ 1)δα − ((dR

∗(s)

δ
e − 1)δ)α (4.16)

α≥2⇒ Ds < 9δα.

Case (2): In the distributed approach, we have a 99K rR
∗

a,Sa , and similar to Case (1),

node s transmits to nodes fS , ∀S ∈ {I,II,III,IV},S 6= Sa with range at most δ. Then

we have fS 99K rR
∗

a,S , ∀S ∈ {I,II,III,IV},S 6= Sa. We know that d(fS , r
R∗
a,S) ≤ R∗(a),

∀S ∈ {I,II,III,IV},S 6= Sa. Also, we have d(a, rR
∗

a,Sa) ≤ R∗(a). Therefore:

CostDs ≤ (4dR
∗(a)

δ
e+ 1)δα. (4.17)

This results in:

Da < (4dR
∗(a)

δ
e+ 1)δα − ((dR

∗(a)

δ
e − 1)δ)α (4.18)

α≥2⇒ Da < 9δα.

The maximum difference between the two costs cost(Rdist) and cost(R∗) happens if

there are three nodes with increased range, and the source node covers more than

one node. Without considering the effects that the transmission of data by each of

them has on the receivers of the other nodes, we can obtain the following rather loose

upper bound on cost(RD)− cost(R∗).
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cost(RD)− cost(R∗) < Kδα, (4.19)

where K ≤ 36.

Theorem 11. For a cross network, if the distance between any two nodes on each seg-

ment is less than δ, the nodes with increased range in R∗ are within a 4δ-neighborhood

of the source, or a 6δ-neighborhood of the intersection.

Proof. For R∗ to be optimal, we must have Da ≥ 0, where Da is defined in the proof

of Theorem 10. For the node a with increased range located on one of the Segments I

or II, when it has receivers just on Segments I and II (while transmitting with R∗(a)),

we have (based on Equation (4.12)):

(2dR
∗(a)

δ
e+ 1)δα − ((dR

∗(a)

δ
e − 1)δ)α ≥ 0 (4.20)

α≥2⇒ R∗(a) ≤ 4δ.

For node a to have increased range and cover some nodes on segment S ∈ {I,II},
where S 6= Sa, we must have R∗(a) > d(s, a). Hence, we must have d(s, a) < 4δ.

For all the other cases, we can use Inequality (4.13), and have:

(4dR
∗(a)

δ
e+ 1 + (

√
2)α)δα − ((dR

∗(a)

δ
e − 1)δ)α ≥ 0 (4.21)

2≤α≤6⇒ R∗(a) ≤ 6δ.

Node a has some receivers on the other side of the intersection, if R∗(a) > d(o, a),

where o denotes the position of the intersection. Hence, we must have d(o, a) <

6δ.

4.5.2 Step 2:

Assume a cross network with total length L, in which N nodes are distributed uni-

formly on all of its segments. The total length of the network is equal to the sum of

all segment lengths. For a cross network, we assume that the nodes are first uniformly
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distributed on a linear network with length L, and then the total length is subdivided

into the number of segments. The distance between any two nodes on each line of the

cross network is less than δ, if we do not have an empty δ-length section with that

probability. The analysis will use some results of the occupancy theory [71], which

are presented next.

The occupancy problem can be described as follows. Assume we have C cells, and

N balls to be thrown independently in the cells. The number of empty cells after all

the balls have been thrown is a random variable, and we denote it by η(C,N). Under

the uniform allocation assumption, the following results have been proved [71].

P(η(C,N) = 0) =
C∑
i=0

(−1)i
(
C

i

)
(1− i

C
)N , (4.22)

E(η(C,N)) = C(1− 1

C
)N , (4.23)

Var(η(C,N)) = C(C − 1)(1− 2

C
)N + C(1− 1

C
)N − C2(1− 1

C
)2N , (4.24)

where E(η(C,N)) and Var(η(C,N)) denote the expected value and the variance of

η(C,N), respectively.

Suppose we subdivide the whole length of the network, L, into C = d L
δ/2
e cells of

length δ/2. With this subdivision, if no empty cells exist, the distance between any

two nodes is less than δ.21

Using Equation (4.22), we want to have:

C∑
i=0

(−1)i
(
C

i

)
(1− i

C
)N ≥ 1− ε. (4.25)

For any fixed values of L and δ ≤ L, there exist some N values to satisfy Equation

(4.25).

To study the asymptotic behavior of η(C,N), we focus on the mean and variance of

it. According to Equations (4.23) and (4.24), and since

21Note that the distance between any two nodes can be less than δ even if some (δ/2)-length cells
are empty, hence the event we consider here is a subset of the event we are interested in. Therefore,
the probability of the event we consider is less than what we need, assuring the validity of the results.
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δ ≤ L⇒ d2L
δ
e ≥ 2,

the mean and variance of η(C,N) converge to zero, when N goes to infinity. This

means that η(C,N) is a.a.s zero, and δ can be arbitrarily close to zero. Hence, for

large number of nodes, the increase in the range of the nodes is not beneficial, and

the cost of the distributed assignment (and other assignments that perform better)

converges to the cost of the optimal assignment.

4.6 Numerical Results

We study the performance of our proposed algorithms, and the BIP algorithm, by

conducting Monte Carlo simulations for different number of nodes on cross networks.

We also perform the sweep procedure on the BIP algorithm. But since this procedure

has time complexity O(N2), to keep the time complexity of the proposed near-optimal

and distributed assignments as low as possible, we do not perform the sweep proce-

dure on these assignments. The time complexity of the optimal algorithm and the

algorithm to obtain the lower bound on the consumed energy of the optimal algorithm

is high, and performing these algorithms on networks with large number of nodes is

not practical. We thus present our results for two relatively small values of N , i.e.,

N = 14 and N = 18, in the case where the source node is at the intersection, and

for N = 13 in the general case, where the source node and its location are chosen

randomly. For each value of N , we simulate 100 networks. For each network, the

nodes are distributed uniformly at random on the cross. The simulation results are

summarized in Tables 4.1 and 4.2 for the case where source is at the intersection

and the general case, respectively. To make the comparisons easier, we normalize

the costs by dividing them by the cost of the optimal assignment in each case. The

numbers shown in this table are the average of the normalized costs plus minus the

95% confidence interval. The cost of the BIP algorithm and the BIP algorithm with

the sweeping procedure are denoted by cost(RBIP ) and cost(RBIP/sw), respectively.

In all simulations, the value of α is selected to be 2.

As Table 4.1 shows, the energy consumption of the near-optimal assignment is close
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Table 4.1: The simulation results of cross networks with source at intersection.

cost(RNO)
cost(R∗)

cost(RBIP/sw)
cost(R∗)

cost(RBIP )
cost(R∗)

cost(RD)
cost(R∗)

N = 14 1.1140 ± 0.0276 1.2244 ± 0.0364 1.3009 ± 0.0391 1.4303 ± 0.0554

N = 18 1.1102 ± 0.0251 1.2100 ± 0.0338 1.2623 ± 0.0360 1.3666 ± 0.0412

Table 4.2: The simulation results of general cross networks.

cost(Rlow)
cost(R∗)

cost(RNO)
cost(R∗)

cost(RBIP/sw)
cost(R∗)

cost(RBIP )
cost(R∗)

cost(RD)
cost(R∗)

N = 13 0.9925 ± 0.0049 1.0668 ± 0.0293 1.1302 ± 0.0362 1.1747 ± 0.0401 1.2556 ± 0.0584

to that of the optimal assignment. Table 4.1 also shows that the proposed near-

optimal assignment outperforms BIP and BIP with sweep rather considerably. This

is in addition to the advantage of having a lower time complexity. Based on Table

4.1, the distributed assignment performs the worst, but still provides a very low time

complexity alternative at the cost of about 40% extra energy compared to the optimal

assignment. According to Theorem 10 and the results of Section 4.5.2, one expects the

gap to disappear as N tends to infinity. Increasing N from 14 to 18 makes the energy

gap between the optimal algorithm and the other sub-optimal algorithms shrink by a

non-negligible amount. In particular, one should also note that the performance gap

of the distributed algorithm relative to the optimal solution shrinks faster than the

other assignments by increasing the size of the network.

For the general case, based on the results of Table 4.2, the difference between the

optimal algorithm, on the one hand, and the near-optimal and distributed algorithms,

on the other hand, is even less. From Table 4.2 we can see that the calculated lower

bound using the addition of one node to the intersection is very tight. Table 4.2 shows

that the proposed near-optimal assignment still outperforms both versions of BIP.

For larger networks, where the optimal assignment is too complex to find, we only

present the results for the other assignments. In Fig. 4.6, we compare the total

consumed energy of different assignments normalized with respect to the proposed

near-optimal assignment. For each simulation point corresponding to a given number

of nodes, 10, 000 random networks are generated, each having uniform distribution

for the nodes. We run the algorithms on exactly the same networks and obtain the

average of the total consumed energy over the 10, 000 networks.
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Figure 4.6: Energy consumption comparison of different range assignments.

Fig. 4.6 confirms the superiority of the proposed near-optimal assignment compared

with BIP and BIP with sweep. It also shows that the distributed assignment performs

close to the other assignments particularly for larger networks. In general, the gap

between different algorithms shrinks as the size of the networks increases.

To compare the distributed algorithm with BIP (with and without sweeping proce-

dure) for the general grid networks, we consider a two by two square grid network.

We run the algorithms on exactly the same networks and obtain the average of the

total consumed energy over 10, 000 networks. The comparison between the cost of

the distributed algorithm and BIP (with and without sweeping procedure) is shown

in Fig. 4.7. It can be seen that for larger number of nodes in the network, the

difference between the algorithms is smaller. In particular the difference in energy

consumption of the proposed distributed algorithm and BIP with sweep is less than

5% for networks of size N = 40 or larger.



CHAPTER 4. ENERGY-EFFICIENT BROADCASTING FOR CROSS ... 72

20 30 40 50 60 70 80 90 100
1

1.05

1.1

1.15

Number of Nodes

N
or

m
al

iz
ed

 T
ot

al
 C

on
su

m
ed

 E
ne

rg
y

 

 

cost(RD)/cost(RBIP/sw)
cost(RBIP )/cost(RBIP/sw)

Figure 4.7: Comparison of the energy consumption of different range assignments
for two by two square gird networks.



Chapter 5

Probabilistic Linear Networks: Range

Assignment

In the remainder of this thesis we consider linear wireless networks, where the nodes

are distributed according to a non-homogeneous Poisson distribution with an arbi-

trary density function. In this chapter, we propose a transmission range assignment

for such linear wireless networks. The proposed transmission range assignment is a

function of the location on the line and is devised such that there is a high probability

of connectivity to the source (located at one end of the network) along the network,

while having a low average power consumption for the network1. This is achieved by

maintaining the same (high) probability of having at least one node in the transmis-

sion range of the nodes located anywhere in the network. This is equivalent to having

the same average number of nodes K in the transmission range of a node located in an

arbitrary location of the network. Our results demonstrate that, for a given average

power consumption, the proposed assignment can achieve a higher probability of con-

nectivity compared with an identical transmission range assignment, commonly used

in the literature. Furthermore, the number of simultaneous signal receptions in any

location of the network, indicating the contention level, is studied in Section 5.4. It

is shown that our approach, on average, has a contention level bounded above by K,

while in the identical assignment, this quantity can be larger than K. The contents

of this chapter have been published as [72].

1We were not able to prove that this assignment consumes the lowest possible energy for a fixed
probability of connectivity to the source along the network.

73
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5.1 System Model

We consider a one-dimensional wireless ad hoc network of length L with a fixed

transmitter and a fixed receiver located at positions 0 and L, called the source and

the destination, respectively. The source transmits the data along the network, and

we are interested in connectivity of the network, i.e., the reception of the data by

the destination. The total number of nodes in the network and their exact locations

are assumed to be unknown. We rather use a probabilistic model and assume a

distribution for the network nodes. In this work, similar to [1], we consider a non-

homogeneous Poisson process with an arbitrary stationary density function λ(x) to

describe the distribution of the nodes along the network, where 0 < x < L specifies a

location in the network (see, e.g., Def. 5.4 of [73]).2 This process is referred to as the

network process in the sequel. We however note that the idea behind the proposed

range assignment does not depend on the distribution of the nodes and would be in

principle applicable to network processes other than the one considered here, as long

as such processes are stationary in time.

We denote by R(x) the transmission range assignment for the position x (0 ≤ x < L).

This means that if a node is located at position x, it will adjust its power based on

R(x) to transmit the data. Since the flow of the data is from the source (at location

0) to the destination (at location L), if location x receives the data, all the locations

between the source and x have already received the data. Hence, similar to [1], we

only consider the coverage of the transmission range of a node towards the destination.

So for y > x, if R(x) ≥ y − x, then the node in position y can receive the data from

the node in position x; but if y − x > R(x) and there is no node in the interval

(x, x + R(x)], these nodes will not be able to communicate. A position is said to be

connected (to the source) if it can receive data from the source (through the network

nodes).

Our goal is to find a transmission range assignment R(x) for all 0 ≤ x < L, so

that the destination (and hence the whole network) is connected to the source with

high probability, while maintaining a low average consumed power for the network.

2Consider a case where the number of nodes in the network is a Poisson random variable with
mean λ. Also assume that, given the number of nodes, each node is independently distributed
according to a known pdf f(x). Then, in this case, the distribution of the nodes along the network can
be modeled by a non-homogeneous Poisson process with the stationary density function λ(x) = f(x)λ
[73]. A network realization can thus be obtained, for example, for the purpose of simulations, by first
acquiring N , the number of the nodes, according to the Poisson distribution, and then distributing
the nodes one by one, according to the pdf f(x) along the network, independently.



CHAPTER 5. PROBABILISTIC LINEAR NETWORKS: RANGE ... 75

In this work, similar to [6, 25, 33–35, 44–48, 54, 55], we do not consider the effects of

interference caused by wireless communication among the nodes. It is thus assumed

that the network is equipped with a proper multiple access control (MAC) scheduling

to avoid interferences. An example of such a MAC scheme is Minimum Connected

Dominating Set (MCDS)3 broadcasting [27, 74]. In MCDS-broadcasting, only the

nodes in the MCDS retransmit the data. There are no polynomial time algorithms

to find the MCDS for two dimensional networks [74]. On the other hand for a linear

network, the MCDS can be recursively obtained by starting from the source and

including in the MCDS, step by step, the farthest node within the transmission range

of the previously inserted node.

Nevertheless, we study the number of simultaneous signal receptions in any location

of the network, referred to as contention level, for the proposed range assignment

in comparison with the identical transmission range assignment. In general, lower

contention levels are desirable as they result in simpler scheduling schemes and smaller

transmission delays.

For simulations, we consider a discrete version of the network process as described

in the following. The network length L is partitioned into M segments, each of size

∆x = L/M . We also assume that the source and the destination are located in

segments 0 and M + 1, respectively. The length ∆x is selected to be small enough,

i.e., in the order of the average size of the nodes, so that the existence of a node in each

segment m, for 1 ≤ m ≤ M , is well-approximated by a Bernoulli random variable

with the probability of success equal to POC [m] = λ(xm)×∆x, where xm is the mid-

point of segment m, and POC [m] is the notation for the probability that segment m

is occupied by a node. In accordance with the underlying Poisson distribution, such

variables are assumed to be independent for different segments [73]. Moreover, we

have POC [0] = POC [M + 1] = 1.

For this discretized network, we use RD[m] to represent the integer transmission range

assigned to segment m. If a node is located in segment m and transmits the data with

a transmission range RD[m], then the data is received in RD[m] segments towards the

destination. Any node located in such segments then receives the data (and is thus

named connected), and will in turn transmit the data towards the destination at a

range which is determined by its location (segment). We say a segment is connected

if it is within the transmission range of a connected node. Hence, if there is a node in

3The MCDS is the subset of connected nodes with minimum cardinality such that each node in
the network is connected to a node in this subset.
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a connected segment, this node can receive the data from the source. In Section 5.3,

we calculate the probability of connectivity for all the segments along the network.

5.2 Transmission Range Assignment

For a general (non-uniform) density function λ(x), the average distance between ad-

jacent nodes in the network is not a constant and depends on the location x. In fact,

for the non-homogeneous Poisson process, the average distance between the adjacent

nodes is inversely proportional to λ(x). This motivates the search for non-identical

transmission range assignments to improve the probability of connectivity for a given

average total power consumption in the network. Intuitively, the closer the adja-

cent nodes, the smaller the transmission range should be. Note that in the identical

transmission range assignment, assumed in the existing literature including [1], to

maintain a certain probability of connectivity throughout the network, the parts of

the network with the lowest density of nodes are the bottlenecks. In such parts, larger

transmission ranges are required to maintain the network connectivity. In identical

transmission range assignment, this forces a larger transmission range for the whole

network, which consequently translates into a waste of power in densely populated

parts of the network. Our heuristic approach to have a location-dependent transmis-

sion range assignment defines the transmission range assignment for a location x so

that at least one node exists in the transmission range of that location (i.e., in the

interval [x, x + R(x)]) with high probability px. The justification is to cover at least

one node that can in turn relay the data towards the destination with high probabil-

ity. The probability that at least one node exists in the interval [x, x + R(x)] is as

follows [73]:

px = 1− e−
∫ x+R(x)
x λ(y)dy, (5.1)

for any location 0 ≤ x < L.

To maintain the same px for all locations of the network, we need
∫ x+R(x)

x
λ(y)dy to

be a constant K, for all values 0 ≤ x < L. This integral is the average number of

nodes in the interval [x, x+R(x)] [73], and thus the proposed range assignment R(x)

needs to satisfy:
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E[Nx] =

∫ x+R(x)

x′=x

λ(x′)dx′ = K, 0 ≤ x < L, (5.2)

where E[Nx] represents the expected value of Nx, the random variable which de-

notes the number of nodes that can receive the data from a node at position x with

transmission range R(x). Parameter K dictates the average total consumed power.

Since px = 1 − e−K, the larger the value of K, the larger the value of px, and hence

the higher the probability of connectivity, which comes at the cost of higher power

consumption.4 Fig. 5.1 illustrates the network model and the proposed transmission

range assignment.

source destination

Figure 5.1: Network model and the proposed transmission range assignment.

The range assignment R(x) corresponding to Equation (5.2) is as follows:

R(x) = min{yK(x)− x, L− x}, for 0 ≤ x < L, (5.3)

where L− x is used to limit the range so that no power is wasted by communicating

beyond the destination, and yK(x) is the smallest value that satisfies the following

equation:

4In the selection of K, one may have to also consider other constraints such as upper and lower
bounds on the transmission power of nodes, or the minimum required received power at the nodes.
In this work, however, similar to [1], our focus is on the trade-off between the power consumption
and network connectivity.
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∫ yK(x)

x′=x

λ(x′)dx′ = K. (5.4)

In the discrete version of the network, our proposed assignment needs to satisfy the

following equation:

E[Nm] =

m+RD[m]∑
j=m+1

POC [j] = K, (5.5)

where the random variable Nm denotes the number of nodes that can receive the data

from a node in segment m, while this node’s transmission range is RD[m].

It should be noted that since the variable m in Equation (5.5) is discrete, one may

not be able to satisfy all the M equations in Equation (5.5) with exact equality. We

therefore choose the smallest integer RD[m] that satisfies E[Nm] ≥ K. The proposed

range assignment is thus:

RD[m] = min

{
arg min

m′
{

m′∑
j=m+1

POC [j] ≥ K} −m,M −m
}
, for 0 ≤ m ≤M, (5.6)

It is easy to see that the time complexity of the proposed transmission range assign-

ment is O(M), while the uniform transmission range assignment used in [1] has O(1)

time complexity. One should however note that since the range assignment may be

performed centrally, its time complexity would not be a burden on the network nodes.

In the following, we assume that the expected consumed power of the range as-

signment RD[m] can be calculated, up to a constant multiplicative factor, using the

following equation:

P(RD) =
M∑
m=0

POC [m]Rα
D[m], (5.7)

where α is the path-loss exponent and its value is normally in the range of 2 to 6 [3].

In Equation (5.7), Rα
D[m] represents the power consumption of a node located in
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segment m. The average power consumption in segment m is thus represented by

POC [m]Rα
D[m].

5.3 Probability of Connectivity

To have a criteria to compare our approach with others, we calculate the probability

of connectivity of the network locations to the source. Here, we present a discrete

formula to calculate the probability of connectivity. The more general formula of

probability of connectivity, which includes the continuous networks is given in the

Chapter 6. Based on an approach similar to the one used in [1], by using the proba-

bility that segment m is disconnected, we calculate the probability of connectivity for

segment m, PC
D [m], of the network. Segment m is disconnected if segment m − 1 is

disconnected, or if segment m−1 is connected but no node transmits beyond segment

m− 1. Hence, PC
D [m] can be derived recursively as:5

PC
D [m] = PC

D [m− 1]−

1−
∏

n∈Nupto

(
1− POC [n]PC

D [n]
)×∏

n′∈Nover

(1− POC [n′]), (5.8)

for 1 ≤ m ≤M + 1,

where Nupto represents the set of segments n with RD[n] + n = m − 1, and Nover

denotes the set of segments n′ with RD[n′] + n′ ≥ m. If a node is located in one

of the segments of the set Nupto, it transmits the data up to segment m (including

segment m − 1, but not segment m), and if a node occupies one of the segments of

the set Nover, it transmits beyond segment m. If such a node is connected, segment

m will be connected too. For using Equation (5.8) recursively, one needs the initial

condition PC
D [0] = 1.

5.4 Contention Analysis

In this section, we analyze the number of concurrent signal receptions at each location

x of the network. We denote this parameter by C(x) and call it the contention level

5Note that Equation (5.8) for calculating PC
D [m] is a generalization of the result presented in

Lemma 1 of [1] for the special case of RD[m] = r, ∀m ∈ {0, . . . ,M}.
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at location x, as it indicates the number of nodes that would like their transmitted

data to be received at the same time at that location. In the network scenarios con-

sidered here, the contention level C(x) is a non-negative random variable. To clearly

define C(x), we describe the transmission process from the source to the destination

in more detail: Consider two sets of nodes T and R, with their members being up-

dated sequentially and iteratively as the data passes through the network. The set

T contains the nodes that transmit the data simultaneously, while R denotes the set

of nodes that receive the data (for the first time) simultaneously. At the start of

the transmission process, T just contains the source node, and R is empty. Once the

nodes in T transmit the data, all the nodes that receive it (simultaneously and for the

first time) form the set R. Then the set T will be replaced by R, and R will be the

new set of receivers for T. Based on the above transmission process, C(x) is defined

as the number of transmissions that arrive at location x simultaneously (for the first

time). In the following, we show that our proposed transmission range assignment,

on average, has a contention level which is bounded above by K.

Theorem 12. For the proposed transmission range assignment, the average con-

tention level E[C(x)] in any location x, 0 < x ≤ L, of the network is upper bounded

by K.

Proof of Theorem 12. First, we prove that for any location x in the network, there

exists a location zx < x, as the closest location to the source, for which zx+R(zx) ≥ x

and we have z + R(z) ≥ x for all values of z in the interval (zx, x). The proof is by

contradiction. Suppose that there exists a location zx′ with the property that zx′ > zx,

and zx′ +R(zx′) = x′ < x. Using Equations (5.3) and (5.4), we have:

∫ zx+R(zx)

w=zx

λ(w)dw =

∫ zx′+R(zx′ )

w′=zx′

λ(w′)dw′ = K. (5.9)

Since zx < zx′ , and x′ < x, for Equation (5.9) to hold, λ(w) must satisfy∫ zx′
zx

λ(w)dw =
∫ x
x′
λ(w)dw = 0. As λ(.) can be any arbitrary non-negative function,

therefore x = x′ and zx = z′x, which is in contradiction with the initial assumption.

So, for any location x, the nodes whose signals can reach x, are located in [zx, x).

As all the nodes in interval [zx, x) do not necessarily transmit at the same time, the

average number of concurrent signal receptions at any location x satisfies:
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E[C(x)] ≤
∫ x

w=zx

λ(w)dw = K. (5.10)

Using an approach similar to the one used in the proof of Theorem 12, it is easy to

see that for the identical transmission range assignment, we have:

E[C(x)] ≤
∫ x

w=x−Ridentical

λ(w)dw, (5.11)

where Ridentical denotes the value of the identical range. Note that the upper bound

in Equation (5.11) can be larger than the upper bound of Equation (5.10) in denser

parts of the network. In Section 5.5, we also show that the actual value of E[C(x)]

for the identical transmission range assignment can be larger than K, which itself is

an upper bound on E[C(x)] for the proposed assignment.

5.5 Numerical Results

We compare our proposed transmission range assignment with the identical trans-

mission range assignment by comparing the probability of connectivity to the source

and the contention level in both cases. For this comparison to be fair, we assume

that the average total consumed power for both assignments are equal. For this,

first we set the expected number of covered nodes by each node, K, in our method

to be a constant. We choose two values of K = 4 and 6, which result in having

px = 1− e−4 ' 0.982 and px = 1− e−6 ' 0.998, respectively.

Then, using Equation (5.6), we obtain RD[m] for the proposed scheme. The average

total consumed power of the proposed scheme, P(RD), is calculated next by Equa-

tion (5.7). This is followed by the calculation of the identical transmission range

(having the same average total power P(RD)) as:

Ridentical =


(

P(RD)∑M+1
m=0 POC [m]

)1/α
 , (5.12)
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where dae is the smallest integer greater than or equal to a.6

In our simulations, we discretize the network by selecting ∆x = 10 cm. In the first

scenario, we consider L = 1000 meters, and we thus have M = 10, 000 segments.

Moreover, we assume that the network nodes are distributed based on the density

function λ(x) shown in Fig. 5.2. The corresponding range assignment for the pro-

posed scheme is also shown in Fig.5.2 for two values of K = 4 and 6. The identical

transmission range assignment (according to Equation (5.12)) requires the range to

be equal to 84.78 and 120.73 meters (corresponding to Ridentical = 8478 and 12073,

respectively) for all the locations, to have the same average total consumed power

as the proposed scheme, for the two values of K, respectively. The probability of

connectivity for the two schemes is given in Fig. 5.3, for K = 4 and 6.7

As it can be seen, for both the proposed scheme and the identical transmission range

assignment, the probability of connectivity improves as K is increased. This is ex-

pected since increasing K corresponds to larger transmission ranges and higher power

consumption. Moreover, for both values of K, the proposed scheme outperforms the

identical transmission range scheme by a large margin over a major part of the net-

work (from about 0.1L to L). In particular, the difference between the probability of

connectivity of the destination to the source for the two cases is about 35% and 45%,

for K = 4 and 6, respectively. Further inspection of Fig. 5.3 also shows that the prob-

ability of connectivity to the source drops dramatically after the sparse part of the

network, for the identical assignment. The reason is that in this assignment, one has

to distribute the power equally to all the locations, without considering the density of

the nodes. This results in not having sufficiently large transmission range values for

the sparse parts, while having unnecessarily high transmission ranges for the denser

parts of the network. For the proposed scheme, the decrease in the probability of

connectivity with increasing distance from the source is rather smooth.

6The use of d·e in Equation (5.12) results in the total average power to be slightly larger than
the target P(RD). The increase however is negligible due to the large number of segments in our
simulations.

7For a fair comparison between the identical and proposed range assignments, we have also
reduced the ranges of the positions close to the end of the network for the identical transmission
range assignment, so that the coverage of such locations does not go beyond the destination. We
have then accordingly increased the range for the rest of the locations to maintain the fixed average
total power consumption. As a result, the identical transmission range corresponding to K = 4 and
6 has increased to 87.69 and 126.86 meters, respectively. The results shown in this section are all
based on using this method to calculate the identical transmission range.
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Figure 5.2: Density function λ(x) along with the range assignment of the proposed
scheme for K = 4 and 6, in the first scenario.

Another important result that can be observed from Fig. 5.3 is the sensitivity of our

proposed approach to the density estimation error. Suppose we do not know the

density of the network nodes. The simplest estimation is to approximate the density

function by a uniform function (having the same average number of nodes). Doing

so, we end up having the identical transmission range assignment as the outcome

of our proposed approach. This results in (in the worst case) having a much lower

probability of connectivity to the source along the network. One should note that

although the proposed approach is quite sensitive to the density estimation, it still can

perform under limited knowledge, providing a valid transmission range assignment.

We also compare the probability of connectivity of the proposed range assignment

with that of the identical transmission range assignment for a real-world density

function given in Example 4 of [1]. This density function is shown in Fig. 5.4 along
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Figure 5.3: Comparison of the probability of connectivity of the network with
density function λ(x) given in Fig. 5.2 for the two cases of the proposed range
assignment R(x) and the identical transmission range assignment Ridentical for
K = 4 and K = 6.

with the range assignment of the proposed scheme for K = 6. In the second scenario,

we have L = 700 meters and M = 7, 000 (as ∆x = 10 cm).

The comparison between the probabilities of connectivity of the network for the pro-

posed and the identical transmission range assignments is shown in Fig. 5.5. The value

of PC
D [m] is calculated as the ratio of the number of networks in which segment m is

connected to the total number of realized networks (i.e., 10, 000). The figure shows

that the former consistently outperforms the latter in the range of x ∈ [100m, 700m]

with the maximum difference between the probabilities of connectivity being about

8%.

To compare the contention levels of the proposed range assignment and the identical

transmission range assignment, we simulate 10, 000 network realizations based on

a given density function (using the discrete model of the network and based on the
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Figure 5.4: Density function given in [1] as a real-world example along with the
range assignment of the proposed scheme for K = 6.

technique described in Footnote 2) for each scenario. For each realization, we calculate

the contention level C[m] for 0 < m ≤ M + 1, only if the realization is connected

(i.e., if the destination can receive the data). For each segment m of the network, we

then take the average C[m] of C[m] over the connected realizations.

In Fig. 5.6, we have plotted C[m] of the proposed range assignment for the density

function of Fig. 5.2 and for the two values K = 4 and 6. In the same figure, we have

also reported the corresponding values of C[m] for the identical transmission range as-

signment. As can be seen, for both range assignments, the contention levels generally

increase by increasing K. Note that although the identical transmission range does

not depend directly on K, higher values of K lead to higher identical transmission

ranges, as we want the average total consumed power of both assignments to be equal.
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Figure 5.5: Comparison of the probability of connectivity for a real-world example
with density function λ(x) given in Fig. 5.4 for the two cases of the proposed
range assignment R(x) and the identical transmission range assignment Ridentical

(K = 6).

Fig. 5.6 also shows that although the average contention level for the proposed algo-

rithm is always bounded above by K, its maximum value is larger than the maximum

contention level for the corresponding identical transmission range assignment.

We have also shown C[m] of both the proposed and the identical transmission range

assignments for the density function of Fig. 5.4 and K = 6 in Fig. 5.7. In this case, the

maximum contention value for the identical assignment happens at the destination

and is only slightly smaller than the maximum contention for the proposed assignment

that occurs at a distance of about 100 meters from the source.

For a case where the contention levels are large for the identical assignment, compared

to our scheme, we used a network in which the network nodes are distributed based

on the density function λ(x) shown in Fig. 5.8. In the third scenario we again have

L = 1000 meters and M = 10, 000. The corresponding range assignment for the
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Figure 5.6: Comparison of the average contention levels for the network with the
density function λ(x) given in Fig. 5.2 for the two cases of the proposed range
assignment R(x) and the identical transmission range assignment Ridentical (K =
4 and K = 6).

proposed scheme is also shown in Fig. 5.8 for the two values of K = 4 and 6. The

identical transmission range assignment given in Equation (5.12) requires the range

to be equal to 172.39 and 239.59 meters for all the locations, for the two values of K,

respectively. The probability of connectivity for the two schemes is given in Fig. 5.9,

for K = 4 and 6. In Fig. 5.9, Monte Carlo simulations for 10, 000 network realizations

are also provided. As can be seen, simulations match the analysis very well.

The probability of source-destination connectivity for the proposed scheme however

is about 40% and 30% larger than that of identical transmission range assignment for

K = 4 and 6, respectively. For the proposed scheme, the decrease in the probability

of connectivity with increasing distance from the source is smoother than that of the

identical transmission range assignment. We have plotted C[m] for the two assign-

ments for K = 4 and K = 6 of the third scenario in Fig. 5.10. For both cases of
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Figure 5.7: Comparison of the average contention levels of the network with the
density function λ(x) given in Fig. 5.4 for the two cases of the proposed range
assignment R(x) and the identical transmission range assignment Ridentical (K =
6).

K = 4 and 6, the maximum average contention level for identical transmission range

assignment is more than twice the corresponding values for the proposed scheme.
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Figure 5.8: Density function λ(x) along with the range assignment of the proposed
scheme for K = 4 and 6, in the third scenario.
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Figure 5.9: Comparison of the probability of connectivity of the network with
density function λ(x) given in Fig. 5.8 for the two cases of the proposed range
assignmentR(x) and identical transmission range assignmentRidentical forK = 4
and K = 6.
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Chapter 6

Probabilistic Linear Networks: Features

Analysis

In this chapter, we analyze some features of linear wireless ad hoc networks, where

the nodes are placed independently and identically according to Poisson distribution

with an arbitrary density function. It is assumed that the source is located at one end

of the network, and broadcasts the data to the other end of the network, where the

final destination is located. The analyzed features are the probability of connectivity

to the source, the number of hops needed for each location of the network to receive

the data for the first time (hop-count of that location), and the farthest distance from

the source that the data can reach in a given number of hops. The work presented

here, to the best of our knowledge, is the first to derive exact formulas for the analysis

of wireless networks, as described above. Analyzing these features helps to perform

delay analysis, which is very important in real-time broadcasting, e.g., broadcasting

safety messages, and localization, which can be used in security applications, e.g.,

location verification. Also, they can be helpful in energy consumption analysis. The

main feature of our work is that we consider non-identical transmission range assign-

ments for the nodes. The derived formulas are based on considering a progressive

transmission range assignment. In a progressive range assignment a range is assigned

to every location in the network so that if a node locates there, it transmits the data

beyond the assigned transmission range of the locations closer to the source. Finally,

we confirm the validity of our analytical approach by simulation.

91
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6.1 System Model

The considered system is exactly the same as what we have in Chapter 5. Moreover,

we consider a continuous and a discrete model for the network. The continuous model

is more accurate. The discrete model, however, can be useful for simulations, as in

most of the literature.

6.1.1 Continuous Network Model

In this model, the probability that an interval I of the network is occupied, i.e., at

least one node exists in I, is given by:

POC(I) = 1− e−
∫
I λ(x)dx. (6.1)

If the interval is very small, we denote it by Is, and Equation (6.1) can be estimated

by:

POC(Is) ≈ λ(xIs)L(Is), (6.2)

where L(Is) denotes the size (or the length) of the interval Is, and xIs is the mid-

point of Is. Since the size of Is is very small, we assume that the density function

of the non-homogeneous Poisson process remains a constant in that interval (i.e.,

∀z ∈ Is, λ(z) = cte).

In the following, we define a class of transmission ranges that we analyze here.

Definition 10 (Progressive Transmission Range Assignment). We call a transmission

range assignment R(x), 0 ≤ x ≤ L, progressive, if R(x) is continuous in all network

locations, and satisfies the following condition: For any network locations x and x′

such that 0 ≤ x < x′ ≤ L, we have x′ +R(x′) > x+R(x).

In the networks where the packets are received with no error or loss within the trans-

mission range of the nodes, it is reasonable to assume that an energy-aware transmis-

sion range assignment has the property described by Definition 10. Since no data is

lost in communication, one-time signal coverage for each position of the network is

sufficient. In addition, covering parts that have already been covered is not needed,
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as this increases the energy consumption with no benefit. Note that the identical

transmission range assignment, used widely in the literature, is progressive. So is the

assignment introduced in Chapter 5.

In a network with progressive transmission range assignment R(x), 0 ≤ x ≤ L, for

any given point 0 ≤ x ≤ L, we define location yx as follows:

yx , arg min
y
{y +R(y) ≥ x} for 0 ≤ x ≤ L. (6.3)

Theorem 13. In a network with progressive transmission range assignment R(x), 0 ≤
x ≤ L, for any x ∈ [0, L], there exists a unique value yx ∈ [0, x] such that yx =

x−R(yx).

Proof. The existence of yx can be proved by using the intermediate value theorem

[75]1.

The uniqueness of yx comes from the fact that sinceR(x) is progressive, the continuous

function y + R(y) is strictly increasing, hence no two y values can have the same

y +R(y) value.

6.1.2 Discrete Network Model

Similar to [1], we also consider a discrete model of the network. The discrete model

asymptotically coincides with the continuous model, as the segment size tends to

zero. In the discrete model, we partition the whole network into M segments, each

of size ∆x = L/M . We also assume that the source and the destination are located

in segments 0 and M + 1, respectively. The length ∆x is selected to be small enough,

i.e., in the order of the average size of the nodes, so that the existence of a node

in each segment m, for 1 ≤ m ≤ M , is well-approximated by a Bernoulli random

variable with the probability of success equal to POC [m] = λ(xm)∆x, where xm is the

mid-point of segment m, and POC [m] is the notation for the probability that segment

m is occupied by a node. In accordance with the original Poisson distribution, the

variables presenting the occupancy of the segments are assumed to be independent

for different segments [73]. Moreover, we have POC [0] = POC [M + 1] = 1.

1If a real-valued function g(·) is continuous on the closed interval [a, b] and k is some value
between g(a) and g(b), then there exists at least one value c in [a, b] such that g(c) = k.
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For this discrete network, we use RD[m] to represent the non-negative integer trans-

mission range assigned to segment m. If a node, which has received the data, is

located in segment m and transmits the data with transmission range RD[m], then

the data is received in RD[m] segments towards the destination. Any node located

in such segments then receives the data (and is thus named connected), and is able

to transmit the data towards the destination at a range which is determined by its

location (segment). We say a segment is connected if it is within the transmission

range of a connected node. Hence, if there is a node in a connected segment, this

node can receive the data from the source.

For the discrete network model, since the transmission ranges are finite integer values

rather than real values, the definition of a progressive assignment should be adopted,

as follows.

Definition 11 (Discrete Progressive Transmission Range Assignment). We call a

discrete transmission range assignment RD[m], 0 ≤ m ≤ M + 1, progressive, if it

satisfies the following condition: For any segments m and m′ such that 0 ≤ m <

m′ ≤M + 1, we have m+RD[m] ≤ m′ +RD[m′].

Unlike the continuous version in which for each location x, only one yx exists, in the

discrete version, for a segment m, we can have multiple (or no) segments n so that

n+RD[n] = m. To calculate the desired properties of the network, we introduce the

following definitions for progressive transmission range assignments.

Definition 12 (Segment nminm ). For any segment 1 ≤ m ≤ M + 1, we define the

segment nminm as the closest segment n to the source such that n+RD[n] = m, i.e.,

nminm , arg min
n
{n+RD[n] = m}. (6.4)

Definition 13 (Segment nmaxm ). For any segment 1 ≤ m ≤ M + 1, we define the

segment nmaxm as the farthest segment n from the source such that n + RD[n] = m,

i.e.,

nmaxm , arg max
n
{n+RD[n] = m}. (6.5)

Note that there may exist a case where for some segment 1 ≤ m ≤ M + 1, there is

no segment n that satisfies n + RD[n] = m. In this case, segments nminm and nmaxm

do not exist. Furthermore, if only one segment n exists so that n + RD[n] = m,
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then nminm = nmaxm . All the segments n that satisfy n + RD[n] = m for any segment

1 ≤ m ≤M + 1, form the set {nminm , · · · , nmaxm }.

Definition 14 (Segment om). For any segment 1 ≤ m ≤M + 1, we define

om , arg min
n
{n+RD[n] > m}. (6.6)

Definition 15 (Set N cover
m ). For any segment 1 ≤ m ≤ M + 1, we define the set

N cover
m to contain segments n such that n < m and n+RD[n] ≥ m.

Based on the above definition, all the segments in N cover
m can transmit the data to

segmentm, and if a connected node exists in any of them, segmentm will be connected

to the source. It is not difficult to see that N cover
m = {nminm , · · · , nmaxm , om, · · · ,m−1}.

We denote the first element of the set N cover
m by nm. Segment nm can be either nminm

or om.

6.2 Probability of Connectivity Analysis

In this section, we derive equations expressing the probability of connectivity of the

locations in the network to the source. To the best of our knowledge, the only stud-

ies that consider the probability of connectivity in one-dimensional non-homogeneous

wireless networks are [1] and our study in Chapter 5. In [1], an identical transmission

range assignment was considered and both a discrete and a continuous formula for

calculating the probability of connectivity to the source were given. We proposed a

formula to calculate the probability of connectivity for any arbitrary discrete trans-

mission range assignment RD[m], 0 ≤ m ≤M + 1, in Chapter 5.

In this chapter, we present formulas to calculate the probability of connectivity to

the source for both the continuous and discrete versions of one-dimensional non-

homogeneous wireless networks with progressive transmission range assignments.

This generalizes the results of [1] since the identical transmission range assignment is

a special case of progressive assignments. Compared to Chapter 5, here we have the

continuous and the discrete formulas for deriving the probability of connectivity in

the continuous and discrete versions of our network model, and the results presented

here are more general.
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6.2.1 Probability of Connectivity for the Continuous Net-

work Model

Based on the definition of a progressive transmission range assignment R(x), location

x is connected if at least one connected node exists in the interval [yx, x). To make

the calculations simpler, we define the following probability:

PC(x, y) , P(CN [yx,y]), for yx ≤ y < x, (6.7)

where P(A) denotes the probability that event A happens. Notation CN [yx,y] is used

for the event that “at least one connected node exists in interval [yx, y]”.

In order to calculate PC(x, y), we define the variable f [yx,y] as the location of the first

connected node in interval [yx, y]. For this variable, we have the following lemma.

Lemma 17. For any interval [v, w], 0 ≤ v ≤ w ≤ L, and any value z ∈ [v, w],

the event f [v,w] = z is equivalent to the event E[v,z) ∩ CN z, where E[v,z) denotes

the event “the interval [v, z) is empty”, and ∩ represents the conjunction of two

events. Furthermore, for any two distinct values z1, z2 ∈ [v, w], events f [v,w] = z1 and

f [v,w] = z2 are disjoint.

Proof. First, we need to note the fact that if location 0 ≤ z ≤ L is connected to the

source, then all the locations between the source and z are connected to the source

as well. If event f [v,w] = z happens, then location z is connected to the source, i.e.,

event CN z happens. Also, all the locations in interval [v, z) are connected too. For

z to be the first connected node to the source, interval [v, z) has to be empty. That’s

because if a node exists in [v, z), it will be the first connected node in interval [v, w].

The second claim is obvious as either one of the two distinct values z1 and z2 can be

the location of the first connected node in interval [v, w].

The event CN [yx,y] happens if f [yx,y] takes a value z ∈ [yx, y], as otherwise no connected

nodes exist in the interval. Hence CN [yx,y] is the union of all the events f [yx,y] = z,

∀z ∈ [yx, y]. According to Lemma 17, these events are disjoint, hence we have:

PC(x, y) =

∫ y

z=yx

P(f [yx,y] = z)dz, for yx ≤ y < x. (6.8)
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Based on Lemma 17, we can use the following simplification.

P(f [yx,y] = z) = P(E[yx,z) ∩ CN z) = P(CN z|E[yx,z))P(E[yx,z)). (6.9)

The event CN z|E[yx,z) means that a connected node exists in location z, while interval

[yx, z) is empty. For this to happen, at least one connected node must exist in interval

[yz, yx), and a node must exist in location z. This means that P(CN z|E[yx,z)) =

λ(z)PC(z, yx). Therefore, we finally have:

PC(x, y) =

∫ y

z=yx

λ(z)PC(z, yx)P(E[yx,z))dz (6.10)

=

∫ y

z=yx

λ(z)PC(z, yx)e
−

∫ z
u=yx

λ(u)dudz, for yx ≤ y < x.

To obtain the probability of connectivity of location x, denoted by PC(x), we use the

following lemma.

Lemma 18. For any location 0 < x ≤ L, we have PC(x) = PC(x, x).

Proof. Since we assume to have a progressive transmission range assignment, the

nodes that can transmit the data to location 0 < x ≤ L must exist in interval [yx, x),

as there are no nodes before yx that can cover x. Hence location x is connected if

and only if a connected node exists in interval [yx, x). Thus:

PC(x) = P(CN [yx,x]) = PC(x, x) (6.11)

=

∫ x

z=yx

λ(z)PC(z, yx)e
−

∫ z
u=yx

λ(u)dudz, for 0 ≤ x ≤ L.

To use the continuous formula for finding PC(x), one needs to solve the integrals

numerically. So the continuous formula cannot be used for actual calculations. For

that reason, we find the formula in the discrete network model.
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6.2.2 Probability of Connectivity for the Discrete Network

Model

In the discrete network model with a progressive range assignment, segment m is

connected if at least one connected node exists in the set N cover
m = {nm, · · · ,m− 1}.

Based on the same approach used for calculating the continuous version of the prob-

ability of connectivity, we obtain the discrete formula. First, we define:

PC
D [m,n] , P(CN

{nm,··· ,n}
D ), for nm ≤ n < m. (6.12)

where CN
{nm,··· ,n}
D denotes the event “at least one connected node exists in the set of

segments {nm, · · · , n}”.

We define f
{nm,··· ,n}
D as the location of the first connected node in the set of segments

{nm, · · · , n}. Similar to the continuous model, we have the following lemma.

Lemma 19. For any set of segments {n1, · · · , nT}, and any value k ∈ {n1, · · · , nT},
the event f

{n1,··· ,nT }
D = k is equivalent to the event E

{n1,··· ,k−1}
D ∩ CNk

D, where

E
{n1,··· ,k−1}
D denotes the event “the segments in the set {n1, · · · , k − 1} are empty”.

Furthermore, for any two distinct values k1, k2 ∈ {n1, · · · , nT}, events f
{n1,··· ,nT }
D = k1

and f
{n1,··· ,nT }
D = k2 are disjoint.

The event CN
{nm,··· ,n}
D is the union of all the events f

{nm,··· ,n}
D = k ∀k ∈ {nm, · · · , n}.

According to Lemma 19, these events are disjoint, hence we have:

PC
D [m,n] =

n∑
k=nm

P(f
{nm,··· ,n}
D = k) (6.13)

=
n∑

k=nm

P(E
{nm,··· ,k−1}
D ∩ CNk

D)

=
n∑

k=nm

P(CNk
D|E{nm,··· ,k−1}

D )P(E
{nm,··· ,k−1}
D ), for nm ≤ n < m.

Given that there are no nodes in segments {nm, · · · , k−1}, for segment k to contain a

connected node, at least one connected node must exist in the set of segments N cover
k \

{nm, · · · , k−1} = {nk, · · · , nm−1}. Hence P(CNk
D|E{nm,··· ,k−1}

D ) = POC [k]PC
D [k, nm−

1]. Equation (6.13) can be written as the following:
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PC
D [m,n] =

n∑
k=nm

[
POC [k]PC

D [k, nm − 1]
∏

nm≤j<k

(1− POC [j])

]
, for nm ≤ n < m.

(6.14)

To obtain the probability of connectivity of segment m to the source, denoted by

PC
D [m], similar to the continuous model, we have the following lemma.

Lemma 20. For any segment 0 < m ≤M + 1, we have:

PC
D [m] = PC

D [m,m− 1] (6.15)

=
m−1∑
k=nm

[
POC [k]PC

D [k, nm − 1]
∏

nm≤j<k

(1− POC [j])

]
.

According to the above equation, calculation of PC
D [m] consists of a finite summation

over a finite number of functions PC
D [m,n]. By obtaining the values of PC

D [m,n]

starting from the source, we can easily calculate PC
D [m] for all the segments m in the

network. To do that we should consider the below condition:

PC
D [m,n] = 1, for 0 < m ≤ RD[0], n < m.

6.3 Hop-Count Analysis

In this section, we derive the probability of data reception in a certain number of

hops for a specific location of the network. Each hop consists of a group of nodes that

receive the data at the same time. We first obtain lower and upper bounds on the

distance that the data can reach, given a specific number of hops. Then we derive

bounds on the number of hops for the data to reach a specific location. Finally, we

present formulas to calculate the probability of the number of hops needed for the data

to receive a location (a.k.a, hop-count of that location) for progressive assignments

in both the continuous and discrete versions of the network.
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6.3.1 Bounds

The bounds we present in this section are valid for any arbitrary transmission range

assignment, and not only the progressive ones. Note that the rest of our studies in this

chapter are just validated for progressive transmission range assignments. Assume

that the network is connected within a given number of hops, h, from the source.

Then dmin[h] is the minimum distance from the source that the data can be received

for sure. The maximum possible distance for the data to reach in h hops is denoted

by dmax[h]. These bounds are based on the node distribution and transmission range

assignment. We define dmax[0] = dmin[0] = 0. As by the first hop, all locations

x ∈ (0, R(0)] receive the data for sure, we have dmax[1] = dmin[1] = R(0). For

calculating these bounds, we suppose that the data passes through the network in a

progressive way, and does not face a disconnected part in the network (as if it faces

a disconnected part, the minimum distance that the data can travel is R(0)). Hence

dmin[h] > dmin[h− 1] and dmax[h] > dmax[h− 1].

The distance dmax[h] is equal to the maximum distance from the source that a node in

[0, dmax[h−1]] can cover. Hence, dmax[h] is equal to the maximum possible y+R(y) for

0 ≤ y ≤ dmax[h− 1], which is greater than dmax[h− 1]. As the maximum of y+R(y)

in the interval [0, dmax[h − 2]] is dmax[h − 1], we can reduce the search interval to

(dmax[h− 2], dmax[h− 1]]. Simplifying the limits for y, we come up with the following

equation:

dmax[h] = max
dmax[h−2]<y≤dmax[h−1],

y+R(y)>dmax[h−1]

{y +R(y)}. (6.16)

If y ≤ dmax[h − 2], then y + R(y) ≤ dmax[h − 1] for sure. Using the inverse of

this statement, we have y + R(y) > dmax[h − 1] ⇒ y > dmax[h − 2]. So by having

y+R(y) > dmax[h− 1], the limit y > dmax[h− 2] is already considered. Although the

limit y > dmax[h− 2] in the above equation is therefore unnecessary, we still consider

it to simplify the search span for y.

To obtain dmin[h], we need to search in all 0 ≤ y ≤ dmax[h−1] to find y+R(y) greater

than dmin[h−1]. But we should note that if y ∈ [0, dmin[h−2]], then y+R(y) is already

covered in h−1 hops. So we can reduce the search interval to (dmin[h−2], dmax[h−1]],

considering the condition y+R(y) > dmin[h−1]. Using Fig. 6.1, we present an example

to show that for general transmission range assignments, the search in [dmin[h− 2] ≤
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y ≤ dmin[h− 1] does not necessarily result in finding dmin[h], and the search span has

to encompass up to dmax[h− 1].

Figure 6.1: A network configuration, to show that the interval (dmin[h−2], dmax[h−
1]] must be searched to find dmin[h].

Suppose for all y ∈ (dmin[h − 2], dmin[h − 1]], we have y + R(y) ≥ z2. Since all the

locations in interval [dmin[h− 1], dmax[h− 1]] can be reached in h− 1 hops, there can

exist an (h− 1)-hop path from the source to position z1 with z1 +R(z1) < z2. Hence

dmin[h] is not necessarily found by just searching the interval (dmin[h−2], dmin[h−1]].

Thus we have:

dmin[h] = min
dmin[h−2]<y≤dmax[h−1],

y+R(y)>dmin[h−1]

{y +R(y)}. (6.17)

The following equations give the upper and lower bounds on the number of hops

needed for the data to reach a specific location, respectively.

hmax(x) = arg min
h′
{dmin[h′] ≥ x}, (6.18)

hmin(x) = arg min
h′
{dmax[h′] ≥ x}.

The discrete version of the above bounds are given below:
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hmaxD [m] = arg min
h′
{dminD [h′] ≥ m}, (6.19)

hminD [m] = arg min
h′
{dmaxD [h′] ≥ m}.

where dmaxD [h] and dminD [h] denote the discrete version of dmax[h] and dmin[h], respec-

tively, which can be derived by:

dmaxD [h] = max
dmax
D [h−2]<n≤dmax

D [h−1],
n+RD [n]>dmax

D
[h−1]

{n+RD[n]}. (6.20)

dminD [h] = min
dmin
D [h−2]<n≤dmax

D [h−1],

n+RD [n]>dmin
D

[h−1]

{n+RD[n]}. (6.21)

6.3.2 Hop-Count Analysis for the Continuous Network

Model

The number of hops required for the data to be received for the first time in location

x is called the hop-count of location x and is denoted by H(x). The hop-count for

any location of the network is a non-negative integer random variable. As the source

node has the data, H(0) = 0 (i.e., P(H(0) = 0) = 1). The locations in the interval

covered by the source’s range (i.e., interval (0, R(0)]) receive the data in exactly one

hop, thus we have P(H(x) = 1) = 1, for 0 < x ≤ R(0).

We should emphasize that if H(x) takes some finite integer values with non-zero

probabilities, then this location is connected to the source. Thus, we have:

hmax(x)∑
h=hmin(x)

P(H(x) = h) = PC(x), for 0 ≤ x ≤ L. (6.22)

To obtain P(H(x) = h) we note that the event H(x) = h happens, if there exists at

least one node in interval [yx, x) with hop-count h− 1, and no nodes with hop-count

less than h − 1 exist in that interval. To simplify the calculations, for any locations
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x and y, yx ≤ y < x ≤ L, we define Hh(x, y) to be the probability that the event

“at least one node exists in interval [yx, y) with hop-count h − 1, and no nodes with

hop-count less than h− 1 exist in that interval” happens.

Lemma 21. For any locations x and y, yx ≤ y < x ≤ L, and any integer number

h > 0, the probability Hh(x, y) is equal to the probability of the union of all the events

(f [yx,y] = z) ∩ (H(z) = h− 1), ∀z ∈ [yx, y].

Proof. We use the fact that if location 0 ≤ z ≤ L has hop-count h− 1, the hop-count

for all the locations between z and the destination is greater than or equal to h− 1.

Assume for a value z ∈ [yx, y], event (f [yx,y] = z) ∩ (H(z) = h − 1) happens. Since

z is the location of the first connected node with hop-count h − 1 in interval [yx, y],

then according to the above fact, no nodes with hop-count less than h − 1 exist in

that interval. Hence event “at least one node exists in interval [yx, y) with hop-count

h − 1, and no nodes with hop-count less than h − 1 exist in that interval” happens.

But this is true for any value z ∈ [yx, y]. So to calculate Hh(x, y), one needs to

consider the probability of the union of all the events (f [yx,y] = z) ∩ (H(z) = h− 1),

∀z ∈ [yx, y].

According to Lemma 17, for any two distinct values z1, z2 ∈ [yx, y], events f [yx,y] = z1

and f [yx,y] = z2 are disjoint. Thus, for any integer number h > 0, events (f [yx,y] =

z1) ∩ (H(z1) = h − 1) and (f [yx,y] = z2) ∩ (H(z2) = h − 1) are disjoint too. Using

Lemmas 17 and 21, we have:

Hh(x, y) =

∫ y

z=yx

P((f [yx,y] = z) ∩ (H(z) = h− 1))dz (6.23)

=

∫ y

z=yx

P(E[yx,z) ∩ CN z ∩ (H(z) = h− 1))dz

=

∫ y

z=yx

P(CN z ∩ (H(z) = h− 1)|E[yx,z))P(E[yx,z))dz.

Given that the interval [yx, z) is empty, a node with hop-count h−1 exists in location

z if at least one node with hop-count h − 2 exists in interval [yz, yx), and no nodes

with hop-count less than h − 2 exist in that interval, meaning P(CN z ∩ (H(z) =

h− 1)|E[yx,z)) = λ(z)Hh−1(z, yx). So:
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Hh(x, y) =

∫ y

z=yx

λ(z)Hh−1(z, yx)e
−

∫ z
u=yx

λ(u)dudz, for yx ≤ y < x. (6.24)

To derive P(H(x) = h), we use the following lemma, which is easy to prove.

Lemma 22. For any location 0 < x ≤ L, we have P(H(x) = h) = Hh(x, x).

Thus we have:

P(H(x) = h) =

∫ x

z=yx

λ(z)Hh−1(z, yx)e
−

∫ z
u=yx

λ(u)dudz, for 0 < x ≤ L. (6.25)

To obtain P(H(x) = h), one needs to solve the above integral numerically. So the

continuous formula cannot be used for actual calculations. To make calculations

possible, we find the formula in the discrete network model.

6.3.3 Hop-Count Analysis for the Discrete Network Model

In this section, we consider the discrete network model with a progressive transmission

range assignment. The number of hops required for segment m to receive the data

(for the first time) is denoted by HD[m]. Similar to the continuous case, we have

P(HD[0] = 0) = 1, and P(HD[m] = 1) = 1, for 1 ≤ m ≤ RD[0]. Also:

hmax
D [m]∑

h=hmin
D [m]

P(HD[m] = h) = PC
D [m], for m = 0, · · · ,M + 1. (6.26)

We have HD[m] = h, if at least one node with hop-count h − 1 exists in segments

N cover
m , and no nodes with hop-count less than h − 1 exist there. Similar to the

approach used for the continuous formula, for any segments m and n, nm ≤ n < m ≤
M + 1, we define Hh

D[m,n] as the probability that the event “at least one node exists

in set of segments {nm, · · · , n} with hop-count h − 1, and no nodes with hop-count

less than h − 1 exist in that set of segments”. The following lemma can be proved

similar to Lemma 21.
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Lemma 23. For any segments m and n, nm ≤ n < m ≤ M + 1, and any integer

number h > 0, the probability Hh
D[m,n] is equal to the probability of the union of all

the events (f
{nm,··· ,n}
D = k) ∩ (HD[k] = h− 1), ∀k ∈ {nm, · · · , n}.

Since events f
{nm,··· ,n}
D = k1 and f

{nm,··· ,n}
D = k2, for any two distinct segments k1 and

k2, are disjoint (according to Lemma 19), events (f
{nm,··· ,n}
D = k1) ∩ (HD[k1] = h− 1)

and (f
{nm,··· ,n}
D = k2) ∩ (HD[k2] = h− 1) for any integer h > 0 are disjoint too. Using

Lemmas 19 and 23, we have:

Hh
D[m,n] =

n∑
k=nm

P((f
{nm,··· ,n}
D = k) ∩ (HD[k] = h− 1)) (6.27)

=
n∑

k=nm

P(E
{nm,··· ,k−1}
D ∩ CNk

D ∩ (HD[k] = h− 1))

=
n∑

k=nm

P(CNk
D ∩ (HD[k] = h− 1)|E{nm,··· ,k−1}

D )P(E
{nm,··· ,k−1}
D ), for nm ≤ n < m.

Given that there are no nodes in segments {nm, · · · , k− 1}, for segment k to contain

the first node with hop-count h − 1, at least one node with hop-count h − 2 must

exist in the set of segments N cover
k \ {nm, · · · , k − 1} = {nk, · · · , nm − 1}. Thus,

P(CNk
D ∩ (HD[k] = h− 1)|E{nm,··· ,k−1}

D ) = POC [k]Hh−1
D [k, nm − 1], which results in:

Hh
D[m,n] =

n∑
k=nm

[
POC [k]Hh−1

D [k, nm − 1]
∏

nm≤j<k

(1− POC [j])

]
, for nm ≤ n < m.

(6.28)

Similar to the continuous model, to derive P(HD[m] = h), we have the following

lemma.

Lemma 24. For any segment 0 ≤ m ≤M + 1, we have:

P(HD[m] = h) = Hh
D[m,m− 1] (6.29)

=
m−1∑
k=nm

[
POC [k]Hh−1

D [k, nm − 1]
∏

nm≤j<k

(1− POC [j])

]
.



CHAPTER 6. PROBABILISTIC LINEAR NETWORKS: FEATURES ... 106

The above equation consists of a finite summation over a finite number of functions

Hh
D[m,n]. By obtaining the values of Hh

D[m,n] starting from the source, we can easily

calculate P(HD[m] = h) for all the segments m in the network. To do that we should

consider the below condition:

Hh
D[m,n] = 1, for 0 < m ≤ RD[0], n < m, h = 1. (6.30)

6.4 Last Reachable Distance Analysis

We analyze the last location of the network that receives the data in a given number

of hops. Similar to the previous sections, we first analyze the continuous version, and

then the discrete version of the network.

6.4.1 Last Reachable Distance Analysis for the Continuous

Network Model

In the continuous network model, the last location that receives the data by h hops

is denoted by D[h]. Since D[h] is a continuous random variable, we need to describe

it by its pdf, denoted by dh(x) for all 0 ≤ x ≤ L and hmin(x) ≤ h ≤ hmax(x). We

have d0(x) = δ(x) and d1(x) = δ(x−R(0)), where δ(x) is the Dirac delta function.

For a network with progressive transmission range assignment, location x is the last

reachable location by h hops, if a node exists in location yx, which has received the

data by h− 1 hops, and no other nodes exist in interval (yx, x) that receive the data

by h−1 hops. The node located in yx is the last node (and not location) that receives

the data by h− 1 hops, if D[h− 1] is greater than yx, and D[h− 2] is smaller than yx,

and the interval (yx, D[h− 1]] is empty. To be able to obtain the probability of this

event, we use the joint pdf dh,h−1(x, y), which denotes the joint probability density

function of random variables D[h] at point x, and D[h− 1] at point yx ≤ y < x.

dh,h−1(x, y) = λ(yx)e
−

∫ y
u=yx

λ(u)du

∫ yx

z=dmin[h−1]

dh−1,h−2(y, z)dz, for yx ≤ y < x. (6.31)

Using the marginal probability, the pdf of D[h] is:
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dh(x) =

∫ x

y=yx

dh,h−1(x, y)dy (6.32)

=

∫ x

y=yx

(
λ(yx)e

−
∫ y
u=yx

λ(u)du

∫ yx

z=dmin[h−1]

dh−1,h−2(y, z)dz

)
dy.

Therefore, for any give number of hops, h, the random variable D[h] is in interval

[dmin[h], dmax[h]] with the above derived pdf.

Another important parameter that can be derived using the pdf of the random variable

D[h] is the probability of the event that the data has passed h hops from the source

towards the destination. We denote this event by ∃h. The following relation should

be noted:

P(D[h] = x) = P(∃h ∩ (D[h] = x)).

By calculating the marginal probability, we derive:

P(∃h) =

∫ dmax[h]

x=dmin[h]

dh(x), for 0 ≤ h ≤ hmax(L). (6.33)

Using the cumulative density function (cdf) of the random variable D[h], denoted by

Dh(x) =
∫ x
y=0

dh(y)dy, we can rewrite the above equation as:

P(∃h) = Dh(L), for 0 ≤ h ≤ hmax(L), (6.34)

considering the fact that dh(y) = 0 for y /∈ [dmin[h], dmax[h]].

This probability can be used to obtain the last location of the network that receives

the data from the source within a specific number of hops. This parameter can be

used in data dissemination analysis in VANETs where the portion of the network that

receive the data up to a certain number of hops is important. One example are safety

applications, where the number of hops can be used as an estimation of the delay

needed for a message to propagate [7, 8]. To analyze the distance from the source

that the data can disseminate in a limited hop-count (which can be translated into

limited time) the below probability can be used.
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P
(
D[h] ≥ x|∃h

)
= 1− P (D[h] ≤ x)

P(∃h) = 1− Dh(x)

Dh(L)
. (6.35)

The above equation gives the probability of the event that the last reachable location

by at most h hops2 (a fixed maximum delay) is greater than or equal to x.

Similar to the other continuous formulas we found, the calculation of the probabilities

concerning the D[h] random variable needs numerical integrations. In the next section

we present the discrete formulas for last reachable distance analysis.

6.4.2 Last Reachable Distance Analysis for the Discrete Net-

work Model

In the discrete network model, the last segment that receives the data by h hops is

denoted by DD[h], and is a discrete random variable. As the source has the data,

we have DD[0] = 0 (i.e., P(DD[0] = 0) = 1). Also, the last segment to receive the

data by 1 hop is RD[0], so DD[1] = RD[0] (i.e., P(DD[1] = RD[0]) = 1). In networks

with progressive transmission range assignments, segment m is the last segment that

receives the data by h hops, if it is the last segment in the transmission range of a

an occupied segment (a node) which has received the data by h− 1 hops, and all the

other segments that receive the data with h − 1 hops, and are beyond that segment

are empty. So, for segment m to be the last covered segment by h hops, at least one

node must exist in the set of segments {nminm , · · · , nmaxm } which receives the data by

h−1 hops, and all the segments in set {om, · · · ,m−1} that receive the data by h−1

hops must be empty. To obtain this probability, similar to the continuous case, we

define the below joint probability:

Dh,h−1[m,n] , P(D[h] = m,D[h− 1] = n) for 0 ≤ n < m ≤M + 1. (6.36)

To calculate Dh,h−1[m,n], we consider the following two cases:

a) nminm ≤ n ≤ nmaxm : For this case, the event D[h] = m happens, while D[h− 1] = n,

if a node with hop-count h− 1 exists in set of segments {nminm , · · · , n}. Note that we

can have D[h−1] = n, while D[h−2] is within the set of segments {nminm , · · · , n−1}.
2Note the term at most h hops, as we do not condition x to be greater than D[h− 1].
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The below equation can be used to calculate Dh,h−1[m,n] for this case:

Dh,h−1[m,n] =

nmin
m −1∑

dh−2=dmin
D [h−2]

Dh−1,h−2[n, dh−2]

1−
n∏

n′=nmin
m

(1− POC [n′])


(6.37)

+
n−1∑

dh−2=nmin
m

Dh−1,h−2[n, dh−2]

 dh−2∏
n′=nmin

m

(1− POC [n′])

1−
n∏

n′′=dh−2+1

(1− POC [n′′])

.
In the second term of the summation in the above equation, we used the fact that no

nodes exist in the set of segments {nminm , · · · , dh−2}, as if some exist D[h−1] = m 6= n,

which is unacceptable.

b) om ≤ n ≤ m − 1: Here, for D[h] = m and D[h − 1] = n to happen, in addition

to the conditions needed for the above case, there must be no nodes in the set of

segments {om, · · · , n}, as if one exists, we have D[h] > m. So:

Dh,h−1[m,n] =

{
n∏

o=om

(1− POC [o])

}
× (6.38)

nmin
m −1∑

dh−2=dmin
D [h−2]

Dh−1,h−2[n, dh−2]

1−
nmax
m∏

n′=nmin
m

(1− POC [n′])


+

nmax
m −1∑

dh−2=nmin
m

Dh−1,h−2[n, dh−2]

 dh−2∏
n′=nmin

m

(1− POC [n′])

1−
nmax
m∏

n′′=dh−2+1

(1− POC [n′′])

 .

The random variable D[h] is equal to m with the following probability:

P(DD[h] = m) =


∑m−1

n=nmin
m

Dh,h−1[m,n], dminD [h] ≤ m ≤ dmaxD [h],

0, otherwise.
(6.39)

Similar to the continuous version, we have:
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P(∃hD) =
M+1∑
n=0

P(DD[h] = n), for 0 ≤ h ≤ hmaxD [M + 1], (6.40)

in which ∃hD denotes the event that the data has passed h hops from the source

towards the destination.

For data dissemination analysis in the discrete networks, we have:

P
(
DD[h] ≥ m|∃hD

)
= 1− P (D[h] ≤ m)

P(∃hD)
= 1−

∑m
n=0 P(DD[h] = n)∑M+1
n=0 P(DD[h] = n)

, (6.41)

which gives the probability of the event that the last reachable location by at most h

hops is greater than or equal to segment m.

6.4.3 Obtaining the Hop-Count pmf using the Last Reach-

able Distance Information

Location x receives the data by h hops, if it is within the interval (D[h − 1], D[h]].

Hence, another way to calculate P(H(x) = h) is to use the below equation:

P(H(x) = h) = P(D[h− 1] < x ≤ D[h]) (6.42)

=

∫ dmax[h]

z1=x

∫ x

z2=dmin[h−1]

dh,h−1(z1, z2)dz2dz1.

The discrete version of the above formula is presented below:

P(HD[m] = h) = P(DD[h− 1] < m ≤ DD[h]) (6.43)

=

dmax
D [h]∑
n1=m

m−1∑
n2=dmin

D [h−1]

Dh,h−1[n1, n2].
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6.5 Numerical Results

In this section, we first describe the model we use for simulations, then we present

the results.

6.5.1 Model Used for Simulations

Here we describe the two transmission range assignments we use for simulations, and

we prove that these assignments are progressive. We used the discrete version of the

formulas to compare analysis and simulation results. The two transmission range

assignments we consider are identical transmission range assignment, which is used

widely in the literature [1,45,48,49], and the proposed transmission range assignment

described in Chapter 5.

Theorem 14. Both the identical transmission range assignment and the transmission

range assignment with constant number of covered nodes are progressive.

Proof. For the identical transmission range assignment, since R(x) = r = cte,∀x ∈
[0, L) it is obvious that it is a continuous function, and if x < x′ we have R(x) + x =

r + x < r + x′ = R(x′) + x′, hence this assignment is progressive.

For the assignment defined by Equation (5.3), we note that since the integral of a

continuous function is a continuous function, the transmission range assignment with

constant number of covered nodes, which is the integral over some interval of λ(x)

is continuous. To prove the property x′ + R(x′) > x + R(x) for 0 ≤ x < x′ ≤ L,

we assume that there are no parts in the network with density function equal to

zero. If some parts with λ(x) = 0 exist, there will be no nodes in them, and they

do not have any effect on carrying the data towards the destination. Hence we can

remove them at the first place, knowing that having them removed does not affect

the network properties. Assuming λ(x) 6= 0, the density function is a continuous

positive function, hence the integral of it is a strictly increasing function. Therefore

the function x + R(x) is strictly increasing, i.e., we have x′ + R(x′) > x + R(x) for

0 ≤ x < x′ ≤ L.
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6.5.2 Results

We verify our analysis by simulating 100, 000 network realizations using the two trans-

mission range assignments described in Section 6.5.1. To generate network realiza-

tions, we use the occupancy probabilities of the segments. In a network with M

segments, we consider a node in segment m, according to a Bernoulli random vari-

able with the probability of success equal to POC [m]3. Also, we add two nodes at the

two ends of the network representing the source and the destination.

In our simulations, we select ∆x = 10 cm, and L = 700 meters, which results in M =

7, 000 segments. The network nodes are distributed based on the density function

shown in Fig. 5.4, which is a real-world density function given in Example 4 of [1].

The probability of connectivity for the two schemes, when we have K = 6, is given

in Fig. 6.2. The figure shows that our analysis for calculating the probability of

connectivity using Equation (6.15) is confirmed by the simulations.

To verify the analysis of the hop-count random variable for any location of the net-

work, HD[m], we present the derived pmf of this random variable for two segments

4, 000 and 6, 000 (which correspond to locations 400 and 600 meters from the source)

along with the results obtained by simulations in Figs. 6.3 and 6.4, respectively.

These results are for the networks with the proposed transmission range assignment.

We see that the simulation results confirm the correctness of our analysis in both

figures. Also, as we pick a location further away from the source, the number of hops

needed for the data to reach it will be larger.

The probability for the locations of the network to receive the data by less than

or equal to a certain number of hops are shown in Figs. 6.5 and 6.6 for the identi-

cal transmission range assignment and the proposed transmission range assignment,

respectively. The different curves present different number of maximum allowable

hops. This probability measure can be used to determine the probability that a spe-

cific location receives the data from the source within a limited time delay. Based

on Equation (6.26), the envelope of the curves in each figure gives the probability of

connectivity of the locations of the network to the source, for that assignment. As

3Network realizations can be obtained by the continuous concepts too. First, The number of

the nodes in the network, N , is acquiring using Poisson distribution with mean λ =
∫ L

x=0
λ(x)dx.

Then, given the number of nodes, each node is independently distributed according to a known pdf
f(x) = λ(x)/λ. The resulting network has non-homogeneous Poisson distributed nodes [73].
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Figure 6.2: Probability of connectivity of the network with the given density func-
tion in Fig. 5.4 obtained by our analysis and simulation for the identical and
the proposed transmission range assignments (K = 6).

the figures show, the proposed transmission range assignment broadcasts with higher

probability of connectivity while a lower number of hops is needed for the data to be

delivered to different locations of the network.

Finally, verification of the data dissemination analysis, based on Equation (6.41), is

done by simulation, and the results are given in Fig. 6.7. The curves in Fig. 6.7 show

the probability of the last reachable location by at most a certain number of hops

(indicated in the figure) be greater than or equal to the segment on the x-axis.

The analysis are confirmed by simulations. Furthermore, the curves show that the

networks with our proposed transmission range assignment carry the data to a lo-

cation further away from the source in a certain number of hops, compared to the
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Figure 6.3: Hop count pmf of segment 4, 000 (400 meters away from the source),
obtained by analysis and simulation (for the proposed transmission range as-
signment).

identical transmission range assignment. Hence the proposed transmission range as-

signment is a better choice for the networks in which the data dissemination delay

needs to be minimized, e.g., VANETs that want to broadcast safety messages as soon

as possible.
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Figure 6.4: Hop count pmf of segment 6, 000 (600 meters away from the source),
obtained by analysis and simulation (for the proposed transmission range as-
signment).



CHAPTER 6. PROBABILISTIC LINEAR NETWORKS: FEATURES ... 116

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

1 3 4 5 6 7 8

Distance from the source (m)

P
ro

ba
bi

lit
y

 

 

2

Analysis
Simulation
Probability of Connectivity

Figure 6.5: The data reception probability up to a certain number of hops for the
identical transmission range assignment.
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Figure 6.6: The data reception probability up to a certain number of hops for the
proposed transmission range assignment.
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Figure 6.7: Probability for the last reachable location by at most h hops (h values
are indicated in the figure) be greater than or equal to the segment on the x-axis
(using Equation (6.41)).



Chapter 7

Localization and Location Verification

In this chapter, we use the derived formulas for the hop-count properties of one-

dimensional wireless ad-hoc networks in Chapter 6, and we express the pmf of two

hop-count random variables: the number of hops needed for a node located at an

arbitrary location in the network to receive a message from a node located at one end

of the linear network, and the number of hops needed for a node located at one end

of the network to receive a message from a node at an arbitrary location. Based on

the derived formulas, we then propose localization and location verification methods.

Through simulations, we show that our proposed localization method not only has a

competitive performance for a range-free method, but also outperforms range-based

methods with a local distance measurement error of 10% or more. Furthermore,

the proposed location verification protocol is shown to have better results compared

to the existing verification systems that also use the hop-count information. An

important feature of our methods is that they are applicable to arbitrary densities.

This is unlike the existing methods that are limited only to the case of uniform node

densities. Using simulations, we also evaluate the proposed schemes in the presence

of Rician fading and show that their performance is rather robust with respect to the

change in the fading parameter. Moreover, the hop-count equations derived in this

work can be used in analyzing other aspects of broadcasting protocols such as quality

of service and delay. After describing the system model and expressing the hop-count

analysis for localization and location verification, we explain the use of our analysis

through describing the proposed approach for localization and location verification.

Finally, we compare our work with some of the existing methods for localization and

location verification. The contents of this chapter have been published as [76,77].
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7.1 System Model

In this chapter again, the considered system is exactly the same as what we have in

Chapter 5. For localization analysis, we assume that the anchors are fixed at locations

L apart. For any location, only the information from the two nearest anchors (or just

from one of them) is used. For location verification analysis, the verifiers are fixed at

locations L apart, and any claimed location is verified by the two nearest verifiers (or

just one of them). Hence, we just study the locations 0 ≤ x ≤ L.

In both cases, we have two anchors/verifiers at two ends of the network. We later in

the chapter show that the effect of considering the two anchors/verifiers for both the

localization and location verification can be obtained by analyzing each anchor/verfier

independently. Therefore, we study a network defined on 0 ≤ x ≤ L with one

anchor/verifier at one end (x = 0). For localization, the flow of data is from the

anchors towards the nodes, but in location verification, the flow is from the nodes

towards the verifiers. Hence, we define two transmission range assignments Ra(x) and

Rv(x) for any position 0 ≤ x ≤ L, for localization and location verification purposes,

respectively. Here again, we do not consider the effects of interference and collision

caused by wireless communication among the nodes. It is thus assumed that the

network is equipped with a proper multiple access control (MAC) scheduling to avoid

interferences.

7.2 Hop-Count Analysis for Localization and Lo-

cation Verification

In this section, we express two probabilities, based on the results obtained in Chap-

ter 6. Here we just consider the continuous version of the derived formulas. First we

express the probability of data reception in a certain number of hops for a specific

location of the network from the anchor. Then we express the probability of data

reception for the verifier from a specific location of the network in a certain number

of hops. For each hop-count value, a group of nodes receives the data at the same

time.

The number of hops required for a message sent by the anchor (the source node in

the localization) to be received for the first time in location x is called the hop-count

(from anchor) of location x and is denoted by Ha(x). Using Equation (6.24), we have:
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H(h)
a (x, y) =

∫ y

z=yx

λ(z)H(h−1)
a (z, yx)e

−
∫ z
u=yx

λ(u)dudz,

for yx ≤ y < x. (7.1)

For any location 0 < x ≤ L, we have P(Ha(x) = h) = H
(h)
a (x, x), and thus

P(Ha(x) = h) =

∫ x

z=yx

λ(z)H(h−1)
a (z, yx)e

−
∫ z
u=yx

λ(u)dudz,

for 0 < x ≤ L, (7.2)

where H
(h)
a (x, y) is derived recursively from Equation (7.1), with the initial condition

H
(0)
a (0, 0) = 1.

Now we are interested in finding the hop-count of the verifier located at location 0,

when the source node is a node at location x that transmits a message towards the

verifier. In this set-up, the nodes use the transmission range Rv(.). For any locations

x and y, x− Rv(x) ≤ y < x ≤ L, we define H
(h)
v (x, y) to be the probability that the

event “at least one node exists in the interval [x−Rv(x), y) that sends the message to

the verifier with hop-count h− 1, and no node that send the message with hop-count

less than h− 1 to the verifier exists in that interval” happens. Using the progressive

property of the transmission range Rv(.), and following the same steps as the ones in

previous chapter, we derive

H(h)
v (x, y) =

y∫
z=x−Rv(x)

λ(z)H(h−1)
v (z, x−Rv(x))e

−
z∫

u=x−Rv(x)

λ(u)du

dz,

for x−Rv(x) ≤ y < x ≤ L. (7.3)

Also, for any location 0 < x ≤ L, we have P(Hv(x) = h) = H
(h)
v (x, x), and thus
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P(Hv(x) = h) =

x∫
z=x−Rv(x)

λ(z)H(h−1)
v (z, x−Rv(x))e

−
z∫

u=x−Rv(x)

λ(u)du

dz,

for 0 < x ≤ L, (7.4)

where H
(h)
v (x, y) is derived recursively using Equation (7.3) and the initial condition

H
(0)
v (x, x) = 1 for 0 < x ≤ L.

7.3 Localization

Using the obtained pmf’s in Equation (7.2), we derive the pdf of the location of a node,

given that it receives the message (sent by the anchor) with a certain number of hops.

Based on this pdf, we design a protocol for the nodes to estimate their location. In

our proposed protocol, the anchor broadcasts a message and the nodes observe their

hop-count, and read their location from a table T based on their hop-count. The

table T is calculated beforehand in a centralized fashion, and is broadcasted (e.g.,

as the message to be used for obtaining the hop-counts) to the nodes. This relieves

the computational burden of the nodes, as there is one central unit that handles

the calculations, and knows all the required information (i.e., the nodes density and

the hop-count pmf’s). As the nodes do not know yet their locations to use a vari-

able transmission range assignment, we have to use an identical transmission range

assignment for our localization protocol.

Define X to be the random variable denoting the location of the node under consid-

eration (from 0 to L). According to Equation (11.10) of [73], the distribution of the

location of a node placed based on a non-homogeneous Poisson process with density

λ(x), assuming no additional knowledge, is:

fX(x) =
λ(x)∫ L

0
λ(x′)dx′

, for 0 ≤ x ≤ L. (7.5)

For a node that receives the message by h hops, we are interested in finding the pdf

fX|Ha(X)(x|Ha(X) = h), which gives the conditional pdf of the location of a node

receiving the message (sent from the anchor) in h hops. Since the location of interest



CHAPTER 7. LOCALIZATION AND LOCATION VERIFICATION 123

is a random variable, we use Ha(X). This conditional pdf can be rewritten as:

fX|Ha(X)(x|Ha(X) = h) =
fHa(X)|X(h|X = x)fX(x)

fHa(X)(h)
. (7.6)

In Equation (7.6), the term fHa(X)|X(h|X = x) is equal to the known probability

P(Ha(x) = h), given by Equation (7.2), and fX(x) is given by (7.5). The term

fHa(X)(h) in (7.6) is calculated as follows:

fHa(X)(h) =

∫ L

x=0

fHa(X)|X(h|X = x)fX(x)dx

=

∫ L

x=0

P(Ha(x) = h)
λ(x)∫ L

0
λ(x′)dx′

dx. (7.7)

Finally, by using (7.7) in (7.6), we have:

fX|Ha(X)(x|Ha(X) = h) =
P(Ha(x) = h)λ(x)∫ L

x′=0
P(Ha(x′) = h)λ(x′)dx′

. (7.8)

Now we explain how to use the information of the other anchor (at the end of the

network). The transmission range used for broadcasting from each anchor has to be

identical throughout the network, but can be different from the transmission range

of the other anchor. These transmission ranges are used for obtaining the formulas

given in (7.2) and (7.4). Using the same approach as before, we have:

f
X|H(1)

a (X),H
(2)
a (X)

(x|H(1)
a (X) = h1, H

(2)
a (X) = h2)

=
f
H

(1)
a (X),H

(2)
a (X)|X(h1, h2|X = x)fX(x)

f
H

(1)
a (X),H

(2)
a (X)

(h1, h2)
(7.9)

=
f
H

(1)
a (X),H

(2)
a (X)|X(h1, h2|X = x)fX(x)∫ L

x′=0
f
H

(1)
a (X),H

(2)
a (X)|X(h1, h2|X = x′)fX(x′)dx′

,

where random variables H
(1)
a (X) and H

(2)
a (X) represent the hop-count of the location

random variable X with respect to the first and the second anchor, respectively. Since

the two anchors are located at the two ends of the network, the number of hops needed

for the message sent from one anchor to reach a fixed location is independent of the

number of hops needed for the message sent from the other anchor to reach that
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location. Note that the two hop-counts are statistically dependent if no condition

is imposed on the location in which the hop-counts are observed. For the scenario

here, where the observation location is fixed, however, the two random variables are

independent. For a sketch of the proof, assume that we cut the network into two

different networks from the given fixed location. For each of the new networks, the

number of hops needed for the data to traverse through the network, from the source

(the anchor node at one end of the new network) to the other end of the new network

(the given location in the original network) is independent from that of the other

network. To see the independency more clear, using superscripts (1) and (2) for the

data flow from the first and the second anchors, respectively, we have:

f
H

(1)
a (X),H

(2)
a (X)|X(h1, h2|X = x) = P(H(1)

a (x) = h1, H
(2)
a (x) = h2)

=

∫ ∫ x

z(1)=y
(1)
x ,z(2)=y

(2)
x

(
λ(z(1))λ(z(2))H(1)(h1−1)

a (z(1), y(1)
x )H(2)(h2−1)

a (z(2), y(2)
x )

e
−

∫ z(1)

u=y
(1)
x

λ(u)du
e
−

∫ z(2)

u=y
(2)
x

λ(u)du
dz(2)dz(1)

)
=

∫ x

z(1)=y
(1)
x

(
λ(z(1))H(1)(h1−1)

a (z(1), y(1)
x )e

−
∫ z(1)

u=y
(1)
x

λ(u)du
dz(1)

)
×
∫ x

z(2)=y
(2)
x

(
λ(z(2))H(2)(h2−1)

a (z(2), y(2)
x )e

−
∫ z(2)

u=y
(2)
x

λ(u)du
dz(2)

)
= P(H(1)

a (x) = h1)P(H(2)
a (x) = h2).

We thus have:

f
X|H(1)

a (X),H
(2)
a (X)

(x|H(1)
a (X) = h1, H

(2)
a (X) = h2) (7.10)

=
P(H

(1)
a (x) = h1)P(H

(2)
a (x) = h2)λ(x)∫ L

x′=0
P(H

(1)
a (x′) = h1)P(H

(2)
a (x′) = h2)λ(x′)dx′

.

Our calculations result in finding a pdf for the location of the node under consider-

ation. Having the pdf, we can use the minimum mean-square error (MMSE) or the

maximum a posterior (MAP) method to estimate the location of the node. Here, we

use MMSE and find the expected value of the pdf of the location of the node that

receives the message with h1 and h2 hops from the two anchors, respectively, and
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store it in table T(h1, h2). One of the anchors broadcasts this table to the nodes.

7.3.1 Enhancement

To further increase the estimation accuracy, we use the order of the nodes’ locations

from one end of the network to the other end. The closer a node to location 0, the

lower order it has. First we discuss a general case in which we assume that a central

unit knows the order of all the nodes, and it uses this information along with the

hop-counts information of the nodes to estimate their location. This approach is

computationally expensive. To reduce the complexity, we then propose a simplified

version of this approach. In the simplified version, we assume that the nodes know

their relative location among all the other nodes with the same hop-counts from the

two anchors.

To find the relative location, a node can use directional antenna for signal reception.

It then needs to count the number of nodes with the same hop-count on its left and

right to find its relative order. The same relative information can be sent to the

central unit for obtaining the total order of all the nodes using a procedure described

in the following. The central unit arranges the nodes, starting from the nodes with

hop-count one from the anchor on the left side of the network, and the maximum

hop-count from the other anchor. Among these nodes, the node which has no nodes

with the same hop-count on its left will be the first node. The rest of the nodes will be

arranged in a similar manner. The central unit can thus order all the nodes based on

the received information about the hop-count of the nodes and their relative location.

General Approach

Assume that there are N nodes distributed in the network based on pdf fX(x) ob-

tained in Equation (7.5). We denote the nodes by n ∈ {1, 2, . . . , N}, where n indicates

the order of the nodes as well. So node 1 is the closest node to location 0, and node

N is the closest node to location L. Node n receives the message sent from the first

and the second anchor in h
(n)
1 and h

(n)
2 hops, respectively. Knowing the order of all

the nodes, the best MMSE location estimate of the nodes is the expected value of the

joint pdf of their locations. This joint pdf is defined in (7.11).
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f ∗X1,··· ,XN
(x1, . . . , xN)

,f(x1,...,xN |H
(1)
a (X1)=h

(1)
1 ,H

(2)
a (X1)=h

(1)
2 ,··· ,H(1)

a (XN )=h
(N)
1 ,H

(2)
a (XN )=h

(N)
2 ). (7.11)

Thus the best estimate is:

x̂ = (x̂1, · · · , x̂N) =

∫ L

x1=0

∫ L

x2=x1

· · ·
∫ L

xN=xN−1

(x1, . . . , xN)f ∗X1,··· ,XN
(x1, . . . , xN)dxN · · · dx1,

(7.12)

where x̂ denotes the vector of the estimated locations for the N nodes, and x̂n denotes

the estimated location of node n.

This approach has a number of disadvantages. First of all it is centralized, and the

central unit has to receive the ordering information from all the nodes and calculate

the complex joint pdf of the locations of all the nodes. Furthermore, the N -fold

integration is computationally complex. To overcome these problems, in the following,

we introduce a simplified solution.

Simplified Approach

In this approach, every node is assumed to know its relative location among all the

nodes with the same hop-counts. To simplify the calculations, in the rest of this

section, we use the following notation:

fh1,h2(x) , f
X|H(1)

a (X),H
(2)
a (X)

(x|H(1)
a (X) = h1, H

(2)
a (X) = h2). (7.13)

Here, similar to the general approach, the estimated locations are calculated at a

central unit and are broadcasted to the nodes. We denote the number of nodes that

receive the message in h1 and h2 hops from the two anchors by Nh1,h2 . So for any set of

values of h1, h2, and Nh1,h2 , the estimated locations vector x̂h1,h2 = (x̂1, . . . , x̂Nh1,h2
) is

derived centrally and saved in the three dimensional table T(h1, h2, Nh1,h2). This table

is then broadcasted to the nodes. Using its own values of h1 and h2 and Nh1,h2 , and

knowing its relative location within the set of Nh1,h2 nodes with the same hop-counts,

each node will then look up its location estimate from the table.
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As all of the Nh1,h2 nodes receive the message with the same hop-counts, all of them

have the same location pdf. Since x1 < x2 < · · · < xNh1,h2
, the joint pdf of the

location of all of them is calculated as CNh1,h2

∏Nh1,h2
n=1 fh1,h2(xn), where CNh1,h2

is the

normalization factor and is calculated as follows:

CNh1,h2
,
∫ L

x1=0

∫ L

x2=x1

· · ·
∫ L

xNh1,h2
=xNh1,h2

−1

Nh1,h2∏
n=1

fh1,h2(xn)dxNh1,h2
· · · dx1. (7.14)

Therefore we have:

x̂h1,h2 = (x̂1, . . . , x̂Nh1,h2
) (7.15)

= CNh1,h2

∫ L

x1=0

∫ L

x2=x1

· · ·
∫ L

xNh1,h2
=xNh1,h2

−1

(x1, . . . , xNh1,h2
)

Nh1,h2∏
n=1

fh1,h2(xn)dxNh1,h2
· · · dx1.

Here, similar to the general approach, we have to perform a multiple fold integration.

To simplify the calculations, we rewrite the above formula as in (7.16).

x̂h1,h2 = (x̂1, . . . , x̂Nh1,h2
) (7.16)

= CNh1,h2

∫ L

x1=0

fh1,h2(x1)

∫ L

x2=x1

fh1,h2(x2) · · ·
∫ L

xNh1,h2
=x(Nh1,h2

−1)

fh1,h2(xNh1,h2
)(x1, . . . , xNh1,h2

)dxNh1,h2
· · · dx1.

The formula in (7.16) can be expressed as a recursion. We first define the following

set of recursive functions:

F
(0)
h1,h2

(x) , 1, F
(R)
h1,h2

(x) ,
∫ L

u=x

fh1,h2(u)F
(R−1)
h1,h2

(u)du (7.17)

for R = 1, . . . , Nh1,h2 .

Using these functions, we define the following set of recursive equations.
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E
(1,R)
h1,h2

(x) ,
∫ L

u=x

ufh1,h2(u)F
(R−1)
h1,h2

(u)du,

E
(L,R)
h1,h2

(x) ,
∫ L

u=x

fh1,h2(u)E
(L−1,R)
h1,h2

(u)du (7.18)

for R = 1, . . . , Nh1,h2 and L = Nh1,h2 − R + 1.

Finally, we have:

x̂h1,h2 = (x̂1, . . . , x̂Nh1,h2
) (7.19)

= CNh1,h2
(E

(1,Nh1,h2
)

h1,h2
(0), E

(2,Nh1,h2
−1)

h1,h2
(0), . . . , E

(Nh1,h2
,1)

h1,h2
(0)).

7.4 Location Verification

In our proposed verification approach, a node sends its claimed location to the verifier.

In every hop, the relay nodes increment the total hop-count of the message by one.

The verifier gets the message along with the number of hops needed for the message to

reach it. Using the hop-count pmf provided in Equation (7.4) the verifier calculates

the plausibility that the claim is true. This is done by comparing the obtained

plausibility with a set of classification thresholds to assess the trustworthiness of the

claimed location. A single threshold level leads to a decision about acceptance or

rejection of this location association.

For this approach to work, the transmission range assignment of the nodes has to be

progressive, and it is not limited to just the identical transmission range assignment.

Furthermore, more than one verifier can be employed to enhance the decision making

process.

7.4.1 Plausibility Calculation

We use the same mapping from the probability values of receiving the message by the

verifier in a certain number of hops to the plausibility of the claimed location as the

one used in [13]. Assume that the message sent from a node is received by the verifier

in h∗ hops, and this node’s claimed location is x̌. First, for taking into account the
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relative position of the probability associated with h∗ in the entire pmf of random

variable Hv(x̌), we find the maximum probability value in the pmf.

Pmax(x̌) , max
h∈N

(P(Hv(x̌) = h)), (7.20)

where N denotes the set of natural numbers.

We consider the difference between Pmax(x̌) and P(Hv(x̌) = h∗) as a measure of

plausibility of the claim. The larger this difference becomes, the less one should trust

the claimed location. We define a probability slack function to show this difference,

as shown below:

S(x̌, h∗) , Pmax(x̌)− P(Hv(x̌) = h∗). (7.21)

Finally, the distrust in the claimed location based on the observed number of hops is

calculated by scaling the probability slack function, i.e.,

S(x̌, h∗)

Pmax(x̌)
. (7.22)

When we have just one verifier in the network, the final plausibility is considered

as 1 − S(x̌,h∗)
Pmax(x̌)

, and is compared with a set of classification thresholds to assess the

trustworthiness of the claimed location.

To get better results, we use two verifiers (one at location 0, and the other one at

location L) for the nodes located in the interval [0, L]. To merge the distrust level of

the two verifiers to calculate the final plausibility P(x̌), we use the following formula:

P(x̌)

, 1−
P

(1)
max(x̌)−P(H

(1)
v (x̌)=h∗)

P
(1)
max(x̌)

P
(1)
max(x̌) + P

(2)
max(x̌)−P(H

(2)
v (x̌)=h∗)

P
(2)
max(x̌)

P
(2)
max(x̌)

P
(1)
max(x̌) + P

(2)
max(x̌)

= 1− S(1)(x̌, h∗) + S(2)(x̌, h∗)

P
(1)
max(x̌) + P

(2)
max(x̌)

, (7.23)

where the superscripts denote the verifier numbers (1 for the verifier at location 0,

and 2 for the other verifier).

In Equation (7.23), we used P
(ν)
max(x̌) as a measure of the confidence in the opinion

of verifier ν (ν ∈ {1, 2} here). Since the random variables H
(1)
v (x̌) and H

(2)
v (x̌) are



CHAPTER 7. LOCALIZATION AND LOCATION VERIFICATION 130

independent, their calculated plausibilities are independent as well. To consider all

the observations of all the verifiers, the P
(ν)
max(x̌) and S(ν)(x̌, h∗) values of all verifiers ν

are collected at a verification centre and a common plausibility P(x̌) for the claimed

location is calculated using Equation (7.23). This plausibility value is compared with

a set of classification thresholds to assess the trustworthiness of the claimed location.

In the simplest form, a single threshold level is used, and it leads to a decision about

acceptance or rejection of this location association.

7.4.2 Performance Analysis

In contrast to most of the existing literature, we evaluate the performance analytically.

The performance of a detection system is evaluated through its probability of detection

and probability of false alarm. For a node located at (actual) location x∗, while its

claimed location is x̌, we define two events: detection and false alarm. We assume

that the claim is true if |x̌ − x∗| ≤ d, where d is a constant, and depends on the

sensitivity of the system on the precision of nodes’ locations. We consider a binary

decision-making process where the plausibility is compared with a single threshold

value, denoted by 0 ≤ τ ≤ 1, i.e., we accept a claim if the plausibility is above τ , and

reject it, otherwise.

Definition 16 (Detection Event). The incorrectness of a claim is detected, if P(x̌) <

τ , while |x̌− x∗| > d.

Definition 17 (False Alarm Event). A correct claim is detected as incorrect (and the

system produces a false alarm), if P(x̌) < τ , while |x̌− x∗| ≤ d.

For the example shown in Fig. 7.1 the system detects an incorrect claim for x̌ < x∗−d
(interval ∆D

L ) and x̌ > xRτ (interval ∆D
R). The system generates a false alarm for

x∗ − d < x̌ < xLτ (interval ∆F ).

Assuming a uniform distribution in the interval [0, L] for the claimed location, the

average probability of detection for a given location x∗ is calculated as follows:

PD(x∗) =
1

L

∫ L

x̌=0

Π(τ − P(x̌))Ωd(x̌− x∗)dx̌, (7.24)

where Π(x) is the unit step function and Ωd(x) is defined by
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Figure 7.1: Detection happens for x̌ < x∗ − d (interval ∆D
L ) and x̌ > xRτ (interval

∆D
R). False Alarm happens for x∗ − d < x̌ < xLτ (interval ∆F ).

Ωd(x) ,


1, x < −d;

0, −d ≤ x ≤ d;

1, x > d.

(7.25)

The total probability of detection of the system is calculated using the pdf of x∗

obtained in Equation (7.5), and is shown below:

PD =

∫ L

x∗=0

fX(x∗)PD(x∗)

=

L∫
x∗=0

(
fX(x∗)

1

L

∫ L

x̌=0

Π(τ − P(x̌))Ωd(x̌− x∗)dx̌
)
dx∗. (7.26)

Similarly, the probability of false alarm at a given x∗ averaged over x̌ is given by
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PF (x∗) =
1

L

∫ L

x̌=0

Π(τ − P(x̌))(1− Ωd(x̌− x∗))dx̌, (7.27)

and the total probability of false alarm by

PF =

∫ L

x∗=0

fX(x∗)PF (x∗)

=

L∫
x∗=0

fX(x∗)
1

L

L∫
x̌=0

Π(τ − P(x̌))(1− Ωd(x̌− x∗))dx̌

 dx∗. (7.28)

7.5 Numerical Results

Here, we first demonstrate that our analytical results match the Monte Carlo simula-

tions. Then we compare our localization approach with some existing range-free and

range-based approaches. Furthermore, we present some cases of the calculated loca-

tion pdf’s where the number of hops is given (derived in Equations (7.8) and (7.10)).

Finally, we present simulation results related to location verification and compare our

location verification approach with the work presented in [13].

In our simulations, we also consider the effects of fading. We use Rician fading

model [78], which is appropriate for a linear network where a line-of-sight component

is expected to exist in the received signal. Based on the results of [78], the parameter

K of Rician fading for urban and semi-rural environments is between 1.8 to 6.6, with

larger values of K corresponding to rural cases. We consider two cases of K = 3 and

K = 5 for urban and semi-rural environments, respectively. To obtain our results,

we simulated 100, 000 network realizations1 based on the density function shown in

Fig. 5.4, which is a real-world density function given in Example 4 of [1]. Throughout

the simulations, the transmission range used for localization is considered to be 70

meters for both anchors (i.e., ∀x : R
(1)
a (x) = R

(2)
a (x) = 70 meters). Also, the same

range is used for R
(1)
v (x) (to transmit the message towards verifier 1 at location 0)

and R
(2)
v (x) (to transmit the message towards verifier 2 at location L = 700 meters).2

1In our simulations, we just considered connected networks, i.e., the cases where all the nodes
are within the transmission range of another one.

2We fix the transmission power of the nodes to have a fixed reception power level (pr) at the
distance of 70 meters from the node in the no-fading environment. To consider the effects of fading,



CHAPTER 7. LOCALIZATION AND LOCATION VERIFICATION 133

Table 7.1: Hop-count pmf of the location x = 450 meters, receiving the message
from the anchor at x = 0.

h = 6 h = 7 h = 8 h = 9

Analysis 0 0.2724 0.6924 0.0350

No Fading 0 0.2717 0.6933 0.0349

Rician Fading (K=5) 0 0.3181 0.6514 0.0294

Rician Fading (K=3) 0.0114 0.3376 0.6267 0.0237

Table 7.2: Hop-count pmf of the verifier at x = 0, receiving the message from a
node at location x = 500 meters.

h = 7 h = 8 h = 9 h = 10

Analysis 0 0.4895 0.4929 0.0176

No Fading 0 0.4891 0.4933 0.0176

Rician Fading (K=5) 0.0132 0.5382 0.4335 0.0149

Rician Fading (K=3) 0.0418 0.5752 0.3705 0.0121

In the first row of Tables 7.1 and 7.2, we have presented the pmf’s of Ha(x) and Hv(x),

respectively. These pmf’s are derived based on Equations (7.2) and (7.4), for x = 450

and x = 500 meters, respectively. In the same tables, we have also included the results

of Monte Carlo simulations in the absence and presence of fading. As can be seen in

both tables, the simulation results with no fading match well with our analysis. The

tables also show that the introduction of fading changes the distributions, with larger

deviation from the analysis for the smaller value of K (K = 3). This is expected, as

the smaller the K value, the weaker the line-of-sight component of the received signal

would be. A careful comparison of fading results with no fading ones, however, show

a rather small difference in the pmf, even for the case of K = 3.

the nodes transmit with the same fixed power through a Rician channel, and we measure the dis-
tance from them that the signal is received with power pr. The measured distance is the effective
transmission range of the nodes.
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7.5.1 Localization

In Fig. 7.2, we have shown the pdf of the location of a node that receives the message

in h = 5 hops from an anchor at x = 0. The pdf is derived using Equation (7.8).

The simulated pdf in the absence and presence of fading is also shown in Fig. 7.2.

Again, while the simulated pdf in the absence of fading matches the analytical result,

the presence of fading changes the pdf, with a larger change for the smaller value of

K. Note that even for the case of K = 3, the MMSE location estimate (i.e., 300.4

meters) changes by only about 5% compared to the case with no fading (i.e., 285.1

meters).
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Figure 7.2: The pdf of the location of a node that receives the message by h = 5
hops from the anchor at x = 0.

Fig. 7.3 shows the location pdf for the two cases where there is one anchor at one

end of the network, and where there are two anchors at two ends of the network (at

locations 0 and 700 meters). The latter pdf is obtained using Equation (7.10). The

node under consideration receives the message in h1 = 5 hops from the first anchor
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(at 0), and in h2 = 6 hops from the other anchor. The comparison of the analysis

with simulations in the absence of fading reveals a perfect match. As can be seen

from Fig. 7.3, using two anchors results in a narrower pdf and consequently a better

localization. Furthermore, using the joint pdf results in some cancellation of the shift

in the location estimates, caused by fading, and thus having closer estimates to the

case of no-fading compared with the situation where marginal pdf’s are used. In fact,

with two anchors, the MMSE location estimate in the presence of fading is only less

than 1% different from that of the analysis.
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Figure 7.3: The pdf of the location of a node that receives the message by h1 = 5 and
h2 = 6 hops from two anchors at x = 0 and x = L = 700 meters, respectively.

The comparison between our proposed methods and DV-Hop, DV-RND, and some

hypothetical range-based approaches is shown in Fig. 7.4 in terms of the localization

error normalized with respect to the transmission range. No fading is considered in

these simulations. For the range-based approaches, we assume that a node estimates
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its distance to a node that transmits to it, but with some measurement error. For

simulations, the measurement errors are drawn from Gaussian distributions with stan-

dard deviation equal to ε% of the actual distance. Here, we simulated the range-based

approaches for ε ∈ {5%, 10%, 15%, 20%, 25%}. To see the effect of node density on

the results, we consider 25 different density functions, each having the same general

shape as that of Fig. 5.4, but multiplied by a different γ, where γ ∈ {0.2, 0.4, . . . , 5}.
For each (connected) network realization, the difference between the actual location

of a node and its location estimate is considered as the localization error of that

node. The average error for all the nodes of a network is then considered as the

localization error of that network. The overall average of the localization error for

each γ value is then calculated as the average of the localization errors of 100, 000

network realizations with that density.

As can be seen from the figure, the performance of all approaches improves with

the increase in node density. Our proposed localization approach with two anchors

outperforms the DV-Hop approach for a wide range of sufficiently large γ values.

Fig. 7.4 also demonstrates that the performance of our enhanced approach improves

with γ at a rate considerably faster than that of the other approaches. With high

density values, the probability of having more nodes with the same pdf grows. The

more nodes have the same location pdf (for certain hop-counts from two anchors),

the more expected values will be obtained from the enhanced approach’s formulas.

This results in having less distance between these expected values, which, on average,

results in less localization error.

Due to the above reasoning, for very large values of γ, the localization error of the

enhanced approach tends to zero. This is while the performance of other approaches

(except for DV-RND) saturates with increasing γ, as shown in Fig. 7.4. The original

proposed approach and the DV-Hop approach use one (expected) value for each pdf

(for any pair of hop-counts) as the location estimate of the nodes with the same hop-

counts. Hence, the location error converges to the standard deviation of the location

pdf, and thus to a constant value for both the original proposed approach and the

DV-Hop approach. For the DV-RND approach, the larger the number of nodes that

provide RND (as a result of larger density), the better the location estimate for all the

nodes. This comes with the cost of more RND exchange, hence more overhead. For

the considered range-based approaches, with the increase of γ, the localization error

converges to the standard deviation of the sum of some Gaussian random variables
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ranging from (near) 0 to Ra.
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Figure 7.4: Localization error of different approaches for different densities, while
∀x : R

(1)
a (x) = R

(2)
a (x) = 70 meters.

The enhanced proposed approach outperforms DV-RND for the whole range of γ

values, and even the range-based approaches with local distance measurement error

as low as 10% of the actual distance for values of γ larger than 4. As we pointed out

earlier, it is shown that the distance measurement error often exceeds 10% [59, 60],

sometimes quite significantly so.

Some elements of the localization table T for Nh1,h2 = 3, used for the networks with

γ = 1, are given in Table 7.3. These values are used as the location estimates for

nodes within the set of 3 nodes with the same hop-counts. The larger the value of h1,

the farther away the location estimate from the location 0. This is while for larger

values of h2, the location estimate gets closer to location 0.

To show an example of the values of the localization table T for different number
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Table 7.3: Some elements of the localization table T with Nh1,h2 = 3, for γ = 1.

· · · h2 = 6 h2 = 7 h2 = 8 h2 = 9 · · ·

h1 = 6


334.5

350.1

365.7




305.7

321.7

337.8




280.9

298.1

315.2




260.0

277.2

294.2



h1 = 7


362.5

378.7

394.9




332.6

350.1

367.6




308.5

325.6

342.7




289.1

304.3

319.9



h1 = 8


385.6

403.0

420.4




357.6

374.8

392.0




334.3

350.1

366.0




315.1

328.0

341.8



h1 = 9


407.2

424.3

441.4




380.7

396.4

411.9




358.5

372.2

385.2




337.7

350.1

362.5


· · ·

of nodes with the same hop-counts, we present the values of this table for different

values of Nh1,h2 , when h1 = 5 and h2 = 6, in Table 7.4. These values are also for

networks with γ = 1.

7.5.2 Location Verification

The obtained plausibility P(x̌) for one verifier and two verifiers (from Equation (7.23))

are shown in Fig. 7.5. In the same figure, we show the plausibility of the PLV

approach [13], which we call the original PLV approach here. The original PLV

approach assumes that the nodes are distributed uniformly in the network. For this

approach to work, we took the average of the density function (i.e., λ̄ , 1
L

∫ L
x=0

λ(x)),

and fed it to the original PLV as the (uniform) density of the network. The illustrated

plausibilities are shown for locations in the interval [300, 450] meters, and are for a

node located at (actual) location x = 375 meters. Generally, a higher number of

verifiers can detect a false location claim with a higher probability. The plausibility

of our approach when we have two verifiers in the network is narrower than the same
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Table 7.4: Some elements of the localization table T for different values of Nh1,h2 ,
(for h1 = 5, h2 = 6 and γ = 1).

Nh1,h2 = 1 Nh1,h2 = 2 Nh1,h2 = 3 Nh1,h2 = 4 Nh1,h2 = 5 · · ·

(
317.9

)  311.9

323.9




308.9

318.0

326.8




306.9

314.7

321.2

328.7





305.5

312.6

318.0

323.4

330.0



system using the original PLV approach. This results in more accurate detections.

(For the case of one verifier, our approach and PLV perform closely.)
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Figure 7.5: Plausibility of all the locations in the interval [300, 450] meters for
different approaches, where the claim is from a node located at x = 375 meters.

An indication of the success of a classification method is the receiver operating char-

acteristic (ROC) curve. This curve is the plot of the probability of detection as a

function of the probability of false alarm of the system [79]. We generated ROCs
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by sweeping the range of the classification threshold, τ , from 0 to 1 in increments of

0.01. A good classifier provides high detection probabilities for very small values of

false alarm probability, i.e., the closer the ROC is to the point (0, 1), the better the

classification performs. As expected, Fig. 7.6 shows that the system with two verifiers

outperforms the system with one verifier. Also, it can be seen that our verification

system has better ROC curves compared with the original PLV approach, when the

two systems use the same number of verifiers. To better demonstrate the advantage

of our scheme, we have zoomed into the important part of the ROC curves in the

vicinity of the point (0, 1). As can be seen, for example, at PD = 0.92, our scheme

has PF = 0.005 vs. 0.027 for the original PLV for the two verifier case.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we considered wireless networks with known and unknown node lo-

cations. For the networks where the location of the nodes is known, we solved the

Minimum-Energy Broadcasting problem for the linear (one-dimensional) cases (Chap-

ter 3), as well as for cross networks (Chapter 4). Our solutions consist of optimal

and some near-optimal algorithms. We also presented distributed algorithms which

have lower time complexity compared with the centralized algorithms, while they per-

form close to the centralized ones. We demonstrated that the distributed algorithm

performs well even for grid networks with perpendicular segments.

In Chapters 5, 6 and 7, we studied linear networks where the knowledge of the exact

location of the nodes is not available, and the locations are known probabilistically.

We proposed a transmission range assignment to make the network connected with

high probability, while the average total consumed power is limited in Chapter 5. The

proposed assignment is obtained by maintaining the same probability of having at

least one node in the transmission range of the nodes located anywhere in the network.

The proposed assignment achieves a higher probability of connectivity compared with

an identical transmission range assignment, which is commonly used in the literature.

Furthermore, it is shown that our approach, on average, has a bounded contention

level, while this quantity can be very large for the identical assignment.

For the network model used in Chapter 5, we studied the probability of connectivity

of any location of the network to the source, the hop-count probability mass function

(pmf) of an arbitrary location of the network, and the pdf of the maximum coverage

(last reachable distance from the source) for a given number of hops in Chapter 6.

141
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The proposed analysis is applicable to progressive transmission range assignments,

which include identical transmission range assignments. Analyzing these features

helps to perform localization analysis, as well as location verification. Also, they can

be helpful in energy consumption analysis.

In Chapter 7, based on the analysis derived in Chapter 6, we expressed exact formu-

las for the hop-count of any location of a one-dimensional wireless ad-hoc network

when the sender is at a certain location, as well as the hop-count of a receiver at

a certain location where the sender’s location can be anywhere in the network. We

proposed a localization and a location verification method based on the derived for-

mulas. We validated our results via simulation, and compared them with some known

approaches, with and without fading. The proposed localization method outperforms

range-based methods with local distance measurement error of 10% and more, and

state-of-the-art range-free localization protocols. The proposed location verification

protocol was compared with the probabilistic location verification (PLV) method and

was shown to perform better, e.g., by having a better receiver operating characteristic

(ROC) curve.

8.2 Future Work

Here are some of the topics that can be studied further:

• Finding a transmission range assignment that maximizes the average probability

of connectivity of a linear network with probabilistic node locations. We will

present some preliminary results of our study on this topic in Subsection 8.2.1.

• Finding the transmission range assignment which consumes the lowest possible

energy, while guaranteeing a certain probability of connectivity to the source

along the network, for linear networks with probabilistic node locations.

• Extending the performed study to find optimal and near-optimal solutions for

minimum-energy broadcasting on cross networks with non-perpendicular lines.

• Enhancing the accuracy of the derived formulas for localization in Chapter 7 in

fading environments.

• Considering non-stationary node density functions, and cases in which the den-

sity is estimated with some error would be of practical interest.
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• Applying the hop-count analysis results to various other problems, such as delay

analysis (e.g., for broadcasting safety messages in VANETs), energy consump-

tion analysis, and studying the quality of service in broadcasting protocols.

One example would be to design a transmission range assignment to maximiz-

ing delay for a given amount of energy while achieving a minimum level of

probability of connectivity. This range assignment can be used for applications

such as: disseminating safety messages (to have minimum dissemination time),

real-time applications (multimedia networks, etc.), power grids (to minimize the

delay for the center to be notified of a malfunction in a power grid).

8.2.1 Average Probability of Connectivity

In Chapter 5, we proposed a heuristic transmission range assignment to maximize

the probability of connectivity of the destination of a linear network to the source.

The obtained formulas in that chapter and Chapter 6 enable us to study a new

problem. Assume that there is no specific destination node to deliver the data to,

and we are interested in delivering the data to as many nodes as possible, on average

(as the nodes are distributed randomly on the line, and the exact location and the

total number of the nodes are unknown) and with high probability. This type of

transmission range assignments, to the best of our knowledge, has not been studied.

One important application of these assignments is for safety message propagation.

Consider a case where a car has an accident and wants to transmit this information

to the other neighboring cars. It is obvious that the closer the neighboring cars, the

more essential this information is for them. Here, there is no specific destination, and

a good protocol maximizes the average probability of connectivity of the nodes to

the source. It may be better to have a weighted average, i.e., the closer a node is to

the source, the more weight it is given, but as a first step, one can just consider the

average probability of connectivity (with identical weighing).

We define the goal of the desired transmission range assignment as maximization

of the average probability of connectivity of the nodes to the source, and not just

the probability of connectivity of the last destination. The average probability of

connectivity up to location y is defined as following:
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PC(y) =

∫ y

x=0

λ(x)PC(x)dx. (8.1)

The discrete version of the above formula is given below (the average probability of

connectivity up to segment n):

PC [n] =
n∑

m=0

POC [m]PC
D [m]. (8.2)

To justify our proposed approach, we considered a linear network with uniformly

distributed nodes on a line with total length L = 1000 meters. In our simulations,

we discretize the network by selecting ∆x = 10 cm, and we thus have M = 10, 000

segments. Intuitively, the identical transmission range assignment is the best assign-

ment employed for this kind of network. We compared the identical transmission

range assignment with the three heuristic assignments shown in Fig. 8.1. All four

assignments have the same average total consumed power (defined by Equation (5.7)

for the discrete network model). Note that transmission range assignments Ridentical

(the identical transmission range assignment), R2, and R3 decay towards the end of

the network to limit the range so that no power is wasted by communicating beyond

the destination (R1 does not cover beyond the destination, hence there is no need for

decaying it).

As it can be seen in Fig. 8.2, the identical transmission range assignment has the

maximum probability of connectivity of the destination to the source (using either

Equations (5.8) or (6.15)).

For the average probability of connectivity, using Equation (8.2), as we see in Fig. 8.3,

the identical assignment is not the best, and other assignments outperform it. For

example assignment R1 has the best average probability of connectivity for the whole

network, as well as for any location of the network. For the safety message dissem-

ination applications, R1 is the best among the studied assignments, as it has high

average probabilities of connectivity near the source.
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Figure 8.1: The identical transmission range assignment along with three other
heuristic assignments (all the four of these assignments consume the same
amount of power on average).

One can extend our preliminary results here by finding the best (or good heuris-

tics) for linear networks with uniformly distributed nodes, and networks with nodes

distributed according to a non-homogeneous Poisson process.
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