
CS-MNS: Analysis and Implementation

by

Ereth McKnight-MacNeil

A Thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Master of Applied Science in Electrical and Computer Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering (OCIECE)

Department of Systems and Computer Engineering

Carleton University

Ottawa, Canada

August 2010

c© 2010 Ereth McKnight-MacNeil

The undersigned recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis

CS-MNS: Analysis and Implementation

submitted by

Ereth McKnight-MacNeil, B.Sc.

in partial fulfilment of the requirements for the degree of

Master of Applied Science in Electrical and Computer Engineering

Thesis Supervisor, Dr. Thomas Kunz

Chair, Dr. Howard Schwartz
Department of Systems and Computer Engineering

Carleton University

August 2010

ii

Abstract

Wireless sensor networks (WSNs) consist of numerous nodes gathering observations

and combining these observations. Often, the timing of these observations is of im-

portance when processing sensor data. Thus, a need for clock synchronization arises

in WSNs. The clock sampling mutual network synchronization (CS-MNS) algorithm

has been proposed to fulfil this role.

Analytical results are given that show, in the absence of initial offset errors, that

the network clocks converge. In the general case, conditions are presented under

which the clock rates show convergent behaviour. The CS-MNS algorithm is improved

through the addition of a bias term to control initial divergence.

Numerical simulation is used to explore the behaviour of CS-MNS for different

network topologies.

The CS-MNS algorithm is implemented under TinyOS and its performance exper-

imentally evaluated. The results show that CS-MNS behaves as pedicted by analysis

and simulation, and acheives significantly better clock synchronization performance

than the flooding time synchronization protocol (FTSP).

iii

Acknowledgments

I would like to thank my supervisor Dr. Thomas Kunz for his guidance throughout

my graduate studies and for his insightful comments and discussions.

I would like to acknowledge the TinyOS community members who have generously

shared and donated their work.

I appreciate the support and encouragement I have received from my family over

many years. Finally, I am most grateful to Christina Vanderwel for her support,

dedication and patience.

iv

Table of Contents

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Organization of the Thesis . 4

2 Background 5

2.1 Wireless Sensor Networks and Their Applications 5

2.2 Wireless Sensor Network Hardware 6

2.3 Wireless Sensor Network Software . 8

2.4 Clocks . 8

2.5 Time Synchronization . 9

2.6 Time Synchronization in Wireless Sensor Networks 11

2.7 IEEE 802.11 Time Synchronization Function 12

2.8 Flooding Time Synchronization Protocol 13

2.9 Clock Sampling Mutual Network Synchronization 14

2.10 CS-MNS Clock Correction . 16

2.11 Summary . 18

3 Analytical Results 19

3.1 Introduction . 19

3.2 Analytical Clock Model . 20

v

3.3 Convergence in the Absence of Offset Errors 21

3.4 Convergence with Offset Errors . 23

3.5 Addition of a Bias Term to Control Initial Convergence 26

3.6 Effect of Quantization Noise on the CS-MNS Update Law 28

3.7 Summary . 29

4 Simulation Results 30

4.1 Introduction . 30

4.2 Simple Dynamics Simulation . 31

4.3 Summary . 41

5 Testbed Results 42

5.1 Introduction . 42

5.2 Implementation . 42

5.3 Test Methodology . 43

5.4 Hardware Characterization . 47

5.5 CS-MNS Performance . 52

5.6 CS-MNS Summary . 64

5.7 FTSP Test Method . 65

5.8 FTSP Performance . 66

5.9 FTSP Summary . 70

5.10 Comparison of CS-MNS and FTSP 74

5.11 Summary . 76

6 Conclusions and Future Work 78

6.1 Conclusions . 78

6.2 Future Work . 79

List of References 81

vi

Appendix A TinyOS Implementation Details 85

A.1 TinyOS Abstraction Architecture . 85

A.2 Clock Software . 86

A.3 Timestamping . 86

A.4 Dallas 1-Wire Bus and Unique Identifiers 89

Appendix B Security Considerations 91

B.1 Insecure External Synchronization . 92

B.2 Security Through Outlier Detection 93

B.3 Securing External Synchronization 94

B.4 Preliminary Simulation Results . 95

vii

List of Tables

1 Summary of CS-MNS simulation results under different topologies. . . 40

2 Number of reports per node by node type. 46

3 Node clock rates relative to MicaZ base node clock rate. 49

4 Average clock rates relative to the MicaZ base node clock. 50

5 Summary of CS-MNS experimental results under different topologies. 64

6 Summary of FTSP experimental results under different topologies. . . 73

7 Summary of experimental results for CS-MNS and FTSP under differ-

ent topologies. 75

viii

List of Figures

1 MicaZ (left) and TelosB (right) sensor node hardware. 7

2 Simulated synchronization error for 30 nodes in single-hop configura-

tion using (a) continuous node clocks and (b) 32.768 kHz quantized

node clocks. 32

3 Simulation results showing results without bias term (thin traces) and

with a bias value of βBIAS = 20 000 ticks (heavy traces). 33

4 Simulated rate error for a 30 node single-hop topology with convergence

bound. 34

5 Simulated synchronization error for a 30 node network with each bea-

con received by 10 randomly chosen nodes. 35

6 Network topology for the multi-hop line configuration. 36

7 Simulation synchronization error for the multi-hop line configuration. 36

8 Network topology for the multi-hop group configuration. 37

9 Simulated synchronization error for the multi-hop group configuration. 37

10 Simulated synchronization error for a single-hop group of 500 nodes. . 38

11 Simulated synchronization error for a 14 node single-hop topology

where half of the nodes have a 14% clock rate error. 40

12 Testbed message sequence showing three nodes (‘a’, ‘b’, and ‘c’) under

test. 44

13 Number of reports received by nodes in a 16 node single-hop network. 46

ix

14 Uncorrected clocks showing 14 faster TelosB clocks and the 14 slower

MicaZ clocks. 48

15 Residual plots for 14 MicaZ and 14 TelosB linear clock fits. 50

16 Residual plots for one TelosB and one MicaZ linear clock fit. 50

17 Synchronization errors for 14 TelosB nodes in a single-hop group run-

ning the CS-MNS algorithm (k = 0.5 and βBIAS = 20 000 ticks). . . . 54

18 Adjustment factors for 14 TelosB nodes in a single-hop group running

the CS-MNS algorithm (k = 0.5 and βBIAS = 20 000 ticks). 55

19 Synchronization error for 8 MicaZ nodes in a single-line multi-hop

topology running the CS-MNS algorithm (k = 0.5 and βBIAS = 20 000

ticks). 56

20 Adjustment factors for 8 MicaZ nodes in a single-line multi-hop topol-

ogy running the CS-MNS algorithm (k = 0.5 and βBIAS = 20 000 ticks). 57

21 Synchronization error for 12 MICAz nodes arranged in a four-group

multi-hop configuration. (k = 0.5 and βBIAS = 20 000 ticks) 58

22 Adjustment factors for 12 MICAz nodes arranged in a four-group multi-

hop configuration. (k = 0.5 and βBIAS = 20 000 ticks) 59

23 CS-MNS results from 14 MicaZ nodes with an artificial initial synchro-

nization error of up to 20 ms. 60

24 CS-MNS results for a mixed group of 7 TelosB and 7 MICAz nodes. . 62

25 CS-MNS clock adjustments for a mixed group of 7 TelosB and 7 MICAz

nodes. 63

26 FTSP results for 14 TelosB nodes in a single-hop group. 67

27 FTSP results from 8 MicaZ nodes in a multi-hop line configuration. . 69

28 FTSP results for 12 MicaZ nodes arranged in 4 subgroups. 71

29 FTSP results for 7 MicaZ and 7 TelosB nodes in a single-hop configu-

ration. 72

x

30 Simulation results for a 5 × 5 regular grid network with and without

attackers located at opposite corners with random intentional errors in

their beacon values. 96

31 Simulation results for a 5 × 5 regular grid network with and without

attackers located at opposite corners with differing fixed clock rates. . 97

xi

Nomenclature

αj Rate of uncorrected clock at node j

αmin Minimum uncorrected clock rate over all nodes in a group

βBIAS Control bias parameter to control initial divergence

βj Offset of uncorrected clock at node j

βmin Minimum clock offset over all nodes in a group

εi,j(τ) The error term relating the updated clock rates in the zero-offset and general

cases, see Equation 13

εmax(τ) Absolute maximum of εi,j over all pairs in a group

εquant Magnitude of quantization noise introduced by clock granularity

γ Maximum clock offset difference, corrected for rate differences, over all pairs

in a group

λ Minimum of control gain k and 1− k

k CS-MNS update control gain

N Number of nodes in group

sj CS-MNS correction factor at node j

xii

s+
j CS-MNS updated correction factor at node j

Tj(t) Uncorrected clock process at node j at time t

T̂j(t) Corrected clock process at node j evaluated at time t

T̂+
j (t) Corrected clock process at node j after update evaluated at time t

xiii

Acronyms

API application programming interface

CPU central processing unit

CS-MNS clock sampling mutual network synchronization

FIFO first in, first out

FTSP flooding time synchronization protocol

HAA hardware abstraction architecture

HAL hardware adaptation layer

HIL hardware interface layer

HPL hardware presentation layer

I/O input/output

IC integrated circuit

IEEE Institute of Electrical and Electronics Engineers

MEMS microelectromechanical system

MSK minimum shift keying

xiv

NTP network time protocol

OS operating system

PC personal computer

ppm parts-per-million

RAM random access memory

RISC reduced instruction set computing

SFD start of frame delimiter

TSF time synchronization function

USB universal serial bus

UTC coordinated universal time

VLSI very-large-scale integration

WSAN wireless sensor and actuator network

WSN wireless sensor network

xv

Chapter 1

Introduction

The possibility of combining microelectromechanical system (MEMS) sensors with

very-large-scale integration (VLSI) control, signal processing and communications

circuits to form an intelligent wireless sensor node capable of forming wireless net-

works with like sensor nodes was recognized as early as 1996 in [1]. The 1998 paper

by C.J. Pottie entitled, simply, “Wireless Sensor Networks” [2] discusses some of the

challenges related to power management and network architecture faced in wireless

sensor network (WSN) design. In the considerable subsequent literature on WSNs,

various applications have been proposed including intrusion detection, habitat moni-

toring, and building automation.

Self-organizing WSNs can operate without existing infrastructure. This allows

WSNs to be deployed in challenging environments as well as allowing new appli-

cations otherwise prohibited by infrastructure costs. However, in order to operate

without infrastructure, sensor nodes must rely on batteries for power, which places

emphasis on low-power design. Deploying large numbers of nodes requires a low cost

for each node. These factors generally dictate WSN nodes with relatively modest com-

putational capabilities, relatively low complexity, and short range radios. Despite the

modest capabilities of each node, the goal of WSN design is to design co-operative

and distributed protocols where the nodes function together, pooling their resources,

1

2

to accomplish useful, non-trivial tasks.

With only short range radios available, communication between distant nodes

requires forwarding packets through multiple intermediate peer nodes. However,

multi-hop peer-to-peer routing combined with duty cycling of radios, changing radio

propagation conditions, and node mobility causes relatively long and unpredictable

end-to-end transit times for packets. While these long and unpredictable transit times

are of minimal importance for collection of long-term sensor data, long and unpre-

dictable transit times make communication of time-sensitive data and timing data

difficult in WSNs.

In many WSN applications, sensor readings from multiple nodes need to be com-

bined either to synthesize a snapshot of the conditions at a single point in time or to

track the progress of a phenomenon through the sensor field. The challenge of generat-

ing a mutually consistent time stamping service across the nodes of a WSN is referred

to as time synchronization. In wireless sensor and actuator networks (WSANs), where

the passive sensing role of some nodes is augmented with an active role, valid synchro-

nization data is required in real-time to co-ordinate current and near-future actions.

Thus, in WSANs post-hoc methods of synchronization are generally insufficient and

a more active form of synchronization is required.

1.1 Objectives

Various synchronization algorithms for use in WSNs have been proposed [3]. Among

these algorithms is the clock sampling mutual network synchronization (CS-MNS)

algorithm proposed in [4–6]. The existing work on CS-MNS was based on simplified

analytical analysis and on simulation.

The objective of the work presented here are to:

3

• Seek a further understanding of the dynamic behaviour of the CS-MNS algo-

rithm.

• Explore implementation issues related to CS-MNS.

• Experimentally evaluate the performance of the CS-MNS algorithm in a testbed

WSN environment.

• Experimentally compare the relative performance of the CS-MNS algorithm

with existing synchronization algorithm implementations.

For the testbed implementation, TinyOS was chosen as a target operating system and

the standard TinyOS flooding time synchronization protocol (FTSP) was chosen as

a logical point of comparison.

1.2 Contributions

In keeping with furthering the understanding of the CS-MNS algorithm, we present

an analytical analysis of the CS-MNS algorithm that gives a proof of convergence in

the case of zero initial offset error. In the general case, we develop bounds outside

which CS-MNS continues to show this convergent behaviour. These results lead to an

improvement of the CS-MNS algorithm through the addition of a tuning parameter

to control initial divergence.

Further investigation of the CS-MNS algorithm was carried out using simplified

numerical simulation. These simulations support the analysis by exploring the in-

fluence of network topology on the CS-MNS algorithm. Additionally, the simulation

results demonstrate the improved behaviour of the CS-MNS algorithm with the ad-

dition of the above-mentioned tuning parameter.

The above work resulted in both a refereed conference paper, [7], published in the

Proceedings of the 2009 International Conference on Wireless Communications and

4

Mobile Computing: Connecting the World Wirelessly as well as a journal paper, [8],

published in Wireless Communications and Mobile Computing.

Finally, the CS-MNS algorithm was implemented under TinyOS 2 and tested in

a testbed environment. Testing of FTSP was also performed and the relative per-

formance of the two algorithms was compared. In addition to providing an experi-

mental evaluation of CS-MNS and FTSP, the testbed results confirm the analytical

and simulation results, showing that all three approaches lead to qualitatively similar

behaviour. Explanations for quantitative differences are also discussed.

1.3 Organization of the Thesis

Chapter 2 gives a brief overview of time synchronization and wireless sensor networks

and goes on to introduce synchronization algorithms relevant to the thesis.

Results and analysis are presented in Chapters 3, 4, and 5. Chapter 3 provides a

theoretical treatment of the CS-MNS algorithm focusing on the convergence proper-

ties of the algorithm. In Chapter 4 the results from simulations of CS-MNS presented

and discussed. Chapter 5 shows the performance results from testbed-based experi-

ments for both CS-MNS and for FTSP.

Finally, Chapter 6 highlights the conclusions drawn from the work and discusses

future work.

Chapter 2

Background

2.1 Wireless Sensor Networks and Their Applica-

tions

A wide variety of systems are included under the name of wireless sensor networks

(WSNs). However, there are a number of commonalities between WSN systems. First,

WSN systems interact with the physical world. This sets WSNs apart from purely

computational information systems. Second, WSNs are generally self-organizing and

co-operative. These traits are preferred because they allow the WSN to be easily

deployed, to avoid or recover from centralized failure, and to operate without pre-

existing infrastructure.

Through self-organization and co-operation between nodes, WSNs aim to solve

problems using many simple nodes. For example, detailed monitoring of crops, atmo-

spheric conditions and irrigation for agricultural management could be accomplished

using a network of battery-powered nodes. The network could be deployed easily and

would provide detailed data over a long period. WSNs offer an attractive solution

for this application in contrast to the traditional solutions. For example, centralized

monitoring of wired senors would incur large up-front installation cost to install the

5

6

required infrastructure over a wide area. Alternatively, more complex sensors could

be deployed to gather the data in a single location such as aerial observation using

an infrared camera.

Other applications for WSNs cover a wide range, including: intrusion detection

in both civil and military applications [9], wildfire detection and tracking [10], habi-

tat and environmental monitoring [11], and indoor light, temperature, and humidity

monitoring for building control [12].

2.2 Wireless Sensor Network Hardware

While wireless sensor network nodes must be both low-cost and low-power, there is a

range of hardware platform designs. An example of the more computationally capable

hardware is the Imote2 hardware platform. Two examples of less computationally

capable hardware are the MicaZ and TelosB designs. The Imote2, TelosB, and MicaZ

devices are available commercially from Memsic Corporation and are shown in Fig-

ure 1. All three of these devices use the CC2420 intelligent radio integrated circuit

produced by Texas Instruments. This radio provides IEEE 802.15.4 radio communi-

cations in the 2.4 GHz ISM band at a bit rate of 250 kbps [13,14].

The CC2420 intelligent radio includes hardware AES-128 encryption and presents

a serially-connected packet-level interface to the micro-processor. Additionally, the

radio integrated circuit (IC) supplies a separate hardware timing strobe that is trig-

gered during each packet pre-amble whenever a packet is transmitted or received. This

allows the host micro-controller to perform a hardware-level time stamp of outgoing

and incoming packets. The transmitting and receiving radios operate at a symbol rate

of 62.5 kHz, where each symbol consists of 32 chips for a chip rate of 2 MChips/s. The

offset between the I and Q phases in the minimum shift keying (MSK) modulation

scheme used hints at synchronization between the transmitter and receiver sampling

7

Figure 1: MicaZ (left) and TelosB (right) sensor node hardware.

clocks on the order of 0.5 µs. A delay of 2 µs between the receiver timing edge and

the transmitter timing edge is specified for the CC2420 [15].

Both the MicaZ and TelosB device platforms use simple reduced instruction set

computing (RISC) micro-controller designs targeted at low-power, low-cost embedded

applications. The older MicaZ design uses the 8-bit ATmega128L processor from

Atmel running at 7.3728 MHz. On-board the Atmel processor has 4 kB RAM for

data memory and 128 kB flash for program storage. The TelosB design uses the

16-bit MSP430 processor from Texas Instruments running at 4 MHz. Again, on chip

memory is used with 10 kB data random access memory (RAM) and 48 kB program

flash. Neither design includes any floating point hardware although both processors

include multiplication hardware [16,17].

The TelosB and MicaZ platforms each have a number of different oscillators. How-

ever, each platform limits the oscillators that can be used for software-level timing.

On the TelosB platform the 4 MHz central processing unit (CPU) clock oscillator is

a low-accuracy digitally controller oscillator implemented as a ring oscillator. This

oscillator is trimmed by software at boot time using the 32.768 kHz crystal oscilla-

tor as a reference. Thus, although the 4 MHz oscillator has higher resolution than

8

the 32.768 kHz clock, the frequency accuracy cannot exceed that of the 32.768 kHz

clock since it is effectively derived from this source. The MicaZ does implement the

7.3728 MHz CPU clock as a crystal oscillator. However, on both systems the CPU

oscillators are stopped in low-power sleep states. This leaves only the 32.768 kHz

oscillator capable of providing a continuous time reference.

2.3 Wireless Sensor Network Software

In an effort to make the TinyOS code bases modular and reusable, the code base is

written in a dialect of C called NesC. NesC adds object-oriented style modulariza-

tion on top of plain C. However, in contrast with other traditional object-oriented

languages, NesC is designed to resolve all object references at build time and creates

a statically linked executable. Thus, NesC results in object-oriented style code but

without the run time indirection overheads associated with object references [18,19].

The modular nature of NesC is used to implement a three-layer hardware abstrac-

tion model which is explained in Appendix A.

As many of the target platforms for TinyOS lack memory management hardware,

the operating system (OS) also lacks protected memory concepts. In TinyOS there is

no distinction between kernel space and user space. Instead, TinyOS is implemented

as a collection of interdependent NesC modules. By creating a dependency on a user

written module, the TinyOS user causes his or her code to be included along with

the OS code in the TinyOS build process.

2.4 Clocks

Clocks measure the passing of time, both electronic and mechanical clocks do so by

counting the integrating the periods of an oscillator. In the case of a mechanical

9

clock, the oscillator often takes the form of a pendulum or a mass and a spring, while

the integration function is performed by the clock hands. In electronic clocks, the

oscillator is often a tuned crystal circuit, although any oscillator circuit may be used,

while the integration function is performed by a digital counter. Crystal oscillator

circuits are particularly attractive for use in clocks because the oscillation period

depends primarily on the natural frequency of the crystal.

However, the natural frequency of a crystal is controlled by controlling the physical

size and shape of the crystal. Thus, the crystal period is subject to error related to

the physical manufacturing tolerances for the crystal. Unfortunately, crystal are not

perfectly stable over very long time periods or across temperature variation.

Tolerance in the frequency of crystals introduces rate error to a clock. In lay

terms, if two clock exhibit rate error, one clock will gain time relative to the second

clock. Another type of error is clock offset. Clock offset error is the familiar everyday

error exhibited by a clock that is, ‘five minutes fast.’ A clock which is either ahead

or behind of another clock by a constant time increment.

Even with rate and offset errors a clock remains linear, but in practise clocks

exhibit non-linear behaviours. However, these non-linearities can often be ignored for

clocks with millisecond and microsecond resolutions.

2.5 Time Synchronization

The basic concept of time synchronization as a means that ensures a common notion

of time between multiple parties is one that is familiar from everyday experience. In

everyday life clocks are often used simply to agree on a common time, for example

the time to convene a meeting or the timing of a train departure. While everyday

clocks nominally reflect the timing of the earth’s rotation, this is mostly irrelevant

for scheduling the start of a meeting. For example, daylight saving time introduces

10

an arbitrary adjustment twice annually, but when those involved all make the same

adjustment, the utility of their clocks as a common notion of time is preserved.

The concept of a common timebase shared within a group but unconnected to

any outside reference is termed relative synchronization or internal synchronization.

In contrast, maintaining a common timebase synchronized with an outside refer-

ence, such as coordinated universal time (UTC), is termed absolute synchronization

or external synchronization. By necessity, absolute synchronization implies relative

synchronization.

Different problems require different types of synchronization. One common use

for time synchronization is the ordering of events, which requires only relative syn-

chronization. In fact, Lamport gives restrictions required for correctness in this sit-

uation [20] that are less strict than even relative time synchronization. In other

applications the choice between absolute and relative synchronization is less clear.

For example, time-of-flight based acoustic target tracking [21] requires time synchro-

nization where the epoch is unimportant but where the time units must be related

to those of the physical world. However, in practice relative synchronization with

arbitrary time units may be substituted for absolute time units as long as the local-

ization errors introduced by this substitution are sufficiently small for the particular

application.

In order to synchronize individual clocks, some clocks must be allowed to influence

others in the group. Systems of coupled clocks naturally raise questions of stability

and group convergence. There is a body of theoretical work based on the Kuramoto

model of phase coupled oscillators, one review of this work is given in [22]. How-

ever, even in the Kuramoto model the relation between coupling and the onset of

synchronization is complex and a number of open problems remain.

In wired networks, numerous synchronization protocols have been developed and

deployed. Of note is the network time protocol (NTP) as described in [23]. Protocols

11

such as the NTP sidestep the complexity of coupled oscillator dynamics by enforcing

a hierarchy among the clocks. In NTP, the hierarchy is organized into levels or strata.

Each node uses timing data only from nodes in lower numbered or equal numbered

strata. This approach enforces a one-directional flow of synchronization data and

prevents feedback loops from forming.

2.6 Time Synchronization in Wireless Sensor Net-

works

Time synchronization is an important foundation of networked systems. In partic-

ular, many WSNs rely upon distributed clocks to allow correct analysis of collected

sensor data. However, the ad hoc and dynamic nature of WSN topologies prevents

the straight-forward application of traditional centralized, hierarchical clock synchro-

nization strategies. Limited energy availability and cost sensitivity pressures further

limit the application of traditional algorithms [24].

Even if algorithms designed for wired networks will work in WSNs, these algo-

rithms may fail to take advantage of the nature of WSNs. For example, algorithms

designed for point-to-point networks fail to capitalize on the broadcast nature of the

wireless medium. Additionally, traditional algorithm designs may be poorly opti-

mized for the nature of WSNs. For example, mobility among WSN nodes can cause

frequent changes in the network topology, which might cause some algorithms to ex-

pend excessive overheads as configuration tasks are repeated again and again to adapt

to each change in network topology. In response to this limited applicability and in

keeping with the properties generally found in WSNs, various self-organizing central-

ized and decentralized algorithms for WSN synchronization have been proposed [3].

Below, three synchronization protocols of relevance to this thesis are reviewed.

12

2.7 IEEE 802.11 Time Synchronization Function

The Institute of Electrical and Electronics Engineers (IEEE) 802.11 time synchroniza-

tion function (TSF) is widely implemented and used when an IEEE 802.11 network is

operating in an ad hoc mode. The IEEE 802.11 TSF is extremely simple and similar

to the method put forth by Lamport in [20]. However, as explained in [25] and [26],

the IEEE 802.11 TSF suffers from poor scalability as all of the requirements given by

Lamport in [20] are not met in the case of IEEE 802.11 ad hoc networks.

The IEEE 802.11 TSF uses regularly timed periodic beacons. The start of each

beacon period consists of a contention window. During the contention window each

node schedules a beacon transmission after a random back off period. Once a node re-

ceives a beacon, the node cancels the pending beacon transmission. Ignoring collisions

and bias caused by rate error among the back-off timers, this mechanism nominally

allows one beacon transmission per beacon period transmitted from a randomly se-

lected node.

Each beacon contains the time value at the transmitting node. Once a node

receives a beacon, the node compares the time value in the beacon with the time

value local to the node. If the beacon time value is greater the node resets the local

time to be equal to the beacon time value. Otherwise, the receiving node ignores

the beacon. The IEEE 802.11 TSF makes no attempt to synchronize the individual

node clock rates and instead relies on periodic re-adjustment in order to prevent the

accumulation of large errors.

In [27], Zhou and Lai given an “industry expectation” that “the maximum clock

offset be under 25µs for an” ad hoc group independent of network size. However,

they indicate that for a large ad hoc group the “offset between stations can be over

4000 µs” for groups using the 802.11 TSF.

13

2.8 Flooding Time Synchronization Protocol

The TinyOS distribution contains an implementation of the flooding time synchro-

nization protocol (FTSP) described in [28, 29]. The FTSP protocol operates by se-

lecting a single root node which serves as the group time reference. This root node

periodically broadcasts its local clock. Receiving nodes gather a series of broadcasts

and use a linear least squares solution to estimate the rate and offset errors of their

local clocks. Once a node has made this estimate, the node begins to act as a re-

peater, sending out periodic synchronization message. Each node continues to update

its error estimates by dropping the oldest data points from the regression.

The master node is selected dynamically as the node with the lowest network

address. Every message contains the current root node address. Upon receipt, each

node will update the local root node variable if the incoming root node address is

lower than the local variable. Each node compares the local root node address with

the node’s own address to detect if the node should act as the root node. However,

to protect against scenarios in which the root node becomes isolated from all or part

of the network, each node will reset the local root node variable if no messages with

this root address are received for a number of message periods. This has the effect

of allowing a new root node to be selected when the root becomes disconnected from

the network.

FTSP broadcast messages contain a sequence number which is incremented by

the root for each broadcast. Each node tracks the highest sequence number received

and ignores any packets with a sequence number equal to or lower than the highest

sequence number seen. In well-connected networks a node may receive many messages

during each beacon period as each neighbouring node floods the synchronization data.

However, the sequence number filtering causes each node to ignore all but the first

message received each period.

14

In [29], the authors give some performance on Mica2 hardware using a 7.37 MHz

clock as the clock source. The authors give a maximum error of less than 14 µs in

a network consisting of 60 nodes with a maximum distance of 6 hops from the root

node. This maximum error value increased to 67 µs when the root node was switched

off and a new root was selected, transforming the network into a 59 node network

with a maximum distance of 11 hops to the root node.

However, in [30] the authors present a sensor network model with uniformly dis-

tributed jitter in message timing measurements. The authors show that under this

model FTSP exhibits synchronization error that grows exponentially with network

diameter. Furthermore, in [30] the authors show both simulation and testbed results

consistent with their theoretical treatment.

2.9 Clock Sampling Mutual Network Synchroniza-

tion

The clock sampling mutual network synchronization (CS-MNS) algorithm is presented

in [4–6]. The CS-MNS algorithm has previously been shown through simulation to

perform well and has been shown analytical to exhibit stability in specific conditions

[6].

The CS-MNS algorithm is fully decentralized in that all nodes execute the same

algorithm at all times. Furthermore, the algorithm does not require knowledge of,

and makes no assumptions about, the network topology. These properties allow CS-

MNS to be applied easily in randomly deployed networks and in dynamic networks.

Furthermore, the algorithm requires no additional overhead or energy to run adapta-

tion procedures in response to changing radio propagation conditions nor in response

to nodes leaving the network through battery depletion or otherwise.

15

As originally presented, the CS-MNS algorithm uses periodic beacons with a bea-

con contention mechanism equivalent to the IEEE 802.11 TSF. The simple beacon

format of CS-MNS is compatible with IEEE 802.11 TSF beacon format. The CS-MNS

algorithm can be implemented in software with standard IEEE 802.11 radio and clock

hardware [6]. This makes CS-MNS applicable for use in networks of currently avail-

able hardware and in cost-sensitive consumer devices that must use commodity radio

hardware.

The CS-MNS algorithm uses a single multiplicative correction factor to correct the

local clock. Unlike FTSP, which holds a series of samples as well as other housekeeping

variables, the correction factor is the only state held by the CS-MNS algorithm. Upon

receiving any beacon the CS-MNS algorithm updates the local correction factor. Only

if the local time value and the time value in the received beacon are identical will

the correction factor remain unchanged. Thus, in contrast to the IEEE 802.11 TSF

and to FTSP, the data in every received beacon is used to update the CS-MNS clock

correction.

Two analytical results for CS-MNS are presented in [6]. Both results are applicable

only in the absence of communication errors and only in the absence of initial offset

error. The first result, shows that under these conditions any number of slaves exhibit

locally asymptotic stability toward a point where the slave node clocks become equal

to the master node clock. However, this master-slave case assumes that the master

node makes no clock adjustment, limiting the applicability of the result in deployed

systems.

The second analytical result in [6] gives sufficient conditions, again with the ab-

sence of communication and initial offset errors, for the CS-MNS algorithm to exhibit

local asymptotic stability toward a point where the corrected time processes at the

two nodes are equal. However, the paper leaves the “case with any number number of

nodes and arbitrary topology” as “an open problem” [6]. Further investigation in [6]

16

is performed through simulation and maximum errors of 19 µs and 32 µs for single

hop groups of 100 and 500 nodes, respectively, are reported.

2.10 CS-MNS Clock Correction

Each node maintains a hardware clock which is allowed to run freely at its natural

rate. At any point in time, t, we represent this uncorrected hardware clock at node

j by Tj(t). However, in order to synchronize the nodes the CS-MNS algorithm must

create a new, correct clock. CS-MNS uses a simple multiplicative transformation to

generate this corrected clock from the uncorrected clock. As given in [4–6, 31] the

corrected clock, T̂j, is related to the uncorrected clock, Tj by

T̂j(t) = sjTj(t) (1)

and the CS-MNS algorithm controls the correction factor sj.

The CS-MNS algorithm modifies the correction factor by comparing the local

corrected time with the corrected time, T̂i, sampled from some other node i. Based

closely on the CS-MNS update law as given in [4–6,31] the updated correction factor,

s+
j is calculated as

s+
j = sj + k

T̂i (τ)− T̂j (τ)

Tj (τ)
(2)

where k represents a control gain and τ is the time at which the clock sample is taken.

Implicitly, it is assumed that the clocks at node j and node i are sampled at the same

instant in time τ . While this cannot be achieved exactly in practise, the hardware

support for radio message time stamping described in Sections A.3 and 2.2 allows for

the two node clocks to be sampled well within a single clock period.

17

By substituting the updated correction factor into Equation 1, the new time esti-

mate, T̂+
j , is given as

T̂+
j (t) =

(
1 + k

T̂i (τ)− T̂j (τ)

sjTj (τ)

)
sjTj (t) (3)

which can be simplified by using Equation 1 again to yield

T̂+
j (t) = (1− k) T̂j (t) + k

T̂i (τ)

T̂j (τ)
T̂j (t) (4)

where the distinction between t, the independent time variable, and τ , the clock

sample time, must be made carefully.

As discussed in [6], the update law in Equation 2 makes proportional corrections.

The magnitude of the change made to the correction factor sj is proportional to

the magnitude of the error between the local and remote clock samples. However,

the denominator in Equation 2 dictates that the magnitude of the adjustment is

inversely proportional to the elapsed time. Thus, the CS-MNS algorithm makes large

corrections when errors are large but makes progressively smaller, finer adjustments

as synchronization progresses.

The CS-MNS algorithm takes as input a number of clock values all sampled at

the same instant. The corrected local, T̂j, and remote, T̂i, clocks and the uncorrected

local clock, Tj, are used as input. The stored state of the correction factor, sj is

also used. The CS-MNS algorithm then outputs an updated correction factor, s+
j ,

which can be used to generate an updated corrected clock, T̂+
j . These new values are

adopted as the input for the subsequent iterations of the algorithm.

18

2.11 Summary

Wireless sensor networks present numerous design challenges and open a number

of areas of research. These area include routing algorithms, extremely low power

system design and optimization, and clock synchronization. The CS-MNS algorithm

provides a promising clock synchronization approach consistent with the overall intent

of WSN design. The CS-MNS algorithm is democratic, distributed, and has low

memory and computational complexity. Further insight into the behaviour of the CS-

MNS algorithm is desirable. Additionally, experimental measurements of CS-MNS

performance and comparison with other algorithm performance is desirable.

Chapter 3

Analytical Results

3.1 Introduction

The analytical analysis of the clock sampling mutual network synchronization (CS-

MNS) algorithm begins by outlining a simplified model of a real-world clock. This

model clock model is then used throughout the remainder of the analysis. The CS-

MNS clock correction scheme and the CS-MNS adaptation law are explained and an

expression for the updated clock in terms of previous clocks is derived.

The theoretical convergence properties of the CS-MNS update law are examined

both in the special case of zero offset error and in the general case. Unconditional

asymptotic convergence results are obtained in the case of zero offset error. Limits

are derived under which the general case exhibits similar convergence properties to

the special case.

A small improvement to the CS-MNS update law is presented that discourages

divergence during the beginning of the synchronization period. Finally, the effect of

quantization noise on the CS-MNS algorithm is discussed briefly.

19

20

3.2 Analytical Clock Model

For the purpose of analysis we adopt a simplified clock model exhibiting only offset

and rate errors. Such a clock is termed an affine clock in [32] because the model

presents the clock at each node as an affine transformation of a theoretical, prefect

reference clock. Thus, the time process at node j is modelled by

Tj(t) = αjt+ βj (5)

where t represents the reference time process. Implicitly, the clock rates and offsets,

αj and βj, remain constant in time.

The justification for adopting the affine clock model stems from the assumption

that the other forms of clock error are small in relation to the clock offset and rate

errors. Thus motivated, the affine clock model can be interpreted as the Maclaurin

series expansion of the true clock truncated after the first order term. The approxi-

mation that offset and rate error dominate overall clock error is part of the motivation

behind the design of CS-MNS.

The applicability of the affine clock model to the hardware clocks on TelosB and

MicaZ sensor nodes is explored experimentally in Section 5.4.

Under this model, the corrected time process given in Equation 1 becomes,

T̂j(t) = sjTj(t) = sj (αjt+ βj) (6)

at node j.

21

3.3 Convergence in the Absence of Offset Errors

The convergence properties of the CS-MNS update law are a natural area of investi-

gation. Some insight into the behaviour of CS-MNS can be motivated by considering

the special case of synchronizing clocks without offset errors. This special case corre-

sponds to the condition that all β1 = · · · = βn = 0 in Equation 5.

In this case the corrected time process of Equation 6 becomes simply

T̂j(t) = sjTj(t) = sjαjt (7)

and substituting this into the expression for the updated corrected time of Equation 4

yields

T̂+
j (t) = (1− k) sjαjt+ k

skαkτ

sjαjτ
sjαjt (8)

which simplifies to

T̂+
j (t) = (1− k) T̂j (t) + kT̂i (t) (9)

for this case. The updated corrected clock rate is also of interest and is given by

d

dt
T̂+
j = s+

j αj = (1− k) sjαj + kskαk = (1− k)
d

dt
T̂j + k

d

dt
T̂i (10)

in the absence of offset errors.

If the control gain k is kept in the range k ∈ (0, 1), then Equation 9 expresses the

updated time estimate at node j as a strict convex combination of the previous time

estimates at notes j and k. Furthermore, Equation 10 shows that the updated clock

rate at node j is also a convex combination of the previous clock rates at nodes j and

k. This is exactly the requirement given as Assumption 1, part 3 by Moreau in [33].

The intuitive motivation for the argument formalized in [33] stems from the ob-

servation that an update law with this form cannot increase the worst-case level of

22

disagreement within the group. From Equation 10, the updated rate must satisfy

min
l

(slαl) ≤ s+
j αj ≤ max

l
(slαl) (11)

which simply states that any updated rate must lie between the minimum and maxi-

mum rates in the group. Thus, we can immediately conclude that the minimum and

maximum rates for the group with updated rates are either unchanged or have moved

toward each other.

However, while illustrative, the intuitive explanation does not offer insight into

what conditions might allow updates to continue with a constant degree of asynchrony.

For this analysis we turn to Moreau’s analysis in [33]. The updated clock rate given

in Equation 10 satisfies the requirements of Assumption 1 in [33]. Thus, in [33] the

proof of Theorem 1 proves the above intuitive statement that the level of disagreement

cannot be increasing.

Theorem 2 of [33] states that a necessary and sufficient condition for the system

to be “uniformly globally attractive with respect to the collection of equilibrium

solutions” 1, where the equilibrium solutions are constant, is for there to be a T ≥ 0

such that there is a node that is connected to all other nodes across all time periods

[t0, t0 + T]. This condition can be interpreted as saying that there must be a finite

length of time such that any period of this length contains at least one node which

can spread information to all other nodes.

Thus, applying Theorem 2 of [33] results in the conclusion that the CS-MNS

update applied to a collection of node clocks without offset error will, with sufficient

communication, continuously drive the node clock rates towards a common rate close

to the initial rates that does not change with time. The result that the equilibrium

point, toward which the group approaches, is not changing in time is not intuitively

1The precise definition of uniform global attractivity in this case is defined by Moreau in Appendix
I of [33].

23

obvious.

Finally, we conclude, that in the absence of offset error convergence of clock rates

implies convergence of clocks. However, in the case without offset errors the clocks

converge toward a rate bounded by the fastest and slowest initial clock rates in the

group. Thus, the clocks converge toward relative synchronization where the final

group clock is independent of any external absolute standard.

3.4 Convergence with Offset Errors

While the above theoretical results for the special case without offset errors are heart-

ening, it is unlikely that a group of clocks would have zero offset error in practise.

Thus, we examine the effect of introducing offset error into the above analysis.

We proceed by adding an error term to the updated clock rate given by Equation 10

in the zero-offset case so that it is equal to the rate from the general case given in

Equation 4,

d T̂+
j (t)

dt
= (1− k) sjαj + ksiαi + ksiαiεi,j(τ) (12)

where the error term,

εi,j(τ) =
βj − αj

αi
βi

αjτ + βj
(13)

arises from the non-zero values of βi and βj.

If sj (τ)αj < si (τ)αi and

− k
(
si (τ)αi − sj (τ)αj

)
< ksiαiεi,j (τ) < (1− k)

(
si (τ)αi − sj (τ)αj

)
(14)

or sj (τ)αj > si (τ)αi and

− (1− k)
(
si (τ)αi − sj (τ)αj

)
< ksiαiεi,j (τ) < k

(
si (τ)αi − sj (τ)αj

)
(15)

24

then the updated clock rate in Equation 12 is strictly between siαi and sjαj. In other

words, despite the error term, the updated clock rate will lie in the interior of the

range between the previous corrected clock rates. Thus, under the above conditions

the essential property that led to convergent behaviour in the case without offset error

is preserved.

By defining

λ = min
(
1− k, k

)
(16)

then the above conditions will always be met if

|εi,j(τ)| < λ

k

∣∣∣∣sjαj − siαisiαi

∣∣∣∣ (17)

regardless of whether node i or j has the slower clock. Further, by choosing

αmin = min
i
αi

βmin = min
i
βi

γ = max
i,j

∣∣βj − αj
αi
βi
∣∣

then |εi,j(τ)| can be bounded over all i, j as

|εi,j(τ)| ≤ εmax(τ) =
γ

αminτ + βmin
(18)

which becomes smaller with increasing time. Indeed, limτ→∞ εmax(τ) = 0.

Finally, using εmax(τ) and Equation 17 we arrive at the condition

εmax(τ) <
λ

k
min
i,j

∣∣∣∣sjαj − siαisiαi

∣∣∣∣ (19)

under which all possible CS-MNS rate updates exhibit the required properties for

25

convergent behaviour. Thus, regardless of network topology, any period in which all

relative clock rate errors are greater than a threshold will be periods in which the

clock rates show convergent behaviour. In addition, Equation 18 shows that this

threshold grows smaller as time passes.

It is worth noting that while Equation 19 can fail to be satisfied if only a few nodes

have very similar clock rates, Equation 17 is stronger. In cases where Equation 19 is

not satisfied among all nodes, the updates between nodes with largely differing clock

rates will still satisfy Equation 17 for each update. Thus, in practise many nodes

continue convergent behaviour even when Equation 19 cannot be used to guarantee

convergent behaviour of the system.

The viewpoint presented so far has served well for developing the above condition

but in terms of the behaviour of a wireless sensor network (WSN) the condition

in Equation 17 requires that any two nodes with relative skew greater than some

threshold will adjust their clocks to reduce this skew. Thus, it is possible for clusters

of clocks with very little relative clock skew to make updates based on one-another’s

clocks under conditions that do not satisfy Equation 17. Thus, multiple clusters could

conceivably resist adjusting their rates towards the other clusters.

However, the definition of εmax(τ) in Equation 18 shows that this threshold grows

smaller as time passes and tends towards zero in the limit. This is consistent with the

intuitive argument that as time passes more and more of the clock error is a result of

clock skew and the relative contribution of the offset errors becomes smaller.

We note that the extreme nodes that define the maximum and minimum rates

within a group are the most likely to satisfy the condition in Equation 17.

From the above analysis we can gain some insight into an optimal values for the

control gain k. Considering Equations 14 and 15 we observe that the limits are

symmetric in the case when k = 0.5. Thus it is not surprising that k = 0.5 is the

value that maximizes the λ
k

term in Equation 17. Thus, k = 0.5 serves to maximize

26

the range of εi,j, and thus the magnitude of offset errors, that can be tolerated while

the CS-MNS control law will make updates placing the updated clock rates between

the existing clock rates. However, identifying optimal values for k remains an open

problem.

3.5 Addition of a Bias Term to Control Initial

Convergence

When synchronization begins, the value of τ in Equation 13 is small, which leads to

a large value for εi,j (τ). Because of this large value, updates are less likely to satisfy

the convergence condition Equation 19 initially. This causes divergent behaviour until

εi,j (τ) shrinks sufficiently.

However, an initial divergent period can serve to further desynchronize the

node clocks, which puts the algorithm at a disadvantage once convergent behaviour

emerges. In order to prevent this initial divergent behaviour, a bias factor can be

introduced into the update law in Equation 2 to arrive at

s+
j = sj + k

T̂i (τ)− T̂j (τ)

Tj (τ) + βBIAS
(20)

when βBIAS is a non-negative constant parameter expressed in units of time.

With this updated control law the expressions for the error term and error term

bound become

εi,j(τ) =
βj − αj

αi
βi

αjτ + βj + βBIAS
(21)

and

εi,j(τ) ≤ εmax(τ) =
γ

αminτ + βmin + βBIAS
(22)

which are consistent with the previous definitions when βBIAS = 0.

27

The system designer can choose an appropriate value for βBIAS by imposing the

requirement that initial updates should exhibit convergent behaviour. If all possible

initial updates satisfy Equation 17, where εi,j (τ) includes a βBIAS term, then the

initial updates will show convergent behaviour. If the designer somehow knew the s,

α, and β parameters for each update the designer could solve Equation 17 for values

of βBIAS that would encourage convergence.

Since the designer does not know which nodes will update, the designer can ap-

proximate by removing the node dependence by using εmax (τ) on the left hand side

and by introducing expected values for the differences in offset and rate in Equation 17

to arrive at
E
[∣∣∣βj − αj

αi
βi

∣∣∣]
αminτ + βmin + βBIAS

<
λ

k

E [|sjαj − siαi|]
maxi (siαi)

(23)

which leaves only values that the designer would typically be able to estimate. The

expected values and extrema of clocks can be estimated from the expected distribu-

tions of the clocks at start-up. For example, the expected and maximum rate error

of crystal clocks are easily evaluated from the crystal specifications. By substituting

these estimates, along with with a value for τ representing the time of the initial

update of interest, the system designer can solve for a value of βBIAS that is expected

to result in initial convergence.

A less rigorous estimate, than the estimate in Equation 23, that appears useful

in practise is to eliminate the expected value by replacing them with the maximum

offset and rate errors and to assume that βmin = 0 while
αj

αi
= siαi = 1, leading to

βBIAS >
k

λ

max |βj − βi|
max |sjαj − siαi|

− τ (24)

which allows a simple estimation of an appropriate βBIAS. When the rate errors

are measured in parts per million and the initial offset errors are small, the above

28

approximation provides the system designer a rough guide to selection of a βBIAS

value.

Replacing the expected value of the clock rate errors with a maximum on the right

hand side of Equation 23 is more logical than it initially appears because this chooses

the minimum βBIAS value so that the two outlier clocks will have convergent updates.

While other clocks may not converge initially, the outlier clocks are expected to begin

squeezing the group towards synchrony.

3.6 Effect of Quantization Noise on the CS-MNS

Update Law

When implemented in as a digital system, there is necessarily some quantization error

in the timestamps used to drive the synchronization algorithm. If timestamps are

sampled to within ±εquant and the quantization errors are independent, the CS-MNS

update from Equation 20 can be re-written with quantization errors as

s̃+
j = sj + k

T̂i (τ)− T̂j (τ)± 2εquant
Tj (τ) + βBIAS ± εquant

(25)

which can be expressed as

s̃+
j = s+

j ± k
2εquant

Tj (τ) + βBIAS ± εquant
∓ k T̂i (τ)− T̂j (τ)

(Tj (τ) + βBIAS)2 ± (Tj (τ) + βBIAS) εquant
(26)

in terms of the updated correction factor without errors, s+
j . Ignoring the higher

order terms, an estimation of the quantization errors added to the value of sj by an

update is ±2k εquant

Tj(τ)+βBIAS−εquant
.

Another benefit of the βBIAS term is seen here as it serves to reduce the quanti-

zation errors added to the running value of sj during the initial period when Tj (τ)

29

is small. Again, the system designer can check the magnitude of the βBIAS term by

ensuring that the above equation for noise added to sj while Tj(τ) is small is on the

same order of magnitude as the expected initial clock rate error.

3.7 Summary

We have introduced the affine clock model used throughout the work that motivates

the CS-MNS correction scheme. We have introduced the CS-MNS update law and

shown that in the case of zero offset errors this update law guarantees convergence

of the clock rates. Further to this we have outlined conditions under which this

convergent behaviour remains in the presence of offset errors.

The CS-MNS update law was refined by adding a bias term that serves to discour-

age initial divergence of the clock rates. We have given simplified expressions that

allow a network designer to calculate a suitable bias term depending on data plausibly

available to the designer at design time. Additionally, we have briefly discussed the

quantization noise introduced by clock granularity under CS-MNS.

Chapter 4

Simulation Results

4.1 Introduction

Investigation into the dynamics of clock sampling mutual network synchronization

(CS-MNS) is continued through simulation. In paticular, the effect of the network

topology is of interest. The analytical results, while applicable because they make

only weak assumptions regarding the shape of the connectivity graph, offer little infor-

mation about how network topology might effect the group dynamics. Additionally,

through simulation we seek to confirm the applicability of the analytical results.

In order to investigate the dynamics of the CS-MNS update law easily, a few

simplifying assumptions are adopted. The goal of this initial investigation is not to

match the real-world performance of the algorithm, but instead to numerically test

the update law itself.

The beacon transmission and processing is assumed to be instantaneous. The

simulation is conducted under the assumption that all of the nodes broadcast beacons

as a homogeneous Poisson process with rate λnode. This implies that, considering a

group of N nodes, the composite stream of beacons is also a Poisson process with

rate λ = Nλnode. Taken together with the assumption that the beacon transmission

is instantaneous, the Poisson process assumption eliminates the possibility of beacon

30

31

collision.

Furthermore, the memorylessness property of the Poisson processes implies that

each beacon in the composite beacon stream has equal probability of originating

from any node. Thus, the composite beacon stream can be simulated numerically by

generating exponential inter-arrival delays with mean µ = 1
λ

and uniformly assigning

a source node from the group.

These simplifying assumptions allow large groups of nodes to be simulated quickly.

However, since the analytical arguments make the assumption of continuous state

variables and thus ignore the clock granularity, it is of interest to simulate the clock

granularity. In this work, the simulation was implemented in MATLAB. MATLAB

provides both an integrated development environment and integrated plotting func-

tions.

4.2 Simple Dynamics Simulation

Under the above assumptions, simulations were run using floating point time values

at each node as well as with discrete 32.768 kHz beacon values. In both cases the

total number of nodes was 30 in a single-hop topology. The node clocks were initially

uniformly distributed within 92 µs which corresponds to three ticks of a 32.768 kHz

clock. The node clock rates were uniformly distributed in the range of ±50 parts

per million. The total beacon rate was one beacon per second, the control gain was

k = 0.5, and a bias value of βBIAS = 20 000 ticks was used. This bias value is the

value suggested by Equation 24 for the above initial offset error and range or clock

rates.

Each case was simulated for 1 000 repetitions and the mean as well as the 95%

confidence interval for the maximum error among the nodes are shown in Figure 2.

Clock quantization was applied to the beacon only, with the errors being calculated

32

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

M
ax

im
um

 S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

µs
)

Time (seconds)

(a) Continuous Clocks

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

M
ax

im
um

 S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

µs
)

Time (seconds)

(b) 32.768 kHz Clocks

Figure 2: Simulated synchronization error for 30 nodes in single-hop configuration
using (a) continuous node clocks and (b) 32.768 kHz quantized node clocks. The solid
lines represent the mean values while the dashed lines represent the 95% confidence
intervals.

33

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

M
ax

im
um

 G
ro

up
 E

rr
or

 (
µs

)

Time (seconds)

Figure 3: Simulation results showing results without bias term (thin traces) and with
a bias value of βBIAS = 20 000 ticks (heavy traces). The solid lines represent the
mean values while the dashed lines represent the 95% confidence intervals.

exactly. From the graphs the initial behaviour can be seen to be unaffected by the

quantization of the node clocks. However, in the granular clock case the mean error

settles at about 21 µs after the first 25 seconds. As the value of 21 µs corresponds

to just less than the time quanta of a 32.768 kHz clock, persistence of disagreement

at this level is within expectation. In the continuous node clock case the simulation

shows the level of disagreement continuing to decrease and by the end of the simulation

at three minutes the error is approximately 2 µs.

It is worth pointing out that after the first half minute of run time the expected

number of beacons from each node is one for a total of 30 beacons transmitted. This

is a small communication cost, equal to the communications cost required to compute

the group mean for a fixed value.

Figure 3 shows the effect of adding the bias term to the CS-MNS update law.

The simulation with bias is identical to the simulation in Figure 2(b). The simulation

without the bias term maintains all other parameters. The results shown in Figure 3

34

0 5 10 15 20 25 30
0

50

100

150

M
ax

im
um

 R
at

e
E

rr
or

 (
pp

m
)

Time (seconds)

Convergence
Bound

Figure 4: Simulated rate error for a 30 node single-hop topology with convergence
bound. The convergence bound from Equation 21 is shown (dash-dot line). The solid
line represents the mean value while the dashed lines represent the 95% confidence
interval.

are based on 10 000 repetitions both with bias value and without. Again, the group

is a 30 node single-hop network. The node clocks were initially uniformly distributed

within 92 µs which corresponds to three ticks of a 32.768 kHz clock. The node clock

rates were uniformly distributed in the range of ±50 parts per million. The beacon

rate at each node was 1/30 beacons per second.

The simulation was run using the same underlying random numbers for initial

conditions and beacon timing both with and without bias term. Thus, the results are

directly comparable. Figure 3 shows that the bias term reduces the initial divergence

of the CS-MNS algorithm. While the peak of the mean across the trials for the

synchronization error in the case without bias is slightly more than twice that for the

case with bias, the confidence interval for the case without bias is very wide indicating

a large variance among the trials during the initial convergence period.

Shown in Figure 4 is the maximum rate error among 30 nodes in a single-hop

configuration. The bias value is βBIAS = 20 000 ticks while the control gain k =

35

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

M
ax

im
um

 S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

µs
)

Time (seconds)

Figure 5: Simulated synchronization error for a 30 node network with each beacon
received by 10 randomly chosen nodes. The solid line represents the mean value while
the dashed lines represent the 95% confidence interval.

0.5. The convergence bound is shown calculated from Equation 21 based on the

initial 92 µs offset errors. The results are based on 2500 repetitions. Initially the

rates diverge, but soon after crossing the bound line the rates begin to converge.

Beyond 6 seconds the 95% confidence interval contains the convergence bound. As

the simulation progresses, the rate error lower confidence bound converges to the

convergence bound.

Figure 5 shows the results of a network with randomly changing topology. The

results are based on 1 000 repetitions of the simulation. Each beacon is received by a

random subset of 10 nodes instead of all 30 nodes, as would be the case in a single-

hop network. The random subset of receiving nodes changes with each beacon. This

scenario can be interpreted as either a single-hop network with a high packet loss

ratio or as a network of very mobile nodes.

This scenario clearly demonstrates that the CS-MNS algorithm does not rely on

receiving multiple consecutive messages from the same node and can bring about

36

Figure 6: Network topology for the multi-hop line configuration.

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
ax

im
um

 S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

µs
)

Time (minutes)

Figure 7: Simulation synchronization error for the multi-hop line configuration. Note
that the independent axis is shown in minutes. The solid line represents the mean
value while the dashed lines represent the 95% confidence interval.

cooperative behaviour even among nodes with only sporadic communication. Any

system requiring long setup phases would be extremely difficult to implement in such

a scenario.

Figure 7 shows the results of an 8 node multi-hop network arranged in a single

line. The network topology is shown in Figure 6 and communications is possible

only between adjacent nodes. The beacon rate at each node is 1/30 beacons per

second. The results are based on 1 000 repetitions of the simulation. After 70 minutes

the synchronization error confidence region settles centred around 30 µs, which is

approximately the node clock granularity simulated. The level of synchronization

attained compares favourably with the single-hop case. However, in the multi-hop

line configuration a much longer period is required to attain this synchronization and

the peak synchronization error is much larger.

37

Figure 8: Network topology for the multi-hop group configuration.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

M
ax

im
um

 S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

µs
)

Time (s)

Figure 9: Simulated synchronization error for the multi-hop group configuration.
The solid line represents the mean value while the dashed lines represent the 95%
confidence interval.

38

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

M
ax

im
um

 S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

µs
)

Time (seconds)

Figure 10: Simulated synchronization error for a single-hop group of 500 nodes. The
solid line represents the mean value while the dashed lines represent the 95% confi-
dence interval.

Another multi hop scenario was tested in which the nodes were arranged in sub-

groups of three nodes, where all nodes within a subgroup can communicate. Four of

these subgroups were arranged in a line such that any node in each subgroup could

communicate with the nodes in adjacent subgroups. This network topology is shown

in Figure 8. The simulation results are shown in Figure 9 and are based on 1 000

repetitions.

Comparing with Figure 7, the overshoot in the group scenario is very small in the

multi hop group scenario as compared to the multi hop line scenario. While there are

more nodes in the group scenario, the network diameter is only 3 hops, whereas the

network diameter in the line scenario is 7 hops.

Figure 10 shows the perfomance of CS-MNS in a large single hop group of 500

nodes. The beacon rate at each node was slowed to 1/500 beacons per second to yield

a total beacon rate of one beacon per second. Again the initial clock alignment was

uniform within 92 µs and initial clock rates were distributed uniformly within ±50

39

parts per million. A bias value of 20 000 ticks was used. The results are based on 500

runs. The mean synchronization error converges to approximately 30 µs which is on

par with the quantization error expected from the clock.

These results are slightly better than those that would be expected from a sim-

plistic master-slave scheme using the same one beacon per second communications

cost. Also of note is that with an average beacon rate of one beacon per second

only approximately 6% of the nodes can be expected to have transmitted within

the first 30 seconds yet the CS-MNS algorithm has significantly improved the group

synchronization among all nodes by this time.

The performance of CS-MNS in a large group is significant because, as discussed

in Section 2.7, Institute of Electrical and Electronics Engineers (IEEE) 802.11 time

synchronization function (TSF) is known to perform poorly in large groups. Addition-

ally, the distributed design of CS-MNS renders the algorithm complexity insenstive

to the number of nodes participating, making CS-MNS a possible candidate for syn-

chronization in large networks.

Shown in Figure 11 is the simulated synchronization error for a 14 node single-hop

group where half of the nodes have an additional 14% error added to the ±50 ppm

error. The simulation was run with a value of βBIAS = 20 000 tick in keeping with pre-

vious simulations although Equation 24 would dictate a different value if the system

designer knew of the large additional rate error. This simulation is motivated by the

hardware characterization results in Section 5.4 where a large, somewhat unexpected

error was discovered between two hardware platforms. The synchronization error af-

ter one minute is only 45 µs, which is larger than the case without the additional

large rate error but is small compared to the 8 second error that would be expected

without synchronization. However, the peak synchronization error is almost 260 ms,

which is three orders of magnitude larger than the peak error seen in the case without

the additional rate error.

40

0 20 40 60 80 100 120
0

100

200

300

400

500

600

M
ax

im
um

 S
yn

ch
ro

ni
za

tio
n

E
rr

or
 (

m
s)

Time (seconds)

Figure 11: Simulated synchronization error for a 14 node single-hop topology where
half of the nodes have a 14% clock rate error. Note that errors are shown in millisec-
onds. The solid line represent the mean value while the dashed lines represent the
95% confidence interval.

Topology Synchronization Error

Maximum (µs) Final (µs) Time to Final (s)

Single-Hop (Cont. Clock) 134 2a 16b

Single-Hop 137 21 25

Multi-Hop Group 498 28 250

Random Subset Comm. 558 28 150

Multi-Hop Line 4 267 30 4 200

Single-Hop w/ Clock Skew 259 000 45 60

a Value after 90 s. Convergence continuous until end of simulation.
b Time to achieve 21 µs error. Convergence continuous until end of simulation.

Table 1: Summary of CS-MNS simulation results under different topologies.

41

4.3 Summary

A summary of the performance of CS-MNS across different topologies, as indicated

by simulation, is given in Table 1. While the total number of nodes is not the same

in each case, some conclusions can still be drawn. The different scenarios have a

large effect on both the peak synchronization error and the time required to achieve a

steady state error, but the final synchronization achieved shows less sensitivity across

the scenarios. In no scenario did CS-MNS fail to synchronize the group.

Additionally, simulation shows that, in the single-hop case, the bias term pro-

posed can control the magnitude of the initial divergence as well as the sensitivity

to initial clock parameters. Across all of the scenarios simulated, the general shape

of the CS-MNS response was consistent. The general shape of the synchronization

error consisted of an initial divergence followed by a period of convergence. This

convergence then slowed, and in the case of a quantized clock, approached a steady

state value near the clock quantization interval. In the case of a continuous clock the

convergence continued but at a very slow rate. In all scenarios the simulation results

showed a single peak synchronization error.

In all of the scenarios using a quantized clock the results showed a final steady

state error of similar magnitude. Thus, the initial performance and the rate of con-

vergence of the CS-MNS algorithm is controlled by the initial clock parameters, the

bias parameter, and the network topology and is largely insensitive to the clock gran-

ularity. Meanwhile, the final synchronization attained is largely controlled by the

magnitude of the clock quanta.

Chapter 5

Testbed Results

5.1 Introduction

In order to verify the simulation results and to compare the clock sampling mutual

network synchronization (CS-MNS) algorithm against the existing TinyOS implemen-

tation of the flooding time synchronization protocol (FTSP) algorithm, the CS-MNS

algorithm was implemented under TinyOS 2.1 and experiments were conducted. The

initial stage consisted of validating the experimental setup and characterizing the

node hardware by collecting clock data from nodes with free-running clocks. Once

this was completed, the CS-MNS and FTSP algorithms were tested in a number of

different single-hop and multi-hop network configurations. Additional tests of the CS-

MNS algorithm were run to confirm the effect of adding the bias term as predicted

by analysis and simulation.

5.2 Implementation

The CS-MNS module uses the hardware radio packet time stamping capabilities of

the underlying hardware to record departure and arrival times of synchronization

packets. The low-level implementation details are discussed in Appendix A.

42

43

The CS-MNS clock adjustments were implemented using fixed-point arithmetic,

using eight bits for the whole part and 56 bits to the right of the radix point for

a total width of 64 bits. This allows for corrections smaller than one part in one

quadrillion (smaller than 10−15) without resorting to floating point arithmetic. This

is significant since our target hardware lacks hardware floating point support and

software floating point libraries demand significant memory footprint and results in

calculation inefficiencies.

CS-MNS does not require assumptions about the order of beacon transmissions,

which allows CS-MNS to be implemented with various underlying beacon scheduling

disciplines. However, in keeping with the simple, democratic nature of the CS-MNS

concept, a probabilistic, unco-ordinated beacon schedule was chosen. In this schedule,

beacon transmission at each node is a Poisson process. This is the same transmission

schedule used in simultion.

5.3 Test Methodology

Tests are conducted by designating a node as the test initiation node and a node

as base station node. The test initiation node used was a TelosB node because the

TelosB design provides a user push button connected to a micro-controller input. The

base station node is connected to a desktop personal computer (PC) using either the

universal serial bus (USB) port directly, if the base station is a TelosB, or, in the

case of a MicaZ base station, by mounting on the MIB520 programming adaptor. In

either case, the node appears to the PC operating system as a USB-connected serial

port. The code in the base station node uses the TinyOS printf functionality to

communicate with the PC.

The TinyOS printf functionality consists of a library that implements the C

printf text formatting function on the node and sends the packetized function output

44

Base Station a b c Initiation Node

beginning-of-test

interogation

report

report

report

interogation

report

report

report

Figure 12: Testbed message sequence showing three nodes (‘a’, ‘b’, and ‘c’) under
test.

over USB-connected serial link to the PC. A companion client program on the PC

depacketizes this data and outputs the data to a system input/output (I/O) stream.

The printf output from the node can then be inspected on the terminal or piped to

a file.

The base station node program outputs a test log using the printf functionality

to output test measurements in comma-separated form. This creates a simple flat file

data log when the output of the printf client is piped to a file.

Once the test nodes are physically arranged and powered, the operator begins the

test by pressing the push button on the test initiation node. In response, the initiation

node broadcasts a beginning-of-test message. One the base station node, the low-level

time stamping application programming interface (API) is used to record the receive

time of this beginning-of-test broadcast and this time stamp is sent to the PC for

recording.

45

Upon receiving the beginning-of-test message, nodes begin to run the tested syn-

chronization protocols. In the case of CS-MNS, this beginning-of-test message also

serves to fulfil the initial synchronization requirement for starting the algorithm. If

required in order to test algorithm performance with poor initial synchronization,

individual nodes add a uniformly distributed random value to the local clock value.

Once the test has begun, the base station node periodically sends an interrogation

broadcast messages. Each of these messages contains a sequential message identifier.

The base station node sends the transmission time stamp of these heartbeat messages

to the PC for recording. The message sequence during a test is shown in Figure 12.

Upon receiving an interrogation message, a receiving node under test notes the

incoming time stamp as measured by the local node clock. After waiting for a random

back-off period, the receiving node replies with a measurement message addressed to

the base station node containing its local time stamp. The base station node then

reports these timestamps to the PC for recording.

In a single-hop environment, the simple process explained above is sufficient to al-

low all nodes to reliably report local node timestamps. The large randomized back-off

period before attempts to submit a time stamp report minimizes channel contention

and any channel capture issues.

The relative uniformity of the reporting method can be seen in Figure 13. Ide-

ally, each of the 3 787 beacons would result in a successful report from each of the

nodes; representing over 60 000 packets. However, some packets are lost due to signal

interference or other effects and an optimal result would be for these losses to be

uncorrelated with node number. In Figure 13 the data is ordered to show the natural

grouping of MicaZ and TelosB hardware. It is pertinent to note that the base station

node was of the MicaZ design. Also apparent in the data is that TelosB node a95d

submitted the fewest reports with only 2 483 successful reports. Table 2 shows the

mean and standard deviations for various groupings of the nodes. These statistics

46

711f 6d11 6d1c 6b6e 6c06 6cff b028 a3ba a95d a4a7 1302 747c 9c89 3d62 7bcb 5dcf
0

500

1000

1500

2000

2500

3000

3500

Node ID

N
um

be
r

of
 R

ep
or

ts
 R

ec
ei

ve
d

MicaZ

TelosB

Figure 13: Number of reports received by nodes in a 16 node single-hop network.
Statistics for this data are shown in Table 2.

Reports per Node Mean (x̄) Standard Deviation (σ)

All 2 974 268.8

MicaZ 3 224 50.3

MicaZ without node 6d1c 3 234 43.8

TelosB 2 725 100.7

TelosB without node a95d 2 759 26.6

Reports expected 3 787 —

Table 2: Number of reports per node by node type.
Report data is shown in Figure 13.

also confirm the correlation between hardware type and number of successful reports.

While the two hardware platforms share the same radio integrated circuit (IC),

they use different antenna designs and different micro-controllers. Hypothetically,

the difference in report success rates could stem from these software or hardware

differences. For example the MicaZ antenna may be more effective and differences in

micro-controller interrupt handling and latency may effect channel capture dynamics.

47

The above reporting method relies on the single-hop nature of the network to sim-

plify the reporting of node data to the base station node. In order to test multi-hop

algorithm performance, the above method was retained by utilizing the per-packet

transmission power control present in TinyOS and the node radio hardware. In the

multi-hop case, all synchronization algorithm traffic was transmitted at minimum

power, which had the effect of allowing a multi-hop arrangement of nodes on a table-

top scale. However, the base station interrogation packets and report packets were

transmitted at full power, which allowed each node to be in direct contact with the

base station node.

While similar to the single-hop case, this scheme does introduce additional com-

plexity to the network dynamics since the clear channel assessment at each node can

ascertain only if either a neighbouring node is transmitting synchronization traffic or

if any node is transmitting report traffic, but remains deaf to synchronization traf-

fic being transmitted by a non-neighbouring node. This allows for more collisions

between synchronization traffic and reporting traffic since the propagation proper-

ties have been constructed to be highly non-symmetric in this case. However, since

reporting traffic sees a single-hop network, the reporting traffic presents uniform net-

work load at each node. A data collection strategy that presents uniform load at

each node is preferable to tree-based multi-hop data collection strategies which might

introduce bias by requiring nodes closer to the root of the collection tree to handle

more network traffic.

5.4 Hardware Characterization

In order to understand the nature of the mote hardware and TinyOS systems soft-

ware, clock characterization testing was conducted. Testing was performed using the

collection methods detailed above. The clock values reported by the TinyOS system

48

0 20 40 60 80 100
0

20

40

60

80

100

120

Reference Time (Minutes)

N
od

e
C

lo
ck

s
(M

in
ut

es
)

Figure 14: Uncorrected clocks showing 14 faster TelosB clocks and the 14 slower
MicaZ clocks. All TelosB clocks fall within one line width of one-another, as do all
MicaZ clocks. However, the two groups are clearly distinct.

were reported directly without correction. The base station used was a MicaZ node.

The clock processes of 28 nodes are shown in Figure 14. Immediately obvious is

the difference in clock rates between MicaZ and TelosB nodes. Linear least-squares

regression was used to estimate the rate and offset of each clock. In this test the

offset values represent the different times at which nodes were reset before the test

started. The results of the linear regression are shown in Table 3 with the average

clock rates for the two node types shown in Table 4. All clocks are measured relative

to the MicaZ base node clock.

Taking the differences between the observed data and the clock fits we are left

with the residuals for each fit. These residuals, for each fit, are shown in Figure 15.

A single example of the residuals for each node type is shown in Figure 16. Again,

the clock processes on the TelosB and MicaZ nodes are visibly different. The MicaZ

residual graphs show a high frequency noise not visible in the TelosB graphs. The

curvature of the residual graphs is also different, indicating that the higher-order

49

Relative Clock Rate Node Type Node Number

+ 1.3754× 10−1 TelosB 22

+ 1.3753× 10−1 TelosB 19

+ 1.3752× 10−1 TelosB 11

+ 1.3752× 10−1 TelosB 6

+ 1.3752× 10−1 TelosB 13

+ 1.3752× 10−1 TelosB 28

+ 1.3752× 10−1 TelosB 9

+ 1.3752× 10−1 TelosB 24

+ 1.3752× 10−1 TelosB 18

+ 1.3752× 10−1 TelosB 7

+ 1.3752× 10−1 TelosB 3

+ 1.3752× 10−1 TelosB 1

+ 1.3751× 10−1 TelosB 5

+ 1.3751× 10−1 TelosB 4

+ 1.4846× 10−7 MicaZ 20

− 2.0403× 10−7 MicaZ 26

− 3.5208× 10−7 MicaZ 21

− 4.5595× 10−7 MicaZ 25

− 2.0590× 10−6 MicaZ 17

− 2.0714× 10−6 MicaZ 2

− 2.5867× 10−6 MicaZ 16

− 3.8297× 10−6 MicaZ 15

− 4.8487× 10−6 MicaZ 12

− 5.0646× 10−6 MicaZ 8

− 5.4962× 10−6 MicaZ 23

− 6.6854× 10−6 MicaZ 27

− 8.9559× 10−6 MicaZ 10

− 9.4092× 10−6 MicaZ 14

Table 3: Node clock rates relative to MicaZ base node clock rate.

50

Node Type Average Clock Rate Standard Deviation (σ)

TelosB + 1.3752× 10−1 6.9887× 10−6

MicaZ − 3.7050× 10−6 3.1733× 10−6

Table 4: Average clock rates relative to the MicaZ base node clock.

0 20 40 60 80 100
−15

−10

−5

0

5

10

15
14 MicaZ Residuals

Reference Time (Minutes)

R
es

id
ua

l (
32

.7
68

 k
H

z
Q

ua
nt

a)

(a) MicaZ

0 20 40 60 80 100
−15

−10

−5

0

5

10

15
14 TelosB Residuals

Reference Time (Minutes)

R
es

id
ua

l (
32

.7
68

 k
H

z
Q

ua
nt

a)

(b) TelosB

Figure 15: Residual plots for 14 MicaZ and 14 TelosB linear clock fits. Individual
traces obscure each other.

0 20 40 60 80 100
−15

−10

−5

0

5

10

15
MicaZ "6C59" Residual

Reference Time (Minutes)

R
es

id
ua

l (
32

.7
68

 k
H

z
Q

ua
nt

a)

(a) MicaZ

0 20 40 60 80 100
−15

−10

−5

0

5

10

15
TelosB "7BCB" Residual

Reference Time (Minutes)

R
es

id
ua

l (
32

.7
68

 k
H

z
Q

ua
nt

a)

(b) TelosB

Figure 16: Residual plots for one TelosB and one MicaZ linear clock fit.

51

terms are different.

However, while higher-order terms are visibly present, the error from these is

within ±15 quanta over 196 × 106 quanta. This non-linearity represents plus or

minus 500 microseconds in 100 minutes or 76 parts per billion. At this scale, the level

of non-linearity observed fits well with the use of a strictly linear clock model where

continual on-line adaptation can absorb any errors introduced by non-linearity.

Furthermore, in Figure 15 we see that after approximately 20 minutes two TelosB

node clocks exhibit a change in the shape of the residual plots. This indicates a

change in the clock non-linearity. Because of the limited temporal resolution of the

node clocks, combined with the small scale of the non-linearities, long periods would

be required to estimate the non-linear terms in the clock model. However, if the

non-linear terms exhibit instability over these scales, measurements of the non-linear

terms becomes impossible. One possible explanation for the source of the instability

is given below.

The grouping of the MicaZ and TelosB nodes in Figure 14 and Table 3 shows the

importance of time synchronization in heterogeneous sensor networks. The average

clocks for each hardware group are shown in Table 4. The standard deviation in

each hardware group correspond to 95 percent confidence intervals of approximately

±14 ppm of the TelosB nodes and ±6.4 ppm for the MicaZ nodes. These confi-

dence interval are in good agreement with the expected crystal accuracy of ±10 to

±20 ppm.1

The large difference between the MicaZ and TelosB clock appears to be generated

in software, or more precisely, the way in which the system chooses to configure the

available hardware counters. Instead of generating the 32.768 kHz node clock directly

from the 32.768 kHz crystal, the TinyOS system software generates the 32.768 kHz

1This is the absolute accuracy of typical commercial watch crystals. For example, the various
surface mount crystals manufactured by Seiko Instruments Inc. listed in [34] are available in ±10,
±20, and ±50 ppm specification.

52

clock from the processor clock.

As discussed in Section 2.2, the processor crystal for the MicaZ is a 7.3728 MHz

crystal. While this frequency is exactly divisible by 32.768 kHz, the TinyOS sys-

tem software divides this by 256 to generate a 28.8 kHz oscillator instead of a

32.768 kHz oscillator. If the TelosB clocks were exactly 32.768 kHz and the MicaZ base

node clocks were exactly 28.8 kHz, this would correspond to the TelosB clock being

13.78 percent faster. From Table 4, the average of the TelosB clocks is 13.75 percent

faster than the MicaZ base node clock.

On the TelosB hardware, the processor clock is not a crystal oscillator but a

digitally controlled oscillator (DCO) implemented as a ring oscillator. The TinyOS

system adjusts the tuning of this DCO to a nominal 4 MHz based on the 32.768 kHz os-

cillator. The system periodically checks for accumulated error between the 32.768 kHz

crystal and 4 MHz processor oscillator and adjusts the DCO in an attempt to correct

this error.

Overall, the clocks presented by the TinyOS system could be improved without

hardware changes. However, the clocks have been shown to be linear within less than

2 ms over over a 100 minute period.

5.5 CS-MNS Performance

The performance of the CS-MNS implementation was tested using the methodology

outlined in Section 5.3. Because initial synchronization is taken from the initial test-

start message broadcast to all nodes, the accuracy of this initial synchronization is

within approximately 30 µs, representing the granularity of 32.768 kHz clock used to

time stamp the message.

However, in practise initial synchronization may be imprecise for large multi-hop

groups. For some tests, in order to allow tests to be conducted that mirror multi-hop

53

conditions with imprecise synchronization, a uniform pseudo-random value was added

by each node to the epoch calculated at the intial synchronization.

For the purposes of testing CS-MNS performance, each node broadcasts beacons

with a Poisson process schedule. Unless otherwise noted, the average inter-beacon

time at each node is 30 seconds. This results in a composite beacon rate for the group

of N
/
30

beacons
/
s . As suggested in Section 3.4, the control gain was set at k = 0.5.

Shown in Figure 17 are the maximum clock differences observed among a group

of 14 TelosB nodes in a single-hop group running the CS-MNS algorithm. The value

of βBIAS = 20 000 ticks, combined with the close initial synchronization of approxi-

mately 30 µs, results in some initial divergence with a peak error of 915 µs occurring

after approximately 35 seconds. This peak error corresponds to the error that would

accumulate in 35 seconds between two clocks with a 26 ppm difference in rate, which

is just outside of the uncorrected hardware tolerance. Indeed, inspection of the raw

data indicates that the large error observed is due to node ‘669A’. During the first

second of the test, node ‘669A’ received one beacon successfully, but this beacon

resulted in no change of the sj correction factor. This node did not successfully

receive any more beacons until after 35 seconds and thus the large error is due to

the accumulated clock error at node ‘669A’. The next largest synchronization error

observed is 275 µs. For the remainder of the test, clock granularity appears to be the

primary factor limiting the CS-MNS algorithm, since the maximum observed clock

differences are comparable to the quantization errors inherent in the beacons and the

measurement.

In Figure 18 the clock adjustments made at each node are given for the same

test shown in Figure 17. As all of the clock adjustments are negative, the average

group clock rate is necessarily slower than the average of the hardware clock rates.

Indeed, as all of the adjustments are negative, even the slowest hardware clock has

been slowed by adjustment, which puts this clock rate outside of the range of clock

54

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

900

1000

Time (Minutes)

M
ax

im
um

 D
iff

er
en

ce
 (µ

s)

(a) Complete 140 minute experiment.

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

1000

Time (Minutes)

M
ax

im
um

 D
iff

er
en

ce
 (µ

s)

(b) Detail from first 10 minutes.

Figure 17: Synchronization errors for 14 TelosB nodes in a single-hop group running
the CS-MNS algorithm (k = 0.5 and βBIAS = 20 000 ticks).

55

0 20 40 60 80 100 120 140

−30

−20

−10

0

10

20

30

Time (Minutes)

C
lo

ck
 A

dj
us

tm
en

t (
s j−

1
in

 p
pm

)

Figure 18: Adjustment factors for 14 TelosB nodes in a single-hop group running the
CS-MNS algorithm (k = 0.5 and βBIAS = 20 000 ticks).

rates defined by the hardware clock rates. However, the relative relationship between

the adjustment factors remains roughly constant for the period beyond 10 minutes,

which agrees with the intuitive understanding that the CS-MNS algorithm makes

large initial corrections to bring the clock rates into agreement, followed by smaller

long-term corrections.

The experimental results shown for the 14 nodes group in Figure 17 compare

well with the simulation results for a 30 node group shown in Figure 2(b). Since

the experiment and simulation both use the same beacon rate at each node, the

total beacon rate in simulation is approximately double that in experiment. The

peak error is somewhat higher in experiment, but without the sample from node

‘669A’ the next highest error of 275 µs is closer to the peak of the upper bound from

simulation. However, slower convergence is expected in experiment as a result of the

slower beacon rate and this, in turn, means that larger peak errors are expected.

As expected, the convergence time is approximately 58 seconds in experiment while

this time is only 25 seconds in simulation. Furthermore, the final synchronization

56

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

Time (Minutes)

M
ax

im
um

 D
iff

er
en

ce
 (µ

s)

Figure 19: Synchronization error for 8 MicaZ nodes in a single-line multi-hop topology
running the CS-MNS algorithm (k = 0.5 and βBIAS = 20 000 ticks).

error obtained in experiment is approximately 150% of the final error obtained in

simulation. However, some allowance must be made for measurement error which is

not present in the simulation results.

Shown in Figure 19 are the results observed from 8 TelosB nodes arranged in

a multi-hop line. Each node can communicate only with its immediate neighbours

which gives a network diameter of 7. The maximum observed error occurs after ap-

proximately 7.7 minutes and has a magnitude of 1.2 ms. This peak error corresponds

to an accumulated error of approximately 2.6 ppm, which is an order of magnitude

smaller than the hardware accuracy and shows that significant equalization of the

clock rates has already occurred by this point.

Indeed, Figure 20 shows the correction factors applied at each nodes. Again,

within the first 10 minutes the adjustment factors exhibit significant adaptation and

have moved into a configuration close to their final configuration, with the relative

ordering established. Comparing with the graph in Figure 19, the algorithm appears

to settle between 30 and 40 minutes with minimal fine tuning of the correction factors

57

0 10 20 30 40 50 60 70 80 90
−8

−6

−4

−2

0

2

4

6

8

Time (Minutes)

C
lo

ck
 A

dj
us

tm
en

t (
s j−

1
in

 p
pm

)

Figure 20: Adjustment factors for 8 MicaZ nodes in a single-line multi-hop topology
running the CS-MNS algorithm (k = 0.5 and βBIAS = 20 000 ticks).

occurring after this point.

The shape of the graph in the multi-hop case is somewhat different than the

shape seen in the single-hop case shown in Figure 17. Aside from the sustained,

approximately-linear increase in error during the first 10 minutes of the test, there

appear to be smooth bumps in the graph not obvious in the single-hop case. Two

smooth bumps are visible around 60 minutes and another bump occurs around 80

minutes. The bumps are most likely a result of a slower reaction time in the multi-

hop case. With the Poisson beacon transmission schedule used, the expected time

for information to propagate through the 7 hops between the two most distant ends

of the network is 3.5 minutes, whereas in the 14 node single-hop case this time is

only 2.1 seconds, suggesting that the presence of longer-period structures would be

reasonable in the multi-hop case.

Compared to the simulation results for this scenario, as shown in Figure 7, the

testbed results are generally consistent. The peak synchronization error from ex-

periment is 1.2 ms while the peak value from simulation is 4.3 ms but with a wide

58

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

1000

Time (Minutes)

M
ax

im
um

 D
iff

er
en

ce
 (µ

s)

Figure 21: Synchronization error for 12 MICAz nodes arranged in a four-group multi-
hop configuration. (k = 0.5 and βBIAS = 20 000 ticks)

confidence interval which contains the experimental value. Interestingly, the peak of

the lower confidence interval from simulation is approximately 0.8 ms which compares

well with the experimental peak of 1.2 ms despite these peaks occurring at different

times. Comparing the experimental curve with the simulation curve shows that after

approximately 40 minutes the rate of convergence slows significantly. However, in the

case of simulation the convergence continues to obtain a final synchronization error

about half of the final value obtained in experiment.

Another multi-hop network configuration was tested which consisted of a total of

12 MICAz nodes. The nodes were arranged in subgroups of three nodes where all

nodes within a subgroup can communicate. The four subgroups were arranged in

a line such that any node in each subgroup could communicate with the nodes in

adjacent subgroups. The network topology is shown in Figure 8.

The synchronization error observed with this network arrangement is show in

Figure 21. The synchronization error shows some initial divergence up to a peak

value over 800 µs but within 20 minutes the error is less than 500 µs. The CS-MNS

59

0 10 20 30 40 50 60 70 80 90
−5

0

5

10

15

Time (Minutes)

C
lo

ck
 A

dj
us

tm
en

t (
s j−

1
in

 p
pm

)

Figure 22: Adjustment factors for 12 MICAz nodes arranged in a four-group multi-
hop configuration. (k = 0.5 and βBIAS = 20 000 ticks)

clock adjustments at each node are shown in Figure 22. While the adjustments appear

to achieve a steady state, it is not clear from the synchronization error in Figure 21

that CS-MNS has achieved a steady state. Indeed, the results are significantly worse

than the previous experimental results shown for the multi-hop line topology despite

the increase in connectivity in the group topology. However, after 90 minutes an error

of 40 ppm would be expected to accumulate an error of 216 ms, so even a 500 µs

error after this time represents a significant improvement over uncorrected clocks.

The experimental results in Figure 21 do not compare well with the simulation

results in Figure 9. While the peak error observed in experiment was within the

confidence bounds from simulation, this peak occurred significantly later in experi-

ment. More importantly, while the simulation results show clear convergence after

200 seconds, the experimental results show only weak convergence after 20 minutes

and do not show clear convergence even after 90 minutes. In the experimental setup,

the links within each group are both shorter and are oriented favourably with regards

to the shape of the MicaZ radiation pattern. This points to a possible unmodeled

60

0 1 2 3 4 5
0

1000

2000

3000

4000

Time (Minutes)

M
ax

im
um

 D
iff

er
en

ce
 (

m
s)

(a) βBIAS = 0

0 1 2 3 4 5
0

1000

2000

3000

4000

Time (Minutes)

M
ax

im
um

 D
iff

er
en

ce
 (

m
s)

(b) βBIAS = 13 100 000 ticks

0 1 2 3 4 5
0

10

20

30

40

Time (Minutes)

M
ax

im
um

 D
iff

er
en

ce
 (

m
s)

(c) βBIAS = 0

0 1 2 3 4 5
0

10

20

30

40

Time (Minutes)

M
ax

im
um

 D
iff

er
en

ce
 (

m
s)

(d) βBIAS = 13 100 000 ticks

Figure 23: CS-MNS results from 14 MicaZ nodes with an artificial initial synchro-
nization error of up to 20 ms. The network is arranged in a single-hop group. The
horizontal line represents the initial 20 ms synchronization error. The same data is
shown in the top and bottom figures at different scales.

bias effect where the links between groups have low signal to noise ratios and higher

error rates while the links within each group have high signal to noise ratios and low

error rates. In the simulation setup both types of links have zero error rate.

Shown in Figure 23 are the results from 14 TelosB nodes arranged in a single-hop

topology with artificial initial synchronization error of up to 20 ms, running CS-

MNS both with and without a bias term. Strong divergence is clearly visible in the

case without bias term. The maximum disagreement between nodes peaks around

33 seconds into the run at almost 190 times the initial clock disagreement.

61

The rather large bias value used is suggested by Equation 24 with an initial offset

error of 20 ms and a clock maximum rate error of 50 ppm. With the addition of

this bias term, the maximum disagreement in the group tends downward during the

initial minute of the test.

However, in both cases the CS-MNS algorithm serves to correct the initial error,

with the results being comparable for the period after the first minute. Further, a

rate error of 40 ppm would accumulate to 12 ms of error after 5 minutes. Thus the

total disagreement of less than 1 ms observed after 5 minutes in both cases represents

an improvement over the expected hardware clocks.

Not visible in Figure 23 is the effect that the initial divergence has on the overall

group clock rate. Without a bias term, the average value of the correction factor

sj after 5 minutes is approximately 1.06, which is well outside the expected range

of hardware clock rates. However, with the bias term the average value of the sj

adjustments is approximately 0.999998, which is 2 ppm less than unity and well

within the expected range of hardware clock rates. Note that the same hardware was

used in both cases.

Since the experimental parameters are different than those used in simulation

shown in Figure 3, direct comparison is not possible. However, the overall effect of

the bias term is consistent between the simulation and experiment.

The differences observed in group clock rates are consistent with the analytical

presentation given earlier. In fact, the peak disagreement observed was 3.8 s, which

occurred at τ = 33 s and at this point the CS-MNS update law, given by Equation 2,

with k = 0.5 would apply a correction of approximately 6%. However, once a large

correction, resulting from a large clock difference, is applied, this correction will persist

and at the end of the 5 minute test the average of the clock adjustments are still

showing a 6% increase above nominal.

Technically, relative clock synchronization is achieved even if the aggregate group

62

0 100 200 300 400 500
0

5

10

15

20

25

Time (Minutes)

M
ax

im
um

 D
iff

er
en

ce
 (

m
s)

Figure 24: CS-MNS results for a mixed group of 7 TelosB and 7 MICAz nodes.

rate clock rate moves outside of the range defined by the initial clock rates, as was

observed in the case without bias term. However, if the synchronized aggregate

rate is hard to predict from the initial conditions, this can complicate a number

of possible applications. For example, applications using the group clock to drive

periodic operations will introduce a sensitivity to the unpredictably group clock on

battery life, as periodic operations are repeated more often.

Large difference in group clock rate can also complicate applications requiring

previously-independent groups of nodes to join and agree on a combined relative

synchronization. In this case, the application designer has two choices. First, the

joined network can be allowed to synchronize the clocks with rate differences larger

than the hardware differences. Or second, methods to detect the joining of the groups

can be added and the node clocks can be reset to their underlying hardware clocks,

thus reducing the potential range of clock rates.

Figure 24 shows the observed clock errors for a group of 7 TelosB and 7 MicaZ

nodes in a single-hop group. As shown in Section 5.4, the TelosB hardware clocks

63

0 5 10 15 20 25 30
−5

0

5

10

15

Time (Minutes)

C
lo

ck
 A

dj
us

tm
en

t (
s j−

1
in

 p
er

ce
nt

)

Figure 25: CS-MNS clock adjustments for a mixed group of 7 TelosB and 7 MICAz
nodes. At this scale the thickness of the traces obscures the differences between nodes
within each group.

are between 13 and 14 percent faster than the MicaZ hardware clocks. However, the

test was conducted using a bias factor (βBIAS) of 20 000 ticks as a network designer

would be likely to determine an appropriate bias factor based only on the clock

specifications. The observed synchronization errors are larger than in the case of

homogeneous networks, with errors as high as 300 µs persisting after approximately 9

hours of run time. However, this represents a large improvement over the uncorrected

clocks, which would have accumulated over an hour of error in this time.

The CS-MNS clock adjustments made by each node during the first 30 minutes

of the mixed test are shown in Figure 25. The CS-MNS algorithm quickly begins to

compensate for the large rate difference between the TelosB and MICAz nodes. The

graph shows two distinct groups, with the upper trace consisting of slower MICAz

nodes with increased adjustment factors and the lower trace consisting of TelosB

nodes. The burden of reconciling the large clock differences between the nodes is

shared between the two node types, although unevenly, with the TelosB nodes slowing

64

Topology Synchronization Error

Maximum (µs) Final (µs) Time to Final (s)

Single-Hop 914a 31 58

Multi-Hop Group 824 250 1 920b

Multi-Hop Line 1 221 61 1600

Single-Hop w/ Clock Skew 1 055 220c 30 000c

a Single sample, next largest sample is 275 µs.
b Time to minimum error, point of convergence is not obvious.
c Very slow convergence appears to continue throughout the experiment.

Table 5: Summary of CS-MNS experimental results under different topologies. The
final values column shows approximate centre values.

down to meet the MICAz nodes, which are speeding up. It should be noted that by

introducing a large variation in the clock rate population we have introduced a large

variation in the possible final group clock rates.

The simulation results shown in Figure 11 are markedly different from the exper-

imental results shown in Figure 24. The simulation results indicate synchronization

of only 45 µs after one minute while experimental results do not achieve this level

of synchronization even after approximately 9 hours. No plausible explanation is

obvious for the discrepancy between experiment and simulation.

5.6 CS-MNS Summary

The experimental results for CS-MNS under different topologies are summarized in

Table 5. Additional experimental results confirm the observation of the improvement

resulting from the addition of the bias term as predicted by analysis and simulation.

However, the steady state synchronization errors observed after convergence were

higher in experiment than in simulation. Possible explanations for this include un-

modeled sources of noise and unmodeled higher order clock terms. In particular,

65

while the simulations do quantize the beacon transmissions, the simulations do not

model noise caused by jitter between the node clocks.

5.7 FTSP Test Method

Both CS-MNS and FTSP produce beacons at a specified average frequency. In the

CS-MNS tests above the beacons are randomly timed, while in FTSP the beacons

have regular, periodic timing. However, choosing equivalent beacons rates for a fair

comparison of the two algorithms must be done with some care. One of the desirable

properties of CS-MNS is that whenever a node receives a beacon it may use this

beacon to make an adjustment regardless of the node sending the beacon or the

previous protocol state.

In contrast to CS-MNS, FTSP transmits many beacons that are not used. After

an FTSP node receives a beacon, the node re-broadcasts the beacon in order to flood

the synchronization data to lower tiers of the network tree. However, if a node receives

a beacon from a node on the same or lower tier, the node ignores this beacon. In

some network topologies this leads to many beacons that do not result in any clock

adjustments.

For example, in the case of a single-hop network with 16 nodes, one master node

will send a beacon which will be re-broadcast by 15 nodes. This results in a total

of 16 message transmissions per beacon period. However, any node receiving a re-

broadcast beacon will simply ignore the re-broadcast beacon in this topology since

the re-broadcast beacon must necessarily originate from an equal or lower tier node.

Both the CS-MNS tests conducted here and the FTSP algorithm share beacon

transmission duties uniformly among all nodes. Thus, in order to set comparable

CS-MNS and FTSP beacon rates, the total number of message transmissions in the

network were set equal. This approach was taken because the message transmissions

66

have an associated energy cost and setting the total number of beacon transmissions in

the network equal for the two algorithms sets the energy budget for the two algorithms

approximately equal. This choice also sets the total spectrum usage approximately

equal between the two algorithms, with beacon length being the only uncontrolled

spectrum usage parameter.

Assuming that all nodes are reachable through flooding, setting the FTSP root

beacon rate equation to the per-node CS-MNS beacon rate results in the same total

number of transmissions under each algorithm. Since each FTSP node re-broadcasts

received messages, the total message rate is equal to N times the root rate. Similarly,

the total transmission rate for CS-MNS is N times the individual node beacon rate.

5.8 FTSP Performance

An example FTSP run is shown in Figure 26, which shows the maximum observed

difference in clocks between 14 TelosB nodes in a single-hop configuration. The

topmost axis includes all node observations, whereas the middle axis ignores data

from nodes that report an invalid synchronization state. The lower graph shows the

total number of reports received as well as the number of nodes that reported an

invalid synchronization state.

After approximately 2 minutes the FTSP algorithm successfully synchronizes the

nodes and holds this synchronization to within approximately 100 µs until about

55 minutes into the test. A large error then appears with a magnitude of approxi-

mately 17 hours. This error persists for the next 15 minutes. Interestingly, for the

first 10 minutes that this large error is present, all nodes continue to indicate valid

synchronization states. After this point, a single node begins to report an invalid

synchronization state and the error among the remaining nodes with valid synchro-

nization states drops to less than 200 µs. This implies that the time synchronization

67

0 20 40 60 80 100
0

100

200

300

400

500
M

ax
im

um
D

iff
er

en
ce

 (
µs

)

Time (Minutes)

FTSP (All Reports)

0 20 40 60 80 100
0

100

200

300

400

500
FTSP (Synchronized Reports)

M
ax

im
um

D
iff

er
en

ce
 (

µs
)

Time (Minutes)

0 20 40 60 80 100
0

5

10

15
Report Counts

Time (Minutes)

N
um

be
r

of
 R

ep
or

ts

Total

Unsynchronized

Figure 26: FTSP results for 14 TelosB nodes in a single-hop group.

68

of a single node has become corrupted and that it takes the FTSP algorithm 10 min-

utes (representing 20 rounds at the 30 second beacon period) to detect the problem

and a further 5 minutes (10 rounds) to correct the synchronization.

However, within 5 minutes of the end of the large error, the group synchronization

appears to grow progressively worse with the error climbing to 300 µs by the end of

the run. One possible explanation for this behaviour would be that the misbehaving

node has not correctly re-synchronized with the group.

The multi-hop performance of FTSP was tested using 8 MicaZ nodes arranged

in a line topology. Each node can communicate only with its immediate neighbours

resulting in a network diameter of 7 hops. The results from this test are shown in

Figure 27. Immediately evident is the scale of the synchronization errors. There is

an initial linear increase in the synchronization error which peaks with an error of

318 minutes after only 21 minutes of the test has elapsed. This accumulation of error

represents a clock rate error of 1 500%. Obviously, with an error this large FTSP has

a detrimental effect on synchronization during the initial 21 minutes.

Examining Figure 27 further, the FTSP algorithm appears to become more ef-

fective after the 27 minute mark, especially when only those nodes reporting a valid

synchronization state are considered. The error among the synchronized nodes re-

mains under 10 minutes for the rest of the test. After 45 minutes the error drops

further to less than 2.5 seconds. However, this error is significantly worse than the

error of 100 µs seen in the single-hop case.

Finally, it is interesting to note that during the 90 minutes of the test the longest

period in which all of the nodes reported valid synchronization was approximately 2

minutes. In contrast, the single-hop test shows all nodes reporting valid synchroniza-

tion for the majority of the test period. It appears that this multi-hop configuration

is outside of the set of configurations in which FTSP is effective. This is significant

because a reasonable prediction would be that the FTSP algorithm would successfully

69

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400
M

ax
im

um
D

iff
er

en
ce

 (
m

in
)

Time (min)

FTSP (All Reports)

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400
FTSP (Synchronized Reports)

M
ax

im
um

D
iff

er
en

ce
 (

m
in

)

Time (min)

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10
Report Counts

Time (min)

N
um

be
r

of
 R

ep
or

ts

 Total

Unsynchronized

Figure 27: FTSP results from 8 MicaZ nodes in a multi-hop line configuration. Note
that the vertical time axis is shown in minutes.

70

flood the synchronization data throughout this network.

A less extreme network configuration was tested consisting of a total of 12 MICAz

nodes. The nodes were arranged in subgroups of three nodes where all nodes within

a subgroup can communicate. The four subgroups were arranged in a line such that

any node in each subgroup could communicate with the nodes in adjacent subgroups.

This network topology is shown in Figure 8. The node with the lowest node-number,

which FTSP will select as the master, was located in an end group. The FTSP results

for this configuration are shown in Figure 28. The results for this configuration are

much better than the results for a single line topology shown in Figure 27.

However, the subgroup configuration results in Figure 28 have synchronization

errors measured in tens of seconds throughout the hour of the test. This is much larger

than the 144 ms error that would be expected after an hour with an uncorrected error

of 40 ppm. Additionally, the number of nodes reporting an invalid synchronization

state remains high throughout the test.

The observations collected for FTSP in a single-hop environment with heteroge-

neous hardware are shown in Figure 29. While the FTSP algorithm does synchronize

the node clocks initially, the algorithm repeatedly looses this synchronization through-

out the test. The performance degrades to around 10 s of error approximately every 4

minutes when the algorithm appears to re-synchronize the nodes anew. Synchronized

with, but out of phase with, the periodic degradation of synchronization is a periodic

oscillation in the number of nodes reporting a valid synchronization state.

5.9 FTSP Summary

The experimental results for FTSP under different topologies are summarized in Ta-

ble 6. The poor performance of FTSP in multi-hop topologies is not entirely consistent

with the performance expected based on previously published results. For example,

71

0 10 20 30 40 50 60
0

50

100

150
M

ax
im

um
D

iff
er

en
ce

 (
s)

Time (min)

FTSP (All Reports)

0 10 20 30 40 50 60
0

50

100

150
FTSP (Synchronized Reports)

M
ax

im
um

D
iff

er
en

ce
 (

s)

Time (min)

0 10 20 30 40 50 60
0

2

4

6

8

10

12
Report Counts

Time (min)

N
um

be
r

of
 R

ep
or

ts

 Total

Unsynchronized

Figure 28: FTSP results for 12 MicaZ nodes arranged in 4 subgroups.

72

0 50 100 150 200
0

5

10

15

20

25

30
M

ax
im

um
D

iff
er

en
ce

 (
s)

Time (min)

FTSP (All Reports)

0 50 100 150 200
0

5

10

15

20

25

30
FTSP (Synchronized Reports)

M
ax

im
um

D
iff

er
en

ce
 (

s)

Time (min)

0 50 100 150 200
0

2

4

6

8

10

12

14
Report Counts

Time (min)

N
um

be
r

of
 R

ep
or

ts

 Total

Unsynchronized

Figure 29: FTSP results for 7 MicaZ and 7 TelosB nodes in a single-hop configuration.

73

Topology Synchronization Error Time to Synchronize

Maximuma Final

Single-Hop 335 µs b 61 µsc 2 min

Single-Hop w/ Clock Skew 12 s 5 sd 2 min

Multi-Hop Group 115 s 5 s 6 min

Multi-Hop Line 318 min 3 mine 5 minf

a Errors recorded prior to the initial point where all nodes report a synchronized state
are excluded from the reported maximum.

b Value ignoring numerous outlier points and the greater than one hour errors observed
during the period from 55 to 71 minutes.

c Midpoint error is given after 55 minutes. Synchronization degrades during the remain-
der of the experiment.

d Midpoint is given with peaks up to 11 s errors still present after 250 minutes.
e Significant portions of the experimental periods show an error of less than 2 seconds.
f Large errors are present despite all nodes reporting synchronization. Error is reduced

after approximately 30 minutes.

Table 6: Summary of FTSP experimental results under different topologies.

in [29] the authors show testbed results for 60 Mica2 nodes in a multi hop grid topol-

ogy. These results show synchronization errors ranging from a maximum of 15 µs

during some periods to a maximum of 60 µs in other periods.

However, there are a number of important differences between the experiments in

[29] and the test conducted here that may explain the difference in performance. The

node hardware and operating systems are different and the FTSP implementations are

different. In the current work, radio interference was also uncontrolled besides being

a fairly typical office environment. The background radio environment is unspecified

in [29].

More significantly, in [29] the network topology is enforced in software with the

physical network topology being a single-hop network. This is very different from

the results shown here, where the FTSP network traffic is sent at low power with

only data collection occurring at full transmission power. This results in a physical

multi-hop network topology but also reduces the signal to noise ratio for FTSP traffic.

74

Thus, presumably, resulting in higher error rates for FTSP traffic.

In [30] the authors report that when FTSP was tested by enforcing a 20 hop line

network topology in software on Mica2 nodes the un-modified TinyOS 2.x implemen-

tation “failed to synchronize all nodes in the network even after a long time period”.

The authors in [30] modified FTSP to remove the root node selection process and to

prevent FTSP from attempting to detect outlier samples. The authors report that

these modifications allowed FTSP to synchronize a 20 hop line network. However,

removing the root node selection process obviously prevents FTSP from both recover-

ing from a failure of the root node and from handling ad-hoc networks, two desirable

properties of FTSP.

In both the multi-hop single-line and multi-hop group topologies (Figures 27 and

28), as well as the heterogeous single-hop topology (Figure 29), the number of nodes

reporting a synchronized state oscillates throughout the test. Only in the single-

hop case (Figure 26) are the FTSP results free from this oscillation in number of

synchronized nodes. Thess result hints that the FTSP algorithm is not completely

stable in the multi-hop and heterogeneous topologies.

5.10 Comparison of CS-MNS and FTSP

A summary comparing the experimental synchronization achieved and time to syn-

chronization for CS-MNS and FTSP is shown in Table 7.

In the homogeneous single-hop case, both CS-MNS and FTSP synchronize the

network to better than 100 µs. Both algorithms achieve this synchronization with-

ing the first two minutes of run time. However, after approximately one hour the

FTSP algorithm appears to loose synchronization. The reasons for this sudden loss

of synchronization and subsequent increase in errors shown in Figure 26 is not clear.

CS-MNS, on the other hand, is free from any such errors.

75

Topology CS-MNS FTSP

Final Error Sync. Time Final Error Sync. Time

Single-Hop 31 µs 58 s 61 µsa 2 min

Single-Hop w/ Clock Skew 220 µsb 500 minb 5 sc 2 min

Multi-Hop Line 61 µs 27 min 3 mind 5 mine

Multi-Hop Group 250 µs 32 minf 5 s 6 min

a Midpoint error is given after 55 minutes. Synchronization degrades during the remainder of the
experiment.

b Very slow convergence appears to continue throughout the experiment.
c Midpoint is given with peaks up to 11 s errors still present after 250 minutes.
d Significant portions of the experimental periods show an error of less than 2 seconds.
e Large errors are present despite all nodes reporting synchronization. Error is reduced after

approximately 30 minutes.
f Time to minimum error, point of convergence is not obvious. However, maximum error is low

at 500 µs.

Table 7: Summary of experimental results for CS-MNS and FTSP under different
topologies.

In the heterogeneous single-hop case both FTSP and CS-MNS perform poorly.

The two algorithms show different types of errors in this case. However, the final syn-

chronization error observed for CS-MNS is significantly lower than the error observed

for FTSP. On the other hand, FTSP brought the group synchronization together in a

mater of minutes instead of hours. The fact that the CS-MNS experimental results do

not match the simulation results for this case suggest that there are more effects than

the clock rate difference. In order to isolate these effects further experiments would

be required. Potential experiments could introduce large clock rate differences in an

otherwise homogeneous hardware environment. Alternatively, the large rate differ-

ence could be corrected and the experiments repeated, maintaining the heterogeneous

hardware environment.

The disappointing experimental performance of FTSP in the multi-hop line topol-

ogy with 7 hops may indicate that this topology is outside of the set of topologies

where FTSP is effective. CS-MNS, on the other hand, performed fairly well in this

76

topology. While convergence of CS-MNS was slow under this topology, compared to

the single-hop topology, the time to converge was comparable to the time required for

FTSP to reduce the large initial errors. However, CS-MNS achieved synchronization

with an error of approximately 60 µs whereas FTSP achieved an error on the order

of 2.5 seconds. Obviously, in this case CS-MNS outperformed FTSP on the same

hardware with the same total communications cost.

In the multi-hop group topology FTSP performance was somewhat better than the

FTSP performance in the multi-hop line case. Conversely, the CS-MNS performance

was worse in the multi-hop group case as compared to the CS-MNS performance in

the multi-hop line topology. While CS-MNS did not show clear convergence, the total

error did not go above 500 µs during the test. The largest error during the CS-MNS

experiment was smaller than the final FTSP synchronization value. Thus, even in this

topology, the CS-MNS algorithm again achieved tighter synchronization than FTSP.

5.11 Summary

A simple characterization of the TinyOS 2.1 system and the MICAz and TelosB

hardware led to the somewhat surprising result that the MICAz nominal 32.768 kHz

clock is implemented as a 28.8 kHz clock. Analysis of the TinyOS code shows that

this discrepancy is rooted in software. The clocks for both the MICAz and TelosB

systems were found to be within one part-per-million of linear over a 100 minute

period.

The behaviour of CS-MNS was found to agree qualitatively with simulation except

in the case of the heterogeneous hardware environment. In particular, the effect of the

bias term was consistent with simulation. The experimental results show an increase

in synchronization error over the simulation results. This increase in error is most

likely a result of unmodeled noise sources. Further testing would be required in order

77

to isolate the factors causing the discrepancy between the CS-MNS simulation and

experimental results in the heterogeneous hardware environment.

The CS-MNS and FTSP algorithms exhibited qualitatively different performance.

The FTSP algorithm was found to perform more poorly than expected. In par-

ticular, the tendency of the FTSP algorithm to exhibit a mix of synchronized and

unsynchronized periods was particularly damaging to the overall evaluation of FTSP

performance since the CS-MNS results were free from this.

Under conditions of equal communication costs, in all experiments CS-MNS out-

performed FTSP in terms of final synchronization error. However, in most conditions,

the synchronization errors under CS-MNS took longer to converge to a final value as

compared to FTSP. But, under all conditions where CS-MNS converged more slowly

than FTSP, the maximum synchronization error under CS-MNS was smaller than

the final error under FTSP. Overall, the experimental performance of CS-MNS was

promising in comparison to the performance of FTSP.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Motivated by a further understanding of dynamics of the clock sampling mutual

network synchronization (CS-MNS) algorithm, we have presented an analysis of the

CS-MNS algorithm. This analysis emits a proof of convergence in the absence of initial

offset errors and provides bounds, applicable in the general case, outside which the

CS-MNS algorithm continues convergence. The understand provided by this analysis

also led to the modification of CS-MNS through the addition of a bias term to control

initial divergence.

Further exploration of the dynamic behaviour of CS-MNS is provided through

numerical simulation. The numerical simulation was used to investigate the perfor-

mance of CS-MNS in networks with varying topologies. The simulations also serve

to show the improvement in performance offered by the modification of the CS-MNS

algorithm through the addition of the bias term.

The CS-MNS algorithm was implemented, and its the performance was measured

experimentally, in a wireless sensor network (WSN) testbed. The testbed results agree

qualitatively with the presented numerical simulation results as well as previously

published simulation results. Various topologies were tested. The effectiveness of the

78

79

additional bias term is was also shown through experimental measurement.

The flooding time synchronization protocol (FTSP) algorithm, as implemented in

TinyOS 2, was tested experimentally in the same testbed in networks with various

topologies. The performance of CS-MNS is shown to be generally good in comparison

to FTSP, although the FTSP performance was below expectation, particularly in

multi hop topologies. CS-MNS convergence was often slower than FTSP. But even

in these cases CS-MNS achieved tighter synchronization. Qualitatively, FTSP and

CS-MNS algorithms exhibited different dynamics.

6.2 Future Work

In the case of heterogeneous hardware, the testbed results show a decrease in syn-

chronization performance larger than the decrease expected from simulation. Further

experiments may be able to isolate the root cause of this decrease in performance.

Possible further experiments could correct the differences between the hardware plat-

form clocks in software, or further experiments could introduce a large clock rate

error, in software, tested on a network of identical hardware.

Future work which performed further experimental evaluation of the CS-MNS

algorithm where CS-MNS is used to synchronize higher frequency clocks may provide

further insight into the behaviour of CS-MNS after initial convergence.

The testbed would benefit from the addition of a reliable, separate channel that

allowed reporting of test data without adding traffic to the wireless channel used by

the nodes under test. Additionally, a method to distribute a shared clock or timing

pulses to each node would allow more accurate measurement of the time process at

each node.

Previous work shows promising simulation results for CS-MNS in networks with

mobility. Future experiments could evaluate the performance of CS-MNS in a testbed

80

which included node mobility. Additionally, there remains significant related theo-

retical, simulation, and experimental work that can be done on the behaviour of

CS-MNS when networks are segregated, when networks are joined, and when nodes

are added and removed from networks. Similarily, there remains possible analytical

and experimental work toward identification of an optimal value for the control gain

k, as well as investigation into the effects of the k value on group dynamics.

As presented to date, no security provisions are made in the design of CS-MNS.

If the correctness of the WSN operation depends on the validity of the time synchro-

nization data, synchronization protocols could become a viable target for an attacker.

Appendix B give a brief discussion of some of the challenges and some ideas applicable

towards a secure version of the CS-MNS algorithm.

List of References

[1] K. Bult, A. Burstein, D. Chang, M. Dong, M. Fielding, E. Kruglick, J. Ho, F. Lin,

T. Lin, W. Kaiser, et al., “Low power systems for wireless microsensors,” in

International Symposium on Low Power Electronics and Design, 1996., pp. 17–

21, 1996.

[2] G. Pottie, “Wireless sensor networks,” in Information Theory Workshop, 1998,

pp. 139–140, 1998.

[3] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchronization for

wireless sensor networks: a survey,” Ad Hoc Networks, vol. 3, pp. 281–323, May

2005.

[4] C. Rentel and T. Kunz, “A clock-sampling mutual network time-synchronization

algorithm for wireless ad hoc networks,” Wireless Communications and Network-

ing Conference, 2005 IEEE, vol. 1, pp. 638–644 Vol. 1, March 2005.

[5] C. H. Rentel and T. Kunz, “Clock-sampling mutual network synchronization for

mobile multi-hop wireless ad hoc networks,” Military Communications Confer-

ence, 2007. MILCOM 2007. IEEE, pp. 1–7, Oct. 2007.

[6] C. H. Rentel and T. Kunz, “A mutual network synchronization method for wire-

less ad hoc and sensor networks,” IEEE Transactions on Mobile Computing,

vol. 7, no. 5, pp. 633–646, May 2008.

[7] E. McKnight-MacNeil and T. Kunz, “Behavior of clock-sampling mutual net-

work synchronization in wireless sensor networks,” in Proceedings of the 2009

International Conference on Wireless Communications and Mobile Computing:

Connecting the World Wirelessly, pp. 633–638, ACM, 2009.

[8] E. McKnight-MacNeil, C. Rentel, and T. Kunz, “Behavior of clock-sampling mu-

tual network synchronization in wireless sensor networks: convergence and secu-

rity,” Wireless Communications and Mobile Computing, vol. 10, no. 1, pp. 158–

170, 2010.

81

82

[9] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,

H. Cao, M. Demirbas, and M. Gouda, “A line in the sand: A wireless sensor

network for target detection, classification, and tracking,” Computer Networks,

vol. 46, no. 5, pp. 605–634, 2004.

[10] D. Doolin and N. Sitar, “Wireless sensors for wildfire monitoring,” in Proceedings

of SPIE, vol. 5765, p. 477, 2005.

[11] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless

sensor networks for habitat monitoring,” in Proceedings of the 1st ACM interna-

tional workshop on Wireless sensor networks and applications, pp. 88–97, ACM,

2002.

[12] F. Osterlind, E. Pramsten, D. Roberthson, J. Eriksson, N. Finne, and T. Voigt,

“Integrating building automation systems and wireless sensor networks,” in 12th

IEEE Conference on Emerging Technologies and Factory Automation, Patras,

Greece, Citeseer, 2007.

[13] Memsic Corporation, “MICAz datasheet.” http://www.memsic.com/support/

documentation/wireless-sensor-networks/category/7-datasheets.html?

download=148%3Amicaz.

[14] Memsic Corporation, “TelosB datasheet.” http://www.memsic.com/support/

documentation/wireless-sensor-networks/category/7-datasheets.html?

download=152%3Atelosb.

[15] Texas Instruments, “CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready

RF Transceiver Datasheet.” http://focus.ti.com/general/docs/lit/

getliterature.tsp?genericPartNumber=cc2420&fileType=pdf.

[16] Atmel Corporation, “ATmega128(L) Datasheet.” http://www.atmel.com/dyn/

resources/prod_documents/doc2467.pdf.

[17] Texas Instruments, “MSP430F15x, MSP430F16x, MSP430F161x Mixed Sig-

nal Microcontroller (Rev. F) Datasheet.” http://www.ti.com/lit/gpn/

msp430f1611.

[18] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,

J. Hill, M. Welsh, E. Brewer, et al., “Tinyos: An operating system for sensor

networks,” Ambient Intelligence, pp. 115–148, 2005.

[19] P. Levis and D. D. E. Gay, “TinyOS programming,” 2006.

http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=148%3Amicaz
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=148%3Amicaz
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=148%3Amicaz
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=152%3Atelosb
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=152%3Atelosb
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=152%3Atelosb
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=cc2420&fileType=pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=cc2420&fileType=pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.ti.com/lit/gpn/msp430f1611
http://www.ti.com/lit/gpn/msp430f1611

83

[20] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”

Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[21] Q. Wang, W. Chen, R. Zheng, K. Lee, and L. Sha, “Acoustic target track-

ing using tiny wireless sensor devices,” in Proceedings of the 2nd international

conference on Information processing in sensor networks, pp. 642–657, Springer-

Verlag, 2003.

[22] J. Acebrón, L. Bonilla, C. Pérez Vicente, F. Ritort, and R. Spigler, “The Ku-

ramoto model: A simple paradigm for synchronization phenomena,” Reviews of

modern physics, vol. 77, no. 1, pp. 137–185, 2005.

[23] D. Mills, “Internet time synchronization: The network time protocol,” IEEE

transactions on communications, vol. 39, pp. 1482–1493, 1991.

[24] F. Ren, C. Lin, and F. Liu, “Self-correcting time synchronization using reference

broadcast in wireless sensor network,” IEEE Wireless Communications Maga-

zine, vol. 15, pp. 79–85, Aug. 2008.

[25] L. Huang and T. Lai, “On the scalability of IEEE 802.11 ad hoc networks,” in

Proceedings of the 3rd ACM international symposium on Mobile ad hoc network-

ing & computing, p. 182, ACM, 2002.

[26] D. Zhou, L. Huang, and T. H. Lai, “On the scalability of IEEE 802.11 ad-

hoc-mode timing synchronization function,” Wireless Networks, vol. 14, no. 4,

pp. 479–499, 2008.

[27] D. Zhou, “A Compatible and Scalable Clock Synchronization Protocol in IEEE

802.11 Ad Hoc Networks,” in Proceedings of the 2005 International Conference

on Parallel Processing, p. 302, IEEE Computer Society, 2005.

[28] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “Robust multi-hop time syn-

chronization in sensor networks,” in Proceedings of the International Conference

on Wireless Networks (ICWN’04), pp. 454–460, 2004.

[29] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time synchroniza-

tion protocol,” in Proceedings of the 2nd international conference on Embedded

networked sensor systems, pp. 39–49, ACM New York, NY, USA, 2004.

[30] C. Lenzen, P. Sommer, and R. Wattenhofer, “Optimal clock synchronization in

networks,” in Proceedings of the 7th ACM Conference on Embedded Networked

Sensor Systems, pp. 225–238, ACM, 2009.

84

[31] C. H. Rentel, Network Time Synchronization and Code-based Scheduling for

Wireless Ad Hoc Networks. PhD thesis, Carleton University, January 2006.

[32] N. Freris and P. Kumar, “Fundamental limits on synchronization of affine clocks

in networks,” Decision and Control, 2007 46th IEEE Conference on, pp. 921–926,

Dec. 2007.

[33] L. Moreau, “Stability of multiagent systems with time-dependent communication

links,” IEEE Transactions on Automatic Control, vol. 50, pp. 169–182, Feb. 2005.

[34] Seiko Instruments Inc., “SII Quartz Crystals Product Catalogue 2008-2009.”

http://www.sii.co.jp/compo/catalog/crystal_en.pdf.

[35] V. Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz, D. Culler,

and D. Gay, “Tinyos enhancement proposal: Hardware abstraction archi-

tecture.” http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.

x/doc/html/tep2.html.

[36] C. Sharp, M. Turon, and D. Gay, “Tinyos enhancement proposal:

Timers.” http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.

x/doc/html/tep102.html.

[37] Maxim Integrated Products, “DS2401 silicon serial number datasheet.” http:

//datasheets.maxim-ic.com/en/ds/DS2401.pdf.

[38] Maxim Integrated Products, “DS2411 silicon serial number with VCC input

datasheet.” http://datasheets.maxim-ic.com/en/ds/DS2411.pdf.

[39] Maxim Integrated Products, “Application note 126: 1-Wire communica-

tion through software.” http://www.maxim-ic.com/app-notes/index.mvp/

id/126.

[40] D. Xiaojiang and C. Hsiao-hwa, “Security in wireless sensor networks,” IEEE

Wireless Communications Magazine, vol. 15, pp. 60–66, Aug. 2008.

[41] K. Sun, P. Ning, and C. Wang, “Tinysersync: secure and resilient time synchro-

nization in wireless sensor networks,” in CCS ’06: Proceedings of the 13th ACM

conference on Computer and communications security, (New York, NY, USA),

pp. 264–277, ACM, 2006.

[42] H. Song, S. Zhu, and G. Cao, “Attack-resilient time synchronization for wireless

sensor networks,” Mobile Adhoc and Sensor Systems Conference, 2005. IEEE

International Conference on, Nov. 2005.

http://www.sii.co.jp/compo/catalog/crystal_en.pdf
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/doc/html/tep2.html
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/doc/html/tep2.html
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/doc/html/tep102.html
http://tinyos.cvs.sourceforge.net/viewvc/tinyos/tinyos-2.x/doc/html/tep102.html
http://datasheets.maxim-ic.com/en/ds/DS2401.pdf
http://datasheets.maxim-ic.com/en/ds/DS2401.pdf
http://datasheets.maxim-ic.com/en/ds/DS2411.pdf
http://www.maxim-ic.com/app-notes/index.mvp/id/126
http://www.maxim-ic.com/app-notes/index.mvp/id/126

Appendix A

TinyOS Implementation Details

A.1 TinyOS Abstraction Architecture

The TinyOS abstraction model is specified in [35], the hardware abstraction architec-

ture (HAA) has three layers. The lowest layer is termed the hardware presentation

layer (HPL). This layer is responsible for abstracting hardware-specific details, such

as memory mapped I/O and interrupts. Generally, the HPL code does not maintain

state but instead makes the hardware state available.

The next layer of abstraction in the HAA is the hardware adaptation layer (HAL).

The HAL is tasked with providing a full-featured model of the hardware. Generally

the HAL maintains some state, for example, to resolve sharing of the hardware when

accessed from multiple higher-level software components.

The final layer of the TinyOS abstraction is the hardware interface layer (HIL).

The HIL is responsible for abstracting away the difference between devices and pre-

senting them as an instance of the same generic device model. Generally, the a HIL

driver implements only a subset of the hardware capabilities exposed by the HAL in

an effort to present a common-denominator interface usable across many platforms.

The TinyOS implementation structure follows the HAA strictly. One important

side-effect of this is that TinyOS maps most hardware interrupts to non-preemptive

85

86

task invocations.

A.2 Clock Software

As explained in [36] the most fundamental building block of the TinyOS clock software

is the Counter interface which is used to represent a free-running counter with a given

width and frequency. The Alarm interface extends the Counter interface to handle a

counter with a match register that generates an event on match. Again, the Alarm

interface has a given width and frequency.

Also outlined in [36] are a series of modules that extend the width and divide

the frequency of Counter and Alarm objects. TinyOS uses these modules to create

objects with the higher level Timer interface by transforming the lower-level Counter

and Alarm objects that represent the clock hardware. Finally, the VirtualizeTimer

module is used to allow many Timer interfaces to be serviced from a single Timer

resource object by tracking the state of each virtualized timer and setting the under-

lying timer to expire with the next imminent virtual timer expiration.

We extended the TinyOS timer implementation by adding the high-level

Timer32khz module to allow platform independent access to the 32 kHz clock on

both the MicaZ and TelosB platforms. The underlying HilTimer32khz module was

already present in TinyOS for the TelosB while on the MicaZ we implemented a short

HilTimer32khz module that uses the existing AlarmToTimer module to transform the

provided 32 kHz alarm module.

A.3 Timestamping

In addition to the addressing and data payload that are destined to be transmitted

over the air, the message structures in the TinyOS network stack contain provisions

87

to carry various metadata. The network stack manages, acts upon, and supplies these

metadata, as well as supplying interfaces for the application program to interact with

these metadata.

In the case of a received message, the CC2420 radio hardware must first syn-

chronize its internal symbol clock to the transmitting radio’s symbol clock. Symbol

synchronization is achieved during the message preamble which consists of a series of

zero symbols. Once the symbol clock is synchronized, the radio must synchronize at

the byte level as each symbol represents 4 bits. Byte level synchronization is triggered

upon receipt of the two-symbol long start of frame delimiter (SFD). At the end of

the last symbol in the start frame delimiter, the CC2420 outputs a rising edge on the

SFD pin. On the TelosB and MicaZ motes this signal is used to latch a timer value

and to generate a time capture interrupt.

The time capture interrupt handler reads and stores the captured timer value.

However, the captured timing data is stored in a first in, first out (FIFO) buffer

separate from the network stack because at this point the packet body has not yet been

received. Indeed, even the destination address has not been transmitted or received

and therefore there cannot be any representation of the packet in the TinyOS network

stack. Thus, the stored timestamp may be completely useless should the packet turn

out to be destined for a foreign address, as the CC2420 will filter the packet at the

hardware level and the packet will never appear in the TinyOS network stack.

This possibility, combined with the possibility for multiple received packets to be

buffered within the CC2420 calls for some complex logic to re-unite the captured

timing values with the appropriate messages once they appear in the network stack.

This process includes a number of pathological ambiguous cases, such as the receipt of

a packet addressed to the node in question followed immediately by two more packets

only one of which is destined for the node. One of the second two packets will be

dropped from the receive buffer at the hardware level but only after the preamble,

88

SFD and address are received and a timestamp has been captured. In this case,

the TinyOS software cannot determine which of the two possible stored timestamps

belongs to the second locally-addressed packet. In such cases TinyOS simply stores a

sentinel value in the metadata to indicate that no timestamp information is available

for this packet.

In the case of packet transmission, a similar need for packet timestamping arises.

Again, the CC2420 produces a rising edge on the SFD pin at the very end of the start

frame delimiter byte. As in the case of reception, this rising edge causes a time capture

and a timer capture interrupt. As the packet data structure is preserved until the

network stack acknowledges reception to the user application, the network stack can

immediately store this outgoing timestamp with the metadata for the corresponding

packet.

However, the TinyOS network stack goes one step beyond simply allowing the

user application to know the actual time of packet transmission. During the packet

timestamp interrupt, the packet metadata can instruct the TinyOS network stack to

write the packet timestamp directly into the outgoing packet data as a suffix to the

usual data payload. In this case, the network stack actually changes the last few bytes

of the outgoing packet in the CC2420 transmit buffer after packet transmission has

started but while the CC2420 is still transmitting the packet header bytes. Obviously,

if the processor is in a particularly long critical section with interrupts disabled or

is busy processing higher-priority interrupts, there exists a risk that the time stamp

interrupt will be delayed and the CC2420 will have already transmitted the packet

prior to the outgoing timestamp being written into the transmit buffer. To allow

recovery on the receiving end in this case, the packet is initially written into the

buffer with a sentinel value in place of the outgoing timestamp, so that the receiver

can recognize that the timestamp is invalid.

89

The combination of the capability to timestamp received packets and the capa-

bility to write timestamps into outgoing packets provides for direct comparison of

transmitter and receiver clocks at an instant in time. This comparison is free from

uncertainty caused by queueing delays in the network stack and uncertainty delays

caused by clear channel assessment in the radio hardware media access control strat-

egy.

A.4 Dallas 1-Wire Bus and Unique Identifiers

Both the MicaZ and TelosB mote design include a serial ROM programmed with a

48-bit unique identifier. The MicaZ design uses the DS2401 and the TelosB design the

DS2411 unique identifier integrated circuits (ICs) from Dallas/Maxim Semiconductor.

Both ICs are connected using the Dallas 1-Wire serial bus [37,38]. The Dallas 1-Wire

bus uses only one bidirectional communication line from which power can be harvested

for very low power devices such as the DS2401. Thus, the Dallas 1-Wire bus allows

for very compact, low pin count devices.

As neither the TI MSP430 nor the Atmel ATmega128 microcontrollers have ded-

icated 1-Wire hardware, the 1-Wire protocol was implemented in software using a

general purpose bidirectional I/O pin. The implementation followed the overall pro-

cedure suggested in [39]. The 1-Wire implementation begins at the HAL layer as

there is no specific hardware state for the HPL layer to present. The HIL layer

component adds block-level transfers, cyclic redundancy checking, and allows bus

ownership arbitration on a first-come-first-serve basis.

The DS24x1 module uses the 1-Wire implementation to read the unique identifier

data from a DS2401 or DS2411 IC. By including the DS24x1 module and issuing a

ReadID request TinyOS application software can access the mote unique identifier.

90

The unique identifier was used in the project to allow reliable, persistent identi-

fication of the hardware between experiments. By reading the unique identifier and

using it as the node network address, the project application alleviated the burden

of network address management from the experimenter. Finally, by using portions of

the unique identifier to seed the random number generator, different nodes start at

different points in their pseudo-random sequences.

Appendix B

Security Considerations

As proposed in [4–6], the CS-MNS algorithm makes no provisions for security nor for

external synchronization. In [40], the authors provide an overview of the need for,

and the challenges of, security in wireless sensor networks including a discussion of

the need for secure time synchronization. Some secure time synchronization schemes

based on cryptographic methods have been proposed, for example in [41], where the

authors use the µTESLA broadcast authentication scheme to achieve security. How-

ever, message and processing complexity are necessarily increased over unencrypted

protocols.

We begin by discussing the addition of simplistic unsecured external synchroniza-

tion to CS-MNS. We then proceed by analyzing the security implications of these

additions and propose a two-layer external synchronization method that does not

introduce large encryption overheads. The basic approach is to limit the disturbance

an attacker can introduce and then to rely on algorithm robustness to mitigate the

effectiveness of the attack.

91

92

B.1 Insecure External Synchronization

One simple method of adding external synchronization to a network running the CS-

MNS algorithm would be to introduce reference nodes. These reference nodes would

participate in the same beacon contention as CS-MNS nodes, but would broadcast

the external reference clock as the beacon time stamp. These reference nodes would

ignore any received beacons as they would have no need to adjust their clocks.

It is important that the reference nodes participate normally in beacon contention.

In a multi hop network, increasing the probability that reference nodes win the bea-

con contention means that nodes neighboring a reference node have a lower beacon

transmission probability. This, in turn, has the effect that nodes two hops from a

reference node receive fewer beacons.

If all reference nodes are synchronized to the same external source and are func-

tioning correctly, the time stamp beacons from these nodes will be identical and these

nodes can be considered as one node for transmission. As the reference nodes discard

any incoming clock samples, they can be considered as a single unreachable node for

reception. Thus, whatever the true network topology, for analysis the topology can

be considered to have a single reference node that can transmit to many nodes but

cannot receive.

We note that these conditions are exactly the minimum connectivity requirements

under which the previous analysis held; the case when there is at least one node that

can communicate to all other nodes. Therefore, the addition of any number of exter-

nally synchronized reference nodes does not effect the presented analysis of behav-

ior except to control the admissible equilibrium conditions. Preliminary simulation

indicates that convergence is slowed when reference nodes are introduced into the

network. However, further work is required to study the effect of differing reference

node densities.

93

The simplicity of this external scheme may make it attractive enough for use in

networks that have lax security requirements. However, requiring that the protocol

allows nodes that make no clock adjustments to participate creates security concerns

as explored below.

B.2 Security Through Outlier Detection

In [42], four types of attacks against network time synchronization protocols are

identified: masquerade attack, replay attack, manipulation attack, and delay attack.

These are in addition to more general denial of service and other jamming attacks

that do not target the synchronization protocol specifically.

However, in CS-MNS, where the messages are simple time-stamped beacons that

are broadcast to all nodes in range of the transmitting node, many of the attacks

become equivalent. Since the nodes need not identify themselves in the beacon, mas-

querading as another node is identical to fabricating a beacon. Similarly, since the

beacon is a simple time stamp, replaying a message is also equivalent to fabricating

a beacon. Since CS-MNS does not use multi-hop routing of individual synchroniza-

tion messages, there is no opportunity for an attacker to either manipulate or delay

messages en route to other nodes. This leaves one viable type of attack that can be

perpetrated against CS-MNS, which is the fabrication of incorrect beacons.

One possible strategy to protect against fabricated beacons is to have each node

attempt to detect and ignore outliers in the received beacon stream. As long as nodes

joining the network perform coarse synchronization when they join, the time processes

of all cooperative nodes are expected to be similar. The outlier rejection approach

is explored in [42] using both generalized extreme studentized deviate (GESD) and a

much simpler threshold approach.

94

The case of a fabricated beacon attack is slightly different from [42], but a sim-

ilar threshold approach appears promising for CS-MNS. Restricting the maximum

acceptable deviation of a received beacon limits the amount of influence an attacker

can have on the system. If this influence is small enough, the system will simply

tolerate the attacker. Indeed, the effect of a fabricated beacon designed to fall within

the threshold is similar to the effect of clock offset errors explored above.

There remains a danger that an intelligent attacker could bias the system towards

ever increasing or ever decreasing clock rates. While theoretically the network remains

internally synchronized, an unbounded increase or decrease in network clock rates

would eventually cause numerical difficulties. Additionally, a group of attackers may

attempt to exploit the threshold detection to partition the network clocks into groups

separated by more than the threshold. Solutions to these problem remain to be

explored.

Finally, outlier detection posses two problems for the simple reference node scheme

outlined above. Eventually, circumstances will arise where the reference nodes are

themselves outliers from the group and they then will become ineffective. Also, an

attacker can prevent the reference nodes from bringing the rest of the network into

synchrony with the external reference by acting as a reference node supplying an

incorrect reference.

B.3 Securing External Synchronization

A different approach to external synchronization that is more compatible with security

concerns is to allow the CS-MNS algorithm to run with simple outlier detection but

otherwise unsecured. This retains the simplicity of the algorithm and avoids any

encryption overhead. If reference nodes act as standard nodes and run the CS-MNS

algorithm, the reference nodes can then calculate rate and offset correction factors

95

between the internal network clock and the external clock. At this point, external

synchronization of the network is a matter of disseminating this correction data to

the non-reference nodes.

The presence of reference nodes in the network actually protects against coordi-

nated attacks that aim to partition the network. As long as each partition contains

a reference node, even when the network clocks between partitions do not agree, the

reference nodes will distribute appropriate corrections to each partition to synchronize

all nodes to the external reference.

As the CS-MNS internal network clock adjusts smoothly over time, the correction

factors calculated by the reference nodes can be updated at a slower rate than the

beacon rate required to synchronize the network. Therefore, more energy intensive

cryptographic procedures can be tolerated to validate this information. For example,

a signature scheme based on asymmetric cryptography would make it difficult for an

attacker to introduce incorrect corrections even if the attacker had full access to a

non-reference node.

If the corrections from each reference node are disseminated through the net-

work, each node can defend against counterfeit reference nodes by eliminating outlier

correction factors and using the average of accepted correction factors. This type of

algorithm can be chosen to tolerate a given ratio of attackers to reference nodes which

may be sufficient for many applications.

B.4 Preliminary Simulation Results

Figures 30 and 31 show preliminary simulation results for CS-MNS using threshold

beacon filtering. The acceptance window was heuristically set at a constant ±100µs

of the adjusted clock at the receiving node. This acceptance window is smaller than

the initial offset errors and initially falsely rejects beacons from some co-operative

96

0 2 4 6 8 10
0

200

400

600

800

Time [minutes]

M
ax

im
um

 D
ev

ia
tio

n
[µ

s] Two Attackers

No Attackers

Figure 30: Simulation results for a 5 × 5 regular grid network with and without
attackers located at opposite corners with random intentional errors in their beacon
values.

nodes.

However, by modifying the beacon contention mechanism, adverse effects of these

false rejections can be mitigated. If a node rejects a received beacon, the node contin-

ues to compete for beacon transmission instead of backing-off until the next beacon

period. This allows multiple beacons to be transmitted per beacon period when the

population of network clocks is widely dispersed and increases the likelihood that a

node will receive a beacon within its acceptance threshold.

Figure 30 shows that an attacker that respects the protocol but introduces a

random offset error into their beacon data can continually disrupt synchronization.

However, the disruption is contained within the range of the acceptance window and

the overall convergent behavior of the network is not effected.

Figure 31 shows a simple attack that attempts to partition the network by intro-

ducing two malicious ‘reference’ nodes. These attackers broadcast beacons normally

but do not adjust their differing, diverging clocks. The attack fails to partition the

network.

97

0 2 4 6 8 10
0

200

400

600

800

Time [minutes]

M
ax

im
um

 D
ev

ia
tio

n
[µ

s] Two Attackers

No Attackers

Figure 31: Simulation results for a 5 × 5 regular grid network with and without
attackers located at opposite corners with differing fixed clock rates.

	 Introduction
	Objectives
	Contributions
	Organization of the Thesis

	 Background
	Wireless Sensor Networks and Their Applications
	Wireless Sensor Network Hardware
	Wireless Sensor Network Software
	Clocks
	Time Synchronization
	Time Synchronization in Wireless Sensor Networks
	IEEE 802.11 Time Synchronization Function
	Flooding Time Synchronization Protocol
	Clock Sampling Mutual Network Synchronization
	CS-MNS Clock Correction
	Summary

	 Analytical Results
	Introduction
	Analytical Clock Model
	Convergence in the Absence of Offset Errors
	Convergence with Offset Errors
	Addition of a Bias Term to Control Initial Convergence
	Effect of Quantization Noise on the CS-MNS Update Law
	Summary

	 Simulation Results
	Introduction
	Simple Dynamics Simulation
	Summary

	 Testbed Results
	Introduction
	Implementation
	Test Methodology
	Hardware Characterization
	CS-MNS Performance
	CS-MNS Summary
	FTSP Test Method
	FTSP Performance
	FTSP Summary
	Comparison of CS-MNS and FTSP
	Summary

	 Conclusions and Future Work
	Conclusions
	Future Work

	List of References
	Appendix TinyOS Implementation Details
	TinyOS Abstraction Architecture
	Clock Software
	Timestamping
	Dallas 1-Wire Bus and Unique Identifiers

	Appendix Security Considerations
	Insecure External Synchronization
	Security Through Outlier Detection
	Securing External Synchronization
	Preliminary Simulation Results

