
Transport Layer Fairness and Congestion
Control in Wireless Ad Hoc Access Networks

By

Hao Zhang

A thesis submitted to
The Faculty of Graduate Studies and Research

 in partial fulfillment of
the requirements for the degree of

Master of Applied Science

Ottawa-Carleton Institute of Electrical and Computer Engineering

Department of Systems and Computer Engineering
Carleton University

Ottawa, Canada

July 2006

©Copyright 2006, Hao Zhang

i

The undersigned recommend to the Faculty of Graduate Studies and Research

acceptance of the thesis

Transport Layer Fairness and Congestion
Control in Wireless Ad Hoc Access Networks

Submitted by Hao Zhang, M.A.Sc

In partial fulfillment of the requirements for
the degree of Master of Applied Science

__

Dr. Thomas Kunz
Thesis Supervisor

__

Chair, Department of Systems and Computer Engineering

Carleton University

July 2006

ii

ABSTRACT

Transmission Control Protocol (TCP) is a reliable, end-to-end transport protocol, which

is most widely used for data services and is very efficient for wired networks. However,

experiments and research showed that TCP’s congestion control algorithm performs very

poorly over Wireless Ad Hoc Networks with degraded throughputs and severe unfairness

among flows.

This thesis studies fairness and throughput issues presented by TCP in Wireless Ad Hoc

Access Networks, which are Wireless Ad Hoc Networks with supporting infrastructure,

i.e. gateway, to send and receive packets from wired networks, and concentrates on

designing an applicable congestion control algorithm based on the characteristics of the

Wireless Ad Hoc Access Networks. We proposed using DCCP (Datagram Congestion

Control Protocol) with a specially designed congestion control algorithm and

implemented this congestion control algorithm on NS2. Simulations were performed and

the results show the improvements on fairness and throughput achieved by using the

designed congestion control algorithm. The two flows with the new congestion control

tested in the simulation had Jain’s fairness index greater than 0.95 in all combinations,

where TCP flows may have a fairness index less than 0.6. The aggregate throughputs of

the two flows with our new congestion control algorithm also increased.

iii

ACKNOWLEDGEMENT

It is a great honor for me to be supervised by Professor Thomas Kunz. I cannot fully

express my gratitude to the continuous, superb guidance and valuable comments

Professor Kunz had given to me during my study and thesis preparation. I will never

forget, not only his knowledge, which guided me during my study, but also his great

personality and positive attitudes towards work and life.

I would like to thank my family, especially my husband, for their understanding, support,

and pressure-free encouragements during my study, thanks for always being there for me.

iv

Table of Contents

ABSTRACT... ii

ACKNOWLEDGEMENT... iii

Table of Contents ... iv

List of Figures.. vii

List of Tables ... x

List of Appendices.. xi

List of Acronyms... xii

Chapter 1 ... 1

Introduction... 1

1.1 Motivation... 2

1.2 Thesis Contributions ... 4

1.3 Thesis Organization .. 4

Chapter 2 ... 7

TCP and TCP in Wireless Ad Hoc Access Networks .. 7

2.1 TCP Overview .. 7

2.2 TCP in Wireless Ad Hoc Networks.. 9

2.3 Summary... 15

v

Chapter 3 ... 16

Recent Transport Layer Protocols and Bandwidth Estimation Algorithms............. 16

3.1 Recent Transport Layer Protocols .. 16

3.1.1 ATP: A Reliable Transport Protocol for Ad-Hoc Networks 16

3.1.2 FAST TCP ... 19

3.2 Bandwidth Estimation... 24

3.2.1 Bandwidth Estimation Techniques .. 27

3.2.2 Bandwidth Estimation in TCP ... 31

3.3 DCCP: Datagram Congestion Control Protocol ... 38

3.4 Summary... 46

Chapter 4 ... 47

DCCP with Congestion Control for Combined Wireless Ad Hoc Access Networks 47

4.1 Congestion Control Protocol Design .. 50

4.2 State Diagram and Flow Chart.. 53

4.3 Additional Considerations .. 58

4.4 Summary... 58

Chapter 5 ... 60

Performance Evaluation Criteria.. 60

5.1 Evaluation Criteria .. 60

5.2 Fairness ... 60

Chapter 6 ... 64

vi

Simulation Results and Analysis.. 64

6.1 Throughput Limitation.. 65

6.2 TCP Performance.. 70

6.3 Performance of DCCP with Congestion Control.. 75

6.4 Combined TCP and DCCP Flows .. 78

6.5 Combined UDP and DCCP Flows.. 85

6.6 Conclusion .. 86

Chapter 7 ... 88

Implementation and Simulations of Reliability on DCCP .. 88

7.1 Implementation of Reliable Transmission .. 89

7.2 Simulations and Analysis.. 94

7.2.1 Reliable DCCP Flows.. 95

7.2.2 Combined TCP and Reliable DCCP Flows ... 98

7.3 Conclusions... 101

Chapter 8 ... 103

Conclusions and Future Work... 103

References.. 106

Appendix A .. 111

A.1 Existing TCP Proposals in Ad Hoc Networks .. 111

A.2 Proposals to Improve Fairness ... 116

vii

List of Figures

Figure 1-1 An Example Wireless Ad Hoc Access Network... 2

Figure 2-1 Slow Start And Congestion Avoidance... 8

Figure 2-2 TCP Reno Throughput Over An IEEE 802.11 Fixed, Linear, Multi-Hop

Network Of Varying Length (In Hops) [11]... 10

Figure 2-3 Measured And Expected Throughput, Averaged Over 50 Simulated Mobility

Patterns [11] .. 10

Figure 2-4 Scenarios For Testbed Measurement In [29] ..14

Figure 2-5 Measured Throughputs For Scenario B In [29] .. 14

Figure 2-6 Exposed Nodes And Hidden Nodes Problems In [29].................................... 15

Figure 3-1 Fast TCP Architecture... 21

Figure 3-2 Evaluation: Throughput [15]... 24

Figure 3-3 Evaluation: Fairness [15] .. 24

Figure 3-4 DCCP Generic Header Format [17].. 40

Figure 3-5 DCCP Options [17] ... 42

Figure 3-6 DCCP Feature [17].. 43

Figure 4-1 DCCP Ack Vector Option [17] ... 51

Figure 4-2 Data Dropped Option 1 [17] ... 52

Figure 4-3 Data Dropped Option 2 [17] ... 53

Figure 4-4 Flow Chart Of Processing Ack ... 54

Figure 4-5 State Diagram Of The Congestion Control... 55

Figure 6-1 Wireless Ad Hoc Access Network.. 64

Figure 6-2 Transmission For CSMA/CA With RTS/CTS.. 65

viii

Figure 6-3 TCP Performance: Single TCP Flow .. 69

Figure 6-4 DCCP Performance: Single DCCP Flow.. 69

Figure 6-5 TCP Performance: Two IN Flows (RTT ≅ 110 ms) 71

Figure 6-6 TCP Performance: Two OUT Flows (RTT ≅ 110 ms) 72

Figure 6-7 TCP Performance: IN Flow/OUT Flow (RTT ≅ 110 ms)............................... 73

Figure 6-8 TCP Performance: IN Flow And OUT Flow (RTT ≅ 60 ms) 74

Figure 6-9 DCCP Performance: Two IN Flows (RTT ≅110 ms) 76

Figure 6-10 DCCP Performance: Two OUT Flows (RTT ≅ 110 ms) 76

Figure 6-11 DCCP Performance: IN/OUT Flows (RTT ≅ 110 ms) 77

Figure 6-12 DCCP Performance: INFlow/OUT Flow (RTT ≅ 60 ms)............................. 77

Figure 6-13 TCP/DCCP: Two IN Flows (RTT ≅ 110 ms) ... 79

Figure 6-14 TCP/DCCP: Two In Flows (RTT ≅ 60 ms) .. 79

Figure 6-15 DCCP CWND (RTT ≅ 110 ms)... 81

Figure 6-16 TCP CWND And Slow Start Threshold(RTT ≅ 110 ms).............................. 81

Figure 6-17 DCCP CWND (RTT ≅ 60 ms)... 82

Figure 6-18 TCP CWND And Slow Start Threshold(RTT ≅ 60 ms)................................ 82

Figure 6-19 TCP/DCCP: Two Out Flows (RTT ≅ 110 ms).. 83

Figure 6-20 TCP/DCCP: DCCP In Flow/TCP Out Flow (RTT ≅ 110 ms) 84

Figure 6-21 TCP/DCCP: DCCP Out Flow/TCP In Flow (RTT ≅ 110 ms) 84

Figure 6-22 UDP/DCCP: Two Out Flows (RTT ≅ 110 ms)... 86

Figure 6-23 UDP/TCP: Two Out Flows (RTT ≅ 110 ms) .. 86

Figure 7-1: Initial State Of The Linked List At The Sender And The Receiver 90

ix

Figure 7-2: Packet No. 0 Is Added To Linked Lists At The Sender And The Receiver .. 90

Figure 7-3: Packet No. 1 Is Added To Linked Lists At The Sender And The Receiver .. 91

Figure 7-4: Lost Packet: Linked Lists At The Sender And The Receiver 91

Figure 7-5: Ack Vector For Lost Packet: Linked Lists At The Sender And The Receiver

... 92

Figure 7-6: Retransmission Of Lost Packet: Linked Lists At The Sender And The

Receiver .. 93

Figure 7-7: Lost Ack: Linked Lists At The Sender And The Receiver 93

Figure 7-8 Transmission Of New Packet: Linked Lists At The Sender And The Receiver

... 94

Figure 7-9 Reliable DCCP Performance: Single Reliable DCCP Flow 95

Figure 7-10 Reliable DCCP Performance: Two In Flows (RTT ≅ 110 ms)..................... 96

Figure 7-11 Reliable DCCP Performance: Two Out Flows (RTT ≅ 110 ms) 96

Figure 7-12 Reliable DCCP Performance: In/Out Flows (RTT ≅ 110 ms) 97

Figure 7-13 TCP/Reliable DCCP: Two In Flows (RTT ≅ 110 ms).................................. 98

Figure 7-14 TCP/Reliable DCCP: Two Out Flows (RTT ≅ 110 ms) 99

Figure 7-15 TCP/Reliable DCCP: DCCP In Flow/TCP Out Flow (RTT ≅ 110 ms)........ 99

Figure 7-16 TCP/Reliable DCCP: DCCP Out Flow/TCP In Flow (RTT ≅ 110 ms)...... 100

x

List of Tables

Table 6-1 UDP Flow Performance ... 68

Table 6-2 TCP/DCCP One Flow Performance... 68

Table 6-3 TCP Performance: Throughputs And Fairness... 75

Table 6-4: Performance Of DCCP With Congestion Control: Throughput And Fairness78

Table 6-5 DCCP/TCP Throughputs And Fairness ...85

Table 7-1 Single Flow Performances.. 95

Table 7-2 Reliable DCCP Performance: Throughputs And Fairness 97

Table 7-3 Reliable DCCP/TCP Throughputs And Fairness ... 101

xi

List of Appendices

Appendix A .. 10611

A.1 Existing TCP Proposals in Wireless Ad Hoc Networks 111

A.2 Proposals to Improve Fairness .. 116

xii

List of Acronyms

ACK - Acknowledgement

AIMD – Additive Increase and Multiplicative Decrease

ATP – Ad Hoc Transport Protocol

ECN – Explicit Congestion Notification

BER – Bit Error Rate

CCID – Congestion Control Identifier

CSMA/CA – Carrier Sense Multiple Access/Collision Avoidance

CTS – Clear To Send

DCCP – Datagram Congestion Control Protocol

DCF – Distributed Coordination Function

DIFS – DCF Inter Frame Space

ECN – Explicit Congestion Notification

ELFN – Explicit Link Failure Notification

FIFO – First In First Out

ICMP – Internet Control Message Protocol

IEEE – Institute of Electrical and Electronics Engineers

IP – Internet Protocol

MAC – Media Access Layer

MANET – Mobile Ad-Hoc Network

MSDU – MAC Service Data Unit

NS 2 – Network Simulator (version 2)

OOO – Out-of-Order

xiii

RTO – Retransmission Time Out

RTS – Request to Send

RTT – Round Trip Time

SACK – Selective ACK

SIFS – Short Inter Frame Space

SLoPS – Self Loading Periodic Stream

TCP – Transmission Control Protocol

TCP-AP: TCP with Adaptive Pacing

TOPP – Trains of Packet Pairs

TIBET – Time Interval based Bandwidth Estimation Technique

UDP – User Datagram Protocol

WLAN – Wireless Local Access Network

1

Chapter 1

Introduction

Wireless Ad Hoc Networks are multi-hop wireless networks. A Wireless Ad Hoc

Network consists of mobile platforms (e.g., a router with multiple hosts and wireless

communication devices) – herein simply referred to as “nodes” – which are free to move

about arbitrarily [8]. Wireless Ad Hoc Networks can be easily deployed with or without

the support of existing infrastructure. Figure 1-1 is an example Ad Hoc network which

uses gateways as the connection between the wired and wireless parts, which is referred

to as a Wireless Ad Hoc Access Networks in the thesis. With the easy deployments,

Wireless Ad Hoc Networks meet the requirements of many applications, such as in

military battlefield and emergencies, etc. Extensive research has been conducted

concerning media access, routing and transport protocols for such networks. Transport

layer protocols, which are specifically modified or designed for Wireless Ad Hoc Access

Networks, are discussed in this thesis.

2

Figure 1-1 An Example Wireless Ad Hoc Access Network

Wireless Ad Hoc Access networks use wireless links for transmission in the wireless

networks, their bandwidth is significantly lower than that in the wired networks and the

transmission is more prone to errors due to the wireless nature. All nodes in the network

are free to move arbitrarily, which may cause temporary route failures and route changes,

leading to packet losses.

1.1 Motivation

TCP/IP is the protocol suite that defines the Internet. Transmission Control Protocol

(TCP) is a reliable end-to-end transport protocol most widely used for data services,

which is primarily designed for wired networks and became very efficient and robust

with years of enhancements. However, experiments and research showed that TCP’s

congestion control algorithm performs very poorly over Wireless Ad Hoc networks with

Internet

ServerServer

Gateway

Gateway

Gateway

Mobile Node

3

degraded throughputs and severe unfairness among flows [11]. This presents the need to

design an applicable congestion control algorithm based on the special characteristics of

the Wireless Ad Hoc networks.

Currently, the vast majority of the traffic in the Internet relies upon the congestion control

mechanism provided by TCP. There are more applications appearing in the past few

years, such as streaming video and Internet Telephony, which prefer timeliness to

reliability. For those applications, only data arriving within a certain deadline are useful.

The reliability and in-order delivery algorithm provided by TCP often results in arbitrary

delay, and TCP’s rate control AIMD (Additive Increase and Multiplicative Decrease)

algorithm causes very sharp bandwidth change upon the detection of one packet loss,

which can often be compensated for by those applications. Because of these undesirable

properties of TCP, many new applications often choose UDP, with either their own

congestion control mechanisms implemented on top of it or none at all. These long-

lasting UDP flows without any congestion control mechanism present a potential threat

of network collapse to the Internet. Also, congestion control mechanisms are difficult to

implement and may behave incorrectly. This presents the need for a common base

transport protocol, which is able to provide different congestion control algorithms to suit

the needs of different applications. It should also provide capabilities for applications to

easily implement their own congestion control algorithm under special conditions. DCCP

(Datagram Congestion Control Protocol) is a general-purpose transport-layer protocol,

which maintains end-to-end connections and has built-in mechanisms to provide choices

of congestion control algorithm selection or implementation.

4

1.2 Thesis Contributions

This thesis concentrates on the potential use of DCCP with a specially designed

congestion control algorithm for multi-hop Wireless Ad Hoc Access Networks. In this

thesis, DCCP and other transport layer protocols are discussed, congestion control

algorithms and bandwidth estimation techniques are studied in Chapter 3, the design of

our congestion control algorithm and our evaluation criteria are discussed in Chapters 4

and 5.

We implemented a simplified DCCP protocol with our proposed congestion control

algorithm in NS2 and performed experiments to study the throughput and fairness.

Because DCCP does not provide reliability by default, additional packet loss detection

and retransmission is implemented to compare the proposed congestion control algorithm

with TCP. Simulation results are presented in Chapter 6 and in Chapter 7, which show

that flows with the new congestion control tested in the simulation had very good inter-

flow fairness, indicated by Jain’s fairness index greater than 0.95 in all tests, where TCP

flows may have a fairness index less than 0.6. The aggregate throughput of the two flows

with our new congestion control algorithm also increased. Those improvements in

fairness and bandwidth utilization show that DCCP with the designed congestion control

algorithm can potentially replace TCP and UDP for transmitting audio and video

applications, and with the implementation of reliability similar to what TCP provides, the

reliable DCCP with the designed congestion control algorithm has the potential to replace

TCP for Wireless Ad Hoc Access Networks.

1.3 Thesis Organization

This thesis is organized as follows:

5

Chapter 1: Introduction

Chapter 1 contains the thesis introduction, motivation, and contribution

Chapter 2: TCP and TCP in Wireless Ad Hoc Access Networks

Chapter 2 explains how TCP works, and what problems TCP encounters when it

operates in Ad Hoc Networks.

Chapter 3: Recent Transport Layer Protocols and Bandwidth Estimation Algorithms

Chapter 3 studies several recent transport layer protocols, which shed light on the

issues of Wireless Ad Hoc Networks and the bandwidth estimation algorithms for

congestion control.

Chapter 4: DCCP with Congestion Control for Wireless Ad Hoc Access Networks

Chapter 4 discusses our proposed congestion control algorithm and unsolved

problems.

Chapter 5: Performance Evaluation Criteria

Chapter 5 discusses the performance evaluation criteria and fairness.

Chapter 6: Simulation Results and Analysis

Chapter 6 shows the simulation results using Network Simulator (NS2) and

provides an analysis of the results.

Chapter 7: Implementation and Simulations of Reliability on DCCP

Chapter 7 describes the implementation of reliable transmission within our

scheme and shows the simulation results.

Chapter 8: Conclusions and Future Works

 Chapter 8 presents the conclusion of the thesis and suggestions for future work.

Appendix

6

Appendix A.1 and A.2 survey additional related work on adapting TCP to Ad Hoc

networks, including the investigations and proposals to improve throughput and

fairness.

7

Chapter 2

TCP and TCP in Wireless Ad Hoc Access Networks

In Chapter 1, we stated that TCP has throughput and fairness problems when used over

Wireless Ad Hoc networks. Chapter 2 gives a brief introduction of how TCP’s congestion

control works and studies the causes for the throughput and fairness problems of TCP in

Wireless Ad Hoc networks.

2.1 TCP Overview

Transmission Control Protocol (TCP) provides a connection-oriented, reliable data

transmission between the source and the destination. TCP includes a flow control

mechanism, which allows the receiver to limit the transmission speed, and a congestion

control mechanism. The basic idea of TCP congestion control is that TCP senders probe

the network for available resources, and increase the transmission rates until packet

losses are detected. TCP takes packet loss as the indication of network congestion, and it

triggers a series of congestion control schemes upon the detection of congestion. There

are several versions of TCP developed, and TCP Reno is the most widely used version on

the Internet.

In RFC 2581 TCP Congestion Control, four congestion control algorithms are defined:

slow start, congestion avoidance, fast retransmit and fast recovery. The slow start and

congestion avoidance algorithms must be used by TCP senders to control the amount of

outstanding data being injected into the network [1]. In Figure 2-1, during the slow start,

8

for each received acknowledgment (ACK), the TCP sender increases the congestion

window (cwnd) by one segment until it reaches the slow start threshold (ssthresh).

Congestion window size is the amount of outstanding data a TCP sender can send on a

connection before it gets an acknowledgement back from the receiver. During the slow

start phase, the congestion window grows exponentially per round trip time (RTT). The

TCP sender then enters the congestion avoidance phase during which the congestion

window size increases linearly (maximum one segment size per RTT).

Figure 2-1 Slow Start and Congestion Avoidance

There are two ways for detecting packet loss: by duplicate ACK and by retransmission

timeout (RTO). If the sender receives duplicate ACKs, it starts the fast retransmit for that

packet without waiting for the retransmission timer to expire. The fast recovery algorithm

then governs the transmission of new data until non-duplicate ACKs arrive [1]. Basically,

fast retransmit and fast recovery work together to retransmit the lost packet and cut the

slow start threshold (ssthresh). When a non-duplicate ACK is received, the sender enters

the congestion avoidance phase again where the congestion window (cwnd) is set to be

0

2
4

6
8

10
12

14

0 1 2 3 4 5 6 7 8

Time (round trips)

C
on

ge
st

io
n

W
in

do
w

 s
iz

e

(s
eg

m
en

ts
)

Slow Start Threshold

Slow Start

Congestion Avoidance

9

the ssthresh. The TCP sender maintains an average round trip time (RTT) delay, which is

used for setting the RTO. If the sender does not receive an ACK after the timeout timer

expires, the sender cuts ssthresh to half (or 2) of the congestion window size, and sets

cwnd to 1. Setting of RTO follows the exponential backoff strategy, i.e. in each

successive timeout, the RTO doubles.

2.2 TCP in Wireless Ad Hoc Networks

The performance of TCP used in Wireless Ad Hoc Networks is discussed in this section.

2.2.1 Throughput Degradation and Reasons

TCP provides end-to-end congestion control and reliable, in-order data delivery, and is

proved to be very robust over wired network, but using TCP without any modification in

Wireless Ad Hoc Networks results in a drastic throughput drop.

In [11], it is shown that, when mobile nodes are fixed, the measured TCP Reno

throughput over IEEE 802.11 links decreases rapidly when the number of hops increases

(only a single TCP flow exists in the tests). The measured throughput gets worse when

nodes are moving, see Figure 2-2 and Figure 2-3. In Figure 2-2, when the receiver is one

hop away from the sender, the throughput can reach up to 1500 kbps. When the number

of hops between the sender and the receiver is more than 5, the throughput drops to

below 200 kbps. In Figure 2-3, the expected throughput is defined as a function of the

mobility patterns and serves as a reasonable upper bound with which the measured

performance may be compared [11]. Different mobility patterns yield different

throughput results, and Figure 2-3 shows the average result of 50 patterns, in which the

throughputs decrease as the nodes’ moving speeds increase.

10

TCP Reno Throuput

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

Number of Hops

T
hr

ou
gh

pu
t (

K
bp

s)

Hops Throughput (Kbps)

1 1463

2 729

3 484

4 339.9

5 246.4

6 205.2

7 198.1

8 191.8

9 185.3

10 182.4

Figure 2-2 TCP Reno Throughput over an IEEE 802.11 fixed, linear, multi-hop

network of varying length (in hops) [11]

0

200

400

600

800

1000

0 10 20 30

Mean Speed (m/s)

T
C

P
 T

hr
ou

gh
pu

t (
K

bp
s)

Expected

Measured

Figure 2-3 Measured and expected throughput, averaged over 50 simulated mobility
patterns [11]

The above problems presented by TCP over Wireless Ad Hoc Networks are caused by

the special characteristics of the Wireless Ad Hoc Networks.

• High Bit Error Rate

Wired networks have relatively low bit error rate, and TCP treats packet errors as

indication of network congestion. In wireless transmission, bit error rates (BER) are high

11

because of the fading and interferences in wireless channels. Assuming that each error

indicates network congestion and triggering the congestion control mechanism affects the

throughput and link utilization.

• Mobility

All nodes forming the Ad Hoc networks can move freely. When nodes are moving,

existing links may break, so the route between two nodes becomes obsolete and a new

route has to be selected by the routing protocol during the data transmission. If the time

of establishing a new route is longer than RTO, the TCP sender invokes the congestion

control and reenters the slow start phase. This degrades the throughput.

Mobility also causes network partitions. A network partition occurs when a given mobile

node moves away, or is interrupted by the medium, thereby splitting its adjacent nodes

into two isolated parts of the network that are called partitions [19]. If the TCP sender

and receiver lie in two different partitions, the network drops all the data segments

between the endpoints. The TCP sender invokes congestion control and exponentially

backs off the retransmission. If the partitions last longer than several RTOs, network

inactivity could happen, that means the route has been reestablished after the exponential

backoff timer starts, but the sender still needs to wait until it expires. This wastes the

available resources and affects TCP performance.

• ACK Bunching

In Wireless Ad Hoc Networks, the connections often consist of multiple hops.

Considering the medium access control protocol used in Wireless Ad Hoc Networks,

when CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) is used, all TCP

flows are sharing the same channel. Competition for the bandwidth is among flows and

12

even between data packets and their acknowledgements. TCP is based on ACK for

correct congestion control, so timely ACK reception is necessary for packet transmission

and correct calculation of congestion window size and RTO.

The well-known exposed node problem and hidden node problem in Ad Hoc networks

can cause bunching of ACKs. Bunched ACKs cause bursty traffic and highly variable

round trip times (RTTs). It may even cause the TCP sender triggering the congestion

control due to starvation of ACKs. A study [11] showed that, to alleviate these problems,

smaller packet size and smaller maximum congestion window size have to be used.

2.2.2 Fairness Issues

With the easy network deployment and wide hardware availability, Wireless Ad Hoc

Networks are seeing increasing demands. It is very important to ensure that access to the

network by each user remains fair. Fairness can be intuitively defined as the obtained

throughput to its fair share of the bandwidth, and a more detailed discussion is given in

Chapter 5.

In addition to the throughput problem, TCP flows present a severe unfairness in the Ad

Hoc Networks, which is the result of the joint interactions of TCP, MAC layer protocol

and queuing type at the router. The unfairness is shown in the following aspects:

• TCP’s window-based congestion control adjusts the congestion window size every

RTT. The congestion window size doubles every RTT in the slow start phase and

increases linearly in the congestion avoidance phase. Therefore, flows with longer

RTT tend to increase the congestion window size slower than flows with shorter RTT.

This presents per-flow unfairness.

13

• At the network routers, an unfair packet-dropping scheme, such as FIFO drop tail

scheme, causes some flows experiencing more losses than others, which increases the

unfairness.

• In an infrastructured wireless local network, where a gateway (access point) is used to

forward the traffic from the sender to the receiver (both are one hop away from the

gateway), the upstream flows (from the sender to the gateway) tend to occupy the

whole media and the downstream flows (from the gateway to the receiver) almost

stop transmission when multiple upstream and downstream flows co-exist. With

IEEE 802.11, when one sender and one receiver exist, the sender and the gateway

both have equal access to the media. If there is one sender and multiple receivers in

the network, the sender gets half of the bandwidth, where all the receivers share the

other half of the bandwidth. When multiple senders and receivers exist, unfairness

between the upstream and downstream flows is extremely serious, with a ratio of the

sender to the receiver rate up to 800. The research in [22] shows that the queue size at

the access point plays an important role in deciding the bandwidth sharing. When

multiple senders exist, their ACKs are also in contention for media access with

downstream packets, which experience many timeouts due to packet drops in the

gateway buffer.

• In a Wireless Ad Access Hoc network, IN TCP flows (from the wired part to the

wireless part) get more bandwidth than the coexisting OUT TCP flows (from the

wireless part to the wired part) [29]. [29] studied two scenarios (see Figure 2-4) and

scenario B is a combined Wireless Ad Hoc and wired network, where node 3 is

working as the gateway. The test shows that scenario B present a different unfairness

14

condition from scenario A, which is a typical WLAN with one hop wireless

connections. In Figure 2-5, the table shows the measured throughputs in scenario B,

where the IN flow have a much higher share of the bandwidth when mixed flows

exist.

Figure 2-4 Scenarios for Testbed Measurement in [29]

Figure 2-5 Measured Throughputs for Scenario B in [29]

IEEE 802.11 has the exposed node and hidden node problem. With 802.11 DCF

(Distributed Coordination Function) mode, nodes within the transmission range of

other nodes are unable to receive a correct RTS (Request To Send) or respond with a

CTS (Clear To Send), which causes these nodes to be penalized by other nodes’

transmission. See Figure 2-6, when node G is transmitting packets to node 2, node 3

can hear the transmission, so the RTS from node 4 is corrupted (node G is the hidden

15

node in relation to node 4). If node 3 needs to transmit, it must wait until node G

stops and then contend for the medium (Node G is the exposed node in relation to

node 3). Also, the Binary Exponential Backoff prefers the latest successful nodes,

which occupy the media persistently and leave other flows starving of the resource or

even stop transmission completely. TCP’s own timeout and backoff schemes further

worsen the unfairness.

Figure 2-6 Exposed Nodes and Hidden Nodes Problems in [29]

2.3 Summary

TCP works poorly over Wireless Ad Hoc Networks, this is caused by the high bit error

rate over wireless links, arbitrary mode mobility, as well as TCP’s built in congestion

control algorithm working with the contention based media access of IEEE 802.11. A

vast amount of research has focused on improving the throughput and fairness issues

discussed above. In Appendix A, various specific proposals for modifying and adopting

TCP to Ad Hoc networks are discussed.

16

Chapter 3

Recent Transport Layer Protocols and Bandwidth Estimation

Algorithms

In this chapter, several recent transport layer protocols are introduced, including

protocols specifically designed for Ad Hoc Networks (ATP), for high-bandwidth and

long-delay networks (FAST TCP) and a general purpose transport layer protocol with

multiple congestion control mechanism choices (DCCP). They are recent research topics

in academia and their features shed some lights on the transport layer issues of Wireless

Ad Hoc Access Networks.

The bandwidth estimation is an essential part in the congestion control mechanism to

regulate the packet transmission rate at the sender side. In this chapter, existing

bandwidth estimation techniques are introduced and ones used in different TCP versions

are discussed.

3.1 Recent Transport Layer Protocols

This session discusses transport layer protocols, including ATP, FAST TCP and DCCP.

3.1.1 ATP: A Reliable Transport Protocol for Ad-Hoc Networks

In [25], TCP is taken as a protocol fundamentally inappropriate for the unique

characteristics of Ad Hoc networks. Hence a new protocol, Ad Hoc Transport Protocol

(ATP), is proposed.

17

3.1.1.1 The ATP Design

 In the design of ATP, some key ideas are fundamentally different from TCP.

• ATP uses lower layer information and explicit feedback from other network

nodes to assist in the transport layer mechanisms. This information is used for

start-up rate estimation, congestion detection/avoidance/control and path failure

notification.

• ATP decouples congestion control and reliability. In ATP, intermediate nodes are

used to provide the congestion information in terms of a congestion rate, which is

piggybacked on the data packets in the forward path. The ATP receiver sends

back the feedback to the sender. To achieve reliable transmission, selective ACKs

are used to report back the transmission information.

• Each node maintains two parameters: Qt (an exponential average of queuing

delay for packets traversing the node) and Tt (an exponential average of the

transmission time by the head-of-line packet at the node). Every packet will be

stamped with Qt +Tt which is the maximum value through the route, which is

used by the receiver as the rate feedback to the sender.

• ATP exhibits good fairness properties. When an intermediate node servicing

several flows experiences congestion, it sends feedback of the congestion to all

the sources of the flows being serviced by it. All sources respond to this

congestion feedback in an identical manner, thereby a higher degree of fairness is

achieved. The normalized standard deviation is used as measurement for fairness,

and the simulation showed a decrease of 40% compared with TCP and TCP-

18

ELFN [25]. Explicit Link Failure Notification (ELFN) provides the sender with

information about the link and route failure, so the sender will recognize the link

failure as not network congestion.

3.1.1.2 The ATP Protocol

The ATP protocol can be described as follows:

• ATP uses quick start during the connection initiation and the route

reestablishments by sending out probe packets. All intermediate nodes record

Qt +Tt when the packet traverses the node and check Qt +Tt in the rate feedback

field D. At a certain node, if the D field has a smaller value than what the node

records, the D field is reset by the higher value. When the receiver receives the

probe packet, the D field is the maximum delay experienced by the probe packet

in a certain node on the route from the sender to the receiver. The receiver

calculates the average D, adjusts it for the initial transmission, and sends this

information back to the sender. The sender then calculates the rate, which is

proportional to the inverse of the D value, and uses it as the sending rate for the

forward path.

• The receiver sends back the feedback information periodically. The period should

be larger than the round trip time of the connection and small enough to track the

changes of the path. The authors recommend one second as a reasonable default

value.

• ATP has a three-phase congestion control method consisting of increase, decrease

and maintenance phases. When the feedback rate from the receiver is greater than

19

the current rate by a certain threshold, the protocol enters the increase phase,

where the flow increases its rate by a fraction of the potential increase amount. On

the contrary, if the feedback rate from the receiver is smaller than the current rate,

the protocol enters the decrease phase and simply reduces the rate to the feedback

rate. If the feedback rate is within a certain range from the current rate, the

protocol is in the maintenance phase and the sending rate remains unchanged.

• ELFNs allow ATP to multiplicatively decrease the congestion window size. After

receiving ELFNs, ATP enters the connection initiation phase, where the probe

packet piggybacked on the next in-sequence data packets is sent out periodically.

• Selective Acknowledgement (SACK) is chosen to provide lost packet information.

3.1.1.3 Conclusions

ATP presents a new rate-based transport protocol based on feedback information from

intermediate nodes. It also uses explicit link failure notification, combined with SACK

and rate feedback, to indicate the network states. This hybrid information is more reliable

than just relying on the feedback from the network or end nodes. But ATP is designed to

work on stand-alone Ad Hoc networks, which does not include a wired network

extension.

3.1.2 FAST TCP

FAST TCP [16] is a modification to the TCP congestion control algorithm for high-speed

long-distance networks. The current TCP is not stable when used in a network with a

high bandwidth-delay product. First, in order to sustain a large window size, the current

20

TCP requires that an end-to-end path should maintain a small loss probability, which may

be difficult to achieve even in optical networks. Second, the AIMD (Additive Increase

and Multiplicative Decrease) algorithm can lead to oscillation and underutilization of the

bottleneck links because of the conservative increase (AI) at long delay links and drastic

decrease (MD) at large window sizes.

FAST TCP aims to utilize the link resources fairly among all TCP connections and to

avoid the congestion with maximum link utilization. FAST TCP uses queuing delay as

well as packet loss to indicate congestion and adjusts the window size. When the

congestion is mild, i.e. no packet losses happened, queuing delay is the dominant

congestion signal; when congestion becomes severe, packet loss is then the dominant

congestion signal. FAST TCP only modifies the TCP sender to adjust the window size

based on the congestion signal. FAST TCP also supports ECN (Explicit Congestion

Notification) [24]. If the ECN bits in IP header are marked by routers along the route to

indicate a network congestion condition, the receiver can send ECN Echo back to the

sender and notify the sender to reduce the packet transmission rate. When ECN is

available, FAST TCP can be extended to use ECN to supplement or replace queuing

delay as the congestion signal.

FAST TCP is based on the prime-dual model of the TCP protocol where TCP is modeled

by a nonlinear closed-feedback and time-delayed control system. With queuing delay as

the congestion measure, this multi-bit information allows an equation-based

implementation of the source rate to stabilize in an equilibrium state with a target fairness

and high link utilization. This is achieved by correctly responding to the queuing delay to

21

maintain a stable queue in the bottleneck router, which avoids current TCP window

control induced queue overflow and the oscillation caused by queue overflow.

3.1.2.1 Implementation

In [15], the congestion control mechanism of TCP is separated into four independent

functional components (Figure 3-1). This independence allows each component to be

designed and implemented independently.

Figure 3-1 FAST TCP Architecture [15]

The data control component determines which packets to transmit, window control

determines how many packets to transmit, and burstiness control determines when to

transmit these packets. The estimation component provides information to the other three

components to make decisions. In [15], the functional description for estimation and

window control components are as summarized below.

The estimation component studies two types of feedback information from the network,

positive acknowledgment and negative acknowledgment (timeout or duplicate ACKs).

Positive acknowledgments are used to calculate RTT and update corresponding queuing

delay and minimum RTT. Negative acknowledgments are used to provide loss event

indication.

Data
Control

Window
Control

Burstiness
Control

Estimation

TCP Protocol Processing

22

FAST TCP’s window control determines the congestion window based on queuing delay

and packet loss. FAST TCP uses equation-based control with queuing delay and

multiplicative decrease with packet loss. Under normal network condition, the equation

used by FAST TCP [15] is:

w � min{2w, (1- γ)w + γ [(baseRTT/avgRTT)w + α(w, qdelay)] }

where γ ∈ (0, 1]. The variables in the above equation are:

• w is the congestion window size.

• avgRTT is the average RTT computed using a moving average with a suggested

weight of minimum of 3/w and ¼ (min(3/w, ¼) [15].

• baseRTT is the minimum of the observed RTT samples since the start of the

connection.

• qdelay= avgRTT – baseRTT is the estimate of the current queuing delay.

• Function α(w, qdelay) is chosen to be constant. The constant, which may be

different for different TCP flows, specifies the total number of packets that a

single FAST connection tries to maintain queued along the path. For n flows

sharing the same bottleneck link and with the same constant, each flow will get

1/n of the bandwidth at a stable state (given router queue size is n times larger

than the constant).

When packet loss occurs, the source will follow RFC 2582 (New Reno) to enter Fast

Retransmission/Fast Recovery. The source starts reacting to queuing delay again when

the acknowledgments of newly transmitted packets are received and enough samples

(30% of w at the beginning of the current loss event) are collected.

23

3.1.2.2 Performance Evaluation

In [15], the following performance evaluation metrics are given to evaluate the

experiments:

• Throughput: average aggregate throughput for time interval [1, m] of n flows.

• Intra-protocol fairness: Jain’s fairness index is used to evaluate the fairness

among n flows.

• Stability: the stability index of flow i is defined as the normalized sample

throughput standard deviation. The smaller the stability index, the less oscillation

a source experiences. For n flows, the stability index is the average of n individual

stability indices.

• Responsiveness: the responsiveness index measures the speed of convergence

when network equilibrium changes.

[15] listed experimental results comparing up to 8 flows of FAST TCP, TCP Reno,

STCP (Scalable TCP) and HSTCP (High Speed TCP), FAST TCP outperforms the other

three protocols for all above evaluation criteria. Figures 3-2 and 3-3 are the summary

results for overall throughput and fairness across several experiments with different

delays, number of flows and their arrival and departure patterns. Figures 3-2 and 3-3

show that FAST TCP can achieve higher throughput and better fairness.

24

 Figure 3-2 Evaluation: Throughput [15]

Figure 3-3 Evaluation: Fairness [15]

3.2 Bandwidth Estimation

Bandwidth or throughput in a packet network usually means the amount of data that the

network can transfer per unit of time. The estimation of the maximum available

bandwidth for an end-to-end connection is crucial to the congestion control mechanisms

used in the transport protocols and directly impacts the application performance.

The bandwidth of a link is different from the bandwidth of an end-to-end path, which

consists of a sequence of successive links along the path. In data networks, links usually

25

correspond to point-to-point links at the data link layer, called segments. At the network

layer, links may consist of one or more segments connected by data link layer devices,

such as switches or bridges, which are called hops. An end-to-end connection from a

source to a destination may consist of a set of hops. A data link layer normally provides a

constant transmission bit rate. For instance, the rate is 1Mbps, 2Mbps, 5.5Mbps or

11Mbps for IEEE 802.11b links, depending on the error rate of the wireless medium, and

10Mbps on a 10BaseT Ethernet segment.

At the network layer, a hop has a lower rate than this data link layer transmission rate

because of the overhead of data link layer encapsulation and framing. Suppose that the

data link layer transmission rate is 2LC , and the total header size at the data link layer is

2LH , then for a network layer data packet of length 3LL , the achieved network layer

transmission rate is [23]:

3

2
23

1

1

L

L
LL

L

H
CC

+
=

This is the same for a transport layer data segment of length 4LL , the transport layer

transmission rate is:

4

3
34

1

1

L

L
LL

L

H
CC

+
=

The above equations specify the upper bound of the per-link transmission rate at each

layer. Whereas the maximum transmission rate per hop is given above, the maximum

transmission rate or bandwidth of an end-to-end connection consisting of n hops is

defined by the minimum link capacity, i.e.

26

 i
ni

CC
,...,1

min
=

=

where iC is the capacity of the i-th hop. This gives the upper bound for the bandwidth of

an end-to-end connection.

Links are shared among many connections, and the available bandwidth over a link is the

unused capacity over a certain time period, which depends on the traffic load and is a

time-varying metric. At any specific time instant, a link is either transmitting at full

capacity or it is idle. The available bandwidth over a link in a certain time interval is the

time average of the instantaneous utilizations over the time interval. If iC is the capacity

of hop i and iu is the average utilization of that hop in the given time interval, the

average available bandwidth iA of hop i is [21]:

iii CuA)1(−=

And for an end-to-end connection including n hops, the available bandwidth is

determined by the link with minimum available bandwidth along the path:

i
ni
AA

,...,1
min
=

=

It should be noted that the narrow link (with minimum capacity) along the path is not

always the tight link (with minimum available bandwidth). It is the tight link that

specifies the end-to-end available bandwidth.

There are many bandwidth estimation techniques described in the literature. In this

section, existing techniques and various TCP bandwidth estimation methods are

discussed.

27

3.2.1 Bandwidth Estimation Techniques

In this section, existing bandwidth estimation techniques are introduced and ones used in

different TCP versions, including Variable Packet Size (VPS) probing, Packet Pair

probing, Self Loading Periodic Stream (SLoPS) probing, Trains of Packet Paris (TOPP)

probing, and TCP with Adaptive Pacing (TCP-AP), are discussed.

3.2.1.1 Variable Packet Size (VPS) Probing

Variable Packet Size (VPS) probing [12] measures the bandwidth at each hop along the

path. It uses ICMP (Internet Control Message Protocol) error messages to measure the

Round Trip Time (RTT) from the source to each hop. The Time-To-Live (TTL) field of

the IP header of the probing packets ranges from 1 to i consecutively, in order to force

probing packets to expire at the particular hop. By the returning ICMP “Time-exceeded”

error message sent back by the router, which deleted the probing packets after TTL

expires, the source can measure the RTT to that hop. This RTT consists of three parts on

both the forward and reverse path: transmission delays, which are the time used to

transmit a packet onto a link, propagation delays, which are the time for a packet to

traverse a series of links, and queuing delays, which are the time a packet is waiting at the

buffers of each hop.

VPS assumes that the minimum RTT observed happened when there is no queuing delay.

Therefore the minimum RTT only consists of two parts: transmission delay and

propagation delay. The transmission delay is proportional to the packet size, and the

propagation delay is independent of the packet size. Because the returning ICMP error

packets have a constant size, the minimum RTT is the sum of two parts: one is unrelated

28

to the probing packet size and one is related to the probing packet size. When the source

sends out probing packets of a given packet size L to a sequence of hops from 1 to i , at

the k -th hop, the minimum RTT)(LTi is:

 L
C

L
LT i

i

k k
i βαα +=+= ∑

=1

)(

where α is the delay, which is independent of packet size, kC is the bandwidth at the k -

th hop. By observing iβ for each hop, the bandwidth at hop i is:

1

1

−−
=

ii
iC

ββ

VPS probing can underestimate the bandwidth when used in a path involving layer-2

switches store-and-forward, in which the delay is related to probing packet sizes but does

not generate ICMP error messages by the data link layer devices.

3.2.1.2 Packet Pair Probing

Packet pair probing [13] is used to measure the end-to-end available bandwidth for a path.

The source sends out multiple pairs of packets with the same size back to back to the

receiver.

The dispersion of the two packets in a pair is the time distance between the last bits of

each packet. The packet pair probing is assuming that the dispersion of a packet pair at

the receiver reflects the bandwidth of the bottleneck link on the path. If two

acknowledgments are sent back by the receiver after receiving the probing packet pair,

the dispersion of the two ACKs should have the same spacing if the reverse path is

uncontested. The sender can thus estimate the available bandwidth along the path by the

29

dispersion between the corresponding ACKs.

This probing algorithm injects extra packets into the networks and the reverse path

condition can significantly affect the correct estimation.

3.2.1.3 Self Loading Periodic Stream (SLoPS)

Self Loading Periodic Stream (SLoPS) [13] is another mechanism for end-to-end

available bandwidth estimation. In SLoPS, a packet stream consisting of K packets of

size L is sent at a constant rate R. The one-way delays of probing packets are measured. If

the one-way delays show an increasing trend, then the probe stream transmission rate R is

greater than the end-to-end available bandwidth of the path, because probing packets are

queued at the buffer of the bottleneck link. On the other hand, if the stream transmission

rate R is less than the end-to-end available bandwidth, probe packets are not delayed

along the route, so the observed one way delays do not increase constantly, but tend to

have the same value.

The receiver analyses the relation of stream transmission rate R and available bandwidth

A, and notifies the sender of the relation. If probe stream n has a rate of)(nR , and)(nR >A,

then the sender sends the next probe stream n+1 with rate)1(+nR <)(nR . Otherwise, the rate

is set to)1(+nR >)(nR . The computation of)1(+nR can be as follows:

If)(nR > A,)(
max

nRR = ;

If)(nR < A,)(
min

nRR = ;

)1(+nR = 2/)(minmax RR + ;

30

maxR and minR are the upper and lower bound for the available bandwidth of stream n. If

the available bandwidth does not change, the stream rate will converge to a range

[minR , maxR].

When the available bandwidth A changes during the measurement, the one-way delays

will not show a clear increasing trend or be constant. SloPS refers to this as the grey

region, which is related to the variation range of A during the measurements.

3.2.1.4 Trains of Packet Pairs (TOPP)

The Trains of Packet Pairs (TOPP) algorithm [20] follows a similar idea as SLoPS in

estimating the end-to-end available bandwidth. In TOPP, the sender sends out n probe

packet pairs with increasing rates. If the probe packet pair sending rate oR is more than

the available bandwidth A, the second packet in a packet pair will be queued and causes a

larger dispersion at the receiver side. Hence the receiver will observe the receiving rate

mR < oR . With increasing oR , the mR will show a decreasing trend. If the probe packet

rate oR < A, the packet pair will arrive at the receiver with the rate they were sent by the

sender, i.e. mR = oR .

TOPP linearly increases the probe packet pair rate, which may provide more information

than SLoPS does. How the TOPP sender adjusts its rates is also different from the

methodology used in SLoPS. TOPP estimates the available bandwidth A to be the

maximum probe packet pair rate oR when oR = mR .

31

3.2.1.5 TCP-AP: TCP with Adaptive Pacing

TCP-AP (TCP with adaptive pacing) [10] measures the fluctuation of RTTs using the

coefficient of variation. TCP-AP uses the estimation of 4-hop propagation delays (FHD)

and the coefficient of RTT variation to calculate the rate for pacing the transmission by

TCP senders. Using FHD is because the sender’s transmission rate will not be affected by

hidden node problems after the data packet is forwarded 4 times in Wireless Ad Hoc

Network. So the max transmission rate: FHDR /1max = and the actual rate is changed

according to the variations of RTT.

TCP-AP uses this rate-based congestion control algorithm to spread the packet

transmissions, which prevents burstiness caused by TCP’s window based congestion

control algorithm. TCP-AP also proactively identifies the network congestion through the

measuring of RTT and adjusts its transmission rate accordingly, which reduces the

contention and actual congestion state in the network.

3.2.2 Bandwidth Estimation in TCP

TCP has shown to be very efficient over the Internet. In Section 2.1, TCP Overview,

TCP’s congestion control algorithms are introduced. The bandwidth estimation

algorithms in various versions of TCP are studied in this section.

The basic idea of TCP’s available bandwidth estimation is based on two state variables

for each connection: congestion window size (cwnd) and slow start threshold (ssthresh).

Each connection is in the slow start phase when the connection is set up. During this

32

period, the cwnd is increased exponentially per RTT until it reaches the ssthresh. After

reaching the ssthresh, the connection is in the congestion avoidance phase and the cwnd

is increased linearly. In TCP Reno/NewReno, after a congestion event is detected, the

ssthresh is set to be half the current cwnd. It is assumed that ssthresh as an estimation of

available bandwidth for the connection, and the linear increase of cwnd in the congestion

avoidance phase is used to probe extra bandwidth available to the flow. This probe

continues until network congestion is detected, i.e. packet loss happens.

To improve TCP performance, several other bandwidth estimation techniques are

proposed, which focus on TCP’s oscillatory behavior and are more robust when used in

high-speed networks and wireless networks.

3.2.2.1 TCP Vegas

TCP Vegas was introduced in 1994 as an alternative to TCP Reno and its implementation

and tests showed that it achieves better throughput than TCP Reno. TCP Vegas’

bandwidth estimation differs from that in TCP Reno. Unlike TCP Reno, which uses

packet loss as the indication of network congestion, TCP Vegas uses the difference

between the estimated throughput and the measured throughput as the measure of

congestion [4].

TCP Vegas records the smallest measured round trip time as BaseRTT and computes the

available bandwidth as:

BaseRTT

WindowSize
ndwidthExpectedBa =

where the WindowSize is the current window size. During the packet transmission, the

33

round trip time (RTT) of packets are recorded. The actual throughput is calculated as:

RTT

WindowSize
widthActualBand =

The difference between the ExpectedBandwidth and ActualBandwidth is used to adjust

the WindowSize:

 Diff = ExpectedBandwidth - Actual Bandwidth

Two values α and β (βα <≤0) are defined as the thresholds. If Diff<α , the window

size is increased during the next RTT; if Diff> β , then the window size is decreased

during the next RTT. Otherwise, the window size is unchanged. The goal of TCP Vegas

is to keep a certain number of packets or bytes in the queues of the network. If the actual

throughput is smaller than the expected throughput, TCP Vegas takes this as indication of

network congestion, and if the actual throughput is very close to the expected throughput,

it is suggested that the available bandwidth is not fully utilized, so TCP Vegas increases

the window size.

This mechanism used in TCP Vegas to estimate the available bandwidth does not

purposely cause any packet loss. Hence the oscillatory behavior is removed and a better

throughput is achieved. But it has problems when packets do not follow the same route

and when large delays are present. When routes change for a certain TCP Vegas flow, the

BaseRTT recorded from the previous route is no longer accurate; this affects the accuracy

of ActualBandwidth and subsequently influences the performance of TCP Vegas. It can

also be shown that TCP Vegas could become unstable when there is large network delay

for a flow; later established connections cannot get a fair share of the bandwidth, and

when they coexist with TCP Reno connections, TCP Reno connections use most of the

bandwidth [21]. Recent studies are focused on solving these problems and enhancing the

34

TCP Vegas performance [7].

3.2.2.2 TCP Westwood

TCP Westwood proposes an end-to-end bandwidth estimation algorithm based on TCP

Reno. TCP Westwood implements slow start and congestion avoidance phases as TCP

Reno, but instead of halving the congestion window size as in TCP Reno when

congestion happens, TCP Westwood adaptively estimates the available bandwidth and

sets the congestion window size and slow start threshold accordingly to improve the link

utilization.

In TCP Westwood, packet loss is indicated by the reception of 3 duplicated

acknowledgements (DUPACKs) or timeout expiration. When 3 DUPACKs are received,

TCP Westwood sets ssthresh and cwnd as follows [27]:

if (3 DUPACKs are received)

 ssthresh = (BE * RTTmin)/seg_size;

 if (cwnd > ssthresh) /* in congestion avoidance phase*/

 cwnd = ssthresh;

 endif

endif

where the seg_size is the length of the TCP segments and RTTmin is the minimum RTT

experienced. BE is the estimated available bandwidth. It is assumed in TCP Westwood

that when 3 DUPACKs are received in the congestion avoidance phase, the available

bandwidth is fully utilized. So the values ssthresh and cwnd should reflect the estimated

35

bandwidth (BE).

If a packet loss is indicated by a timeout expiration, TCP Westwood sets ssthresh and

cwnd as follows:

 if (timeout expires)

 cwnd = 1;

 ssthresh = (BE * RTTmin)/seg_size;

 if (ssthresh < 2)

 ssthresh = 2;

 endif

endif

This sets the cwnd to 1 and ssthresh to BE after the timeout event and then the TCP Reno

behavior continues.

In TCP Westwood, the setting of ssthresh and cwnd is based on the bandwidth estimation,

which is obtained by measuring the rate of the acknowledgments and collecting the

information of the amount of packets delivered to the receiver in the ACK. Samples of

bandwidth are computed as the amount of packet delivered divided by the inter-arrival

time between two ACKs. Those sample bandwidth estimates are then filtered to achieve

an accurate and fair estimation.

TCP Westwood modifies the Additive Increase and Multiplicative Decrease (AIMD) in

TCP Reno and adaptively sets the transmission rates to remove the oscillatory behavior

of TCP Reno and to maximize the link utilizations. But this also causes TCP Westwood

to degrade the performance of TCP Reno connections when they coexist in the network.

[28] discusses ways to achieve fairness and to maintain efficiency.

36

3.2.2.3 TIBET: Time Interval based Bandwidth Estimation Technique

The Time Interval based Bandwidth Estimation Technique (TIBET) is newly proposed to

improve the TCP performance over links with random loss. TIBET estimates the

available bandwidth used by a TCP source and also enables the TCP connections to track

changes in the available bandwidth quickly [5].

The bandwidth estimation is obtained by performing a runtime sender-side estimation of

the average packet length and the average time interval separately. The algorithm can be

applied either to the stream of transmitted packets or the stream of received ACKs. The

algorithm applied to the stream of transmitted packets is as follows:

 if (Packet is sent)

sample_length[k] = (packet_size * 8);

sample_interval[k] = now - last_sending_time;

Average_packet_length[k] =

alpha * Average_packet_length[k-1] +

(1-alpha) * sample_length[k];

Average_interval [k] =

alpha * Average_interval[k-1] +

(1-alpha) * sample_interval[k];

Bwe[k] = Average_packet_length[k] / Average_interval[k]

 endif

37

Where packet_size is the TCP segment size in bytes, now and last_sending_time are

current time and the time for previous packet transmission respectively.

Average_packet_length and Average_interval are the smoothed values for the packet

length and inter-departure time filtered by alpha (0<=alpha<=1). Different values of

alpha have a large impact on the performance of TIBET. With a lower value of alpha, the

bandwidth estimation is more responsive to bandwidth change, but oscillates widely. A

lower alpha makes the bandwidth estimation less responsive to bandwidth change, but

very stable. The test results showed that alpha equal to 0.99 provides a good tradeoff

between responsiveness and stability.

If the algorithm is applied to the stream of received ACKs, the calculation of

sample_length and sample_interval are:

sample_length[k] = (acked * packet_size * 8);

sample_interval[k] = now – last_ack_time;

Where acked is the number of segments acknowledged by the ACK and last_ack_time is

the time when the last ACK was received.

After congestion events are detected, TIBET sets ssthresh and cwnd based on the

bandwidth estimation as follows:

if (3 duplicate ACKs are received)

ssthresh = BE * RTTmin

if (cwnd > ssthresh)

cwnd = ssthresh

 endif

endif

38

if (retransmission timeout expires)

ssthresh = bandwidth * RTTmin

cwnd = 1

endif

The rationale behind this is the same as in TCP Westwood.

Comparing TIBET with TCP Westwood, simulations in [5] show that TIBET can achieve

an accurate estimate of the available bandwidth. It also shows the TIBET is fair towards

TCP Reno connections in the simulations. In TIBET, the bandwidth estimation algorithm

considers the past history of the connection when congestion events are detected, so it is

able to achieve high throughput in the presence of random errors over the links. In a

combined scenario with multiple wired links and one wireless link, simulations show

TIBET works better than TCP Reno. In summary, TIBET enables the improvement of

throughput over wireless links and fairness over wired links.

3.3 DCCP: Datagram Congestion Control Protocol

Datagram Congestion Control Protocol (DCCP) is a new protocol designed for

applications that require the flow-based semantics of TCP, but prefer timely delivery to

in-order delivery, or a congestion control mechanism different from what TCP provides.

3.3.1 Introduction of DCCP

DCCP is discussed in the IETF DCCP charter, which provides a congestion-controlled,

unreliable packet stream, without TCP’s reliability or in-order delivery semantics. DCCP

39

aims to be a minimal overhead and general-purpose transport-layer protocol providing

only two core functions:

• The establishment, maintenance and teardown of an unreliable packet flow.

• Congestion control of that packet flow.

The purpose of DCCP is to provide a standard way to implement congestion control and

congestion control negotiations for special applications. DCCP provides the following

features:

• A choice of congestion control mechanisms.

Applications should be allowed to choose the most desirable congestion control

schemes based on their special requirements. Currently two congestion control

mechanisms are undergoing discussion as Internet drafts: TCP-like congestion

control and TCP-Friendly Rate Control. DCCP provides a standard way to

implement more congestion control mechanisms and to negotiate the control

options. Each congestion control scheme is uniquely identified by a CCID

(congestion control identifier).

• A reliable handshake for connection setup and teardown.

Unlike UDP, DCCP is a stateful protocol, which has connection setup and

teardown functionality to be friendly to network address translators and firewalls.

To avoid Denial-of-Service attacks, a cookie mechanism can be used during the

connection setup, so a server is able to avoid holding states of unacknowledged

connection attempts.

• An unreliable delivery of data flows, with acknowledgements.

40

DCCP provides options that can tell the sender which packets the receiver

receives and whether those packets are Explicit Congestion Notification (ECN)

marked, corrupted, or dropped at the receiver side.

• Negotiation of features.

DCCP uses a standard mechanism to negotiate properties for connections

(between two DCCP endpoints). These properties are called features, such as the

CCID. During the feature negotiation, the Change, Prefer and Confirm options are

used for both endpoints to agree on a certain value of a feature for a half

connection (a connection includes two half connections, each is made up by the

data flow in one direction and its acknowledgements between the two endpoints).

The negotiation procedure is reliable.

• Low per-packet overhead.

DCCP’s packet header has a condensed form, with only a 12-byte generic header

(Figure 3-4). It offers an option mechanism similar to TCP, which is appended to

the end of DCCP header and used for acknowledgement reporting and parameter

negotiation.

Figure 3-4 DCCP Generic Header Format [17]

41

3.3.2 Main Differences of DCCP from TCP

As stated above, DCCP provides unreliable delivery, generic feature negotiation

mechanism and choices for congestion control, which are different from TCP.

Besides these three features, there are other differences between DCCP and TCP.

• DCCP is a packet stream protocol, and the application is responsible for packet

framing. The sequence number hence refers to packets, not bytes.

• DCCP has flexible acknowledgement formats. Options used in acknowledgments

are specified in a CCID and negotiated during the connection setup.

• DCCP can potentially distinguish between different reasons for a packet loss.

DCCP supports ECN and a Data Dropped option, which help the sender to

distinguish non-network-congestion caused packet losses.

• DCCP provides support for mobility. When the moving endpoint gets a new

address, it sends a DCCP-Move packet to the other endpoint notifying it of its

new address. The connection is changed to the new address accordingly. This is

intended to solve only the simplest mobility problems.

3.3.3 Introduction of Options and Features

Options can be contained in all DCCP packets. Options occupy space at the end of the

DCCP header and are a multiple of 8 bits, totally up to 1020 bytes in length. Options,

which are currently defined in the DCCP Internet Draft, are listed in Figure 3-5.

42

Figure 3-5 DCCP Options [17]

DCCP contains a generic mechanism for reliable feature negotiation. Three options,

Change, Prefer and Confirm, are used to implement feature negotiation. Change is used

to ask a DCCP endpoint to change a feature’s value, and the DCCP endpoint can reply

with a Prefer, which asks the other endpoint to change to another value for a feature, or

with a Confirm to acknowledge the request. Negotiation of multiple features may take

place simultaneously, i.e. a packet can contain multiple Change options for different

features.

Features are identified by numbers, which are the first data byte in every Change, Prefer

and Confirm options. The currently defined feature numbers are listed in Figure 3-6.

43

 Value Initial

 Number Meaning Type Value

 ------ ------- ----- -----

 1 Congestion Control ID (CCID) SP 2

 2 ECN Capable SP 1

 3 Ack Ratio NN 2

 4 Use Ack Vector SP 0

 5 Mobility Capable SP 0

 6 Loss Window NN 1000

 7 Connection Nonce NN random

 8 Identification Regime SP 1

 9 Mobility ID NN 0

 128-255 CCID-specific features ? ?

Figure 3-6 DCCP Feature [17]

The negotiation procedure is the same for all features. Features have different value types

and currently all features fit one of the two value types: non-negotiable (“NN”) or server-

priority (“SP”). The NN features are set by Change options containing exactly one feature

value from the remote side, and are confirmed with a Confirm option by the feature

location. The SP features are set by the Change, Prefer and Confirm negotiation options,

which contain a prioritized list of values. The server priority rule means that the first

entry in the server’s list, which is also in the client’s list, will be selected.

DCCP has special capabilities provided by options and feature, which may be used in

many applications. Characteristics of congestion control, RTT estimation,

acknowledgement and flow control are introduced below.

Congestion Control:

44

• Applications have the choice of using a specific congestion control scheme.

• Each congestion control mechanism has an identifier (CCID) from 0-255.

• In each CCID, the following procedures are described: how a half connection

(HC) sender limits data packet rates; how to maintain connection parameters,

such as cwnd; how a HC receiver sends back ACKs as the congestion

information and how to manage the ACK rate.

• CCID allows CCID-specific options and features in addition to the global

ones.

RTT Estimation:

Three options can be used for the RTT estimation.

• Timestamp option. This option has four bytes of option data carrying the

timestamp of this packet. A Timestamp Echo option should be returned upon

receiving a Timestamp option.

• Timestamp Echo option. Generally, a DCCP endpoint should send one

Timestamp Echo option for each Timestamp option it receives. This option

can carry four to ten bytes of option data, in which four bytes are the

Timestamp taken from the Timestamp option, and another four to six bytes

are the Elapsed time, indicating the amount of time elapsed since receiving the

packet whose timestamp is being echoed. This is used to separate the RTT

from processing time.

• Elapsed Time option. This option is permitted in any DCCP packet with an

Acknowledgement Number. It indicates how much time has elapsed since the

packet being acknowledged was received (packet is the one shown in the

45

Acknowledgement number). This may help correct RTT estimates when the

gap between receiving a packet and acknowledging that packet is long (such

as when acknowledgements are sent not frequently).

Acknowledgements:

Acknowledgements are used to report to the sender the network congestion situation. The

CCID specifies which options are needed in an ACK. To assure ACK reliability, ACK of

ACK is used to free the states at the ACK sender after confirming the reception.

• ACK-Radio Feature (3): Send one ACK per R data packets with default of 2.

• ACK Vector Feature (4): lets DCCP negotiate whether they should use ACK

Vector options. ACK Vector provides detailed loss information for each

packet.

• ACK Vector option: ACK vector gives a run-length encoded history of data

packets received at the client. It can report whether a packet is received, ECN

marked or not yet received.

Flow Control:

DCCP has two flow control mechanisms:

• Slow Receiver Option: tells the sender to not increase sending rate for 1 RTT

after seeing this.

• Data Dropped Option: provides precise feedback about which packets were

dropped and why.

46

3.3.4 Conclusion

DCCP is a connection oriented transport layer protocol, which provides the basic

functionalities for connection setup, maintenance, and teardown. It also provides choices

of congestion control mechanisms to applications. DCCP’s feature negotiation and

variety of options make it possible to be used over widely different networks.

3.4 Summary

In this chapter, recent transport layer protocols are introduced, including ATP, FAST

TCP and DCCP. As a general-purpose transport layer protocol, DCCP provides a

standard way to implement and choose congestion control mechanisms based on

application’s needs, a generic feature negotiation mechanism for reliable feature value

selection, and support of ECN and other options to identify non-network-congestion

losses. DCCP provides unreliable delivery but with detailed and reliable

acknowledgements, which is achieved by sending ACK of ACK to the receiver by the

sender. These special characteristics of DCCP present a potential of using DCCP in

Wireless Ad Hoc Access Networks with a specially designed congestion control

algorithm.

Bandwidth estimation or rate control is the essential part in congestion control. Several

bandwidth estimation techniques are studied in this chapter. Delay-based rate estimation

approaches are used in TCP Vegas, FAST TCP, TCP Westwood and TIBET. Studies of

these algorithms showed improvements in throughputs as well as fairness compared with

TCP Reno/NewReno under several conditions. In this thesis, this delay-based bandwidth

estimation is used in the congestion control for a Wireless Ad Hoc Access Network.

47

Chapter 4

DCCP with Congestion Control for Combined Wireless Ad

Hoc Access Networks

The goal of the research is to propose a transport layer protocol with suitable congestion

control mechanism, which addresses the throughput and fairness issues when used in a

combined wireless and wired scenario shown in the scenario B of Figure 2-4. To design a

robust and effective approach, there are several problems that need to be considered.

• Does the congestion control mechanism maintain end-to-end semantics?

The wireless and wired networks are very different with respect to packet

transmission delay and error rates. Some schemes add special functions at the

gateway, which works as a proxy between the wired part and wireless part. In I-

TCP (Indirect TCP) protocol [3] (discussed in the Appendix), the fixed host from

the wired part only sees an image of the mobile host on the gateway, which sends

the acknowledgements to the sender on behalf of the receiver and maintains a

packet buffer to retransmit lost packets according to the receiver’s requests. In

this approach, the transport protocol’s end-to-end semantics is violated, thus

acknowledgements do not reflect the whole route condition and cannot be used

for end-to-end congestion control. It is desirable to maintain end-to-end semantics

in the congestion control algorithm.

48

• How to recognize the exact reason of packet loss?

The main problem of TCP is that a TCP sender takes every packet loss as an

indication of network congestion and triggers the exponential backoff procedure

unnecessarily. The ideal behavior of the protocol is to recognize the true reason of

packet losses due to congestion, network partition or extensive error condition,

and respond accordingly.

• Who is responsible for network failure detection?

In order to respond to the network condition accurately, the sender needs a

network failure detection scheme. If network detection is used, like in TCP-ELFN

[11], TCP-Feedback [6] and ATCP [9], intermediate nodes can provide fast and

accurate network information, but the sender may fail to receive this information

because of the route disconnection to the next hop. Fixed RTO [2] and TCP

DOOR [26] use end nodes to detect network problems, in which there is no

overhead to send information back to the sender, but the inferred detection may

not be accurate. Therefore, a hybrid approach is needed.

• Should probe packets be used upon detection of route reestablishment?

Probe packets induce network congestion when multiple flows are probing the

network at the same time [2], but the sender can resume faster after the route is

reestablished with the utilization of probe packets. If the sending rate is carefully

adjusted, the use of probe packets after a route failure is beneficial. Also, probe

packets can report extra information about the newly established route, which

could be different from the obsolete route. Probe packets are useful in Wireless

49

Ad Hoc networks, and the sending rate of probe packets should be carefully

studied to avoid causing network congestion.

• Should cumulative acknowledgements be used?

Using cumulative ACKs, both the lost and the following in-sequence packets need

to be retransmitted; hence the goodput, which is the actual throughput that

receivers received without the retransmissions, is affected in the bandwidth-

constrained wireless network. Also cumulative ACKs cause burstiness.

Acknowledgements are important for reliable packet transmission, so non-

cumulative acknowledgements, without a close relationship with timely packet

transmission, are desirable, such as SACK.

• What rate should be used after a new route is established?

Route changes during packet transmission happen often due to the mobility of the

mobile nodes. After a new route is established, if the old transmission rate prior to

the invoked congestion control is selected, congestion is likely to happen again

when the new route has a smaller bottleneck. The other choice is to probe the

route from the slow start phase, which wastes the bandwidth significantly if

performed every time a new route is selected, as show in [2].

To solve this problem, equation-based congestion control is considered. With

RTT or maximum delay in the route (used by ATP) as the feedback information,

the sending rate calculated based on the above information is used as the initial

sending rate for the new route to avoid slow start. The primary goal of the

equation-based congestion control is not to aggressively find and use available

bandwidth, but to maintain a relatively steady sending rate while still being

50

responsive to congestion. So the tradeoff of this equation-based congestion

control is that the sending rate change is slower than TCP-like congestion control,

therefore its response to a sudden increase in available bandwidth is slower. In an

environment where route changes happen often, using this equation-based

congestion control to avoid frequent slow start phases should be able to achieve a

better performance.

• Fairness among flows and friendliness towards standard TCP should be

studied.

The congestion control algorithm should allow flows of the same type to have a

fair share of the bandwidth. Because of the large amount of TCP flows in the

internet, it should also be friendly towards TCP flows.

4.1 Congestion Control Protocol Design

TCP is a widely used transport layer protocol. To make TCP work well in Wireless Ad

Hoc Networks, most approaches suggest modifications to TCP, which could be a large

amount of work considering the wide distribution of TCP.

Based on the discussion above, the proposed transport layer protocol with congestion

control will maintain end-to-end congestion control semantics, which do not utilize a

proxy between the wired and wireless connections to act as the receiver for a connection.

The proposed solution utilizes DCCP with the congestion control mechanism specified in

a new CCID. The new CCID profile should define when acknowledgments are sent and

which options must be used. Acknowledgements with ACK Vector Option and Data

51

Dropped Option are used to identify the true reasons of packet loss. Additional ECN

support and ELFN support is used to provide network-detected information to the sender.

To estimate the available end-to-end bandwidth, the equation used in FAST TCP is

chosen for the thesis. FAST TCP uses a delay-based rate estimation mechanism based on

stabilized Vegas to eliminate the unstable condition when large delays are present. TCP

Vegas and FAST TCP are designed for high bandwidth networks, and their bandwidth

estimation is calculated based on the queuing delay. In the thesis, a similar bandwidth

estimation mechanism is chosen to study the throughput and fairness issues in a Wireless

Ad Hoc Access Network.

DCCP does not support reliable transmission, but it has an ACK Vector Option to convey

packet-reception information back to the sender, which can be used by applications for

packet retransmission.

The ACK Vector Option gives a run-length encoded history of data packets received at

the client. Each byte of the vector gives the state of that data packet in the loss history,

and the number of the preceding packets with the same state [17]. The ACK Vector

Option’s data format is shown in Figure 4-1:

 +--------+--------+--------+--------+--------+--------

 |001001??| Length |SSLLLLLL|SSLLLLLL|SSLLLLLL| ...

 +--------+--------+--------+--------+--------+--------

 Type=37/38 ___________ Vector ___________...

Figure 4-1 DCCP ACK Vector Option [17]

In Figure 4-1, the SS in each byte of the vector part indicates the state, which can be:

52

0 Packet received (and not ECN marked).

1 Packet received ECN marked.

2 Reserved.

3 Packet not yet received.

The first byte in the first ACK vector option refers to the packet indicated in the

acknowledgment number.

With ECN support, ACK Vectors return the network-detected congestion information to

the source node. In addition to the ACK vector, DCCP also has a Data Dropped Option,

which indicates that some packets reported as received actually had their data dropped

before reaching the application. With the help of the Data Dropped option, the sender is

able to further differentiate between network loss and endpoint loss, so the sender’s

congestion control mechanism might be different. How the sender responds to the Data

Dropped Option can be defined in the CCID. If the dropped packet is ECN marked, the

sender must respond to the ECN mark. The format of this option is shown in Figure 4-2:

 +--------+--------+--------+--------+--------+--------

 |00100111| Length | Block | Block | Block | ...

 +--------+--------+--------+--------+--------+--------

 Type=39 ___________ Vector ___________ ...

Figure 4-2 Data Dropped Option 1 [17]

The vector consists of a series of blocks, which correspond to one of the choices shown

in Figure 4-3:

53

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 |0| Run Length | or |1|Dr St|Run Len|

 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 Normal Block Drop Block

Figure 4-3 Data Dropped Option 2 [17]

Normal blocks, with first bit 0, indicate that any received packets in the Run Length have

been delivered to the application. Dropped Blocks, with first bit 1, indicate that received

packets in the Run Length were not delivered as usual. The reasons are indicated by the

three Dr[op] St[ate] bits:

0 Packet data dropped due to protocol constraints

1 Packet data dropped in the receiver buffer

2 Packet data dropped due to corruption.

3 Packet data corrupted, but delivered to the application.

4 Packet data dropped because the application is no longer listening.

5-7 Reserved.

With the detailed packet drop information, a sender can treat random errors differently by

not decreasing cwnd as dramatically as with a drop due to congestion.

4.2 State Diagram and Flow Chart

In our proposal, the sender has four states: Normal State, Congestion State, Failure State

(route change or link failure) and Error State (transmission error). After the connection

setup, the sender is in the Normal State. Upon receiving an ACK, the sender will check

54

the ACK Vector Option, data dropped option and ELFN (may not be supported by certain

routing protocols). Assuming that ECN is supported and ELFN is not supported, the

processing flow is shown in Figure 4-4.

Process ACK
Vector

Any ECN
Mark?

Any Packet
Loss?

Enter
Congestion

Control State

No Yes

Enter Failure
State

Yes

Process Data
Dropped Option

No

Any Corrupted
Packet? Enter Error StateYes

Still in Normal
State

No

Figure 4-4 Flow Chart of Processing ACK

The state transition diagram is as follow (with or without ELFN):

55

Failure

Normal

Congestion Error

ELFN
Loss (no ECN)
RTO expires

ECN
Corruption

ACK

No ECN No Corruption

ELFN
Loss (no ECN)
RTO expires

ECN

ELFN
Loss (no ECN)
RTO expires

ACK with
Corruption
(no ECN)

ACK with
ECN

Corruption (no ECN)

Figure 4-5 State Diagram of the Congestion Control

As described before, rate-based congestion control is used to avoid the frequent slow

starts. The most important task is to design the rate equation for each state, which is the

key for throughput and fairness.

In the research of ATP [25], the packet queuing and sending delay at each node is

calculated and the maximum delay is recorded in each packet. The receiver then

calculates the rate based on the delay information and feeds it back to the sender. This

approach was studied on standalone Wireless Ad Hoc networks without an access point

or gateway connecting to the wired networks. When cooperating with a wired network,

the relationships between the delay and rate are different in the wired and wireless parts,

so the receiver cannot make decisions without knowing where the maximum delay

happened. Also, intermediate nodes are working as routers, which process packets up to

the network layer. To record the delay information at each node through the path and

later to be used at the receiver for transport layer, additional effort is needed to make

changes at the intermediate nodes. So, the ATP approach is excluded from our solution.

56

Similar to FAST TCP, in the thesis, the sender maintains two RTT values, one is base

RTT (baseRTT), which is the minimum recorded RTT, and the other is exponentially

averaged RTT (avgRTT). Each time the sender goes into the failure state, the baseRTT

will be reset by the round trip time of the probe packet and its corresponding

acknowledgment, after being temporarily saved as old baseRTT. The sending rate after

the route establishment is proportional to baseRTT/oldbaseRTT.

In the Normal State, the sender adjusts the rate proportional to baseRTT/avgRTT. In the

congestion state, when ECN mark without packet loss happened, the rate adjustment is

the same as in normal state. But when packet loss happened, the sending rate will halve.

This idea is based on FAST TCP for High-Speed Long-Distance Networks, which

showed proportional fairness under no congestion or mild congested situations when

packet loss occurs infrequently.

In the Error State, the rate can be β*rate, calculated using the above equation, where β is

from ½ to 1 according to the error rate.

In the Failure State, probe packets are send out to monitor the network situation. The rate

of sending probe packets can be set to one packet per RTO like in Fixed RTO, but it

should be studied further by experiments.

A simplified DCCP with rate-based congestion control is implemented based on the TCP

implementation in NS2. Because wireless nodes do not support ECN and the limitation of

getting network-detected link failure in NS2, the implementation has only two states:

Congestion State and Normal State.

In the implementation, ACKs are sent back to the sender whenever the receiver receives a

packet. ACKs have the ACK Vector option as specified in the DCCP specification. ACK

57

vectors contain the packet information (whether they are received, not received or ECN

marked). Also, ACK Vector can be used to bring back information of several packets to

make sure the sender receives the acknowledgments though some ACKs may be lost. A

weighted average RTT (3/4* RTT +1/4*current RTT) is calculated using the timestamp

echo contained in the ACKs. The congestion window size (cwnd) is adjusted accordingly

using the control equation. The function used in the simulation is:

))}*1(int)(1({
RTT

qdelay
cwndcwndcwnd −++=

In the equation, qdelay is the difference between newly calculated weighted average RTT

and baseRTT, which is calculated by weighted average RTT minus baseRTT. When

cwnd is 1, the equation will increase cwnd by 1each RTT; when qdelay is zero, the cwnd

is higher than 1, the equation will increase by 2 packets per RTT.

A timeout timer (RTO) is set for the transmitted packets. Since the test scenario is static,

and no movement-caused packet drops are involved, the sender enters Congestion State

whenever the timeout timer expires. In this Congestion State, probe packets with only

headers are sent by the sender every RTO until an ACK is received. Upon successfully

receiving an ACK, the sender resets the RTT and baseRTT, sets the congestion window

size to cwnd*oldBaseRTT/baseRTT, and enters the Normal State again.

An alternative design is to reset the cwnd every RTT based on the average RTTs

collected and keep the same cwnd for this RTT as in FAST TCP. This way of changing

cwnd is similar to the idea of TCP, so it may provide a fairer sharing between DCCP and

TCP flows in some cases. The advantages of the first design are that the unfairness

caused by different RTT between flows is removed, and it may be more suitable for the

wireless situations where mobility is involved.

58

4.3 Additional Considerations

Additional features, which the CCID may consider, are discussed in this section.

4.3.1 ELFN

In the RFC of DCCP [17], there is no mention of ELFN support in DCCP. If

ELFN is supported, it should be considered in the CCID. Whether or not a change

to DCCP is needed should be further studied.

4.3.2 Retransmission and In-order-delivery

Because DCCP does not provide packet retransmission and in-order-delivery, a

sub-layer implemented above the transport layer may be needed to provide such

services, or it can be left to the applications.

4.3.3 TCP Friendly

TCP is the most widely used protocol on the Internet. Any new congestion control

mechanism should not cause the TCP flows to suffer from bandwidth starvation.

The rate equation used in the thesis should be carefully studied to fulfill this

requirement.

4.4 Summary

Our proposal of the congestion control algorithm used for Wireless Access Ad Hoc

Networks are presented in this chapter. In the thesis, the detected network condition will

set the sender to different states, and the sender will adjust the sending rate accordingly.

Network conditions, i.e. congested and failed, can be detected through the use of ECN,

lower layer assistance, such as ICMP, and carefully adjusted probe packets. Those probe

packets can also be used to detect the RTT on a newly established route after the failure

59

state and set the sending rate based on the new RTT and previous RTT. This will improve

the utilization of the link and decrease the possibility to overflow the bottleneck link of

the new route. The congestion control algorithm maintains an end-to-end congestion

control semantics, and it should meet the following goals:

• Provide fair bandwidth share to flows of the same type regardless the directions of

flows.

• The fairness among flows using newly designed congestion control algorithm and

TCP flows should not worse than the fairness among TCP flows.

• The newly designed congestion control algorithm should also not decrease the

bandwidth utilization.

Our proposal uses DCCP as the base protocol and implements the congestion control

algorithm as a new CCID within the DCCP framework. Simulation results of our

proposal will be presented in later chapters for evaluations.

60

Chapter 5

Performance Evaluation Criteria

5.1 Evaluation Criteria

To evaluate the performance of the designed congestion control mechanism with DCCP

in a combined Wireless Ad Hoc Access Network, the following criteria can be used:

• Throughput

Throughput is defined as the average data rate of a source sending packets and

received by the receiver.

• Goodput

Goodput is the effective data rate as observed by the user. It is the actual

throughput that receivers received without the retransmissions.

• Fairness

Bandwidth sharing between flows of the same type.

5.2 Fairness

The Internet can be considered as a set of links with finite capacities as resources and a

finite number of sources as network users. To avoid congestion and packet loss in the

network, the rate allocated to each flow from sender to receiver should be regulated. The

objective of bandwidth sharing or rate allocation is generally to use all available

bandwidth to the fullest while maintaining “fairness” among flows without causing

starvation of any flow. Fairness has many definitions; each fairness criterion regulates

61

the bandwidth on a different basis. The most simplified is to allocate the same share of

bandwidth to each connection.

As a mathematical notion, fairness is presented as an optimization problem, with the goal

of finding how to allocate the bandwidth that maximizes the sum of each utilities

specified by a certain fairness criterion. This optimization approach generalizes the

concept of fairness.

5.2.1 Fairness Criteria

A fairness criterion describes how to allocate bandwidth fairly and how to measure it.

The basic fairness criteria are throughput maximization, max-min fairness, proportional

fairness and potential delay minimization.

• Maximum throughput

The objective of the bandwidth allocation in the maximum throughput fairness

criterion is to find the feasible rate allocation that maximizes the total throughput and

uses the network resources efficiently.

• Max-min fairness

Max-min fairness is the most commonly used definition for the concept of fairness.

The objective is to maximize the minimum of the given bandwidths. Each of the users

in the network has different demands but equal right to the resource. The Max-min

fairness scheme first allocates users with smaller demands, and then evenly

distributes unused resources to the users with higher demands.

• Proportional Fairness

62

In proportional fairness, each session has a utility function, which is increasing

concave and continuous. The proportional fair allocation is the set of rates that

maximizes the aggregate without links used beyond capacity. It maximizes the

aggregate utility (optimum).

• Potential Delay Minimization

The objective of potential delay minimization is to minimize the delay time used to

complete the full data transmission. This overall delay is inversely proportional to the

sending rate of the source, so the nature of potential delay minimization is the

maximization of throughput.

5.2.2 Fairness Index

A fairness index is defined as a function of variability of throughput across users. Jain’s

fairness index and the Max-min fairness index are the most widely used fairness

measures.

• Max-min Fairness Index

The Max-min fairness index is defined as follows:

||max
i

ii
i F

FA
U

−=

where U is the maximum unfairness, iA is user i ’s actual resource usage and iF is

user i ’s max-min fair share allocation of the resource. A value of 0 indicates a

completely fair system.

• Jain’s Fairness Index [14]

63

Jain’s fairness index, ranging from 0 to 1, is defined as follows:

∑

∑

=

== n

i
i

n

i
i

xn

x
U

1

2

2

1

)(

where ix is the normalized share allocation, which equals the actual allocation divided

by the optimal allocation (use any fairness criterion). An index value of 1 indicates a

completely fair condition.

Fairness is most frequently considered in a static regime where a fixed set of source-

destination pairs share network resources for the transfer of infinite sized documents. In

reality, the number of flows in progress is highly dynamic. There is a very strong

interaction between the stochastic process describing the numbers of flows in progress on

different network routes and the way in which these flows share bandwidth. Very little is

known about the way fairness affects the performance perceived by users.

Jain’s fairness index is used in this thesis to evaluate the bandwidth sharing fairness

among flows, because in the simulations, all flows should have equal share of the

available bandwidth, which can be easily reflected by Jain’s fairness index. Equally

sharing of bandwidth also simplified the normalization in Jain’s fairness index

calculation, because the optimal allocation for each flow is the same, so the ix in above

equation becomes the actual bandwidth obtained by each flow.

64

0

Chapter 6

Simulation Results and Analysis

The Network Simulator 2 (NS2) is used to conduct preliminary simulations and to

demonstrate the performance of our proposal. NS2 is a discrete event simulator for

networking research and provides simulation support for transport protocols, routing and

multicast protocols over wired and wireless networks.

The test scenario used in the simulation is shown in Figure 6-1. In the simulation, data are

sent from the wired node to the wireless nodes (1 and 4) that are two hops away from the

access point; or from those wireless nodes to the wired node via the access point. All

wireless nodes are stationary in the simulation. All data flows are 10MB FTP flows.

Figure 6-1 Wireless Ad Hoc Access Network

All simulations in the thesis are conducted multiple times to verify the coding. The

results provided in the thesis are from single simulation run results. Capturing and

analyzing simulation results of multiple runs can be conducted in future works.

65

The goal of simulations in this Chapter is to compare performance between the proposal

congestion control algorithm and TCP’s congestion control algorithm. Fairness index is

the main evaluation criteria in the comparison of Unreliable DCCP flow with TCP flow.

Throughputs are considered only as an indication of the possible bandwidth utilization in

the simulations. Throughputs of reliable DCCP flows and TCP flows are compared in

Chapter 7.

6.1 Throughput Limitation

In IEEE 802.11, the cycle of packet transmission is shown in Figure 6-2 when RTS and

CTS are used.

Figure 6-2 Transmission for CSMS/CA with RTS/CTS

Control frames (RTS, CTS and ACK) and inter-frame timing (SIFS, DIFS and Backoff)

affect the maximum throughput offered by the IEEE 802.11 networks. The maximum

throughput can be calculated as:

MSDUperDelay

SizeMSDU
Throughput =

MSDU is the MAC layer Service Data Unit; the delay per MSDU is the sum of

transmission of data, control bits, and all other delay components.

Delay per MSDU = DATAACKCTSRTSBOSIFSDIFS TTTTTTT ++++++ *3

66

In NS2, the transmission rate for data is set to 11 Mbps and control information is send at

2Mbps; DIFS is 50 µs; SIFS is 10 µs; average backoff time is 310 µs (minimum

contention window size 31, time slot 20µs); data packet length is 1540 bytes (including

IP header and TCP/DCCP headers). The MAC header is 44 bytes, an RTS or CTS is 40

bytes long, and a MAC ACK is 38 bytes long. So the throughput per link is (assuming a

propagation delay of 0 due to the close distance of nodes, relative to the speed of light):

Throughput =

66 10*11

8*)441540(

10*2

8*)3840*2(
610

3105030
8*1540

++++++
=6.12Mbps

When higher layer acknowledgment is needed, such as TCP, the throughput is lower

because TCP ACKs are added into the transmission and have the same transmission cycle.

So the throughput for a data flow which has an ACK of 40 bytes for each packet is:

Throughput =

666 10*11

8*)2*44401540(

10*2

8*)]2*)3840*2[(

10

)3105030(*2
8*1540

+++++++
=4.19Mbps

In Ad Hoc networks, when packets traverse a chain of nodes, successive packets of the

same connection contend with each other along the chain. In Figure 6-1, when packets

are sent from wireless node 1 to the access point, wireless nodes 1 and 2 cannot transmit

at the same time, so the throughput is only, at best, ½ of the maximum throughput.

The throughput limit also decreases when the radios can interfere with each other beyond

the range at which they can receive correctly. In the simulation, the correct receiving

range is set to 200m with interference range of 350m, and the distance between two

nodes is 150m. This means the transmission of one node can be received successfully by

67

the nodes adjacent to it, but can prohibit the transmission of nodes two hops away from it.

In the network shown in Figure 6-1, within the 5 nodes with radios (wireless nodes 1-4

and access point), if wireless node 1 and wireless node 2 are transmitting and receiving

packets, the access point cannot transmit after it receives CTS from node 2, also wireless

nodes 3 and 4 cannot transmit, because the RTS from node 4 will collide at node 3 with

the signal from node 2. This situation indicates that at most only 1/4 of the single hop

throughput is reached when the connection is from wireless node 1 to node 4.

Because of the backoff mechanism used in the IEEE 802.11 MAC, it is possible that

when a node stops transmitting and leaves the media free, another node is still in the

backed off condition and does not start the transmission until the backoff finishes. The

throughput decreases further due to the wasted idle time. Also, nodes in the middle of the

chain experience more contention than nodes at the ends of the chain, so the end nodes

can transmit more packets than the middle nodes can forward. This uneven bandwidth

allocation can cause packet drops by the middles nodes and affect the bandwidth. In [18],

when the radio transmission rate is 2Mbps, the measured maximum throughput in a chain

of nodes is only 1/7 of the single hop throughput where a maximum ¼ of the single hop

throughput should be achieved theoretically.

To eliminate the affects of different MSDU header lengths, the payload size at the

transport layer is used in all throughput calculations in the thesis from now. Using the

same formulas and payload size, the maximum throughput for a flow without ACK is:

Throughput =

66 10*11

8*)441540(

10*2

8*)3840*2(
610

3105030
8*1500

++++++
=5.96Mbps

And the maximum throughput for a flow with ACK for each packet is:

68

Throughput =

666 10*11

8*)2*44401540(

10*2

8*)]2*)3840*2[(

10

)3105030(*2
8*1500

+++++++
=4.09Mbps

In the simulation, different CBR flows using UDP are used first to test the throughput

limit for the test setup. Each CBR flow sends data packets (1500 bytes) from wireless

node 1 to node 4 using UDP. The tests showed that a maximum rate of 1.21 Mbps can be

achieved (Table 6-1). The maximum throughput from these simulations is smaller than ¼

of the calculated throughput, this further indicates that the wireless media could not be

fully utilized mainly because of sender’s idle state due to backoffs.

CBR (Mbps) 1 1.5 2 5 6 8

Throughput (Mbps) 0.996 1.16 1.17 1.21 1.21 1.20

Table 6-1 UDP Flow Performance

10 MB FTP flows are used in the tests for TCP and DCCP with a packet size of 1500

Bytes. Table 6-2 shows the throughputs using TCP and DCCP with congestion control.

Throughputs are calculated as the total payload size of all received packets within 1

second (including retransmitted packets for TCP).

 Total Pkts Received Pkts Throughput

TCP 6667 6682 0.412Mbps

DCCP 6667 5871 0.829Mbps

Table 6-2 TCP/DCCP One Flow Performance

The diagrams below show the changes of throughputs over the transmission time for both

the single TCP flow and the single DCCP flow.

69

TCP - Single Flow

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

TCP Flow

Figure 6-3 TCP Performance: Single TCP Flow

DCCP - Single Flow

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60 70 80 90

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

DCCP Flow

Figure 6-4 DCCP Performance: Single DCCP Flow

The NS2 tracing functions generated traces for packet handling events from the MAC

layer to the transport layer on each node. Perl scripts were used to process traces, which

selected packets at different layers for detailed study. By analyzing the simulation trace,

it is found that the contention of the wireless medium causes TCP flows to backoff when

the sender fails to receive CTS or ACKs in a timely manner. The TCP sender decreases

cwnd and stops transmission in the backoff period, therefore the throughput over time

fluctuates, and the overall throughput is decreased. On the contrary, the DCCP flow

70

removes the Binary Exponential Backoff. It uses a constant backoff value and probing

packets to detect the medium availability, and achieves a better throughput. DCCP

throughput from the simulation is again less than ¼ of the calculated maximum

throughput, this is also mainly due to the idleness on the wireless media because senders

remain in backoff state when other nodes have stopped transmission.

6.2 TCP Performance

In the simulations, an IN flow is a connection from the wired node to the wireless nodes

(1 or 4), and an OUT flow is a connection from the wireless nodes (1 or 4) to the wired

node.

TCP performance is studied first to confirm the results shown in [29]. In the simulation,

the radio data rate is set to 11 Mbps and throughputs are calculated as the total payload

size of all received packets within 1 second (including retransmitted packets for TCP).

The simulations show the same result as those reported in [29]. When the two flows are

both IN (Figure 6-5), they share the medium almost fairly: one IN flow finished the

transmission shortly after the other IN flow.

71

TCP - Two IN Flows

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6
1.8

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

IN Flow 1 IN Flow 2

Figure 6-5 TCP Performance: Two IN Flows (RTT ≅≅≅≅ 110 ms)

When there are two OUT flows, the wireless channel is not shared fairly, as shown in

Figure 6- 6, one OUT flow occupied the whole bandwidth after the other flow

experienced losses and finished the transmission long before the other flow. The trace

from the simulation shows that, after failing to receive an ACK in time for one OUT flow

(here OUT flow 2), the sender of OUT flow 2 went into Exponential Backoff mode, and

OUT flow1 obtained more bandwidth. With the re-transmission timer increasing

exponentially, OUT flow 2 failed to contend with OUT flow 1 and remained quiet for an

extended period of time. OUT flow 2 re-started transmissions after the backoff timer

expires.

72

TCP - Two OUT Flows

0

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

OUT Flow 1 OUT Flow 2

Figure 6-6 TCP Performance: Two OUT Flows (RTT ≅≅≅≅ 110 ms)

While one IN flow and one OUT flow co-exist, the IN flow uses more bandwidth than

the OUT flow (Figure 6-7). By analyzing the trace file of the simulation, it is shown that,

while the IN flow is transmitting from the wired node to wireless node 1, wireless node 4

is the hidden node and RTSs from node 4 collide at wireless node 3, so TCP packets of

the OUT flow which are queued in node 4 experience losses as the result of MAC layer

collisions; when the OUT flow is transmitting, nodes 1 and 2 have more ACKs dropped

by the MAC layer. Because of the cumulative nature of ACKs in TCP, effects of ACK

drops can be corrected by later ACKs. In contrast, drops of TCP packets will cause the

TCP sender to backoff the transmission, and become inactive for longer periods,

increasing the exponential backoff value. So the OUT flow transmits less than the IN

flow as shown in Figure 6-7.

73

TCP - IN/OUT Flows

0
0.2

0.4
0.6
0.8

1
1.2
1.4

1.6
1.8

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

IN Flow Out Flow

Figure 6-7 TCP Performance: IN Flow/OUT Flow (RTT ≅≅≅≅ 110 ms)

The unfairness becomes more severe when the RTT is shorter for the IN/OUT flow

scenario. In Figure 6-8, when the RTT is around 60ms, the IN flow almost completely

occupies the whole bandwidth, and the OUT flow only transmits after the IN flow

finishes. With a shorter RTT, when the OUT flow experiences a packet loss, the IN flow

gains a faster increase in the window size and uses more link capacity, and further causes

the OUT flow to backoff.

74

TCP - IN/OUT Flows

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

IN Flow Out Flow

Figure 6-8 TCP Performance: IN Flow and OUT Flow (RTT ≅≅≅≅ 60 ms)

Table 6-3 lists the throughputs in the simulations and the fairness index calculated by

Jain’s Fairness Index. In the first part of the table, overall throughputs are the average

long-term throughput by each flow, calculated based on the time needed by each flow to

finish the 10M data transfer. The second part of the table lists the throughput of each flow

during the period they are both active, i.e., based on the time it takes to complete the

faster of the two flows. The Fairness Index calculations are obviously only meaningful in

that latter case.

75

Overall Throughput

(Mbps)

Both IN

(110ms)

Both OUT

(110ms)

IN/OUT

(110ms)

IN/OUT

(60ms)

Flow 1 0.70 0.84 1.12 1.37

Flow 2 0.76 0.49 0.62 0.71

Throughput (Mbps)

Both IN

(110ms)

Both OUT

(110ms)

IN/OUT

(110ms)

IN/OUT

(60ms)

Flow 1 0.65 0.84 1.12 1.37

Flow 2 0.76 0.33 0.10 0.02

Sum 1.41 1.17 1.21 1.38

Jain's Fairness Index 0.994 0.840 0.585 0.514

 Table 6-3 TCP Performance: Throughputs and Fairness

6.3 Performance of DCCP with Congestion Control

Figures 6-9 to 6-12 show the simulation results of our proposed congestion control

algorithm. In all situations (both IN, both OUT, and IN/OUT flows), the two flows

present good long-term fairness on bandwidth sharing. There are two reasons

contributing to the improvement in fairness. In the implementation, no in-order packet

delivery and packet retransmission are required; this means all packets dropped along the

route have no effects on later packet transmission. The second reason is, when timeout

happens, the sender sends out probe packets every RTO, so there is no large inactive

period caused by the exponential backoff timer. The severe unfairness shown by TCP

during a shorter RTT is corrected. In Figure 6-12, the IN/OUT flows are sharing the

bandwidth fairly when RTT is around 60ms. This shows that the long-term unfairness is

not affected by the RTT.

76

DCCP - Two IN Flows

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6
1.8

0 10 20 30 40 50 60 70 80 90 100

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

IN Flow 1 IN Flow 2

Figure 6-9 DCCP Performance: Two IN Flows (RTT ≅≅≅≅110 ms)

DCCP - Two OUT Flows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

OUT Flow 1 OUT Flow 2

Figure 6-10 DCCP Performance: Two OUT Flows (RTT ≅≅≅≅ 110 ms)

77

DCCP - IN/OUT Flows

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 10 20 30 40 50 60 70 80 90

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

IN Flow Out Flow

Figure 6-11 DCCP Performance: IN/OUT Flows (RTT ≅≅≅≅ 110 ms)

DCCP - IN/OUT Flows

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 10 20 30 40 50 60 70 80 90

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

IN Flow Out Flow

Figure 6-12 DCCP Performance: IN Flow/OUT Flow (RTT ≅≅≅≅ 60 ms)

The throughputs and fairness index for DCCP with congestion control are given in Table

6-4, which indicates the improvement in both the throughputs and fairness compared to

TCP (Table 6-3). DCCP with congestion control offers higher throughputs because of

less wasted time in backoff and smooth congestion window size adjustment used in the

proposed congestion control mechanism. Instead of overflowing the channel and halving

78

the congestion window size, the new congestion control monitors the delay and updates

the window size on a per packet basis.

Overall Throughput

(Mbps)

Both IN

(110ms)

Both OUT

(110ms)

IN/OUT

(110ms)

IN/OUT

(60ms)

Flow 1 0.85 0.87 0.97 0.93

Flow 2 0.83 0.87 0.83 0.83

Throughput (Mbps)

Both IN

(110ms)

Both OUT

(110ms)

IN/OUT

(110ms)

IN/OUT

(60ms)

Flow 1 0.85 0.87 0.97 0.93

Flow 2 0.80 0.87 0.77 0.80

Sum 1.66 1.74 1.73 1.73

Jain's Fairness Index 0.999 1.000 0.987 0.994

Table 6-4: Performance of DCCP with Congestion Control: Throughput and

Fairness

6.4 Combined TCP and DCCP Flows

Compared with TCP’s congestion control, our proposed DCCP with congestion control

algorithm shows improved inter-flow fairness on all combination of IN and OUT flows.

In the current Internet, a majority of flows uses TCP and UDP, so it is also important to

study the inter-protocol fairness between DCCP flows and TCP flows and between

DCCP flows and UDP flows. In this section, the simulation results of combined TCP and

DCCP flows are presented and discussed.

6.4.1 Both IN Flows

In the simulation of combined TCP and DCCP flows, when combined TCP IN and DCCP

IN exist, the bandwidth sharing is different with different RTTs. Figure 6-13 shows the

79

results of two IN flows when RTT is around 110ms and Figure 6-14 show the result when

RTT is around 60ms. Figure 6-13 shows that, when the RTT is around 110 ms, the TCP

IN flow and the DCCP IN flow share the medium almost fairly. Figure 6-14 shows that,

when RTT was 60 ms, the TCP IN flow took more bandwidth.

DCCP and TCP - Two IN Flows

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6
1.8

0 10 20 30 40 50 60 70 80 90 100 110

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

DCCP Flow TCP Flow

 Figure 6-13 TCP/DCCP: Two IN Flows (RTT ≅≅≅≅ 110 ms)

DCCP and TCP - Two IN Flows

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 10 20 30 40 50 60 70 80 90 100 110

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

DCCP Flow TCP Flow

Figure 6-14 TCP/DCCP: Two IN Flows (RTT ≅≅≅≅ 60 ms)

80

The throughputs of the two flows get closer when the RTT is longer. This is because of

the different congestion window size (cwnd) adjustment mechanisms used in TCP and

DCCP congestion control. The cwnd is increased by 1 segment during the congestion

avoidance phase in TCP and adjusted according to the delay of every received ACK in

DCCP. Figure 6-15 shows the cwnd samples for the DCCP flow and Figure 6-16 shows

the cwnd and slow start threshold samples for the TCP flow when RTT is around 110ms.

Figure 6-17 shows the cwnd samples for the DCCP flow and Figure 6-18 shows the cwnd

and slow start threshold samples for the TCP flow when RTT is around 60ms. TCP

increases its cwnd slower when RTT is longer (Figures 6-15 and 6-16) and DCCP can get

more bandwidth by working at a larger cwnd. When RTT is shorter (Figures 6-17 and 6-

18), TCP’s cwnd increases faster and leaves less bandwidth to the DCCP flow, which is

working at a smaller cwnd.

81

Figure 6-15 DCCP cwnd (RTT ≅≅≅≅ 110 ms)

Figure 6-16 TCP cwnd and Slow Start Threshold(RTT ≅≅≅≅ 110 ms)

82

Figure 6-17 DCCP cwnd (RTT ≅≅≅≅ 60 ms)

Figure 6-18 TCP cwnd and Slow Start Threshold(RTT ≅≅≅≅ 60 ms)

6.4.2 Both OUT Flows

When the two flows are both out flows, the DCCP flow tends to use the bandwidth fully

and starves the TCP flow as shown in Figure 6-19. This is because of the removal of in-

order delivery and exponential backoff in DCCP’s congestion control.

83

DCCP and TCP - Two OUT Flows

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

0 10 20 30 40 50 60 70 80 90

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

DCCP Flow TCP Flow

 Figure 6-19 TCP/DCCP: Two OUT Flows (RTT ≅≅≅≅ 110 ms)

6.4.3 IN/OUT Flows

When both IN and OUT flows exist, the unfairness between IN and OUT flows still

exists. In the DCCP IN flow and TCP OUT flow combination, the DCCP IN flow uses

more bandwidth than the TCP OUT flow. Similar to the TCP IN/OUT flows scenario, the

TCP IN flow looses more data packets and the DCCP OUT flow looses more ACKs, so

the IN flow is affected more. Figure 6-20 shows the throughput difference between the

two flows.

84

DCCP and TCP - IN / OUT Flows

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

DCCP IN Flow TCP OUT Flow

Figure 6-20 TCP/DCCP: DCCP IN Flow/TCP OUT Flow (RTT ≅≅≅≅ 110 ms)

When a TCP IN flow coexists with a DCCP OUT flow, the unfairness is improved

compared with TCP IN/OUT flows combination. The improvement in fairness is mainly

because DCCP does not provide reliability and retransmission, so the lost packets are

simply dropped during the transmission. Figure 6-21 shows the throughput difference

between the two flows.

DCCP and TCP - IN / OUT Flows

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 10 20 30 40 50 60 70 80 90 100 110

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

DCCP OUT Flow TCP IN Flow

Figure 6-21 TCP/DCCP: DCCP OUT Flow/TCP IN Flow (RTT ≅≅≅≅ 110 ms)

85

The throughput and fairness of DCCP and TCP flows is given in Table 6-5.

Overall Throughput

(Mbps) Both IN (110ms) Both OUT (110ms)

IN/OUT

(DCCP IN)

IN/OUT

(TCP IN)

DCCP Flow 0.764 1.675 1.443 0.728

TCP Flow 0.755 0.423 0.702 0.843

Throughput (Mbps) Both IN (110ms) Both OUT (110ms)

IN/OUT

(DCCP IN)

IN/OUT

(TCP IN)

DCCP Flow 0.764 1.675 1.443 0.699

TCP Flow 0.747 0.071 0.118 0.843

Sum 1.511 1.747 1.561 1.541

Jain's Fairness Index 1.000 0.542 0.581 0.991

Table 6-5 DCCP/TCP Throughputs and Fairness

6.5 Combined UDP and DCCP Flows

The unfairness is more severe when there are OUT flows in the simulation and the most

unfair bandwidth sharing happens when the TCP and DCCP flows are both OUT flows.

In the simulations for mixed flows, when the TCP flow is the OUT flow, the unfairness is

also rather severe. The reason is that a DCCP flow is more competitive to obtain more

bandwidth compared with a TCP flow. This is also shown in the simulations when a TCP

or DCCP flow coexists with a UDP flow (1.6MBps CBR flow), as shown in Figures 6-22

and 6-23, in which the two flows are both OUT.

86

DCCP and UDP - Two OUT Flows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100 110

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

DCCP Flow UDP Flow

Figure 6-22 UDP/DCCP: Two OUT Flows (RTT ≅≅≅≅ 110 ms)

TCP and UDP - Two OUT Flows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80 90 100 110

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

TCP Flow UDP Flow

Figure 6-23 UDP/TCP: Two OUT Flows (RTT ≅≅≅≅ 110 ms)

6.6 Conclusion

It is demonstrated in the simulations that DCCP flows have good inter-flow fairness due

to the modified congestion control algorithm, which uses a rate based window control

algorithm based on the feedback from the acknowledgments, and keeps a constant

backoff timer according to the network condition. When DCCP flows coexist with TCP

87

flows, DCCP flows starve the TCP flows only when there is an OUT TCP flow, and

DCCP flows have better throughput when co-existing with UDP flows. The results show

that the proposed congestion control algorithm can fulfill the requirements specified in

Chapter 4.5: flows using the proposed congestion control algorithm share the bandwidth

almost fairly regardless of where the senders are. When co-existing with TCP flows, the

bandwidth sharing shows similar fairness issues as pure TCP flows, and the unfairness is

more severe in these cases, this means that the TCP-friendliness of the proposed

congestion control algorithm should be further studied and improved if possible.

These simulation results indicate that our proposed congestion control mechanism used in

the Wireless Ad Hoc Access Network can achieve better bandwidth utilization and

improved efficiency when used for applications, such as streaming audio or video

transmission, compared with using UDP, which has no congestion control and can cause

severe congestion. DCCP with the designed congestion control algorithm can potentially

replace TCP and UDP for transmissions of real time audio and video traffics. With

further study and improvement on providing in-order delivery of packets, our proposal

may also have the potential to replace TCP in Wireless Ad Hoc Access Networks.

Chapter 7 discusses our extension to the basic DCCP protocol to provide for reliable, in-

order delivery.

88

Chapter 7

Implementation and Simulations of Reliability on DCCP

Transmission Control Protocol (TCP) provides reliable, end-to-end, in-order delivery of a

data stream. TCP’s reliable transmission has the following properties:

• TCP provides buffered transfer and allows the application programs to send data

in any size. At the sender side, data from application programs are buffered and

segmented; at the receiver side, TCP segments are buffered and re-integrated

before delivering them to the application programs. Data segments are numbered

sequentially according to the number of bytes.

• TCP receivers are able to detect lost and corrupted packets and request

retransmissions of those packets by acknowledgements.

• TCP receivers are able to detect and delete duplicated packets.

• Each TCP connection is a bit stream. The receiver delivers exactly the same data

to the application programs as what the sender sends.

Although Datagram Congestion Control Protocol (DCCP) is designed for applications

which do not need reliability, it has features which can be used to implement reliable

transmission based on DCCP:

• The DCCP header has a sequence number for each DCCP Request or DCCP

response packet. Senders and receivers use this information to detect whether

packet losses have happened.

89

• The DCCP header includes a checksum field, which uses the same algorithm as

TCP’s checksum algorithm. Packets with invalid checksum are identified as

corrupted.

• DCCP’s ACK vector option provides packet loss and corruption information to

DCCP senders.

Both DCCP and TCP are end-to-end sliding window protocols. Data packets are

transmitted in both directions: packets are sent from the senders to the receivers and

acknowledgements are sent from the receivers to the senders. Senders are allowed to send

a window of packets before receiving the acknowledgment. This window starts at a

constant size and is later controlled by the congestion control algorithms implemented in

the protocols. Acknowledgments are valid when sequence numbers of acknowledged

packets are within the range of the current window. To implement reliable transmission

based on DCCP and provide a comparable level of reliability as TCP does, the following

functions should be added to DCCP:

• Buffering of received packets at the receivers

• Retransmission of lost or corrupted packets by the senders

• Detection and deletion of duplicated packets at the receivers

• In-order delivery of received packets to the application program at the receivers.

7.1 Implementation of Reliable Transmission

To provide end-to-end, reliable transmission, buffers are implemented at both the

sender’s side and the receiver’s side for a DCCP flow. The sender buffer keeps track of

the packets which are sent by a DCCP sender, and the receiver buffer records information

of received packets at the DCCP receiver. A buffer is implemented as a linked list using

90

C++ in NS2. Information in the list is used for retransmission at the sender and in-order

packet delivery at the receiver. Information in the receiver’s list is also used to build the

acknowledgment and ACK vectors. The section below illustrates how the lists are used to

provide reliable transmission.

7.1.1 Initial State and Normal Transmission

The initial state of the buffers is as shown in Figure 7-1, each of the lists has a pointer

pointing to the list head.

Figure 7-1: Initial State of the linked list at the Sender and the Receiver

When the sender sends a packet, a list member is added to the sender list, with the status

of the acknowledgement as Not Acknowledged. When a receiver receives a packet, a list

number is added to the receiver’s list, with the status as received.

Figure 7-2: Packet No. 0 is added to linked lists at the Sender and the Receiver

After the receiver sends an ACK, the list is checked and all list members received in

sequence up to this moment are handed to the application and deleted from the list.

Similarly, after the sender received the acknowledgement, the ACK vector is parsed, all

packets being acknowledged as received are marked in the list, then the list is checked

91

and all in sequence packets marked as received are deleted from the list. After this, the

congestion window is checked. When the number of outstanding packets in the network

is within the congestion window, new packets will be transmitted. As an example, the

packet with sequence number 1 is sent and the list at the sender’s side adds a new

member, packet number 1. After the receiver successfully received this packet, the

receiver’s list adds packet number 1 as well. The updated lists at sender and receiver are

show in Figure 7-3.

Figure 7-3: Packet No. 1 is added to linked lists at the Sender and the Receiver

7.1.2 Loss Scenario: Data Packet is lost during the Transmission

Figure 7-4 shows a scenario where packet number 3 is lost.

Figure 7-4: Lost Packet: linked lists at the Sender and the Receiver

When the congestion window size is 2, after receiving the acknowledgement of packet 2,

the following in-sequence packet (number 4) is sent by the sender. When the receiver

receives packet number 4, it checks the last received packet number (recorded by the

receiver), and finds that there is a packet which was lost before the currently received

92

packet. The receiver creates a list member for the lost packet with the status Not

Received. The receiver also creates a list member for the received packet with status

Received. The acknowledgement is sent by the receiver with an ACK vector indicating

packet number 3 is lost and packet number 4 is received (Figure 7-5).

Figure 7-5: ACK Vector for Lost Packet: linked lists at the Sender and the Receiver

When the sender receives the acknowledgement, it parses the ACK vector and updates

the packet number 3 as Not Received and packet number 4 as Received. When the sender

is ready to send out packets, it first checks if there are packets marked as Not Received in

the buffer. If so, the sender will re-transmit those packets first if they have not previously

been retransmitted. If a lost packet has been retransmitted, the sender will check the

retransmission timer associated with the retransmitted packet, if the timer expires, the

sender will send the lost packet immediately. The retransmission timer value is set as the

sum of average RTT and 8 * average RTT variance, which is calculated by:

RTT_variance = ¾ *old_RTT_variance + ¼ * new_RTT_variance

where new_RTT_variance is the delta between new RTT and average RTT. The initial

value of the retransmission timer is set to 6 seconds.

93

Figure 7-6 depicts the scenario that the sender re-sends packet number 3 and sends packet

number 5 after the retransmission of packet number 3. Acknowledgements are sent to the

sender after the receiver receives the packets.

Figure 7-6: Retransmission of Lost Packet: linked lists at the Sender and the
Receiver

7.1.3 Loss Scenario: ACK is lost during the Transmission

Acknowledgements can also be lost during the transmission. Figure 7-7 shows that

packets number 6 and 7 are both received by the receiver, but ACK loss occurred.

Figure 7-7: Lost ACK: linked lists at the Sender and the Receiver

When the ACK of packet number 7 is lost before reaching the sender, the sender assumes

there is one outstanding packet (number 7) in the network. If the congestion window is 1,

94

the sender will retransmit this packet after the timer expires. If the congestion window is

greater than 1, the sender will send out new packets as show in Figure 7-8.

Figure 7-8 Transmission of new packet: linked lists at the Sender and the Receiver

After the sender receives the acknowledgement for packet number 8, which has the ACK

vector containing information only for packet number 8, it will mark packet number 7 as

received. All in sequence packets marked as received are handed to the application in the

receiver and deleted from the lists at both the sender and the receiver.

7.2 Simulations and Analysis

Simulations are conducted to verify the performance of the Reliable DCCP with rate

based congestion control. The test setup is the same as one used in simulations for TCP

and DCCP in Chapter 6.

First, a single flow traversing a chain of nodes (4 hops) was tested. The throughputs

including retransmitted packets are provided in Table 7-1, which also includes previous

test results for a single TCP flow and a single DCCP flow. The DCCP flow with

reliability implementation has lower throughput than the unreliable DCCP flow because

the sender of the reliable DCCP implementation needs to detect lost packets or

acknowledgements and retransmits lost packets or packets not acknowledged positively.

95

 Total Pkts Received Pkts Throughput Goodput

TCP 6667 6912 0.447Mbps 0.444Mbps

DCCP 6667 5871 0.829Mbps 0.829Mbps

Reliable DCCP 6667 8801 0.765Mbps 0.629Mbps

Table 7-1 Single Flow Performances

The diagram below shows the changes of throughput over the transmission time of the

single reliable DCCP flow.

Realiable DCCP - Single Flow

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

Flow 1

Figure 7-9 Reliable DCCP Performance: Single Reliable DCCP Flow

7.2.1 Reliable DCCP Flows

Similar to previous simulations, an IN flow is a connection from the wired node to the

wireless nodes, and an OUT flow is a connection from the wireless nodes to the wired

node. Figures 7-10 to 7-12 are the throughput diagrams for tests of two IN flows, two

OUT flows and one IN and one OUT flow. The simulations for reliable DCCP flows

show similar bandwidth sharing patterns as the simulations for DCCP flows, i.e. the two

96

flows can share the bandwidth almost fairly in all test cases. The average throughputs for

Reliable DCCP are lower than the throughputs for DCCP flows, as already shown above.

 Reliable DCCP - Two IN Flows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

IN Flow 1 IN Flow 2

Figure 7-10 Reliable DCCP Performance: Two IN Flows (RTT ≅≅≅≅ 110 ms)

Reliable DCCP - Two OUT Flows

0.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

OUT Flow 1 OUT Flow 2

Figure 7-11 Reliable DCCP Performance: Two OUT Flows (RTT ≅≅≅≅ 110 ms)

97

Reliable DCCP - IN/OUT Flows

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

IN Flow Out Flow

Figure 7-12 Reliable DCCP Performance: IN/OUT Flows (RTT ≅≅≅≅ 110 ms)

Table 7-2 lists the throughputs in the simulations for both IN flows, both OUT flow and

IN/OUT flows, and the fairness index in those tests calculated by Jain’s Fairness Index.

Overall Throughput

(Mbps)

Both IN

(110ms)

Both OUT

(110ms)

IN/OUT

(110ms)

IN/OUT

(60ms)

Flow 1 0.71 0.75 0.72 0.84

Flow 2 0.71 0.78 0.81 0.83

Throughput (Mbps)

Both IN

(110ms)

Both OUT

(110ms)

IN/OUT

(110ms)

IN/OUT

(60ms)

Flow 1 0.71 0.75 0.72 0.84

Flow 2 0.71 0.79 0.77 0.69

Sum 1.42 1.53 1.49 1.53

Jain's Fairness Index 1.000 0.999 0.999 0.990

Table 7-2 Reliable DCCP Performance: Throughputs and Fairness

The comparison of Table 7-2 and Table 6-3 TCP performance: throughputs and fairness

shows that Reliable DCCP flows achieve better throughputs and fairness among flows.

The aggregate throughputs given by row Sum for the tests of reliable DCCP flows are

98

higher than the aggregate throughputs in TCP’s tests. Jain’s fairness indexes in Table 7-2

are all close to 1, which indicates a fair sharing of network bandwidth by the two flows.

7.2.2 Combined TCP and Reliable DCCP Flows

In this section, the simulation results of combined TCP and reliable DCCP flows are

provided. Figures 7-13 to 7-16 are the throughput diagrams for tests of two IN flows,

two OUT flows and one IN and one OUT flow of combined TCP and reliable DCCP

flows. The simulation results show that, when both flows are IN flows, they share the

media almost fairly: one IN flow finished the transmission shortly after the other flow;

when both are OUT flows, the DCCP flow uses more bandwidth than the TCP flow: the

DCCP flow always finished the transmission first and the TCP flow was almost stopped

during the transmission of the DCCP flow; and when IN/OUT flows co-exist, the IN flow

always uses more bandwidth than the OUT flow. The reasons are the same as we

discussed in Chapter 6.

Reliable DCCP/TCP - Two IN Flows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

TCP Flow DCCP Flow

Figure 7-13 TCP/Reliable DCCP: Two IN Flows (RTT ≅≅≅≅ 110 ms)

99

Reliable DCCP/TCP - Two OUT Flows

0.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

TCP Flow DCCP Flow

Figure 7-14 TCP/Reliable DCCP: Two OUT Flows (RTT ≅≅≅≅ 110 ms)

Reliable DCCP/TCP - IN/OUT Flows

0.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

DCCP IN Flow TCP OUT Flow

Figure 7-15 TCP/Reliable DCCP: DCCP IN Flow/TCP OUT Flow (RTT ≅≅≅≅ 110 ms)

100

Reliable DCCP/TCP - IN/OUT Flows

0.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

DCCP OUT Flow TCP In Flow

Figure 7-16 TCP/Reliable DCCP: DCCP OUT Flow/TCP IN Flow (RTT ≅≅≅≅ 110 ms)

The throughputs of combined Reliable DCCP and TCP flows are given in Table 7-3.

Comparing the simulation results of combined DCCP/TCP flows in Chapter 6 (Table 6-5)

and combined Reliable DCCP/TCP flows, it is found that the aggregate throughputs in

the simulations of reliable DCCP are less than the aggregate throughputs in the

simulations of unreliable DCCP. Similar to unreliable DCCP, reliable DCCP also has

fairness issues when the flows include an OUT TCP flow.

101

Overall Throughput

(Mbps)

Both IN

(110ms)

Both OUT

(110ms) IN/OUT (DCCP IN) IN/OUT (TCP IN)

DCCP Flow 0.76 1.44 1.12 0.67

TCP Flow 0.68 0.66 0.57 0.89

Throughput (Mbps)

Both IN

(110ms)

Both OUT

(110ms) IN/OUT (DCCP IN) IN/OUT (TCP IN)

DCCP Flow 0.76 1.44 1.12 0.61

TCP Flow 0.69 0.05 0.05 0.89

Sum 1.45 1.49 1.18 1.50

Jain's Fairness Index 0.998 0.535 0.545 0.966

 Table 7-3 Reliable DCCP/TCP Throughputs and Fairness

7.3 Conclusions

Comparing the simulation results of TCP flows and unreliable DCCP flows in Chapter 6

and reliable DCCP flows in this chapter, the simulations show the following

characteristics of reliable DCCP implementation:

When both flows were either both TCP, both DCCP, or both reliable DCCP flows:

• Reliable DCCP flows have higher throughputs than TCP flows.

• Reliable DCCP flows have lower throughputs than DCCP flows.

• Reliable DCCP as well as DCCP provides improved inter-flow fairness,

independent of the flow directions.

When tested jointly with TCP flows,

• Reliable DCCP and TCP flows have similar overall throughputs as only TCP

flows

• Reliable DCCP and TCP flows have similar fairness issues as only TCP flows

102

The above conclusions show that the proposed congestion control algorithm fulfills the

following requirements specified in Chapter 4.5:

• Flows using the proposed congestion control algorithm share the bandwidth

almost fairly regardless of where the senders are

• The bandwidth utilization is improved using the proposed congestion control

algorithm.

Similar to the unreliable DCCP flows, when co-existing with TCP flows, the bandwidth

sharing of reliable DCCP flows shows similar fairness issues as pure TCP flows, and the

unfairness is more severe in these cases, this means that the TCP-friendliness of the

proposed congestion control algorithm should be further studied and improved if possible.

103

Chapter 8

Conclusions and Future Work

In this thesis, a congestion control algorithm using DCCP for a Wireless Ad Hoc Access

Network is developed and tested using the NS2 simulator. In the thesis, the reasons of

throughput degradation and unfairness among flows when using TCP in a Wireless Ad

Hoc Access Network were studied and simulations were conducted to verify the

performance of TCP. The thesis introduces several recent transport layer protocols, and

current bandwidth estimation algorithms, which are the basis for designing the congestion

control algorithm in this thesis. The proposed congestion control algorithm is based on

DCCP, because DCCP allows the selection of a congestion control algorithm according

to different applications and has many features to be used in the congestion control

algorithm, such as ACK Vector, which carries specific packet information in the

acknowledgement, options for RTT calculation, which includes Time Stamp and Time

Stamp Echo options, and options to identify packet losses not because of network

congestions. The proposed congestion control algorithm is based on state transitions due

to different types of failure scenarios: network congestion, packet loss, or transmission

errors, which are differentiated with the help of feedback from the network where

appropriate. The algorithm controls the transmission rate by maintaining two RTT

variables: base RTT and average RTT. Because of the limitations of NS2, the

implementation of the congestion control algorithm on NS2 only detects packet losses

due to collisions on the wireless media. All nodes in the simulations are static to

eliminate route changes.

104

The thesis presents an implementation for DCCP with congestion control and reliability

to provide lost packet detection and retransmission, which is not provided by the basic

DCCP framework. Comparing the proposed congestion control algorithm in unreliable

DCCP implementation and reliable DCCP implementation, the thesis has the following

conclusions:

• Reliable DCCP provides better inter-flow fairness among Reliable DCCP flows.

• Reliable DCCP flows can achieve better throughputs when they are only DCCP

flows.

• When mixed with TCPs flows, reliable DCCP shows similar fairness issues as

scenarios with TCP flows only and the unfairness is more severe compared with

pure TCP flows when unfairness exist.

Flows with the new congestion control algorithm tested in the simulations had Jain’s

fairness index greater than 0.95 in all combinations, where TCP flows may have a

fairness index of less than 0.6. The unreliable DCCP implementation achieved better

bandwidth utilization and similar fairness as the proposed reliable DCCP implementation.

Those improvements in fairness and bandwidth utilization showed that DCCP with the

designed congestion control algorithm can potentially replace TCP and UDP for

transmitting audio and video applications, and with the implementation of reliability

similar to what TCP provides, the reliable DCCP with the designed congestion control

algorithm have the potential to replace TCP at Wireless Access Ad Hoc Networks.

The thesis can be further extended in the following areas to verify and improve the design:

• Perform more simulation runs to verify the test results

105

• Add in node mobility to the simulations and study the impact of additional loss

scenarios caused by broken links during the transmission on throughput and

fairness achieved by the proposed algorithm.

• Perform simulations with different network setups, such as infrastructureless Ad

Hoc Network with more hops between the sender and receivers.

• Further study and improve throughput and fairness when mixed Reliable DCCP

and TCP flow are co-existing.

• Further adjust the rate control formula and retransmission timer to optimize the

packet sending rate. Study its impact on the inter protocol fairness between DCCP

flows and TCP flows.

• Adding new features to the implementation in the simulation: such as support of

ECN, to provide additional information for the sender to identify network

condition and to adjust the sending rate accordingly.

• Implement the design on a test bed to verify the simulation results.

106

References

[1] M. Allman, V. Paxson and W.Stevens, “TCP Congestion Control”, Request for

Comments 2581, Internet Engineering Task Force, April 1999.

[2] V. Anantharaman and R. Sivakumar, “TCP Performance over Mobile Ad Hoc

Networks – a Quantitative Study”, Wireless Communication and Wireless Networks

(WCMC), Special Issue on Wireless Evaluation of Wireless Networks, pages 203 –

222, 2003.

[3] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for Mobile Hosts

International Conference on Distributed Computing Systems”, In Proceedings of the

15th International Conference on Distributed Computing Systems, pages 136-143,

Vancouver, Canada, June 1995,

[4] L. S. Brakmo, S. O’Malley, and L.L. Peterson, “TCP Vegas: new techniques for

congestion detection and avoidance”, In Proceedings of the Conference on

Communication Architectures, Protocols and Applications, SIGCOMM ’94, volume

24, issue 4, pages 24 – 35, London, United Kingdom, Oct. 1994.

[5] A. Capone, L. Fratta, F. Martignon, “Bandwidth Estimation Schemes for TCP over

Wireless Networks”, IEEE Transactions on Mobile Computing, volume 3, issue 2,

pages 129-143, April-June 2004.

[6] K. Chandran, S. Raghunathan, S. Venkatesan, R. Prakash, “A Feedback Based

Scheme For Improving TCP Performance In Ad-Hoc Wireless Networks”, In

Proceedings of International Conference on Distributed Computing Systems‘98.

pages 472-479, Amsterdam, Netherland, 1998.

107

[7] H. Choe and S. H. Low, “Stabilized Vegas”, In Proceedings of the 22nd Annual

Joint Conference of IEEE Computer and Communications Societies, volume: 3, pages

2290 – 2300, San Francisco, USA, April 2003.

[8] S. Corson and J. Macker, “Mobile Ad Hoc networking [MANET]: routing

protocol performance issues and evaluation considerations”, Request for Comments

2501, Internet Engineering Task Force, January 1999.

[9] T. D. Dyer, R. V. Boppana, “A Comparison of TCP Performance over Three

Routing Protocols for Mobile Ad Hoc Networks”, In Proceedings of the International

Symposium on Mobile Ad Hoc Networking & Computing, pages 56 – 66, Long

Beach, USA, 2001.

[10] S. ElRakabawy, A. Klemm and C. Lindemann. “TCP with Adaptive Pacing for

Multihop Wireless Networks”, In Proceedings of the 6th ACM International

Symposium on Mobile Ad Hoc Networking & Computing, pages 288 -299, Urbana-

Champaign, USA, May 2005.

[11] G. Holland and N. Vaidya, “Analysis of TCP performance over Mobile Ad Hoc

Networks”, In Proceedings of the 5th Annual ACM/IEEE International Conference on

Mobile Computing and Networking, pages 219 – 230, Seattle, USA, 1999.

[12] V. Jacobson, “Using pathchar to estimate Internet link characteristics”, In

Proceedings of the Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, pages 241 – 250, Cambridge, 1999.

[13] M. Jain, C. Dovrolis, “End-to-End Available Bandwidth: Measurement

Methodology, Dynamics, and Relation with TCP Throughput”, IEEE Transaction on

Networking, volume 11, issue 4, pages 537 – 547, August 2003.

108

[14] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and

discrimination for resource allocation in shared computer systems”, Technical Report,

DEC Research Report TR-301, Digital Equipment Corporation, Hudson MA, USA,

Sept. 1984.

[15] C. Jin, D. Wei, S. H. Low, “FAST TCP: Motivation, Architecture, Algorithms,

Performance”, In Proceedings of the 23rd Conference of the IEEE Communication

Society, pages 81-94, Hong Kong, China, March 2004.

[16] C. Jin, D. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell,

J. C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, S. Singh, “FAST

TCP: From theory to experiments”, IEEE Network, volume 19, issue 1, pages 4-11,

January-February 2005.

[17] E. Kohler, M. Handley and S. Floyd, “Datagram Congestion Control Protocol

(DCCP)”, Request for Comments 4340, Internet Engineering Task Force, March

2006.

[18] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, R. Morris, “Capacity of Ad Hoc

Wireless Networks”, In Proceedings of 7th Annual ACM/IEEE International

Conference on Mobile Computing and Networking, pages 61 – 69, Rome, Italy, 2001.

[19] J. Liu, S, Singh, “ATCP: TCP for Mobile Ad Hoc Networks”, IEEE Journal on

Selected Areas in Communication, volume 19, issue 7, pages 1300 – 1315, July 2001.

[20] B. Melander, M. Bjorkman, and P. Gunningberg, “A New End-to-End Probing

and Analysis Method for Estimating Bandwidth Bottlenecks”, In Proceedings of

Global Telecommunications Conference, GLOBECOM ’00, IEEE, volume 1, issue

2000, pages 415 – 420, San Francisco, USA, November 2000.

109

[21] J. Mo, V. Anantharam, R. J. La and J. Walrand, “Analysis and Comparison of

TCP Reno and Vegas”, In Proceedings of the 18th Conference of the IEEE

Communication Society, pages 1556 – 1563, New York, USA, March 1999.

[22] S. Pilisof, R. Ramjee, D. Raz, “Understanding TCP fairness Over Wireless LAN”,

INFOCOM 2003, In Proceedings of the 22nd Annual Joint Conference of IEEE

Computer and Communications Societies, IEEE, volume 2, pages 863 – 872, San

Francisco, USA, April 2003.

[23] R. S. Prasad, M. Murray, C. Dovrolis and K. Claffy, “Bandwidth estimation:

metrics, measurement techniques and tools”, IEEE Network, volume 17, issue 6,

pages 27 – 35, Nov/Dec. 2003.

[24] K. Ramakrishnan, S. Floyd and D. Black, “The addition of explicit congestion

notification (ECN) to IP”, Request for Comments 3168, Internet Engineering Task

Force, Sep. 2001.

[25] K. Sundaresan and V. Anantharaman, “ATP: A reliable Transport Protocol for

Ad-Hoc Networks”, IEEE Transactions on Mobile Computing, volume 4, issue 6,

pages 588 – 603, Nov/Dec, 2005.

[26] F. Wang and Y. Zhang, “Improving TCP Performance over Mobile Ad-Hoc

Networks with Out-of-Order Detection and Response” In Proceedings of 3rd ACM

International Symposium on Mobile Ad Hoc Networking & Computing, pages 217 -

225, Lausanne, Switzerland, June 2002.

[27] R. Wang, M. Valla, M.Y. Sanadidi and M. Gerla, “Adaptive Bandwidth Share

Estimation in TCP Westwood”, In Proceedings of the Global Telecommunications

110

Conference, GLOBECOM’02, IEEE, volume 3, pages 2604 – 2608, Taipei, Taiwan,

October 2002.

[28] R. Wang, M. Valla, M.Y. Sanadidi, B. Ng and M. Gerla, “Efficiency/Friendliness

Tradeoffs in TCP Westwood”, In Proceedings of the 7th annual International

Conference on Mobile Computing and Networking, pages 287 – 297, Rome, Italy,

July 2001.

[29] K. Xu, S. Bae, S. Lee and M. Gerla, “TCP Behavior across Multihop Wireless

Networks and the Wired Internet”, In Proceedings of the 5th International Workshop

on Wireless Mobile Multimedia, WoWMoM’02, pages 207 – 218, Seattle, USA,

September 2002.

[30] L. Yang, W. K. G. Seah, Q. Yin, “Improving Fairness among TCP Flows crossing

Wireless Ad Hoc and Wired Networks”, In Proceedings of the 4th ACM International

Symposium of Mobile Ad Hoc Networking & Computing, pages 57 – 63, Annapolis,

USA, 2003.

111

Appendix A

In Appendix A, the existing proposals to improve the throughput and fairness problems

of TCP over Mobile Ad Hoc Network are introduced.

A.1 Existing TCP Proposals in Ad Hoc Networks

A.1.1 TCP with ELFN (Explicit Link Failure Notifica tion)

[11] presents the analysis of the use of explicit link failure notification on the

performance of TCP over Mobile Ad Hoc networks. The objective of ELFN is to provide

the TCP sender with information about link and route failures so it can respond properly.

There are several ways in which ELFN messages can be implemented. The first one is to

use the “host unreachable” ICMP message as a notice to the TCP sender. If the routing

protocols send route failure messages, then the notice can be piggy-backed on these

messages. In [11], DSR’s route failure message is modified to carry a notice similar to

the “host unreachable” ICMP message.

Upon receiving a route failure notice, the TCP sender enters a “stand-by” state and

freezes all timers. A probe packet is sent periodically to probe the network to see if the

route has been reestablished. If an ACK is received, the TCP sender leaves the “stand-by”

state, restarts the data transmission and resumes timers. The study shows significant

throughput increase with the use of ELFN. But the simulation is conducted with DSR and

one TCP flow only.

When multiple flows exist, [2] shows that this approach cannot achieve throughput

improvements, and it even degrades the performance as the mobility rate increases. It

shows that, when the probing is conducted by several connections, the flooding of probe

112

packets increases the congestion of the network. Also when a new route is calculated, the

TCP sender restarts to send at the old rate. The congestion window is estimated

inaccurately. When the congestion window is overestimated, network congestion is likely

to happen.

A.1.2 TCP-Feedback

TCP-Feedback is a feedback scheme in which the TCP sender utilizes the network layer

feedback (Route Failure Notification) from intermediate nodes to distinguish route failure

and network congestion.

After receiving a Route Failure Notification (RFN), TCP enters into the “snooze state”.

In this state, TCP stops sending packets and freezes all its variables such as timers and

cwnd size. Upon receiving a Route Re-establishment Notification (RRN), via the routing

protocol, TCP knows the route is reestablished and leaves the frozen state and resumes

transmission using the same variable states before the “snooze state”. In addition, a route

failure timer is used to prevent infinite wait for RRN messages. When a route failure

timer expires, the TCP normal congestion control is invoked.

[6] shows TCP-Feedback perform significantly better than standard TCP when route

reestablishment delay grows. This is mainly due to the reduction of the number of

unnecessary packet retransmission/timer backoffs during the route failure interval. But

the simulation scenario was simplified and the costs of arouting protocol carrying the

RRN and RFN messages were not considered.

113

A.1.3 Fixed RTO (Fixed Retransmission Timeout)

The Fixed Retransmission Timeout scheme studied the TCP performance over three

routing protocols (DSR, DSDV and AODV) and pointed out that the regular exponential

backoff mechanism is unnecessary, because route disconnection should be treated as a

transitory period. Fixed RTO disables the exponential backoff after two successive

retransmissions due to expired RTO, assuming it is caused by route failures. TCP

retransmits a data packet more frequently because the retransmit timer is fixed; this

reduces the inactive period after a route is reestablished.

In [2], significant improvement of throughput was achieved by the use of Fixed RTO.

The article also studied the TCP selective and delayed acknowledgments options, which

could only achieve marginal gains. But they stated that this approach is limited to

wireless only, which is not good for an environment of combined wireless and wired

networks.

A.1.4 ATCP: TCP for Mobile Ad Hoc Networks

In ATCP, to maintain compatibility with the standard TCP/IP protocol suite, a thin layer

called Ad Hoc TCP is inserted between TCP and IP. This scheme is different from the

above three approaches where standard TCP is modified.

ATCP [19] utilizes the ICMP protocol and the ECN (Explicit Congestion Notification)

scheme to detect network partition and congestion respectively. The intermediate layer

ATCP keeps track of the packets to and from the transport layer. The feedback from

114

intermediate nodes are used to put the TCP sender into either a persist state, congestion

control state, or retransmit state. When a “Destination Unreachable” ICMP message is

received, indicating route failure happened, the TCP sender enters a “persist state” and

ends when the connection is reestablished. When three duplicate acknowledgements are

received, indicating random errors, ATCP puts the TCP sender into “retransmit state” and

quickly retransmits the lost packets from the TCP buffer. When an ECN message is

received, which indicates real network congestion, ATCP puts the TCP sender into

“congestion control state” and the TCP sender invokes the normal congestion control

procedure.

Disconnected

LossCongested

Normal

Receive
揇estination address
unreachable?
ICMP

CWND=1

Receive ECN

Receive dup ACK or
packet from receiver

TCP sender put
 in persist state

TCP transmit a packet New ACK

RTO about to expire or 3
dup ACKs

A TCP retransmit segment
in TCP buffers

Figure A-1 State Transition Diagram for ATCP in the Sender

ATCP maintains end-to-end TCP semantics and is transparent to all nodes. Studies in [19]

show great improvement of throughput under congestion, packet loss, and network

partitions.

115

A.1.5 TCP-DOOR

Detection of Out-Of-Order and Response (DOOR) relies on the idea that out-of-order

packets can happen frequently in Mobile Ad Hoc networks as a result of node mobility,

and it can be an indication of link failure.

Out-Of-Order (OOO) delivery could happen to data packets as well as ACK. To precisely

detect OOO delivery, TCP DOOR adds additional ordering information to ACKs (one

byte) and data packets (two bytes) as options. Upon detecting OOO events, the TCP

sender can respond with two mechanisms: temporarily disabling congestion control, and

instant recovery during congestion avoidance. During the temporarily disabled

congestion control, the TCP sender keeps its state variables constant for a while after the

OOO event detection. In the instant recovery during congestion avoidance, the TCP

sender checks if the congestion control mechanism is invoked in the recent past. If so, the

connection state prior to the congestion control invocation is restored.

In [26], the simulations show that TCP-DOOR can improve the TCP throughput

significantly, by 50 percent on average. But taking OOO events solely as the result of

network route changes is too general, because some routing protocols can also induce

OOO packets that are not related to route changes.

The above five schemes address problems related to mobility, which trigger network

congestion control mechanism unnecessarily. The common idea is to stop, delay or

change the exponential backoff strategy when non-congestion caused packet loss is

detected.

116

A.2 Proposals to Improve Fairness

Several researchers have studied TCP fairness in Mobile Ad Hoc networks under the

IEEE 802.11 protocol. Some of them focused on the MAC layer. Three recently

published proposals focusing on TCP fairness issues are discussed below.

A.2.1 Available Gateway Buffer Size Advertisement in Wireless LAN

In [22], TCP unfairness among upstream and downstream flows is presented and

investigated. In an infrastructure wireless LAN, the gateway is used to forward traffic,

and the buffer size in the gateway plays a key role in obtaining fair sharing of the

medium among upstream and downstream flows. [22] identifies four regions of

unfairness that depend on the buffer availability and it shows via simulation that, when

equal number of downstream and upstream flows exist, the average throughput ratio

between the upstream and downstream can go up to 800. The reason is that upstream

flows’ ACKs clutter the gateway buffer and cause the buffer to overflow. Downstream

flows experience timeouts and transmit only with a window of 0-2 packets because of the

packet drops at the gateway buffer. Upstream flows normally can reach their maximum

window size. Because of the cumulative nature of TCP ACKs, small losses of ACKs do

not affect the window size.

The proposed solution is to advertise the available buffer size to the sender. The gateway

keeps the number of current TCP flows in the system. If the buffer size at the gateway is

117

B and the number of flows is N, then the receiver window of all the TCP flows are set to

the minimum of advertised receiver window or [B/N] by modifying the receiver window

field of ACKs traversing the gateway.

Through simulation and test bed implementation, this proposal shows a very good

fairness, with the throughput ratio of upstream and downstream flows being 1 in the

simulation and 1.007 in the test bed. The study is based on the assumption that all the

losses happen in the gateway due to buffer overflow and all RTTs are the same among

flows in the wireless LAN.

A.2.2 Optimal TCP Congestion Window Size in Combined Wired and Mobile Ad

Hoc Networks

In [29], the TCP fairness problem in a combined wireless and wired network is

investigated. The study shows that IN flows get significant more bandwidth than OUT

flows. This unfairness is the joint result of MAC layer’s exposed nodes and hidden nodes

problem and TCP’s timeout and backoff schemes (see Section 2.2).

By the study performed on the test bed, it is found that when the maximum congestion

window size is smaller than a certain value (8 in the test), the two flows share the

bandwidth fairly and the aggregate throughput reaches the upper limit. The problem is

that this window size could not be preconfigured. A similar study is conducted in a pure

Ad Hoc network, and the optimal congestion window size is found to be 1-2 packets.

With a long propagation delay in the wired part, such a small window size will affect the

efficiency.

118

A.2.3 Timer-Controlled Data Packet Sending to Improve Fairness among TCP

Flows crossing Mobile Ad Hoc and Wired Networks

To improve fairness over a combined wired and Ad Hoc network, a non-work-conserving

scheduling algorithm working with IEEE 802.11 MAC is proposed in [30]. In the

proposal, the normal FIFO work-conserving scheduling scheme is replaced, which treats

routing packets (generated by routing protocols) as high priority packets over data

packets (generated by applications), and puts the high priority packets in the queue before

all data packets upon arrival. The head of the queue is send to the MAC after knowing

that the MAC is ready to send another packet.

In [30], a timer is set after a data packet is sent to the MAC. Only after the timer expires

can the queue send another data packet. The routing packets still have high priority and

dequeue immediately after knowing that the MAC is ready. No timer is set after a routing

packet is sent. The duration of the timer is based on the queue output rate and is the sum

of three parts: transmission delay without contention; transmission delay based on recent

queue output (choosing from four predefined values based on the queue output rate); and

a random value uniformly distributed from zero to the value of the second part. The timer

adds extra adaptive delay in the scheduling, so the more aggressively a node is sending

packet, the more severely it is penalized, thereby nodes failing to grab the medium can

compete with the fast sending nodes now.

By simulation, [30] shows that the severe unfairness among flows can be eliminated

while the aggregate throughput experiences small degradation. Also, the maximum

119

congestion window size is not a threat to the fairness by use of this scheme, so it does not

need to pre-configure the maximum congestion window size to achieve optimal

throughput.

