
Open Broadcasting Software Stack and

Applications for Mobile Devices

by

Jean-Michel Bou�ard

A thesis submitted to the Faculty of Graduate Studies and

Research in partial ful�llment of the requirements for the degree of

Master of Applied Science

Ottawa-Carleton Institute for Electrical and Computer Engineering

Faculty of Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada

June 2009

c©2009 Jean-Michel Bou�ard

ii

The undersigned hereby recommend to the Faculty of Graduate Studies and

Research acceptance of the thesis

Open Broadcasting Software Stack and Applications

for Mobile Devices

Submitted by

Jean-Michel Bou�ard, B.A.Sc.

in partial ful�llment of the requirements for

the degree of M.A.Sc. in Electrical Engineering

Thesis Supervisor

Professor Thomas Kunz

Chair, Department of Systems and Computer Engineering

Professor Victor Aitken

Carleton University

June 2009

Abstract

New digital broadcasting technologies, such as DMB and DVB-H were developed

recently, but their deployment is happening very slowly. It is believed that a lack

of innovation in the available applications is one of the main reasons for this slow

acceptance. The goal of the Openmokast research project described in this thesis is

the implementation of a mobile broadcasting software stack targeting the emergent

open mobile devices.

The open devices ecosystem was surveyed and the missing components were iden-

ti�ed. Useful projects from the open source community were integrated, together

with custom code, to provide a complete middleware software stack. The integration

of the stack in the Openmokast prototype created the �rst open mobile broadcasting

device to date. A key contribution of this work is an API that enables third party

development over the broadcasting middleware. This work sets the ground for future

innovation in the �eld of multimedia broadcasting.

iii

Acknowledgments

This research project was funded and executed as part of the Mobile Multimedia

Broadcasting project conducted under the Broadcast Technology branch of the Com-

munications Research Centre (CRC) in Ottawa. The CRC provided the context, the

equipment and the resources necessary for the success of the project.

I'd like to thank the following people for their contribution, help and support

during the course of this project:

François Lefebvre for coming up with the vision of open broadcasting handhelds

which became the starting point of this research project. François initiated and

leads the MMB Openmokast project at CRC under which this research took

place. His leadership and guidance were essential in de�ning the scope of the

project and during the whole R&D process. His interest for broadcasting and

his clear view of the technical issues at stake were the origin of many interesting

discussions that took place during the course of this e�ort.

Thomas Kunz for his supervision of the thesis work, during which his knowledge

and guidance were much appreciated. His challenging questions about the con-

cepts elaborated in the project helped me clarify my ideas while writing the

document.

Pascal Charest for his help in resolving many technical issues encountered. Pascal

contributed to the successful implementation of a functional Linux driver for

iv

ACKNOWLEDGMENTS v

the USB receiver used in the Openmokast device. He was also involved in the

development of the CRC-DABRMS software that was used as a core component

of the Openmokast framework.

Martin Quenneville and Stephen Montero for their help with the hardware in-

tegration of the device. Martin contributed to the connection of the USB re-

ceiver inside the prototype. Stephen worked at designing the extension with

the Pro/E software.

Valérie Noël for her patience, comprehension and support during the long hours

spent on this project.

Contents

I Preface 1

1 Introduction 2

2 Background Information 6

2.1 The Open Source Paradigm . 6

2.2 Mobile Multimedia Broadcasting . 8

2.2.1 Technologies . 8

2.2.2 Services Capabilities . 10

2.2.3 Receivers . 11

3 Open Embedded Platforms State-of-the-Art 13

3.1 Standardization E�orts . 15

3.1.1 Linux Phone Standards (LiPS) Forum 15

3.1.2 LiMo (Linux Mobile) Foundation 17

3.1.3 Open Handset Alliance (OHA) 20

3.1.4 FreeSmartPhone.org . 22

3.2 Current Open Software Platforms . 24

3.2.1 Android . 24

3.2.2 Openmoko . 25

3.2.3 Qtopia Phone Edition . 28

vi

CONTENTS vii

3.3 Platform Selection . 29

4 Advantages of Mobile Digital Broadcasting 36

II Implemention of the Open Broadcasting Receiver 43

5 Development Components 44

5.1 Receiver Management . 44

5.2 Service Interface . 47

5.3 Multimedia Applications and Frameworks 51

5.3.1 MPlayer . 52

5.3.2 GStreamer . 52

5.3.3 Dream Project . 53

5.4 Broadcasting APIs . 54

5.4.1 ViaDAB . 55

5.4.2 DCSR . 56

5.4.3 DAB-Java . 56

5.4.4 DRDI . 57

5.4.5 RSCI . 58

5.4.6 Selection of an API . 58

5.5 Openmoko Development Environment 59

5.5.1 OpenEmbedded Framework 59

5.5.2 Development Tools . 61

6 Development 64

6.1 Broadcasting Receiver . 65

6.2 Linux Drivers . 66

6.2.1 Probing of the USB Communication 66

CONTENTS viii

6.2.2 Reimplementation of the USB Communication 68

6.3 Broadcasting Stack . 70

6.3.1 Architecture . 70

6.3.2 Application Programming Interface 72

6.3.3 User Interface and System Integration 75

6.4 Multimedia Applications . 78

6.4.1 Broadcast Radio Player . 78

6.4.2 Template for Client Application Development 79

6.5 Hardware Integration . 80

7 Case Study 85

7.1 Generation of a New Broadcasting Service 86

7.2 Implementation of the Receiver Application 88

III Conclusions 94

8 Future Work 95

8.1 Adaptation for the Android Platform 95

8.2 Codec Adaptation . 97

8.3 Standardization . 98

9 Discussions and Conclusions 99

IV Appendices 109

A Openmokast D-Bus Interface Speci�cation 110

B Openmokast-Client Sample Project 118

List of Tables

3.1 Main open mobile devices standards organizations 14

3.2 Freesmartphone.org framework D-Bus interface speci�cation 23

3.3 Criteria for development platform selection 30

5.1 List of methods of the ViaDAB IVRxControl interface 59

5.2 BitBake de�nition �le for the Openmokast software 60

6.1 Speci�cations of USB DAB receivers (related to Canadian DAB) . . . 66

6.2 Comparison of USB development solutions for Linux 69

6.3 List of methods of the Openmokast API 72

6.4 List of signals of the Openmokast API 73

6.5 List of D-Bus interface related �les 74

7.1 Speci�cations of the test video service 86

7.2 Average resources usage of the video player application 92

ix

List of Figures

2.1 DAB service structure example . 9

2.2 Example of DAB/DMB devices . 12

3.1 Classi�cation of mobile devices ecosystem standards. 14

3.2 LiPS high-level overview . 16

3.3 LiMo architecture overview . 18

3.4 Android architecture . 20

3.5 Openmoko software architecture . 25

3.6 Qtopia Phone Edition software architecture 28

3.7 Neo series of mobile devices . 31

3.8 Available software distributions for the Neo FreeRunner 34

4.1 Common Mobile Multimedia Broadcasting (MMB) technologies . . . 37

4.2 Example of a DMB ensemble capacity and channel usage 41

5.1 Architecture of the CRC-DABRMS broadcasting receiver software . . 45

5.2 D-Bus communication diagram . 49

5.3 GStreamer technical overview . 52

5.4 MOT transport protocol layers . 53

5.5 Journaline hierarchy example . 54

5.6 ViaDAB receiver interfaces . 55

x

LIST OF FIGURES xi

5.7 Availability of raw and/or decoded data in a DRDI based receiver . . 57

5.8 Anjuta Integrated Development Environment 61

5.9 Glade Interface Designer . 62

6.1 DAB compatible USB receivers . 65

6.2 Sni�Usb 2.0 user interface . 67

6.3 Architecture of the Openmokast software 71

6.4 Openmokast framework screen captures 76

6.5 Openmokast-audioplayer client application 78

6.6 Openmokast project structure . 80

6.7 Modi�cation of Openmoko CAD �les 81

6.8 Pictures of the Openmokast prototype 82

6.9 FreeRunner's electronic schematics with highlighted USB test points . 83

7.1 Block diagram of the broadcast video service used in the case study . 87

7.2 Video player application connected on the Openmokast framework . . 89

7.3 Video player application running on the FreeRunner 90

8.1 Openmokast test application running on the Android emulator 96

List of Acronyms

API Application Programming Interface

COM Component Object Model

CRC Communications Research Centre

DAB Digital Audio Broadcasting

DCSR DAB Command Set for Receiver

DLS Dynamic Label Segment

DMB Digital Multimedia Broadcasting

DRDI Digital Radio Data Interface

DRM Digital Radio Mondial

DVB-H Digital Video Broadcasting - Handheld

EPG Electronic Program Guide

FEC Forward Error Correction

FIC Fast Information Channel

FPS Frames Per Second

FSO Freesmartphone.org

GDB GNU Debugger

xii

LIST OF ACRONYMS xiii

GPL General Public License

IDE Integrated Development Environment

IPC Inter-Process Communication

IRC Internet Relay Chat

ISPs Internet Service Providers

JML Journaline Markup Language

LiMo Linux Mobile

LiPS Linux Phone Standards

MCI Multiplex Con�guration Information

MMB Mobile Multimedia Broadcasting

MOT Multimedia Object Transfer

MOT-BWS MOT Broadcast Website

MOT-SS MOT Slideshow

MPEG-TS MPEG Transport Stream

MSC Main Service Channel

OFDM Orthogonal Frequency-Division Multiplexing

OHA Open Handset Alliance

PCM Pulse-Code Modulation

PDAs Personal Digital Assistants

PIM Personal Information Management

RSCI Receiver Status and Control Interface

RTP Real-time Transport Protocol

LIST OF ACRONYMS xiv

SDIO Secure Digital Input Output

SDK Software Development Kit

TDC Transparent Data Channel

UMTS Universal Mobile Telecommunications System

URI Uniform Resource Identi�er

URL Uniform Resource Locator

USRP Universal Software Radio Peripheral

VM Virtual Machine

XML Extensible Markup Language

Part I

Preface

1

Chapter 1

Introduction

�Today's modern handset represents a 'melting pot' of

communications and multimedia technologies.�

� R. Wietfeldt, Texas Instruments.

T
he introductory quotation represents very well the state of the current mobile

market where devices such as Personal Digital Assistants (PDAs), cell phones

and mp3 players are becoming ubiquitous. The mobile nature of these appliances

provides a strong incentive to merge as many functionalities as possible into well-

integrated devices [1]. However, in today's context, mobile telecommunications orga-

nizations have gained control over most integrated mobile platforms that include voice

communication capabilities, which easily represents the major part of this market. It

becomes thus quite challenging for industries that are not related to telecommunica-

tions, such as broadcasting, to include new services on these devices based on their

own speci�c sets of technologies and software [2].

The open source movement is seen as an attractive strategy to provide the huge

software development e�orts required for highly integrated mobile devices [3, 4]. Fol-

lowing this approach, multiple multifunction open hardware platforms, driven by col-

2

CHAPTER 1. INTRODUCTION 3

laboratively developed open source software frameworks and applications, have made

their appearance in the last years. Openmoko [5], Qtopia [6] and Google's Android

[7] are the best-known examples. However, no such open and collaborative e�ort has

been seen so far in the broadcasting community.

Considering the growing enthusiasm for digital mobile broadcasting technologies,

which include DVB-H [8], DAB/DMB [9], MediaFLO and others [10, 11, 12], broad-

casters could bene�t greatly if corresponding chipsets would �nd their way into such

open mobile communication platforms. This could unleash an ensemble of new ser-

vices that would take advantage of the unique capabilities of broadcasting infrastruc-

tures. It is believed that the availability of the required broadcasting-enabled software

stack for those open platforms could become the enabler that would encourage chipset

manufacturers to participate in these initiatives.

This research work focuses on studying the speci�c requirements for open source

mobile multimedia broadcasting (MMB) applications and on identifying, adapting or

developing corresponding software building blocks with the goal of integrating them

as part of one of the previously mentioned popular open frameworks. To begin with,

a survey was conducted about the current ecosystem for openness in the world of

mobility, including the related standardization e�orts. Next, the main contribution

of this work is the �rst software stack that controls a set of di�erent digital broad-

casting receivers, integrates the mechanisms to manage the available channels and

multimedia stream, and provides some application decoders for di�erent broadcast

services. Moreover, a functional prototype, used together with a compact external re-

ceiver module, will be used to demonstrate real-time mobile multimedia broadcasting

applications. In addition, the platform is also suitable for validation and performance

evaluation of the services.

The resulting broadcasting software stack was also demonstrated with di�erent

CHAPTER 1. INTRODUCTION 4

client applications that access the broadcast data through a newly de�ned API (Ap-

plication Programming Interface). This API has the features to become the key

component required to enable the framework to be used easily by other software de-

velopers interested in building new applications based on a broadcasting technology

or to integrate it in an already existing application. Ultimately, this mobile broad-

casting platform could become the enabling software that will convince broadcasting

hardware manufacturer to enter the market of open mobile devices.

The context for the work described in this document and some respective results

were presented in the following publications:

• [13] F. Lefebvre, J.-M. Bou�ard, and P. Charest, �Open source handhelds - a

broadcaster-led innovation for BTH services�, published in the EBU Technical

Review, edition 2008-Q4.

• [14] F. Lefebvre, J.-M. Bou�ard, and P. Charest, �Open mobile broadcasting

phones�, published in the Proceedings of the Broadcast Asia 2008 conference,

held June 17-20 2008, Singapore.

The project was also presented at di�erent events1:

• �Mobile Digital Broadcasting - Democratizing Innovation�, presented at the

Emerging Communications Conference in San Francisco, March 3-5 2009.

• �Openmokast: The open broadcasting software stack for mobile devices�, pre-

sented at the Free/Open Source Mobile Development Conference in Waterloo,

Canada, February 4th 2009.

• �Open Mobile Broadcasting Phones�, presented at the Broadcast Asia 2008 con-

ference in Singapore, June 17-20 2008.

1The slides of the di�erent presentations are available on Slideshare at http://www.slideshare.
net/tag/crcmmb.

CHAPTER 1. INTRODUCTION 5

The project described in this document was named Openmokast, which is an acronym

for open mobile �broadkasting�. More information about the project, the documen-

tation and the available source code can be found on the Openmokast website [15].

The thesis is structured in three main parts. The �rst part contains Chapters

1 to 4. Chapter 2 is introducing the basic background information related to the

project. Chapter 3 is a detailed overview of the state-of-the-art in mobile embedded

platforms that were considered for the realization of the project. Chapter 4 explains

the main advantages of broadcasting technologies and why their deployment would

be bene�cial for users and service providers. The next section, containing Chapters

5 to 7, is the core technical content of the thesis. Chapter 5 is an analysis of all

the open source components that are already available to support the development

of the software stack of this project. Chapter 6 describes the development e�ort

that led to the Openmokast software and prototype. Chapter 7 is a case study of a

new application based on the Openmokast stack and API. Finally, the last section

contains the ideas for future work in Chapters 8 and the discussions and conclusions

in Chapter 9.

Chapter 2

Background Information

�Once GNU is written, everyone will be able to obtain

good system software free, just like air.�

� Richard Stallman.

2.1 The Open Source Paradigm

T
he open source software1 concept �rst appeared sometime in the 1980s. It started

under the form of the GNU Project [16], a set of tools required to build a

functional operating system environment. This project was published under a newly

created license, the General Public License (GPL) [17], which promotes complete

freedom of usage, modi�cation and redistribution of computer software. It was never

really well-known before the beginning of the 1990s, when it was used in collaboration

with a newly developed computer kernel known as Linux. This resulted in the creation

of the GNU/Linux operating system which is one of the most renowned free software

projects to date. If GNU/Linux has already gained a large amount of support in the

1Also often referenced as �free software�. This naming convention may sometime be confusing as
it relates to the notion of freedom, not that it is distributed at no cost.

6

CHAPTER 2. BACKGROUND INFORMATION 7

�eld of server and desktop computing, it is completely the opposite in mobile and

embedded computing. As it was stated by Doc Searls in the Linux Journal [18] in

2007:

Yet the world needs open phones. In fact, I'd hazard a prophesy

that open phones are inevitable, because there will be far more money

to be made because of open phones than will ever be made with closed

ones (and closed services o�ered only by carriers). We're starting to see

vertical cracks in the closed wall of mobile telephony in settings such as

universities, where rogue companies like Rave Wireless provide students

with custom (based on open) phones that run on familiar networks (such

as Cingular and T-Mobile), but that do far more than the closed phones

sold at stores by those same networks. Users are even free to do their own

programming, create and add their own features and services. With each

crack of this kind in a vertical market, the chance improves that open

phones will become the norm rather than the exception.

The open source movement is traditionally considered as a software concept.

However, recently, some hardware manufacturer have adopted a similar open

approach in designing and implementing their devices. In this case, the documenta-

tion and the schematics of a hardware system are published with a license that permits

modi�cation and re-publication of the modi�ed design. A free and open development

process is also often associated with a community working around the project. This

is made possible because all the required elements needed to submit contributions to

the project are freely available, no matter if they are related to hardware, software

or both.

CHAPTER 2. BACKGROUND INFORMATION 8

2.2 Mobile Multimedia Broadcasting

2.2.1 Technologies

Mobile digital broadcasting can be de�ned as a unidirectional communication channel

that is able to transport digital audio, video and data. The main technologies2 in that

�eld are known as DAB/DMB [19] and DVB-H [20] but new emerging standards are

also being de�ned regularly. The common features provided by these digital networks

are their high capacity downlink channels and their capability to transport

any types of data.

Both DAB/DMB and DVD-H are taking advantage of Orthogonal Frequency-

Division Multiplexing (OFDM) digital multi-carrier modulation method to e�ciently

transport the signal to mobile receivers. The capacity of a single transmission, usually

called a multiplex or an ensemble, is much higher than a single audio or video ser-

vice. For this reason, any DAB/DMB or DVB-H multiplex can be split into di�erent

subchannels to transport multiple services. The con�guration of a multiplex is com-

pletely dynamic as it is possible to combine di�erent amounts of low to high quality

subchannels until all the available capacity is used. The main di�erences between

both standards are in the used frequency, the channel bandwidth and the transport

mechanisms as described in [21].

A sample structure of a DAB ensemble, as de�ned in [22], is depicted in Fig.

2.1. The low level elements of the structure are the subchannels. Each subchannel

represents a part of the physical capacity of the data stream of the ensemble. The

next layer contains the components. The components are the logical elements that

represent an actual subchannel from the physical layer. The components are then

grouped into di�erent services in the upper layer. Each of the services is composed of

2Other technologies such as HDRadio and FLO are currently gaining a lot of exposure, however,
they are not mentioned in this report because of their proprietary nature.

CHAPTER 2. BACKGROUND INFORMATION 9

Source: [22]

Figure 2.1: DAB service structure example

at least a primary component, but it can also be composed of a secondary and even

of some extended components. For instance, a radio service could have a primary

musical audio component, a secondary news audio component and some extended

components with textual information. Finally, all these services are grouped together

inside an ensemble that can then be modulated and transmitted over the air. In the

transmitted stream, the set of subchannels contained in the ensemble are transported

in the Main Service Channel (MSC). The information about the structure of the

multiplex, which uses only a fraction of the bandwidth of the channel, is transported

into the Fast Information Channel (FIC). The FIC is transmitted in a redundant loop

that enables the receivers to rapidly receive the information about the structure of

the ensemble. These substreams, the MSC and the FIC, are the two main parts of a

transmitted DAB ensemble.

As of the writing of this thesis, DAB is the standard terrestrial digital broadcasting

technology accepted in Canada, as it was decided at the end of the 1990s. However,

the �rst transmitters deployed in Canada's largest cities made only a discreet ap-

pearance and they never became popular. The available services are composed of a

CHAPTER 2. BACKGROUND INFORMATION 10

retransmission of the main FM stations of each region. It is believed that the main

cause of the failure of the DAB in Canada was mainly the lack of receiver availability

and the lack of unique content available only on the digital network.

2.2.2 Services Capabilities

The main services that are targeted by mobile digital broadcasting technologies are

digital radio (audio) and mobile TV (audio/video). But the mechanism are included

to perform many di�erent types of transports and applications as explained in [23].

For example, the DAB/DMB speci�cation supports the following features:

Dynamic Label Segment (DLS): A way to transport text information associated

with the currently playing service. This mechanism can be used to show text

information about the content or be unrelated to the content such as local news.

IP datagram tunnelling: Transport mechanism for IP packets. The packets are

grabbed at the service encoders and they are encapsulated inside a data sub-

channel. These data are then decapsulated at the receiver side and retransmit-

ted into an IP stream.

Multimedia Object Transfer (MOT): Transport of multimedia objects such as

images, text, HTML pages, sound �les and many other. This mechanism is the

standard way of transporting MOT SlideShows (MOT-SS) and MOT Broadcast

Websites (MOT-BWS). MOT-SS is implemented by sending pictures one after

the other over the MOT subchannel. MOT-BWS uses a �le caching mechanism

to transport a carousel of �les, which contains the website structure, to the

receiver. The MOT standard has been de�ned for a broadcast environment

where packet loss and transmission errors can occur. For this reason, some

redundancy can be used to lower the e�ects of these errors.

CHAPTER 2. BACKGROUND INFORMATION 11

Transparent Data Channel (TDC): This protocol can be used to transparently

transmit data to the receiver. The �exible protocol has no idea of the content

that is transported, hence it is the ideal mechanism to extend the functionality

of DAB with new services.

Electronic Program Guide (EPG): The EPG corresponds to a listing of the con-

tent that will play on the audio and video services.

DAB Audio: The �rst de�ned standard to transport audio. It is using the com-

monly known MPEG layer 2 audio codec.

DAB+ Audio: This standard was de�ned to replace the legacy DAB Audio service

with a more robust and bandwidth-e�cient mechanism. The AACv2 codec is

used in addition to a new layer of FEC (Forward Error Correction) to attain

this goal.

DMB Video: This standard was de�ned for mobile television over DAB. The pro-

cess uses the AVC video codec with added layer of FEC.

If digital broadcasting was widely deployed, the capabilities described in this section

could enable many innovative and useful applications to extend the traditional audio

and video services.

2.2.3 Receivers

Some receivers are currently available on the market as shown in the examples from

Fig. 2.2. The most common type is the standalone broadcasting receiver, which is

only able to receive broadcasting signals. However, in some rare markets around the

world, such as in Germany and in Korea, receivers that support both telephony and a

broadcasting technology were released. The common characteristics that are shared

CHAPTER 2. BACKGROUND INFORMATION 12

iRiver B20
Standalone broadcasting handset

Samsung SGH-P900
Combined

telephony/broadcasting handset
Source: [19]

Figure 2.2: Example of DAB/DMB devices

by all currently available devices are their closed nature, the impossibility to modify

them and the fact they usually implement only a limited amount of the services that

were described previously.

Chapter 3

Open Embedded Platforms

State-of-the-Art

�If you can't open it, you don't own it.�

� Openmoko.

T
his section presents a review of the latest development in the �eld of open em-

bedded platforms. A lot of work has already been done to provide the required

tools to build and deploy the next mobile technology. This work can be categorized

in two main categories: standardization e�orts [24, 25, 26, 27] and actual mobile

platform projects [5, 6, 7]. The main players in each of these categories are presented

in the next subsections, in addition to their main goals and their current status. A

survey of these technologies can be found in [28], but the following section focuses on

the openness of the solution and its possibilities for extension of the platform.

13

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 14

Figure 3.1: Classi�cation of mobile devices ecosystem standards.

Organization Web address

Linux Phone Standards (LiPS) Forum http://www.lipsforum.org/

LiMo (Linux Mobile) Foundation http://www.limofoundation.org/

Open Handset Alliance (OHA)
http:

//www.openhandsetalliance.com/

Freesmartphone.org (FSO) http://www.freesmartphone.org/

Table 3.1: Main open mobile devices standards organizations

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 15

3.1 Standardization E�orts

The standardization e�orts are driven by consortia of corporations that share an

interest in de�ning a common platform structure that will be used throughout the

industry. The main issues that are resolved by these organization are the de�nition

of the services that should be available on the platforms in combination with the

APIs that are required to access those services. The services are composed of a list of

components that are often available on mobile devices such as telephony, networking,

multimedia, etc. Each of the standards has its own speci�c way of representing these

services. The result is that the applications developed for one device that is compliant

to one of these standard should normally work on another compliant device. The main

groups are listed in Table 3.1 and are classi�ed regarding their main focus in Fig. 3.1.

3.1.1 Linux Phone Standards (LiPS) Forum

The LiPS forum was founded in November 2005 to promote the development and

deployment of Linux-based mobile phone devices. The forum is composed of about

24 members from di�erent sectors of the telecommunication industry, for instance,

network operators, equipment manufacturers, and software vendors.

The LiPS forum has published the �rst draft version of their speci�cations at the

end of 2007. The speci�cation is publicly available on their website as an archive of

multiple speci�cation �les. An overview of the scope of the speci�cation is available

in the reference model document [29] and a high level diagram of the service sets is

included in Fig. 3.2. The speci�cation describes the interface to support the services,

which are divided into �ve main groups, also called �Service Sets�:

Application Management (AM) Services. The AM services manage the appli-

cations that are running on the platform. They take care of everything that is

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 16

Source: [29]

Figure 3.2: LiPS high-level overview

needed during the life of an application such as downloading, installing, launch-

ing, suspending, resuming, terminating, removing and updating. This group is

also responsible to implement the access control for the applications.

User Interface (UI) Services. The UI services are used with applications that

need to interact with the user. They manage the visual elements on the screen

in addition to the input and output events with the user.

Enabler Services. The enabler services consist of a collection of functionalities that

are thought to be useful in a mobile communication device. A call manager, a

messaging manager and an instant messaging engine are some examples of the

included services.

OS Services. OS services are a lower-level API that interacts directly with the OS

capabilities. The basic features provided by the Linux kernel can, indeed, be

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 17

o�ered by this service category. Some examples of these OS services are multi-

media codecs, 2G and 3G telephony, local connectivity protocols such as Blue-

tooth or IrDA, data-base management, etc. The LiPS forum does not rede�ne

any features that are already covered by other standardization e�orts such as

POSIX.

Platform Management Services. The platform management services cover the

platform con�guration and maintenance.

Each of these sets de�nes a collection of interfaces that are required to use the speci-

�ed services. The other aspect of the LiPS speci�cation is in the programming model

that must be followed by each interface. In fact, these guidelines assure that the dif-

ferent workgroups that are set up to create the speci�cations will produce compatible

components.

3.1.2 LiMo (Linux Mobile) Foundation

The LiMo Foundation was founded in January 2007 with the mandate to standardize

a modular plugin-based platform based on an open operating system for the mobile

environment. The goal of this work is to encourage and to accelerate the development

and the deployment of such open mobile platforms. The work that will lead to this

goal will go through the creation of a rich ecosystem composed of di�erent products,

applications and services provided by the di�erent LiMo members.

The main di�erence between the LiMo Foundation and the LiPS Forum described

in Subsection 3.1.1 is in the implementation. In fact, a common Linux implementation

will be produced as part of the LiMo work, while only a speci�cation is expected from

the LiPS group. The system architecture that was produced as the �rst version of

the platform is shown in Fig. 3.3. Each component is described in the LiMo Platform

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 18

Source: [30]

Figure 3.3: LiMo architecture overview

Architecture document [30]. The detailed functionalities are exposed in a set API

documents that can be summarized as follows:

Applications. The applications are the main components that interact with the

users on one side and that use the services provided by the framework on the

other side. The developers have the freedom to use any available APIs to create

new original and innovative applications.

Application Manager Framework and Application UI Framework. The Ap-

plication Manager Framework and the Application UI Framework are the most

important parts of the LiMo platform. The �rst element is responsible for man-

aging the applications that are installed on the platform, from the installation

itself to the execution by the user and during the complete life span of the soft-

ware. The second element is responsible for controlling the look and feel of the

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 19

applications on the actual platform on which it is executed. The UI Framework

is based on the well-known GTK+ toolkit.

Middleware. The middleware layer is composed of all the components, namely the

daemons, services, and other non-UI elements of the system, which are available

to the Application Manager Framework, the Application UI Framework, and the

application space. The entities that are part of the Middleware are distributed

in the following categories:

• Registry.

• Con�ict Management.

• Event Delivery/IPC.

• Security Framework.

• Telephony Framework.

• Networking Framework.

• Messaging Framework.

• Multimedia Framework

• DRM Framework.

• Database.

• Other Frameworks.

Linux Kernel. All the previously mentioned layers are running on a common ker-

nel architecture, which is the Linux kernel. This contains the drivers for each

hardware component of the device and the advanced process and memory man-

agement that Linux is known for.

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 20

Source: [31]

Figure 3.4: Android architecture

Modem. The modem layer, which provides the telecommunication network inter-

face, is considered as a separate component because it is often provided with a

dedicated controller that has the capability to run by itself.

3.1.3 Open Handset Alliance (OHA)

The Open Handset Alliance was created to promote an open platform for mobile

devices named Android. Di�erent from the organizations described in Subsections

3.1.1 and 3.1.2, the Open Handset Alliance is more oriented towards an existing

software platform and the associated development kit and less focused on creating a

set of well documented APIs between the components. Fig. 3.4 shows the resulting

platform with all the included components that are classi�ed in these categories:

Applications. This category was composed, at the platform's launch, of a small set

of default core applications. But it is expandable to an unlimited amount of

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 21

user-created software. The third party applications have access to the same

programming API as the core applications to assure that the same capabilities

will be accessible. The execution priority will be shared equally between the

core applications and the third party applications to assure that the execution

time stays fair for everyone [32].

Application Framework. The application framework is a set of managers that

o�ers a collection of services to the applications. These services are the only

elements that can be used from the application layer and they can be accessed

through the Android Java API.

Libraries. These are a set of C/C++ libraries that can be used by the applications.

However, access to these libraries is provided by the Application Framework

and is limited to the available features of the framework. The C/C++ libraries

are taking advantage of a lot of open source development that took place in the

past years.

Android Runtime. The Android runtime is the execution environment of the ap-

plications that are running inside the framework. This component is, in fact, a

Java virtual machine that acts as a bridge between the applications and appli-

cation framework, which are in Java, and the libraries and Linux kernel, which

are natively running on the platform.

Linux Kernel. The Linux kernel is also the last layer of this architecture and it

provides the drivers for the hardware and the advanced low level memory man-

agement, process management, �le management, and many more.

A particular distinction of the framework de�ned by the OHA is that it focuses on

building phone applications. In fact, the design philosophy that is stated by the

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 22

OHA documentation [32] enumerates the main characteristics that an application

must have to be used e�ciently in the context of an Android mobile device. These

characteristics are categorized as performance, responsiveness and seamlessness. The

way memory and thread management is achieved by the Android framework is also

mainly targeted for mobile embedded devices.

3.1.4 FreeSmartPhone.org

The freesmartphone.org is a work in progress that aims to create collaboration and

discussion about free software for the �smart phone� type of devices. The project

is based on speci�cations and software that was already created by Freedesktop.org

[33]. Their work focuses on adapting the speci�cation for smart phones and on adding

the components that are speci�c for this category of devices. The main issues that

are covered are related to power conservation and network connection management,

while still o�ering a good level of performance to use a multitude of applications.

Their �rst work item is to provide a set of middleware APIs for a common set of

services. These services will assure that low-level development of core services will be

interoperable between di�erent mobile Linux distributions. These core services will

then be usable from any type of interfaces, no matter which technology they are based

on. The device model is based on work from the Universal Mobile Telecommunications

System (UMTS) group.

To provide the APIs, Freesmartphone.org is building over the D-Bus messaging

system. This project, hosted at Freedesktop.org [33] is providing a lightweight mecha-

nism for inter-process communication between system services and user applications.

When a component is added to the system, it can advertise its available services

through D-Bus and any other compatible application will be aware of their availabil-

ity. On the host system, D-Bus is provided by a set of daemons that are constantly

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 23

FSO Framework Version 0.3.5

0. Introduction
- ... to be written ...
1. Device API
- org.freesmartphone.Device.Audio � Audio Device Access
- org.freesmartphone.Device.Display � Display Device Access
- org.freesmartphone.Device.LED � LED Device Access
- org.freesmartphone.Device.Input � Input Device Access
- org.freesmartphone.Device.IdleNoti�er � Idle Noti�cation Service
- org.freesmartphone.Device.PowerControl � Device Power Control
- org.freesmartphone.Device.PowerSupply � Power Supply Access
- org.freesmartphone.Device.RealtimeClock � Realtime Clock
2. GSM Telephony API
- org.freesmartphone.GSM.MUX � GSM 07.10 Multiplexing
- org.freesmartphone.GSM.Device � Device Inquiry
- org.freesmartphone.GSM.SIM � SIM Card Access
- org.freesmartphone.GSM.Network � GSM Network Access
- org.freesmartphone.GSM.Call � GSM Voice Calls
- org.freesmartphone.GSM.SMS � Short Message Service
- org.freesmartphone.GSM.PDP � Packet Data Protocol Connections
- org.freesmartphone.GSM.CB � Cell Broadcast Service
- org.freesmartphone.GSM.HZ � O2/Genion HomeZone Service
3. Usage API
- org.freesmartphone.Usage � Resource Manager Service
- org.freesmartphone.Resource � Resource Control Interface
4. Phone API
- org.freesmartphone.Phone
- org.freesmartphone.Phone.Call
5. Preferences API
- org.freesmartphone.Preferences
- org.freesmartphone.Preferences.Service
Under development / Brainstorming
- org.freesmartphone.PIM
- org.freesmartphone.DateTime
- org.freesmartphone.LifeCycle

Source: [27]

Table 3.2: Freesmartphone.org framework D-Bus interface speci�cation

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 24

monitoring the bus for new messages to transport between applications. Table 3.2

shows a preliminary version of the D-Bus API for the services de�ned by Freesmart-

phone.org.

3.2 Current Open Software Platforms

This section presents the main existing software platforms for embedded mobile

phones that are in active development at the time of writing this thesis. There

exists some relation between two of these platforms, Android and Openmoko, and

the previously mentioned standardization e�orts. The last one, Qtopia, is a free soft-

ware stack that was implemented in the context of a free phone project. All of the

platforms are based on the Linux kernel and are using free and open source software

libraries at the core of their main functionalities.

3.2.1 Android

The Android platform [7] is the implementation that is promoted by the OHA de-

scribed in Subsection 3.1.3. It is unique when compared with the other projects

because all the development is done with a new Java API that was created for the

platform. This API o�ers many mechanisms and libraries to carry on the develop-

ment of new and forward-looking mobile applications. However, when compared with

the two other platforms, Android can be considered as less open since the developers

cannot access the system outside the scope of the Java virtual machine. This pre-

vents Android applications to access the standard Linux features and, moreover, the

impressive amount of already existing Linux applications will not be able to run over

Android.

At the time of writing these lines, development for the Android platform was pos-

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 25

Source: [5]

Figure 3.5: Openmoko software architecture

sible with a SDK (Software Development Kit) provided from their website. The SDK

needs to be installed as an Eclipse [34] plugin that includes all the necessary tools for

development, namely a code editor, a debugger and a phone emulator. This last tool

enables applications testing in conditions similar to the real execution environment,

even if no actual hardware is available.

3.2.2 Openmoko

The Openmoko [5] software platform was created to become the basis of the open

mobile device of the same name. The main objective of the project is to o�er the �rst

completely open mobile phone device. This means that all aspect of the device must

be open and accessible whenever possible, including the hardware components, the

drivers, the operating system and the applications. By o�ering this level of openness,

the users will be able to add and to innovate over this platform without ever being

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 26

limited by closed and undocumented components. The software architecture of the

Openmoko platform is depicted in Fig. 3.5.

The other unique aspect of the Openmoko project is its development process which

is also mostly open and public. This enables anybody to look at and to participate in

the design decisions about the hardware and software of the project. This was made

possible because the team's communication is established using di�erent tools that are

publicly accessible on the web, for instance, a public forum, mailing lists, a wiki and an

IRC (Internet Relay Chat) channel. With regard to private internal communications

inside the Openmoko company, a community update message containing the key

information is regularly transmitted to the �community� mailing list.

The FreeSmartPhone organization mentioned in Subsection 3.1.4 is the standard-

ization e�ort that is behind the Openmoko project. The architecture and the middle-

ware services for Openmoko will follow the FSO framework speci�cation. A reference

implementation is currently developed in a test distribution named FSO, but this

development will be integrated in the main Openmoko distribution when it will be

ready. These high-level services will provide an easier API to access the informa-

tion that is usually available on a �smart phone� type of device. For example, this

information can be categorized as in the following:

• Usage

• Event

• Preferences

• Context

• Telephony

• Networking

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 27

• PIM (Personal Information Management)

The PIM term is used to reference the personal data management capabilities of a

device. The data that is considered in this category are the contacts, calendar, todo

list, text messages, email messages, etc. The development of some low-level services

is also planned to simplify the control of the GSM subsystem and the other optional

hardware systems:

• GSM (gsm0710mux)

• Device Control (odeviced)

Currently, the OM2008 o�cial distribution still does not provide any middleware ser-

vices. Instead, the developers wanted to rapidly implement the Openmoko operating

system as the base software that would enable other third party developers to add

their own applications. Many already existing open source components are used in

this platform to provide a functional core.

The Openmoko Linux distribution is based on the OpenEmbedded [35] environ-

ment, which provides all the tools required to generate a fully functional Linux oper-

ating system for embedded devices. The development environment consists mostly of

the standard Linux development tools such as the GCC compiler and the autotools

build management system. Moreover, a QEMU [36] based phone emulator is provided

to assure that developer can rapidly test their creation without owning any hardware.

Because the Openmoko platform is also an almost complete Linux distribution, soft-

ware debugging can be achieved on the development computer with typical Linux

debugging tools.

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 28

Source: [6]

Figure 3.6: Qtopia Phone Edition software architecture

3.2.3 Qtopia Phone Edition

The Qtopia [6] Phone Edition software stack is a complete mobile phone environment

that was originally created for the defunct Greenphone [3] device. The targeted

distribution is mainly based on the regular Qtopia stack to which was added the

elements required for phone operation, for Voice-over-IP operation and for multimedia

interaction. In addition, a set of applications commonly seen on phones, to carry on

personal information management tasks, have been built into the distribution. The

architecture of Qtopia Phone Edition is presented in Fig. 3.6.

Qtopia is based on the QT cross-platform application framework for desktop and

embedded development. This framework and the Qtopia distribution were developed

by a Linux development company called Trolltech. The Trolltech products were not

distributed under Open Source licenses until recently. Currently, the company is

o�ering di�erent licensing options for its operating systems, including the well-known

open source license GPLv2.

Development tools that are available for Qtopia Phone Edition are the same that

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 29

were provided for development with the QT application framework. This set of tools is

the most complete when compared to the other platforms described in this document.

They are composed of:

qmake. An automatic build system.

QT Designer. A visual forms and dialogs designer.

QT Compilers. A set of compilers for di�erent elements that can be accessed from

an application. There are compilers for meta-objects, user interface and data

resources.

QT classes. A collection of high-level development libraries used to help and accel-

erate applications development.

Others. Many other tools, not mentioned here, are provided by the QT application

framework.

QT development is conducted in C++ and applications are built with the traditional

GCC compiler. QT applications can be debugged with usual Linux code debugger

such as the GNU Debugger (GDB).

3.3 Platform Selection

In the scope of this work, a main development platform needed to be chosen in order

to base the development on a standard set of tools and to test broadcast reception

equipment on actual hardware devices. Some criteria were de�ned that would help

in taking a decision about the �rst platform on which development would be started.

The list of criteria is summarized in Table 3.3.

The Google Android platform was rejected �rst because it is not compatible with

most of these requirements. For instance, the API to create new applications is open

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 30

Criteria

Openness of the software
Openness of the hardware

License
Availability of the hardware
Quality of development tools

Cross compatibility with other platforms
Support of hardware extension

Table 3.3: Criteria for development platform selection

but the platform itself is not. This would be a major drawback when trying to adapt

new hardware, which would also need new drivers, to the platform. Moreover, at

the time of implementing this work, no Android hardware was available and the �rst

prototypes were then expected for the beginning of 2009. Finally, because Android

development is conducted using the Java programming language and is running on

a speci�c runtime environment, compatibility of Android applications to other plat-

forms is not expected.

It was then decided to target one of the two Linux mobile platforms, either Qtopia

or Openmoko. Again considering the criteria from Table 3.3, Openmoko proved to be

the most compliant for di�erent reasons. First of all, it was designed to become the

most open mobile phone platform to date, as it o�ers every detail of the hardware

design, speci�cations and documentation, in a publicly available format on their web-

site [5]. This would enable any hardware developer to create a component to extend

the functionalities of the device. Moreover, the Openmoko software platform is based

on a standard Linux distribution and it can be considered as the embedded platform

which is the nearest to a standard desktop Linux system. The software architecture,

which is described in Subsection 3.2.2, is compatible with a wide array of application

development frameworks. Because Openmoko is a standard Linux system, any devel-

opment made for that platform should be easily portable to any of the other mobile

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 31

Neo 1973
codename GTA01
(released July 2007)

Neo FreeRunner
codename GTA02
(released July 2008)

Source: [5]

Figure 3.7: Neo series of mobile devices

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 32

and embedded Linux systems. Finally, at the time of writing, Openmoko was the

only project that had actual hardware available to developers. In fact, the Neo series

of phones are completely functional developer devices that were designed to run the

Openmoko software stack. Fig. 3.7 shows the two devices that are released to date.

The Neo 1973 is the �rst developer version that was released with non-�nal hardware.

The Neo FreeRunner is the latest release which has consumer-level hardware.

The hardware available on the FreeRunner is quite complete and it can be com-

pared with any latest-generation device available these days. The detailed speci�ca-

tions are as follow:

• High resolution touch screen 2.84� (43mm x 58mm) 480x640 pixels

• 128MB SDRAM memory

• 256 MB integrated �ash memory (expandable with microSD or microSDHC

card)

• microSD slot supporting up to 8GB SDHC cards

• Internal GPS module

• Bluetooth

• 802.11 b/g WiFi

• 400Mhz ARM processor

• 2 x 3D accelerometers

• 2 LEDs illuminating the two buttons on the rim of the case (one bicolor [blue

/ orange] behind the power button, 1 unicolor [red] behind the aux button)

• Triband

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 33

• GSM and GPRS

• USB Host function with 500mA power, allowing to power USB devices for short

periods

What is interesting to note is that the Neo devices are generic Linux-compatible

hardware. Hence it is quite easy to adapt mostly any Linux-based system for the

device. Many e�orts were started to port popular Linux operating systems for the

Neo as shown in Fig. 3.8. The distributions from the �gure are classi�ed according to

their main target platform and according to their sponsoring organization. Some of

these distributions are built speci�cally for the Openmoko devices and some of them

are sponsored by the Openmoko, Inc company. The OM2007.x branch was the �rst

iteration of the Openmoko platform but it is not developed anymore. The OM2008.x

distributions, which is also described in Subsection 3.2.2, were developed by Open-

moko and they are currently the o�cial distributions for their devices. The FSO

distribution is the implementation of the framework from Subsection 3.1.4 and will

become the o�cial Openmoko distribution upon completion. The next distributions

in the �gure, FDOM, SHR and Hackable.1, are developed for the Openmoko devices

by communities of developers that did not like the direction that the o�cial distribu-

tions were heading. SHR wants to o�er a more stable version of FSO. FDOM wants a

version of OM2008.12 with more features and Hackable.1 wants a mobile distribution

based on the GNOME Mobile [37] standards. Finally, the last three in the list were

not even developed for the Openmoko devices but some work was conducted to port

them for the FreeRunner. Even a full featured distribution targeting the desktop

computer, such as Debian, has proved to be usable on the FreeRunner. Another no-

table distribution is the Android platform from Subsection 3.2.1 that was successfully

used on the Neo FreeRunner. The Openmoko platform was selected to be used in the

course of this project and the main o�cial distribution, currently OM2008.12, was

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 34

Figure 3.8: Available software distributions for the Neo FreeRunner

CHAPTER 3. OPEN EMBEDDED PLATFORMS STATE-OF-THE-ART 35

selected as the base operating system.

Finally, as mentioned previously, Qtopia was also considered. However, the main

drawbacks of this platform, when compared with Openmoko, was its lack of �exibil-

ity, as it is compatible only with QT development. Other important issues are the

lack of compatible hardware and the fact that this project is a proprietary platform

from Trolltech that only o�ers an optional open source version of its software. This

last issue, however, was partly resolved when Nokia announced [38] that the QT

development framework will be available under the LGPL license in future releases.

Chapter 4

Advantages of Mobile Digital

Broadcasting

�Because network operators control the devices' design, only the

services that operators want to include will be o�ered.�

� Skip Pizzi.

T
he problem addressed by this research project is the integration of broadcast-

ing technologies to open mobile devices projects. Broadcasting is referring to

the collection of new protocols to transport digital data in a wireless unidirectional

channel as described in Section 2.2. The open mobile devices projects are referring

to a class of hardware and software development e�orts with the goal of creating a

new generation of mobile devices based on open source software and open hardware

platforms. These projects all have the common goal of permitting the devices to be

modi�ed and extended by the users while not being limited by restrictive user license

agreements and patents.

As it was brie�y mentionned in the introduction, a complete class of broadcasting

protocols are nowadays absent from popular telecommunication devices such as mobile

36

CHAPTER 4. ADVANTAGES OF MOBILE DIGITAL BROADCASTING 37

Figure 4.1: Common Mobile Multimedia Broadcasting (MMB) technologies

phones, the most notable being shown in Fig. 4.1. The telecommunication network

operators are currently selling the capacity of their own network technologies based

on:

• CDMA2000 (using 1X, EVDO, etc, for data access).

• GSM (using GPRS, EDGE, etc, for data access).

• 3G (using UMTS for data access).

The use of broadcasting in this context would be in direct competition with their

network for high quality multimedia content.

As outlined in Chapter 3, the current open device development projects are focus-

ing their e�orts on providing a number of APIs to control the most common features

of a mobile device such as the phone component, the network connection component,

the multimedia capabilities, the PIM components and so on. From these available

APIs, the only networking that is available is the traditional IP networking, which

is supported by most telecommunication networks such as WiFi, WiMAX, GPRS,

3G/UMTS, EVDO and Bluetooth. On the other hand, broadcasting technologies are

completely left aside and no mechanism have been included to o�er this possibility.

Because there are many di�erences when we compare traditional telecommuni-

cations networks with unidirectional broadcasting networks, it would be very di�-

cult to convert functionalities from an existing networking API to broadcasting. In

CHAPTER 4. ADVANTAGES OF MOBILE DIGITAL BROADCASTING 38

fact, where a networking API would use features such as CONNECT, REQUEST,

RESPOND, SEND and RECEIVE, the broadcasting counterpart would use SCAN,

TUNE, ADD COMPONENT and REMOVE COMPONENT. The communication

process for an IP network usually takes place in one of these two types: connection

oriented communication (TPC/IP) and connectionless communication (UDP/IP). In

the case of TCP/IP, an exchange of request and response data packets is conducted,

where each part of the information is transmitted from one end and is acknowledged

on the other end to prevent data loss. The UDP/IP communication does not use this

acknowledgment mechanism but it sends packets from a source to a unique destina-

tion address. A broadcasting receiver is, on the other side, connecting to a stream

that is already present in the air. Next, the content of the stream is analyzed to

extract the information about the multiple data components available, if any. Fi-

nally, the receiver selects which parts of the transmission needs to be extracted and

passed to the upper layer decoding application. During the stream extraction, no

data is sent back to the transmitter at all and any lost packet of information cannot

be retransmitted to the receiver.

There are many issues that could be addressed by enabling broadcasting technolo-

gies on such open devices. To begin with, broadcasting technologies have traditionally

been associated with mobile communication because they feature large downstream

capabilities for a large amount of users at once. Moreover, this is requiring a fraction

of the bandwidth, when compared to one-to-one communication networks. This is,

however, only one of the main incentive in providing this technology as shown in the

following discussion.

Shifts the control of mobile devices from telecommunication companies

to broadcasters. In the current mobile devices ecosystem, the phone-like devices

provided by the cellular networks operators have a major market advantage when

CHAPTER 4. ADVANTAGES OF MOBILE DIGITAL BROADCASTING 39

considering the amount of devices in operation. The users have limited pocket real

estate and it is used mostly, of course, by the most popular mobile application, the

phone. When it comes to o�ering new mobile applications and capabilities, broadcast-

ing has always been kept away from these devices because the broadcasting networks

are in direct competition with the telecommunication network, which could harm the

massive pro�ts generated by the multimedia services provided by the expensive and

less e�cient cellular network. For example, as pointed out by Skip Pizzi [2], the

telecommunication industry is often deactivating the FM receivers usually found in

cell phones in order to force the users to consume audio services via their pay-per-use

network. From the broadcasters point-of-view, there is then a large incentive to obtain

the technology required to create broadcast-enabled devices that would be compatible

with the large amount of available broadcasting technologies without restrictions.

Another example is the control that was exercised by Apple and Rogers during the

launch of the iPhone 3G in Canada during the summer 2008. One of the interesting

feature of that device is the so called �Apple Store�, with which developers from around

the world can develop and distribute their applications for the iPhone. The problem

is that Apple is keeping a tight control over the applications that can or cannot be

distributed. As expected, some really useful applications have been refused because

they were providing services that were supposedly against their policy. The most

obvious case comes from the applications that would support VoIP (Voice over IP)

over the 3G network, hence bypassing the very pro�table traditional voice network.

As expected, VoIP applications are strictly forbidden outside of the WiFi network

[39]. Moreover, even if the iPhone has great hardware capabilities for audio, video

and multimedia playout, no broadcasting component has been included nor o�ered

for the device.

CHAPTER 4. ADVANTAGES OF MOBILE DIGITAL BROADCASTING 40

Opens the network to any developers and applications. The Internet, as

a free and open platform for development, has seen a tremendous growth since it

was commonly introduced in the beginning of the 1990s. The main feature of this

networking technology is that any developer is free to create a web page or, as it

was popularized during the Web 2.0 evolution, a web application. The developers

also have the capability to use the network at its full capacity and they only need

to pay for their usage of the network following a pay-per-use model, meaning that

popular and bandwidth-consuming services will have to pay more than less popular

services. Moreover, the barrier of entry to web development is very low, as anyone

with a computer can use some state-of-the-art development tools and participate in

the innovation of the web. The �raison d'être� of ISPs (Internet Service Providers) is,

in the case of the Internet, to provide the network and to upgrade as more and more

resources are required. They can, of course, as anyone, try to develop and o�er web

services but they will compete on level ground with any other application developers

in the world. The result of this experience has shown that restrictive control, as it is

currently the case in mobile telecommunications, can only slow down innovation. To

make a parallel with the case of the Internet, the free and open access to broadcasting

applications development is believed to be the enabling technology that is missing to

trigger a new market of innovative broadcasting services.

Provides a new medium to support innovative applications. By enabling

broadcasting protocols on mobile devices, a collection of new and innovative applica-

tions could be developed to take advantage of this technology. Some applications that

are currently available on mobile telecommunication networks are, in fact, fundamen-

tally broadcasting applications. We can think of live video transmission of popular

events, popular data which is accessed by most users such as the weather information,

and many more. However, these are currently provided by the unicast network which

CHAPTER 4. ADVANTAGES OF MOBILE DIGITAL BROADCASTING 41

Figure 4.2: Example of a DMB ensemble capacity and channel usage

is far from being optimal in this situation. The access to a broadcasting technology

would enable to e�ciently support those fundamentally broadcasting applications, as

well as new types of services, some of which we cannot even think of. Some exemple

of innovative services were developped in the scope of previous projects which are

described in [40] and [41]. As another example, highly popular content found on the

Web could be converted into a broadcasting service, like it was demonstrated in [42].

New innovations in that �eld could even combine multiple networks. For example, a

live blogging service could use GPRS for a single upload from a user but it could take

advantage of broadcasting to transmit the information back to every subscribers.

Provides large downstream capacity. Most broadcasting technologies provide

a large downstream pipe that can be used to stream bandwidth-intensive multimedia

applications such as high quality audio and video. The DAB/DMB technology in-

troduced in Section 2.2, for instance, o�ers up to 1.8 Mbit/s in a single channel and

CHAPTER 4. ADVANTAGES OF MOBILE DIGITAL BROADCASTING 42

it can be split into multiple subchannels that are each free to transport any type of

service. Fig. 4.2 shows an example of a DMB ensemble that transports three 384

Kbit/s video services, �ve 128 Kbit/s high quality audio services and one 8 Kbit/s

low bandwidth data service for text news.

Supports an in�nite number of users without a�ecting the performance

of the network. One of the main features of broadcasting networks is that band-

width can be used by an in�nite number of receivers at once with no e�ects on the

transmission. In fact, the transmitter has no idea of the number of equipments that

are currently tuned to the transmitted content. This makes the technology very well

suited for extremely popular content which a lot of users want to consume at once.

Achieves excellent performance in mobile reception. Some broadcasting tech-

nologies, including DAB/DMB, have been designed from the ground up with mobility

in mind. The modulation and coding schemes used have proved their good perfor-

mance in many mobile usage scenarios [43]. One of the scenarios that usually causes

problems in transmission systems is the dense urban area, in which the buildings

create many sources for signal re�exions and refractions, hence causing heavy multi-

path at the receiver. These situations are also problematic for systems that need a

strong line-of-sight component, such as satellite communications. Terrestrial digital

broadcast is then a technology of choice for multimedia applications in these dense

urban areas.

Part II

Implemention of the Open

Broadcasting Receiver

43

Chapter 5

Development Components

�80 percent of all commercial software products will

include elements of open-source code by 2010.�

� Gartner (2007).

T
he implementation of the Openmokast software requires the integration of mul-

tiple components that will interoperate to enable the di�erent features of the

software. An important contribution of the project to the mobile Linux world will

be an API for broadcasting services. The goal of this API is to become the starting

point used by any developers that would like to use a broadcasting receiver inside

their mobile Linux application. This chapter presents an overview of the components

involved in the Openmokast project.

5.1 Receiver Management

Openmokast is based on a software platform that was implemented at the CRC earlier

to receive digital broadcasting data from a receiver and to dispatch the content to

a decoder through an IP network. In the course of this project, the platform was

enhanced to support more inputs and outputs and new control options. The software

44

CHAPTER 5. DEVELOPMENT COMPONENTS 45

Figure 5.1: Architecture of the CRC-DABRMS broadcasting receiver software

architecture of the platform, named CRC-DABRMS, is depicted in Fig. 5.1. On the

left part of the �gure, di�erent inputs can be used to grab the data. These inputs

exist in two categories, the physical inputs and the simulated inputs. Physical inputs

are actual broadcasting receivers such as the Terratec Dr Box, the Bosch PCI receiver

and the Perstel DR402. These receivers are capable of receiving DAB services over

the air. The simulated inputs, namely a �le input and a basic TCP/IP input, are

capable to receive raw broadcasting data as if it was processed by the DAB receiver.

This last type of input is perfect for a testing environment, where a real wireless

signal is not available.

Right after the start of data acquisition by the receiver, the information about the

available data services is extracted and inserted in memory for future access. This

information is used to present the services to the user. As it was explained in Section

2.2, the structure of a DAB ensemble is composed of two main streams:

CHAPTER 5. DEVELOPMENT COMPONENTS 46

Fast Information Channel (FIC): The FIC basically transports the information

about the ensemble. This includes the description of the services contained in

the MSC and the way they are multiplexed. The FIC also contains the structure

of the subchannels, components and services inside the ensemble. This part of

the stream is the only one that must be decoded by the receiver after a new

ensemble is tuned. The information is constantly re-transmitted in a rapid loop

to decrease tuning latency.

Main Service Channel (MSC): The MSC is a much less complex structure when

compared to the FIC. The MSC is basically only a multiplex of all the data

subchannels that compose the ensemble. Usually a receiver will not access

this information unless the user starts the playout of a service. In this case

it will extract only the required part of the MSC. Depending on the hardware

capabilities of a receiver, it will be able to extract only one, two or multiple

subchannels at a time.

In the receiver management software, there is a clear separation between the data

from the FIC and the data from the MSC. The FIC is sent to a �FIC Decoder�

block to be interpreted while the MSC is sent to the �Output Manager�. At the

beginning, when a new ensemble is tuned, the �Output Manager� is not transmitting

any streams at the output. Instead, it waits to receive instructions from the �User

Command Interpreter� block.

A control interface is available through a simple console telnet connection. After

connecting to the console, the user can issue some pre-de�ned commands to read the

information about the services, to set up an output socket and to start and stop the

services. The �User Command Interpreter� block receives the commands and calls

the right block of the receiver software with the associated command.

The last part of the CRC-DABRMS architecture is composed of a collection of

CHAPTER 5. DEVELOPMENT COMPONENTS 47

output libraries that can be used to transport, convert and process the services. Some

of them will only forward the stream, for instance the UDP/IP output will transmit

the raw data of the service using a simple UDP/IP socket. Others will include a stage

of conversion of the data, such as the RTP (Real-time Transport Protocol) output

which will insert an MPEG2 audio service inside an RTP/IP stream and send it to a

compatible audio player.

5.2 Service Interface

The service interface is the component that lets application developers use the broad-

casting framework for their own needs. For this purpose, an IPC (Inter-Process

Communication) system is used to enable the communication between the framework

and the application. This section describes the D-Bus system that is used in the

Openmokast project.

D-Bus is a mechanism used to transport messages between applications over a

simple bus system. An application or a daemon can use D-Bus to o�er a collection

of services to other applications on the same computer. A client connecting to the

bus will then be able to look up which services are available. Moreover, D-Bus

can provide the coordination of the process life cycle by launching applications and

daemons on demand when their services are needed. D-Bus provides two main types

of communication entities: (1) a system daemon, which can be used to implement

system events such as hardware detection and (2) a user daemon, that can be used for

general inter-process communication among user applications. The D-Bus developers

are commenting about the stability of the framework on their project page [33]:

The message bus is built on top of a general one-to-one message passing

framework, which can be used by any two apps to communicate directly

CHAPTER 5. DEVELOPMENT COMPONENTS 48

(without going through the message bus daemon). The D-Bus low-level

API reference implementation and protocol have been heavily tested in the

real world over several years, and are now "set in stone." Future changes

will either be compatible or versioned appropriately.

The D-Bus messaging system is still a project in developement but it is used in more

software projects every month. Moreover, the constraints encountered in embedded

development are to be taken into consideration when selecting the components that

will be used for the Openmokast framework. The D-Bus system o�ers, however, many

features that makes it worth considering for this project:

• The low-level libdbus implementation has no required dependencies and the

bus daemon has only one required dependency, an XML (Extensible Markup

Language) parser, which can be either libxml or expat. Higher level bindings

mentioned below could add some dependencies.

• A large collection of language-speci�c and framework-speci�c higher-level bind-

ings are available for D-Bus. These bindings can make more assumptions and

are thus much simpler to use, but at the cost of augmenting the complexity of

dependencies of the software. These bindings are developed by separate groups,

thus they are usually not as mature as the main D-Bus project. There are

currently high-level APIs that are usable with Qt, GLib, Java, C# and Python.

• D-Bus is portable to any Linux or UNIX �avor. Also, a port to Windows is

expected in the near future.

• D-Bus is the main IPC mechanism that is part of the two most widely used

Linux desktop environments, namely KDE1 and GNOME.

1KDE 4 uses D-Bus as a replacement of the DCOP system used in KDE 2 and 3.

CHAPTER 5. DEVELOPMENT COMPONENTS 49

Figure 5.2: D-Bus communication diagram

• The service de�nition used in D-Bus enables a framework to o�er di�erent

methods and signals to any other application. This is well suited for a mobile

broadcasting receiver where methods can be used to control the tuner and sig-

nals can be used to send updates on the status of the receiver and the new

available multimedia streams.

The D-Bus system communication is pictured in Fig. 5.2. Each application is

connected to the D-Bus daemon through an instance of the DBusConnection object.

The message daemon acts as a message dispatcher by retransmitting the information

to the right location. There are two di�erent types of communication: regular mes-

sages and signals. A regular message will be sent to a single destination. A signal

will be broadcasted to any application that is listening for this type of signal. Using

D-Bus, each application can send messages to any other. The diagram also show two

di�erent types of applications: server and client. The server o�ers a service through

CHAPTER 5. DEVELOPMENT COMPONENTS 50

D-Bus that can be used by any client application. Any application can use the model

of the server, the client or both at the same time. This communication system, on

the other side, is not meant to carry high bandwidth and low latency applications

such as multimedia streaming. For this reason, the multimedia data streams will not

be transported by it. Instead, they can use the system's IP networking layer which

o�er simple and e�cient mechanisms for that purpose such as UDP/IP.

The D-Bus architecture will most likely obtain good acceptance in the mobile

devices world because it is part of the majority of standards described in Section

3.1. More speci�cally, it is the base of the mobile phone framework de�ned by the

FreeSmartPhone.org organization and it is the standard IPC system for the LiPS and

the LiMo groups.

Many other technologies are available to provide IPC inside a Linux application

and were considered in the scope of this project, however, none of them have the level

of acceptance of D-Bus in the mobile Linux world. Moreover, in some cases, either

they were missing some of the features mentioned above or they were providing too

much overhead to the system. The other main IPC systems on Linux that were

considered are:

• Missing features:

� Message Bus (MBUS)

� Lightweight Communications and Marshalling (LCM)

� ONC RPC

� XML based XML-RPC or SOAP

� Anonymous pipes and named pipes

� Sockets

CHAPTER 5. DEVELOPMENT COMPONENTS 51

• Unwanted overhead for embedded devices:

� Common Object Request Broker Architecture (CORBA)

� Distributed Computing Environment (DCE/RPC)

• Less commonly accepted in mobile Linux

� KDE's Desktop Communications Protocol (DCOP)

5.3 Multimedia Applications and Frameworks

Many multimedia application decoder projects are available on the Internet, support-

ing an enormous amount of di�erent protocols and formats. In the course of the

Openmokast project, it was considered a great idea to take advantage of these avail-

able components and to integrate them inside the software instead of reimplementing

everything from scratch. Because DAB digital broadcasting is mostly a digital pipe

that transports data, no matter their format, it was possible to experiment with many

non-standard multimedia formats ranging from simple text news to full audio/video

streams.

Some of these projects were developed for traditional multimedia formats, so the

parts of the stream that are speci�c to mobile broadcasting, such as the Reed Solomon

error correction, need to be removed prior to send them in the decoder application.

Other available libraries are implementations of multimedia protocols speci�c to mo-

bile broadcasting such as the open source MOT decoder. More details about these

components are provided in the following sections.

CHAPTER 5. DEVELOPMENT COMPONENTS 52

Figure 5.3: GStreamer technical overview

5.3.1 MPlayer

The MPlayer software [44] is the ultimate multimedia player that supports just about

any available format. Moreover, MPlayer is compatible with many common multi-

media network transport protocols. This makes it real easy to use because it will

be able to play a stream only by specifying the URL (Uniform Resource Locator),

there is no need to grab it from the network and record it into a �le. This software

can be launched as an external process with the URL of the multimedia stream as

a parameter. MPlayer is excellent as a decoder but because it is an application that

must be launched externally from Openmokast, it cannot be controlled easily and

errors are not convenient to detect from inside the Openmokast application.

5.3.2 GStreamer

The GStreamer framework [45] is a library for linking together di�erent multimedia

processor components in a graph-like decoding chain. The processing components are

known as plugins inside the framework. By using GStreamer, it is possible to choose

from a large collection of already available plugins but it is also easy to create new

components related to our needs.

Three types of plugins are available, namely sources, �lters and sinks. Sources

are always the �rst elements of the decoding sequence, as they acquire data from a

source external to the framework. Filters can be linked together in di�erent ways to

CHAPTER 5. DEVELOPMENT COMPONENTS 53

Source: [47]

Figure 5.4: MOT transport protocol layers

achieve the decoding results that are expected by the user. For instance, an audio

player for movie �les would require a component to de-multiplex the audio from the

main stream and an audio decoder compatible with the codec used in the stream.

The last type, the sink, is used to send the result back to the system, such as in a �le

or through an audio output mechanism. An example of a GStreamer graph is shown

in Fig 5.3.

5.3.3 Dream Project

The Dream [46] project is a reference implementation of a DRM (Digital Radio Mon-

dial) receiver. The DRM technology is di�erent from DAB when considering the

transmission channel. However, at the application layer, di�erent multimedia data

protocols from DAB were reused in DRM. Hence, the Dream implementation contains

decoding libraries for some of these multimedia applications such as MOT [47] and

Journaline [48].

The MOT library can be used to transparently extract the multimedia objects

from the radio data subchannel. The subchannel must be decoded up to the transport

layer, after which some datagroups are extracted and passed to the MOT decoder as

CHAPTER 5. DEVELOPMENT COMPONENTS 54

Source: [48]

Figure 5.5: Journaline hierarchy example

shown is Fig. 5.4. The MOT library then informs the application when new objects

become available and manages the access to the content of the objects.

The Journaline library works at the same level as the MOT library but it extracts

a JML (Journaline Markup Language) structure. This structure, demonstrated in

Fig. 5.5, can then be browsed by the main application. Each page contains text

elements and links to other parts of the news content.

5.4 Broadcasting APIs

To de�ne the Openmokast API, many other already existing interfaces were studied.

This section of the thesis is an overview of the considered APIs. Not all of these could

be directly applied because they are targeting either the hardware link communication

of a device or the communication between an application and its driver. However,

many of these APIs had a good conceptual format from which the Openmokast API

could get a solid basis.

CHAPTER 5. DEVELOPMENT COMPONENTS 55

Source: [49]

Figure 5.6: ViaDAB receiver interfaces

5.4.1 ViaDAB

The ViaDAB API [49] was de�ned by Radioscape with the goal of o�ering a common

way of controlling and extracting the data from a DAB/DMB receiver. This protocol

is a high-level set of methods that can be used between an application running on a

computer and the driver that is handling the device. Each of the methods have a set

of input parameters that are represented with standard data types such as integers,

doubles and strings. The call to these methods is done in a synchronous way, which

means the call is blocking until the return value is ready. As depicted in Fig. 5.6, the

API is split into three di�erent interfaces, namely IVRxControl, IVRxEventSink and

IVPDataSink. The IVRxControl interface is used to control the receiver and to access

the Multiplex Con�guration Information (MCI) data. The IVRxEventSink interface

informs the calling application of events that are occurring inside the receiver. Finally,

CHAPTER 5. DEVELOPMENT COMPONENTS 56

the IVPDataSink interface is used to transfer the raw data from the receiver to the

client application.

5.4.2 DCSR

The DAB Command Set for Receiver (DCSR) [50] was also de�ned with the goal of

controlling a DAB receiver. A set of methods are also de�ned with capabilities similar

to ViaDAB. The major di�erence is that the calls must be created by generating

a stream of bytes that contains a command ID followed by a binary map of the

parameters. The calls are handled asynchronously. The communication will instantly

return a value telling if the command was accepted by the receiver, but the return

data stream will be sent back to the caller through a noti�cation call that can be

sent at any time. The binary format of the method call makes it easy to serialize the

data for their transport over a physical serial bus such as USB and PCI. However,

this format is less programmer friendly and is less suited for its usage directly inside

the framework.

5.4.3 DAB-Java

The goal of providing the DAB-Java speci�cation [51] was to enable Java applica-

tions to be executed on a DAB platform to expand the capabilities of a receiver. The

speci�cation de�nes how to implement a Java VM (Virtual Machine) for broadcast-

ing receivers. A DAB-Java enabled receiver could receive a new application using

the broadcasting channel, for example, through a MOT [47] service component. The

speci�cation also de�nes the DAB package, a Java class that enables the applications

to access the DAB resources. The package consists of a set of commands where the

application sends requests to the package and the package responds with con�rma-

tions and noti�cations. This follows the Event-Listener pattern between the Java

CHAPTER 5. DEVELOPMENT COMPONENTS 57

Source: [52]

Figure 5.7: Availability of raw and/or decoded data in a DRDI based receiver

application and the DAB receiver.

5.4.4 DRDI

The Digital Radio Data Interface (DRDI) [52, 53] was never o�cially completed

but the speci�cation documents were made available by the WorldDMB [19] techni-

cal committee to its members. The protocol uses a collection of tags, or messages,

that are transported between the host and the broadcasting receiver. Moreover, it

introduces the notion of transporting raw or decoded services. This means that, de-

pending on the device capabilities, some services will be transported as the original

encoded bitstream while others will provide the decoded and ready to play audio

PCM2 (Pulse-Code Modulation) audio format as illustrated in Fig. 5.7. DRDI also

proposes an addressing mechanism to identify a unique service inside the digital ra-

dio space. An address identi�es the frequency, the ensembles, the service and the

component to assure that no two streams can be wrongly referenced as the same.

For example, a single service could be represented by the string �dab.srv://<receiver

module>*<ServiceAddress>� where the receiver module is an identi�er for the de-

vice and the service address is a combination of DAB speci�c identi�ers in the format

2PCM is a non-compressed digital representation of an analog signal.

CHAPTER 5. DEVELOPMENT COMPONENTS 58

�<SId>[.<ECC>][:<EnsembleAddress>]�. These elements could be the base for ser-

vice addressing in the Openmokast framework. The tags format, however, is meant

to be transported on a low level physical layer, thus it's not very well adapted for

a high level programming abstraction layer. DRDI de�nes tags to control many dif-

ferent types of broadcasting receivers, namely DAB/DMB, DRM, FM and AM. The

API does not o�er a generic approach to combining all these technologies, instead it

includes di�erent sets of methods, one for each of the compatible technologies.

5.4.5 RSCI

The Receiver Status and Control Interface (RSCI) [54, 53] was created for the DRM

broadcasting technology. The format of this API is based on tags, or messages, like the

previously mentioned DRDI protocol. The control commands are based on the DRM

technology and the format is also optimized for lower-level serial communication.

5.4.6 Selection of an API

In conclusion, the ViaDAB API is simpler to use when compared to the other de-

scribed APIs because it runs at a higher level and uses standard programming data

types. ViaDAB was de�ned using the COM (Component Object Model) architec-

ture that is a popular IPC system for the Microsoft environment. One section of

ViaDAB, the IVRxControl interface, contains most of the element required to control

a broadcast receiver. The list of control elements is shown in Table 5.1. On the other

side, the list o�ers methods that are mostly for controlling the playout directly over

a hardware device and are not well suited to a digital broadcasting framework. For

example, the methods to control the volume of the device would be considered as

not needed. For this reason, ViaDAB was selected as a good starting base for the

Openmokast framework. In addition, some missing features were added to it and

CHAPTER 5. DEVELOPMENT COMPONENTS 59

IVRxControl interface method listing

GetComponentIdArray GetUserApplicationData
GetComponentLabel GetVolume
GetDABInfo IsDecoding
GetDABLocalTimeO�set IsPlaying
GetDABTime IsTuned
GetDataServiceComponentType SetEventSink
GetDLS SetVolume
GetDynamicProgrammeType StartDecoding
GetEnsembleId StartPlaying
GetEnsembleLabel StopDecoding
GetFICBER StopPlaying
GetProgrammeType SubscribeFIC
GetServiceIdArray SubscribeMSC
GetServiceLabel Tune
GetTransportMode Unsubscribe
GetUserApplicationArray

Table 5.1: List of methods of the ViaDAB IVRxControl interface

some unnecessary features were removed. The details about the development of the

Openmokast API are speci�ed in Section 6.3 of the thesis.

5.5 Openmoko Development Environment

5.5.1 OpenEmbedded Framework

The build environment for the Openmoko platform is based on the OpenEmbedded

framework [35]. OpenEmbedded was designed to provide all the required components

to build a complete Linux-based operating system for embedded devices. The main

included tools, the so called cross-compilers, are available for multiple popular pro-

cessors often found in embedded systems. These special compilers can build a Linux

distribution from a full featured desktop computer3 but that is targeted to run on an

3The use of the term �desktop computer� here relates to any computer with the common x86
architecture.

CHAPTER 5. DEVELOPMENT COMPONENTS 60

openmokast.bb

DESCRIPTION = "Openmokast Broadcasting Receiver"
AUTHOR = "Jean-Michel Bou�ard <jean-michel.bou�ard@crc.ca>"
HOMEPAGE = "www.openmokast.org"
SECTION = "console/applications"
PRIORITY = "optional"
LICENSE = "GPL"
PN = "openmokast"
PV = "0.5"
PR = "r0"
EXTRA_OECONF += "�enable-gtk-gui �enable-dbus"
FILES_${PN} +=
"${datadir}/dbus-1/services/org.openmokast.Receiver.service"
SRC_URI = "�le://openmokast-0.5.tar.gz"
inherit autotools

Table 5.2: BitBake de�nition �le for the Openmokast software

embedded architecture. OpenEmbedded works by letting developers de�ne the dif-

ferent speci�cations of the distribution to build. These speci�cations include which

software must be built and included in the distribution and also how to build the

kernel and applications to be compatible with the target platform.

Basic knowledge of the OpenEmbedded framework is required for application de-

velopers because it is also used to build the software for the device. A useful feature

about OpenEmbedded is that only a single build command is required to con�gure,

compile, build, test and package the software into an .ipk �le ready to be installed

on the FreeRunner. Log �les are collected and saved for each step of the build for

reference in case an error is encountered. To build a new application, a con�guration

�le in a format used by OpenEmbedded must be created with the details about the

new package. This �le, called a BitBake recipe, is in fact read by the BitBake tool

which will interpret the data and process the build tasks. The �le openmokast.bb that

de�nes the Openmokast software is shown in Table 5.2.

CHAPTER 5. DEVELOPMENT COMPONENTS 61

Figure 5.8: Anjuta Integrated Development Environment

5.5.2 Development Tools

If it is true that the build system is restricted to the OpenEmbedded framework, it

is exactly the opposite for the development tools. In fact, almost any development

technology that is available on Linux can be used to develop applications for the

Openmoko devices. In the case of the Openmokast broadcasting software, because

the user interface and the communication libraries used were part of the GNOME

project, it was decided to give a try to the GNOME tools for C/C++ development,

namely the Anjuta IDE (Integrated Development Environment) and the Glade Inter-

face Designer. These tools o�er convenient templates to start development based on

GNOME libraries.

Anjuta, which is shown in Fig. 5.8, is a modern development environment that

supports most features common in this type of software such as object browsing, code

auto-completion and integrated debugging. A wizard can be used for the creation of

CHAPTER 5. DEVELOPMENT COMPONENTS 62

Figure 5.9: Glade Interface Designer

a new project and it creates the template and the �les required for an autotools based

project, which is then directly supported by OpenEmbedded. The use of autotools

can be advertised to OpenEmbedded by the usage of the �inherit autotools� proce-

dure as shown at the end of the BitBake recipe from Table 5.2. Moreover, because

C/C++ development with the same libraries used on Openmoko is also supported on

a Standard Linux computer, the application can be built, tested and debugged right

from the IDE prior to be built for the Neo FreeRunner.

The Glade Interface Designer is a complement of the Anjuta IDE that lets the

developer design and draw the user interface using a graphical point and click design

window. The design environment is pictured is Fig. 5.9. Widgets, such as text �elds,

button, sliders, and so on, can be inserted into di�erent types of layout that will con-

CHAPTER 5. DEVELOPMENT COMPONENTS 63

trol the interface look depending on the dimension of the window. The characteristics

for each widgets can be speci�ed. Moreover, for each possible interaction of the user

on a widget, the name of a handling function must be de�ned. The di�erent types

of interaction vary from a widget to another, for instance, a button widget has the

�clicked� action that can be connected to a handling function. The same name for

the handling function has to be reused in the code to assure the right behavior of the

software. The Glade Interface Designer, unlike most alternative solutions, produces

XML �les that describe the interface. The XML �les are then loaded at runtime by

the application to draw the interface on screen. The major advantage of this method

is that the design of the interface can be modi�ed without re-building the applica-

tions, at the condition that the names of the handler functions do not change. On

the other side, a simple naming error, that would have been detected by the compiler

in a traditional compiled interface, will generate a runtime error in a software that

uses a Glade-based interface.

Chapter 6

Development

�With bitbake+autotools, you can build a boat on the

cross-compiler ocean, and be done with it.�

� Jay Vaughan.

W
ith the Openmoko hardware and software platform as a starting point, many

components are missing to get a functional broadcasting receiver. The missing

components that were identi�ed are:

1. Compatible broadcasting receivers

2. Linux drivers for the receivers

3. Broadcasting stack to control the receivers and access the data

4. Applications to decode the multimedia streams

The Openmokast development e�ort was started to address these four elements

and to create the �rst open source mobile broadcasting handset to date. The

components were cleanly integrated into the Neo FreeRunner hardware and this re-

sulted in the Openmokast prototype.

64

CHAPTER 6. DEVELOPMENT 65

(a) Perstel DR402 (b) Mtech UDR-A3L

Figure 6.1: DAB compatible USB receivers

6.1 Broadcasting Receiver

The receivers compatible with any mobile broadcasting technologies are not really

common on the market and they do not necessarily support the physical connection

from the phone. In fact, the only two practical connections to the Openmoko device

are the USB port, which is accessible from the outside of the case, and the micro SD

port, compatible with SDIO1 (Secure Digital Input Output), which is located under

the battery inside the case. Because SDIO is still a new format, it was not possible

to �nd a receiver available on the market that would suite our needs. On the other

side, some USB receiver were available. The Perstel DR402 is an older generation

receiver available since the start of DMB service in Korea around 2005. The Mtech

UDR-A3L is a newer receiver available since last year. Both are pictured in Fig. 6.1.

Both of these receivers have speci�cations that are compatible with the Cana-

dian digital broadcasting standard shown in Table 6.1. They are then considered as

candidates for the Openmokast receiver prototype.

1SDIO is used to connect peripherals to some mobile devices. Compatible peripherals are avail-
able today ranging from GPS receivers, Wi-Fi or Bluetooth adapters, modems, Ethernet adapters,
barcode readers, IrDA adapters, and many more.

CHAPTER 6. DEVELOPMENT 66

Speci�cation Value

Protocol Fully compliant to ETSI EN 300 401 (Eureka147)
RF frequency range L band: 1452 to 1492MHz
Transmission mode All modes with auto detection
Channel decoding Single channel decoding

Video service decoding
capacity

Up to 1.5Mbps

Audio service decoding
capacity

Up to 384Kbps

Table 6.1: Speci�cations of USB DAB receivers (related to Canadian DAB)

6.2 Linux Drivers

Both of the candidate receivers are available with proprietary drivers and software

for Microsoft WindowsTM only. This is a major issue when considering that all of the

open platforms described in Section 3.2, including Openmoko, are based on Linux.

The implementation of a Linux driver was a mandatory component of the platform

to build a functional prototype.

6.2.1 Probing of the USB Communication

As it is the case with most devices, the communication format that is used between

the USB receivers and the host computer, which is running the proprietary drivers, is

unknown and undocumented. To work around this issue, the communication needs to

be observed with a tool called a USB sni�er. The tool Sni�Usb 2.0 [55] was used in

conjunction with a Windows XPTM computer and the proprietary driver and software

of both receivers. Using this tool, log �les of the communication between the driver

and the device during normal usage of the receiver could be generated.

To generate these log �les, a special driver, named as a �lter throughout the

application, must be linked to the USB driver of the device to monitor. The �rst

thing to do is to launch Sni�Usb 2.0 and to look at the list of USB devices that are

CHAPTER 6. DEVELOPMENT 67

Figure 6.2: Sni�Usb 2.0 user interface

currently connected to the computer. Next, after connecting the USB receiver, a new

device will appear in the list which will reveal the item that must be monitored. The

Sni�Usb 2.0 interface, shown in Fig. 6.2, has the option to attach the special driver

to the USB receiver by clicking �Install� in the right section named �Filter Control�

while having the USB receiver line selected in the top list. It can be con�rmed that

the �lter is installed correctly by looking at the �Filter Installed� column in the list

of drivers. It is recommended, to simplify the log �les reading, that a single log �le

is created for each action of the receiver. For instance, it is better to create a log �le

only for the action of starting the application since there are many chances that this

will trigger the initialization of the device. A new log �le can be created for each new

action triggered by the application, such as when a new ensemble is tuned. To be able

to recreate functional communication between the receiver and the Linux computer,

communication must be logged for every functions used by the software. The list of

CHAPTER 6. DEVELOPMENT 68

calls to log includes:

• The initialization of the receiver

• Scanning to �nd all available frequencies

• Tuning to a speci�c frequency

• Collecting the information about available services

• Collecting the information about a speci�c service

• Starting a service or subchannel

• Reading data streams from the receiver

• Stopping a service or subchannel

• The deinitialization of the receiver

The log �les contain massive amounts of information for each transfer to the USB

port. A tool to �lter the �les is available and it was used to keep only the important

communication elements. The resulting bistream was then inserted into the code of

the tuner application. For instance, to command the Perstel DR402 DAB receiver

to tune to the channel L18, which corresponds to a frequency of 1482.464 Mhz, the

binary sequence �0x050002401600E09EF7DE� must be sent to the receiver on the

USB port.

6.2.2 Reimplementation of the USB Communication

Di�erent approaches can be used to implement a USB driver for the Linux operating

system. The usual approach is to develop a kernel module based on the Linux USB

subsystem. This method is used to create a real kernel-mode Linux driver that can

CHAPTER 6. DEVELOPMENT 69

Characteristics Kernel-mode driver User-mode library (Libusb)

Complexity

Kernel development under
Linux can be complex and
involves many speci�c

requirements.

Libusb can be used as any
other user-mode library
under Linux and o�ers a
well-documented API.

Reliability
Kernel development is

subject to system crash if an
error occurs.

Libusb is built over a reliable
generic USB driver that is
usually not crashing the
system when errors occur.

Flexibility
USB communication is not

limited in any way.

USB communication can
only use the API

implemented by Libusb.

Compatibility
Kernel-mode drivers are

supported by virtually any
Linux based systems.

Libusb is available on most,
but not all, Linux embedded

systems.

Table 6.2: Comparison of USB development solutions for Linux

be loaded or unloaded at runtime. The other approach is by using a user-mode USB

control library such as libusb [56]. The two solutions are compared side by side in

Table 6.2. The Libusb library was selected for this part of the project to reduce

development complexity and to optimize reliability. Some embedded system may

miss Libusb support but, currently, all platforms mentioned in Section 3.2, including

Openmoko, feature full support for the library.

By using the Libusb API [56], every necessary commands were implemented in the

Openmokast receiver to support DAB receiver control. The communication of both

receivers, the Perstel DR402 and the Mtech UDR-A3L, were reimplemented using

this method. After testing the resulting performance, it was found that the Perstel

was able to tune and to connect to a service but the connection was always suddenly

dropped for no apparent reason. On the other side, the Mtech receiver is working

reliably, so it was chosen as the receiver for the Openmokast prototype. No more

work was done to correct the problem encountered with the Perstel receiver to date.

CHAPTER 6. DEVELOPMENT 70

6.3 Broadcasting Stack

6.3.1 Architecture

Now that the hardware control part is functional, resulting in a functional DAB USB

receiver, the broadcasting software stack is the next component in the chain. The

components previously mentioned in Chapter 5 were integrated in a new architecture

as shown is Fig. 6.3. This enhanced architecture brings many improvements to the

framework. The software components were all developed in the C++ programming

language.

The available inputs, on the left part of the framework, are available as dynami-

cally loadable libraries. These components can then be compiled, built and distributed

separately to o�er more �exibility. The main advantage of this feature is that new

inputs could be developed and distributed by third party developers. When com-

bined with the framework, these inputs would be loaded automatically and used as

any other type of input. Broadcasting receiver manufacturers usually do not want to

reveal the APIs of their hardware, thus they are releasing closed-source drivers that

obfuscate the low-level communication. Hence, the capability to dynamically load a

closed source input was seen as an incentive for manufacturers to participate in the

project by releasing compatible drivers.

Technically, dynamic object loading is provided by the dlopen C++ API. The

API enables to load a Linux shared object library at runtime inside the application

instead of being loaded by the operating system when the application starts. The

classes and methods can be linked from the application and called as if they were

built together. The important requirement is that the dynamically loaded object

must support the exact same interface that the application expects to see. Otherwise

the load operation fails and the new input is not usable.

CHAPTER 6. DEVELOPMENT 71

Figure 6.3: Architecture of the Openmokast software

CHAPTER 6. DEVELOPMENT 72

Openmokast API method listing

Tune GetServiceArray
Scan GetComponentArray
ScanAll GetTransportMode
GetFrequency GetDataComponentType
GetStatus GetUserApplicationType
IsDecoding GetReceiverCapabilities
StartDecoding GetAvailableReceivers
StopDecoding SelectReceiver
GetEnsemble SelectOutputType

Table 6.3: List of methods of the Openmokast API

The next part of the architecture is the actual Openmokast framework. The

framework is using the core of the CRC-DABRMS software described in Section 5.1.

The main code that was reused is related to the DAB protocol, for instance, the

�Receiver Control�, �FIC decoder� and �Output Manger� blocks were included in the

Openmokast framework. The target use of the framework is a mobile broadcasting

stack for mobile Linux distribution. Such a stack is meant to be used as a middleware

layer between the receivers and the applications that want to access the broadcast

services. For that matter, the interface needs to be usable by other applications.

6.3.2 Application Programming Interface

Chapter 5 describes the available components that were considered for the Open-

mokast implementation and the factors that had an in�uence in the choice. As it

was mentioned in Sections 5.2 and 5.4, the API included in Openmokast is based

on ViaDAB [49] and it is build using the D-Bus [57] inter-process communication

mechanism. The set of methods from the ViaDAB control interface, that were shown

in Table 5.1, was reduced to keep only the necessary elements.

To produce an API that can be general enough for di�erent broadcasting tech-

nologies, the elements related to DAB (SubscribeFIC, SubscribeMSC, Unsubscribe,

CHAPTER 6. DEVELOPMENT 73

Openmokast API signal listing

ensemble_update_notify

Table 6.4: List of signals of the Openmokast API

GetDABLocalTimeO�set, GetDABTime and GetDLS) were removed. The function-

alities meant to control the external player (GetVolume, SetVolume, StartPlaying

and StopPlaying) were also remove because the service decoding will only be done in

software in the context of Openmokast. Moreover, to assure a �exible usage, some

method were added to the Openmokast API to support multiple broadcast receivers

at a time. Where, in ViaDAB, multiple calls were required to get the identi�er and

label for each ensemble, service and component, Openmokast needs only one method.

This single method returns multiple data elements, thanks to the �exible return types

that are possible with D-Bus. This simpli�es the task for third party developers by

requiring less programming to achieve the same result. The Openmokast methods are

synchronous calls, hence the calling application will block until the reply is received.

Another type of D-Bus message, called a signal, is used to provide a way to advertise

the modi�cation of the current ensemble to the application. D-Bus signals are sent

asynchronously to applications that have previously registered to receive them. The

list of Openmokast methods is shown in Table 6.3 and the signal is in Table 6.4. The

complete API documentation is available in Appendix A.

The resulting org.openmokast.Receiver.Control interface was de�ned with the goal

to support the main uses of broadcasting services from a third-party application. D-

Bus o�ers interesting mechanisms to support the generation of a new D-Bus object.

The interface can be de�ned with an easy-to-use XML-based format and the dbus-

binding-tool will take care of header �les generation. The new �les automatically

generated from the original XML �le are listed in Table 6.5. The server header �le is

used inside the Openmokast framework software and all the functions it de�nes must

CHAPTER 6. DEVELOPMENT 74

File Description

org.openmokast.Receiver.xml.in
Original XML description of the D-Bus

object.

org.openmokast.Receiver.server.h
Header �le required for the implementation

of a server of the D-Bus object.

org.openmokast.Receiver.client.h
Header �le required for the implementation

of a client of the D-Bus object.

org.openmokast.Receiver.html
HTML documentation (see Appendix A)
generated with a tool provided by [27].

org.openmokast.Receiver.xml Raw XML description of the D-Bus object.

org.openmokast.Receiver.service
User generated �le requirement by D-Bus
to associate a D-Bus service with the

application that is providing the service.

Table 6.5: List of D-Bus interface related �les

be implemented. The client header �le can then be added to projects that will use

the org.openmokast.Receiver.Control interface. Then, each call to the Openmokast

server is represented by a simple function from the client side.

D-Bus was created mostly for message exchange between applications, hence it

was not designed for high bitrate applications. For this reason, D-Bus will be used

for controlling the broadcasting software stack but the data streams will use the

networking stack of the operating system, which is more e�cient for high bitrate

transfers. When a client application is requesting the data from a broadcast service,

the Openmokast framework will start sending the data to a free UDP/IP port and will

return the speci�cation of the port to the client. The format of this API command is

shown here in a sample of the Openmokast API documentation:

StartDecoding (uu) -> sb

Description: Starts the decoding of a component.

Parameters

u: service_id

CHAPTER 6. DEVELOPMENT 75

The service identi�er.

u: component_id

The component identi�er.

Returns

s: uri_ret

The URI of the newly started component.

b: ret

True if the command succeeded. False if the component
doesn't exist or if it cannot be decoded.

The StartDecoding method takes two parameters, the identi�ers for the service and

for the component to start. After the execution, the method will return a string con-

taining the URI (Uniform Resource Identi�er) to the data stream and the indication

of the success of the call. D-Bus uses a simple way to identify data types using a

single letter. In this case, the letter u is used for unsigned integer, s for string, and

b for a boolean value.

6.3.3 User Interface and System Integration

The Openmokast framework is build with external libraries that provide mechanisms

for easier development. The libraries that are used to provide the D-Bus API and the

graphical user interface, are:

libGTK+ A graphical user interface toolkit.

libDBUS The D-Bus library required for every applications that uses the messaging

system.

CHAPTER 6. DEVELOPMENT 76

(a) (b)

(c) (d)

Figure 6.4: Openmokast framework screen captures

CHAPTER 6. DEVELOPMENT 77

libglib A library that provides many tools for application development, one of them

being an object oriented development framework in C. The framework is used

to de�ne the D-Bus interface.

libglib-dbus A set methods compatible with libglib which wraps the D-Bus library.

This enables the applications to use libDBUS with the object oriented develop-

ment framework o�ered by libglib.

The user interface of the Openmokast framework application, running on an Open-

moko FreeRunner, is pictured in Fig. 6.4. The screen (a) is the desktop of the phone.

The screen (b) is the welcome dialog where the user is choosing the type of receiver

that will be used. Screens (c) and (d) feature the tuning and ensemble information

screen.

Another interesting feature of D-Bus is that the system always knows which appli-

cation provides which service. So at the moment when an application makes a request

for the broadcasting interface, the D-Bus system will �rst check if the provider of the

service is available on the system. If not, it will then try to start the application that

is registered to provide this service. The link between the service and the provider

are in a �le that must be installed on the system with the service provider applica-

tion. For that matter, the �le org.openmokast.Receiver.service is installed with the

Openmokast framework:

[D-BUS Service]
Name=org.openmokast.Receiver
Exec=/usr/local/bin/CrcDabRms

After these steps are completed, the D-Bus system will be able to respond to the

client application if the connection was established successfully or not.

CHAPTER 6. DEVELOPMENT 78

Figure 6.5: Openmokast-audioplayer client application

6.4 Multimedia Applications

If we go back to the Openmokast framework architecture from Fig. 6.3, the mul-

timedia applications are located on the right part of the D-Bus interface. These

applications are clients to the Openmokast framework that can request access to

broadcasting services through the org.openmokast.Receiver D-Bus service. The next

sections will describe some clients that were built in the course of the project.

6.4.1 Broadcast Radio Player

To begin with, a simple audio player application was developed to validate the func-

tionality of the Openmokast framework. The openmokast-audioplayer, depicted in

Fig. 6.5, is reading the available services from the currently tuned ensemble and it

CHAPTER 6. DEVELOPMENT 79

�lters them to only show the audio services. The user is then able to play any of

these audio streams.

The audio playout was implemented with the GStreamer multimedia framework

presented in Section 5.3.2. One of the GStreamer plugins called �playbin� has the

features of a complete audio application. Among other things, it can access network

streams directly and it will even play it over the sound hardware available on the

machine. GStreamer automatically detects the type of media that is streamed to the

application and it will select the right combination of plugins to achieve the decoding

task. However, the user needs to take care of installing the right plugins for the

media format. In the case of standard DAB radio, a regular mpeg2 audio decoder is

required.

6.4.2 Template for Client Application Development

The next sub-project that was developed is the openmoko-client template applica-

tion. This client application is a simple command line tool that connects to the

org.openmokast.Receiver D-Bus service and requests the available services. It is meant

to be used as a template for the development of new clients by third party developers.

The demonstrated connection mechanism to the D-Bus API and examples of function

calls is all that is required to be able to add broadcasting to a new application or to

integrate it inside an already existing one.

The template application code is available in Appendix B. The application in-

cludes the header �le org.openmokast.Receiver.client.h which is required to use the

client D-Bus service interface. This auto-generated �le de�nes all the methods that

can be called by the client applications. More information about the usage of the tem-

plate in a new software project are included in the development use case presented in

Chapter 7.

CHAPTER 6. DEVELOPMENT 80

Figure 6.6: Openmokast project structure

Fig. 6.6 shows the structure of the di�erent applications and libraries developed

in the course of the project. The Openmokast server contains a subproject for each

of its input and output plugins. The client applications are the one described in

this section and the template is the starting point for the new clients that will be

implemented by third party developers.

6.5 Hardware Integration

For the demonstration of the Openmokast project, the software and hardware com-

ponents were integrated into a working prototype. The hardware integration is some-

what outside the scope of this thesis but it is interesting to note how the democrati-

zation of design techniques is also happening outside the �eld of software engineering.

To produce this prototype, the idea was to insert the USB receiver hardware inside

the case of the Openmoko FreeRunner. However, even after removing the plastic cas-

ing of the receiver and any other unnecessary parts, for instance the USB connector,

it was still much larger than the available space inside the FreeRunner's case.

To address this issue, an extension to the plastic casing of the FreeRunner was

designed based on the CAD (Computer-Aided Design) �les released on the Openmoko

CHAPTER 6. DEVELOPMENT 81

Figure 6.7: Modi�cation of Openmoko CAD �les

website [5]. These original CAD �les were stored in the Pro/ENGINEER format, a

3D CAD software commonly used in the industry. From these �les, it was possible

to generate an extension that can be inserted between the phone and its back cover.

The extension can be �xed securely to the phone, thanks to the exact same clips

that were copied from the original CAD �les. Fig. 6.7 shows a representation of the

original 3D design and the resulting extension.

From the new 3D CAD representation of the plastic extension, the actual model

was ordered from a local company that provides the service of an ABS plastic 3D

printer. Pro/E models are a well-known industry standard, hence it was easily usable

with the 3D printing equipment. The resulting model was a perfect �t in its �rst

iteration and it was later modi�ed slightly to make the clips less fragile. The resulting

Openmokast prototype is shown in Fig. 6.8.

The �nal step towards achieving a seamless hardware integration was the connec-

tion of the Mtech receiver from inside the device. Again, thanks to the openness of

CHAPTER 6. DEVELOPMENT 82

(a) (b)

(c) (d)

Figure 6.8: Pictures of the Openmokast prototype

CHAPTER 6. DEVELOPMENT 83

Source: [5]

Figure 6.9: FreeRunner's electronic schematics with highlighted USB test points

CHAPTER 6. DEVELOPMENT 84

the Openmoko platform, it was possible to have access to the schematics of the elec-

tronics of the Neo FreeRunner. USB test points for the side USB port of the device

were identi�ed on the schematic as depicted in Fig. 6.9. These test points were used

to solder a mini USB connector from inside the case and complete the integration of

the Openmokast prototype.

Chapter 7

Case Study

�For most user organizations the question is not whether they

will adopt open source but when and where.�

� Ovum Research (2006).

T
his chapter will explain how to build an application based on a broadcasting

technology by showing a concrete example. The standard DMB video protocol

is using a special format of H.264 video that is not used in any other implementation,

hence, the tools required to generate the stream and to decode it are not widely

available. This may have contributed to the slow adoption of the technology. With

the Openmokast framework, it becomes easy to produce broadcasting video with

standard tools. A test video service was generated and transmitted over the air.

Then, a receiver application was build to connect to the Openmokast server, read the

available services and decode the audio/video stream. The next sections explain the

details of this case study.

85

CHAPTER 7. CASE STUDY 86

DAB subchannel Audio stream Video stream

MPEG-TS MPEG-1 Audio Layer 3 H.264
544 kbps 96 kbps 384 kbps

- 48 khz 368 x 246
- Stereo 29,97 fps

Table 7.1: Speci�cations of the test video service

7.1 Generation of a New Broadcasting Service

The work described in this thesis is mostly related to the receiver side of broadcasting.

This section describes how to generate a new broadcast service to be transmitted

over the air. The service used in the case study is a video stream comparable to

DMB video but generated using available free and open source tools. This has the

disadvantage of not being compatible with commercial DMB equipment but, on the

other side, it uses generic audio/video encoders that are commonly available in free

and open source projects. The stream is composed of H.264 video and MP3 audio

which are multiplexed in an MPEG-TS (MPEG Transport Stream). Table 7.1 shows

the speci�cations of the service. It can be seen that it is transported in a 544 kbps

subchannel even if the total bitrate of the content is 480 kbps. This security margin

is necessary because the encoders, which are not speci�c to broadcasting, do not

produce perfectly constant bitrate streams. On the other side, the production cost of

such a broadcast video service would be a fraction of the real DMB because it does

not require the expensive DMB-speci�c equipment.

The diagram of the service is shown in Fig. 7.1. The video content is taken

directly from a DVD and it is encoded and multiplexed into a MPEG-TS stream

using the VLC [58] video encoder/player. VLC is a very �exible audio/video software

that supports a lot of formats and, moreover, it can transcode to di�erent other

formats using a collection of encapsulation protocols for streaming over a network or

for writing �les. The next part in the diagram uses this stream and inserts it into a

CHAPTER 7. CASE STUDY 87

Figure 7.1: Block diagram of the broadcast video service used in the case study

DAB compliant multiplex. This can be achieved with di�erent software available on

the MMBTools LiveCD [59] project. This LiveCD, that was developed at the CRC,

o�ers an integrated solution for DAB multiplexing and modulation of about any type

of content. Even non-standard services can be broadcast using these tools. The

MMBTools LiveCD can use a USRP (Universal Software Radio Peripheral) board

from the GNURadio [60] project to transmit the resulting signal over an antenna.

The receiver is depicted in the lower part of Fig. 7.1. The Openmokast server

can use the Mtech USB receiver to tune to the broadcast video service. Then, only

a client application is missing to control the server and to access the multimedia

content. The next section will introduce the development of the client application.

CHAPTER 7. CASE STUDY 88

7.2 Implementation of the Receiver Application

To develop a client application that uses the Openmokast server to access the video

stream, the best starting point is the application template that was mentioned in

Section 6.4.2. The new Broadcast Video Player application was started from this

template. Most development environments o�er the option to create a new project

from existing code, and the Anjuta environment, as mentioned in Section 5.5, is no

exception. The template includes the code to connect to the Openmokast server and

to read the information about the available services. Some code needed to be added

to present the information to the user and to integrate the multimedia capabilities

required for the playout of the content. The Openmokast API is used to start and

stop the services as the user presses the Play and Stop buttons. The GStreamer

multimedia framework, as described in Section 5.3.2, is integrated in the new client

application to handle the audio/video data. The new application was simply named

�Broadcast Video Player�.

The development of the video client application took only a single day, thanks to

the help of the Openmokast client template project. A small amount of code, in the

order of 340 lines of C, had to be written to handle the buttons of the user interface

and to show the available broadcast services on the screen. As it is the case with the

development environment, it is more practical to launch and test the applications from

the host development computer than from the device itself. For these tests to work,

the application must be built with the default compiler from the host system, without

any use of the cross-compiler environment. Then, a regular debugger application, such

as the GNU Debugger, can be used on the host computer. After the functionality of

the application is validated on the host, it can then be built with the OpenEmbedded

cross-compiler environment for the FreeRunner device. When the application package

is ready, it has to be transferred on the device and installed with the opkg package

CHAPTER 7. CASE STUDY 89

Figure 7.2: Video player application connected on the Openmokast framework

manager.

Some tests were conducted with the complete transmission and reception chain.

Fig. 7.2 shows the interface of the Broadcast Video Player software that is playing the

content of the service named �CRC DMB� on the host development computer. The

client application was able to play the audio and video streams with little e�ort on

a the host. The quality of the broadcast is considered relatively high because it uses

the full framerate of the DVD but at the lower resolution of 368 pixels by 246 pixels.

This lower resolution would, however, be considered as high quality when consumed

on a smaller mobile device's screen. This service could be received by thousands of

people at a time without any quality loss because of the broadcasting technology used.

When compared with current mobile television o�erings on cellular phone networks,

where the framerate is usually limited to save on bandwidth, broadcasting has a real

CHAPTER 7. CASE STUDY 90

(a) (b)

(c) (d)

Figure 7.3: Video player application running on the FreeRunner

advantage.

After validation that everything is running as expected on a Linux computer, the

application was deployed on the FreeRunner for further testing. The �Broadcast Video

Player� application is shown running on that target platform in Fig. 7.3. The features

of the client are all running as expected. The only issue is related to the performance

of the video decoder. In fact, the FreeRunner device was only able to achieve a very

limited framerate, between 2 and 3 FPS (Frames Per Second), from a source video

CHAPTER 7. CASE STUDY 91

normally running at 29.97 FPS. To identify the cause of this performance issue, the

two execution environments were compared. The possible problematic elements are

highlighted and discussed in the following paragraphs.

Hardware USB receiver. The hardware receiver was not considered as a possible

issue because the same Mtech device could be used on both the full featured Linux

computer and the FreeRunner.

USB port. A second execution test was then conducted, both on the Linux com-

puter and on the FreeRunner, with the broadcast video service accessed locally from

a �le. In this case, the resulting performance of the video playout was the exact

same. Following this test, the USB port could be removed from the list of possible

bottleneck.

Internal communication bus. The internal communication bus is known to be a

possible performance problem of the Neo FreeRunner. As mentioned in their wiki [5],

the device's graphic accelerator and the SD card reader are using a shared bus that

is capable of a limited 7 Mb/s. When receiving a live stream, the SD card is mostly

unused so the whole bus is dedicated to the video component. We can evaluate

the amount of data that would be required to show the video with the following

equation. It takes into consideration the resolution, the framerate and the color level

of the video, which is of at least 16 bits per pixels:

368× 246× 29.97× 16 ≈ 43 Mb/s

The result shows that the graphical bus of the FreeRunner is probably overloaded

when trying to show a fullscreen video like it is done in this case study. Some hard-

ware video acceleration is available on the device and it could reduce the bandwidth

required on the bus. However, this feature was not used by our decoding library.

CHAPTER 7. CASE STUDY 92

Test platforms
Running process Full featured Linux laptop Neo FreeRunner

bcast-video-player 8% 81%
openmokast <1% 2%
X driver 3% 8%

Idle 92% 0%

Table 7.2: Average resources usage of the video player application

Audio/video software libraries. The same media libraries were used on both the

Linux computer and the FreeRunner.

Openmokast server. There were no modi�cations of the server between the tests

on a Linux computer and on the FreeRunner. The same code is running on both

platforms.

E�ciency of compiling tools. This element is di�cult to evaluate because only

one application building suite was available, so it was not possible to �nd a comparison

point. However, since this build environment is used by all Openmoko developers, it

can be considered that the building tools are in a mature state.

Processing capabilities of the device. While decoding the video service, there

is a large di�erence in resources usage between the Linux host and the FreeRunner.

In fact, on the FreeRunner, the processor usage ratio is at 100% during the whole

video playout. The average resources usage for each software components of the video

player is shown in Table 7.2.

These results show that the FreeRunner is not yet ready for fullscreen video ser-

vices. Some new development is required, either to produce more e�cient decoding

libraries, to make better use of the available accelerator hardware or to improve the

hardware capabilities of the device.

CHAPTER 7. CASE STUDY 93

Concerning the process of developing the application, the development tools can be

considered to be mostly equivalent in performance as many well known commercial

solutions. The build system, however, is a lot more complex to use and this may

be a problem for potential third party developers that would like to innovate with

broadcasting applications. Finally, application distribution may also be problematic

because the main Openmoko distributions are still subject to many stability issues.

The developers that want to o�er an easy access to their applications can use the

distribution service available in [61].

Part III

Conclusions

94

Chapter 8

Future Work

�Open source software represents the most signi�cant all encompassing

and long-term trend that the industry has seen since the invention of the

fundamental data storage architectures and SQL APIs in the early 1980s.�

� IDC (2006).

8.1 Adaptation for the Android Platform

D
uring the course of this work, the Android platform, which is described in

Section 3.2.1, was released o�cially as an open source project and also gained

some popularity inside the mobile developers community. The Openmokast software

can most probably be adapted easily to any Linux-based mobile platform, but the case

of Android is a little bit di�erent because of its Java-based API. In fact, the software

developed for the Android platform must be implemented in the Java language and

it has access only to the Android development API.

On the other side, the Android platform is running on top of a full Linux system

and it uses many native non-Java libraries to o�er some of its middleware services. In

the case of these native Linux libraries, control is provided to the Java applications

95

CHAPTER 8. FUTURE WORK 96

Figure 8.1: Openmokast test application running on the Android emulator

through a conversion layer that translates the communication into the Java API. This

means that Java methods were integrated in the plaform to access the services o�ered

by each of these native libraries. Consequently, the Openmokast software could be

integrated in the Android project by adding the Openmokast software as an Android

library and by implementing a broadcast service API in Java.

A project from a Canadian company, called Koolu, is currently ongoing with the

goal to port Android to the Neo FreeRunner. The latest version is available from

their website [62] and it was installed on one FreeRunner for trial purpose. Moreover,

as a �rst proof of concept, the Openmokast server software was built for the Linux

version that is at the base of Android on the FreeRunner, resulting in a functional

CHAPTER 8. FUTURE WORK 97

Openmokast server that was running natively on an Android phone. The next step

was to �nd a way to establish the communication between Openmokast and the

Android Java environment. Because the �rst version of the receiver management

software presented in Section 5.1 was supporting a simple Telnet communication

protocol, an Android application was developed to test the interaction between the

native Openmokast server and a Java client application. It was then possible to

execute the required Telnet commands to read the information about a tuned DAB

service. The test application running on Android is shown in Fig. 8.1. This solution

enables to use the Openmokast server software from an Android application by using

only the networking layer of the device. The functional access to the broadcasting

receiver was simpler and faster to develop with this method. On the other side, this

solution bypasses the Android API.

The full functionalities of the receiver were not tested during the trials with An-

droid, but the results show that it would be possible to build some client applications

for broadcasting services under the Android platform. The next step would be to

build some demonstration applications that can actually play some of these services.

The multimedia components available from the Android API could be used to decode

the multimedia content extracted from the broadcasting receiver and sent to Android

through the networking layer.

8.2 Codec Adaptation

Because multiple digital broadcasting technologies exist nowadays, di�erent codecs

are used to carry the services from the server to the receiver. Moreover, there are

some research under way [63] with the goal to provide a multi-standard receiver front

end that would be able to receive di�erent broadcasting standards on a single device.

CHAPTER 8. FUTURE WORK 98

The API de�ned in this document takes care of the control of the devices and the

access to the data streams. However, no standardized decoder has been discussed

to handle the multimedia streams. Another layer of the Openmokast software could

hence be added to handle the codec divergence between the di�erent technologies.

The main advantage of this future development would be a major simpli�cation

of the applications that would use broadcasting streams. This means that a software

that wants to simply support broadcast video playout, no matter what broadcasting

technology is used in its geographic location, would not need to support a vast list

of audio/video codecs. On the other side, a standard selection of audio/video codecs

would be the opposite of the open paradigm where digital broadcasting applications

could rapidly evolve and o�ers new broadcasting applications. For this reason, this

problem will be left open for future research.

8.3 Standardization

The Openmokast API is using D-Bus, a popular interprocess communication protocol,

and uses a set of methods to control the broadcasting hardware on a mobile device.

These characteristics are the key elements that make it well-suited for its integration

into mobile middleware standards such as the FreeSmartPhone.org [27] platform.

Some subsequent work to adapt the API to make it consistent with such a middleware

standardization e�ort could position the Openmokast API as the main broadcasting

API used in the major mobile devices projects.

Chapter 9

Discussions and Conclusions

�The linux billionaires are those who use linux and save money.�

� Znork, on Slashdot.

T
he Openmokast project described in this work was created to solve the problem

of enabling broadcasting technologies on mobile devices as de�ned in Chapter

4. First, some components available in the open source software world and at CRC

were identi�ed in Chapter 5. These components were used in the development of the

Openmokast platform and they contributed in the short time span required for the

creation of the Openmokast prototype. The details about the development of the

software and prototype were described in Chapter 6. The Openmokast software was

developed and then integrated into an Openmoko FreeRunner device in addition with

the required hardware receiver to produce a functional prototype. A key component

of this development is the Openmokast API. This D-Bus based interface can be used

by other software developers to easily and rapidly integrate broadcasting services into

their own application. The API was used throughout the example of the development

of a new application in Chapter 7. This case study was conducted to validate the

usability and the performance of the Openmokast software to develop new multimedia

99

CHAPTER 9. DISCUSSIONS AND CONCLUSIONS 100

broadcasting applications. A broadcast video player could be implemented in a short

time with little resources thanks to the Openmokast server API. This case study

demonstrates how the Openmokast project can be used to catalyse new and innovative

services that take advantage of broadcasting technologies.

Chapter 8 de�nes the major topics that would be important to develop for the

future success of the Openmokast platform. To generate increased interest in the

platform and to help bringing more contributors to the development, the Openmokast

software was released as an open source project1. It is believed that this was the best

thing to do to achieve the future goals of the platform in the shortest time possible.

While working on this project, the Openmoko platform and organization went

through a lot of changes. The architecture of the o�cial Openmoko Linux distribution

was also modi�ed more than once. For instance, GTK+ was chosen as the user

interface toolkit for the Openmokast software because, at the time of starting the

project, it was the only one that was supported by the Openmoko platform. Currently,

the support for many additional toolkits is included in the platform. The Openmoko

building tools, based on OpenEmbedded, were also constantly modi�ed. This made

it di�cult to stay up-to-date with the latest development of the Openmoko software

and it often caused many issues at the time of the update. Moreover, the main

documentation source for the platform is hosted on their wiki, which is a community

tool open to anyone that has completed the registration process. While this idea

follows the principal of openness of the project, it contributed to the over-production

of documentation that was often outdated and duplicated into di�erent pages. All

these problems contributed to the di�culty of the development for the Openmoko

platform. To be considered as a good platform for mobile applications development,

the Openmoko project still needs some major improvement.

1The code releases are available from Sourceforge at https://sourceforge.net/projects/

openmokast.

CHAPTER 9. DISCUSSIONS AND CONCLUSIONS 101

On a more positive note, these encountered problems may have been the price

to pay to be able to work in a completely free and open environment. We believe

that no project, other than the Openmoko platform, would have enabled the level of

modi�cations that were achieved to produce the Openmokast framework and proto-

type. This innovative way of designing, producing and distributing the platform is

an interesting concept that o�er many advantages over the competing solutions. The

participation of a large community rapidly generated a large amount of contributions

of new software and new Linux distributions for the Openmoko devices. Few projects

were able to achieve this level of participation in such a short time.

The Openmokast software was tried by numerous users but the large scale accep-

tance of such a technology will become possible only from the moment the broadcast

receiver manufacturers will start building and selling devices compatible with open

mobile handsets. We think the Openmokast project is an obvious element to help

them selling their equipment but it was a surprise to discover that most of these

manufacturers will be ready to provide their receivers only to other device integrators

and, moreover, only under restrictive non-disclosure agreements.

Finally, during the course of this project, the Openmokast platform was presented

in di�erent events related to broadcasting or to open source software development.

So far the platform generated a lot of interest throughout the open source developers

community. It is often referenced as one of the only important hardware modi�cation

project that was based on the Neo FreeRunner device to date.

References

[1] R. Wietfeldt, �Handset system architectures for mobile dtv,� Consumer Electron-

ics, 2006. ISCE '06. 2006 IEEE Tenth International Symposium on, pp. 1�6,

2006.

[2] S. Pizzi, �Whose device is it, anyway?.� http://www.radioworld.com/pages/

s.0054/t.8712.html, Sept. 2007. Many Services Can Converge and Connect at

the Personal Portable Media Device, But Who Decides Which?

[3] G. Brown, �Linux - a platform for innovation in converged mobile handsets,� BT

Technology Journal, vol. 25, no. 2, pp. 126�132, 2007.

[4] Y. C. Cho and J. W. Jeon, �Current software platforms on mobile phone,� Con-

trol, Automation and Systems, 2007. ICCAS '07. International Conference on,

pp. 1862�1867, 17-20 Oct. 2007.

[5] �Openmoko.� http://www.openmoko.org. Last visited March 2009.

[6] �Qtopia phone edition.� http://trolltech.com/products/qtopia/phone_

edition. Last visited Feb. 2009.

[7] �Android.� http://code.google.com/android. Last visited March 2009.

102

REFERENCES 103

[8] M. Kornfeld and G. May, �Dvb-h and ip datacast - broadcast to handheld de-

vices,� Broadcasting, IEEE Transactions on, vol. 53, no. 1, pp. 161�170, March

2007.

[9] S. Cho, G. Lee, B. Bae, K. Yang, C.-H. Ahn, S.-I. Lee, and C. Ahn, �System and

services of terrestrial digital multimedia broadcasting (t-dmb),� Broadcasting,

IEEE Transactions on, vol. 53, no. 1, pp. 171�178, March 2007.

[10] F. Allamandri, S. Campion, A. Centonza, A. Chernilov, J. P. Cosmas, A. Du�y,

D. Garrec, M. Guiraudou, K. Krishnapillai, T. Levesque, B. Mazieres, R. Mies,

T. Owens, M. Re, E. Tsekleves, and L. Zheng, �Service platform for converged in-

teractive broadband broadcast and cellular wireless,� Broadcasting, IEEE Trans-

actions on, vol. 53, no. 1, pp. 200�211, March 2007.

[11] F. Hartung, U. Horn, J. Huschke, M. Kampmann, T. Lohmar, and M. Lundevall,

�Delivery of broadcast services in 3g networks,� Broadcasting, IEEE Transactions

on, vol. 53, no. 1, pp. 188�199, March 2007.

[12] M. Luby, T. Gasiba, T. Stockhammer, and M. Watson, �Reliable multimedia

download delivery in cellular broadcast networks,� Broadcasting, IEEE Transac-

tions on, vol. 53, no. 1, pp. 235�246, March 2007.

[13] F. Lefebvre, J.-M. Bou�ard, and P. Charest, �Open source handhelds - a

broadcaster-led innovation for bth services,� EBU Technical Review, vol. Q4,

p. xx, 2008.

[14] F. Lefebvre, J.-M. Bou�ard, and P. Charest, �Open mobile broadcasting phones,�

in Broadcast Asia 2008, 2008. held June 17-20, 2008, Singapore.

[15] �Openmokast - resources for open mobile broadcast devices.� http://

openmokast.org/. Last visited April 2009.

REFERENCES 104

[16] �The gnu project.� http://www.gnu.org/gnu/the-gnu-project.html. Last

visited Sept. 2008.

[17] �Gnu general public license.� http://www.gnu.org/copyleft/gpl.html. Last

visited June 2008.

[18] D. Searls, �Linux for suits: Picking new �ghts,� Linux J., vol. 2007, no. 158,

p. 15, 2007.

[19] �Worlddmb - welcome to worlddmb online.� http://www.worlddab.org/. Last

visited Dec. 2008.

[20] �Dvb mobile tv - dvb-h - dvb-sh - dvb-ipdc.� http://www.dvb-h.org/. Last

visited Dec. 2008.

[21] M. Brooks, �Development of broadcast technologies for mobile tv,� Broadcasting

Spectrum: The Issues, 2005. The IEE Seminar on (Ref. No. 2005/11049), pp. 16

pp.�, June 2005.

[22] �Radio broadcasting systems; digital audio broadcasting (dab) to mobile,

portable and �xed receivers.� ETSI EN 300 401, 06 2006. V1.4.1.

[23] W. Hoeg and T. Lauterbach, Digital audio broadcasting: principles and applica-

tions of digital radio. Wiley, 2nd edition ed., October 2003.

[24] �Limo foundation.� http://www.limofoundation.org. Last visited June 2008.

[25] �Linux phone standards (lips) forum.� http://www.lipsforum.org. Last visited

June 2008.

[26] �Open handset alliance.� http://www.openhandsetalliance.com. Last visited

Sept. 2008.

REFERENCES 105

[27] �Freesmartphone.org.� http://www.freesmartphone.org. Last visited March

2009.

[28] E. Oliver, �A survey of platforms for mobile networks research,� SIGMOBILE

Mobile Computing and Communications Review, vol. 12, no. 4, pp. 56�63, 2008.

[29] �Lips reference model.� Ref No.: LIPS-AWG-Ref_Arch-v1_0_1-20071205-A, 5

December 2007. LiPS Forum.

[30] �Limo foundation platform architecture white paper - v1.0,� January 17, 2007.

[31] �What is android?.� http://code.google.com/android/what-is-android.

html. Last visited March 2009.

[32] �Documentation / android - an open handset alliance project.� http://code.

google.com/android/documentation.html. Last visited March 2009.

[33] �Freedesktop.org.� http://www.freedesktop.org. Last visited March 2009.

[34] �Eclipse - an open development platform.� http://www.eclipse.org/. Last

visited Dec. 2008.

[35] �Openembedded | metadata for building distributions - preferably embedded tar-

get platforms.� http://oe.linuxtogo.org/. Last visited Feb. 2009.

[36] �Qemu - open source processor emulator.� http://bellard.org/qemu/. Last

visited Jan. 2009.

[37] �Gnome mobile.� http://www.gnome.org/mobile/. Last visited April 2009.

[38] �Lgpl license option added to qt.� http://www.qtsoftware.com/about/news/

lgpl-license-option-added-to-qt, Feb. 2009. Nokia to add LGPL Open

Source licensing option for the Qt UI and application framework.

REFERENCES 106

[39] S. Gilbertson, �Apple opens iphone but key restrictions remain.� http://blog.

wired.com/monkeybites/2008/03/apple-delivers.html, March 2008.

[40] J.-M. Bou�ard and F. Lefebvre, �An ip based �le delivery platform for mobile

multimedia broadcasting,� in Proceedings of the IASTED International Confer-

ence on Wireless Networking and Emerging Technologies, as part of the Fifth

IASTED International Multi-Conference on Wireless and Optical Communica-

tions (A. Fapojuwo, ed.), pp. 105�110, IASTED, ACTA Press, July 2005. held

July 19-21, 2005, Ban�, Alberta, Canada.

[41] J.-M. Bou�ard, F. Lefebvre, and B.-H. Lee, �Multimodal applications for mobile

multimedia broadcasting,� in Proceedings of the IASTED International Confer-

ence on Wireless Networking and Emerging Technologies, as part of the Seventh

IASTED International Multi-Conference on Wireless and Optical Communica-

tions (A. Vukovic, ed.), IASTED, ACTA Press, May 2007. held May 30 - June

1, 2007, Montreal, Quebec, Canada.

[42] J.-M. Bou�ard and F. Lefebvre, �Large scale distribution of popular internet

user generated content to mobile devices,� in Proceedings of the IASTED Inter-

national Conference on Wireless Networking and Emerging Technologies, as part

of the Eighth IASTED International Multi-Conference on Wireless and Optical

Communications (A. Vukovic, ed.), IASTED, ACTA Press, May 2008. held May

26-28, 2008, Quebec City, Quebec, Canada.

[43] M. Velez, D. de la Vega, P. Angueira, D. Guerra, G. Prieto, and A. Arrinda,

�Field measurement based performance analysis of digital audio broadcasting

(dab) reception in mobile channels,� Vehicular Technology Conference, 2005.

VTC 2005-Spring. 2005 IEEE 61st, vol. 1, pp. 247�251 Vol. 1, May-1 June 2005.

REFERENCES 107

[44] �Mplayer - the movie player.� http://www.mplayerhq.hu/. Last visited Jan.

2009.

[45] �gstreamer: open source multimedia framework.� http://www.gstreamer.net/.

Last visited Jan. 2009.

[46] �Dream drm receiver.� http://drm.sourceforge.net/. Last visited Dec. 2008.

[47] �Digital audio broadcasting (dab); multimedia object transfer (mot) protocol.�

ETSI EN 301 234, 05 2006. V2.1.1.

[48] �Digital audio broadcasting (dab); journaline; user application speci�cation.�

ETSI TS 102 979, 06 2008. V1.1.1.

[49] �Viadab 2 - programmer's guide - version 1.4,� 2002. RadioScape Ltd. 2 Albany

Terrace - Regents Park - LONDON - NW1 4DS Phone: +44 (0)20 7224 1586

Fax: +44 (0)20 7224 1595 Website: www.radioscape.com.

[50] �Digital audio broadcasting system - speci�cation of the dab command set for

receivers (dcsr).� EN 50320:2000, 2001.

[51] �Digital audio broadcasting (dab); a virtual machine for dab: Dab java speci�-

cation.� ETSI TS 101 993, 03 2002. V1.1.1.

[52] �Digital audio broadcast (dab); digital radio mondiale (drm); digital radio data

interface (drdi).� draftETSI TS XXX XXX, 08 2004. V0.0.0.

[53] �Digital radio mondiale (drm); distribution and communications protocol (dcp).�

ETSI TS 102 821, 10 2005. V1.2.1.

[54] �Digital radio mondiale (drm); receiver status and control interface (rsci).� ETSI

TS 102 349, 11 2005. V1.2.1.

REFERENCES 108

[55] �"sni�usb 2.0" usb sni�er for windows.� http://www.pcausa.com/Utilities/

UsbSnoop/default.htm. Last visited March 2009.

[56] �Libusb sourceforge project page.� http://sourceforge.net/projects/

libusb/. Library to enable user space application programs to communicate

with USB devices. Last visited Sept. 2008.

[57] �D-bus project page on freedesktop.org.� http://www.freedesktop.org/wiki/

Software/dbus. Last visited March 2009.

[58] �Vlc media player - the cross-platform media player and streaming server.� http:

//www.videolan.org/. Last visited April 2009.

[59] �Crc mmb tools - an e�ort to support, foster and promote the development of new

applications and tools in the �eld of mobile multimedia broadcasting (mmb).�

http://mmbtools.crc.ca/. Last visited April 2009.

[60] �Gnu radio - the gnu software radio.� http://www.gnu.org/software/

gnuradio/. Last visited April 2009.

[61] �opkg - a software directory for openmoko phones.� http://www.opkg.org/. Last

visited April 2009.

[62] �Android on freerunner.� http://freerunner.android.koolu.com/. Last vis-

ited March 2009.

[63] C. Babla, �A software modem approach to multi-standard radio & tv reception

on mobile devices,� EBU Technical Review, vol. Q1, p. xx, 2009.

Part IV

Appendices

109

Appendix A

Openmokast D-Bus Interface

Speci�cation

org.openmokast.Receiver.Control

Description

The Receiver Control interface is used to control the broadcasting receiver.

Namespace

org.openmokast.Receiver.Control

Methods

• Tune

• Scan

• ScanAll

110

APPENDIX A. OPENMOKAST D-BUS INTERFACE SPECIFICATION 111

• GetFrequency

• GetStatus

• IsDecoding

• StartDecoding

• StopDecoding

• GetEnsemble

• GetServiceArray

• GetComponentArray

• GetTransportMode

• GetDataComponentType

• GetUserApplicationType

• GetReceiverCapabilities

• GetAvailableReceivers

• SelectReceiver

• SelectOutputType

Signals

• ensemble_updated_notify

Errors

None

APPENDIX A. OPENMOKAST D-BUS INTERFACE SPECIFICATION 112

Methods

Tune (uu) -> b

Description: Tune the given frequency.

Parameters

u: frequency The frequency in KHz.

u: mode The DAB mode.

Returns

b: ret True if command was accepted.

Scan (uu) -> b

Description: Tuning the �rst available frequency starting at the given frequency and

band.

Parameters

u: frequency The frequency in KHz.

u: band The DAB band: 1=Band-III, 2=L-Band, 3=Canada-L-Band(default),

4=Korea-Band-III.

Returns

b: ret True if command was accepted.

ScanAll (u) -> aub

Description: Create a list of the available frequencies at the given band.

Parameters

u: band The DAB band: 1=Band-III, 2=L-Band, 3=Canada-L-Band(default),

4=Korea-Band-III.

Returns

APPENDIX A. OPENMOKAST D-BUS INTERFACE SPECIFICATION 113

au: frequency_array_ret An array containing the available frequencies.

b: ret True if command was accepted.

GetFrequency () -> ub

Description: Returns the frequency that is currently tuned or 0 if nothing is tuned.

Returns

u: frequency_ret The currently tuned frequency or 0 of not tuned.

b: ret True if command succeeded.

GetStatus () -> sb

Description: Returns the status of the receiver.

Returns

s: status_ret A protocol dependent string containing the current status of the

receiver.

b: ret True if command succeeded.

IsDecoding (uu) -> b

Description: Returns the status of a component decoding.

Parameters

u: service_id The service identi�er.

u: component_id The component identi�er.

Returns

b: ret True if the selected component is currently decoded.

StartDecoding (uu) -> sb

Description: Starts the decoding of a component.

APPENDIX A. OPENMOKAST D-BUS INTERFACE SPECIFICATION 114

Parameters

u: service_id The service identi�er.

u: component_id The component identi�er.

Returns

s: uri_ret The URI of the newly started component.

b: ret True if the command succeeded. False if the component doesn't exist or if

it cannot be decoded.

StopDecoding (uu) -> b

Description: Stops the decoding of a component.

Parameters

u: service_id The service identi�er.

u: component_id The component identi�er.

Returns

b: ret True if the command succeeded. False if the component doesn't exist.

GetEnsemble () -> usb

Description: Get information about the tuned ensemble.

Returns

u: id_ret The identi�er of the tuned ensemble or 0 if no ensemble found.

s: label_ret The name of the tuned ensemble.

b: ret True if command succeeded.

GetServiceArray () -> auasb

Description: Get information about the available services.

Returns

APPENDIX A. OPENMOKAST D-BUS INTERFACE SPECIFICATION 115

au: id_array_ret Array containing a list of service identi�ers for the current

ensemble.

as: label_array_ret Array containing a list of service labels for the current en-

semble. The array size is the same than the array of identi�ers

b: ret True if command succeeded.

GetComponentArray (u) -> auasb

Description: Get information about the components inside a service.

Parameters

u: service_id The service identi�er.

Returns

au: id_array_ret Array containing a list of component identi�ers for the current

service. The �rst element in the list is the main component.

as: label_array_ret Array containing a list of component labels for the current

service. The array size is the same than the array of identi�ers

b: ret True if command succeeded.

GetTransportMode (uu) -> ub

Description: Get information about the transport mode for a component.

Parameters

u: service_id The service identi�er.

u: component_id The component identi�er.

Returns

u: transport_mode_ret The identi�er of the transport mode for the component.

The possible values are: 0 for AUDIO STREAM, 2 for DATA STREAM, 3 for FIDC

SERVICE and 4 for DATA PACKET SERVICE.

APPENDIX A. OPENMOKAST D-BUS INTERFACE SPECIFICATION 116

b: ret True if component exists.

GetDataComponentType (uu) -> ub

Description: Get information about the type of a data component.

Parameters

u: service_id The service identi�er.

u: component_id The component identi�er.

Returns

u: data_component_type_ret The type of data component.

b: ret True if component exists.

GetUserApplicationType (uu) -> ub

Description: Get information about the User Application (UA) type for a component.

Parameters

u: service_id The service identi�er.

u: component_id The component identi�er.

Returns

u: ua_type_ret The User Application type as de�ned in Table 16 of ETSI TS 101

756.

b: ret True if component exists.

GetReceiverCapabilities ()

Description: TO BE DEFINED - Get information about the receiver such as the

number of subchannels that can be decoded at the same time.

APPENDIX A. OPENMOKAST D-BUS INTERFACE SPECIFICATION 117

GetAvailableReceivers ()

Description: TO BE DEFINED - Get the available receivers from the platform.

SelectReceiver ()

Description: TO BE DEFINED - Select the active receiver.

SelectOutputType ()

Description: TO BE DEFINED - Select the output format for the data of a decoded

component.

Signals

ensemble_updated_notify (s)

Description: Emitted when the current ensemble is updated with new information.

Parameters

s: update_str A protocol dependent string that identi�es what was updated.

| Speci�ed 2008 by Jean-Michel Bou�ard for the openmokast.org project. | For

more information: jean-michel (dot) bou�ard (at) crc (dot) ca

Appendix B

Openmokast-Client Sample Project

1 /∗ −∗− Mode : C; indent−tabs−mode : t ; c−bas ic−o f f s e t : 4 ; tab−width : 4 −∗−
∗/

2 /∗∗∗
3 ∗
4 ∗ Copyright (C) Her Majesty the Queen in Right o f Canada , 2009
5 ∗ Communications Research Centre (CRC)
6 ∗
7 ∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or

modify
8 ∗ i t under the terms o f the GNU General Publ ic L i cense as

publ i shed by
9 ∗ the Free Software Foundation ; e i t h e r v e r s i on 2 o f the License ,

or
10 ∗ (at your opt ion) any l a t e r v e r s i on .
11 ∗
12 ∗ This program i s d i s t r i b u t e d in the hope that i t w i l l be u se fu l ,
13 ∗ but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
14 ∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 ∗ GNU General Publ ic L i cense f o r more d e t a i l s .
16 ∗
17 ∗ You should have r e c e i v ed a copy o f the GNU General Publ ic

L i cense
18 ∗ along with t h i s program ; i f not , wr i t e to the Free Software
19 ∗ Foundation , Inc . , 675 Mass Ave , Cambridge , MA 02139 , USA.
20 ∗
21 ∗ Contact : Jean−Michel Bouffard
22 ∗
23 ∗ Email : <jean−michel . bouf fard@crc . ca>
24 ∗
25 ∗ Web: http :// openmokast . org /
26 ∗ http ://mmbtools . c r c . ca/
27 ∗ http ://www. c rc . ca/mmb

118

APPENDIX B. OPENMOKAST-CLIENT SAMPLE PROJECT 119

28 ∗
29 ∗
30 ∗ 2008/12 CRC
31 ∗ I n i t i a l r e l e a s e
32 ∗
33 ∗∗/
34
35 #inc lude <sys / types . h>
36 #inc lude <sys / s t a t . h>
37 #inc lude <uni s td . h>
38 #inc lude <s t r i n g . h>
39 #inc lude <s td i o . h>
40
41 #inc lude <con f i g . h>
42
43 #inc lude <gtk/gtk . h>
44 #inc lude <glade / g lade . h>
45
46 // DBus r e l a t e d i n c l ud e s
47 #inc lude <org . openmokast . Rece iver . c l i e n t . h>
48 #de f i n e DBUS_SERVICE_OPENMOKAST "org . openmokast . Rece iver "
49 #de f i n e DBUS_PATH_OPENMOKAST "/ org /openmokast/Rece iver "
50 #de f i n e DBUS_INTERFACE_OPENMOKAST "org . openmokast . Rece iver . Control "
51
52 #de f i n e SIGNAL_ENSEMBLE_UPDATED_NOTIFY "ensemble_updated_notify "
53 //#de f i n e DBUS_INTERFACE_OPENMOKAST_DATA "org . openmokast . Rece iver . Data"
54
55 /∗
56 ∗ Standard ge t t ex t macros .
57 ∗/
58 #i f d e f ENABLE_NLS
59 # inc lude < l i b i n t l . h>
60 # undef _
61 # de f i n e _(St r ing) dge t t ext (PACKAGE, St r ing)
62 # i f d e f gettext_noop
63 # de f i n e N_(St r ing) gettext_noop (St r ing)
64 # e l s e
65 # de f i n e N_(St r ing) (S t r ing)
66 # end i f
67 #e l s e
68 # de f i n e textdomain (St r ing) (S t r ing)
69 # de f i n e g e t t ex t (S t r ing) (S t r ing)
70 # de f i n e dget t ext (Domain , Message) (Message)
71 # de f i n e dcge t t ex t (Domain , Message , Type) (Message)
72 # de f i n e bindtextdomain (Domain , Di rec tory) (Domain)
73 # de f i n e _(St r ing) (S t r ing)
74 # de f i n e N_(St r ing) (S t r ing)
75 #end i f
76
77 #inc lude " c a l l b a c k s . h"
78
79 /∗ For t e s t i n g propose use the l o c a l (not i n s t a l l e d) g lade f i l e ∗/

APPENDIX B. OPENMOKAST-CLIENT SAMPLE PROJECT 120

80 /∗ #de f i n e GLADE_FILE PACKAGE_DATA_DIR"/openmokast−c l i e n t / g lade /
openmokast−c l i e n t . g lade " ∗/

81 #de f i n e GLADE_FILE "openmokast−c l i e n t . g lade "
82
83 GtkWidget ∗
84 create_window (void)
85 {
86 GtkWidget ∗window ;
87 GladeXML ∗gxml ;
88
89 gxml = glade_xml_new (GLADE_FILE, NULL, NULL) ;
90
91 /∗ This i s important ∗/
92 glade_xml_signal_autoconnect (gxml) ;
93 window = glade_xml_get_widget (gxml , "window") ;
94
95 return window ;
96 }
97
98 s t a t i c void
99 EnsembleUpdatedNotifySignalHandler (DBusGProxy ∗ proxy ,
100 const char ∗ in_str ing , gpo in t e r

userData)
101 {
102 /∗ Since method c a l l s over D−Bus can f a i l , we ' l l need to check
103 f o r f a i l u r e s . The s e r v e r might be shut down in the middle o f
104 things , or might act badly in other ways . ∗/
105 GError ∗ e r r o r = NULL;
106
107 g_print (" : Ensemble updated (%s) \n" , in_st r ing) ;
108
109 // Process any r equ i r ed task here
110
111 /∗ Free up e r r o r ob j e c t i f one was a l l o c a t e d . ∗/
112 g_clear_error (& e r r o r) ;
113 }
114
115 i n t
116 main (i n t argc , char ∗argv [])
117 {
118 GtkWidget ∗window ;
119
120 #i f d e f ENABLE_NLS
121 bindtextdomain (GETTEXT_PACKAGE, PACKAGE_LOCALE_DIR) ;
122 bind_textdomain_codeset (GETTEXT_PACKAGE, "UTF−8") ;
123 textdomain (GETTEXT_PACKAGE) ;
124 #end i f
125
126 gtk_set_loca le () ;
127 gtk_in i t (&argc , &argv) ;
128
129 window = create_window () ;

APPENDIX B. OPENMOKAST-CLIENT SAMPLE PROJECT 121

130 gtk_widget_show (window) ;
131
132 // DBus i n i t i a l i s a t i o n
133 DBusGConnection ∗ connect ion ;
134 GError ∗ e r r o r ;
135 DBusGProxy ∗proxy ;
136 char ∗∗name_list ;
137 char ∗∗name_list_ptr ;
138 gboolean te s t_re t ;
139
140 g_type_init () ;
141
142 e r r o r = NULL;
143 connect ion = dbus_g_bus_get (DBUS_BUS_SESSION, &e r r o r) ;
144 i f (connect ion == NULL)
145 {
146 g_pr interr (" Fa i l ed to open connect ion to bus : %s \n" , e r ror−>

message) ;
147 g_error_free (e r r o r) ;
148 e x i t (1) ;
149 }
150
151 /∗ Create a proxy ob j e c t f o r the "openmokast s e r v e r " (name "org .

openmokast . Rece iver ") ∗/
152 proxy = dbus_g_proxy_new_for_name (connect ion ,
153 DBUS_SERVICE_OPENMOKAST,
154 DBUS_PATH_OPENMOKAST,
155 DBUS_INTERFACE_OPENMOKAST) ;
156 i f (! proxy)
157 {
158 g_pr interr (" Fa i l ed to c r e a t e proxy . . . \ n") ;
159 // g_error_free (e r r o r) ;
160 e x i t (1) ;
161 }
162
163 // S igna l r e g i s t r a t i o n
164 /∗ Since the func t i on doesn ' t re turn anything , we cannot check
165 f o r e r r o r s here . ∗/
166 dbus_g_proxy_add_signal (/∗ Proxy to use ∗/
167 proxy ,
168 /∗ S igna l name ∗/
169 SIGNAL_ENSEMBLE_UPDATED_NOTIFY,
170 /∗ Will r e c e i v e one s t r i n g argument ∗/
171 G_TYPE_STRING,
172 /∗ Termination o f the argument l i s t ∗/
173 G_TYPE_INVALID) ;
174
175 // Connection between the s i g n a l s and the ca l l ba ck method
176 dbus_g_proxy_connect_signal (/∗ Proxy ob j e c t ∗/
177 proxy ,
178 /∗ S igna l name ∗/
179 SIGNAL_ENSEMBLE_UPDATED_NOTIFY,

APPENDIX B. OPENMOKAST-CLIENT SAMPLE PROJECT 122

180 /∗ S igna l handler to use . Note that the
181 typecas t i s j u s t to make the compi ler
182 happy about the funct ion , s i n c e the
183 prototype i s not compatib le with
184 r e gu l a r s i g n a l hand le r s . ∗/
185 G_CALLBACK
186 (EnsembleUpdatedNotifySignalHandler) ,
187 /∗ User−data (we don ' t use any) . ∗/
188 NULL,
189 /∗ GClosureNoti fy func t i on that i s
190 r e s p on s i b l e in f r e e i n g the passed
191 user−data (we have no data) . ∗/
192 NULL) ;
193
194 // Reads the a v a i l a b l e ensemble name
195 guint test_id_ret ;
196 char ∗ t e s t_ labe l_re t ;
197 i f (! org_openmokast_Receiver_Control_get_ensemble (proxy ,
198 &test_id_ret ,
199 &test_labe l_ret ,
200 &test_ret , &e r r o r))
201 {
202 /∗ Checks f o r remote except i ons ∗/
203 i f (e r ror−>domain == DBUS_GERROR
204 && error−>code == DBUS_GERROR_REMOTE_EXCEPTION)
205 g_pr interr ("Caught remote method except ion %s : %s " ,
206 dbus_g_error_get_name (e r r o r) , e r ro r−>message) ;
207 e l s e
208 g_pr interr (" Error : %s \n" , e r ror−>message) ;
209 g_error_free (e r r o r) ;
210 e x i t (1) ;
211 }
212
213 // Reads l i s t o f ava l ab l e s e r v i c e s in ensemble
214 GArray ∗ array1 ;
215 char ∗∗ array2 ;
216 i f (! org_openmokast_Receiver_Control_get_service_array (proxy ,
217 &array1 ,
218 &array2 ,
219 &test_ret , &

e r r o r))
220 {
221 /∗ Checks f o r remote except i ons ∗/
222 i f (e r ror−>domain == DBUS_GERROR
223 && error−>code == DBUS_GERROR_REMOTE_EXCEPTION)
224 g_pr interr ("Caught remote method except ion %s : %s " ,
225 dbus_g_error_get_name (e r r o r) , e r ro r−>message) ;
226 e l s e
227 g_pr interr (" Error : %s \n" , e r ror−>message) ;
228 g_error_free (e r r o r) ;
229 e x i t (1) ;
230 }

APPENDIX B. OPENMOKAST-CLIENT SAMPLE PROJECT 123

231
232 /∗ Print the r e s u l t s ∗/
233
234 g_print ("Name o f the cur rent Ensemble : \ n") ;
235 g_print (" id−>%d , l abe l−>%s\n" , test_id_ret , t e s t_ labe l_re t) ;
236
237 gu int va l1 ;
238 char ∗ va l2 ;
239 gu int i = 0 ;
240 i f (array1−>len > 0)
241 {
242 whi l e ((i < array1−>len) && (val1 = g_array_index (array1 , guint ,

i)))
243 {
244 va l2 = array2 [i] ;
245 g_print (" Se rv i c e id : %d l a b e l : %s \n" , val1 , va l2) ;
246 i++;
247 }
248 }
249 e l s e
250 {
251 g_print ("No s e r v i c e s . . . \ n") ;
252 }
253
254 g_free (t e s t_labe l_re t) ;
255
256 g_object_unref (proxy) ;
257
258 //gtk_main () ;
259 return 0 ;
260 }

