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Abstract 

SDN technology has primarily been applied to all types and size of network ranging from 

Ethernet services to large cloud environment. More recently, interest has turned towards 

extending programmability of the OTN. In the SDN architecture, SBIs are used to 

communicate between the SDN controller and the switches or routers in the network. In 

this thesis we deploy two major protocols as SBIs in managing BoD across the 

interconnected data centers over the OTN. The OpenFlow and NETCONF are the two 

SBIs deployed between the OpenDayLight controller and the BTI7800 optical edge 

transponders. We present the OpenVSwitch architecture modified for referencing the 

optical ports of the BTI7800 devices. Experimental demonstration and performance of 

both BTI YANG-based NETCONF and OpenFlow protocols are presented. Our 

experiments show that NETCONF is faster and efficiently handles the control message; 

whereas in a fully loaded system, OpenFlow offers better bandwidth utilization. 
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Chapter  1:     Introduction 

This chapter introduces the objectives of the thesis. It explains the motivation and lists 

the contributions of the thesis research. The chapter wraps up by explaining the 

organization of this thesis document. 

 

1.1 Motivation 

Recent years have witnessed an unprecedented growth in the number of data centers 

being built by large cloud service providers. To provide flexible and reliable services at 

the global scale, cloud service providers have deployed multiple data centers in different 

geographical areas, often spanning continents that are interconnected via private high-

speed backbone networks, offering hundreds of Gbps or tens of Tbps bandwidth [21].  

The inefficiency of current inter data center backbone networks stems from three aspects 

[21]. First, the lack of effective control techniques cannot make efficient use of the 

network resources. With no coordination, each application or service now can send 

however much traffic whenever it wants, in oblivion to the current network load. As a 

result, the bandwidth needs to be over-provisioned in the network to be able to handle the 

superimposed peak demand. In reality, with a little coordination, the demand for 

bandwidth could be reduced by postponing the delivery of delay-tolerant services to off-

peak periods. Second, the widely varying performance requirements of applications are 

usually ignored. For example, interactive applications (e.g. web search) are delay-

sensitive, while background applications (e.g. data synchronization between data centers) 

are throughput-sensitive. Third, it is known that traffic engineering with traditional 

distributed routing protocols (e.g. link state) is suboptimal in most cases. Distributed 
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approaches are often inflexible and hardly lend themselves to the deployment of 

sophisticated resource sharing principles such as fair bandwidth sharing between services 

with priorities or multi-path forwarding to balance application traffic in response to link 

failures and demand changes. 

The emerging Software Defined Networking (SDN) technique has recently been used for 

inter data center traffic management to address the above-mentioned inefficiencies of 

traditional approaches. Transport networks are evolving to be more and more automated 

and driven by software to minimize the operational costs and to provide new services and 

applications in a quicker and more efficient way [25]. Several transport technologies such 

as Dense Wavelength Division Multiplexing (DWDM) and Reconfigurable Optical Add 

Drop Multiplexer (ROADM) etc. are available for interconnecting the data centers, each 

of which provides various transport optical features [19]. Moreover, management, 

configuration or debugging procedures remain a daunting task in data centers mainly 

because of multiple vendor-specific proprietary assets such as switches/routers requiring 

their own proprietary procedures rather than a simple and unified process. Similarly, 

traffic management and policy enforcement can become very important and critical 

issues, as data centers are expected to continuously achieve high levels of performance 

[18]. But if one wants to extend the SDN approach to the physical photonic layer, then 

the SDN controller must take the nature of the optical transmission into account. 

 

1.2 Objective 

The thesis starts with understanding how SDN plays an important role in shaping an 

emerging network architecture that deals with efficient bandwidth utilization depending 
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on the nature of today's applications. We review the current state-of-art in managing 

Bandwidth on Demand (BoD) across interconnected data centers in an SDN environment 

and the advancement of SDN in the field of optical networking.  In the architecture of a 

Software Defined Network, the SouthBound Interfaces (SBIs) are used to communicate 

between the controller and the SDN network elements such as switches and routers. The 

main step towards the thesis is to effectively manage BoD across the data centers that are 

interconnected by an Optical Transport Network (OTN). The SDN controller, with the 

help of the SBIs is capable of controlling the data plane devices located at the data 

centers that are interconnected. In our thesis, we have deployed two SBIs. The first one is 

the OpenFlow protocol, developed by the Open Networking Foundation (ONF). It is an 

industry standard that defines how to interact with the SDN forwarding plane to make 

adjustments to the network, so it can better adapt to the changing business needs.  

Network Configuration Protocol (NETCONF) is an existing network management 

protocol that is alternatively supported as a SBIs in the SDN architecture. The main 

objective of the thesis is to evaluate the performance of both protocols as SBIs in an 

interconnected data center over an optical backbone.    

 

1.3 Contribution  

The thesis compares two protocols that serve as SBIs in handling BoD requirements 

across the data centers that are interconnected with the help of an optical backbone and 

managed using SDN. As discussed in Section 1.2, OpenFlow and NETCONF are two 

protocols that are implemented. The contributions of this thesis are: 
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 The OpenFlow specification does not support any optical extensions for optical 

devices to reference the information regarding optical ports and interfaces. The 

thesis focuses on controlling the transport optical network resources formed by 

interconnecting the data centers. In order to reference the optical ports and 

connections of BTI7800 using OpenFlow protocol, the optical extensions were 

developed within the OpenVSwitch code and ported onto the BTI7800’s kernel 

environment.  

 We evaluate the capabilities of both protocols as SBIs in managing BoD 

requirement between two data centers. Depending on the availability of resources 

and nature of traffic demands, the SDN controller dynamically determines the 

flow rules and communicates those rules to the network elements using the 

implemented SBIs. The use cases discussed in this thesis help us to quantitatively 

and qualitatively compare both protocols implemented as SBIs. 

 NETCONF as SBI in managing BoD across the BTI7800 devices interconnecting 

data centers was showcased as a demo at the “SDN & OpenFlow World Congress 

2015, Dusseldorf, Germany”. Refer to Appendix E for the information related to 

the demo and the use case.  

 

1.4 Outline of the Thesis 

The chapters of the thesis are organized in the following manner. Chapter 2 provides 

background information about the nature and challenges faced by the traditional 

interconnected data centers. It introduces the SDN architecture and discusses the benefits 

of SDN in network management. Then, the traditional network management protocol 
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NETCONF and the ONF recommended OpenFlow protocol as SBIs in an SDN 

environment are presented. Finally, it reviews the state-of-art literature related to BoD 

management across data centers in an SDN environment and literature related to the SDN 

advancement in the field of optical networks. Chapter 3 introduces the BTI7800 optical 

network element and its high-level architecture. It presents the architecture of the 

NETCONF-based SBI implementation on the BTI7800. It further presents the developed 

optical extension to the OpenFlow protocol and its implementation on the BTI7800. The 

chapter presents the working of both implemented SBIs in managing the BTI7800 optical 

data plane devices interconnecting data centers. Chapter 4 discusses the details of the test 

environment. Chapter 4 and Chapter 5 discusses the use cases derived from the ONF 

SDN use case document [7] and it presents the results collected when exercising those 

use cases for both protocols as SBIs. Chapter 6 concludes the thesis and provides the 

directions for possible future work. 
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Chapter  2:     Background Work and Literature Review 

To better understand the scope of research, this chapter talks about the issues faced by 

traditional networking. It introduces the concept of SDN and briefs about the 

characteristics and the principles behind this new technology. This chapter further 

presents the applicability of SDN in selective fields of networking based on the research 

focus. Section 2.3 introduces the OpenDayLight (ODL) controller and its high level 

architecture, followed by a brief introduction of NETCONF and OpenFlow SBIs. Finally, 

the chapter concludes with a review of related research work.     

 

2.1 Issues Faced with Traditional Data Center and Network Management 

Nowadays, the Internet develops at a rate that outpaces all existing data networks in both 

speed and scale. As the variety of real-time services such as video, audio, cloud data 

center, and mobile services continue to develop and as a result, they form a bottleneck for 

bandwidth requirement. The existing traditional network management cannot deliver the 

expected service quality, satisfying all bandwidth requests [18]. The traditional network 

faces these problems: 

 Inefficient Service Deployment: In the traditional environments, services and 

networks are deployed separately. Most networks are configured using commands 

or through network management systems, and are managed statically or through 

network automation, which limits the control over the network and their entities. 

These networks are essentially static and inefficient at deploying dynamic 

services that require timely adjustments. In extreme cases, these networks may 

even fail to support such services. 
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 Slow Adaptation to New Services: It takes a long time in a traditional network 

environment to upgrade features, adjust architectures, or to introduce new 

device(s) to meet the new service requirements. For example: in a traditional 

optical data centric network, if one of the applications is requesting additional 

bandwidth, the network cannot quickly adopt to the requirement as it requires 

manual provisioning. The network manager has to provision each and every 

device separately through its respective Command Line Interface (CLI) in order 

to accommodate the requirement and it turns out to be time consuming and 

inefficient.   

 Lack of User Experience: Most of the network applications are connectionless, 

providing only minimum bandwidth service quality. The lack of quality in the 

service delivered, results in situations that thwart user expectations for a quality 

experience. 

Over the years, many solutions have been proposed to solve the problems faced by the 

traditional networks. These problems cannot be solved without focusing on the 

fundamental design of the network infrastructure, which requires decoupling between the 

network and the service that are transparent to each other. The two most significant early 

efforts, which proposed ways of separating the control software from the underlying 

hardware and provide an open interface for management and control, are the Open 

Signaling (OpenSig) working group and the Active Networking initiative. Although these 

early approaches envisioned innovative open networking programmability, they could not 

achieve widespread success because of these shortcomings [16]: 

a) The approaches were promoting data instead of control plane programmability.  
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b) They focused on proposing innovative programming architecture models and 

platforms, paying little or no attention to practical issues like the performance and 

the security they offered.  

c) The approaches advocated, as one of its advantages, the flexibility it would give 

to end users to program the network. Even though, in reality, the scenario of end 

user programmability was really rare. 

The traditional networking devices were designed to support specific protocols essential 

for the operation of the network and these network devices were less dynamic and were 

not really flexible enough to adapt to major changes. Due to the vast expansion of the 

Internet of Things, the network grew bigger in size and it became tedious to manage each 

and every device individually. At the same time, modifying the control logic of such 

devices was not a good option, causing hindrance to the network evolution. To remedy 

this situation, various efforts were taken focused on finding novel solution(s) that 

eventually lead to a new era of more open, extensible and programmable networks [18]. 

 

2.2 Software Defined Networking 

SDN, is arguably one of the most significant paradigm shifts in the networking industry 

in recent years. SDN is a control framework that supports programmability of network 

functions and protocols, by decoupling the data plane and the control plane, which are 

currently integrated vertically in most network equipment. The decoupling of planes 

allows the underlying infrastructure to be abstracted and used by the application(s) and 

the network service(s) as a virtual entity.  
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Designing and managing the computer networks can become a very daunting task due to 

the high level of complexity involved. The tight bonding between a network control plane 

(where the decisions of handling traffic are made) and data plane (where the actual 

forwarding of traffic takes place) gives rise to various challenges related to its 

management and evolution. Introducing or upgrading new functionality like intrusion 

detection systems and load balancers would impact the network infrastructure and 

possess a direct impact on its logic. The concept of programmable networks has been 

proposed as a means to remedy this situation, by promoting innovation in network 

management and deployment of network services using some sort of an open network 

Application Programming Interface (API). Therefore, it produces flexible networks that 

are able to operate according to the user’s need, are reprogrammable and perform 

numerous tasks without the need for continuous modification of the underlying hardware 

platform. SDN is seen as one way to solve some problems of the Internet, including 

security, managing complexity, multi-casting, load balancing, and energy efficiency. The 

split architecture of SDN makes it feasible to control, monitor, and manage the 

network(s) from a centralized node also termed as SDN controller [1][2][15]. 

Figure 2.1 depicts the SDN layered architecture. The bottom most layer is the data plane, 

and it is composed of physical hardware and virtual network entities (routers, switches 

etc.) that are interconnected. Data plane devices act as per the controller’s instructions, 

and are mainly responsible for forwarding packets onto their destination. The middle 

layer is the control plane and it may be a single or series of controller(s) that are logically 

centralized. According to SDN, the software control program is referred to as the 
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controller, and it is responsible for managing and storing information about the 

underlying data plane devices, the network and its topology. 

 

Figure 2.1   SDN Overview  

The controller translates network rules and regulations in term of flows that help in 

packet handling decisions and routing. The control plane communicates with the data 

plane devices through the SBIs. OpenFlow is the first standard communication interface 

defined between the control and forwarding layers of the SDN architecture. OpenFlow 

allows direct access for manipulating the forwarding plane of the network devices such as 

switches and routers, both physical and virtual (hypervisor based). The top most layer is 

the application layer that transforms the user requirements to the underlying controller 

and vice versa. The application layer communicates with the controller elements using 

the NorthBound Interfaces (NBIs) and vice versa. 
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2.2.1 Principle of Software Defined Networking  

In SDN, the controller functions more like a device driver software that initiates and 

configures the devices to some specific operational settings by reading input from the 

applications and writing into the device’s memory. To the underlying network, the 

controller is a piece of software that manages and shares all the resources of the 

underlying network infrastructure and amongst the applications. 

The concept of SDN is to place a network operating system between the network 

infrastructure and the application layer. It is the responsibility of the network operating 

system to coordinate and manage the resources of the complete network and to reveal an 

abstract unified view of all components of the network to the applications executed on 

top of it. The concept is analogous to the principle of a typical computer system, where 

the operating system lies between the hardware and the user space and is responsible for 

managing the hardware resources and providing common services for user programs. 

Similarly, SDN offers a logically centralized environment where network administrators 

and developers can typically program, configure and control the network. 

 

2.2.2 Characteristics of SDN 

SDN is proposed as a solution for the problems faced with the traditional network 

architecture and to support future network growth. The characteristics of SDN 

technologies are summarized as follows [2]: 

 Decoupling of Control and Data Plane: This principle calls for separable 

controller and data planes. However, it is understood that control must necessarily 

be exercised within data plane systems. The SBI between the SDN controller and 
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the network element is defined in such a way that the SDN controller can delegate 

significant functionality to the network element, while remaining aware of the 

network element states. 

 Centralized Control Architecture: The SDN architecture removes the control 

functions from the network devices and moves them into a logically separate 

server, called the controller. In this architecture, the network devices forward 

traffic based on the control data delivered by the controller. The controller 

requires no direct knowledge of the network architecture. The Open Network 

Foundation (ONF) currently sponsors this architecture and SDN-related protocols 

like OpenFlow. However, the IETF and some equipment vendors believe that 

traditional device control protocols, such as NETCONF, Simple Network 

Management Protocol (SNMP), Path Computation Element Protocol (PCEP), and 

the latest, Internet Routing System (IRS), are sufficient to meet the requirements 

for a centralized controller.  

 Open Network Capabilities: This SDN characteristic provides additional 

benefits. The core concept involves packaging network capabilities into an 

operating-system-like controller. In the SDN architecture, the upper layer 

applications and services are used to obtain the network capabilities through APIs 

from the controller, and the lower layer interfacing between the controller and 

network elements are both defined by the open network capability standards. The 

SDN operation and specifications are majorly designed and regulated by ONF 

(Open Networking Forum). The open APIs and advanced orchestration 

capabilities create a flexible and modular services platform. 
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2.2.3 SDN Application Domain 

This research work is focused on transport optical networks that interconnect data 

centers. Henceforth this section briefly presents two application areas in which SDN 

could prove to be beneficial: data centers and optical networks. SDN is also applied in 

many other networks such as enterprise networks, WLANs and heterogeneous networks, 

cellular networks and the Internet of Things. 

 

2.2.3.1 Data Center Networks 

In the traditional data center network, the network management is typically met through 

the careful design and configuration of the underlying network. This operation in most 

cases is performed manually by defining the preferred routes for traffic and by placing 

middle boxes at strategic choke points on the physical network. Obviously, this approach 

contradicts the requirement for scalability, since manual configuration can become a very 

challenging and error prone task, especially as the size of the network grows. 

Additionally, it becomes increasingly difficult to make the data center operate at its full 

capacity, as it cannot dynamically adapt to the application requirements [16].  

The advantages that SDN offers in network management is filling these gaps. By 

decoupling the control from the data plane, the forwarding devices become much simpler 

and therefore cheaper. At the same time all control logic is delegated to one logically 

centralized entity. SDN opens the opportunity for the network operators for implementing 

policies so as to dynamically manage data center interconnections and assign bitrate for 

flows based on the user [14][27]. It also allows for the dynamic management of flows, 
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the load balancing of traffic and the allocation of resources in a manner that best suits the 

operation of the data center based on the needs of running applications, which in turn lead 

to increased performance [15][16][17]. 

 

2.2.3.2 Optical Network 

Optical networks are under pressure, the demand for bandwidth continues to grow rapidly 

with no apparent end in sight. Traffic patterns are non-uniform and drastically shifting. 

For some years people have discussed the impact of the dramatic increase in video usage, 

the newer trends of adopting cloud services and the emergence of mega-sized data 

centers should also be considered as a part of the traffic to be managed. At the same time, 

device mobility and the Internet of Things altogether has changed where and how 

bandwidth is being consumed.  

High peak-to-average and/or transient bandwidth demands between certain locations 

requires transport service that can be turned up, modified, and torn down in near real 

time. The current transport network cannot effectively address these pressure points, as 

they are generally static and operated separately from the client layers or by the 

applications they serve. To support such a highly dynamic environment, connectivity 

services must be turned up in minutes or seconds and be modifiable by the client users or 

the software applications without operator intervention. An orchestration is required to 

manage connectivity services over the network covering potentially multiple network 

domains, through multiple layers of networking technology, and across multiple vendors’ 

equipment [4][16]. 
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In order for new services to be provisioned or changed in an optical network via software 

without pre-knowledge of the service type, the physical ports that are attached to the 

network must be software defined both in protocol and speed definition as well as 

wavelength definition. While SDN started to visualize the physical layer as merely a 

supporting layer of the logical network, with optical networking there is no such 

separation. Therefore, it is the physical layer of optical networks that must be software 

defined in Optical SDN. User definable port speeds, protocols, and wavelengths have 

been available in optical network hardware in recent years, with the level of flexibility 

varying from simple LAN/WAN Ethernet selection to fully flexible transponders 

covering a wide range of rates and protocols [5][6]. 

The Optical Transport Working Group (OTWG) defined under the umbrella of ONF’s, 

provides the architecture and mechanisms to address the trends and challenges associated 

with providing flexible and dynamic optical switching. Until recently, the OpenFlow 

standard focused on the packet-oriented Layers 2 and 3. Transport SDN extends 

OpenFlow to support Layer 0 (photonic) and Layer 1 (SONET/SDH, OTN) network, 

allowing the same support for logically centralized control and independent software and 

hardware development. 

Fundamentally, extensions are added to OpenFlow to program switch ports and fabrics 

that operate on fibers, wavelengths, and time slots as well as the packet headers. In our 

research, to address the specific requirements for the transport network, OpenFlow is 

being extended to support protection, performance monitoring, and other critical 

Operations, Administration, and Maintenance (OAM) capabilities [5][6][22]. 
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2.3 OpenDayLight Controller 

The SDN controller acts as the strategic control point in an SDN network, it relays 

information to the switches/routers “below” via the SBI and to the application and 

business logic “above” via the NBI. 

The SDN controller platform is typically comprised of a collection of pluggable modules 

that are capable of performing different network tasks. Some of the basic tasks include 

inventorying of devices in the network, identifying the capabilities of each and gathering 

their network statistics. Extensions can be added to enhance the functionality and support 

more advanced features, such as orchestrating new rules throughout the network, 

virtualization of network functions and performing analytics by running algorithms on 

the network traffic [8]. There are multiple choices of open source and commercial SDN 

controllers, and the controller for our work is selected based on our requirements as 

stated below: 

1) Selecting an open source SDN controller. 

2) The controller should support NETCONF and OpenFlow as part of the supported 

SBIs. 

3) The controller should provide well-developed NBIs that support in building the 

business logic that manages the connection between interconnected data centers.  

4) A Graphical User Interface (GUI) based interface that makes user interaction with 

the controller simpler.   
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Figure 2.2   OpenDayLight Architecture  

The ODL project is an open source platform for SDN. It uses open protocols to provide 

centralized, programmatic control and network device monitoring. Like many other SDN 

controllers, ODL supports OpenFlow, as well as offering ready to install network 

solutions as part of its platform. The ODL architecture is represented in Figure 2.2 and 

key factors that are related to the research work are discussed below [8]: 

 It supports a microservices architecture, in which a “microservice” is a particular 

protocol or service that a user wants to enable within their installation of the ODL 

controller. For example: the plugin provides connectivity between the control 

plane and the data plane devices via protocols implemented as SBIs or offer 

services such as Authentication, Authorization, and Accounting (AAA) or support 

switch functionalities such as L2-Switching.  
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 Various network services and orchestration are supported at the application layer. 

DLUX is the ODL web interface that provides a modern GUI to interact with the 

controller for simplified setup and administration. 

 REST (REpresentational State Transfer) is the software architectural style of the 

World Wide Web, which communicates over Hypertext Transfer Protocol 

(HTTP) with the same HTTP verbs (GET, POST, PUT, DELETE, etc.) that web 

browsers use to retrieve web pages and to send data to remote servers. The ODL 

controller supports REST as its NBI. REST uses Remote Procedure Calls (RPCs) 

and message notifications to communicate with the control plane of the controller.   

 The controller platform and its services support various use cases; multiple 

plugins are supported as protocols for SBIs. ODL supports the Model Driven – 

Service Abstraction Layer (MD-SAL) architecture, additional services and 

plugins could be added or extended accordingly. 

 The core Service Abstraction Layer (SAL) is composed of data stores, MD-SAL 

data stores are further divided into config and operational. The config data store 

contains the configuration information that allows users to change configurations, 

for example through a REST API. The second data store contains the operational 

information that comes from the system and normally offers users to view and 

understand if their configurations have been successfully pushed into the devices. 

 

 

2.4 SouthBound Interfaces 

The main objective of the SBI is to provide communication and management interface 

between the network's SDN controller(s) and data plane (nodes, physical/virtual switches 
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and routers). The SBI facilitates efficient control over the network, and enables the SDN 

controller to dynamically make changes according to real time demands and needs. The 

controller breaks down the whole network connections into smaller technical details 

known as flows, that are specifically geared toward the lower layer component(s) using 

SBI. Multiple traditional and SDN-specific protocols are supported as SBIs between the 

decoupled control and data plane.  

OpenFlow is a SBI designed to meet the requirements of SDN. In addition, most of the 

controllers support some of the existing configuration protocol as SBIs that help in 

establishing the connection between a SDN controller(s) and the network element(s). A 

few of those protocols are listed below: 

 NETCONF/YANG (Yet Another Next Generation) 

 SNMP 

 File Transfer Protocol (FTP) or SSH File Transfer Protocol (SFTP). 

 

2.4.1 NETCONF and YANG 

The NETCONF is an IETF network management protocol. It was developed by the 

NETCONF working group and published in December 2006 as RFC 4741 and later 

revised in June 2011 and published as RFC 6241 [11]. 

NETCONF provides mechanisms to install, manipulate, and delete the configuration of 

the network devices. Its operations are realized on top of a simple RPC layer. The 

NETCONF protocol uses an eXtensible Markup Language (XML) based data encoding 

for the configuring data as well as the protocol messages. The protocol messages are 
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exchanged on top of a secure transport protocol. NETCONF can be conceptually 

partitioned into four layers as shown in Figure 2.3 [11]. 

 

Figure 2.3   NETCONF Layers [11] 

 

1) The Secure Transport layer provides a communication path between the client 

and server. It uses an RPC-based communication paradigm over the SSH 

transport protocol mapping. NETCONF can be layered over any secured 

connection-oriented transport protocol that provides security, integrity, and 

reliable sequenced data delivery. NETCONF supports a long-lived persistent 

connection between protocol operations among the peers [11]. 

2) The Messages layer provides a simple, transport-independent framing 

mechanism for encoding RPCs and notifications. A NETCONF peer uses RPC-

based <rpc> and <rpc-reply> element tags to provide transport-protocol-

independent framing of NETCONF requests and responses [11].      
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3) The Operations layer defines a set of base protocol operations invoked as RPC 

methods with XML encoded parameters. The NETCONF protocol supports a 

small set of low level operations to manage device configurations and retrieve 

device state information. The base protocol provides operations to retrieve, 

configure, copy, and delete configuration data stores. Additional operations are 

provided, based on the capabilities advertised by the device [11]. 

4) The Content layer is used to provide information in a “human readable” format. 

It uses a data modeling language that helps in representing the model 

configuration and state data manipulated by the NETCONF, NETCONF RPCs, 

and NETCONF notifications [11]. 

YANG is the data modeling language for the NETCONF. The YANG data modeling 

language was developed by the NETMOD working group of the Internet Engineering 

Task Force (IETF) and was published as RFC 6020 in October 2010. The data modeling 

language can be used to model the configuration as well as state information of the 

network element(s). Furthermore, YANG can be used to define the format of the event 

notifications emitted by the network element and it allows the data model to define the 

signature of the RPCs that can be invoked on the network element via the NETCONF 

protocol [12]. 
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Figure 2.4   NETCONF and YANG Operation 

A YANG module defines a hierarchy of data that can be used for NETCONF-based 

operations, including configuration, state data, RPCs, and notifications. This allows a 

complete description of all data sent between a NETCONF client and server. 

The network devices have a system software component that is responsible for 

performing network operations. The software component operates based on the 

information that are stored in a config database. The device supporting NETCONF is 

composed of a NETCONF engine and a protocol stack that enables a NETCONF client to 

interact with the device and to operate on their data set, as shown in Figure 2.4. Any 

NETCONF client can initiate an RPC-based reliable socket communication to interface 

with the NETCONF engine running on a device. This reliable connection and the 

NETCONF protocol layer enable the client to operate on the data set. The information is 

broadly classified into metadata based on the category and purpose. The classified 
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metadata information is modeled and stored in the form of a YANG data set. The system 

software is responsible for updating the changes to the config database for enabling the 

services. 

On the one hand, each network device and service offers a wide variety of configurable 

parameters, and each configurable parameter contains a set of values to be chosen. The 

selection of proper values for these parameters depends not only on the network device 

itself, but also on the overall consistency among the network devices residing on the 

same network. The NETCONF protocol defines operations for managing network 

devices where configuration data can be retrieved, uploaded, manipulated, and deleted. 

The standard also defines the API as well as the connectivity requirements for 

NETCONF. It is not a new technology, as work started on this approximately 10 years 

ago, but what it gives us is an extensible and robust mechanism for managing network 

devices. Many commercial and open source controller support NETCONF as one SBI to 

interact and control the devices. The controller acts as a NETCONF agent (NETCONF 

client) that establishes an RPC communication with the underlying NETCONF device.   

 

2.4.2 OpenFlow 

OpenFlow is considered one of the first SDN standards maintained by the Open 

Networking Forum (ONF) [3]. An OpenFlow Switch, as shown in Figure 2.5, acts as an 

abstract packet processing machine and is composed of one or more flow tables and a 

group table, and the OpenFlow switch performs packet lookups and forwarding based on 

this table information. The switch processes the packets using a combination of the 

packet contents and switch configuration state. Through the OpenFlow protocol, it is 
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capable to manipulate the switch's configuration state as well as receiving certain switch 

events. The SDN controller is an element that speaks the OpenFlow messages to manage 

the configuration state of the switches, responds to events and updates the flow table. 

 

Figure 2.5   OpenFlow Switch [3] 

OpenFlow is a new method for controlling flows in the network. Networking has always 

focused on managing frames and packets with routing protocols, but applications do not 

use single packets to deliver services.  

 

Figure 2.6   Flow Rules [3] 

Rather, they exchange data between a server and a client, by creating a stream of packets 

from a source to a destination that is commonly known as a flow. OpenFlow defines a 
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standard for sending flow rules to network devices so that the control plane can add them 

to the flow table of the data plane entities. 

The flow rules, as shown in Figure 2.6, contain fields for elements such as source and 

destination MAC address, source and destination IP address, source and destination port 

number, VLAN tag, QoS (Quality of Service) and MPLS tags and more. The flow table is 

what all routers and switches use to dispatch frames or packets to their egress ports. Each 

flow has a priority in matching precedence and timeouts or idle time based on which the 

flow is expired by the switch. Counters are maintained for each flow entry that help in 

obtaining packet statistics [3].   

 

2.4.2.1 OpenFlow Flow Handling and Flow Matching 

Using the OpenFlow protocol, the controller(s) can add, update, and delete flow entries in 

flow tables, both reactively and proactively. The action is carried out on all packets 

received at the switch, based on the information stored in the flow tables. On receipt of a 

packet, the OpenFlow switch starts to perform a table lookup in the first flow table and, 

based on pipeline processing, may perform table lookups in other flow tables. A device 

performs the OpenFlow functions as shown in Figure 2.7, and discussed in detail below 

[3]. 
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Figure 2.7   Flow Matching [3] 

The process involved in matching the received packets and the flow tables are described 

below. 

 The matching starts at the first flow table and may continue to additional flow 

tables as represented in Figure 2.8. The flow tables of an OpenFlow switch are 

sequentially numbered, starting from 0 to n. Pipeline processing always starts at 

the first flow table: the packet is first matched against flow entries of flow table 0. 

Other flow tables may be used depending on the outcome of the match in the first 

table. 

 When a packet is matched with a flow entry, the instruction set included in that 

flow entry is executed. Those instructions can direct the packet to another flow 

table with the help of a goto statement and the same process of flow search can be 

repeated again. The flow entry can direct a packet to a flow table number greater 
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than its own flow table, in other words the pipeline processing can only go 

forward and not backwards. If the matching flow entry does not direct packets to 

another flow table, pipeline processing stops at this table and when pipeline 

processing stops, the packet is processed with its associated action executed. If no 

match is found in a flow table, the outcome depends on the configuration of the 

table miss flow entry: for example, the packet may be forwarded to the controller 

over the OpenFlow channel or dropped. 

 

Figure 2.8   Packet Matching Across Multiple Flow Tables [3] 

 

2.4.2.2 OpenFlow Messages 

The OpenFlow protocol creates a channel that connects each OpenFlow switch with a 

controller. This channel helps the controller to configure and manage the switch, to 

receive events from the switch, and to send packets out of the switch [3]. The OpenFlow 

protocol supports three types of messages. 

 Controller-to-Switch Messages are initiated by the controller and used to 

directly manage or inspect the state of the switch, they may or may not require a 

response from the switch [3].  
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 Asynchronous Messages are sent without a controller soliciting them from a 

switch. Switches send asynchronous messages to controllers to denote a packet 

arrival, switch state change, or error [3].  

 Symmetric Messages are sent without solicitation, in either direction, such as 

hello and echo message [3]. 

 

2.5 Related work 

This section provides a survey of literature works related to “Managing BoD Across 

Interconnected Data Center Using SDN” and “SDN in the Field of Optical Network”. 

These related works collective helped us to design an SDN optical network and further 

manage BoD request across interconnected optical data centers using SDN protocols.  

 

2.5.1 Managing Bandwidth on Demand Across Interconnected Data Center using 

SDN 

BoD has been studied for many years by both commercial carriers and members of the 

global research and education community [14]. Since its appearance, SDN has been 

considered as one of the most promising enablers for traffic engineering. The controller 

can be made aware of the entire network state and is also capable of making powerful 

advanced traffic engineering strategies. Many Internet service providers and network 

operators have started to deploy solutions based on SDN technologies, aiming to improve 

their network utilization or the QoS provided to their users [20]. 
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a) Towards a Carrier SDN: An Example for Elastic Inter Data Center Connectivity 

In [27] the authors proposed a network driven transfer mode for cloud operations in a 

carrier SDN environment. The carrier SDN was deployed between the interconnected 

data center middleware, managed by the ABNO (Application Based Network Operations) 

controller and an SDN controller. The SDN controller is in charge of managing inter data 

center connectivity. The ABNO is responsible for PCE (Path Computation Element) and 

policy enforcement. For a traffic operation, the cloud middleware requests for data 

transfers using its native semantic: amount of data to be transferred, data center 

destination and completion time. Notifications (similar to interruptions in computers) are 

sent from the ABNO to the SDN controller, if fewer than the required resources are 

available during the time of request. The SDN controller releases specific resources each 

time. Upon receiving a notification, the SDN controller takes a decision whether to 

increase the bitrate associated with a transfer. The source cloud manager sends a transfer 

request to the SDN controller in the specified native semantic format. Upon its reception, 

the SDN controller requests the ABNO controller to find the greatest spectrum width 

available, taking into account local policies and current Service Level Agreements (SLA) 

and sends the response back to the cloud manager with the best completion time. The 

controller interactively communicates with the cloud middleware and allocates 

bandwidth based on the resource availability and the bandwidth required to complete the 

services. The proposed network-driven model opens up the opportunity for network 

operators to implement policies to dynamically manage connections, the bitrate of a set of 

customers and to fulfill simultaneously their SLAs. 
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 The authors proposed an elastic inter data center connectivity for managing 

carrier SDN at layer 2 and layer 3 with the help of the label switched path.  

 In [27] the authors have used a native semantic for communication between cloud 

manager and SDN. Use of standard protocols supports interoperability and 

ensures common open network capabilities, as they are the key aspect of SDN. 

 

b) Using SDN Technology to Enable Cost Effective Bandwidth on Demand for 

Cloud Services 

In [20] the authors described the BoD in an evolved multilayer, SDN-based cloud 

services model for the WAN. The data centers comprise of switches that seamlessly route 

traffic through the multilayer network architecture. The authors deployed an SDN Wide 

Area Network Control and Management (SWAN-C&M) orchestrator. They also created a 

common API to manage the data center through SWAN-C&M, which helps in creating a 

dynamic cloud service environment. The SWAN-C&M software uses a modular 

architecture to make routing decisions, and it accesses the database containing the 

network topology. To configure the IP and subwavelength transport networks, the 

SWAN-C&M controller has modules that translate configuration into instructions for the 

appropriate interface in the equipment. The IP layer devices are being controlled using 

OpenFlow and a proprietary interface (JunOS), while the optical transport layer devices 

are controlled using CLI. The user interacts with SWAM-C&M using a REST web 

interface for the management of BoD connections. With the help of SWAN-C&M, the 

authors demonstrate load balancing and explicit routing and rerouting use cases that 

showcases the impact of SDN over the multilayer architecture.  
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 The authors classified the flows based on the rates requested and load-balances 

the traffic by allocating higher traffic rates at the optical layer and lower rates at 

the IP layer. 

 The ability to manage the connections across multiple network layers with the 

help of common SDN-based APIs provides inter data center services at lower cost 

and good performance [20]. 

 

c) Multi Domain Bandwidth on Demand Service Provisioning using SDN 

The proposed solution in [14] relies on a framework called DynPaC (Dynamic Path 

Computation), which can provide resilient L2 services taking into account the bandwidth 

and VLAN utilization constraints. The DynPaC framework has been implemented as an 

application running on the ONOS controller, which provides a basic set of services and 

features, such as device, link or host discovery. Once it obtains the topology information 

of the domain, DynPaC computes the best possible intra domain path taking into account 

the requested bandwidth, the VLAN availability and the already reserved services. In this 

regard, DynPaC differentiates Gold and Regular services, depending on whether they 

have a backup path guaranteed or not. Finally, in order to demonstrate the resilience 

capabilities of the DynPaC framework, they tear down one of the links used by both 

services. The framework forces the installation of the backup path for the Gold service. 

As a result, traffic exchanged using the Gold service continues without any disruption, 

whereas the traffic exchanged using the Regular service will be stopped. 

 The authors demonstrate BoD service provisioning in layer 2 devices using 

OpenFlow as communication protocol to manage the layer 2 devices.  
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 Both data centers are connected using the optical network interface at layer 0 and 

layer 1, managed using a proprietary control interface. The optical layer device 

does not exhibit dynamicity.   

 

d) SDN Based Multi-Class QoS-Guaranteed Inter Data Center Traffic 

Management 

In [21] the authors presented a utility-optimization-based joint bandwidth allocation for 

IP-based inter data center communication with multiple traffic classes that handles 

priorities between traffic classes and explicit consideration of the delay requirement that 

meets their end to end communication. In the test environment all the data centers are 

equipped with OpenFlow enabled switches that report the network events and traffic 

statistics to the central traffic management server. The bandwidth broker estimates the 

bandwidth demands of the application and reports the information to the traffic 

management server, which further allocates the bandwidth based on the classes and 

availability. This centralized approach provides flexibility to enable various traffic 

engineering goals. The authors state that the proposed algorithm advocates joint 

bandwidth allocation of multi class traffic, leading to a higher network bandwidth 

utilization.  

 The authors of [21] demonstrate that handling traffic based on multiple classes 

and priorities leads to higher bandwidth utilization.     

 The authors demonstrate BoD service provisioning and management of layer 2 

devices using OpenFlow as communication protocol. The same can be 

implemented on the optical backbone interconnecting data centers.   
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e) Bursting Data between Data Centers: Case for Transport SDN 

Data center WAN interconnects today are pre-allocated, static optical trunks of high 

capacity. These optical pipes carry aggregated packet traffic originating from within the 

data centers while routing decisions are made by devices at the data center edges. The 

authors of [25] propose an SDN-enabled optical transport architecture that meshes 

seamlessly with the deployment of SDN within the data centers. The proposed 

programmable architecture abstracts a core transport node into a programmable virtual 

switch that leverages the OpenFlow protocol for control. This not only allows multilayer, 

multidomain, multivendor orchestration, but also allows cleaner, programmable network 

abstractions. The network can be viewed as a pool of intelligent bandwidth, with resource 

reservation and path selection done end-to-end in a technology-agnostic fashion. The 

authors proposed two modes of operation:  

a) Implicit Mode: In this mode of operation, the SDN controller has a view of only the 

edge nodes in every transport domain.  

b) Explicit Mode: Here, the complete topology of every network element across 

domains is exposed to the controller.  

 The experiments demonstrate the use case of an OpenFlow-enabled optical virtual 

switch managing a small OTN for a big data application.  

 With appropriate extensions to OpenFlow, they discuss how SDN brings the 

programmability and flexibility to packet optical data center interconnects which 

can be substantial in solving some of the complex multivendor, multilayer, 

multidomain issues that hybrid clouds raise. 
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The review of related works with respect to BoD in an SDN environment focuses mainly 

on introducing flexibility and manageability at higher layers in the network. When we 

closely look at the proposed solutions, the optical network infrastructures are either 

treated as fixed physical links [14][27] or have very minimal instruction for adding a flow 

[20] by using a non-SDN protocol. The authors in [14][20][21][27] talk about how SDN 

helped them to manage data center interconnections at the IP layer and their benefits. The 

optical network entities (layer 0 and layer 1) can also be managed by SDN [25]. In all the 

literatures reviewed above the bandwidth requests are handled based on any one of the 

classification factors such as priorities, class of services or rates. 

 

2.5.2 SDN in the Field of Optical Network 

SDN as a newer technology has progressed its advancement in optical networks and still 

faces some trends and challenges in defining its potential in the optical networks. In this 

section we review some of the contributions related to SDN optical networks that show 

us the potential, and help us to design our system.      

 

a) DWDM Optical Extension to the Transport SDN Controller and Towards 

Widespread SDN Adoption: Need for Synergy between Photonics and SDN 

Within the Data Center 

Transport networks are evolving to be more and more automated and driven by software 

to minimize the operational costs and to provide new services and applications in a 

quicker and more efficient way. In [19] the author claims that, if one wants to extend the 
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SDN approach to the physical photonic layer, then the SDN controller must take the 

analogue nature of the optical transmission into account. In the transport networks the 

physical impairments of light paths in optical networks can limit the connections that are 

feasible using SDN. The problem in evaluating the feasibility of an optical connection 

becomes particularly difficult in the case of mixed channel types and rates and where the 

optical links and photonics with different properties have to be considered.  

In [19][22] the authors propose a procedure to suggest the protocol extensions that can 

capture, process and set power levels in the optical networks. This procedure mainly 

appropriates in dynamic scenarios, in which the opportunity to adjust the channel power 

levels on the fly could allow for the introduction of new optical traffic which would not 

otherwise be feasible, all the while ensuring that the existing connections remains 

unaffected. 

The authors in [19][22] look at the use of photonics in future data center networking and 

stresses on the need for SDN Controller and its applicability. Introducing 

programmability, virtualization, end to end optimization, able to control, manage and 

automate these elements offers an elastic and agile data center.  

 The authors in [19][22] talk about the need and advantages of SDN in the 

transport network, and also state the challenges associated with an 

implementation of the SDN transport network considering the nature of the 

optical backbone. 

 The authors also propose solutions that can be implemented to address the future 

of the transport optical network along the lines of the SDN technology. 
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b) NETCONF as Proactive OAM Protocol  

Francesco Paolucci et al [23] talk about building a software defined elastic optical 

network that offer a high degree of flexibility in enabling dynamic configurable light path 

provisioning and re-optimization. In order to guarantee Quality of Transmission (QoT), 

novel Operation Administration and Maintenance (OAM) solutions are necessary with 

respect to existing standard management protocols. The authors proposed the NETCONF 

protocol, typically used for SDN-based node configuration purposes. NETCONF serves 

as an OAM protocol, in order to achieve a high degree of convergence and limit the 

number of utilized protocols.  

 The authors have implemented NETCONF as an OAM protocol to deal with 

optical power level, alarms and statistics.  

 The literature does not provide any experiments to demonstrate NETCONF as 

SBI protocol for managing optical network. The authors’ demonstration exhibits 

the potential of NETCONF to act as an SBI to manage the optical network.   

 

c) An Optical SDN Controller for Transport Network Virtualization and 

Autonomic Operation  

Marcos Siqueira et al [26] proposed a Software Defined Optical Transport Network (SD-

OTN) architecture. The system architecture is comprised of Optical Network Elements 

(O-NEs) and an Optical SDN Controller (O-SDNC). The O-SDNC includes a network 

abstraction layer allowing the implementation of cognitive controls and policies for 

autonomous operation, based on the global network view. Additionally, the controller 
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implements a virtualized Generalized Multiprotocol Label Switching (GMPLS) control 

plane, offloading and simplifying the network elements, while unlocking the 

implementation of new services such as optical VPNs, optical network slicing, and 

keeping the standard Optical Internetworking Forum (OIF) interfaces. The concepts have 

been implemented and validated in a real testbed network formed by five DWDM nodes 

equipped with flexi grid wavelength selective switching ROADMs (Reconfigurable 

Optical Add Drop Multiplexers).  

The SDN controller provides a NETCONF/REST interface for plugging in control 

applications to perform specific tasks by taking advantage of the network abstraction. By 

modeling these network entities using the NETCONF modeling language YANG, the 

authors state that they gain the possibility to export or transform the data needed for their 

configuration, as well as to model their interconnections and restrictions. 

 The proposed optical SDN architecture in [26] is managed using NETCONF as an 

interfacing protocol to manage the ROADM functionality of the O-NEs. The 

same approach can be used to manage the optical ports and multiplexing. 

 The experiments showcase the optical network being managed using NETCONF 

as a controlling interface, the same could be used to manage the bandwidth and 

connections across the data centers and manage each data center separately.   

 

d) Data Center Optical Networks (DCON) with OpenFlow based Software Defined 

Networking  

The authors of [28] propose the flexi grid optical network as the solution for managing 

inter data center networks. The environment is composed of an enhanced Software 
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Defined Networking (eSDN) control architecture designed for the application scenario. 

The eSDN architecture over flexi grid optical networks is composed of the distributed 

data center networks that are interconnected with dynamic, tunable and efficient spectral 

optical resources, which are deployed with the application (e.g., CPU and memory) and 

network stratum resources respectively. Each stratum resource is software defined with 

OpenFlow and controlled by the Application Controller (AC) and the Transport 

Controller (TC) respectively in a unified manner. To control the heterogeneous networks 

for data center service migration with an extended OpenFlow Protocol, OpenFlow 

enabled flexi grid optical device nodes with OpenFlow Protocol agent software are 

implemented. 

 The proposed solution has an AC that manages the business application logic and 

the TC to manage the optical connection between the interconnected optical 

nodes. 

 The authors have implemented an extended OpenFlow Protocol to support optical 

switching of spectrum randomly from 50 GHz to 400 GHz based on the traffic 

request.    

To summarize the preceding reviews, due to the demand, the networks have to scale out 

with high capacities, ensure end-to-end guarantees and an ability to be agile and elastic. 

The authors in [22] claim that the future data center networks will be built to be more 

dynamic in nature. As a part of this evolution the transport networks are evolving to be 

more and more automated and driven by software to minimize the operational costs and 

to provide new services and applications in a quicker and more efficient way [19]. The 

authors in [23][26] propose NETCONF as an interface for managing the optical network. 



 39 

On the other hand, ONF is working on OpenFlow extensions for optical networks. The 

authors in [28] have demonstrated optical spectrum switching using a proprietary 

extended OpenFlow interface. Few references use traditional NETCONF protocol for 

managing the optical network and a few other references use an extended OpenFlow 

environment to manage the optical network in an SDN environment.   

  

2.6 Motivation 

To conclude from our review of background work, SDN plays a significant role in 

shaping today’s network infrastructure. The key attributes for migrating towards SDN are 

programmability, openness, heterogeneity and maintainability. Moreover, SDN also 

facilitates the re-architecture required to address the increasing demand on the network 

due to the dynamic connectivity [28]. From the background study, we do observe that 

traditional optical networks are usually more static in nature and each device is typically 

managed individually. At the same time, it becomes unfeasible to manage large networks 

manually as this results in an error-prone process. The SD-OTN is being in the spotlight 

in recent times, as the early start of SDN mainly focused on IP-based networks [14] [21]. 

As more network operators adopt open SDN, there are multiple contributions and 

proposals that facilitate the migration of existing networks and services to SDN. The 

SBIs play a vital role in managing the data plane devices in an SDN environment. The 

ONF suggests OpenFlow as SBI to manage the network devices in an SDN environment. 

From the literature review, we observed that the OpenFlow protocol can be implemented 

over an optical network by defining optical extensions [28] for supporting the optical data 

plane devices. Our review of related works also showcases the potential of NETCONF as 
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an active protocol for managing optical data plane devices [24][27]. We do realize that, 

as a result of technological advancement in the area of cloud computing, big data, 

virtualization, etc., the data centers grew bigger in size and numbers. SDN has the 

potential to address the problem of BoD requirements across data centers as it offers 

centralized network control architecture and unified protocols for managing the network 

entities. The review of related works showcases that optical data centers interconnection 

are treated as static pipes and on the other hand, the IP layer devices demonstrate the 

potential of SDN in managing the BoD. There exist also efforts to introducing SDN into 

the optical network(s) and to manage them. In our research works we demonstrate the 

possibility to manage BoD between the data centers (i.e. optical inter data center 

communications) using an open source SDN controller with two different protocol 

implementations supported as SBI. They are: the ONF recommended OpenFlow and the 

other is the traditional NETCONF protocol supported as SBIs in the SDN environment. 

The literature on SDN optical network predominately talking about any one of the both 

protocols as SBI based on their implementation. There is no literature that compares both 

these protocols. The motivation of the thesis is to compare and provide a quantitative and 

qualitative analysis of both these protocols operating in an optical SDN environment 

managing BoD across interconnected data centers.     
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Chapter  3:     Managing the Interconnected Optical Data Centers Using 

Software Defined Networking    

This chapter begins by stating the requirements and introduces the BTI7800 optical NE. 

It presents the implementation of NETCONF and OpenFlow as SBIs to manage the 

BTI7800 network element using the ODL controller. This chapter describes the working 

of both SBIs. 

 

3.1 Requirement Analysis   

First of all, it is important to understand the requirements of the research work. Chapter 2 

concludes with motivation towards SDN in managing optical data center interconnection. 

The BTI7800 is a layer zero and layer one optical device that offers data center 

interconnection as a service. The BTI7800 is a traditional network device that is managed 

using traditional management protocols. 

In an SDN environment, the BTI7800 is treated as a data plane device. The major tasks 

involved are listed below: 

1) The BTI7800 supports XML-based NETCONF as one of the network 

management protocols in the traditional environment. We need to support 

NETCONF as a SBI to manage the BTI7800 using the ODL controller. In order 

for the NETCONF connector within the ODL controller to communicate with the 

BTI7800 device, the ODL NETCONF connector is provided with the details 

about the BTI7800 device that needs to be managed.    

2) The central component of SDN is the protocol being developed by the Open 

Networking Forum (ONF), called OpenFlow, which communicates flow 
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information from a centralized controller to the abstracted data plane. One of the 

tasks is to develop an optical extension to the OpenFlow specification that allows 

control of BTI7800 using an OpenFlow controller. 

3) To develop an application layer that communicates the BoD requirements to the 

control plane. Using the implemented SBIs (NETCONF or OpenFlow), the 

control plane manages the BTI7800 data plane devices that act as an edge node 

for each data center that are interconnected. The application layer helps the 

control plane to make decisions about managing the bandwidth allocations based 

on the nature of traffic across different users located at both data centers.    

 

 

Figure 3.1   Architecture Overview 

To achieve the main goal of the thesis is to evaluate both protocols implemented as SBI, 

it is essential to support SDN capability in the BTI7800 device by supporting NETCONF 
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and OpenFlow as SBIs as shown in Figure 3.1. Therefore, the optical layer 

interconnecting data centers can be managed effectively using SDN controller. 

 

3.2 BTI7800 Network Element  

Our research work is mainly focused on the BTI7800 network elements that interconnects 

data centers. Therefore, we present the high level architecture of the equipment. The 

BTI7800 architecture is majorly composed of three components as shown in Figure 3.2. 

The Chassis Management Module (CMM) is a software control module, UFM is the host 

of optics and optical ports. HA is a fabricated silicon hardware component. 

 CMM – It is a Linux-based CMM of the device. It is composed of the database, 

management services and other required services. The cdb is a configuration 

database that stores information about the device. The confd acts as a 

management module. A tailored hardware-specific Linux is supported.  

 UFM - At the heart of the BTI7800 are the Universal Forwarding Modules 

(UFMs) hosting optics, configurable for muxponder and transponder applications. 

The BICs is known as BTI Interface Cards that holds the SFP + and CFP. The 

module supports  

o 12 ports of 10 GE for intra data center connection (SFP +). 

o 1 port 100 GE for inter data center connection (CFP). 

 HA – The hardware module comprises of three components as shown in Figure 

3.2. The framer performs synchronization, frame overhead processing, 

interleaving, parity bit monitoring, etc. The packet forward engine is responsible 
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for routing the packets received based on the provisioned cross-connects. The clos 

fabric is a silicon chip that manages the hardware interfaces and the tunnels.     

 

Figure 3.2   BTI7800 Architecture 

 

3.3 Implementation of NETCONF as SouthBound Interface for Controlling 

BTI7800 

We discussed the NETCONF protocol earlier in Chapter 2.  An ODL SDN Controller 

operates both as NETCONF server and as NETCONF client. As a server, the controller 

manages general network communication and processes RPCs. As a client, the controller 

connects to the NETCONF-enabled device(s) and manages them through the NETCONF 

connector(s). We need to connect the NETCONF agents that are residing within the ODL 

controller and BTI7800 device. 
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3.3.1 Connecting BTI7800 Device with ODL Using NETCONF Connector   

There are multiple ways in which the ODL controller and data plane devices can be 

connected. It depends on the behavior of the data plane device: whether and how it 

advertises its YANG capabilities as expected by the ODL controller. The BTI7800 device 

falls under the category of “NETCONF device does not support IETF-NETCONF-

monitoring and it does not list its YANG models as capabilities in hello message “[8]. 

The BTI7800 device has a vast set of YANG modules ranging from 70 to 100 files based 

on the software load and features supported by the equipment. Each file is a YANG 

dataset and it either represents a module or sub-module YANG description of the device 

and is termed as the YANG capability.  

NETCONF as a standard helps to configure the optical ports, interfaces, cross-connects 

etc. But the YANG data model helps in storing information regarding the BTI7800 

optical ports, interfaces, cross-connects and other equipment details. Using the 

NETCONF protocol it is able to modify those configurations. The existing BTI7800 

YANG data model along with the NETCONF as a configuration protocol supports the 

required optical extension and capabilities. For the NETCONF agent within the ODL to 

successfully connect with the data plane device, the BTI7800 YANG files have to be 

placed within the ODL as mentioned in the category “NETCONF device does not support 

IETF-NETCONF-monitoring and it does not list its YANG models as capabilities in the 

hello message “[8]. All the YANG files supported by the BTI7800 have to be imported 

within the ODL controller without any import error. The NETCONF connector uses 

those YANG files for identifying and interacting with the devices. 
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3.3.2 Establishing NETCONF Connection between NETCONF Connector and 

BTI7800 

The ODL NETCONF connector establishes a NETCONF connection over SSH for 

exchanging complete capabilities. The first step is to establish a secure connection and 

then to exchange capabilities. For the NETCONF connector residing within the ODL to 

establish a connection with the data plane device, it is essential to educate the connector 

with the required information about the device. By means of the REST API the 

NETCONF connector is provided with the necessary information about the device such 

as name, IP address, port number, username and password, etc. These information helps 

the ODL NETCONF connector to identify the device in the network and further proceed 

with establishing the secure connection as described below and shown in Figure 3.3. 

 

Figure 3.3   NETCONF Session Establishment 
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1) The ODL NETCONF connector establishes an SSH transport connection using 

the SSH transport protocol to the BTI7800. Both entities will exchange keys for 

message integrity and encryption. 

2) The NETCONF connector will then invoke the ssh-userauth service to 

authenticate the connection. Once the connection has been successfully 

authenticated, the NETCONF connector will invoke the ssh-connection service, 

also known as the SSH connection protocol. 

3) The username provided in the SSH implementation will be used by the 

NETCONF connector to identify the devices.  If the username is not representable 

in XML, the SSH session will be dropped. 

4) After the ssh-connection service is established by the BTI7800, the NETCONF 

connector will open a channel of type session, which will result in an SSH 

session. Once the SSH session has been established, the NETCONF connector 

will invoke BTI7800 as an SSH subsystem called "netconf".   

 

3.3.3 Capabilities Exchange  

Once the secure connection is established, the next step is to exchange the capabilities as 

shown in Figure 3.4. The NETCONF connector will send an XML request containing 

<rpc> elements to the BTI7800, and the device will respond with the XML response 

containing <rpc-reply> elements [11][12]: 
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Figure 3.4   NETCONF Device Capability Exchange 
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1) It is essential for the ODL NETCONF connector to be aware of the capabilities 

supported by the NETCONF device. The ODL NETCONF connector is not aware 

of the list of YANG capabilities supported by the BTI7800 device, as they do not 

advertise their capabilities. The user needs to provide the NETCONF connector 

with the list of supported YANG capabilities using the REST API.  

2) Now the connector is aware of the capabilities supported by the NETCONF 

device. It is also essential for the NETCONF connector to be aware of the YANG 

dataset or in other words the content of each capability supported. The user needs 

to store the contents of all the YANG files in the ODL cache, as the information is 

not advertised by the device. 

3) For each YANG capability listed in the payload, the NETCONF connector 

performs the <rpc> get-schema operation on the BTI7800 device to obtain the 

YANG schema content.  

4)  Further, it validates the content of each YANG file stored in the ODL cache to 

match the content of <rpc_reply> from the device. 

5) If the schema matches, the controller fetches the current operational state of the 

device corresponding to that schema. The controller retrieves and store the 

operational state of the information using NETCONF <rpc> get-config element. 

6) When all the capabilities and their corresponding YANG contents are matched, 

the device will be in connected state with the ODL NETCONF connector.   

7) The process described above helps in validating the YANG capabilities and its 

contents provided by the user (the list of capabilities and their corresponding 

YANG content). This process also helps the controller in abstracting the 
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information about the device (device data model and operational state) within the 

controller. 

8) The device cannot successfully connect to the NETCONF connector if any of the 

following issues are faced: 

a. Any of the listed YANG capability provided as input to the NETCONF 

connector is not supported by the device.  

b. A capability is supported, but the contents of the YANG file within the 

ODL cache mismatches from the fetched information from the device 

using <rpc> get-schema. 

9) It is possible to view the YANG data set and manage the connected device by 

performing modifications on the operational state of the device by issuing the 

REST API request to the controller.    

10) The flows are termed as cross-connects in the YANG dataset. The controller has 

verified all YANG models and has abstracted the operational state of the device. 

The operational state of the controller stores the provisioned cross-connects 

within the device. The current state of the cross-connect can be modified by using 

the REST API calls to access the operational state of the device, and post 

modifications to the operational state. The BTI7800 device receives the 

modification in terms of NETCONF RPC <edit-config> using the NETCONF 

communication subsystem established in Section 3.3.2. If the device can 

successfully commit the received flow modification to the cdb, it returns success, 

else it returns failure to the controller.    
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3.3.4 Managing the BTI7800 using NETCONF 

Once the SDN controller is aware about the data model and the operational state of a 

device in the network, the next step is to allow the controller to manage that device. The 

ODL controller stores the operational state information about the device in two different 

states, operational and config.  

 Operational -> State in which the underlying devices are operating.    

 Config -> Allows user to modify and work on the abstracted information. Once 

the changes are successfully committed to the respective device, the operational 

state is automatically updated. 
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Figure 3.5   Managing the Device using NETCONF 

The detailed description about how the NETCONF protocol as a SBI can be used to 

manage the device is shown in Figure 3.5 and described below. 

1) We have discussed how the BTI7800 device can be connected with the ODL 

NETCONF connector in Section 3.3.2. The cdb is a database that stores the 

operational state or configuration of the BTI7800 device as discussed in Section 

3.3.3.  

2) The information stored in operational and config state within the controller and 

cdb within the device is the same. 

3) When a flow modification is performed with the help of the REST API, the 

modification is stored in the config state of the controller. 
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4) Immediately the NETCONF connector within the controller issues a NETCONF 

<rpc> edit-config to the BTI7800 device. If the modification were accommodated 

successfully the device replies success, else it replies failure. 

5) If the response from the device is success, the operational state is modified. If the 

response is a failure, the config state will roll back the modification. 

 

3.4 Implementation of OpenFlow as SouthBound Interface for Controlling 

BTI7800 

In order to implement the OpenFlow standard within BTI7800 routers, the OpenVSwitch 

open source software [9] is considered. The OpenVSwitch is a production quality, 

multilayer virtual switch licensed under the open source Apache 2.0 license.  It is 

designed to enable massive network automation through programmatic extension based 

on the OpenFlow standard. 

3.4.1 BTI7800 OpenVSwitch SDN Architecture 

The OpenFlow specification standard Version 1.3 does not accommodate the required 

optical extensions to represent the optical layer data plane devices [6]. The optical 

extension is developed by modifying the open source OpenVswitch code to support the 

BTI7800 devices. As shown in Figure 3.6, the optical extension supported by 

OpenVSwitch was ported on the CMM of the BTI7800. The modified BTI OpenVSwitch 

plugin helps in creating ports and flow connections that are referenced using OpenFlow 

protocol and managed by an OpenFlow controller such as ODL [3].  In the subsequent 

section, we present the OpenFlow optical extension developed to support BTI7800 
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devices. The OpenFlow protocol was not implemented from the scratch. The open source 

OpenVSwitch code was modified to support the BTI7800 optical extension. 

 

 

Figure 3.6   BTI7800 OpenVSwitch Architecture Overview 

 

3.4.2 OpenFlow Optical Extension 

The OpenFlow specification V1.3 released by the ONF is designed to support IP layer 

devices [3]. It does not accommodate any optical layer information to support the 

BTI7800 optical network elements. The transport extensions to OpenFlow is published 
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by the ONF OTWG under TS-022 [6]. The OpenVSwich opensource library does not 

support transport extensions specified by the OTWG. The transport extensions required 

to support BTI7800 network elements are built within OpenVSwitch.    

The OpenFlow messages are exchanged between the OpenFlow supported devices and 

the controller. The OpenFlow message structures or the format of the message(s) 

exchanged between both entities has to strictly adhere to the OpenFlow standard. So it is 

not possible to modify the existing structure and by doing so the controller will not be 

able to decode the information properly, as the message formats at both ends will not be 

decoded in similar fashion. We will discuss how we utilized the existing OpenFlow 

message(s) to accommodate the optical extensions required for the BTI7800 without 

changing the message formats.  

The connection establishment procedure involves some version and capability 

negotiation, which has to be done before any other messages can be exchanged. 

Therefore, we capture the connection establishment procedure in the state machine as 

shown in Figure 3.7. 

 The hello message does not require any changes for BTI7800, the hello message 

specified in the OpenFlow specification [3] was used. 

 The second step after the hello message is the connection establishment. As a part 

of the connection establishment process, the information about the optical ports 

supported by the BTI7800 device have to be communicated to the controller. The 

“portstatus” are asynchronous events sent from the switch to the controller 

indicating the status of the ports. 
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Figure 3.7   Connection Establishment Procedure 
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3.4.2.1 Port Status 

struct ofp_port_status 

uint32_t port_no The port_no field uniquely identifies a port within a switch. 

OpenVSwitch assigns integer from 1. The existing logic was 

reused. 

uint8_t hw_addr[OFP_ETH_ALE] 

OFP_ETH_ALEN = 16 

A unique MAC address assigned by the BTI7800 Linux kernel 

char name 

[OFP_MAX_PORT_NAME_LE] 

/* Specifies the BTI port */ 

 

uint32_t config  /* Current state of the physical port. These are not 

configurable from the controller. */ 

 

The curr, advertised, supported, and peer fields indicate link modes (speed and duplexity), link type 

(copper/fiber) and link features [3].  

uint32_t state OFPPF_FIBER = 1 << 12, /* Fiber medium. */ 

All bits zeroed if unsupported or unavailable and the bitrate is specified in kbps [3]. 

uint32_t curr 0 

uint32_t advertised 0 

uint32_t supported 0 

uint32_t peer 0 

uint32_t curr_speed 10GE = 10000000 

100G = 100000000      /* Only these two speeds are supported 

by the device */ 

uint32_t max_speed 10GE = 10000000 

100G = 100000000 

/* Only these two speeds are supported by the device */ 

Table 3.1    OpenFlow Port Status Structure 

The Port status message structure is represented in Figure 3.8(a). The header field is not 

modified and is implemented according to the OpenFlow standard [3]. The reason field 

specifies if it is an add, delete or modify operation. When the device establishes the 

connection with the controller, the information is communicated to the controller by 

specifying the reason field as add. The modify/delete operation on the ports are supported 
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to communicate if any changes are made while being connected with the controller [3]. 

The structure used to represent the status of the port is represented in Figure 3.8(b), and 

discussed in Table 3.1. 

 

 

 

 

 

Figure 3.8(a)   OpenFlow Port Status Message 

 

Figure 3.8(b)   OpenFlow Port Status Message 

 

We used the name field to identify the BTI7800 ports and any other names not on the list 

will not be accepted. The state field specifies it is a fiber optics [3], the optional field was 

used to specify the capacity of the link.  
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3.4.2.2 Flow Modification 

struct ofp_flow_mod  

struct ofp_header header OpenFlow Standard  

uint64_t cookie OpenFlow Standard 

uint64_t cookie_mask OpenFlow Standard 

uint8_t table_id 0x00 to 0xFF (Any table can be used) 

uint8_t command /* OpenFlow structure used enum ofp_flow_mod_command */ 

Applicable: 

OFPFC_ADD = 0, /* New flow. */ 

OFPFC_MODIFY_STRICT = 2, /* Modify entry strictly matching 

wildcards and priority. */ 

OFPFC_DELETE_STRICT = 4, /* Delete entry strictly matching 

wildcards and priority. */ 

uint16_t idle_timeout NA 

uint16_t hard_timeout NA 

uint16_t priority NA 

uint32_t buffer_id NA 

uint32_t out_port Specify the uint32_t port_no (refer to Table 3.1) information about one 

end port 

uint32_t out_group NA 

uint16_t flags NA 

uint8_t pad[2]  

struct ofp_match match Refer the Standard [3]  (No Change, default values according to the 

specification used) 

struct ofp_instruction 

instructions[0] 

Refer to the Figure 3.10 and Table 3.3 

Table 3.2    OpenFlow Flow Modification Structure 

The controller is aware of the ports available within the device. Now the flow rules for 

rerouting the packets within the device have to be communicated. The OpenFlow flow 

modification message [3] implemented to support the BTI7800 device is discussed 

below. In the BTI7800, the nature of the flow is to link two ports, known as cross-
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connect. The information about the port from Table 3.1, uint32_t port_no uniquely 

identifies each port and is used to specify the port that needs to be cross-connected. 

The flow modification information has to contain two end port information (uint32_t 

port_no) referenced in struct ofp_port_status (refer to Table 3.1) and their operation (add, 

modify, delete). The flow modification message is represented in Figure 3.9 and 

discussed in Table 3.2. 

 

Figure 3.9   OpenFlow Flow Modification Message 

 

Figure 3.10   Flow Instruction Message 

The instruction field specifies what action has to be taken at the port specified in uint32_t 

out_port (refer to Table3.2). The flow instruction structure is represented in Figure 3.10 
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and discussed in Table 3.3, and it is a part of the OpenFlow Flow Modification Structure 

represented in Table 3.2. 

struct ofp_instruction 

uint16_t type There are different flow instruction types supported, refer to ofp_instruction_type [3]. 

Only the following type belonging to ofp_instruction_type is applicable. 

OFPIT_APPLY_ACTIONS = 4, /* Applies the action(s) immediately */ 

uint16_t len /* Length of this struct in bytes. */  

Payload struct ofp_action_output 

uint16_t type /* OFPAT_OUTPUT. */ [3] 

uint16_t len Length of the message 

uint32_t port Specify the uint32_t port_no (refer to 

Table 3.1) information about other end 

port 

uint16_t max_len Always set to zero [3] 

uint8_t pad[6]  
 

Table 3.3    Flow Instruction Structure 

 

3.4.2.3 Launching OpenFlow Plugin 

As specified earlier, the BTI7800 device supports a customized Linux environment with 

very few support packages. The required dependencies [9] for compiling the modified 

OpenVSwitch code are installed and the binaries created are linked to the existing 

BTI7800 binaries.   

 

3.4.3 BTI7800 OpenVSwitch Architecture 

The implemented OpenVSwitch architecture is depicted in Figure 3.11. The 

OpenVSwitch modules are broadly classified into management, user space and kernel 

space module. 
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Figure 3.11   BTI7800 OpenVSwitch OpenFlow Architecture 

3.4.3.1 Management 

The Management module of the OpenVSwitch is composed of utilities that help to 

configure the OpenFlow supported BTI7800 devices and they offer a high level interface 

for users to provide inputs. They also provide an interface to interact with the ovsdb - 

server module. 

 ovs-appctl - The utility for configuring and running the OpenVSwitch process. 

The OpenVSwitch runs as a separate Linux process and it also manages the 

OpenVSwitch process as part of the BTI7800 switch daemon. The BTI7800 

switch daemon is the background parent process that controls the device and the 

host of all the sub processes required to support the various switch functionality. 

It is essential to host the OpenVSwitch process as a sub process, to ensure 

effective memory allocation and inter process communication.   
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 ovs-ofctl - The utility for administering the OpenFlow supported BTI7800 

switches and to manage the connections with controllers.  

 ovs-dpctl - The utility for administering BTI7800 datapaths. 

 ovs-vsctl - The utility for querying and configuring the ovs-vswitchd to support 

BTI7800 ports and interfaces. 

 ovsdb-client - The CLI to ovsdb-server running in user space. 

The above listed utilities are supported by the OpenVSwitch, the support was added by 

modifying the OpenVSwitch code to function in the BTI7800 environment.    

 

3.4.3.2 User Space 

The user space consists of the vswitchd module, that functions as an OpenVSwitch 

process. It is responsible for managing and controlling the OpenVSwitch process in the 

device. It connects with the ovsdb-server. The vswitchd is divided into two sub modules 

as shown in Figure 3.12 and described below.   

ovs-vswitchd - It is the OpenVSwitch user space program, which creates the vswitchd 

process. The CMM module of BTI7800 is composed of multiple different processes as a 

part of the BTI7800 switch daemons. The OpenVSwitch process is handled to be a part of 

BTI7800 switch.   
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Figure 3.12   BTI OpenVSwitch User Space Architecture 

ovs-vswitchd - It is the OpenVSwitch user space program, which creates the vswitchd 

process. The CMM module of BTI7800 is composed of multiple different processes as a 

part of the BTI7800 switch daemons. The OpenVSwitch process is handled to be a part of 

BTI7800 switch.   

ovs-proto – It is the OpenVSwitch library that implements an OpenFlow specification. It 

is responsible for establishing the communication with the SDN controller. It receives the 

configuration and modification from the utilities discussed in Section 3.4.3.1 or as 

OpenFlow message discussed in Section 3.4.2. The ovs-proto translates the received 

information as input(s) to the ovsdb and to the kernel space and handles them 

accordingly. 
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 ofproto - It is responsible for establishing communication with the SDN 

controller. It handles the OpenFlow messages and communicates with the 

controller. 

 BTI netdev – It is the thin library layer that links the actual ports and interfaces 

on the BTI7800 and their corresponding OpenFlow references. With the help of 

BTI netdev it is possible to open BTI7800 device ports.  

 BTI ofproto provider – It supports flow table entries. It receives and validates 

the flow information before passing it on to lower layers. It also writes the 

validated flow information to ovsdb. 

 BTI dpif provider – BTI dpif provider is a software message queue 

implementation that interfaces with the confd module of the existing BTI7800 

architecture. Any information from the upper layer (the BTI ofproto provider or 

the BTI netdev) is coined as message and posted to confd. 

    

3.4.3.3 Kernel Space 

The confd is a management module present in the BTI7800, it supports the API for 

making changes onto the device hardware. The confd is the module of BTI7800 that 

receives the messages from the BTI ofproto provider. The confd will process the 

information and as a result the flows or port will be modified accordingly. The confd 

configures the cdb based on the changes triggered by the BTI OpenVSwitch plugin. As 

discussed earlier, cdb is the configuration database of the BTI7800. The flow rules are 

placed in the cdb as shown in Figure 3.11 for two reasons: 
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1) Fast processing of the packet, as it minimizes the effort of multiple context 

switching and the effort involved in flow matching across the tables.     

2) To ensure reuse of the code and device architecture. When the packets are 

received on the interface the routing of the packets will be done by the interface. 

 

3.4.4 BTI7800 OpenVSwitch Operation 

Figure 3.13 shows the various operations involved in the OpenFlow supported BTI7800, 

and are described in detailed below.  

OVS Process creation 

1) The OpenVSwitch (vswitchd) process starts automatically when the device boots up. 

2) The vswitchd process automatically creates the data structure representing the optical 

ports supported by the BTI7800 and references them using OpenFlow. 

BTI7800 port creation 

3) The information about the ports are received at the ovs-ofproto. The BTI netdev sub 

module within the ovs-ofproto validates and processes the information and also 

updates the ovsdb.  

4) The BTI dpif provider within the ovs-proto will post the messages to confd (ovs-

kernel) and will provision the hardware accordingly.    

5) It is also possible for the users to view and modify the ports manually using BTI ovs-

vsctl management utilities through the CLI. 

Controller Information 

6) The user provides the controller information (IP address and port number) using the 

management utility function ovs-ofctl discussed in Section 3.4.3.1.  
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7) The ovs-ofproto uses that information to connect to the controller and establishes a 

secure protocol communication for exchanging OpenFlow messages. 

8) If the socket communication is established successfully the controller is capable of 

managing the device using OpenFlow.  

 

 

Figure 3.13   BTI7800 OpenVSwitch Process 

Add Flows 

To provide a detailed understanding of flow modifications, the sequence is also explained 

with a state diagram 
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9) Through the ODL REST API it is possible to provide input to the controller for flow 

modification. The controller issues a controller-to-switch message indicating there is 

modify-state information to the connected BTI7800 device as shown in Figure 3.14. 

10) The message is received at vswitchd, the ofproto within vswitchd handles the 

messages. The received information is validated by the BTI ofproto provider. If 

successful, the flow is added into the ovsdb and flow table, else it returns failure. 

11) The BTI dpif provider receives the flow information and a message is posted to the 

message queue and it returns success.   

12) The message is received in the kernel space; the message handler provides the 

message content to confd. The confd updates the cdb and other existing BTI7800 

device modules respectively.     

 

Figure 3.14   OpenFlow Flow Modification State Diagram 
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3.4.5 Managing the BTI7800 using OpenFlow 

We discussed the BTI OpenFlow plugin architecture and its functionality. Figure 3.15 

represents the OpenFlow messages between the ODL controller and OpenFlow supported 

BTI7800 devices. 

1) Once the BTI7800 switch is aware of the controller IP address, it initiates a TCP 

connection on port 6633 to connect to the controller. 

2) Once the TCP communication is established, both the controller and the BTI7800 

exchange OPFT_HELLO [3] messages with supporting OpenFlow versions. The 

hello message and corresponding echo hello message are symmetric messages in 

OpenFlow. 

3) The flow modification (add, update, delete) operation can be performed using the 

REST API supported by the ODL controller. 

4) The ODL informs the connected OpenFlow BTI7800 device about the modification 

through OpenFlow messages. 

5) The information is updated in the ovsdb and in the cdb as discussed in Section 3.4.4. 

6) If the response is success the operational state of the device is updated, else the 

modification stored in the config state is rolled back. 
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Figure 3.15   OpenFlow Interaction between the Controller and BTI7800 

 

3.5 Managing Data Center Interconnection 

Until now we have discussed managing a single device using NETCONF and OpenFlow 

as the SBI. In our research, we deal with optical data center interconnection typically as 

shown in Figure 3.16. The BTI7800 acts as an edge node in the data centers, we need to 

manage two nodes using an ODL controller. In case of NETCONF, the ODL controller 

creates an individual NETCONF connector for each device attempting to connect. 

Similarly, for devices using OpenFlow as SBI, a new instance of the OpenFlow 

connector is assigned to every connected device. All attached devices have an operational 
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and config state maintained individually. So it is also possible to manage multiple devices 

with a controller and each node is identified separately. When the two edge BTI7800 

nodes are connected to the controller using their respective supported SBI, it is possible 

to manage and control both the devices. Therefore, it is also possible to manage the link 

interconnecting those devices. 

 

Figure 3.16   Data Center Interconnection 

In order to demonstrate the different scenarios of BoD, a python-based application layer 

is written. The python script translates the user requirement into a REST API request for 

the controller. The user requirements are to manage the flows between the interconnected 

data center.  The controller processes the REST API request and as a result the flow(s) 

between data centers can be managed. The detailed description of the test environment 

and use cases are provided in the next chapter.       
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Chapter  4:     Test Environment and Experiments 

In this chapter, the proposed SBIs, NETCONF and OpenFlow implemented on the 

BTI7800 network elements, are evaluated. We have discussed about the technology, the 

history, the evolution and the implementation of the interconnected SDN optical data 

centers, in our previous chapters. In this chapter we present the test environment and the 

use cases that help us in evaluating both protocols that act as a SBI. The use cases in this 

chapter are designed based on the ONF SDN optical transport use cases document [7].  

The demonstrated use cases address the data center interconnection, serving traffic flows 

between two separate data centers connected over an OTN. One of the main 

characteristics of this use case is that the provider network is shared with other client 

traffic. Another characteristic of this use case is the control separation of the data center 

and the provider network. The use cases are specifically designed to handle BoD for 

users across data centers with the help of SDN at the optical layer and switching [7]. In 

this chapter, we explain the test environment, use cases, performance and evaluation of 

both protocols in each scenario. The use cases are broadly classified as detailed below: 

 High Priority Flow (20 G) Request for User B 

 High Priority Flow (20 G) Request for User A  

o When no low priority flow exists 

o When the lower priority flow exists 

 Two Users’ Request for High Priority Flow, Mutual Sharing 
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4.1 Test Environment and Evaluation Metrics 

We describe the test environment and the metrics used to evaluate both protocols 

implemented as SBIs in an SDN environment.   

 

4.1.1 Environment Description 

The test environment, as shown in Figure 4.1, is comprised of the following equipment: 

 

Figure 4.1   Test Environment Setup  

A. Two BTI7800: The BTI7800 optical devices form the data center interconnection 

with the help of 12*10 G link capacity and a 100 G OTU4 link. The 12*10 G links 

support 12 users of each 10 G bandwidth for user traffic within a data center and the 

100 G OTU4 link connects across the data centers. The Spirent traffic generator acts 

as user traffic source. There is a possibility of 120 G traffic input from users within 

the data center. The OTU4 link connecting between data centers supports a maximum 

link bandwidth of 100 G. The optical router receives the input traffic of 120 G but can 
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only multiplex and forward traffic of 100 G on the OTU4 link interconnecting data 

centers. Therefore, the bandwidth requirement pertaining to 10*10 G links can be 

satisfied, with potentially dropping the traffic from the remaining 2*10 G links. The 

SDN controller has to meet the requirements of BoD by granting bandwidth to more 

essential user traffic and dropping other users whose requirement cannot be satisfied.  

 

Figure 4.2   Spirent Traffic Generator Configuration 

B. Spirent: Spirent is a traffic generator; it helps in creating user traffic within the data 

center. It is connected with the 12 ports on the BTI7800 with the help of 10 G optical 

fibers. Each link supports auto generated traffic source as shown in Figure 4.2. The 

Spirent at one end of the data center acts as the sender and the Spirent at the other 

data center acts as the receiver. The Spirent traffic generator reports the bits 
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transferred and received at each link every second. This information is reported in the 

form of graphs and used to evaluate both protocols for all use cases. 

C. ODL Controller: The ODL SDN controller is running on a centos server. The SDN 

controller interfaces with network devices (BTI7800) using the SBI, either OpenFlow 

or NETCONF. Each connected BTI7800 device is identified separately by the 

controller. The SDN BoD application (python script) is running on the same server. 

The resource manager collects information about the devices and its topology using 

the REST NBIs supported by the ODL controller. The BoD application receives a 

bandwidth request from the user and the information is passed on to the resource 

manager. The resource manager, based on the stored information and depending on 

the nature of the traffic, handles the BoD scenarios by translating user requirements 

as ODL REST API information to the SDN control plane. The REST API contains 

information that uniquely identifies the connected device(s) and their connection 

changes [8].   

 Operating system – centos OS (Linux pronx10 2.6.32-504.el6.x86_64) 

 RAM – 16 GB      

 ODL version - ODL Lithium Karaf 

The Spirent traffic generator cannot be controlled using the SDN controller. Therefore, 

they always generate traffic based on the configurations discussed above. The application 

layer of the ODL controller offers an interactive mode to select a use case and it also 

signals the control plane about the type of traffic and the flow modification decision(s).     
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4.1.2 Evaluation Metrics 

In all the use cases the behavior of both protocols as SBIs are observed. In order to 

discuss the observations, it is essential to have concrete metrics to evaluate both 

protocols. The following metrics are considered. 

 Time: We are comparing two protocols that act as SBIs i.e., that communicate 

between the SDN control plane and the data plane devices. An efficient protocol 

should exhibit a fast and reliable response. The time taken to complete the required 

set of configurations by both SBIs are compared. The time period for each use case 

differs depending on when the system attains the steady state. The use case reaches 

the steady state when all the configurations are committed, the traffic flows end-to-

end in all the links that are active and the system remains in a stable state. In the 

steady state all the links are provisioned end-to-end and the system is in stable state.  

 Bandwidth Utilization: The research is focused on handling BoD requests across the 

interconnected data centers managed using the SDN SBIs. One of the key aspects for 

adopting SDN in the current network management is because it provides a fast and 

efficient way to manage the networks. Therefore, resources can be optimally used. 

The bandwidth utilization is calculated based on this formula. 

 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%) =  
𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑖𝑛𝑝𝑢𝑡𝑡𝑒𝑑
∗ 100 

 

For a use case the bandwidth utilization is calculated over a period of time from an 

event a use case is triggered by the user and until system attains steady state. For each 

use case the period of time differs based on when the system completes the 
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requirement(s) and attains the steady state. All the experiments start with the system 

operating in the initial state. New user traffic demands additional bandwidth and the 

SDN controller decides to service the bandwidth requests based on the nature of the 

traffic and availability of the resources. The SDN control plane communicates the 

changes through the implemented SBIs and waits until the system completes the 

requirement(s). Once the requirement(s) are completed, the system returns to its 

initial state. The time period for both SBIs in each use case is equal: if one of the 

implemented SBIs attains the steady state faster than the other, the environment is 

maintained in the steady state until the environment implementing the other SBI also 

attains the steady state. In steady state, if all links are active, the bandwidth utilization 

is always 100 %.  

 Control Messages: The ODL SDN controller manages the data plane devices via the 

implemented SBIs. The SBIs communicate the flow modification information as 

control messages. Each SBIs handles the messages differently based on the nature of 

the protocol which leads to difference in message size and number of messages. An 

efficient protocol should less control signaling and network overhead.     

Having discussed three parameters, time and bandwidth are equally important to achieve 

QoS among the supported users and the different kind of traffic. Control messages are not 

very crucial, but network overhead caused by control signals needs to be accounted for 

designing a system.     
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4.2 Initial Environment 

The initial environment shown in Figure 4.3 is used for all the use cases, unless a 

different initial environment is presented in the beginning of a use case. Both data centers 

are identical in network topology and are interconnected with the help of the OTU4 

optical link. In both data centers the BTI7800 device acts as an edge node. Each data 

center has two users that are connected with the BTI7800. The nature of traffic and the 

amount of bandwidth occupied by each user is discussed below. 

 
Figure 4.3   Initial Environment 

  

 

 

Table 4.1    Initial Environment Allocation   

 Both data centers have two users, user A and user B respectively. Each user owns a 

potential bandwidth of 6*10 G connections patched with the BTI7800. The OTU4 

100 G link connects both optical routers across the data center as shown in Figure 4.3, 

User A User B Type of Flow 

40 G (Green) 40 G (Blue) Base Flow 

 20 G (yellow) Low priority 
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and it is capable of multiplexing user traffic on the optical link connecting data 

centers.      

 Each user has a dedicated bandwidth of 40 G each, constituting 80 G out of 100 G 

bandwidth (blue and green links). The sub flows or cross-connects 1 to 4 are termed 

as the base flow of user A and represented with green links. The sub flows or cross-

connects 5 to 8 are termed as the base flow of user B and represented with blue links. 

 One of the users, “user B”, is assigned the remaining 20 G for low priority traffic 

(yellow color links), as represented in Table 4.1.  The sub flows or cross-connects 9 

and 10 are termed as the low priority flow of user B and represented with yellow 

links. 

 In all scenarios discussed below, when a high priority traffic (red color links) of 20 G 

is requested, the low priority traffic (yellow color links) is preempted. Once the high 

priority traffic is serviced, the system will return back to the initial state.   

 The sub flows or cross-connects 11 and 12 are termed as the high priority flow of user 

A and represented with red color links. The sub flows or cross-connects 9 and 10 are 

termed as the high priority flow of user B and represented with red color links. 

 The user B can either have lower priority flow (sub flows 9 and 10 – yellow color 

links) or higher priority flow (sub flows 9 and 10 – Red color links) depending on the 

use case. 

The links (arrows) represented within the BTI7800 are known as cross-connects or sub 

flows. They help in multiplexing/bridging any 10 of 12 (*10 G) ports on to the OTU4 

link.  Based on the user traffic, the SDN controller signals which 10 ports need to be 

cross-connected to the OTU4 link.  
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Figure 4.4   Initial Environment Provisioning Using NETCONF and OpenFlow   

4.2.1 Flow Management Using NETCONF Interface  

The process involved in the flow management with the help of the controller using 

NETCONF as an SBI are discussed in Section 3.3.4. The NETCONF and YANG-based 

protocol represents the information as a collection of dataset(s) as described in Section 

2.4.1. The list of cross-connections is seen as a single dataset and the ODL controller 

cannot access each cross-connect individually. Figure 4.4 shows the time taken to set up 

the initial environment shown in Figure 4.3 implementing NETCONF and OpenFlow as a 

SBIs. In the interconnected data centers, for the traffic to flow from one end to another, it 

is essential to provision the end-to-end tunnel. The application layer first provisions the 

data center at one end, but on the other end there is no connection provisioned. Therefore, 

the traffic cannot reach the other end. Next, the application layer begins to provision the 

data center at the other end. As the result the end-to-end tunnel is created for each sub 

flow and eventually traffic begins to flow end-to-end.   

The sequence of steps involved in provisioning the initial configuration using NETCONF 

as SBI is shown in Figure 4.5 and are discussed below. 
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1. The user interacts with the BoD application requesting the SDN controller to 

provision the initial environment.  

2. The resource manager receives the user’s request from the BoD application and it 

determines the list of sub flows or cross-connects required to be provisioned on both 

BTI7800 devices.  

3. The resource manager provides the control plane with the sender BTI7800 device 

information as identified by the NETCONF connector and the list of all 10 cross-

connects needed to be provisioned. 

4. The control plane translates the received information as NETCONF <edit-config> 

message, and the message is directed toward the sender BTI7800 NETCONF agent. 

5. The NETCONF agent residing on the BTI7800 device will process the requested 

cross-connects. On configuring the requested cross-connects it returns success back to 

the control plane and the response is further delivered to the resource manager.     

6. The resource manager provides the control plane with the receiver BTI7800 device 

information as identified by the NETCONF connector and the list of all 10 cross-

connects that needs to be provisioned. 

7. Step 4 and step 5 are repeated again for the receiver BTI7800 device. 
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Figure 4.5   Sequence for Initial Configuration Using NETCONF 

 

Time: At time t = 1 sec in the graph represented in Figure 4.4, the SDN controller 

communicates the set of cross-connects to be provisioned on the sender BTI7800 device. 

In the beginning there is no cross-connects and the packets are dropped within the sender 

BTI7800 device. Once the sender BTI7800 device is provisioned, on the receiver data 

center there is no cross-connects provisioned, and any packets received are dropped 

within the BTI7800 device located at the receiver. At the end of t = 31 sec, cross-

connects on the sender BTI7800 device are provisioned. The controller, using the 

implemented NETCONF SBI, communicates the cross-connect information that needs to 

be provisioned to the BTI7800 device on the receiving end. We observe the traffic being 

successfully received at the user for each link eventually over the time t = 32 sec to t = 70 

sec. At t = 34 sec the first sub flow end-to-end communication is established. At t = 44 
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sec the base flow of user A is established end-to-end. At t = 63 sec all the links are 

provisioned end-to-end. From t = 63 sec until t = 70 sec the system is in steady state with 

all the 10 links active and fully utilized.       

The BTI7800 YANG model handles cross-connects as a single dataset. The controller 

does not allow to access them as individual cross-connect and it is forced to access them 

as a set of cross-connects. Using the implemented NETCONF SBI, the list of cross-

connects that needs to be provisioned are specified, and the BTI7800 device receives the 

request and further process each cross-connect information specified in the list. At the 

end of the request it returns the status back to the controller. 

The BTI7800 devices do not support buffering of data, therefore packets cannot be 

stored. The reason for the long delay is because the BTI7800 have to create an optical 

tunnel between the two end ports that are cross-connected. The BTI7800 device takes 

approximately 3 seconds to process each cross-connect. When we reverse the order of the 

BTI7800 devices provisioned, starting with the BTI7800 device at the receiver end first, 

followed by the BTI7800 at the sender side, we observe the same overall behavior. 

Bandwidth Utilization: The bandwidth utilization is calculated for a time period of t = 

70 sec. The bandwidth utilization is calculated from the beginning of the experiment at t 

= 1 sec to t = 70 sec, the end of the experiment until the system attains a steady state and 

remains in steady state for a few seconds. The bandwidth utilization is 32.01% to attain 

the initial state as described in Section 4.2. 
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4.2.2 Flow Management Using OpenFlow Interface  

OpenFlow, unlike NETCONF, operates on each sub flow individually. As discussed in 

Section 4.2.1 the application layer provisions both data centers for each flow separately. 

Eventually we see traffic flowing across data centers as represented in Figure 4.4. As 

each flow is provisioned separately, the amount of time the link is not utilized is less 

compared to NETCONF. The sequence of steps involved in provisioning the initial 

configuration using OpenFlow as SBI is shown in Figure 4.6 and are discussed below. 

1. The user interacts with the BoD Application to request the SDN controller to 

provision the initial environment.  

2. The resource manager receives the user’s request from the BoD Application and it 

determines the list of sub flows or cross-connects required to be provisioned for the 

both BTI7800 devices.  

3. The resource manager provides the control plane with the information about the 

sender BTI7800 device and first sub flow or cross-connects needed to be provisioned. 

4. The control plane translates the received information as OpenFlow add message, and 

the message is directed toward the sender BTI7800 device. 

5. The sender BTI7800 device, on receiving the OpenFlow add message, provisions the 

new cross-connect and returns success. 

6. The resource manager provides the control plane with the information about the 

receiver BTI7800 device and the first sub flow or cross-connect needed to be 

provisioned. 

7. The control plane translates the received information as OpenFlow add message, and 

the message is directed toward the receiver BTI7800 device. 
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8. The receiver BTI7800 device, on receiving the OpenFlow add message, provisions 

the new cross-connect and returns success. 

9. Step 3 through step 8 are repeated for all remaining 9 sub flows or cross-connects. 

Time: At time t = 1 sec in the graph represented in Figure 4.4, the SDN controller 

communicates the first sub flow information to the sender data center, and following the 

same information is communicated to the other data center. At t = 6 sec, the first sub flow 

is setup end-to-end and we see traffic sent from one end of the data center and 

successfully received at the other end of the other data center. At t = 61 sec all ten sub 

flows are provisioned at both data centers and traffic in all links are active.  From t = 61 

sec until t = 70 sec the system is in steady state with all the 10 links active and fully 

utilized. The device takes 3 seconds to provision a cross-connect in an OpenFlow 

environment.   

The time taken to create or tear down the cross-connect(s) presented in this thesis are 

specific to the BTI7800 devices. The authors of [13] present the hardware time of 7 

seconds to setup a cross-connect in an extended optical OpenFlow environment, the 

hardware setup time varies for different devices based on their performance and 

functionality.    
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Figure 4.6   Sequence for Initial Configuration Using OpenFlow 

Bandwidth Utilization: OpenFlow demonstrate a bandwidth utilization of 53.89%, 

which is more than the NETCONF results. The bandwidth utilization is calculated from 

the initial start time t = 1 sec until t= 70 sec. 
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4.3 High Priority Request (20G) 

We considered a set of use cases that demonstrate scenarios comprising of two users at 

each data center that are managed using a single SDN controller. These use cases are 

focused on handling, high priority bandwidth request across the users. In all use cases 

discussed below the user will request for 20G of bandwidth to transmit the high priority 

traffic. Depending on the use case it can vary if only one of the users or both users are 

requesting bandwidth for the high priority flows. 

 

4.3.1 High Priority Flow (20 G) Request for User B 

Step 1: The environment is brought to the initial state as described in Section 4.2. 

Step 2: User B needs 20G of bandwidth for the high priority traffic and user B does not 

have any low priority traffic.  The 20 G of resources assigned to the low priority traffic of 

user B is utilized by the high priority traffic as shown in Figure 4.7. 

Step 3: On completion of high priority traffic demands, the environment returns back to 

the initial state. 

The resources for the low priority traffic is assigned to user B and the same user needs 

bandwidth for the high priority traffic. Therefore, the high priority traffic will utilize the 

bandwidth that was assigned to the low priority traffic. There is no change in the cross-

connection between 10 G ports and OTU4 link. The user interacts with the BoD 

application and the bandwidth request for user B’s high priority flow is forwarded to the 

resource manager, as shown in Figure 4.8. The resource manager does not initiate any 

signaling effort. In this scenario as an aggregate of all flows, there is a bandwidth 
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requirement of 100 G and all the bandwidth requirements are satisfied, the allocation 

details are represented in Table 4.2. 

 

 

 

Table 4.2    High Priority Request from User B 

 

 

Figure 4.7   High Priority Request from User B 

 

User A User B Type of flow Action 

40 G (Green) 40 G (Blue) Base Flow Serviced 

 20 G (Red) High priority Serviced 
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Figure 4.8   Sequence for High Priority Request from User B 

 

4.3.2 High Priority Flow (20 G) Request for User A 

4.3.2.1 Case 1: When No Low Priority Flow Exists 

User A User B Type of flow Action 

40 G 40 G Base Flow Serviced 

Table 4.3    Bandwidth Allocation for High Priority Request from User A - Case 1 

 

Step 1: Both users (user A and user B) have 40G of bandwidth allocated for the base 

flows as shown in Table 4.3. There is 20G of unutilized bandwidth available on the link 

interconnecting the data centers. 

Step 2: User A has an additional high priority traffic demand and it needs 20G 

bandwidth. The controller allocates the 20G of available bandwidth to user A as shown in 

Figure 4.9. 
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Figure 4.9   High Priority Request from User A - Case 1 

Step 3: On completion, user A releases the bandwidth and the system returns to step 1. 

For the use case represented in Figure 4.9, user A needs bandwidth for the high priority 

flow and the controller allocates the available unutilized bandwidth to service user A’s 

requirement. After 8 seconds the application layer signals the controller about the 

completion of the high priority flow and modifies the connection accordingly, so that the 

environment returns back to the initial state. The fixed time is considered because it helps 

us in comparing the performance and the behavior of both protocols, as the environment 

and the timing remains the same. The detailed working of both protocols as SBIs are 

discussed below: 

Figure 4.10 represents the sequence of steps involved in configuring the high priority 

request using NETCONF protocol. The user interacts with the BoD application and the 

resource manager receives the request. The system exists in an initial state with 8 sub 

flows or cross-connects provisioned. The user has requested for 2 additional sub flows for 

handling the high priority traffic of user A. The resource manager communicates a bunch 

of 10 cross-connects information (the existing 8 cross-connects belonging to the initial 
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environment and the additional two cross-connects) to the sender BTI7800 device with 

the help of the control plane. On completion, the sender BTI7800 device replies the 

status. The resource manager, through the control plane, communicates the same 

information to the receiver BTI7800. The BoD application is aware that the cross-

connects are provisioned to handle the high priority requirement. At the end of 8 seconds 

the BoD application signals the resource manager to return back to the initial 

configuration. The resource manager, through the control plane, signals a bunch of 8 

cross-connects or sub flows belonging to the initial configuration to both BTI7800 

devices. As a result, the cross-connects created for handling the high priority traffic of 

user A is torn down. 

Figure 4.11 represents the sequence involved in configuring the high priority request 

using OpenFlow. The user interacts with the BoD application and the resource manager 

receives the request. The system exists in an initial state with 8 sub flows or cross-

connects provisioned. The user has requested 2 additional sub flows for servicing the 

high priority traffic of user A. The resource manager communicates the 9th cross-connect 

or sub flow information to the sender and the receiver BTI7800 devices through the 

control plane. Once the 9th sub flow is created successfully at both the BTI7800 devices, 

the 10th sub flow information is communicated. The BoD is aware of the sub flows being 

established for satisfying the high priority bandwidth. At the end of 8 seconds the BoD 

application signals the resource manager to return back to initial configuration. The 

resource manager through the control plane signals the 9th cross-connect or sub flow to 

be deleted at both BTI7800 devices. The same is continued for deleting sub flow 10. 

 



 92 

 

Figure 4.10   Sequence for High Priority Request from User A Using NETCONF – Case 1 
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Figure 4.11   Sequence for High Priority Request from User A Using OpenFlow – Case 1 
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Figure 4.12(a)   Provisioning for High Priority Flow Request for User A Using NETCONF –Case 1 

 

Figure 4.12(b)   Provisioning for High Priority Flow Request for User A Using OpenFlow – Case 1 

Time:  The NETCONF and OpenFlow handling is represented in Figure 4.12 (a) and (b) 

respectively. The experiment begins at time t = 10 sec and the system exists in the initial 

state. At t = 10 sec the application layer signals the resource manager about the high 

priority request. Using the NETCONF protocol, the 9th sub flow is configured at t = 18 
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sec and the 10th flow is configured at t = 22 sec. From t = 22 sec until t = 30 sec for 8 

seconds the high priority traffic requirement is satisfied. Using the OpenFlow protocol, 

the 9th flow is configured at t = 17 sec and the 10th flow is configured at t = 22 sec. From 

t = 22 sec until t = 30 sec for 8 seconds the high priority traffic requirement is satisfied. 

For NETCONF and OpenFlow it takes 12 seconds to process two cross-connects at each 

end. NETCONF and OpenFlow takes 3 seconds as hardware setup time for each cross-

connect. At t = 31 sec the environment implementing the NETCONF protocol 

communicates the modification for the initial environment and it takes 0.50 second for 

each end to delete both cross-connects. The OpenFlow communicates the modification 

for the initial environment at t = 31 sec and at t = 34 sec the environment reaches the 

initial state and it takes 0.75 second to delete each cross-connect. In the case of 

OpenFlow each cross-connect to be deleted is a separate message and the device handles 

each message received and provision the hardware accordingly.  

Bandwidth Utilization: The bandwidth utilization for this use case is calculated for the 

window when high priority flow begins to service until the high priority flow ends. Both 

protocols have to serve the high priority request for 8 seconds, but the high priority 

window includes sub flow setup and tear down delays. Both protocols the high priority 

flows begins at t = 16 sec. NETCONF consumes a window of 16 seconds and the 

bandwidth utilization is 94.4 %. OpenFlow consumes a window of 20 seconds and the 

bandwidth utilization is 93.37 %. While the difference is very small, NETCONF results 

are better compared to OpenFlow.      
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4.3.2.2 Case 2: When The Lower Priority Flow Exists 

Step 1: The environment exists in the initial state as discussed in Section 4.2. 

Step 2: User A has high priority traffic and requires additional bandwidth. The low 

priority traffic of user B owning the resources loses its bandwidth and user A is assigned 

with the bandwidth to satisfy the high priority traffic demands as shown in Figure 4.13. 

Step 3: On completion of the high priority traffic demands, the environment returns back 

to the initial state. The controller will release the bandwidth occupied by the high priority 

traffic by user A and assign the flows back to the low priority traffic of user B. 

 

Figure 4.13   High Priority Request from User A - Case 2 

 

Table 4.4    Bandwidth Allocation for High Priority Request from User A - Case 2 

Both users A and B have dedicated bandwidth of 40 G each, and the 20 G of lower 

priority traffic is assigned to user B. User A has high priority traffic and it demands for 

User A User B Type of flow Action  

40 G 40 G Base Flow Serviced  

 20 G (preempted) Low priority No resources  

20 G  High Priority Serviced  
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the bandwidth to transmit. The SDN controller, using the implemented SBI will signal 

the BTI7800 network element to drop the bandwidth pertaining to the low priority traffic 

and will establish the bandwidth for the high priority traffic belonging to user A for a 

time period of 8 seconds. The information regarding the flow modification is 

communicated by the application layer to the control plane. In this scenario, there is a 

bandwidth request for 120 G and having a limitation of 100 G link between data centers, 

thus controller decides to allocate bandwidth for the flows based on the nature of the 

traffic as represented in Table 4.4. The sequence explaining the detailed working of both 

protocols as SBIs are discussed in Appendix A.   

 

Figure 4.14(a)   Provisioning for High Priority Flow Request from User A Using NETCONF – Case 2 
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Figure 4.14(b)   Provisioning for High Priority Flow Request from User A Using OpenFlow – Case 2 

Figure 4.14 (a) and (b) represents the flow handling of both protocols, NETCONF and 

OpenFlow respectively in this environment.  

Time: The experiments begins at time t = 10 sec and the environment exists in the initial 

state. At time t = 10 sec the application layer signals the resource manager regarding the 

bandwidth request for the high priority flows from user A. As discussed before, two 

cross-connects need to be torn down and two new cross-connects are added. In 

NETCONF and OpenFlow, at t = 23 sec and t = 25 sec, all two sub flows are provisioned. 

It takes 13 seconds and 15 seconds for NETCONF and OpenFlow respectively to 

provision the high priority request. NETCONF takes 6.5 seconds to provision one data 

center, it takes 0.5 second to delete both the cross-connects and 3 seconds to add a cross-

connect. In OpenFlow it takes 3 seconds to add a cross-connect, and 0.75 second to delete 

a single cross-connect. Addition of cross-connects takes longer hardware setup time 

because an optical tunnel between the two interconnecting ports is created. During the 

deletion of cross-connect the entry is removed from the cdb flow table and then ports are 
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shutdown, therefore deletion of cross-connect(s) consume less hardware setup time. The 

high priority traffic is serviced for 8 seconds. Similarly, NETCONF and OpenFlow 

environment return back to initial state by dropping the two high priority sub flows and 

adding the two low priority sub flows.  

The OpenFlow protocol takes longer time compared to the NETCONF is because each 

sub flow modification is processed separately. The resource manager communicates 

which particular sub flow needs to be modified one after another. Unlike the NETCONF 

protocol, the OpenFlow protocol is not aware of the cross-connect modification by the 

protocol itself, the resource manager needs to communicate each flow modification 

separately. But in NETCONF the resource manager communicates the set of cross-

connects needs to be provisioned and the NETCONF agent with the BTI7800 identifies 

the cross-connects that are modified by comparing with the existing cross-connects 

provisioned.        

In Section 3.4.4 we disused that the implemented OpenVSwitch algorithm posts the 

cross-connects modification as request message within the queue and the confd kernel 

module process the request one after another. The cross-connects that needs to be deleted 

and added are posted as both ends one after another. There is a possibility that the cross-

connect modification request is posted on the queue before the confd completes 

processing of the predecessor modification request.         

Bandwidth Utilization: The NETCONF scenario has a bandwidth utilization of 92.78 % 

and the OpenFlow scenario bandwidth utilization of 95.85%. The OpenFlow interface 

deletes a sub flow and adds a sub flow and it repeats the procedure for the number of sub 

flows to be modified, that is why we see a ladder in Figure 4.9 (b). The bandwidth 
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utilization for both protocols are calculated from the start of experiment t = 10 and until t 

= 53 sec when both scenarios remain in the steady state for a few seconds. 

 

4.3.3 High Priority Flow (20 G) Request from Both Users A and B (Mutual 

Sharing) 

Step 1: The environment exists in the initial state as discussed in Section 4.2. 

Step 2: Both user A and user B have high priority traffic, and they request for the 

bandwidth. The controller preempts the bandwidth assigned to the low priority traffic and 

it assigns the resources shared among both high priority requests as shown in Figure 4.15. 

 

 

 

Table 4.5    Mutual Sharing Allocation 

 

Figure 4.15   Mutual Sharing 

User A User B Type of flow Action  

40 G 40 G Base Flow Serviced  

 20 G High priority 50% of requirement serviced  (10 G) 

20 G  High Priority 50% of requirement serviced  (10 G) 
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Step 3: When both users complete their high priority bandwidth requirement, the 

controller performs the required signaling to modify the flows so that user B low priority 

traffic can utilize the sparse bandwidth. 

In this scenario, both users request for 20 G bandwidth to satisfy the high priority traffic 

demands, but there exists only 20 G of bandwidth that can be preempted from lower 

priority traffic. The controller decides to share the available bandwidth by assigning each 

user with 10 G of bandwidth allocated to the high priority traffic as represented in Table 

4.5, where 50 percent bandwidth requirement of both users will be satisfied. There is no 

change in the flow that is assigned to user B’s high priority traffic, as the link assigned to 

the low priority traffic of user B will be utilized by high priority flow. User A’s high 

priority traffic is allocated bandwidth by preempting a single low priority flow from user 

B. If we closely look there is only one flow modification as shown in Figure 4.15. The 

sequence explaining the detailed working of both protocols as SBIs are discussed in 

Appendix B.   

 

Figure 4.16(a)   Provisioning for High Priority Flow Request from User A and B Using NETCONF – 

Mutual Sharing  
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Figure 4.16(b)   Provisioning for High Priority Flow Request from User A and B Using OpenFlow – 

Mutual Sharing  

Time: Figure 4.16 (a) and (b) shows the bandwidth utilization of NETCONF and 

OpenFlow. Both the environment implementing NETCONF and OpenFlow as the SBIs, 

the system exists in initial state at t = 10 sec. At t = 10 sec the application layer informs 

the control plane about the high priority flow request. As discussed, one sub flow needs 

to be deleted and one new cross-connect needs to added. NETCONF takes 7 seconds and 

OpenFlow takes 8 seconds to provision the high priority flow. In the case of NETCONF 

it takes 0.5 second to delete a cross-connect and 3 second to add a cross-connect. In the 

case of OpenFlow it takes 0.75 second to delete a cross-connect and 3 second to add a 

cross-connect. After high priority request is served for 8 seconds they return back to 

initial state. Similarly, NETCONF and OpenFlow environment return back to initial state 

by dropping the one high priority sub flows and adding the one low priority sub flows. 

The NETCONF and OpenFlow takes 7 seconds and 8 seconds respectively to attain the 

initial state.   
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Bandwidth Utilization: NETCONF exhibit 95.62 % utilization and OpenFlow exhibit 

95.7 % of utilization. We notice that, as the number of flows to be modified decreases 

both the protocols exhibit high bandwidth utilization. The bandwidth utilization is 

calculated from t = 10 sec the initial start of the experiment until t = 37 sec where the 

system attains a steady state in the initial configurations.   
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Chapter  5:     Stress and Load Testing 

In the previous chapter we have discussed about the test environment, evaluation metrics 

and a few high priority use cases. In this chapter we present a few bandwidth request use 

cases, where the bandwidth request made from the user(s) is large depending on the 

scenario. The use cases help us in comparing both protocols when a large number of sub-

flows or cross-connects are modified. In this chapter we also present the performance of 

both protocols in the stress test scenario, when multiple applications try to modify the 

same data plane device though the control plane simultaneously at a same time. The use 

cases discussed in this chapter are classified as listed below. 

 Bandwidth Request 

o Elephant Request (40 G) 

o Emergency Request (100 G) 

 Stress Testing 

 

5.1 Elephant Request (40G) 

The elephant flow use case is mainly focused on demonstrating and evaluating the 

implemented protocols as SBIs on the BTI7800 devices and their responsiveness when a 

large number of sub flows are modified.  

Step 1: The environment exists in the initial state as discussed in Section 4.2. 

Step 2: User A requests bandwidth for the elephant flow. The SDN controller drops the 

low priority flow and a few base sub flows of user B to accommodate the elephant flow 

request of user A as shown in Figure 5.1. 
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Figure 5.1   Elephant Flow Request by User A   

Step 3: Once the requirement is satisfied, the system returns back to the initial 

configuration. If another user (user B) requests bandwidth for the elephant flows while 

the elephant flow request of user A is being serviced, user B needs to wait until user A 

completes its bandwidth requirement.    

 

Figure 5.2   Elephant Flow Request by User B 
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Step 4: Figure 5.2 represents the sub flows provisioned, if user B requests bandwidth for 

the elephant flow.   

Step 5: If there is no further elephant flow request, the system returns back to the initial 

state. 

Figure 5.3 and Figure 5.4 represent the steps involved in configuring the elephant request 

using NETCONF and OpenFlow respectively. The user interacts with the BoD 

application and the resource manager receives the request. The system exists in an initial 

state with 10 sub flows or cross-connects provisioned. As per the use case discussed 

above, user A requests bandwidth for the elephant flow, and as a result four cross-

connects are torn down and added. The elephant flow requirement of user A is served for 

8 seconds. At the end of 8 seconds, the resource manager receives a signal to provision 

the environment to serve the elephant flow for user B. The existing six cross-connects are 

torn down and six new cross-connects are added to serve the elephant flow request. After 

8 seconds, when the system returns to the initial environment, two cross-connects have to 

be torn down and two new cross-connects have to be added.  

In NETCONF the set of cross-connects needed to be provisioned are communicated as a 

single request each time. The NETCONF agent on the BTI7800 device figures out the 

modification and will tear down and add cross-connects accordingly. In OpenFlow the 

resource manager needs to identify the set of cross-connects needed to be changed and 

rolls out the change for each cross-connect in a sequential order. OpenVSwitch, as it 

receives a sub flow modification request from the controller, validates the received 

information and posts the cross-connect modification into the message queue. Confd 

handles each modification one after another as described in Section 3.4.4. 
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Figure 5.3   Sequence for Elephant Flow Request Using NETCONF 
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Figure 5.4   Sequence for Elephant Flow Request Using OpenFlow 
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Time: The NETCONF and OpenFlow handling is represented in Figure 5.5 (a) and (b) 

respectively. The experiment begins at time t = 10 sec and the system exists in the initial 

state. At t = 10 sec the application layer signals the resource manager about the elephant 

request. As discussed before, four cross-connects need to be torn down and four new 

cross-connects need to be added in both data centers. In NETCONF and OpenFlow, at t = 

36 sec and t = 40 sec, all four sub flows are provisioned. It takes 26 seconds and 30 

seconds for NETCONF and OpenFlow respectively to provision the elephant request of 

user A. NETCONF takes 13 seconds to provision one data center and it takes 3 seconds 

to add a cross-connect and one second for deleting all cross-connects per data center. As 

number of cross-connects to be deleted in NETCONF increases the time taken to delete 

all the cross-connect also increases. OpenFlow takes 3 seconds to add a cross-connect 

and 0.75 second to delete a cross-connect. After 8 seconds the elephant flow requirement 

of user B is communicated, NETCONF and OpenFlow communicate the information at t 

= 45 sec and t = 49. The total number of sub flows modified are six, which includes the 

deletion of six cross-connects and the addition of six cross-connects. NETCONF and 

OpenFlow take 38 seconds and 45 seconds respectively, at t = 83 sec and t = 94 sec the 

environment is provisioned for servicing the elephant request of user B. As discussed 

earlier, NETCONF takes 3 seconds for addition of a cross-connect and deletion of all 

cross-connects takes 1 sec, which is 18 seconds for addition of 6 cross-connects and 1 

second for deletion of all cross-connects per data center. OpenFlow takes 3 seconds to 

add a cross-connect and 0.75 second to delete a cross-connect, which is 18 seconds for 

addition of 6 cross-connects and 4.5 seconds for deletion of 6 cross-connects per data 

center. The scenario waits for 8 seconds before returning to the initial state. NETCONF 
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attains the initial state at t = 104 sec and it takes 13 seconds. OpenFlow attains the initial 

state at t = 117 and it takes 15 seconds. The total number of sub flows that need to be 

modified are the addition and deletion of two cross-connects.  

The number of sub flows to be deleted does not impact the performance of NETCONF 

protocol, it always takes less than 2 seconds to delete any number of sub flows. In 

OpenFlow, each sub flow that needs to be deleted is accompanied by a message which 

involves processing time and therefore it takes much longer time.  

 

Figure 5.5(a)   Elephant Flow Request Using NETCONF 

 

Figure 5.5(b)   Elephant Flow Request Using OpenFlow 



 111 

Bandwidth Utilization: The bandwidth utilization is calculated for the time period from 

t = 10 sec until t= 124 sec. NETCONF exhibits bandwidth utilization of 77.83 % and 

OpenFlow represents a bandwidth utilization of 92.92%. The fact that OpenFlow handles 

sub flow modifications as individual each sub flow the resources remains occupied. On 

the other hand, the same fact acts as a drawback: as more sub flows needs to be modified, 

OpenFlow is much slower and more messages are communicated between the controller 

and the BTI7800 devices. NETCONF is faster in handling the request but the resource 

remains unutilized for a time period proportional to the number of flows that need to be 

configured. It is because NETCONF operates on a set of cross-connects.   

 

5.2 Emergency Request (100G) 

 Similar to the elephant flow request, the emergency request use case introduces a 

complete change in the flow table based on the user calling the emergency service. This 

use case helps in evaluating both protocols when there is a complete change in the cross-

connects.  

Step 1: The environment exists in the initial state as discussed in Section 4.2. 

Step 2: If user A calls the emergency service, the SDN controller will de-provision all the 

sub flows that exist with user B and will provision those to fulfill the emergency request 

of user A. The base flows of user A will be used to satisfy the emergency requirement as 

shown in Figure 5.6. 
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Figure 5.6   Emergency Flow Request by User A 

Step 3: Once the emergency requirement is satisfied, the system returns back to the initial 

state, if there no emergency request from the other user (user B). 

Step 4: If user B has an emergency request, the SDN controller provisions the sub flows 

to satisfy the emergency traffic requirement as shown in Figure 5.7. 

 

Figure 5.7   Emergency Flow Request by User B 
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Step 5: The system returns to the initial state if there no any other request. The sequence 

explaining the detailed working of both protocols as SBIs are discussed in Appendix C.   

 

Figure 5.8(a)   Emergency Flow Request Using NETCONF 

 

 

Figure 5.8(b)   Emergency Flow Request Using OpenFlow 

Time: The NETCONF and OpenFlow handling is represented in Figure 5.8 (a) and (b) 

respectively. The experiment begins at time t = 10 sec and the system exists in the initial 
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state. At t = 10 sec the application layer signals the resource manager about the 

emergency request. As discussed before six cross-connects needs to be torn down and six 

new cross-connects needs to be added. The environment implementing the NETCONF 

and OpenFlow, at t = 48 sec and t = 55 sec all the six sub flows are provisioned. It takes 

38 seconds and 45 seconds for NETCONF and OpenFlow respectively to provision the 

emergency request of user A. After 8 seconds the emergency flow requirement of user B 

is communicated, the NETCONF and OpenFlow communicates the information at t = 55 

sec and t = 65. The total number of sub flows modified is ten. The NETCONF and 

OpenFlow takes 65 seconds and 76 seconds respectively, at t = 120 sec and t = 140 sec 

the environment is provisioned for the emergency request of user B. The environment 

waits for 8 seconds before returning to the initial state. The NETCONF attains the initial 

state at t = 154 sec and it takes 26 seconds. The OpenFlow attains the initial state at t = 

179 sec and it takes 30 seconds. The total number of sub flows needs to be modified are 

the addition and deletion of four cross-connects.  

The deletion of sub flows in NETCONF does not cause much overhead, but in OpenFlow 

it does cause overhead because it is accompanied by individual message for each cross-

connect needs to be deleted. The addition of ten flows in satisfying the emergency 

requirement of user B is similar to the initial environment discussed in Section 4.2. In the 

initial environment scenario does not involve tearing down of cross-connects. In the 

initial environment the NETCONF and OpenFlow take 63 seconds and 61 seconds 

respectively. In the emergency use case the NETCONF and OpenFlow takes 65 seconds 

and 76 seconds respectively. The difference between both protocols, NETCONF and 

OpenFlow is 2 seconds and 15 seconds. The large time difference is experienced due to 
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processing of each sub flow deletion individually. In an emergency situation when ten 

flows need to be provisioned OpenFlow takes 3 seconds for addition of a cross-connect 

and .75 second to delete a cross-connect, that involves 20 cross-connects to be added and 

deleted across both data center. NETCONF takes 31.5 seconds to add 10 cross-connects 

per data center and 1 second to delete all the existing 10 cross-connects.     

Bandwidth Utilization: The bandwidth utilization is calculated for the time period from 

t = 10 sec until t= 186 sec. NETCONF exhibits bandwidth utilization of 59.55 % and 

OpenFlow represents a bandwidth utilization of 92.92%. The two things to be noted, the 

fact that OpenFlow handles the traffic demands by modifying the sub flows one after 

another, the resources remain occupied. On the other hand, the same acts as a drawback 

as more number of sub flows needs to be modified, it is much slower and more number of 

messages are communicated between the controller and the BTI7800 devices. The 

NETCONF is faster is handling the request but the resource remains unutilized for a time 

period proportionate to the number of flows needs to be configured. It’s because 

NETCONF operates on a set of cross-connects and does not reference individual cross-

connects.   

 

5.3 Simultaneous Multiple Application Access – Stress Testing 

In order to analyze the working of both implemented protocols, we considered two 

different applications that try to configure a particular device using the SDN 

infrastructure. Both applications,” A” and “B”, will try to modify a device at the same 

time. As discussed earlier in Section 2.3, the operational data store saves the operational 
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state of the device and the config data store temporarily saves the changes requested by 

the application. The behavior of both protocols are discussed below. 

 

5.3.1 NETCONF 

NETCONF operates based on the YANG model and its current operational value. When 

an application “A” issues a modification request, the config data store within the ODL 

fetches the operational state along with the requested modifications and saves the 

information in the config data store (config A). Before the requested modification from 

application “A” are successfully committed to the device, the application “B” request for 

modification and the information is stored in a different instance of the config data store 

(config B) as represented in Figure 5.9. Now there will be one operational data store, and 

two different instances of the config data store for a device.  

 

Figure 5.9   Simultaneous Different Application Access - NETCONF 

Let us consider that the application “A” modification was received first by the control 

plane. The controller processes the config A state using NETCONF. If the changes are 

successfully committed, the device returns NETCONF <edit-config> operation success. 
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The operational data store is updated and the config A data store is deleted. The 

application “B” has requested for modification and the information is stored in the config 

store (config B). Now the ODL NETCONF connector tries to process the config B state, 

but since the operational state of config B is being modified the NETCONF connector 

cannot process the request. This causes the ODL controller to throw a NETCONF 

connector exception error. It is a drawback that the ODL controller cannot handle 

simultaneous modification of the same device. Moreover, if the NETCONF connector 

throws exception, it can be solved by restarting the ODL controller.   

 

5.3.2 OpenFlow 

The architecture and OpenFlow implementation on BTI7800 is discussed in Section 3.4.  

We deal with a similar environment using the OpenFlow interface as shown in Figure 

5.10, but we observe a different behavior. Unlike NETCONF, as discussed above, 

OpenFlow does not operate on a data model and it references the information as follows. 

The SDN controller translates the information as OpenFlow flow modification messages 

as discussed in Section 3.4.2. When a new flow rule is added or modified, the config data 

store stores the information. Application A and B requests for the modification at the 

same time. The modification requests from both applications are received by the 

controller and stored in the separate config store. Both flow modifications are 

communicated at the same time to the BTI7800 device. The BTI7800 receives two 

modification requests at the same time. The implemented OpenVSwitch cannot handle 

two flow modification messages from the controller at a same time, therefore the 

BTI7800 enters into a fault mode.   
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Figure 5.10   Simultaneous Different Application Access – OpenFlow 

 

5.4 Control Messages Between ODL and BTI7800  

The ODL controller communicates flow modification control messages to the both 

BTI7800 devices to manage the BoD across the link interconnecting them. We observed 

both protocols and from the sequence diagrams of all use cases it is more clear that a 

number of control message communicated between the ODL controller and BTI7800 

devices varies based on the protocol and the number of cross-connects modified. 

NETCONF: The cross-connects need to be provisioned are specified as a set of cross-

connects in a single NETCONF flow modification message. Immaterial of any number of 

cross-connects to be modified, the ODL controller communicates one message per data 

center aggregating the information about all the cross-connects need to provisioned. If 10 

cross-connects need to be provisioned the fragmented message of size is 1448 + 1164 

bytes are communicated. Our experiment involves two BTI7800 devices, control message 
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of 2612 bytes is communicated to the both BTI7800 devices. The response from a 

BTI7800 device is 52 bytes. Depending on the number of cross-connects communicated 

the control message size varies, and the detailed information is discussed in Appendix D.     

OpenFlow: The OpenFlow communicates the flow modification messages depending on 

number of cross connects need to be modified. Every cross-connect addition and deletion 

is accompanied by a OpenFlow modification message. The cross-connects need to be 

modified cannot be aggregated as a single message. The size of the OpenFlow flow 

modification message from the controller to the BTI7800 device is 206 bytes and the 

response is 66 bytes. By default, the packet-in OpenFlow modification message is 128 

bytes and if match action is configured, the message size is 206 bytes [3]. If 10 new 

cross-connects need to be added, then 10 OpenFlow modification messages are sent from 

the controller to the BTI7800 and total message size of 2060 bytes and ten separate 

responses of 660 bytes are received at the controller. If existing cross-connects are 

modified it is accompanied by 10 cross-connects to be deleted and 10 cross-connects to 

be added. In total 20 messages are communicated to a single BTI7800 device, each 

message of size 206 bytes on total 4120 bytes and response of 720 bytes are received at 

the controller. 

For the use cases discussed in Section 4.3.2.2, includes deletion of two cross-connects 

and addition of two cross-connect. On total four OpenFlow flow modification of 206 

bytes (824 bytes) are communicated to a single BTI7800 device and four response 

message of each 66 bytes is received. In case of NETCONF one single message of 2612 

bytes is communicated to a BTI7800 device and the response of 52 bytes is received. As 

the experiments involve two BTI7800 devices the same is communicated to the other 
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BTI7800 device. More the number of sub flows need to be modified, the OpenFlow 

modification messages communicated on both directions (between the controller and 

BTI7800 devices) increases and causes network overhead. On the other hand, the size of 

the NETCONF flow modification message remains stable in both directions.         

5.5 Summary 

In this chapter and in the previous chapter we have discussed a set of use cases that 

evaluates both the protocols implemented as SBIs. The Table 5.1 represents the time 

taken by both SBIs to modify different number of cross-connects.      

Number of Cross-

Connects Provisioned 

NETCONF 

(sec) 

OpenFlow 

(sec) 

  Add Delete Add Delete 

1  3  0.5  3  0.75  

2  6 0.5 6 1.50 

4  12 1 12  3 

6  18  1 18 4.50  

10  31.5 1   30.5 7.50 

Table 5.1    Cross-Connects Modification  

 

 The Table 5.2 is a summary of observation of all the use cases discussed to evaluate both 

the protocols implemented as SBIs.     
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Use case NETCONF OpenFlow 

 Time 

(sec) 

Bandwidth  

Utilization 

(%) 

No of 

Control 

Messages 

Time 

(sec) 

Bandwidth 

Utilization 

(%) 

No of  

Control 

Messages 

Initial   63 32.01 % 2 Messages 61 53.89 % 10 Messages  

High Priority Flow (20 G) 

User B 

Request 

- 100% - - 100% - 

 User A Request 

No Low 

Priority Flow 

Exists 

31  94.4% 4 Messages 34 93.37% 8 Messages 

Lower Priority 

Flow Exists 

45 92.78% 4 Messages 49 95.85% 16 Messages 

       

User A and B 31 95.62 % 4 Messages 33 95.7 % 8 Messages 

Elephant Request 

Elephant 

Request 

104 77.83 % 6 Messages 117 92.92% 48 Messages 

Emergency Request 

Emergency 

Request 

144 59.55% 6 Messages 169 92.42% 

 

80 Messages 

Table 5.4    Use Cases Results 
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Chapter  6:     Conclusions and Future Work 

 

6.1 Conclusions 

In the era of intense high bandwidth demand growth, and unpredictably shifting traffic 

patterns, operators need their transport networks to become dynamically programmable 

in order to offer new services and to satisfy the traffic demand without over-provisioning 

the network resources. SDN-based transport optical networks allow the resources to be 

governed by policy management, enabling the network operators to transform their 

transport networks to function efficiently and also increases operational agility. We 

evaluate most commonly used SBIs, NETCONF and OpenFlow in managing the BoD 

across the transport optical interconnect depending on different kinds of traffic flows and 

demands. The behavior of both implemented SBIs is different based on the nature of the 

protocol.      

The results presented are specific to BTI7800 environment. NETCONF references the 

BTI YANG model to represent and communicate the information from the SDN 

controller. BTI YANG-based NETCONF is faster, and more efficient in terms of the 

number of control messages communicated between the controller and the BTI7800 

device, and reduces the complexity of the resource manager. On the other hand, 

OpenFlow accesses each cross-connect individually; therefore, it efficiently handles the 

bandwidth by minimizing the sub flow idle time, but the protocol is slower and the 

number of control messages increases proportionate to the amount of flow rules 

modified.  If it is acceptable for the link to be idle for a few seconds, NETCONF is a 
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better protocol. OpenFlow is a better protocol if bandwidth being idle is an issue and can 

compromise with time and the network overhead.   

As represented in Table 5.2, an increase in the number of cross-connects that need to be 

provisioned for each data center will affect the performance of the OpenFlow protocol as 

the control messages and the time taken to handle each message increases proportionate 

to number of cross-connects that needs to be modified. In case of NETCONF the control 

message indicating the modified set of cross-connects will still be a single message, the 

time taken will be proportionate to the number of flows need to be modified.   

 

6.2 Future Work     

Some suggestions are presented here to enhance the thesis work in the future. Having a 

protocol that can access a set of cross-connects and each cross-connect individually based 

on the use case is a best approach. 

 Aggregation of OpenFlow flow rules is a possible solution to overcome the issues 

(time and number of messages communicated between the controller and the 

device) faced by the implemented OpenFlow protocol. The OpenFlow standard 

and ODL controller do not currently support aggregation of flow rules. On the 

other hand, flow table size and aggregation of flow rules in the core switches is a 

relatively new topic of SDN.  

 OpenConfig [10] is a new SDN protocol, proposed as one of the standard SBI 

between the control plane and data plane devices. OpenConfig uses NETCONF 

and YANG-based structures as the underlying protocol to support OpenConfig 

messages. OpenConfig as a protocol focuses on the messages and information that 
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are essential to share to a SDN controller. The OpenConfig working group is in 

the early stages of designing the protocol messages and defining the YANG 

model. OpenConfig might help to overcome the issue faced by NETCONF 

protocol, the ability to access individual cross-connects. The alternative solution 

is redefining the BTI YANG model such that the set of cross-connects can also be 

referenced as individual cross-connects. In OpenConfig the YANG models are 

specified by the working group.  On the other hand, use of BTI YANG and 

NETCONF as an interface provides a flexibility to modify the YANG models 

allowing variations. Variations to OpenConfig YANG model is not possible. 

 Increase in the number of users per data center or addition of different kinds of 

traffic will result in an increase in the complexity of the resource manager shown 

in Figure 4.1. The resource manager needs to be extended to support the 

requirement of increase in the number of users per data center or addition of 

different kinds of traffic. 

 Parallelization of the control messages issued from the SDN ODL controller to 

the BTI7800 network elements located at the sender and receiver interconnected 

data centers will speed up the process and removes the delays caused by the 

sequence of serial control messages issued from the controller. Issuing a cross-

connect information to both the BTI7800 network elements at the same time by 

introducing multithreading in the resource manager will help to reduce the time 

taken by all the use cases. Advantage of introducing, parallelization of control 

signals directed towards sender and receiver data centers will help to reduce the 
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time taken by each use case by 50%. The synchronization between both the 

threads are important for maintaining a stable system.             
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Appendices 

Appendix A  :  Sequence for High Priority Request from User A 

In this appendix, the sequence explaining the detailed working of both protocols as SBIs 

for the use cases demonstrated in Section 4.3.2.2 is discussed.  

Figure A.1, represents the sequence involved in configuring the high priority request 

using NETCONF protocol. The user interacts with the BoD application and the resource 

manager receives the request. The system exists in initial state with 10 sub flows or cross-

connects provisioned. The user has requested for 2 additional sub flows for handling the 

high priority traffic of user A. The resource manager decides to drop the lower priority 

flow of user B. The resource manager communicates the modified 10 cross-connects 

information (that includes 8 cross-connects belonging to base flows of user A and B, and 

2 cross-connects to the high priority flow of user A) to the sender BTI7800 device with 

the help of the control plane. On completion of the request, the sender BTI7800 device 

replies the status. The resource manager, through the control plane, communicates the 

same information to the receiver BTI7800. At the end of 8 seconds the BoD application 

signals the resource manager to return back to the initial configuration. The resource 

manager, through the control plane, signals the set of 10 cross-connects or sub flows that 

belongs to the initial configuration of both BTI7800 devices. As a result, cross-connects 

created for handling high priority traffic of user A are torn down and cross-connects to 

service the low priority flow are configured. 
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Figure A.1   Sequence for High Priority Request from User A Using NETCONF – Case 2 
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Figure A.2   Sequence for High Priority Request from User A Using OpenFlow – Case 2 
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Figure A.2, represents the sequence of steps involved in configuring the high priority 

request using the OpenFlow protocol as SBI. The user interacts with the BoD application 

and the resource manager receives the request. The system exists in the initial state with 

10 sub flows or cross-connects provisioned. The user has requested for 2 additional sub 

flows for handling the high priority traffic of user A. The resource manager decides to 

drop the lower priority flow of user B. The resource manager communicates that the 9th 

cross-connect or sub flow is to be deleted to both BTI7800 devices. Next, the resource 

manager communicates that the 11th cross-connect or sub flow is to be added in the place 

of the deleted sub flow to both BTI7800 devices. The same procedure is followed to 

delete the 10th sub flow and add the 12th sub flow. The BoD application signals the 

resource manager to set up the initial environment once the system has serviced the high 

priority bandwidth requirement for 8 seconds. The resource manager follows the same 

procedure to delete a sub flow and add a sub flow at both ends accordingly.     
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Appendix B  :  Sequence for High Priority Request from Both Users A and B 

(Mutual Sharing) 

In this appendix, the sequence explaining the detailed working of both protocols as SBIs 

for the use cases demonstrated in Section 4.3.3 is discussed.  

Figure B.1 represents the sequence involved in handling the high priority requests using 

the NETCONF protocol as SBI. The user interacts with the BoD application and the 

resource manager receives the request. The system exists in the initial state with 10 sub 

flows or cross-connects provisioned. Both users have higher priority request and user B 

has lower priority flow. The resource manager handles the scenario by mutual sharing of 

resource among each user. The resource manager communicates the modified 10 cross-

connects information (that includes 9 existing cross-connects and 1 modified cross-

connect to satisfy the high priority flow of user A) to the sender BTI7800 device with the 

help of the control plane. On completion of the request, the sender BTI7800 device 

replies the status. The resource manager, through the control plane, communicates the 

same information to the receiver BTI7800. At the end of 8 seconds, the BoD application 

signals the resource manager to return back to the initial configuration. The resource 

manager, through the control plane, communicates the list of 10 cross-connects or sub 

flows that belongs to the initial configuration to both BTI7800 devices. As result, the 

cross-connect created for handling high priority traffic of user A is torn down and a 

cross-connect for servicing lower priority traffic for User B is configured. 

Figure B.2 represents the sequence of steps involved in configuring the high priority 

request using OpenFlow as SBI. The user interacts with the BoD application and the 

resource manager receives the request. The system exists in its initial state with 10 sub 
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flows or cross-connects provisioned. The resource manager handles the high priority 

request from both users by mutual sharing and there is only one sub flow modification. 

The resource manager communicates that the 9th cross-connect or sub flow is to be 

deleted at both BTI7800 devices. Next, the resource manager communicates that the 11th 

cross-connect or sub flow is to be added in the place of the deleted sub flow to both 

BTI7800 devices. The BoD application signals the resource manager to set up the initial 

environment, once the system has serviced the high priority bandwidth requirement for 8 

seconds. The resource manager follows the same procedure to delete a sub flow and add a 

sub flow at both ends accordingly. 
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Figure B.1   Sequence for High Priority Request from User A and B Using NETCONF – Mutual 

Sharing 
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Figure B.2   Sequence for High Priority Request from User A and B Using OpenFlow – Mutual 

Sharing 
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Appendix C  :  Sequence for Emergency Request 

In this appendix, the sequence explaining the detailed working of both protocols as SBIs 

for the use cases demonstrated in Section 5.2 is discussed.  

Figure C.1 and Figure C.2 represent the steps involved in configuring the emergency 

request using NETCONF and OpenFlow. The sequence is similar to the elephant request 

discussed in Section 5.1. The user interacts with the BoD application and the resource 

manager handles the request. The major change in the emergency use case is the number 

of flows modified. The system exists in the initial state, with 10 sub flows or cross-

connects provisioned. The user A requests bandwidth for emergency traffic and as a 

result six existing cross-connects are deleted and six new cross-connects are added. When 

user B’s emergency request is provisioned, all the ten cross-connects are modified. When 

the system returns back to the initial state, four cross-connects are modified. As discussed 

earlier, in NETCONF the set of cross-connects that need to be provisioned are 

communicated as a single request each time. The NETCONF agent on the BTI7800 

device figures out the modification and will tear down and add cross-connects 

accordingly. In OpenFlow the resource manager needs to identify the set of cross-

connects that need to be changed and communicates the change for each cross-connect in 

a sequential order. OpenVSwitch, as it receives a sub flow modification request from the 

controller, validates the received information and posts the cross-connect modification 

into the message queue. confd then handles each modification one after another as 

discussed in Section 3.4.4.      
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Figure C.1   Sequence for Emergency Flow Request Using NETCONF 
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Figure C.2   Sequence for Emergency Flow Request Using OpenFlow 
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Appendix D  :  Packet Size of NETCONF Control Message  

The ODL controller communicates flow modification control messages to the BTI7800 

using NETCONF as a SBI. As we know flow modification in NETCONF is 

communicated as set of cross-connects. The size of the control messages communicated, 

varies based on a number of cross-connects specified in the message. The Table D.1 list 

all possible numbers of cross-connects that can be listed along with the respective control 

message size and the size of response message. In all the experiments we communicated 

10 cross-connects, except Section 4.3.2.1 where 8 cross-connects where communicated. 

The table presents the control message packet size from controller to one BTI7800 

device. In our experiment we have two BTI7800 devices, the same information is 

communicated to both.     

Number of Cross-Connects Control Message Size Response Message Size 

1 cross-connects  660 bytes 52 bytes 

2 cross-connects 900 bytes 52 bytes 

3 cross-connects 1124 bytes 52 bytes 

4 cross-connects 1332 bytes 52 bytes 

5 cross-connects 1448 + 92 bytes 52 bytes 

6 cross-connects 1448 + 316 bytes 52 bytes 

7 cross-connects 1448 + 524 bytes 52 bytes 

8 cross-connects 1448 + 732 bytes 52 bytes 

9 cross-connects 1448 + 956 bytes 52 bytes 

10 cross-connects 1448 + 1164 bytes 52 bytes 

Table D.1    Packet Size of NETCONF Control Message 
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Appendix E  :  SDN & OpenFlow World Congress 2015 Demo 
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