Analysis of OpenFlow and NETCONF as SBIs in
Managing the Optical Link Interconnecting Data Centers in
an SDN Environment

by

KARPAKAMURTHY MUTHUKUMAR

A thesis submitted to the Faculty of Graduate and Postdoctoral
Affairs in partial fulfillment of the requirements for the degree of

Master of Applied Science
n

Electrical and Computer Engineering

Carleton University
Ottawa, Ontario

© 2016, KARPAKAMURTHY MUTHUKUMAR

Abstract

SDN technology has primarily been applied to all types and size of network ranging from
Ethernet services to large cloud environment. More recently, interest has turned towards
extending programmability of the OTN. In the SDN architecture, SBIs are used to
communicate between the SDN controller and the switches or routers in the network. In
this thesis we deploy two major protocols as SBIs in managing BoD across the
interconnected data centers over the OTN. The OpenFlow and NETCONF are the two
SBIs deployed between the OpenDayLight controller and the BTI7800 optical edge
transponders. We present the OpenVSwitch architecture modified for referencing the
optical ports of the BTI7800 devices. Experimental demonstration and performance of
both BTI YANG-based NETCONF and OpenFlow protocols are presented. Our
experiments show that NETCONF is faster and efficiently handles the control message;

whereas in a fully loaded system, OpenFlow offers better bandwidth utilization.

il

Acknowledgements

This thesis would have been impossible without the support and the encouragement I
received from several people.

First and foremost, I am deeply grateful to my supervisor, Professor Thomas Kunz for
guiding me throughout my master’s program and supporting me in every step of the
thesis work.

I am grateful to Peter Landon (Juniper, Canada) for his support and guidance during my
thesis work.

I am thankful to my colleagues and friends for sharing their experiences and thoughts on
various aspects of the research.

Finally, I want to thank my parents and my sisters who have always encouraged me.

il

Table of Contents

Chapter 1: Introduction . |
1.1 IMIOBIVALION ..ttt h e et e bt s a et sb et e st e e bt e e bt emtenbeeseenteeneenean 1
1.2 ODJECEIVE. ..ttt ettt e b e bt st e et et e bt e s bt e sh e e s it e e te e beesheeeateeabeebeebeenes 2
1.3 CONETTDULION. ¢ttt ettt ettt ettt e bt e s bt e sb e e et e e teebeesbeesateembeebeebeennes 3
1.4 OUtline Of the THESTS ...ceovertieieriiitieee ettt ettt eaeens 4

Chapter 2: Background Work and Literature ReVIEWcccevvveerccsccnnricsssnnrecssssnsnees 6
2.1 Issues Faced with Traditional Data Center and Network Management 6
2.2 Software Defined NetWOTrKiNgccvevieriiiiiiiisie ettt eere s 8

2.2.1 Principle of Software Defined Networking............ccooceevieriieiiieiiesieiencesee e 11
2.2.2 CharacteristicS OF SDN ..ot 11
2.2.3 SDN Application DOMAINcecuieiiieiiieriieiieeie ettt ettt eee e 13
2.2.3.1 Data Center NEtWOTKScceeierierieierieiieie ettt 13
2.2.3.2 Optical NEtWOTK ...cccuveiiiiiiiiieiieiee ettt st tne b e enne s 14

23 OpenDayLight Controller.........ccooiiiiiiiiiiiiiieieeteeeteeeee e 16
2.4 SouthBound INtErfacescooeeieiiiieeeeeee e 18
2.4.1 NETCONF and YANGooiiiiiiiiiiieireseseseee ettt sttt 19
2,42 OPCIFIOW..c.uiiiiiiiiiciectectecte ettt ettt e b e et e e teestbestbessbeesseessaesaesssessseanses 23
24.2.1 OpenFlow Flow Handling and Flow Matching...........cccccocevininninenncncnnne. 25
2.4.2.2 OpenFlow MeESSages.cccuiriiieririinieniieienieeiteteeie ettt ettt 27

2.5 Related WOTKeoeieeee ettt 28

2.5.1 Managing Bandwidth on Demand Across Interconnected Data Center using SDN 28
2.5.2 SDN in the Field of Optical NetWork..........cccceeviieviieniienieeiecieeiecreereesee e 34

2.6 Y (015 RT7:15 (o) o WO ORORORURRRRRRRRRN 39

v

Chapter 3: Managing the Interconnected Optical Data Centers Using Software

Defined NetWOrKing ...cccviiceicsericssssnniessssssneccssssssecss 41
3.1 Requirement ANALYSISccccverierciieiieiieiiesteste e ere e e sieeseesre s b e esseesseessaesssesssesnsens 41
3.2 BTI7800 Network EISMENtcccueeiiiiieiieiierie ettt 43

33 Implementation of NETCONF as SouthBound Interface for Controlling BTI780044
3.3.1 Connecting BTI7800 Device with ODL Using NETCONF Connector................... 45

3.3.2 Establishing NETCONF Connection between NETCONF Connector and BTI7800

46
3.3.3 Capabilities EXChange..........coooiiiiiiiiiiiieiecieee ettt 47
3.3.4 Managing the BTI7800 using NETCONEFccccoiiviiiniiniiiiecieere e 51
34 Implementation of OpenFlow as SouthBound Interface for Controlling BT17800......53
3.4.1 BTI7800 OpenVSwitch SDN ArchiteCture..........cceeveeeriiecienieeiesiereeieieeeeeeseeenes 53
3.4.2 OpenFlow Optical EXIENSIONeecviiriieriieriiesiesie et eieeieesieeseesereesreesseesreessaeseneens 54
3.4.2.1 POTt STATUS...eouieiieeieieeiieieete ettt ettt ettt ettt e te et et e te e st ese st ensesneeneas 57
3422 FloW MOIfiCatIONouieiieiiieieieie et 59
3.4.2.3 Launching OpenFlow PIUZIn........cccccoiiiiiiininiiniiiiiineteeeeteeeee e 61
3.4.3 BTI7800 OpenVSwitch ArcChiteCture.........cccoeveerienierieniinienieneeeseetee e 61
3431 MANAQZEIMENTeveeeiiieeiieeiieeeieeesteesteeeeteesteeasaeessseessseessseesssseesssesasssessseennes 62
31432 USEI SPACE ...cuiieiiiiiteieete ettt ettt ettt st st st 63
3.4.3.3 KEIMEl SPACE....cciiiiiiiiiiiecieete ettt et ettt te e ae s be b e esbeera e raesare e 65
3.4.4 BTI7800 OpenVSwitch Operation........c..ceceeireerienerieninienieneeieneeieee e 66
3.4.5 Managing the BTI7800 using OpenFlow.........ccccccveoieiiienieniiiiiiiecieeeeieeeie e 69
3.5 Managing Data Center INterCONNECtiON.........c..evvieiierieeriieriieeeeereereereesreeseesereeeveenes 70
Chapter 4: Test Environment and Experiments 72
4.1 Test Environment and Evaluation MEtricscccveruereerieririereeeeiee e e e 73
4.1.1 Environment DeSCIIPLIONcccviiiiirieriieriieiee et eteesteesteestresereeeveereessaessnesesessvessses 73

4.1.2 Evaluation MELTICS coooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 76

4.2 Initial ENVITONMENT.......cooiitiiiiiiiiieieee ettt st 78
4.2.1 Flow Management Using NETCONF Interface..........ccccceeeeeriierieesieninninnieeieeen. 80
4.2.2 Flow Management Using OpenFlow Interfacecccccoeoieiiiiiiieiiinnninniieeenn 84

4.3 High Priority ReqUESt (20G) ...vvevviiiieiieiieiiecie sttt ettt ste v sseesaesssesnseennees 87
4.3.1 High Priority Flow (20 G) Request for User Bcccoooeiiiiiiiiieiinieieeeeeen 87
4.3.2 High Priority Flow (20 G) Request for USer Acccevvevieriieciieiieiereeeve e 89

4.3.2.1 Case 1: When No Low Priority FIow EXiStSccccevvieiiiiiiiieiiiiienieieeieeen 89
4.3.2.2 Case 2: When The Lower Priority FIow EXiStS.......cccceeeviveiieviienienienieereennenn 96

4.3.3 High Priority Flow (20 G) Request from Both Users A and B (Mutual Sharing).. 100

Chapter 5: Stress and Load TeSting.......ccoueeireenieenseensnessaenssncsssessnsssasssancsssesssssssaens 104
5.1 Elephant RequUest (40G)ocvievvieiieeiecieeieeteeeesee et ere e reestee e seveseveesseesseenns 104
5.2 Emergency Request (100G).......coocuiiieciiriiiieiiieeieeeite et ertee e ee et eteeesseeseeeesnnee s 111
53 Simultaneous Multiple Application Access — Stress Testing........ccecceeveeveereerieennnen. 115

5.3. 1 NETCONF ...ttt sttt 116
532 OPENFIOW ..ottt 117
5.4 Control Messages Between ODL and BTI7800cccocevveeiieciienienieieceeeee e 118
5.5 SUMIMATY ..ttt ettt sttt ettt e bt e st e st e eateeateebeesmeesmeeeaneeneeen 120

Chapter 6: Conclusions and Future Work 122
6.1 CONCIUSIONS ...cniniiiieiteiteie ettt sttt sae s 122
6.2 FUture WOrK.......cooiiiiiii e 123

APPECIUICES.ccuueerrerrerrenrreseesuenssnssnessessaessssssessssssnessesssssssssasssssssssssessassssssssssssssassssssassssssns 126

References........oeeecuercnencnnnnnees 140

Vi

List of Tables

Table 3.1 OpenFlow Port Status Structurecceevveeiiienieeiieieeeee e 57
Table 3.2 OpenFlow Flow Modification Structure..........ccoceeeevvevieeiiienieeniienie e 59
Table 3.3 Flow InStruction StruCUIecooueeiiriieiierieieeieeeceeee e 61
Table 4.1 Initial Environment ALLOCAtIONcccveevieeiiienieeiierie et 78
Table 4.2 High Priority Request from User Bccccoooiviiiiiiiniiiieieee e 88
Table 4.3 Bandwidth Allocation for High Priority Request from User A - Case 1....... 89
Table 4.4 Bandwidth Allocation for High Priority Request from User A - Case 2....... 96
Table 4.5 Mutual Sharing ALOCAtION.ccueeruieriieiieeieeeeeie et seae e 100
Table 5.1 Cross-Connects ModifiCationcooceevierierienieninienieeee e 120
Table 5.2 Use Cases RESUILSccuoiuiiiiiriiiieieieeeeeeee e 121
Table D.1 Packet Size of NETCONF Control Message.........c.ccccvevveerirenveerreenveennnns 137

vii

List of Illustrations

Figure 2.1 SDIN OVEIVIEW ..couiiuiiriiiiiiiieiieieeie ettt ettt et sttt ettt et nae e 10
Figure 2.2 OpenDayLight ATChiteCtUIecccuiriiriiiiiiieriieeeiereeeee e 17
Figure 2.3 NETCONF LAYETS.....ccteriiiiiiieitieieniiesiteieeie ettt sttt 20
Figure 2.4 NETCONF and YANG Operationccceecuerueereriueneenieeiienienieseeseeneeenens 22
Figure 2.5 OpenFlow SWiItChcccooiiiiiiiiiii e 24
Figure 2.6 FLOW RUIES......oouiiiiiiiiieeeee e 24
Figure 2.7 FLoW MatChing.......cccoiiiiiiiiiiiieiieieeeseeee et 26
Figure 2.8 Packet Matching Across Multiple Flow Tablescccccoevivieninienencenen. 27
Figure 3.1 ATChitecture OVETVIEWcccuevieriieiiiiieriieieeie sttt 42
Figure 3.2 BTI7800 ATCRItECTUIE. ...c..eetiiiiiiieieeiiesieeieeeetee e 44
Figure 3.3 NETCONF Session Establishment.............cccoocieiiriiiniininiinieniicenieeeee 46
Figure 3.4 NETCONF Device Capability Exchange..........ccccceevvivvniiiiiniieiiieeiee e, 48
Figure 3.5 Managing the Device using NETCONF.........cccooiiiiiiiiniiiiceeecee 52
Figure 3.6 BTI7800 OpenV Switch Architecture OVErviewc..cccceerveenieniieeneennneen. 54
Figure 3.7 Connection Establishment Procedure...........c.cccooeiiiiiiiiiiniiniiiiiices 56
Figure 3.8(a) OpenFlow Port Status MeSSagecccevueeiiirieiiieiieiieeiceteeieeiee e 58
Figure 3.8(b) OpenFlow Port Status MeSSagecccvevueiriiiriiiiieiieeieeiceieeeeeiee e 58
Figure 3.9 OpenFlow Flow Modification MeSSagecccovueeriierieiniiniieinieeieeneeeeeens 60
Figure 3.10 Flow Instruction MESSAZE.........eervierieiiiiiiiiiiieiieeite ettt 60
Figure 3.11 BTI7800 OpenVSwitch OpenFlow Architecturecccoceeniiiiinnicnncnn. 62
Figure 3.12 BTI OpenVSwitch User Space Architecture...........oeoueevieiiiieniiniieenicnienn. 64
Figure 3.13 BTI7800 OpenV Switch Process........cccccoeiiiiiiiiiiinieiiiiiciiceiceeeee e 67

viii

Figure 3.14 OpenFlow Flow Modification State Diagramc..cccceevuevieneriienneneennenn 68

Figure 3.15 OpenFlow Interaction between the Controller and BTI7800...................... 70
Figure 3.16 Data Center INtercONNECtION..........coveriierierieniieieeierieeieeee et 71
Figure 4.1 Test ENVIronment SELUPccceevueeriirieniienienieeiieeeie et 73
Figure 4.2 Spirent Traffic Generator Configurationccceeceveenieeiienienennenieneennens 74
Figure 4.3 Initial ENVIFONMENT........coiiiiiiiiiiiiiiieniteeeieee et 78
Figure 4.4 Initial Environment Provisioning Using NETCONF and OpenFlow............ 80
Figure 4.5 Sequence for Initial Configuration Using NETCONFcccccccvviivianrnnnen. 82
Figure 4.6 Sequence for Initial Configuration Using OpenFlow............ccccocvvevvienirrnnnenn. 86
Figure 4.7 High Priority Request from User B........cccccocevieiiiiiiniiniiiiecceceee 88
Figure 4.8 Sequence for High Priority Request from User B..........cccccovveviiiinnncennen. 89
Figure 4.9 High Priority Request from User A - Case L......cccoceveiniiniienieniinenieieeene 90

Figure 4.10 Sequence for High Priority Request from User A Using NETCONF — Case

... 93
Figure 4.12(a) Provisioning for High Priority Flow Request for User A Using
NETCONE - CaSE 1 ..ottt 94
Figure 4.12(b) Provisioning for High Priority Flow Request for User A Using
OPENFIOW = CASE L.eiiniiieiiie ettt e e e tee e e e e sebeeesabeeenseeennseeenneeens 94
Figure 4.13 High Priority Request from User A - Case 2.......cccceeeveenieniiieniennieenieneens 96
Figure 4.14(a) Provisioning for High Priority Flow Request from User A Using
NETCONF = CASE 2 ...ttt ettt et 97

X

Figure 4.14(b) Provisioning for High Priority Flow Request from User A Using
OPENFIOW = CASE 2.ttt ettt ettt ettt e e be et e esbe e ssesnseessaeenseesssesnsaensseenne 98
Figure 4.15 Mutual SRaringccceevieiiiiiniieiieie ettt 100
Figure 4.16(a) Provisioning for High Priority Flow Request from User A and B Using
NETCONF - Mutual Sharingccceevieeiiiiniieiiieiie ettt eseesene e enne 101

Figure 4.16(b) Provisioning for High Priority Flow Request from User A and B Using

OpenFlow - Mutual Sharingc.cocveeiiieiiieriiieiieeie ettt e e ereens 102
Figure 5.1 Elephant Flow Request by USer Acccoooiieviieniieiieieeeecee e 105
Figure 5.2 Elephant Flow Request by User B..........ccccooiiiiniiniiiiiiieeeceee 105
Figure 5.3 Sequence for Elephant Flow Request Using NETCONFcccccecueneee. 107
Figure 5.4 Sequence for Elephant Flow Request Using OpenFlowccccceuenenee. 108
Figure 5.5(a) Elephant Flow Request Using NETCONFcccccoviiiiniiniinieieeeene, 110
Figure 5.5(b) Elephant Flow Request Using OpenFlow...........ccccccvevvieriiiiiienieeneennen. 110
Figure 5.6 Emergency Flow Request by USer Ac.coocviveviiiiniieiniieeiee e 112
Figure 5.7 Emergency Flow Request by User B........c.coociieviiiiniiiiiieiiececeee 112
Figure 5.8(a) Emergency Flow Request Using NETCONFcccccooiiiiiniiiniinncennn. 113
Figure 5.8(b) Emergency Flow Request Using OpenFlow.........ccccccoceeiiiniiininncnnnn. 113
Figure 5.9 Simultaneous Different Application Access - NETCONF.............cccue...... 116
Figure 5.10 Simultaneous Different Application Access - OpenFlow 118

Figure A.1 Sequence for High Priority Request from User A Using NETCONF — Case 2

Figure B.1 Sequence for High Priority Request from User A and B Using NETCONF —
MULUAL SNATINE.eeviieiiieiie ettt ettt et e e e e b e e saesnbaessaeenseenenas 132

Figure B.2 Sequence for High Priority Request from User A and B Using OpenFlow —

MULUAL SRATINE.eeuviiiiieiie ettt ettt et e e et eesaee e b e e saesabeessaeenseenenas 133
Figure C.1 Sequence for Emergency Flow Request Using NETCONF 135
Figure C.2 Sequence for Emergency Flow Request Using OpenFlow......................... 136

xi

List of Acronyms

AAA Authentication, Authorization, and Accounting
AC Application Controller

API Application Programming Interface

BICs BTI Interface Cards

BoD Bandwidth on Demand

CLI Command Line Interface

CMM Chassis Management Module

DCON Data Center Optical Networks

DWDM Dense Wavelength Division Multiplexing
DynPaC Dynamic Path Computation

eSDN enhanced Software Defined Networking
FTP File Transfer Protocol

GMPLS Generalized Multiprotocol Label Switching
GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IRS Internet Routing System

MD-SAL Model Driven — Service Abstraction Layer
NBIs NorthBound Interfaces

NETCONF Network Configuration Protocol

OAM operations, administration, and maintenance

xii

ODL OpenDayLight

OF OpenFlow

OIF Optical Internetworking Forum

O-NEs Optical Network Elements

ONF Open Network Foundation

OpenSig Open Signaling

O-SDNC Optical SDN Controller

OTN Optical Transport Network

OTWG Optical Transport Working Group

PCE Path Computation Element

PCEP Path Computation Element Protocol

QoS Quality of Service

QoT Quality of Transmission

REST REpresentational State Transfer
ROADMs Reconfigurable Optical Add Drop Multiplexers
RPC Remote Procedure Call

SAL Service Abstraction Layer

SBI SouthBound Interface

SDN Software Defined Networking

SD-OTN Software Defined Optical Transport Network
SFTP SSH File Transfer Protocol

SLA Service Level Agreements

SNMP Simple Network Management Protocol

xiil

SWAN-C&M SDN Wide Area Network Control and Management
TC Transport Controller

UFMs Universal Forwarding Modules

XML eXtensible Markup Language

YANG Yet Another Next Generation

Xiv

List of Appendices

APPENAIX A .ot e 123
APPEndiX B. ..o 127
APPENAIX C. o e 131
APPENdIX D .o e 134
APPendix E. ..o e 135

XV

Chapter 1: Introduction

This chapter introduces the objectives of the thesis. It explains the motivation and lists
the contributions of the thesis research. The chapter wraps up by explaining the

organization of this thesis document.

1.1 Motivation

Recent years have witnessed an unprecedented growth in the number of data centers
being built by large cloud service providers. To provide flexible and reliable services at
the global scale, cloud service providers have deployed multiple data centers in different
geographical areas, often spanning continents that are interconnected via private high-
speed backbone networks, offering hundreds of Gbps or tens of Tbps bandwidth [21].
The inefficiency of current inter data center backbone networks stems from three aspects
[21]. First, the lack of effective control techniques cannot make efficient use of the
network resources. With no coordination, each application or service now can send
however much traffic whenever it wants, in oblivion to the current network load. As a
result, the bandwidth needs to be over-provisioned in the network to be able to handle the
superimposed peak demand. In reality, with a little coordination, the demand for
bandwidth could be reduced by postponing the delivery of delay-tolerant services to off-
peak periods. Second, the widely varying performance requirements of applications are
usually ignored. For example, interactive applications (e.g. web search) are delay-
sensitive, while background applications (e.g. data synchronization between data centers)
are throughput-sensitive. Third, it is known that traffic engineering with traditional

distributed routing protocols (e.g. link state) is suboptimal in most cases. Distributed

approaches are often inflexible and hardly lend themselves to the deployment of
sophisticated resource sharing principles such as fair bandwidth sharing between services
with priorities or multi-path forwarding to balance application traffic in response to link
failures and demand changes.

The emerging Software Defined Networking (SDN) technique has recently been used for
inter data center traffic management to address the above-mentioned inefficiencies of
traditional approaches. Transport networks are evolving to be more and more automated
and driven by software to minimize the operational costs and to provide new services and
applications in a quicker and more efficient way [25]. Several transport technologies such
as Dense Wavelength Division Multiplexing (DWDM) and Reconfigurable Optical Add
Drop Multiplexer (ROADM) etc. are available for interconnecting the data centers, each
of which provides various transport optical features [19]. Moreover, management,
configuration or debugging procedures remain a daunting task in data centers mainly
because of multiple vendor-specific proprietary assets such as switches/routers requiring
their own proprietary procedures rather than a simple and unified process. Similarly,
traffic management and policy enforcement can become very important and critical
issues, as data centers are expected to continuously achieve high levels of performance
[18]. But if one wants to extend the SDN approach to the physical photonic layer, then

the SDN controller must take the nature of the optical transmission into account.

1.2 Objective
The thesis starts with understanding how SDN plays an important role in shaping an

emerging network architecture that deals with efficient bandwidth utilization depending

on the nature of today's applications. We review the current state-of-art in managing
Bandwidth on Demand (BoD) across interconnected data centers in an SDN environment
and the advancement of SDN in the field of optical networking. In the architecture of a
Software Defined Network, the SouthBound Interfaces (SBIs) are used to communicate
between the controller and the SDN network elements such as switches and routers. The
main step towards the thesis is to effectively manage BoD across the data centers that are
interconnected by an Optical Transport Network (OTN). The SDN controller, with the
help of the SBIs is capable of controlling the data plane devices located at the data
centers that are interconnected. In our thesis, we have deployed two SBIs. The first one is
the OpenFlow protocol, developed by the Open Networking Foundation (ONF). It is an
industry standard that defines how to interact with the SDN forwarding plane to make
adjustments to the network, so it can better adapt to the changing business needs.
Network Configuration Protocol (NETCONF) is an existing network management
protocol that is alternatively supported as a SBIs in the SDN architecture. The main
objective of the thesis is to evaluate the performance of both protocols as SBIs in an

interconnected data center over an optical backbone.

1.3 Contribution

The thesis compares two protocols that serve as SBIs in handling BoD requirements
across the data centers that are interconnected with the help of an optical backbone and
managed using SDN. As discussed in Section 1.2, OpenFlow and NETCONF are two

protocols that are implemented. The contributions of this thesis are:

e The OpenFlow specification does not support any optical extensions for optical
devices to reference the information regarding optical ports and interfaces. The
thesis focuses on controlling the transport optical network resources formed by
interconnecting the data centers. In order to reference the optical ports and
connections of BTI7800 using OpenFlow protocol, the optical extensions were
developed within the OpenVSwitch code and ported onto the BTI7800’s kernel
environment.

e We evaluate the capabilities of both protocols as SBIs in managing BoD
requirement between two data centers. Depending on the availability of resources
and nature of traffic demands, the SDN controller dynamically determines the
flow rules and communicates those rules to the network elements using the
implemented SBIs. The use cases discussed in this thesis help us to quantitatively
and qualitatively compare both protocols implemented as SBIs.

e NETCONF as SBI in managing BoD across the BTI7800 devices interconnecting
data centers was showcased as a demo at the “SDN & OpenFlow World Congress
2015, Dusseldorf, Germany”. Refer to Appendix E for the information related to

the demo and the use case.

1.4 Outline of the Thesis

The chapters of the thesis are organized in the following manner. Chapter 2 provides
background information about the nature and challenges faced by the traditional
interconnected data centers. It introduces the SDN architecture and discusses the benefits

of SDN in network management. Then, the traditional network management protocol

NETCONF and the ONF recommended OpenFlow protocol as SBIs in an SDN
environment are presented. Finally, it reviews the state-of-art literature related to BoD
management across data centers in an SDN environment and literature related to the SDN
advancement in the field of optical networks. Chapter 3 introduces the BTI7800 optical
network element and its high-level architecture. It presents the architecture of the
NETCONF-based SBI implementation on the BTI7800. It further presents the developed
optical extension to the OpenFlow protocol and its implementation on the BTI7800. The
chapter presents the working of both implemented SBIs in managing the BTI7800 optical
data plane devices interconnecting data centers. Chapter 4 discusses the details of the test
environment. Chapter 4 and Chapter 5 discusses the use cases derived from the ONF
SDN use case document [7] and it presents the results collected when exercising those
use cases for both protocols as SBIs. Chapter 6 concludes the thesis and provides the

directions for possible future work.

Chapter 2: Background Work and Literature Review

To better understand the scope of research, this chapter talks about the issues faced by
traditional networking. It introduces the concept of SDN and briefs about the
characteristics and the principles behind this new technology. This chapter further
presents the applicability of SDN in selective fields of networking based on the research
focus. Section 2.3 introduces the OpenDayLight (ODL) controller and its high level
architecture, followed by a brief introduction of NETCONF and OpenFlow SBIs. Finally,

the chapter concludes with a review of related research work.

2.1 Issues Faced with Traditional Data Center and Network Management
Nowadays, the Internet develops at a rate that outpaces all existing data networks in both
speed and scale. As the variety of real-time services such as video, audio, cloud data
center, and mobile services continue to develop and as a result, they form a bottleneck for
bandwidth requirement. The existing traditional network management cannot deliver the
expected service quality, satisfying all bandwidth requests [18]. The traditional network
faces these problems:

e Inefficient Service Deployment: In the traditional environments, services and
networks are deployed separately. Most networks are configured using commands
or through network management systems, and are managed statically or through
network automation, which limits the control over the network and their entities.
These networks are essentially static and inefficient at deploying dynamic
services that require timely adjustments. In extreme cases, these networks may

even fail to support such services.

e Slow Adaptation to New Services: It takes a long time in a traditional network
environment to upgrade features, adjust architectures, or to introduce new
device(s) to meet the new service requirements. For example: in a traditional
optical data centric network, if one of the applications is requesting additional
bandwidth, the network cannot quickly adopt to the requirement as it requires
manual provisioning. The network manager has to provision each and every
device separately through its respective Command Line Interface (CLI) in order
to accommodate the requirement and it turns out to be time consuming and
inefficient.

e Lack of User Experience: Most of the network applications are connectionless,
providing only minimum bandwidth service quality. The lack of quality in the
service delivered, results in situations that thwart user expectations for a quality
experience.

Over the years, many solutions have been proposed to solve the problems faced by the
traditional networks. These problems cannot be solved without focusing on the
fundamental design of the network infrastructure, which requires decoupling between the
network and the service that are transparent to each other. The two most significant early
efforts, which proposed ways of separating the control software from the underlying
hardware and provide an open interface for management and control, are the Open
Signaling (OpenSig) working group and the Active Networking initiative. Although these
early approaches envisioned innovative open networking programmability, they could not
achieve widespread success because of these shortcomings [16]:

a) The approaches were promoting data instead of control plane programmability.

b) They focused on proposing innovative programming architecture models and
platforms, paying little or no attention to practical issues like the performance and
the security they offered.

c) The approaches advocated, as one of its advantages, the flexibility it would give
to end users to program the network. Even though, in reality, the scenario of end
user programmability was really rare.

The traditional networking devices were designed to support specific protocols essential
for the operation of the network and these network devices were less dynamic and were
not really flexible enough to adapt to major changes. Due to the vast expansion of the
Internet of Things, the network grew bigger in size and it became tedious to manage each
and every device individually. At the same time, modifying the control logic of such
devices was not a good option, causing hindrance to the network evolution. To remedy
this situation, various efforts were taken focused on finding novel solution(s) that

eventually lead to a new era of more open, extensible and programmable networks [18].

2.2 Software Defined Networking

SDN, is arguably one of the most significant paradigm shifts in the networking industry
in recent years. SDN is a control framework that supports programmability of network
functions and protocols, by decoupling the data plane and the control plane, which are
currently integrated vertically in most network equipment. The decoupling of planes
allows the underlying infrastructure to be abstracted and used by the application(s) and

the network service(s) as a virtual entity.

Designing and managing the computer networks can become a very daunting task due to
the high level of complexity involved. The tight bonding between a network control plane
(where the decisions of handling traffic are made) and data plane (where the actual
forwarding of traffic takes place) gives rise to various challenges related to its
management and evolution. Introducing or upgrading new functionality like intrusion
detection systems and load balancers would impact the network infrastructure and
possess a direct impact on its logic. The concept of programmable networks has been
proposed as a means to remedy this situation, by promoting innovation in network
management and deployment of network services using some sort of an open network
Application Programming Interface (API). Therefore, it produces flexible networks that
are able to operate according to the user’s need, are reprogrammable and perform
numerous tasks without the need for continuous modification of the underlying hardware
platform. SDN is seen as one way to solve some problems of the Internet, including
security, managing complexity, multi-casting, load balancing, and energy efficiency. The
split architecture of SDN makes it feasible to control, monitor, and manage the
network(s) from a centralized node also termed as SDN controller [1][2][15].

Figure 2.1 depicts the SDN layered architecture. The bottom most layer is the data plane,
and it is composed of physical hardware and virtual network entities (routers, switches
etc.) that are interconnected. Data plane devices act as per the controller’s instructions,
and are mainly responsible for forwarding packets onto their destination. The middle
layer is the control plane and it may be a single or series of controller(s) that are logically

centralized. According to SDN, the software control program is referred to as the

controller, and it is responsible for managing and storing information about the

underlying data plane devices, the network and its topology.

Defined Northbound interfaces for
communic ation with networking
and business applic ations

Business App SDN App fleiworking
App
7’
]] g
i 1 ’ =<
7
' #
\
Logically Centralized > >l
Control <
: Controller =
Segﬂratbn Cf COF:[DI _> - - -‘ - - 6 -. - - - - - -
and data plane . . v . =

Operating system based software
offering abstraction that enable
innovation

Flow Abstractions : é ‘.. — é:; /

Figure 2.1 SDN Overview

Open vendor and tec hnology
agnostic southbound
communic ation Interface

The controller translates network rules and regulations in term of flows that help in

packet handling decisions and routing. The control plane communicates with the data

plane devices through the SBIs. OpenFlow is the first standard communication interface

defined between the control and forwarding layers of the SDN architecture. OpenFlow

allows direct access for manipulating the forwarding plane of the network devices such as

switches and routers, both physical and virtual (hypervisor based). The top most layer is

the application layer that transforms the user requirements to the underlying controller

and vice versa. The application layer communicates with the controller elements using

the NorthBound Interfaces (NBIs) and vice versa.

10

2.2.1 Principle of Software Defined Networking

In SDN, the controller functions more like a device driver software that initiates and
configures the devices to some specific operational settings by reading input from the
applications and writing into the device’s memory. To the underlying network, the
controller is a piece of software that manages and shares all the resources of the
underlying network infrastructure and amongst the applications.

The concept of SDN is to place a network operating system between the network
infrastructure and the application layer. It is the responsibility of the network operating
system to coordinate and manage the resources of the complete network and to reveal an
abstract unified view of all components of the network to the applications executed on
top of it. The concept is analogous to the principle of a typical computer system, where
the operating system lies between the hardware and the user space and is responsible for
managing the hardware resources and providing common services for user programs.
Similarly, SDN offers a logically centralized environment where network administrators

and developers can typically program, configure and control the network.

2.2.2 Characteristics of SDN
SDN is proposed as a solution for the problems faced with the traditional network
architecture and to support future network growth. The characteristics of SDN
technologies are summarized as follows [2]:
e Decoupling of Control and Data Plane: This principle calls for separable
controller and data planes. However, it is understood that control must necessarily

be exercised within data plane systems. The SBI between the SDN controller and

11

the network element is defined in such a way that the SDN controller can delegate
significant functionality to the network element, while remaining aware of the
network element states.

Centralized Control Architecture: The SDN architecture removes the control
functions from the network devices and moves them into a logically separate
server, called the controller. In this architecture, the network devices forward
traffic based on the control data delivered by the controller. The controller
requires no direct knowledge of the network architecture. The Open Network
Foundation (ONF) currently sponsors this architecture and SDN-related protocols
like OpenFlow. However, the IETF and some equipment vendors believe that
traditional device control protocols, such as NETCONF, Simple Network
Management Protocol (SNMP), Path Computation Element Protocol (PCEP), and
the latest, Internet Routing System (IRS), are sufficient to meet the requirements
for a centralized controller.

Open Network Capabilities: This SDN characteristic provides additional
benefits. The core concept involves packaging network capabilities into an
operating-system-like controller. In the SDN architecture, the upper layer
applications and services are used to obtain the network capabilities through APIs
from the controller, and the lower layer interfacing between the controller and
network elements are both defined by the open network capability standards. The
SDN operation and specifications are majorly designed and regulated by ONF
(Open Networking Forum). The open APIs and advanced orchestration

capabilities create a flexible and modular services platform.

12

2.2.3 SDN Application Domain

This research work is focused on transport optical networks that interconnect data
centers. Henceforth this section briefly presents two application areas in which SDN
could prove to be beneficial: data centers and optical networks. SDN is also applied in
many other networks such as enterprise networks, WLANSs and heterogeneous networks,

cellular networks and the Internet of Things.

2.2.3.1 Data Center Networks

In the traditional data center network, the network management is typically met through
the careful design and configuration of the underlying network. This operation in most
cases is performed manually by defining the preferred routes for traffic and by placing
middle boxes at strategic choke points on the physical network. Obviously, this approach
contradicts the requirement for scalability, since manual configuration can become a very
challenging and error prone task, especially as the size of the network grows.
Additionally, it becomes increasingly difficult to make the data center operate at its full
capacity, as it cannot dynamically adapt to the application requirements [16].

The advantages that SDN offers in network management is filling these gaps. By
decoupling the control from the data plane, the forwarding devices become much simpler
and therefore cheaper. At the same time all control logic is delegated to one logically
centralized entity. SDN opens the opportunity for the network operators for implementing
policies so as to dynamically manage data center interconnections and assign bitrate for

flows based on the user [14][27]. It also allows for the dynamic management of flows,

13

the load balancing of traffic and the allocation of resources in a manner that best suits the
operation of the data center based on the needs of running applications, which in turn lead

to increased performance [15][16][17].

2.2.3.2 Optical Network

Optical networks are under pressure, the demand for bandwidth continues to grow rapidly
with no apparent end in sight. Traffic patterns are non-uniform and drastically shifting.
For some years people have discussed the impact of the dramatic increase in video usage,
the newer trends of adopting cloud services and the emergence of mega-sized data
centers should also be considered as a part of the traffic to be managed. At the same time,
device mobility and the Internet of Things altogether has changed where and how
bandwidth is being consumed.

High peak-to-average and/or transient bandwidth demands between certain locations
requires transport service that can be turned up, modified, and torn down in near real
time. The current transport network cannot effectively address these pressure points, as
they are generally static and operated separately from the client layers or by the
applications they serve. To support such a highly dynamic environment, connectivity
services must be turned up in minutes or seconds and be modifiable by the client users or
the software applications without operator intervention. An orchestration is required to
manage connectivity services over the network covering potentially multiple network
domains, through multiple layers of networking technology, and across multiple vendors’

equipment [4][16].

14

In order for new services to be provisioned or changed in an optical network via software
without pre-knowledge of the service type, the physical ports that are attached to the
network must be software defined both in protocol and speed definition as well as
wavelength definition. While SDN started to visualize the physical layer as merely a
supporting layer of the logical network, with optical networking there is no such
separation. Therefore, it is the physical layer of optical networks that must be software
defined in Optical SDN. User definable port speeds, protocols, and wavelengths have
been available in optical network hardware in recent years, with the level of flexibility
varying from simple LAN/WAN Ethernet selection to fully flexible transponders
covering a wide range of rates and protocols [5][6].

The Optical Transport Working Group (OTWG) defined under the umbrella of ONF’s,
provides the architecture and mechanisms to address the trends and challenges associated
with providing flexible and dynamic optical switching. Until recently, the OpenFlow
standard focused on the packet-oriented Layers 2 and 3. Transport SDN extends
OpenFlow to support Layer 0 (photonic) and Layer 1 (SONET/SDH, OTN) network,
allowing the same support for logically centralized control and independent software and
hardware development.

Fundamentally, extensions are added to OpenFlow to program switch ports and fabrics
that operate on fibers, wavelengths, and time slots as well as the packet headers. In our
research, to address the specific requirements for the transport network, OpenFlow is
being extended to support protection, performance monitoring, and other critical

Operations, Administration, and Maintenance (OAM) capabilities [5][6][22].

15

2.3 OpenDayLight Controller
The SDN controller acts as the strategic control point in an SDN network, it relays
information to the switches/routers “below” via the SBI and to the application and
business logic “above” via the NBIL
The SDN controller platform is typically comprised of a collection of pluggable modules
that are capable of performing different network tasks. Some of the basic tasks include
inventorying of devices in the network, identifying the capabilities of each and gathering
their network statistics. Extensions can be added to enhance the functionality and support
more advanced features, such as orchestrating new rules throughout the network,
virtualization of network functions and performing analytics by running algorithms on
the network traffic [8]. There are multiple choices of open source and commercial SDN
controllers, and the controller for our work is selected based on our requirements as
stated below:
1) Selecting an open source SDN controller.
2) The controller should support NETCONF and OpenFlow as part of the supported
SBIs.
3) The controller should provide well-developed NBIs that support in building the
business logic that manages the connection between interconnected data centers.
4) A Graphical User Interface (GUI) based interface that makes user interaction with

the controller simpler.

16

i Open -
i DLUX | Network Applications
| Orchestration & services

Controller Platform

Base Network Service Functions

..

Figure 2.2 OpenDayLight Architecture

The ODL project is an open source platform for SDN. It uses open protocols to provide
centralized, programmatic control and network device monitoring. Like many other SDN
controllers, ODL supports OpenFlow, as well as offering ready to install network
solutions as part of its platform. The ODL architecture is represented in Figure 2.2 and
key factors that are related to the research work are discussed below [8]:

e It supports a microservices architecture, in which a “microservice” is a particular
protocol or service that a user wants to enable within their installation of the ODL
controller. For example: the plugin provides connectivity between the control
plane and the data plane devices via protocols implemented as SBIs or offer
services such as Authentication, Authorization, and Accounting (AAA) or support

switch functionalities such as L2-Switching.

17

e Various network services and orchestration are supported at the application layer.
DLUX is the ODL web interface that provides a modern GUI to interact with the
controller for simplified setup and administration.

e REST (REpresentational State Transfer) is the software architectural style of the
World Wide Web, which communicates over Hypertext Transfer Protocol
(HTTP) with the same HTTP verbs (GET, POST, PUT, DELETE, etc.) that web
browsers use to retrieve web pages and to send data to remote servers. The ODL
controller supports REST as its NBI. REST uses Remote Procedure Calls (RPCs)
and message notifications to communicate with the control plane of the controller.

e The controller platform and its services support various use cases; multiple
plugins are supported as protocols for SBIs. ODL supports the Model Driven —
Service Abstraction Layer (MD-SAL) architecture, additional services and
plugins could be added or extended accordingly.

e The core Service Abstraction Layer (SAL) is composed of data stores, MD-SAL
data stores are further divided into config and operational. The config data store
contains the configuration information that allows users to change configurations,
for example through a REST API. The second data store contains the operational
information that comes from the system and normally offers users to view and

understand if their configurations have been successfully pushed into the devices.

2.4 SouthBound Interfaces
The main objective of the SBI is to provide communication and management interface

between the network's SDN controller(s) and data plane (nodes, physical/virtual switches

18

and routers). The SBI facilitates efficient control over the network, and enables the SDN
controller to dynamically make changes according to real time demands and needs. The
controller breaks down the whole network connections into smaller technical details
known as flows, that are specifically geared toward the lower layer component(s) using
SBI. Multiple traditional and SDN-specific protocols are supported as SBIs between the
decoupled control and data plane.
OpenFlow is a SBI designed to meet the requirements of SDN. In addition, most of the
controllers support some of the existing configuration protocol as SBIs that help in
establishing the connection between a SDN controller(s) and the network element(s). A
few of those protocols are listed below:

e NETCONF/YANG (Yet Another Next Generation)

e SNMP

¢ File Transfer Protocol (FTP) or SSH File Transfer Protocol (SFTP).

24.1 NETCONF and YANG

The NETCONF is an IETF network management protocol. It was developed by the
NETCONF working group and published in December 2006 as RFC 4741 and later
revised in June 2011 and published as RFC 6241 [11].

NETCONF provides mechanisms to install, manipulate, and delete the configuration of
the network devices. Its operations are realized on top of a simple RPC layer. The
NETCONF protocol uses an eXtensible Markup Language (XML) based data encoding

for the configuring data as well as the protocol messages. The protocol messages are

19

exchanged on top of a secure transport protocol. NETCONF can be conceptually

partitioned into four layers as shown in Figure 2.3 [11].

(4)

1)

2)

Layer Examples
Content Configuration Data Notification Data
Operations < edit - config >
<rpc>
Messages P <notification>
<rpc_reply>
SSH, TLS, BEEP/TLS, SOAP/HTTP/TLS,
Transport

Figure 2.3 NETCONF Layers [11]

The Secure Transport layer provides a communication path between the client
and server. It uses an RPC-based communication paradigm over the SSH
transport protocol mapping. NETCONF can be layered over any secured
connection-oriented transport protocol that provides security, integrity, and
reliable sequenced data delivery. NETCONF supports a long-lived persistent
connection between protocol operations among the peers [11].

The Messages layer provides a simple, transport-independent framing
mechanism for encoding RPCs and notifications. A NETCONF peer uses RPC-
based <rpc> and <rpc-reply> element tags to provide transport-protocol-

independent framing of NETCONF requests and responses [11].

20

3) The Operations layer defines a set of base protocol operations invoked as RPC
methods with XML encoded parameters. The NETCONF protocol supports a
small set of low level operations to manage device configurations and retrieve
device state information. The base protocol provides operations to retrieve,
configure, copy, and delete configuration data stores. Additional operations are
provided, based on the capabilities advertised by the device [11].

4) The Content layer is used to provide information in a “human readable” format.
It uses a data modeling language that helps in representing the model
configuration and state data manipulated by the NETCONF, NETCONF RPCs,
and NETCONF notifications [11].

YANG is the data modeling language for the NETCONF. The YANG data modeling
language was developed by the NETMOD working group of the Internet Engineering
Task Force (IETF) and was published as RFC 6020 in October 2010. The data modeling
language can be used to model the configuration as well as state information of the
network element(s). Furthermore, YANG can be used to define the format of the event
notifications emitted by the network element and it allows the data model to define the
signature of the RPCs that can be invoked on the network element via the NETCONF

protocol [12].

21

Server (Device)

Configuration

State Data

Notification

Operation

NETCONF
Engine

<rpc-reply:

Confi
Data Base

Figure 2.4 NETCONF and YANG Operation

A YANG module defines a hierarchy of data that can be used for NETCONF-based
operations, including configuration, state data, RPCs, and notifications. This allows a
complete description of all data sent between a NETCONF client and server.

The network devices have a system software component that is responsible for
performing network operations. The software component operates based on the
information that are stored in a config database. The device supporting NETCONF is
composed of a NETCONF engine and a protocol stack that enables a NETCONF client to
interact with the device and to operate on their data set, as shown in Figure 2.4. Any
NETCONF client can initiate an RPC-based reliable socket communication to interface
with the NETCONF engine running on a device. This reliable connection and the
NETCONTF protocol layer enable the client to operate on the data set. The information is

broadly classified into metadata based on the category and purpose. The classified

22

metadata information is modeled and stored in the form of a YANG data set. The system
software is responsible for updating the changes to the config database for enabling the
services.

On the one hand, each network device and service offers a wide variety of configurable
parameters, and each configurable parameter contains a set of values to be chosen. The
selection of proper values for these parameters depends not only on the network device
itself, but also on the overall consistency among the network devices residing on the
same network. The NETCONF protocol defines operations for managing network
devices where configuration data can be retrieved, uploaded, manipulated, and deleted.
The standard also defines the API as well as the connectivity requirements for
NETCONEF. It is not a new technology, as work started on this approximately 10 years
ago, but what it gives us is an extensible and robust mechanism for managing network
devices. Many commercial and open source controller support NETCONF as one SBI to
interact and control the devices. The controller acts as a NETCONF agent (NETCONF

client) that establishes an RPC communication with the underlying NETCONF device.

2.4.2 OpenFlow

OpenFlow is considered one of the first SDN standards maintained by the Open
Networking Forum (ONF) [3]. An OpenFlow Switch, as shown in Figure 2.5, acts as an
abstract packet processing machine and is composed of one or more flow tables and a
group table, and the OpenFlow switch performs packet lookups and forwarding based on
this table information. The switch processes the packets using a combination of the

packet contents and switch configuration state. Through the OpenFlow protocol, it is

23

capable to manipulate the switch's configuration state as well as receiving certain switch
events. The SDN controller is an element that speaks the OpenFlow messages to manage

the configuration state of the switches, responds to events and updates the flow table.

Controller
Open Flow Switch

c #penFlow
¥ ‘ Data Path

1 Group Meter |
Table Table

Control Channel

P
Port Flow Flow Flow Port

Table Table Table -
Port Pipeline S

Figure 2.5 OpenFlow Switch [3]

OpenFlow is a new method for controlling flows in the network. Networking has always
focused on managing frames and packets with routing protocols, but applications do not

use single packets to deliver services.

[Rule } Action

Packet + Byte Counters

Forward packet to port(s)

Encapsulate and forward to the controller
Drop packets

Sent to normal processing pipeline

Pounp

Switch Mac Mac Eth VLAN IP IP P P IP
Port Src Dst Type D Src Dst prof Sport DPort

Figure 2.6 Flow Rules [3]

Rather, they exchange data between a server and a client, by creating a stream of packets

from a source to a destination that is commonly known as a flow. OpenFlow defines a

24

standard for sending flow rules to network devices so that the control plane can add them

to the flow table of the data plane entities.

The flow rules, as shown in Figure 2.6, contain fields for elements such as source and
destination MAC address, source and destination IP address, source and destination port
number, VLAN tag, QoS (Quality of Service) and MPLS tags and more. The flow table is
what all routers and switches use to dispatch frames or packets to their egress ports. Each
flow has a priority in matching precedence and timeouts or idle time based on which the
flow is expired by the switch. Counters are maintained for each flow entry that help in

obtaining packet statistics [3].

2.4.2.1 OpenFlow Flow Handling and Flow Matching

Using the OpenFlow protocol, the controller(s) can add, update, and delete flow entries in
flow tables, both reactively and proactively. The action is carried out on all packets
received at the switch, based on the information stored in the flow tables. On receipt of a
packet, the OpenFlow switch starts to perform a table lookup in the first flow table and,
based on pipeline processing, may perform table lookups in other flow tables. A device

performs the OpenFlow functions as shown in Figure 2.7, and discussed in detail below

[3].

25

Packet In
Start at table 0

Update counters
Execute Instruction

Go to

* Update action set
table

* Update packet/match set
fields
* Update metadata

Table miss
Flow entry
Exist?

n
Mo
| Execute action set I
yes

No

¥

I Drop packet I

Figure 2.7 Flow Matching [3]

The process involved in matching the received packets and the flow tables are described

below.

The matching starts at the first flow table and may continue to additional flow
tables as represented in Figure 2.8. The flow tables of an OpenFlow switch are
sequentially numbered, starting from 0 to n. Pipeline processing always starts at
the first flow table: the packet is first matched against flow entries of flow table 0.
Other flow tables may be used depending on the outcome of the match in the first
table.

When a packet is matched with a flow entry, the instruction set included in that
flow entry is executed. Those instructions can direct the packet to another flow
table with the help of a goto statement and the same process of flow search can be

repeated again. The flow entry can direct a packet to a flow table number greater

26

than its own flow table, in other words the pipeline processing can only go
forward and not backwards. If the matching flow entry does not direct packets to
another flow table, pipeline processing stops at this table and when pipeline
processing stops, the packet is processed with its associated action executed. If no
match is found in a flow table, the outcome depends on the configuration of the
table miss flow entry: for example, the packet may be forwarded to the controller

over the OpenFlow channel or dropped.

OpenFlow Switch

Packet +

Ingress Ingress port+

Port _ Table metadata Table Table Packet Execute Packet
> - > . N — __\ _— Action —

Action - Action . Action set Out

set =1} set = {} Set={}

Figure 2.8 Packet Matching Across Multiple Flow Tables [3]

2.4.2.2 OpenFlow Messages

The OpenFlow protocol creates a channel that connects each OpenFlow switch with a
controller. This channel helps the controller to configure and manage the switch, to
receive events from the switch, and to send packets out of the switch [3]. The OpenFlow
protocol supports three types of messages.
e Controller-to-Switch Messages are initiated by the controller and used to
directly manage or inspect the state of the switch, they may or may not require a

response from the switch [3].

27

e Asynchronous Messages are sent without a controller soliciting them from a
switch. Switches send asynchronous messages to controllers to denote a packet
arrival, switch state change, or error [3].

e Symmetric Messages are sent without solicitation, in either direction, such as

hello and echo message [3].

2.5 Related work

This section provides a survey of literature works related to “Managing BoD Across
Interconnected Data Center Using SDN” and “SDN in the Field of Optical Network™.
These related works collective helped us to design an SDN optical network and further

manage BoD request across interconnected optical data centers using SDN protocols.

2.5.1 Managing Bandwidth on Demand Across Interconnected Data Center using
SDN

BoD has been studied for many years by both commercial carriers and members of the
global research and education community [14]. Since its appearance, SDN has been
considered as one of the most promising enablers for traffic engineering. The controller
can be made aware of the entire network state and is also capable of making powerful
advanced traffic engineering strategies. Many Internet service providers and network
operators have started to deploy solutions based on SDN technologies, aiming to improve

their network utilization or the QoS provided to their users [20].

28

a) Towards a Carrier SDN: An Example for Elastic Inter Data Center Connectivity
In [27] the authors proposed a network driven transfer mode for cloud operations in a
carrier SDN environment. The carrier SDN was deployed between the interconnected
data center middleware, managed by the ABNO (Application Based Network Operations)
controller and an SDN controller. The SDN controller is in charge of managing inter data
center connectivity. The ABNO is responsible for PCE (Path Computation Element) and
policy enforcement. For a traffic operation, the cloud middleware requests for data
transfers using its native semantic: amount of data to be transferred, data center
destination and completion time. Notifications (similar to interruptions in computers) are
sent from the ABNO to the SDN controller, if fewer than the required resources are
available during the time of request. The SDN controller releases specific resources each
time. Upon receiving a notification, the SDN controller takes a decision whether to
increase the bitrate associated with a transfer. The source cloud manager sends a transfer
request to the SDN controller in the specified native semantic format. Upon its reception,
the SDN controller requests the ABNO controller to find the greatest spectrum width
available, taking into account local policies and current Service Level Agreements (SLA)
and sends the response back to the cloud manager with the best completion time. The
controller interactively communicates with the cloud middleware and allocates
bandwidth based on the resource availability and the bandwidth required to complete the
services. The proposed network-driven model opens up the opportunity for network
operators to implement policies to dynamically manage connections, the bitrate of a set of

customers and to fulfill simultaneously their SLAs.

29

e The authors proposed an elastic inter data center connectivity for managing
carrier SDN at layer 2 and layer 3 with the help of the label switched path.

e In [27] the authors have used a native semantic for communication between cloud
manager and SDN. Use of standard protocols supports interoperability and

ensures common open network capabilities, as they are the key aspect of SDN.

b) Using SDN Technology to Enable Cost Effective Bandwidth on Demand for
Cloud Services
In [20] the authors described the BoD in an evolved multilayer, SDN-based cloud
services model for the WAN. The data centers comprise of switches that seamlessly route
traffic through the multilayer network architecture. The authors deployed an SDN Wide
Area Network Control and Management (SWAN-C&M) orchestrator. They also created a
common API to manage the data center through SWAN-C&M, which helps in creating a
dynamic cloud service environment. The SWAN-C&M software uses a modular
architecture to make routing decisions, and it accesses the database containing the
network topology. To configure the IP and subwavelength transport networks, the
SWAN-C&M controller has modules that translate configuration into instructions for the
appropriate interface in the equipment. The IP layer devices are being controlled using
OpenFlow and a proprietary interface (JunOS), while the optical transport layer devices
are controlled using CLI. The user interacts with SWAM-C&M using a REST web
interface for the management of BoD connections. With the help of SWAN-C&M, the
authors demonstrate load balancing and explicit routing and rerouting use cases that

showcases the impact of SDN over the multilayer architecture.

30

e The authors classified the flows based on the rates requested and load-balances
the traffic by allocating higher traffic rates at the optical layer and lower rates at
the IP layer.

e The ability to manage the connections across multiple network layers with the
help of common SDN-based APIs provides inter data center services at lower cost

and good performance [20].

¢) Multi Domain Bandwidth on Demand Service Provisioning using SDN
The proposed solution in [14] relies on a framework called DynPaC (Dynamic Path
Computation), which can provide resilient L2 services taking into account the bandwidth
and VLAN utilization constraints. The DynPaC framework has been implemented as an
application running on the ONOS controller, which provides a basic set of services and
features, such as device, link or host discovery. Once it obtains the topology information
of the domain, DynPaC computes the best possible intra domain path taking into account
the requested bandwidth, the VLAN availability and the already reserved services. In this
regard, DynPaC differentiates Gold and Regular services, depending on whether they
have a backup path guaranteed or not. Finally, in order to demonstrate the resilience
capabilities of the DynPaC framework, they tear down one of the links used by both
services. The framework forces the installation of the backup path for the Gold service.
As a result, traffic exchanged using the Gold service continues without any disruption,
whereas the traffic exchanged using the Regular service will be stopped.

e The authors demonstrate BoD service provisioning in layer 2 devices using

OpenFlow as communication protocol to manage the layer 2 devices.

31

e Both data centers are connected using the optical network interface at layer 0 and
layer 1, managed using a proprietary control interface. The optical layer device

does not exhibit dynamicity.

d) SDN Based Multi-Class QoS-Guaranteed Inter Data Center Traffic
Management
In [21] the authors presented a utility-optimization-based joint bandwidth allocation for
IP-based inter data center communication with multiple traffic classes that handles
priorities between traffic classes and explicit consideration of the delay requirement that
meets their end to end communication. In the test environment all the data centers are
equipped with OpenFlow enabled switches that report the network events and traffic
statistics to the central traffic management server. The bandwidth broker estimates the
bandwidth demands of the application and reports the information to the traffic
management server, which further allocates the bandwidth based on the classes and
availability. This centralized approach provides flexibility to enable various traffic
engineering goals. The authors state that the proposed algorithm advocates joint
bandwidth allocation of multi class traffic, leading to a higher network bandwidth
utilization.
e The authors of [21] demonstrate that handling traffic based on multiple classes
and priorities leads to higher bandwidth utilization.
e The authors demonstrate BoD service provisioning and management of layer 2
devices using OpenFlow as communication protocol. The same can be

implemented on the optical backbone interconnecting data centers.

32

e) Bursting Data between Data Centers: Case for Transport SDN
Data center WAN interconnects today are pre-allocated, static optical trunks of high
capacity. These optical pipes carry aggregated packet traffic originating from within the
data centers while routing decisions are made by devices at the data center edges. The
authors of [25] propose an SDN-enabled optical transport architecture that meshes
seamlessly with the deployment of SDN within the data centers. The proposed
programmable architecture abstracts a core transport node into a programmable virtual
switch that leverages the OpenFlow protocol for control. This not only allows multilayer,
multidomain, multivendor orchestration, but also allows cleaner, programmable network
abstractions. The network can be viewed as a pool of intelligent bandwidth, with resource
reservation and path selection done end-to-end in a technology-agnostic fashion. The
authors proposed two modes of operation:
a) Implicit Mode: In this mode of operation, the SDN controller has a view of only the
edge nodes in every transport domain.
b) Explicit Mode: Here, the complete topology of every network element across
domains 1s exposed to the controller.
e The experiments demonstrate the use case of an OpenFlow-enabled optical virtual
switch managing a small OTN for a big data application.
e With appropriate extensions to OpenFlow, they discuss how SDN brings the
programmability and flexibility to packet optical data center interconnects which
can be substantial in solving some of the complex multivendor, multilayer,

multidomain issues that hybrid clouds raise.

33

The review of related works with respect to BoD in an SDN environment focuses mainly
on introducing flexibility and manageability at higher layers in the network. When we
closely look at the proposed solutions, the optical network infrastructures are either
treated as fixed physical links [14][27] or have very minimal instruction for adding a flow
[20] by using a non-SDN protocol. The authors in [14][20][21][27] talk about how SDN
helped them to manage data center interconnections at the IP layer and their benefits. The
optical network entities (layer 0 and layer 1) can also be managed by SDN [25]. In all the
literatures reviewed above the bandwidth requests are handled based on any one of the

classification factors such as priorities, class of services or rates.

2.5.2 SDN in the Field of Optical Network

SDN as a newer technology has progressed its advancement in optical networks and still
faces some trends and challenges in defining its potential in the optical networks. In this
section we review some of the contributions related to SDN optical networks that show

us the potential, and help us to design our system.

a) DWDM Optical Extension to the Transport SDN Controller and Towards
Widespread SDN Adoption: Need for Synergy between Photonics and SDN
Within the Data Center

Transport networks are evolving to be more and more automated and driven by software

to minimize the operational costs and to provide new services and applications in a

quicker and more efficient way. In [19] the author claims that, if one wants to extend the

34

SDN approach to the physical photonic layer, then the SDN controller must take the
analogue nature of the optical transmission into account. In the transport networks the
physical impairments of light paths in optical networks can limit the connections that are
feasible using SDN. The problem in evaluating the feasibility of an optical connection
becomes particularly difficult in the case of mixed channel types and rates and where the
optical links and photonics with different properties have to be considered.

In [19][22] the authors propose a procedure to suggest the protocol extensions that can
capture, process and set power levels in the optical networks. This procedure mainly
appropriates in dynamic scenarios, in which the opportunity to adjust the channel power
levels on the fly could allow for the introduction of new optical traffic which would not
otherwise be feasible, all the while ensuring that the existing connections remains
unaffected.

The authors in [19][22] look at the use of photonics in future data center networking and
stresses on the need for SDN Controller and its applicability. Introducing
programmability, virtualization, end to end optimization, able to control, manage and
automate these elements offers an elastic and agile data center.

e The authors in [19][22] talk about the need and advantages of SDN in the
transport network, and also state the challenges associated with an
implementation of the SDN transport network considering the nature of the
optical backbone.

e The authors also propose solutions that can be implemented to address the future

of the transport optical network along the lines of the SDN technology.

35

b) NETCONF as Proactive OAM Protocol
Francesco Paolucci et al [23] talk about building a software defined elastic optical
network that offer a high degree of flexibility in enabling dynamic configurable light path
provisioning and re-optimization. In order to guarantee Quality of Transmission (QoT),
novel Operation Administration and Maintenance (OAM) solutions are necessary with
respect to existing standard management protocols. The authors proposed the NETCONF
protocol, typically used for SDN-based node configuration purposes. NETCONF serves
as an OAM protocol, in order to achieve a high degree of convergence and limit the
number of utilized protocols.
e The authors have implemented NETCONF as an OAM protocol to deal with
optical power level, alarms and statistics.
e The literature does not provide any experiments to demonstrate NETCONF as
SBI protocol for managing optical network. The authors’ demonstration exhibits

the potential of NETCONF to act as an SBI to manage the optical network.

¢) An Optical SDN Controller for Transport Network Virtualization and
Autonomic Operation

Marcos Siqueira et al [26] proposed a Software Defined Optical Transport Network (SD-

OTN) architecture. The system architecture is comprised of Optical Network Elements

(O-NEs) and an Optical SDN Controller (O-SDNC). The O-SDNC includes a network

abstraction layer allowing the implementation of cognitive controls and policies for

autonomous operation, based on the global network view. Additionally, the controller

36

implements a virtualized Generalized Multiprotocol Label Switching (GMPLS) control
plane, offloading and simplifying the network elements, while unlocking the
implementation of new services such as optical VPNs, optical network slicing, and
keeping the standard Optical Internetworking Forum (OIF) interfaces. The concepts have
been implemented and validated in a real testbed network formed by five DWDM nodes
equipped with flexi grid wavelength selective switching ROADMs (Reconfigurable
Optical Add Drop Multiplexers).

The SDN controller provides a NETCONF/REST interface for plugging in control
applications to perform specific tasks by taking advantage of the network abstraction. By
modeling these network entities using the NETCONF modeling language YANG, the
authors state that they gain the possibility to export or transform the data needed for their
configuration, as well as to model their interconnections and restrictions.

e The proposed optical SDN architecture in [26] is managed using NETCONF as an
interfacing protocol to manage the ROADM functionality of the O-NEs. The
same approach can be used to manage the optical ports and multiplexing.

e The experiments showcase the optical network being managed using NETCONF
as a controlling interface, the same could be used to manage the bandwidth and

connections across the data centers and manage each data center separately.

d) Data Center Optical Networks (DCON) with OpenFlow based Software Defined
Networking
The authors of [28] propose the flexi grid optical network as the solution for managing

inter data center networks. The environment is composed of an enhanced Software

37

Defined Networking (eSDN) control architecture designed for the application scenario.
The eSDN architecture over flexi grid optical networks is composed of the distributed
data center networks that are interconnected with dynamic, tunable and efficient spectral
optical resources, which are deployed with the application (e.g., CPU and memory) and
network stratum resources respectively. Each stratum resource is software defined with
OpenFlow and controlled by the Application Controller (AC) and the Transport
Controller (TC) respectively in a unified manner. To control the heterogeneous networks
for data center service migration with an extended OpenFlow Protocol, OpenFlow
enabled flexi grid optical device nodes with OpenFlow Protocol agent software are
implemented.

e The proposed solution has an AC that manages the business application logic and
the TC to manage the optical connection between the interconnected optical
nodes.

e The authors have implemented an extended OpenFlow Protocol to support optical
switching of spectrum randomly from 50 GHz to 400 GHz based on the traffic
request.

To summarize the preceding reviews, due to the demand, the networks have to scale out
with high capacities, ensure end-to-end guarantees and an ability to be agile and elastic.
The authors in [22] claim that the future data center networks will be built to be more
dynamic in nature. As a part of this evolution the transport networks are evolving to be
more and more automated and driven by software to minimize the operational costs and
to provide new services and applications in a quicker and more efficient way [19]. The

authors in [23][26] propose NETCONF as an interface for managing the optical network.

38

On the other hand, ONF is working on OpenFlow extensions for optical networks. The
authors in [28] have demonstrated optical spectrum switching using a proprietary
extended OpenFlow interface. Few references use traditional NETCONF protocol for
managing the optical network and a few other references use an extended OpenFlow

environment to manage the optical network in an SDN environment.

2.6 Motivation

To conclude from our review of background work, SDN plays a significant role in
shaping today’s network infrastructure. The key attributes for migrating towards SDN are
programmability, openness, heterogeneity and maintainability. Moreover, SDN also
facilitates the re-architecture required to address the increasing demand on the network
due to the dynamic connectivity [28]. From the background study, we do observe that
traditional optical networks are usually more static in nature and each device is typically
managed individually. At the same time, it becomes unfeasible to manage large networks
manually as this results in an error-prone process. The SD-OTN is being in the spotlight
in recent times, as the early start of SDN mainly focused on IP-based networks [14] [21].
As more network operators adopt open SDN, there are multiple contributions and
proposals that facilitate the migration of existing networks and services to SDN. The
SBIs play a vital role in managing the data plane devices in an SDN environment. The
ONF suggests OpenFlow as SBI to manage the network devices in an SDN environment.
From the literature review, we observed that the OpenFlow protocol can be implemented
over an optical network by defining optical extensions [28] for supporting the optical data

plane devices. Our review of related works also showcases the potential of NETCONF as

39

an active protocol for managing optical data plane devices [24][27]. We do realize that,
as a result of technological advancement in the area of cloud computing, big data,
virtualization, etc., the data centers grew bigger in size and numbers. SDN has the
potential to address the problem of BoD requirements across data centers as it offers
centralized network control architecture and unified protocols for managing the network
entities. The review of related works showcases that optical data centers interconnection
are treated as static pipes and on the other hand, the IP layer devices demonstrate the
potential of SDN in managing the BoD. There exist also efforts to introducing SDN into
the optical network(s) and to manage them. In our research works we demonstrate the
possibility to manage BoD between the data centers (i.e. optical inter data center
communications) using an open source SDN controller with two different protocol
implementations supported as SBI. They are: the ONF recommended OpenFlow and the
other is the traditional NETCONF protocol supported as SBIs in the SDN environment.
The literature on SDN optical network predominately talking about any one of the both
protocols as SBI based on their implementation. There is no literature that compares both
these protocols. The motivation of the thesis is to compare and provide a quantitative and
qualitative analysis of both these protocols operating in an optical SDN environment

managing BoD across interconnected data centers.

40

Chapter 3: Managing the Interconnected Optical Data Centers Using

Software Defined Networking

This chapter begins by stating the requirements and introduces the BT17800 optical NE.
It presents the implementation of NETCONF and OpenFlow as SBIs to manage the
BTI7800 network element using the ODL controller. This chapter describes the working

of both SBIs.

3.1 Requirement Analysis

First of all, it is important to understand the requirements of the research work. Chapter 2
concludes with motivation towards SDN in managing optical data center interconnection.
The BTI7800 is a layer zero and layer one optical device that offers data center
interconnection as a service. The BTI7800 is a traditional network device that is managed
using traditional management protocols.

In an SDN environment, the BT17800 is treated as a data plane device. The major tasks
involved are listed below:

1) The BTI7800 supports XML-based NETCONF as one of the network
management protocols in the traditional environment. We need to support
NETCONF as a SBI to manage the BT17800 using the ODL controller. In order
for the NETCONF connector within the ODL controller to communicate with the
BTI7800 device, the ODL NETCONF connector is provided with the details
about the BTI7800 device that needs to be managed.

2) The central component of SDN is the protocol being developed by the Open

Networking Forum (ONF), called OpenFlow, which communicates flow

41

information from a centralized controller to the abstracted data plane. One of the
tasks is to develop an optical extension to the OpenFlow specification that allows
control of BT17800 using an OpenFlow controller.

3) To develop an application layer that communicates the BoD requirements to the
control plane. Using the implemented SBIs (NETCONF or OpenFlow), the
control plane manages the BTI7800 data plane devices that act as an edge node
for each data center that are interconnected. The application layer helps the
control plane to make decisions about managing the bandwidth allocations based

on the nature of traffic across different users located at both data centers.

SDN Application

Application Logic

Application
NBI Driver

&

pobication Layer

1

A

Narth Bound Interface RESTCONF

W APl (HTTF)

SDN Controller

./ B

Network Control Software

v
H NE! Agent
o
5 OpenDaylight
£ Control Logic
8 Assracion
CDPI Agent = =
&
NETCONF
South Bound Interface
Open v

SDN DataPath i -
CDPI Agent Intelligent Network [’_u
Infrastructure (‘P}
Processing / -
Forwarding

Figure 3.1 Architecture Overview

DCata Plane

To achieve the main goal of the thesis is to evaluate both protocols implemented as SBI,

it is essential to support SDN capability in the BTI7800 device by supporting NETCONF

42

and OpenFlow as SBIs as shown in Figure 3.1. Therefore, the optical layer

interconnecting data centers can be managed effectively using SDN controller.

3.2 BTI7800 Network Element

Our research work is mainly focused on the BTI7800 network elements that interconnects

data centers. Therefore, we present the high level architecture of the equipment. The

BTI7800 architecture is majorly composed of three components as shown in Figure 3.2.

The Chassis Management Module (CMM) is a software control module, UFM is the host

of optics and optical ports. HA is a fabricated silicon hardware component.

CMM - 1t is a Linux-based CMM of the device. It is composed of the database,
management services and other required services. The cdb is a configuration
database that stores information about the device. The confd acts as a
management module. A tailored hardware-specific Linux is supported.
UFM - At the heart of the BTI7800 are the Universal Forwarding Modules
(UFMs) hosting optics, configurable for muxponder and transponder applications.
The BICs 1s known as BTI Interface Cards that holds the SFP + and CFP. The
module supports

o 12 ports of 10 GE for intra data center connection (SFP +).

o 1 port 100 GE for inter data center connection (CFP).
HA — The hardware module comprises of three components as shown in Figure
3.2. The framer performs synchronization, frame overhead processing,

interleaving, parity bit monitoring, etc. The packet forward engine is responsible

43

for routing the packets received based on the provisioned cross-connects. The clos

fabric is a silicon chip that manages the hardware interfaces and the tunnels.

G NETCOMNF l l CLI] [SNMP ‘
[ManagementAgent APl [MAAPI)]
[Cdb AP]4 > OpenVSwitch
0
sormt oam - Framework g
ervice atform v
Manager Manager Manager 3;3&‘::3’“'
oftware
[Messaging service]
‘ 0S service — Linux |
‘ Hardware Services |
SFP+
’—k— BIC BIC .
—
/ CFP 5
‘ =
rIA y
e — Packet Forward —p Clos Eabric T
Engine =

Figure 3.2 BTI7800 Architecture

3.3 Implementation of NETCONF as SouthBound Interface for Controlling
BTI7800

We discussed the NETCONF protocol earlier in Chapter 2. An ODL SDN Controller
operates both as NETCONF server and as NETCONF client. As a server, the controller
manages general network communication and processes RPCs. As a client, the controller
connects to the NETCONF-enabled device(s) and manages them through the NETCONF
connector(s). We need to connect the NETCONTF agents that are residing within the ODL

controller and BTI7800 device.

44

3.3.1 Connecting BTI7800 Device with ODL Using NETCONF Connector

There are multiple ways in which the ODL controller and data plane devices can be
connected. It depends on the behavior of the data plane device: whether and how it
advertises its YANG capabilities as expected by the ODL controller. The BTI7800 device
falls under the category of “NETCONF device does not support IETF-NETCONF-
monitoring and it does not list its YANG models as capabilities in hello message “[8].
The BTI7800 device has a vast set of YANG modules ranging from 70 to 100 files based
on the software load and features supported by the equipment. Each file is a YANG
dataset and it either represents a module or sub-module YANG description of the device
and is termed as the YANG capability.

NETCONF as a standard helps to configure the optical ports, interfaces, cross-connects
etc. But the YANG data model helps in storing information regarding the BTI7800
optical ports, interfaces, cross-connects and other equipment details. Using the
NETCONEF protocol it is able to modify those configurations. The existing BTI7800
YANG data model along with the NETCONF as a configuration protocol supports the
required optical extension and capabilities. For the NETCONF agent within the ODL to
successfully connect with the data plane device, the BTI7800 YANG files have to be
placed within the ODL as mentioned in the category “NETCONF device does not support
IETF-NETCONF-monitoring and it does not list its YANG models as capabilities in the
hello message “[8]. All the YANG files supported by the BTI7800 have to be imported
within the ODL controller without any import error. The NETCONF connector uses

those YANG files for identifying and interacting with the devices.

45

3.3.2 Establishing NETCONF Connection between NETCONF Connector and

BTI7800

The ODL NETCONF connector establishes a NETCONF connection over SSH for

exchanging complete capabilities. The first step is to establish a secure connection and

then to exchange capabilities. For the NETCONF connector residing within the ODL to

establish a connection with the data plane device, it is essential to educate the connector

with the required information about the device. By means of the REST API the

NETCONF connector is provided with the necessary information about the device such

as name, IP address, port number, username and password, etc. These information helps

the ODL NETCONF connector to identify the device in the network and further proceed

with establishing the secure connection as described below and shown in Figure 3.3.

ODL Caontroller

:
Establish 3SH Co

[

BTIT&00
!
nnec tion) i
S3H-transport connection ;—
Message integrity and encryption
Key Exchange
¥ g3 »
Key Exchange
ek
L _ i
H S3H Authenticate "ssh-userauth ilr
i
i
| Authentic aticn response
o enoenoooo Athentistion res s SR i
! SEH - Connection >
u SS5H Ceonnetticn service

Session

Y

netconf SSH Session

Figure 3.3 NETCONF Session Establishment

46

1) The ODL NETCONF connector establishes an SSH transport connection using
the SSH transport protocol to the BTI7800. Both entities will exchange keys for
message integrity and encryption.

2) The NETCONF connector will then invoke the ssh-userauth service to
authenticate the connection. Once the connection has been successfully
authenticated, the NETCONF connector will invoke the ssh-connection service,
also known as the SSH connection protocol.

3) The username provided in the SSH implementation will be used by the
NETCONF connector to identify the devices. If the username is not representable
in XML, the SSH session will be dropped.

4) After the ssh-connection service is established by the BT17800, the NETCONF
connector will open a channel of type session, which will result in an SSH
session. Once the SSH session has been established, the NETCONF connector

will invoke BTI7800 as an SSH subsystem called "netconf".

3.3.3 Capabilities Exchange

Once the secure connection is established, the next step is to exchange the capabilities as
shown in Figure 3.4. The NETCONF connector will send an XML request containing
<rpc> elements to the BTI7800, and the device will respond with the XML response

containing <rpc-reply> elements [11][12]:

47

User

[R—

ODL Controller

Provide NETCONF connector

with device capabilites

Copythe YANG modules of device —»

ente the controller cache

Repeat the operation for
all the capabilities provided
to NETCOMNF connector

T

[
Perform get-schema operation
for a capability

—

Once the schema matches, operational state of the
schema is fetched and stored
|

Operation on YANG data store

BTI7800

|

i

]

]

]

i

i

]

]

i

i

]

]

]

i

i

]

]

]

i

]

]

]

i

i

]

]

]

i

i

]

]

i

i

i

i

=rpc_request> get-schema o
:
]
i

1 =rpc_rephy =

s e T e -

]]

]]

i i

i i

i

Match the schema response of <rpc_reply= i

and YANG content loaded within controller cache !

]

]

i

i

]

]

]

i

i

]

<rpc_request= get-config -

____________________ =rpe_reply= .

i

i

METCOMNF Connected o

L]

]

Rt AP (GET, POST, PUT, DELETE]

Operation Status

Figure 3.4

Data
Abstraction

<TpC_request=

refriesve, configure, ooy, and delete

<rpc_reply=

NETCONF Device Capability Exchange

48

Y

2)

3)

4)

5)

6)

7)

It is essential for the ODL NETCONF connector to be aware of the capabilities
supported by the NETCONF device. The ODL NETCONF connector is not aware
of the list of YANG capabilities supported by the BTI7800 device, as they do not
advertise their capabilities. The user needs to provide the NETCONF connector
with the list of supported YANG capabilities using the REST API.

Now the connector is aware of the capabilities supported by the NETCONF
device. It is also essential for the NETCONF connector to be aware of the YANG
dataset or in other words the content of each capability supported. The user needs
to store the contents of all the YANG files in the ODL cache, as the information is
not advertised by the device.

For each YANG capability listed in the payload, the NETCONF connector
performs the <rpc> get-schema operation on the BTI7800 device to obtain the
YANG schema content.

Further, it validates the content of each YANG file stored in the ODL cache to
match the content of <rpc_reply> from the device.

If the schema matches, the controller fetches the current operational state of the
device corresponding to that schema. The controller retrieves and store the
operational state of the information using NETCONF <rpc> get-config element.
When all the capabilities and their corresponding YANG contents are matched,
the device will be in connected state with the ODL NETCONF connector.

The process described above helps in validating the YANG capabilities and its
contents provided by the user (the list of capabilities and their corresponding

YANG content). This process also helps the controller in abstracting the

49

information about the device (device data model and operational state) within the
controller.

8) The device cannot successfully connect to the NETCONF connector if any of the
following issues are faced:

a. Any of the listed YANG capability provided as input to the NETCONF
connector is not supported by the device.

b. A capability is supported, but the contents of the YANG file within the
ODL cache mismatches from the fetched information from the device
using <rpc> get-schema.

9) It is possible to view the YANG data set and manage the connected device by
performing modifications on the operational state of the device by issuing the
REST API request to the controller.

10) The flows are termed as cross-connects in the YANG dataset. The controller has
verified all YANG models and has abstracted the operational state of the device.
The operational state of the controller stores the provisioned cross-connects
within the device. The current state of the cross-connect can be modified by using
the REST API calls to access the operational state of the device, and post
modifications to the operational state. The BTI7800 device receives the
modification in terms of NETCONF RPC <edit-config> using the NETCONF
communication subsystem established in Section 3.3.2. If the device can
successfully commit the received flow modification to the cdb, it returns success,

else it returns failure to the controller.

50

3.3.4 Managing the BTI7800 using NETCONF
Once the SDN controller is aware about the data model and the operational state of a
device in the network, the next step is to allow the controller to manage that device. The
ODL controller stores the operational state information about the device in two different
states, operational and config.

e Operational -> State in which the underlying devices are operating.

e Config -> Allows user to modify and work on the abstracted information. Once

the changes are successfully committed to the respective device, the operational

state is automatically updated.

51

oDL

Hello

BTIT800

]
H returm

:q_: __

NETCONF Connected

:

:
]
1
i Flow modifiication (REST APls)
I
]

Operational

L

<rpc> edit-config

Uses SSH

return

{ __

Figure 3.5 Managing the Device using NETCONF

The detailed description about how the NETCONF protocol as a SBI can be used to

manage the device is shown in Figure 3.5 and described below.

1) We have discussed how the BTI7800 device can be connected with the ODL
NETCONF connector in Section 3.3.2. The cdb is a database that stores the

operational state or configuration of the BTI7800 device as discussed in Section

3.3.3.

2) The information stored in operational and config state within the controller and

cdb within the device is the same.

3) When a flow modification is performed with the help of the REST API, the

modification is stored in the config state of the controller.

4) Immediately the NETCONF connector within the controller issues a NETCONF
<rpc> edit-config to the BTI7800 device. If the modification were accommodated
successfully the device replies success, else it replies failure.

5) If the response from the device is success, the operational state is modified. If the

response is a failure, the config state will roll back the modification.

3.4 Implementation of OpenFlow as SouthBound Interface for Controlling
BTI17800

In order to implement the OpenFlow standard within BTI7800 routers, the OpenVSwitch
open source software [9] is considered. The OpenVSwitch is a production quality,
multilayer virtual switch licensed under the open source Apache 2.0 license. It is
designed to enable massive network automation through programmatic extension based
on the OpenFlow standard.

3.4.1 BTI7800 OpenVSwitch SDN Architecture

The OpenFlow specification standard Version 1.3 does not accommodate the required
optical extensions to represent the optical layer data plane devices [6]. The optical
extension is developed by modifying the open source OpenVswitch code to support the
BTI7800 devices. As shown in Figure 3.6, the optical extension supported by
OpenVSwitch was ported on the CMM of the BTI7800. The modified BTT OpenV Switch
plugin helps in creating ports and flow connections that are referenced using OpenFlow
protocol and managed by an OpenFlow controller such as ODL [3]. In the subsequent

section, we present the OpenFlow optical extension developed to support BTI7800

53

devices. The OpenFlow protocol was not implemented from the scratch. The open source

OpenVSwitch code was modified to support the BT17800 optical extension.

Open Day
DLUX

OpenDavlight APIs (REST)

Topology Stat Switch Controller Platform
-
.

Service Abstraction Layer (SAL)

{Plugin Manager, Capability Abstraction, Flow Programming,

OpenFlow o
W (1.0)(13) .

Diata Plane Elament
(Phiyscal Devices)

irP-[—J— BIC Bc
e
crp §
-
[]
: X
Facket Forward
[Ee== — im-—" z

Figure 3.6 BTI7800 OpenVSwitch Architecture Overview

3.4.2 OpenFlow Optical Extension
The OpenFlow specification V1.3 released by the ONF is designed to support IP layer
devices [3]. It does not accommodate any optical layer information to support the

BTI7800 optical network elements. The transport extensions to OpenFlow is published

54

by the ONF OTWG under TS-022 [6]. The OpenVSwich opensource library does not
support transport extensions specified by the OTWG. The transport extensions required
to support BTI7800 network elements are built within OpenVSwitch.

The OpenFlow messages are exchanged between the OpenFlow supported devices and
the controller. The OpenFlow message structures or the format of the message(s)
exchanged between both entities has to strictly adhere to the OpenFlow standard. So it is
not possible to modify the existing structure and by doing so the controller will not be
able to decode the information properly, as the message formats at both ends will not be
decoded in similar fashion. We will discuss how we utilized the existing OpenFlow
message(s) to accommodate the optical extensions required for the BTI7800 without
changing the message formats.

The connection establishment procedure involves some version and capability
negotiation, which has to be done before any other messages can be exchanged.
Therefore, we capture the connection establishment procedure in the state machine as
shown in Figure 3.7.

e The hello message does not require any changes for BT17800, the hello message
specified in the OpenFlow specification [3] was used.

e The second step after the hello message is the connection establishment. As a part
of the connection establishment process, the information about the optical ports
supported by the BTI7800 device have to be communicated to the controller. The
“portstatus” are asynchronous events sent from the switch to the controller

indicating the status of the ports.

55

Listen

P Y
| CLoseD .
Switch controller X 4
| i OFTP_MELLD & version not supparied/
' Switch connected! OFTP_ERROR (OFTP_HELLO_FAILED),
Hello Wait : QFTP_HELLD Discomnzct Timecut Not
: Hello R
i e
i Response
i TimeouDisconnect
! Mot
Fiahu OFTF_FEATURE_REFUY/Disconne
FReque
Feature Request ..-/ \‘-._
| FEATURE_WAT '—"'
A 4
o __."
Discoprech!
: Feature Raph Switch
i conngction
H Feature Response ¥ L
e A
| | ESTABLISHED
. /
i

Figure 3.7 Connection Establishment Procedure

56

3.4.2.1 Port Status

struct ofp_port_status

uint32 t port no The port_no field uniquely identifies a port within a switch.
OpenVSwitch assigns integer from 1. The existing logic was
reused.

uint§ t hw_addr[OFP_ETH ALE] A unique MAC address assigned by the BT17800 Linux kernel

OFP_ETH_ALEN = 16

char name /* Specifies the BTI port */
[OFP_MAX PORT NAME LE]

uint32_t config /* Current state of the physical port. These are not
configurable from the controller. */

The curr, advertised, supported, and peer fields indicate link modes (speed and duplexity), link type
(copper/fiber) and link features [3].

uint32_t state OFPPF_FIBER =1 << 12, /* Fiber medium. */

All bits zeroed if unsupported or unavailable and the bitrate is specified in kbps [3].

uint32 t curr 0
uint32_t advertised 0
uint32_t supported 0
uint32 t peer 0
uint32 _t curr_speed 10GE = 10000000

100G = 100000000 /* Only these two speeds are supported
by the device */

uint32 t max_speed 10GE = 10000000
100G = 100000000

/* Only these two speeds are supported by the device */

Table 3.1 OpenFlow Port Status Structure

The Port status message structure is represented in Figure 3.8(a). The header field is not
modified and is implemented according to the OpenFlow standard [3]. The reason field
specifies if it is an add, delete or modify operation. When the device establishes the
connection with the controller, the information is communicated to the controller by

specifying the reason field as add. The modify/delete operation on the ports are supported

57

to communicate if any changes are made while being connected with the controller [3].
The structure used to represent the status of the port is represented in Figure 3.8(b), and

discussed in Table 3.1.

! header !
reason
pad
: port !

network byte order

Figure 3.8(a) OpenFlow Port Status Message

+— 32 bits —»

port id
pad

hw addr
(6 bytes) | pad

name (16 bytes)
ASCII string

config
state

curr
advertised
supported

peer
curr_speed
max speed

nerwork byte order

Figure 3.8(b) OpenFlow Port Status Message

We used the name field to identify the BTI7800 ports and any other names not on the list
will not be accepted. The state field specifies it is a fiber optics [3], the optional field was

used to specify the capacity of the link.

58

3.4.2.2 Flow Modification

struct ofp_flow_mod

struct ofp_header header OpenFlow Standard
uint64 t cookie OpenFlow Standard
uint64_t cookie mask OpenFlow Standard

uint8_t table id

0x00 to OxFF (Any table can be used)

uint8 t command

/* OpenFlow structure used enum ofp flow mod command */
Applicable:
OFPFC_ADD =0, /* New flow. */

OFPFC_MODIFY _STRICT = 2, /* Modify entry strictly matching
wildcards and priority. */

OFPFC DELETE STRICT = 4, /* Delete entry strictly matching
wildcards and priority. */

uint16_tidle timeout NA
uint16_t hard timeout NA
uintl6_t priority NA
uint32 t buffer id NA

uint32 tout port

Specify the uint32_t port_no (refer to Table 3.1) information about one
end port

uint32_t out_group

NA

uintl6 _t flags

NA

uint8_t pad[2]

struct ofp_match match

Refer the Standard [3] (No Change, default values according to the
specification used)

struct ofp_instruction
instructions[0]

Refer to the Figure 3.10 and Table 3.3

Table 3.2 OpenFlow Flow Modification Structure

The controller is aware of the ports available within the device. Now the flow rules for

rerouting the packets within the device have to be communicated. The OpenFlow flow

modification message [3] implemented to support the BTI7800 device is discussed

below. In the BTI7800, the nature of the flow is to link two ports, known as cross-

59

connect. The information about the port from Table 3.1, uint32 t port no uniquely
identifies each port and is used to specify the port that needs to be cross-connected.

The flow modification information has to contain two end port information (uint32 t
port _no) referenced in struct ofp_port_status (refer to Table 3.1) and their operation (add,
modify, delete). The flow modification message is represented in Figure 3.9 and

discussed in Table 3.2.

+— 32 bl ——————»

cookie mask

table_id| cmd idle_timeout
hard_timeout priority
buffer_id
out_port
out group

Figure 3.9 OpenFlow Flow Modification Message

Pavload
s —» Action
type length [pad
: payload ! ! action[] !
network byte order +— 32 hits ———»

Figure 3.10 Flow Instruction Message

The instruction field specifies what action has to be taken at the port specified in uint32 t

out_port (refer to Table3.2). The flow instruction structure is represented in Figure 3.10

60

and discussed in Table 3.3, and it is a part of the OpenFlow Flow Modification Structure

represented in Table 3.2.

struct ofp_instruction

uintl6_t type There are different flow instruction types supported, refer to ofp_instruction_type [3].
Only the following type belonging to ofp_instruction_type is applicable.
OFPIT _APPLY_ ACTIONS =4, /* Applies the action(s) immediately */

uint16 _tlen /* Length of this struct in bytes. */
Payload struct ofp_action_output
uintl6_t type /* OFPAT_OUTPUT. */ [3]
uintl6_tlen Length of the message
uint32 t port Specify the uint32_t port_no (refer to
Table 3.1) information about other end
port
uintl6_t max_len Always set to zero [3]
uint8 t pad[6]

Table 3.3 Flow Instruction Structure

3.4.2.3 Launching OpenFlow Plugin

As specified earlier, the BTI7800 device supports a customized Linux environment with
very few support packages. The required dependencies [9] for compiling the modified
OpenVSwitch code are installed and the binaries created are linked to the existing

BTI7800 binaries.

3.4.3 BTI7800 OpenVSwitch Architecture
The implemented OpenVSwitch architecture 1is depicted in Figure 3.11. The
OpenVSwitch modules are broadly classified into management, user space and kernel

space module.

61

Management
BT Utility

; ovs-appctl | ‘ ovs-ofctl H ovs-dpctl | | ovs-vsctl Hovsdb-client]

Cahfig DE @peration

e | ovsdb-tool

Unix Socket

- ovsdb-server
Save/Apply Changes

‘ vswitchd

netlink Flow ==
ovs |
Table -
——p Packet
Kernal Processing
L 4
Management
From netlink} To netlink Work flow
o - .
Flow —
Rule

Figure 3.11 BTI7800 OpenVSwitch OpenFlow Architecture

3.4.3.1 Management

The Management module of the OpenVSwitch is composed of utilities that help to
configure the OpenFlow supported BT17800 devices and they offer a high level interface
for users to provide inputs. They also provide an interface to interact with the ovsdb -
server module.

e ovs-appctl - The utility for configuring and running the OpenVSwitch process.
The OpenVSwitch runs as a separate Linux process and it also manages the
OpenVSwitch process as part of the BTI7800 switch daemon. The BTI7800
switch daemon is the background parent process that controls the device and the
host of all the sub processes required to support the various switch functionality.
It is essential to host the OpenVSwitch process as a sub process, to ensure

effective memory allocation and inter process communication.

62

e ovs-ofctl - The utility for administering the OpenFlow supported BTI7800
switches and to manage the connections with controllers.

e ovs-dpctl - The utility for administering BTI7800 datapaths.

e ovs-vsctl - The utility for querying and configuring the ovs-vswitchd to support

BTI7800 ports and interfaces.

ovsdb-client - The CLI to ovsdb-server running in user space.
The above listed utilities are supported by the OpenVSwitch, the support was added by

modifying the OpenVSwitch code to function in the BTI7800 environment.

3.4.3.2 User Space

The user space consists of the vswitchd module, that functions as an OpenVSwitch
process. It is responsible for managing and controlling the OpenVSwitch process in the
device. It connects with the ovsdb-server. The vswitchd is divided into two sub modules
as shown in Figure 3.12 and described below.

ovs-vswitchd - It is the OpenVSwitch user space program, which creates the vswitchd
process. The CMM module of BTI7800 is composed of multiple different processes as a
part of the BTI7800 switch daemons. The OpenV Switch process is handled to be a part of

BTI7800 switch.

63

vswitchd

ovs-vswitchd

i
i
S S

ofproto E

[
| BTl

I ofproto
| provider

g
| _provider ¢

I

i

i

:

| BTI
i 1 netdev
| |

i

i

I

i

i

i

ovs-proto

Kernel space

Figure 3.12 BTI OpenVSwitch User Space Architecture

ovs-vswitchd - It is the OpenVSwitch user space program, which creates the vswitchd
process. The CMM module of BTI7800 is composed of multiple different processes as a
part of the BTI7800 switch daemons. The OpenV Switch process is handled to be a part of
BTI7800 switch.

ovs-proto — It is the OpenVSwitch library that implements an OpenFlow specification. It
is responsible for establishing the communication with the SDN controller. It receives the
configuration and modification from the utilities discussed in Section 3.4.3.1 or as
OpenFlow message discussed in Section 3.4.2. The ovs-proto translates the received
information as input(s) to the ovsdb and to the kernel space and handles them

accordingly.

64

ofproto - It is responsible for establishing communication with the SDN
controller. It handles the OpenFlow messages and communicates with the
controller.

BTI netdev — It is the thin library layer that links the actual ports and interfaces
on the BTI7800 and their corresponding OpenFlow references. With the help of
BTI netdev it is possible to open BTI7800 device ports.

BTI ofproto provider — It supports flow table entries. It receives and validates
the flow information before passing it on to lower layers. It also writes the
validated flow information to ovsdb.

BTI dpif provider — BTI dpif provider is a software message queue
implementation that interfaces with the confd module of the existing BTI7800
architecture. Any information from the upper layer (the BTI ofproto provider or

the BTI netdev) is coined as message and posted to confd.

Kernel Space

The confd is a management module present in the BTI7800, it supports the API for

making changes onto the device hardware. The confd is the module of BTI7800 that

receives the messages from the BTI ofproto provider. The confd will process the

information and as a result the flows or port will be modified accordingly. The confd

configures the cdb based on the changes triggered by the BTI OpenVSwitch plugin. As

discussed earlier, cdb is the configuration database of the BTI7800. The flow rules are

placed in the cdb as shown in Figure 3.11 for two reasons:

65

1) Fast processing of the packet, as it minimizes the effort of multiple context
switching and the effort involved in flow matching across the tables.
2) To ensure reuse of the code and device architecture. When the packets are

received on the interface the routing of the packets will be done by the interface.

3.44 BTI7800 OpenVSwitch Operation

Figure 3.13 shows the various operations involved in the OpenFlow supported BT17800,

and are described in detailed below.

OVS Process creation

1) The OpenVSwitch (vswitchd) process starts automatically when the device boots up.

2) The vswitchd process automatically creates the data structure representing the optical
ports supported by the BTI7800 and references them using OpenFlow.

BTI7800 port creation

3) The information about the ports are received at the ovs-ofproto. The BTI netdev sub
module within the ovs-ofproto validates and processes the information and also
updates the ovsdb.

4) The BTI dpif provider within the ovs-proto will post the messages to confd (ovs-
kernel) and will provision the hardware accordingly.

5) It is also possible for the users to view and modify the ports manually using BTI ovs-

vsctl management utilities through the CLI.

Controller Information

6) The user provides the controller information (IP address and port number) using the

management utility function ovs-ofctl discussed in Section 3.4.3.1.

66

7) The ovs-ofproto uses that information to connect to the controller and establishes a

secure protocol communication for exchanging OpenFlow messages.

8) If the socket communication is established successfully the controller is capable of

managing the device using OpenFlow.

View BTl port and interface

return

Add Flows

OF contr

pller info

BTIOVS
Management

>
»

Establish socket communic;

Confd A

ftion based on OF protocol

l

re]

urn

Y

Ad

flows

Flow in

ormation

—
Confd API

turn

BTIOVS
User

BTl
Kernal space

Figure 3.13 BTI7800 OpenVSwitch Process

Add flows and mange—

___________________ >

BTI BTI - avs oDL
ovs.vsctl ovs-ofctl ovs-proto ovs-vswitchd Kernel ODL controller Rest AP
Initiale ovs
switch process
Create BTI port
and interface
Portlinterface -

device

return

Success/Failure

oDL
Controller

To provide a detailed understanding of flow modifications, the sequence is also explained

with a state diagram

67

9) Through the ODL REST API it is possible to provide input to the controller for flow

modification. The controller issues a controller-to-switch message indicating there is

modify-state information to the connected BT17800 device as shown in Figure 3.14.

10) The message is received at vswitchd, the ofproto within vswitchd handles the

messages. The received information is validated by the BTI ofproto provider. If

successful, the flow is added into the ovsdb and flow table, else it returns failure.

11) The BTI dpif provider receives the flow information and a message is posted to the

message queue and it returns success.

12) The message is received in the kernel space; the message handler provides the

message content to confd. The confd updates the cdb and other existing BTI7800

device modules respectively.

ofproto

The respective
confd AP
is called to

update cdb and
other BTl device
module

Kernel Space |
OpenVSwitch |

—_
=

I'\.-'Ieissage pos’:ting

.-

BTl ofproto
provider

Add the flow
to flow table
and ovsdb

Provide the
information to
BTI
dpif provider

.

The BTI dpif
provider will post
the message to

confd

‘ Sucess '

NO

User Space
OpenVSwitch

Figure 3.14 OpenFlow Flow Modification State Diagram

68

3.4.5 Managing the BTI7800 using OpenFlow

We discussed the BTI OpenFlow plugin architecture and its functionality. Figure 3.15

represents the OpenFlow messages between the ODL controller and OpenFlow supported

BTI7800 devices.

1)

2)

3)

4)

5)

6)

Once the BTI7800 switch is aware of the controller IP address, it initiates a TCP
connection on port 6633 to connect to the controller.

Once the TCP communication is established, both the controller and the BTI7800
exchange OPFT_HELLO [3] messages with supporting OpenFlow versions. The
hello message and corresponding echo hello message are symmetric messages in
OpenFlow.

The flow modification (add, update, delete) operation can be performed using the
REST API supported by the ODL controller.

The ODL informs the connected OpenFlow BTI7800 device about the modification
through OpenFlow messages.

The information is updated in the ovsdb and in the cdb as discussed in Section 3.4.4.
If the response is success the operational state of the device is updated, else the

modification stored in the config state is rolled back.

69

oDL BTIT300

Establish TCP connection on port 6633

OPFT HELLD

QOPFT HELLD

Flow madific ation from
REST AFI

- - Flow Changes

| Im!——————————————---________

—

I

O‘UEdtJ_‘

S&Wcaﬂ

E:E'b

|

i

Ii

A
-
G
i
Vi
12
2
=3
=
i (0

|
|
.

Figure 3.15 OpenFlow Interaction between the Controller and BTI7800

3.5 Managing Data Center Interconnection

Until now we have discussed managing a single device using NETCONF and OpenFlow
as the SBI. In our research, we deal with optical data center interconnection typically as
shown in Figure 3.16. The BTI7800 acts as an edge node in the data centers, we need to
manage two nodes using an ODL controller. In case of NETCONF, the ODL controller
creates an individual NETCONF connector for each device attempting to connect.
Similarly, for devices using OpenFlow as SBI, a new instance of the OpenFlow

connector is assigned to every connected device. All attached devices have an operational

70

and config state maintained individually. So it is also possible to manage multiple devices
with a controller and each node is identified separately. When the two edge BTI7800
nodes are connected to the controller using their respective supported SBI, it is possible
to manage and control both the devices. Therefore, it is also possible to manage the link

interconnecting those devices.

i : jj . BTI7800 BTI7800 . t‘:]

Figure 3.16 Data Center Interconnection

In order to demonstrate the different scenarios of BoD, a python-based application layer
is written. The python script translates the user requirement into a REST API request for
the controller. The user requirements are to manage the flows between the interconnected
data center. The controller processes the REST API request and as a result the flow(s)
between data centers can be managed. The detailed description of the test environment

and use cases are provided in the next chapter.

71

Chapter 4: Test Environment and Experiments

In this chapter, the proposed SBIs, NETCONF and OpenFlow implemented on the
BTI7800 network elements, are evaluated. We have discussed about the technology, the
history, the evolution and the implementation of the interconnected SDN optical data
centers, in our previous chapters. In this chapter we present the test environment and the
use cases that help us in evaluating both protocols that act as a SBI. The use cases in this
chapter are designed based on the ONF SDN optical transport use cases document [7].
The demonstrated use cases address the data center interconnection, serving traffic flows
between two separate data centers connected over an OTN. One of the main
characteristics of this use case is that the provider network is shared with other client
traffic. Another characteristic of this use case is the control separation of the data center
and the provider network. The use cases are specifically designed to handle BoD for
users across data centers with the help of SDN at the optical layer and switching [7]. In
this chapter, we explain the test environment, use cases, performance and evaluation of
both protocols in each scenario. The use cases are broadly classified as detailed below:
e High Priority Flow (20 G) Request for User B
e High Priority Flow (20 G) Request for User A
o When no low priority flow exists
o When the lower priority flow exists

e Two Users’ Request for High Priority Flow, Mutual Sharing

72

4.1 Test Environment and Evaluation Metrics
We describe the test environment and the metrics used to evaluate both protocols

implemented as SBIs in an SDN environment.

4.1.1 Environment Description

The test environment, as shown in Figure 4.1, is comprised of the following equipment:

BoD Application

Resource Manager

I.'r/ Ts 5 D \'I
s .7 Wavelength s
7800 2L
Spirent o~ b.n = h‘n Spirent

A 4 A 4

Figure 4.1 Test Environment Setup

A. Two BTI7800: The BTI7800 optical devices form the data center interconnection
with the help of 12*10 G link capacity and a 100 G OTU4 link. The 12*10 G links
support 12 users of each 10 G bandwidth for user traffic within a data center and the
100 G OTU4 link connects across the data centers. The Spirent traffic generator acts
as user traffic source. There is a possibility of 120 G traffic input from users within
the data center. The OTU4 link connecting between data centers supports a maximum

link bandwidth of 100 G. The optical router receives the input traffic of 120 G but can

73

only multiplex and forward traffic of 100 G on the OTU4 link interconnecting data

centers. Therefore, the bandwidth requirement pertaining to 10*10 G links can be

satisfied, with potentially dropping the traffic from the remaining 2*10 G links. The

SDN controller has to meet the requirements of BoD by granting bandwidth to more

essential user traffic and dropping other users whose requirement cannot be satisfied.

SereamBlack Eddce - Port V1L « StreamBlock 1

Gerwrsl | Frame | Groups | Axpert | Prevew
o Adtive Mame: ShesmBod 1
Fraeme s (Eytes){Wih CRC o sprature el Sireamble lsd apban
Pied Lasdr
Tichinak Parent ')
| Decremest

Rasdarm

M e
==

@ Mbps

ui Rate (bes)

et Pt

Pyl fill ponartant (hex) :

Payland fill bype

¥y [Eyaes Insert FCSermos

#| Include Sgnature Field

Enable AnslyzerPralcad

Navigste streamblodes: |14 | 1 ef1 P M

Figure 4.2 Spirent Traffic Generator Configuration

Frames/sec(fps)

] High Speed Result Anabsis

el

Coares Laril

o

iy

Cance

. Spirent: Spirent is a traffic generator; it helps in creating user traffic within the data

center. It is connected with the 12 ports on the BTI7800 with the help of 10 G optical

fibers. Each link supports auto generated traffic source as shown in Figure 4.2. The

Spirent at one end of the data center acts as the sender and the Spirent at the other

data center acts as the receiver. The Spirent traffic generator reports the bits

74

transferred and received at each link every second. This information is reported in the
form of graphs and used to evaluate both protocols for all use cases.

C. ODL Controller: The ODL SDN controller is running on a centos server. The SDN
controller interfaces with network devices (BTI7800) using the SBI, either OpenFlow
or NETCONF. Each connected BTI7800 device is identified separately by the
controller. The SDN BoD application (python script) is running on the same server.
The resource manager collects information about the devices and its topology using
the REST NBIs supported by the ODL controller. The BoD application receives a
bandwidth request from the user and the information is passed on to the resource
manager. The resource manager, based on the stored information and depending on
the nature of the traffic, handles the BoD scenarios by translating user requirements
as ODL REST API information to the SDN control plane. The REST API contains
information that uniquely identifies the connected device(s) and their connection
changes [8].

» Operating system — centos OS (Linux pronx10 2.6.32-504.e16.x86_64)
> RAM-16GB
» ODL version - ODL Lithium Karaf

The Spirent traffic generator cannot be controlled using the SDN controller. Therefore,

they always generate traffic based on the configurations discussed above. The application

layer of the ODL controller offers an interactive mode to select a use case and it also

signals the control plane about the type of traffic and the flow modification decision(s).

75

4.1.2 Evaluation Metrics

In all the use cases the behavior of both protocols as SBIs are observed. In order to

discuss the observations, it is essential to have concrete metrics to evaluate both

protocols. The following metrics are considered.

% Time: We are comparing two protocols that act as SBIs i.e., that communicate
between the SDN control plane and the data plane devices. An efficient protocol
should exhibit a fast and reliable response. The time taken to complete the required
set of configurations by both SBIs are compared. The time period for each use case
differs depending on when the system attains the steady state. The use case reaches
the steady state when all the configurations are committed, the traffic flows end-to-
end in all the links that are active and the system remains in a stable state. In the
steady state all the links are provisioned end-to-end and the system is in stable state.

% Bandwidth Utilization: The research is focused on handling BoD requests across the
interconnected data centers managed using the SDN SBIs. One of the key aspects for
adopting SDN in the current network management is because it provides a fast and

efficient way to manage the networks. Therefore, resources can be optimally used.

The bandwidth utilization is calculated based on this formula.

) o Total No.of bits successfully transferred
Bandwidth Utilization (%) = — * 100
Total No.of bits inputted

For a use case the bandwidth utilization is calculated over a period of time from an
event a use case is triggered by the user and until system attains steady state. For each

use case the period of time differs based on when the system completes the

76

requirement(s) and attains the steady state. All the experiments start with the system
operating in the initial state. New user traffic demands additional bandwidth and the
SDN controller decides to service the bandwidth requests based on the nature of the
traffic and availability of the resources. The SDN control plane communicates the
changes through the implemented SBIs and waits until the system completes the
requirement(s). Once the requirement(s) are completed, the system returns to its
initial state. The time period for both SBIs in each use case is equal: if one of the
implemented SBIs attains the steady state faster than the other, the environment is
maintained in the steady state until the environment implementing the other SBI also
attains the steady state. In steady state, if all links are active, the bandwidth utilization
is always 100 %.

¢ Control Messages: The ODL SDN controller manages the data plane devices via the
implemented SBIs. The SBIs communicate the flow modification information as
control messages. Each SBIs handles the messages differently based on the nature of
the protocol which leads to difference in message size and number of messages. An
efficient protocol should less control signaling and network overhead.

Having discussed three parameters, time and bandwidth are equally important to achieve

QoS among the supported users and the different kind of traffic. Control messages are not

very crucial, but network overhead caused by control signals needs to be accounted for

designing a system.

77

4.2 Initial Environment

The initial environment shown in Figure 4.3 is used for all the use cases, unless a

different initial environment is presented in the beginning of a use case. Both data centers

are identical in network topology and are interconnected with the help of the OTU4

optical link. In both data centers the BTI7800 device acts as an edge node. Each data

center has two users that are connected with the BTI7800. The nature of traffic and the

amount of bandwidth occupied by each user is discussed below.

User A ¥ OPEN User A
SDN Controller
40 ' . 40G
\ BTI7800 J« BTI7800 \l« /
%): > 406 O 40 3%
B & (100G) e Spirent
[= _
Spirent - -
206 60G 60G e 206 5Ll
20G
40G _ Ahas a 40 Gbis flow between DC1 and DC2. —> 406 20G
User B - Ahas potential for additional 2x10G flows that is not utilizec User B
- B has a 40 Gb/s high priority flow between DC1 and DC2. €——>
- B has a 20 Gbi/s low-priority flow between DC1and DC2.
Figure 4.3 Initial Environment
User A User B Type of Flow
40 G (Green) 40 G (Blue) Base Flow
20 G (yellow) Low priority

Table 4.1 Initial Environment Allocation

> Both data centers have two users, user A and user B respectively. Each user owns a

potential bandwidth of 6*10 G connections patched with the BTI7800. The OTU4

100 G link connects both optical routers across the data center as shown in Figure 4.3,

78

and it is capable of multiplexing user traffic on the optical link connecting data
centers.

Each user has a dedicated bandwidth of 40 G each, constituting 80 G out of 100 G
bandwidth (blue and green links). The sub flows or cross-connects 1 to 4 are termed
as the base flow of user A and represented with green links. The sub flows or cross-
connects 5 to 8§ are termed as the base flow of user B and represented with blue links.
One of the users, “user B”, is assigned the remaining 20 G for low priority traffic
(yellow color links), as represented in Table 4.1. The sub flows or cross-connects 9
and 10 are termed as the low priority flow of user B and represented with yellow
links.

In all scenarios discussed below, when a high priority traffic (red color links) of 20 G
is requested, the low priority traffic (yellow color links) is preempted. Once the high
priority traffic is serviced, the system will return back to the initial state.

The sub flows or cross-connects 11 and 12 are termed as the high priority flow of user
A and represented with red color links. The sub flows or cross-connects 9 and 10 are
termed as the high priority flow of user B and represented with red color links.

The user B can either have lower priority flow (sub flows 9 and 10 — yellow color
links) or higher priority flow (sub flows 9 and 10 — Red color links) depending on the

use case.

The links (arrows) represented within the BTI7800 are known as cross-connects or sub

flows. They help in multiplexing/bridging any 10 of 12 (*10 G) ports on to the OTU4

link. Based on the user traffic, the SDN controller signals which 10 ports need to be

cross-connected to the OTU4 link.

79

Initial Environment
4.5E+09

4AE+09

3.5E+09

3E+09

2.5E+09

BPS

2E+09

1.5E+09

1E+09

500000000

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Time (sec)
o= o= == User A (NETCONF) o= == = User B (NETCONF) LP (NETCONF)

s | Jse T A (OF) e | Jser B (OF) LP (OF)

Figure 4.4 Initial Environment Provisioning Using NETCONF and OpenFlow

4.2.1 Flow Management Using NETCONF Interface

The process involved in the flow management with the help of the controller using
NETCONF as an SBI are discussed in Section 3.3.4. The NETCONF and YANG-based
protocol represents the information as a collection of dataset(s) as described in Section
2.4.1. The list of cross-connections is seen as a single dataset and the ODL controller
cannot access each cross-connect individually. Figure 4.4 shows the time taken to set up
the initial environment shown in Figure 4.3 implementing NETCONF and OpenFlow as a
SBIs. In the interconnected data centers, for the traffic to flow from one end to another, it
is essential to provision the end-to-end tunnel. The application layer first provisions the
data center at one end, but on the other end there is no connection provisioned. Therefore,
the traffic cannot reach the other end. Next, the application layer begins to provision the
data center at the other end. As the result the end-to-end tunnel is created for each sub
flow and eventually traffic begins to flow end-to-end.

The sequence of steps involved in provisioning the initial configuration using NETCONF

as SBI is shown in Figure 4.5 and are discussed below.

80

The user interacts with the BoD application requesting the SDN controller to
provision the initial environment.

The resource manager receives the user’s request from the BoD application and it
determines the list of sub flows or cross-connects required to be provisioned on both
BTI7800 devices.

The resource manager provides the control plane with the sender BTI7800 device
information as identified by the NETCONF connector and the list of all 10 cross-
connects needed to be provisioned.

The control plane translates the received information as NETCONF <edit-config>
message, and the message is directed toward the sender BTI7800 NETCONF agent.
The NETCONF agent residing on the BTI7800 device will process the requested
cross-connects. On configuring the requested cross-connects it returns success back to
the control plane and the response is further delivered to the resource manager.

The resource manager provides the control plane with the receiver BTI7800 device
information as identified by the NETCONF connector and the list of all 10 cross-
connects that needs to be provisioned.

Step 4 and step 5 are repeated again for the receiver BT17800 device.

81

BoD Resource

Application Manager Control Plane Sender BTIT800 Receiver BTIT200)

user

-
-

Specifies sender

I
]
i
Initial Envirenment o i H
Initial Cenfiguration p. BTI7800 information

along with NETCONF i
izt of 10 flow add message !
cross-connected for all 10 cross-connect !
ports information directed towards
Sender BTIT800
. _____return
e __retum______

Specifies receiver
BTI7800 information
aleng with
list of 10
cross-connected
ports information

NETCOMF
flow add message
for all 10 cross-connect
directed towards
receiver IBTIFEUU

e retum
return

=
]
]
]
]
]
]
]
]
'

Figure 4.5 Sequence for Initial Configuration Using NETCONF

Time: At time t = 1 sec in the graph represented in Figure 4.4, the SDN controller
communicates the set of cross-connects to be provisioned on the sender BT17800 device.
In the beginning there is no cross-connects and the packets are dropped within the sender
BTI7800 device. Once the sender BTI7800 device is provisioned, on the receiver data
center there is no cross-connects provisioned, and any packets received are dropped
within the BTI7800 device located at the receiver. At the end of t = 31 sec, cross-
connects on the sender BTI7800 device are provisioned. The controller, using the
implemented NETCONF SBI, communicates the cross-connect information that needs to
be provisioned to the BTI7800 device on the receiving end. We observe the traffic being
successfully received at the user for each link eventually over the time t = 32 sec to t =70

sec. At t = 34 sec the first sub flow end-to-end communication is established. At t = 44

82

sec the base flow of user A is established end-to-end. At t = 63 sec all the links are
provisioned end-to-end. From t = 63 sec until t = 70 sec the system is in steady state with
all the 10 links active and fully utilized.

The BTI7800 YANG model handles cross-connects as a single dataset. The controller
does not allow to access them as individual cross-connect and it is forced to access them
as a set of cross-connects. Using the implemented NETCONF SBI, the list of cross-
connects that needs to be provisioned are specified, and the BTI7800 device receives the
request and further process each cross-connect information specified in the list. At the
end of the request it returns the status back to the controller.

The BTI7800 devices do not support buffering of data, therefore packets cannot be
stored. The reason for the long delay is because the BTI7800 have to create an optical
tunnel between the two end ports that are cross-connected. The BTI7800 device takes
approximately 3 seconds to process each cross-connect. When we reverse the order of the
BTI7800 devices provisioned, starting with the BTI7800 device at the receiver end first,
followed by the BT17800 at the sender side, we observe the same overall behavior.
Bandwidth Utilization: The bandwidth utilization is calculated for a time period of t =
70 sec. The bandwidth utilization is calculated from the beginning of the experiment at t
=1 sec to t = 70 sec, the end of the experiment until the system attains a steady state and
remains in steady state for a few seconds. The bandwidth utilization is 32.01% to attain

the initial state as described in Section 4.2.

&3

4.2.2 Flow Management Using OpenFlow Interface

OpenFlow, unlike NETCONF, operates on each sub flow individually. As discussed in

Section 4.2.1 the application layer provisions both data centers for each flow separately.

Eventually we see traffic flowing across data centers as represented in Figure 4.4. As

each flow is provisioned separately, the amount of time the link is not utilized is less

compared to NETCONF. The sequence of steps involved in provisioning the initial
configuration using OpenFlow as SBI is shown in Figure 4.6 and are discussed below.

1. The user interacts with the BoD Application to request the SDN controller to
provision the initial environment.

2. The resource manager receives the user’s request from the BoD Application and it
determines the list of sub flows or cross-connects required to be provisioned for the
both BTI7800 devices.

3. The resource manager provides the control plane with the information about the
sender BT17800 device and first sub flow or cross-connects needed to be provisioned.

4. The control plane translates the received information as OpenFlow add message, and
the message is directed toward the sender BT17800 device.

5. The sender BT17800 device, on receiving the OpenFlow add message, provisions the
new cross-connect and returns success.

6. The resource manager provides the control plane with the information about the
receiver BTI7800 device and the first sub flow or cross-connect needed to be
provisioned.

7. The control plane translates the received information as OpenFlow add message, and

the message is directed toward the receiver BT17800 device.

84

8. The receiver BTI7800 device, on receiving the OpenFlow add message, provisions
the new cross-connect and returns success.

9. Step 3 through step 8 are repeated for all remaining 9 sub flows or cross-connects.
Time: At time t = 1 sec in the graph represented in Figure 4.4, the SDN controller
communicates the first sub flow information to the sender data center, and following the
same information is communicated to the other data center. At t = 6 sec, the first sub flow
is setup end-to-end and we see traffic sent from one end of the data center and
successfully received at the other end of the other data center. At t = 61 sec all ten sub
flows are provisioned at both data centers and traffic in all links are active. From t =61
sec until t = 70 sec the system is in steady state with all the 10 links active and fully
utilized. The device takes 3 seconds to provision a cross-connect in an OpenFlow
environment.

The time taken to create or tear down the cross-connect(s) presented in this thesis are
specific to the BTI7800 devices. The authors of [13] present the hardware time of 7
seconds to setup a cross-connect in an extended optical OpenFlow environment, the
hardware setup time varies for different devices based on their performance and

functionality.

85

BoD Resource - ; -
user Application Manager Control Plane Sender BTI7800 Receiver BTI7200)
| | | ' | |
» |
Lt]
Initial Environment nitial Confi .“;_ “““ 1 i
nitial Configuration 4 wi !
' ' T » Specifies sender ' OpenFlow ' ' sub flow 1 |
| BTI7800 information_y, 1 flow add message |
| & first first |
1 cross-connect cross-connect i
| | (sub flow) (sub flow) | !
h h h !
! . o rewm |
. e __retun] | i
| | H i | !
H H | Specifies receiver H OpenFlow i !
| BTI7800 information_y. 1 flow add message ! |
1 & first first ' i
| | cross-connect cross-connect !
H H (sub flow) (sub flow) !
H 1
| retlurn i
return [er-mmmmmm s it '
. . I — L : : :
h h ' h h !
S S O S |
i
| Specifies sender O penFlow i
BTI7800 information_y. 1 flow add message | sub flow 2
H H & second | second 1 H
cross-connect cross-connect !
i (sub flow) (sub flow)
! ! ; e return !
return | [&mmomTmTm oo
. I L : :
i H i
Specifies receiver) OpenFlow
' ' . ETI7800 information flow add message '
& second secon '
! cross-connect cross-con.nect H
(sub flow) |sub|ﬂo-.r|
’ T T B PO e
eoorEum |

Specifies sender
BTI7800 information
& tenth
cross-connect
(sub flow)

return

{ _________________

Specifies receiver
- BTIT800 information
& tenth
cross-connect
(sub flow)

return
< _________________

Figure 4.6 Sequence for Initial Configuration Using OpenFlow

OpenFlow
flow add message
tenth
cross-connect !

(sub flow)

sub flow 10

. _____retum
!
OpenFlow
flow add message
tenth
cross-connect
(sub flow)
i
return

Bandwidth Utilization: OpenFlow demonstrate a bandwidth utilization of 53.89%,

which is more than the NETCONF results. The bandwidth utilization is calculated from

the initial start time t = 1 sec until t= 70 sec.

86

4.3 High Priority Request (20G)

We considered a set of use cases that demonstrate scenarios comprising of two users at
each data center that are managed using a single SDN controller. These use cases are
focused on handling, high priority bandwidth request across the users. In all use cases
discussed below the user will request for 20G of bandwidth to transmit the high priority
traffic. Depending on the use case it can vary if only one of the users or both users are

requesting bandwidth for the high priority flows.

4.3.1 High Priority Flow (20 G) Request for User B

Step 1: The environment is brought to the initial state as described in Section 4.2.

Step 2: User B needs 20G of bandwidth for the high priority traffic and user B does not
have any low priority traffic. The 20 G of resources assigned to the low priority traffic of

user B is utilized by the high priority traffic as shown in Figure 4.7.

Step 3: On completion of high priority traffic demands, the environment returns back to
the initial state.

The resources for the low priority traffic is assigned to user B and the same user needs
bandwidth for the high priority traffic. Therefore, the high priority traffic will utilize the
bandwidth that was assigned to the low priority traffic. There is no change in the cross-
connection between 10 G ports and OTU4 link. The user interacts with the BoD
application and the bandwidth request for user B’s high priority flow is forwarded to the
resource manager, as shown in Figure 4.8. The resource manager does not initiate any

signaling effort. In this scenario as an aggregate of all flows, there is a bandwidth

87

requirement of 100 G and all the bandwidth requirements are satisfied, the allocation

details are represented in Table 4.2.

User A User B Type of flow Action
40 G (Green) 40 G (Blue) Base Flow Serviced
20 G (Red) High priority Serviced
Table 4.2 High Priority Request from User B
User A ¥ OPEN User A
SDN Controller
10 406G
BTI7800 W BTI7800 ¥
f% — S oTu4 g —
o Hop (oog) |40€ € —
= — Q%%
60G 60G
’YOG
406 Ahas a 40 Gbis flow between DC1 and DGC2. —> 40(%/20@

Ahas potential for additional 2x10G flows that is not utilizec
B has a 40 Gb/s flow between DC1and DC2.
B has a 20 Gb/s high-priority flow bely

User B User B

1 DC1 and DC2. €————>

Figure 4.7 High Priority Request from User B

88

user

BoD Resource
Application Manager

High Pricrity (userg)

High Pricrity (user Bi

>

_"'________

—q—————
[P

Mo modification
_; required

Figure 4.8 Sequence for High Priority Request from User B

4.3.2 High Priority Flow (20 G) Request for User A

4.3.2.1 Case 1: When No Low Priority Flow Exists

User A

User B

Type of flow

Action

40G

40G

Base Flow

Serviced

Table 4.3 Bandwidth Allocation for High Priority Request from User A - Case 1

Step 1: Both users (user A and user B) have 40G of bandwidth allocated for the base

flows as shown in Table 4.3. There is 20G of unutilized bandwidth available on the link

interconnecting the data centers.

Step 2: User A has an additional high priority traffic demand and it needs 20G

bandwidth. The controller allocates the 20G of available bandwidth to user A as shown in

Figure 4.9.

89

e OF User A
User A SDN Contraller

]]] fm%
0G 0G
\ BTI7800 l BTI7&00 l /
% wo | O :-%’
o =

=)

406G 40G 3
_‘§

406 - Ahas a 40 Gb/s flow between DG1and DG2. — 40(/
User B - Ahas a 20 Gb/s high-priority flow between DC1 and DC2. €————> T 2
- Bhas a 40 Gb/s flow between DC1and DC2 >
- Bhas a 20 Gb/s low-priority flow — No bandwidth

Figure 4.9 High Priority Request from User A - Case 1

Step 3: On completion, user A releases the bandwidth and the system returns to step 1.
For the use case represented in Figure 4.9, user A needs bandwidth for the high priority
flow and the controller allocates the available unutilized bandwidth to service user A’s
requirement. After 8 seconds the application layer signals the controller about the
completion of the high priority flow and modifies the connection accordingly, so that the
environment returns back to the initial state. The fixed time is considered because it helps
us in comparing the performance and the behavior of both protocols, as the environment
and the timing remains the same. The detailed working of both protocols as SBIs are
discussed below:

Figure 4.10 represents the sequence of steps involved in configuring the high priority
request using NETCONF protocol. The user interacts with the BoD application and the
resource manager receives the request. The system exists in an initial state with 8 sub
flows or cross-connects provisioned. The user has requested for 2 additional sub flows for
handling the high priority traffic of user A. The resource manager communicates a bunch

of 10 cross-connects information (the existing 8 cross-connects belonging to the initial

90

environment and the additional two cross-connects) to the sender BTI7800 device with
the help of the control plane. On completion, the sender BTI7800 device replies the
status. The resource manager, through the control plane, communicates the same
information to the receiver BTI7800. The BoD application is aware that the cross-
connects are provisioned to handle the high priority requirement. At the end of 8 seconds
the BoD application signals the resource manager to return back to the initial
configuration. The resource manager, through the control plane, signals a bunch of 8
cross-connects or sub flows belonging to the initial configuration to both BTI7800
devices. As a result, the cross-connects created for handling the high priority traffic of
user A is torn down.

Figure 4.11 represents the sequence involved in configuring the high priority request
using OpenFlow. The user interacts with the BoD application and the resource manager
receives the request. The system exists in an initial state with 8 sub flows or cross-
connects provisioned. The user has requested 2 additional sub flows for servicing the
high priority traffic of user A. The resource manager communicates the 9th cross-connect
or sub flow information to the sender and the receiver BTI7800 devices through the
control plane. Once the 9th sub flow is created successfully at both the BT17800 devices,
the 10th sub flow information is communicated. The BoD is aware of the sub flows being
established for satisfying the high priority bandwidth. At the end of 8 seconds the BoD
application signals the resource manager to return back to initial configuration. The
resource manager through the control plane signals the 9th cross-connect or sub flow to

be deleted at both BTI7800 devices. The same is continued for deleting sub flow 10.

91

BoD Resource)
user Application Manager Control Plane Sender BTIT800 Receiver BTITS00)
1 | |
- i | |
High priority request | Specifies sender NETCONF |
for user A 2 BTI7B00 information flow add message ' '
! d along with for aII. 10 cross-connect !
! P ™. list of 10 directed towards ! !
' L 20Gbfn. cross-connected Sender BTIT500 ! '
i H bandwidti-> ports information i
11 availableto ! i
! ' occupy the !
i ! high priority ! i
: i request | . _____fteturn_______ |
ot R return |
]]]
]]]
]]]
i i i
| | | |
| | | |
| | | |
| H | | |
| | | |
| | | |
| | | |
| Specifies receiver | | |
i BTI7800 information | ' i
i along with ; NETCONF i
! list of 10 flow add message !
| for all 10 cross-connect
: cross_—connegted directed towards
! ports information o
' receiver BTI7800
! i
1 !
e N O return .
| e return <
[I PR L.
i return
L S &

Figure 4.10 Sequence for High Priority Request from User A Using NETCONF - Case 1

Specifies sender
BTI7800 information

ﬂ_____
3
=
£
g
g
g
[=-]
w
1]
(]
w

|
i

i

i

i

|

i

! along with

| e T list of &

i i s

i i Return babk cross-connected
i Vo inithat-- ports information

i | environment |

' v (2 cross-

| | connects are |

i i deleted) | :

. ________ return

e Y R,
| <

]

]

]

]

]

1 -

]

!

! Specifies receiver
| BTI7800 infermation
i along with

| list of 8

i cross-connected
' ports information

|

|

|

|

]

i

! return

! e
PER— retumn_

|

|

|

|

|

R

NETCONF
flow add message
ifor initial cross-connects
" directed towards
Sender BTIT800

return

|
NETCONF
flow add message
for initial cross-connect >
directed towards
rece'werl BTI7800
|
!
return

e

92

user

EoD
Application

Resource
Manager

Control Plane

Sender BTIT800

Receiver

BTI7200)

_——

High pricrity request
for user A

P

¥--

available

- 1
Wait for & sec
——

to

occupy the
high priority
request

return

P L [

s

bandwidth=;

Specifies sender
BTIT&00 information_g.
& 11th
cross-connect
(sub flow)

return

S L

Specifies receiver
BTIT&00 information_g.
& 11th
cross-connect
(sub flow)

return

S L

Specifies sender
BTIT&00 information_g.
& 12th
cross-connect
(sub flow)

return

S |

Specifies receiver
. BTIT800 information.
& 12th

L L ——

OpenFlow
flow add message

cross-connect
(sul flow)

return

OpenFlow
flow add message
12th

cross-connect
(sul flow)

Opes
flow add
12th

cross-connect
(sub flow)

-{

4

! o initia

return
{_ ___________

Return back |

environment !

'
!
+-

Specifies sender
BTIT800 information.
& 11th
cross-connect

(sub flow)

return

{ _________________

Specifies receiver
- BTIT800 information_g.
& 11th

Cross-

OpenFlow
flow delete message

cross-connect
(sub flow)

return
{_ _________________

Opes

11th

cross-connect
(sub flow)

return

L L

Specifies sender
BTIT800 information_g.
& 12th

cross-connect
(sub flow)

<

Specifies receiver
- BTIT800 information_.

Cross-

OpenFlow
message

onnect
(sub flow)

Flow
message

onnect
(sub)flow)

Flow
flow delete message

onnect

(sub:flow)

e

e

sub flow
11

sub flow
12

sub flow 11

OpenFlow
flow delete message
12th
cross-connect

(sub flow)

return

-

Opes

& 12th
cross-connect
(sub flow)

12th
Cross-

Flow
flow delete message

onnect
(sul] flow)

—

sub flow 12

Figure 4.11 Sequence for High Priority Request from User A Using OpenFlow — Case 1

93

NETCONF

7JE+09

6E+09

SE+09 ,’ \
’ ‘

AE+09 s

BPS

3E+09
2E+09

1E+09

10111213141516171819202122232425262728293031323334353637
Time (sec)

o= o= == [Jser A (NETCONF) == == = User B (NETCONF)
Figure 4.12(a) Provisioning for High Priority Flow Request for User A Using NETCONF —Case 1

OpenFlow

7JE+09

6E+09
SE+09 /_/ \
4E+09

3E+09

BPS

2E+09

1E+09

10111213141516171819202122232425262728293031323334353637
Time (sec)

s | Jse T A (OF) e User B (OF)

Figure 4.12(b) Provisioning for High Priority Flow Request for User A Using OpenFlow — Case 1

Time: The NETCONF and OpenFlow handling is represented in Figure 4.12 (a) and (b)
respectively. The experiment begins at time t = 10 sec and the system exists in the initial
state. At t = 10 sec the application layer signals the resource manager about the high

priority request. Using the NETCONF protocol, the 9th sub flow is configured at t = 18

94

sec and the 10th flow is configured at t = 22 sec. From t = 22 sec until t = 30 sec for 8
seconds the high priority traffic requirement is satisfied. Using the OpenFlow protocol,
the 9th flow is configured at t = 17 sec and the 10th flow is configured at t =22 sec. From
t =22 sec until t = 30 sec for 8 seconds the high priority traffic requirement is satisfied.
For NETCONF and OpenFlow it takes 12 seconds to process two cross-connects at each
end. NETCONF and OpenFlow takes 3 seconds as hardware setup time for each cross-
connect. At t = 31 sec the environment implementing the NETCONF protocol
communicates the modification for the initial environment and it takes 0.50 second for
each end to delete both cross-connects. The OpenFlow communicates the modification
for the initial environment at t = 31 sec and at t = 34 sec the environment reaches the
initial state and it takes 0.75 second to delete each cross-connect. In the case of
OpenFlow each cross-connect to be deleted is a separate message and the device handles
each message received and provision the hardware accordingly.

Bandwidth Utilization: The bandwidth utilization for this use case is calculated for the
window when high priority flow begins to service until the high priority flow ends. Both
protocols have to serve the high priority request for 8 seconds, but the high priority
window includes sub flow setup and tear down delays. Both protocols the high priority
flows begins at t = 16 sec. NETCONF consumes a window of 16 seconds and the
bandwidth utilization is 94.4 %. OpenFlow consumes a window of 20 seconds and the
bandwidth utilization is 93.37 %. While the difference is very small, NETCONF results

are better compared to OpenFlow.

95

4.3.2.2 Case 2: When The Lower Priority Flow Exists

Step 1: The environment exists in the initial state as discussed in Section 4.2.

Step 2: User A has high priority traffic and requires additional bandwidth. The low
priority traffic of user B owning the resources loses its bandwidth and user A is assigned
with the bandwidth to satisfy the high priority traffic demands as shown in Figure 4.13.
Step 3: On completion of the high priority traffic demands, the environment returns back
to the initial state. The controller will release the bandwidth occupied by the high priority

traffic by user A and assign the flows back to the low priority traffic of user B.

7800 l

* User A

SDN Controller
) 406G
0G
7800 J‘

User A

NS

/

v\me\-b: oTUA4 £
606G
%L= o0 606 —
20G > 40G 406 —

20G

40G
User B

- Ahas a 40 Gbis flow between DC1and DC2. >
- Ahas a 20 Gbis high-priority flow between DC1 and DC2. €—>
- Bhas a 40 Gb/s flow between DC1 and DC2 —>
- B has a 20 Gb/s low-priority flow — No bandwidth

40(%

User B

Figure 4.13 High Priority Request from User A - Case 2

User A User B Type of flow Action
40 G 40 G Base Flow Serviced

20 G (preempted) Low priority No resources
20 G High Priority Serviced

Table 4.4 Bandwidth Allocation for High Priority Request from User A - Case 2

Both users A and B have dedicated bandwidth of 40 G each, and the 20 G of lower

priority traffic is assigned to user B. User A has high priority traffic and it demands for

96

the bandwidth to transmit. The SDN controller, using the implemented SBI will signal
the BT17800 network element to drop the bandwidth pertaining to the low priority traffic
and will establish the bandwidth for the high priority traffic belonging to user A for a
time period of 8 seconds. The information regarding the flow modification is
communicated by the application layer to the control plane. In this scenario, there is a
bandwidth request for 120 G and having a limitation of 100 G link between data centers,
thus controller decides to allocate bandwidth for the flows based on the nature of the
traffic as represented in Table 4.4. The sequence explaining the detailed working of both

protocols as SBIs are discussed in Appendix A.

NETCONF
7E+09
6E+09 .
,----\ L N N N}
\ / \ -
SE+09 /
\ ’ \ '
4E+09 3 ’ \ 4
9 3E+09
2E+09
1E+09
0
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
Time (sec)

= = = UserA (NETCONF) == = == User B (NETCONF)

Figure 4.14(a) Provisioning for High Priority Flow Request from User A Using NETCONF - Case 2

97

OpenFlow

7JE+09

6E+09
5E+09 -\ f_\T/—
4E+09 /\

3E+09

BPS

2E+09

1E+09

1012 1416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

Time (sec)

e |)52 1 A (OF) e |Jser B (OF)

Figure 4.14(b) Provisioning for High Priority Flow Request from User A Using OpenFlow — Case 2

Figure 4.14 (a) and (b) represents the flow handling of both protocols, NETCONF and
OpenFlow respectively in this environment.

Time: The experiments begins at time t = 10 sec and the environment exists in the initial
state. At time t = 10 sec the application layer signals the resource manager regarding the
bandwidth request for the high priority flows from user A. As discussed before, two
cross-connects need to be torn down and two new cross-connects are added. In
NETCONF and OpenFlow, at t =23 sec and t = 25 sec, all two sub flows are provisioned.
It takes 13 seconds and 15 seconds for NETCONF and OpenFlow respectively to
provision the high priority request. NETCONF takes 6.5 seconds to provision one data
center, it takes 0.5 second to delete both the cross-connects and 3 seconds to add a cross-
connect. In OpenFlow it takes 3 seconds to add a cross-connect, and 0.75 second to delete
a single cross-connect. Addition of cross-connects takes longer hardware setup time
because an optical tunnel between the two interconnecting ports is created. During the

deletion of cross-connect the entry is removed from the cdb flow table and then ports are

98

shutdown, therefore deletion of cross-connect(s) consume less hardware setup time. The
high priority traffic is serviced for 8 seconds. Similarly, NETCONF and OpenFlow
environment return back to initial state by dropping the two high priority sub flows and
adding the two low priority sub flows.

The OpenFlow protocol takes longer time compared to the NETCONF is because each
sub flow modification is processed separately. The resource manager communicates
which particular sub flow needs to be modified one after another. Unlike the NETCONF
protocol, the OpenFlow protocol is not aware of the cross-connect modification by the
protocol itself, the resource manager needs to communicate each flow modification
separately. But in NETCONF the resource manager communicates the set of cross-
connects needs to be provisioned and the NETCONF agent with the BTI7800 identifies
the cross-connects that are modified by comparing with the existing cross-connects
provisioned.

In Section 3.4.4 we disused that the implemented OpenVSwitch algorithm posts the
cross-connects modification as request message within the queue and the confd kernel
module process the request one after another. The cross-connects that needs to be deleted
and added are posted as both ends one after another. There is a possibility that the cross-
connect modification request is posted on the queue before the confd completes
processing of the predecessor modification request.

Bandwidth Utilization: The NETCONF scenario has a bandwidth utilization of 92.78 %
and the OpenFlow scenario bandwidth utilization of 95.85%. The OpenFlow interface
deletes a sub flow and adds a sub flow and it repeats the procedure for the number of sub

flows to be modified, that is why we see a ladder in Figure 4.9 (b). The bandwidth

99

utilization for both protocols are calculated from the start of experiment t = 10 and until t

= 53 sec when both scenarios remain in the steady state for a few seconds.

4.3.3 High Priority Flow (20 G) Request from Both Users A and B (Mutual
Sharing)

Step 1: The environment exists in the initial state as discussed in Section 4.2.

Step 2: Both user A and user B have high priority traffic, and they request for the

bandwidth. The controller preempts the bandwidth assigned to the low priority traffic and

it assigns the resources shared among both high priority requests as shown in Figure 4.15.

User A User B | Type of flow Action
40 G 40 G Base Flow Serviced
20 G High priority 50% of requirement serviced (10 G)
20 G High Priority 50% of requirement serviced (10 G)
Table 4.5 Mutual Sharing Allocation
User A '

SDN Controller

User A

Y

=

=

20G
40G

User B

7800 l 7800 J’

V[

=

. —
o 0TU4
50G
A (ooe) 0@ g
L — = O N
y - —
50G 50G .

- Ahas a 40 Gb/s flow between DC1and DC2. >

- B has a 40 Gb/s flow between DC1 and DC2 > User B
- High priority traffic >

- Potential flows — Insufficient bandwidth to be serviced

Figure 4.15 Mutual Sharing

100

Step 3: When both users complete their high priority bandwidth requirement, the
controller performs the required signaling to modify the flows so that user B low priority
traffic can utilize the sparse bandwidth.

In this scenario, both users request for 20 G bandwidth to satisfy the high priority traffic
demands, but there exists only 20 G of bandwidth that can be preempted from lower
priority traffic. The controller decides to share the available bandwidth by assigning each
user with 10 G of bandwidth allocated to the high priority traffic as represented in Table
4.5, where 50 percent bandwidth requirement of both users will be satisfied. There is no
change in the flow that is assigned to user B’s high priority traffic, as the link assigned to
the low priority traffic of user B will be utilized by high priority flow. User A’s high
priority traffic is allocated bandwidth by preempting a single low priority flow from user
B. If we closely look there is only one flow modification as shown in Figure 4.15. The
sequence explaining the detailed working of both protocols as SBIs are discussed in

Appendix B.

NETCONF

7E+09
6E+09
SE+09 S L

4E+09 - N

BPS

3E+09
2E+09

1E+09

10111213141516171819202122232425262728293031323334353637

Time (sec)
= e e User A (NETCONF) == == == User B (NETCONF)

Figure 4.16(a) Provisioning for High Priority Flow Request from User A and B Using NETCONF -

Mutual Sharing

101

OpenFlow

JE+09

6E+09

S5E+09 j //-_
4E+09 / \

3E+09

BPS

2E+09

1E+09

10111213141516171819202122232425262728293031323334353637
Time (sec)
e |Jser A (OF) e User B (OF)

Figure 4.16(b) Provisioning for High Priority Flow Request from User A and B Using OpenFlow —
Mutual Sharing

Time: Figure 4.16 (a) and (b) shows the bandwidth utilization of NETCONF and
OpenFlow. Both the environment implementing NETCONF and OpenFlow as the SBIs,
the system exists in initial state at t = 10 sec. At t = 10 sec the application layer informs
the control plane about the high priority flow request. As discussed, one sub flow needs
to be deleted and one new cross-connect needs to added. NETCONF takes 7 seconds and
OpenFlow takes 8 seconds to provision the high priority flow. In the case of NETCONF
it takes 0.5 second to delete a cross-connect and 3 second to add a cross-connect. In the
case of OpenFlow it takes 0.75 second to delete a cross-connect and 3 second to add a
cross-connect. After high priority request is served for 8 seconds they return back to
initial state. Similarly, NETCONF and OpenFlow environment return back to initial state
by dropping the one high priority sub flows and adding the one low priority sub flows.
The NETCONF and OpenFlow takes 7 seconds and 8 seconds respectively to attain the

initial state.

102

Bandwidth Utilization: NETCONF exhibit 95.62 % utilization and OpenFlow exhibit
95.7 % of utilization. We notice that, as the number of flows to be modified decreases
both the protocols exhibit high bandwidth utilization. The bandwidth utilization is
calculated from t = 10 sec the initial start of the experiment until t = 37 sec where the

system attains a steady state in the initial configurations.

103

Chapter 5: Stress and Load Testing

In the previous chapter we have discussed about the test environment, evaluation metrics
and a few high priority use cases. In this chapter we present a few bandwidth request use
cases, where the bandwidth request made from the user(s) is large depending on the
scenario. The use cases help us in comparing both protocols when a large number of sub-
flows or cross-connects are modified. In this chapter we also present the performance of
both protocols in the stress test scenario, when multiple applications try to modify the
same data plane device though the control plane simultaneously at a same time. The use
cases discussed in this chapter are classified as listed below.
% Bandwidth Request
o Elephant Request (40 G)
o Emergency Request (100 G)

®,

% Stress Testing

5.1 Elephant Request (40G)

The elephant flow use case is mainly focused on demonstrating and evaluating the
implemented protocols as SBIs on the BTI7800 devices and their responsiveness when a
large number of sub flows are modified.

Step 1: The environment exists in the initial state as discussed in Section 4.2.

Step 2: User A requests bandwidth for the elephant flow. The SDN controller drops the
low priority flow and a few base sub flows of user B to accommodate the elephant flow

request of user A as shown in Figure 5.1.

104

SDN Controller

A ' [

8
I

40G _ Ahas a 40 Gb/s flow between DC1 and DGC2. «—> 20
- Ahas a 40 Gbis elephant flow between DC1and DC2. €3
- B has a 20 Gb/s flow between DC1and DC2. >

Figure 5.1 Elephant Flow Request by User A

Step 3: Once the requirement is satisfied, the system returns back to the initial
configuration. If another user (user B) requests bandwidth for the elephant flows while
the elephant flow request of user A is being serviced, user B needs to wait until user A

completes its bandwidth requirement.

SDN Controller
I 40G
0G

A

7

5 s
5 =S

406G
406 _ Ahas a 20 Gbls flow between DC1and DC2. —> 406 410G
- B has a 40 Gb/s high-priority flow between DC1 and DC2. €————>
- B has a 40 Gb/s flow between DC1and DC2. >

Figure 5.2 Elephant Flow Request by User B

105

Step 4: Figure 5.2 represents the sub flows provisioned, if user B requests bandwidth for
the elephant flow.

Step 5: If there is no further elephant flow request, the system returns back to the initial
state.

Figure 5.3 and Figure 5.4 represent the steps involved in configuring the elephant request
using NETCONF and OpenFlow respectively. The user interacts with the BoD
application and the resource manager receives the request. The system exists in an initial
state with 10 sub flows or cross-connects provisioned. As per the use case discussed
above, user A requests bandwidth for the elephant flow, and as a result four cross-
connects are torn down and added. The elephant flow requirement of user A is served for
8 seconds. At the end of 8 seconds, the resource manager receives a signal to provision
the environment to serve the elephant flow for user B. The existing six cross-connects are
torn down and six new cross-connects are added to serve the elephant flow request. After
8 seconds, when the system returns to the initial environment, two cross-connects have to
be torn down and two new cross-connects have to be added.

In NETCONTF the set of cross-connects needed to be provisioned are communicated as a
single request each time. The NETCONF agent on the BTI7800 device figures out the
modification and will tear down and add cross-connects accordingly. In OpenFlow the
resource manager needs to identify the set of cross-connects needed to be changed and
rolls out the change for each cross-connect in a sequential order. OpenVSwitch, as it
receives a sub flow modification request from the controller, validates the received
information and posts the cross-connect modification into the message queue. Confd

handles each modification one after another as described in Section 3.4.4.

106

BoD Resource .
user Application Manager Control Plane Sender BTITS00 Receiver BTI7800)

user A

Elephant Request

Specifies sender
BTIT800 information

preemptihe”
ub flow from;
ruser B & add:
! sub flow for
i elephant |
request .

return

user B

Elephant Request

-
L

along with
list of modified 10
croess-connected
ports infermation

return

{ _________________

Specifies receiver
BTIT&00 information
along with
list of modified 10
croess-connected

ports infermation

return

R . T

Specifies sender
BTIT800 information

L

sub flow for
elephant
request

return

)
Service for 8 sec
-—

luser A &add!|

e e

along with
list of modified 10
cross-connected

R ports information
sub flow from;

return

{ _________________

-1

Specifies receiver
BTI7800 information
- aleng with
list of 10
cross-connected
ports information

return

{ _________________

Initial configuration

-4 BTI7e00

Communicate the

r=— modified | Perform the Sania.
' cross-connects to |
I sender and recieve E

sequence, two
cross-connects
are modified.

MNETCOMF
flow modify message
for 10 cross-connect
directed towards
Sender BTITE00

return
{_ _________________

= ———

MNETCOMF
flow modify message
for 10 cross-connect
directed towards
Sender BTIT800

e ___tetum____

4 new cross connect + 6
existing cross connect

NETCOMNF
flow medify message for
10 cross-connect
directed towards
receiver F!TITSIJEI
|

|
return

6 new cross connect + 4
existing cross connect

METCOMNF
flow modify message for
10 cress-connect

directed towards
receiver BTITE00

=

'
I
|
return

2 new cross connect + &
existing cross connect

Figure 5.3 Sequence for Elephant Flow Request Using NETCONF

107

Receiver BTI7800

Sender BTI7800

Caontrol Plane

Delete four existing cross-

connects (user B) and add
four cross-connects (user A)

Add sub flow

Resource
Manager

Delete sub

flow - sender >

—
!

<

:

!
-

o

|
i
i
| |
= H !
sl |
= 1 |
al 5! i
S| 2 i
ol B '
= ' i
2 i i
E i I
i i
v, v
| -
1 i ---- t---- 1
| |
; U
i i
! i . i
. i i
i 5 g .
" i
tas 85 3% ¢
s a2 3 L] EH =
“H] k=1 =5 T
gigf g 3, u§ %
o » < = (IR . I
Pl E I E |
= = | = I
' -] ' '
H = i i
'
! L4

<

BoD
Application

user

preempt fhie
sub flol
from usef B
& add
sub flow for

return

Delete sub flow

el

TR

Add sub flow

_.
IIIIIIIIIIIIIII T 7T _IIIIIII. T L
-===f -===f H
i i |
| | [
s 5 ol.=
= a3 1 o
2% sz ! g2 _i8%
= E @l = R S 2@
1= 1= -] g B
W oo Somow 3! P = T
B0 wmET B3l BI.
m. w5 4z TiTE
Dm =N : = I
i
_ o= i |
i _ i !
W V. v
0
@
=
4TI TT T 1 =
@ = |
H\hr\h (= ' [1=]
.7 1 =R o
tE2 RezE g W
I E uaD.mru_ o
I Eh. Duﬂncﬂ._ o
| DS Ee g @ g &
e S = !
a8 & @]

B

2

return

BTI7800

Figure 5.4 Sequence for Elephant Flow Request Using OpenFlow

108

Time: The NETCONF and OpenFlow handling is represented in Figure 5.5 (a) and (b)
respectively. The experiment begins at time t = 10 sec and the system exists in the initial
state. At t = 10 sec the application layer signals the resource manager about the elephant
request. As discussed before, four cross-connects need to be torn down and four new
cross-connects need to be added in both data centers. In NETCONF and OpenFlow, at t =
36 sec and t = 40 sec, all four sub flows are provisioned. It takes 26 seconds and 30
seconds for NETCONF and OpenFlow respectively to provision the elephant request of
user A. NETCONF takes 13 seconds to provision one data center and it takes 3 seconds
to add a cross-connect and one second for deleting all cross-connects per data center. As
number of cross-connects to be deleted in NETCONF increases the time taken to delete
all the cross-connect also increases. OpenFlow takes 3 seconds to add a cross-connect
and 0.75 second to delete a cross-connect. After 8 seconds the elephant flow requirement
of user B is communicated, NETCONF and OpenFlow communicate the information at t
=45 sec and t = 49. The total number of sub flows modified are six, which includes the
deletion of six cross-connects and the addition of six cross-connects. NETCONF and
OpenFlow take 38 seconds and 45 seconds respectively, at t = 83 sec and t = 94 sec the
environment is provisioned for servicing the elephant request of user B. As discussed
earlier, NETCONF takes 3 seconds for addition of a cross-connect and deletion of all
cross-connects takes 1 sec, which is 18 seconds for addition of 6 cross-connects and 1
second for deletion of all cross-connects per data center. OpenFlow takes 3 seconds to
add a cross-connect and 0.75 second to delete a cross-connect, which is 18 seconds for
addition of 6 cross-connects and 4.5 seconds for deletion of 6 cross-connects per data

center. The scenario waits for 8 seconds before returning to the initial state. NETCONF

109

attains the initial state at t = 104 sec and it takes 13 seconds. OpenFlow attains the initial
state at t = 117 and it takes 15 seconds. The total number of sub flows that need to be
modified are the addition and deletion of two cross-connects.

The number of sub flows to be deleted does not impact the performance of NETCONF
protocol, it always takes less than 2 seconds to delete any number of sub flows. In
OpenFlow, each sub flow that needs to be deleted is accompanied by a message which

involves processing time and therefore it takes much longer time.

NETCONF

9E+09
8E+09

7E+09 d
6E+09 s

\
\
]
SE+09 e ')
]
\

BPS

1 ”
4E+09 —_—p————

3E409 4 \ ’ ’

2E+09 L it

1E+09

10 14 18 22 26 30 34 38 427 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102106110114118122

Time (sec)

= = = [ser A (NETCONF) = == User B (NETCONF)

Figure 5.5(a) Elephant Flow Request Using NETCONF

OpenFlow

9E+09
8E+09
7E+HO9
6E+09
S5E+09
4E+09
3E+09
2E+09
1E+09

0

10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102106110114118122

BPS

Time (sec)

e | e T A (OF) essmmm [Jser B (OF)

Figure 5.5(b) Elephant Flow Request Using OpenFlow

110

Bandwidth Utilization: The bandwidth utilization is calculated for the time period from
t = 10 sec until t= 124 sec. NETCONF exhibits bandwidth utilization of 77.83 % and
OpenFlow represents a bandwidth utilization of 92.92%. The fact that OpenFlow handles
sub flow modifications as individual each sub flow the resources remains occupied. On
the other hand, the same fact acts as a drawback: as more sub flows needs to be modified,
OpenFlow is much slower and more messages are communicated between the controller
and the BTI7800 devices. NETCONF is faster in handling the request but the resource
remains unutilized for a time period proportional to the number of flows that need to be

configured. It is because NETCONF operates on a set of cross-connects.

5.2 Emergency Request (100G)

Similar to the elephant flow request, the emergency request use case introduces a
complete change in the flow table based on the user calling the emergency service. This
use case helps in evaluating both protocols when there is a complete change in the cross-
connects.

Step 1: The environment exists in the initial state as discussed in Section 4.2.

Step 2: If user A calls the emergency service, the SDN controller will de-provision all the
sub flows that exist with user B and will provision those to fulfill the emergency request
of user A. The base flows of user A will be used to satisfy the emergency requirement as

shown in Figure 5.6.

111

User A SDN Controller

\— > OTu4 €—> /
— > (100G) < >
— 2 100G 1006 £ 4
= &é%
S -
206 - User A flow between DC1and DC2. «—>
User B - Emergency flow between DC1and DC2. €—> User B
- User B flow between DC1and DC2. >

Figure 5.6 Emergency Flow Request by User A

Step 3: Once the emergency requirement is satisfied, the system returns back to the initial
state, if there no emergency request from the other user (user B).
Step 4: If user B has an emergency request, the SDN controller provisions the sub flows

to satisfy the emergency traffic requirement as shown in Figure 5.7.

_ Jel=is) User A
User A SDN Controller
20G
7800 7800
v 0TU4 —
206G (100G) —
— O —
= . —— NN
—) <)\
> > 100G 100G.S <
4/-"' > C : >
— = T
> < T—
100 - User A flow between DC1and DC2. —> / 100G
User B - Emergency flow between DC1and DC2. > User B
- User B flow between DC1and DC2. >

Figure 5.7 Emergency Flow Request by User B

112

Step 5: The system returns to the initial state if there no any other request. The sequence

explaining the detailed working of both protocols as SBIs are discussed in Appendix C.

NETCONF
1.2E+10
1E+10 - -
N ’
8E+09 s < !
[4 1 [4 |‘
(%] ¥ J ”~
& 609 | / ') = o o o o o
\ s ' ’
! | 4 /
2E+09 0 ' ll y)
' '
0 M ! e ’
C}LDNOO#OLDNDO#OLDNDO#OLDNDO?OLDN@?OEDNDO?
N = S S w002 @« o N L == e |
L B T B I I I T T I B I I I I |
Time (sec)
= = = User A (NETCONF) = == = |ser B (NETCONF)
Figure 5.8(a) Emergency Flow Request Using NETCONF
OpenFlow
1.2E+10
1E+10
8F+09
& 6E+09
o
AE+09
2E+09

0

o | Jser A (OF) essmlJser B (OF)

Figure 5.8(b) Emergency Flow Request Using OpenFlow

Time: The NETCONF and OpenFlow handling is represented in Figure 5.8 (a) and (b)

respectively. The experiment begins at time t = 10 sec and the system exists in the initial

113

state. At t = 10 sec the application layer signals the resource manager about the
emergency request. As discussed before six cross-connects needs to be torn down and six
new cross-connects needs to be added. The environment implementing the NETCONF
and OpenFlow, at t = 48 sec and t = 55 sec all the six sub flows are provisioned. It takes
38 seconds and 45 seconds for NETCONF and OpenFlow respectively to provision the
emergency request of user A. After 8 seconds the emergency flow requirement of user B
is communicated, the NETCONF and OpenFlow communicates the information at t = 55
sec and t = 65. The total number of sub flows modified is ten. The NETCONF and
OpenFlow takes 65 seconds and 76 seconds respectively, at t = 120 sec and t = 140 sec
the environment is provisioned for the emergency request of user B. The environment
waits for 8 seconds before returning to the initial state. The NETCONF attains the initial
state at t = 154 sec and it takes 26 seconds. The OpenFlow attains the initial state at t =
179 sec and it takes 30 seconds. The total number of sub flows needs to be modified are
the addition and deletion of four cross-connects.

The deletion of sub flows in NETCONF does not cause much overhead, but in OpenFlow
it does cause overhead because it is accompanied by individual message for each cross-
connect needs to be deleted. The addition of ten flows in satisfying the emergency
requirement of user B is similar to the initial environment discussed in Section 4.2. In the
initial environment scenario does not involve tearing down of cross-connects. In the
initial environment the NETCONF and OpenFlow take 63 seconds and 61 seconds
respectively. In the emergency use case the NETCONF and OpenFlow takes 65 seconds
and 76 seconds respectively. The difference between both protocols, NETCONF and

OpenFlow is 2 seconds and 15 seconds. The large time difference is experienced due to

114

processing of each sub flow deletion individually. In an emergency situation when ten
flows need to be provisioned OpenFlow takes 3 seconds for addition of a cross-connect
and .75 second to delete a cross-connect, that involves 20 cross-connects to be added and
deleted across both data center. NETCONF takes 31.5 seconds to add 10 cross-connects
per data center and 1 second to delete all the existing 10 cross-connects.

Bandwidth Utilization: The bandwidth utilization is calculated for the time period from
t = 10 sec until t= 186 sec. NETCONF exhibits bandwidth utilization of 59.55 % and
OpenFlow represents a bandwidth utilization of 92.92%. The two things to be noted, the
fact that OpenFlow handles the traffic demands by modifying the sub flows one after
another, the resources remain occupied. On the other hand, the same acts as a drawback
as more number of sub flows needs to be modified, it is much slower and more number of
messages are communicated between the controller and the BTI7800 devices. The
NETCONTF is faster is handling the request but the resource remains unutilized for a time
period proportionate to the number of flows needs to be configured. It’s because
NETCONF operates on a set of cross-connects and does not reference individual cross-

connects.

5.3 Simultaneous Multiple Application Access — Stress Testing

In order to analyze the working of both implemented protocols, we considered two
different applications that try to configure a particular device using the SDN
infrastructure. Both applications,” A” and “B”, will try to modify a device at the same

time. As discussed earlier in Section 2.3, the operational data store saves the operational

115

state of the device and the config data store temporarily saves the changes requested by

the application. The behavior of both protocols are discussed below.

53.1 NETCONF

NETCONF operates based on the YANG model and its current operational value. When
an application “A” issues a modification request, the config data store within the ODL
fetches the operational state along with the requested modifications and saves the
information in the config data store (config A). Before the requested modification from
application “A” are successfully committed to the device, the application “B” request for
modification and the information is stored in a different instance of the config data store
(config B) as represented in Figure 5.9. Now there will be one operational data store, and

two different instances of the config data store for a device.

Application

REST API
3

—— . E—
2 — 1 & -
Config A Config B
7 . b 4
4

°
b
°

Operational

L

Tr_ - _Eunﬂ

QDL Controller

< SIS |

FETCONF

cdb

NETCONF
Engine

Figure 5.9 Simultaneous Different Application Access - NETCONF

BTI7800

Let us consider that the application “A” modification was received first by the control
plane. The controller processes the config A state using NETCONF. If the changes are

successfully committed, the device returns NETCONF <edit-config> operation success.

116

The operational data store is updated and the config A data store is deleted. The
application “B” has requested for modification and the information is stored in the config
store (config B). Now the ODL NETCONF connector tries to process the config B state,
but since the operational state of config B is being modified the NETCONF connector
cannot process the request. This causes the ODL controller to throw a NETCONF
connector exception error. It is a drawback that the ODL controller cannot handle
simultaneous modification of the same device. Moreover, if the NETCONF connector

throws exception, it can be solved by restarting the ODL controller.

5.3.2 OpenFlow

The architecture and OpenFlow implementation on BTI7800 is discussed in Section 3.4.
We deal with a similar environment using the OpenFlow interface as shown in Figure
5.10, but we observe a different behavior. Unlike NETCONF, as discussed above,
OpenFlow does not operate on a data model and it references the information as follows.
The SDN controller translates the information as OpenFlow flow modification messages
as discussed in Section 3.4.2. When a new flow rule is added or modified, the config data
store stores the information. Application A and B requests for the modification at the
same time. The modification requests from both applications are received by the
controller and stored in the separate config store. Both flow modifications are
communicated at the same time to the BTI7800 device. The BTI7800 receives two
modification requests at the same time. The implemented OpenVSwitch cannot handle
two flow modification messages from the controller at a same time, therefore the

BTI7800 enters into a fault mode.

117

Application

REST AFI

_ — 1
Operational Config A }4—\
S pPF 5 S T

OpenFlow

- N

——— - wania AT 2l B}
‘ cdb " i
e
A N 4 Config B

BTI7800

Figure 5.10 Simultaneous Different Application Access — OpenFlow

5.4 Control Messages Between ODL and BTI17800

The ODL controller communicates flow modification control messages to the both
BTI7800 devices to manage the BoD across the link interconnecting them. We observed
both protocols and from the sequence diagrams of all use cases it is more clear that a
number of control message communicated between the ODL controller and BTI7800
devices varies based on the protocol and the number of cross-connects modified.
NETCONF: The cross-connects need to be provisioned are specified as a set of cross-
connects in a single NETCONF flow modification message. Immaterial of any number of
cross-connects to be modified, the ODL controller communicates one message per data
center aggregating the information about all the cross-connects need to provisioned. If 10
cross-connects need to be provisioned the fragmented message of size is 1448 + 1164

bytes are communicated. Our experiment involves two BTI7800 devices, control message

118

of 2612 bytes is communicated to the both BTI7800 devices. The response from a
BTI7800 device is 52 bytes. Depending on the number of cross-connects communicated
the control message size varies, and the detailed information is discussed in Appendix D.
OpenFlow: The OpenFlow communicates the flow modification messages depending on
number of cross connects need to be modified. Every cross-connect addition and deletion
is accompanied by a OpenFlow modification message. The cross-connects need to be
modified cannot be aggregated as a single message. The size of the OpenFlow flow
modification message from the controller to the BTI7800 device is 206 bytes and the
response is 66 bytes. By default, the packet-in OpenFlow modification message is 128
bytes and if match action is configured, the message size is 206 bytes [3]. If 10 new
cross-connects need to be added, then 10 OpenFlow modification messages are sent from
the controller to the BTI7800 and total message size of 2060 bytes and ten separate
responses of 660 bytes are received at the controller. If existing cross-connects are
modified it is accompanied by 10 cross-connects to be deleted and 10 cross-connects to
be added. In total 20 messages are communicated to a single BTI7800 device, each
message of size 206 bytes on total 4120 bytes and response of 720 bytes are received at
the controller.

For the use cases discussed in Section 4.3.2.2, includes deletion of two cross-connects
and addition of two cross-connect. On total four OpenFlow flow modification of 206
bytes (824 bytes) are communicated to a single BTI7800 device and four response
message of each 66 bytes is received. In case of NETCONF one single message of 2612
bytes is communicated to a BT17800 device and the response of 52 bytes is received. As

the experiments involve two BTI7800 devices the same is communicated to the other

119

BTI7800 device. More the number of sub flows need to be modified, the OpenFlow
modification messages communicated on both directions (between the controller and
BTI7800 devices) increases and causes network overhead. On the other hand, the size of
the NETCONF flow modification message remains stable in both directions.

5.5 Summary

In this chapter and in the previous chapter we have discussed a set of use cases that
evaluates both the protocols implemented as SBIs. The Table 5.1 represents the time

taken by both SBIs to modify different number of cross-connects.

Number of Cross- NETCONF OpenFlow
Connects Provisioned (sec) (sec)
Add Delete Add Delete
1 3 0.5 3 0.75
2 6 0.5 6 1.50
4 12 1 12 3
6 18 1 18 4.50
10 31.5 1 30.5 7.50

Table 5.1 Cross-Connects Modification

The Table 5.2 is a summary of observation of all the use cases discussed to evaluate both

the protocols implemented as SBIs.

120

Use case NETCONF OpenFlow
Time | Bandwidth No of Time | Bandwidth | No of
(sec) | Utilization Control (sec) | Utilization | Control
(%) Messages (%) Messages
Initial 63 32.01 % 2 Messages 61 53.89 % 10 Messages
High Priority Flow (20 G)
User B - 100% - - 100% -
Request
User A Request
No Low 31 94.4% 4 Messages 34 93.37% 8 Messages
Priority Flow
Exists
Lower Priority | 45 92.78% 4 Messages 49 95.85% 16 Messages
Flow Exists
User Aand B | 31 95.62 % 4 Messages 33 95.7 % 8 Messages
Elephant Request
Elephant 104 77.83 % 6 Messages 117 92.92% 48 Messages
Request
Emergency Request
Emergency 144 59.55% 6 Messages 169 92.42% 80 Messages
Request

Table 5.4 Use Cases Results

121

Chapter 6: Conclusions and Future Work

6.1 Conclusions

In the era of intense high bandwidth demand growth, and unpredictably shifting traffic
patterns, operators need their transport networks to become dynamically programmable
in order to offer new services and to satisfy the traffic demand without over-provisioning
the network resources. SDN-based transport optical networks allow the resources to be
governed by policy management, enabling the network operators to transform their
transport networks to function efficiently and also increases operational agility. We
evaluate most commonly used SBIs, NETCONF and OpenFlow in managing the BoD
across the transport optical interconnect depending on different kinds of traffic flows and
demands. The behavior of both implemented SBIs is different based on the nature of the
protocol.

The results presented are specific to BT17800 environment. NETCONF references the
BTI YANG model to represent and communicate the information from the SDN
controller. BTI YANG-based NETCONF is faster, and more efficient in terms of the
number of control messages communicated between the controller and the BTI7800
device, and reduces the complexity of the resource manager. On the other hand,
OpenFlow accesses each cross-connect individually; therefore, it efficiently handles the
bandwidth by minimizing the sub flow idle time, but the protocol is slower and the
number of control messages increases proportionate to the amount of flow rules

modified. If it is acceptable for the link to be idle for a few seconds, NETCONF is a

122

better protocol. OpenFlow is a better protocol if bandwidth being idle is an issue and can
compromise with time and the network overhead.

As represented in Table 5.2, an increase in the number of cross-connects that need to be
provisioned for each data center will affect the performance of the OpenFlow protocol as
the control messages and the time taken to handle each message increases proportionate
to number of cross-connects that needs to be modified. In case of NETCONF the control
message indicating the modified set of cross-connects will still be a single message, the

time taken will be proportionate to the number of flows need to be modified.

6.2 Future Work

Some suggestions are presented here to enhance the thesis work in the future. Having a

protocol that can access a set of cross-connects and each cross-connect individually based

on the use case is a best approach.
% Aggregation of OpenFlow flow rules is a possible solution to overcome the issues
(time and number of messages communicated between the controller and the
device) faced by the implemented OpenFlow protocol. The OpenFlow standard
and ODL controller do not currently support aggregation of flow rules. On the
other hand, flow table size and aggregation of flow rules in the core switches is a
relatively new topic of SDN.

¢ OpenConfig [10] is a new SDN protocol, proposed as one of the standard SBI
between the control plane and data plane devices. OpenConfig uses NETCONF

and YANG-based structures as the underlying protocol to support OpenConfig

messages. OpenConfig as a protocol focuses on the messages and information that

123

are essential to share to a SDN controller. The OpenConfig working group is in
the early stages of designing the protocol messages and defining the YANG
model. OpenConfig might help to overcome the issue faced by NETCONF
protocol, the ability to access individual cross-connects. The alternative solution
is redefining the BTI YANG model such that the set of cross-connects can also be
referenced as individual cross-connects. In OpenConfig the YANG models are
specified by the working group. On the other hand, use of BTI YANG and
NETCONF as an interface provides a flexibility to modify the YANG models
allowing variations. Variations to OpenConfig YANG model is not possible.
Increase in the number of users per data center or addition of different kinds of
traffic will result in an increase in the complexity of the resource manager shown
in Figure 4.1. The resource manager needs to be extended to support the
requirement of increase in the number of users per data center or addition of
different kinds of traffic.

Parallelization of the control messages issued from the SDN ODL controller to
the BTI7800 network elements located at the sender and receiver interconnected
data centers will speed up the process and removes the delays caused by the
sequence of serial control messages issued from the controller. Issuing a cross-
connect information to both the BTI7800 network elements at the same time by
introducing multithreading in the resource manager will help to reduce the time
taken by all the use cases. Advantage of introducing, parallelization of control

signals directed towards sender and receiver data centers will help to reduce the

124

time taken by each use case by 50%. The synchronization between both the

threads are important for maintaining a stable system.

125

Appendices

Appendix A : Sequence for High Priority Request from User A

In this appendix, the sequence explaining the detailed working of both protocols as SBIs
for the use cases demonstrated in Section 4.3.2.2 is discussed.

Figure A.1, represents the sequence involved in configuring the high priority request
using NETCONF protocol. The user interacts with the BoD application and the resource
manager receives the request. The system exists in initial state with 10 sub flows or cross-
connects provisioned. The user has requested for 2 additional sub flows for handling the
high priority traffic of user A. The resource manager decides to drop the lower priority
flow of user B. The resource manager communicates the modified 10 cross-connects
information (that includes 8 cross-connects belonging to base flows of user A and B, and
2 cross-connects to the high priority flow of user A) to the sender BTI7800 device with
the help of the control plane. On completion of the request, the sender BTI7800 device
replies the status. The resource manager, through the control plane, communicates the
same information to the receiver BTI7800. At the end of 8 seconds the BoD application
signals the resource manager to return back to the initial configuration. The resource
manager, through the control plane, signals the set of 10 cross-connects or sub flows that
belongs to the initial configuration of both BTI7800 devices. As a result, cross-connects
created for handling high priority traffic of user A are torn down and cross-connects to

service the low priority flow are configured.

126

BoD Resource)
user Application Manager Control Plane Sender BTIT800 Receiver BTIT200)
]
> |
High prierity request Specifies sender NMETCONF i
for user A BTI7E00 information flow medify message '
__________________ . o along with for 10 cross-connect R
P " list of modified 10 greerlcdtzi;\;rfgudus b i,
) Y . cross-connected ! i i
Environment configured ! Lot ports information [- Lomes]
1) Base flow A - 40 ! preemptthe | i Deletes two existing cross-
2) Base flow B - 40 ' low priority | Econneds (low priority) an_d add:
3) Low Priority B - 20 ' flow &add | i o cross—c_onggds (high
Wi — ' riority)]
______________________ H HIQI‘TIIDI'IDFIB] é_____zgt_l.l_rg_______ | : ']
i [Lo ! return |)
: b ; [T A S !
i [] | i i
i [] i i i
\ [T . i i |
i i i i i
Specifies receiver
BTI7800 information
I I along with N'_ETCDNF I
! ! izt of modified 10 flow modify message for !
| | cross-connected 10 cress-connect
i i ports information directed towards
| | receiver BTITS00
| | |
—————————————————— 1. i i
['
TN . return .
Environment configured| . rem . i :
1)Baseflow A -40 | _____] return ! ! '
2)Base flowB-40 | L ! i !
3) High Priority A-20 i:|5er\.-icefor85ec i i
Il ! i
""""""""""" I : i i
| : |
i | Specifies sender METCONF i
' ! Initial L BTIT800 information | flow modify message '
' ! Enviorment] along with « for 10 cross-connect .
! ! list of modified 10 directed towards T [
' ' Cross-connected Sender BTIT800 I N
i i N . : o Sooos]
; ; ports information : Deletes two existing cross- |
' ' i connects (high priority) and
' ' 5 add]
i i ' two cross-connects (low 1
: : . _____retum_ g priority) ;
i i return T :
| | I — L L e pmmee-
]]]]]
]]]]]
]]]]]
]]]]]
]]]]]
]]]]]
]]]]]
]] L]]]
]]]]]]
]] el]]]
| | | | |
! i Specifies receiver | i |
i i BTIT800 information | ' i
i i along with H NETCONF i
! ! list of 10 flow modify message for !
| | cross-connected 10 cross-connect
i i ports information directed towards
i i receiver BTITE00
| | |
i i !
| | return
i i .{ ___
| | return
; ; nn
]]
| \ return
i
]
]
]
]
i
i
i
i
i
i

Figure A.1 Sequence for High Priority Request from User A Using NETCONF — Case 2

127

oo e
oo | [mmmms | [comweirine | [semesroriess| [mecewersriress

HIGN pricrity recquest High pricrity reguest
o sl S

Dielete sub —8r - Delete sulb fow 9
Mower B - Bender

At sub
1

L - mender

-

return

Drelete sub
1o -

e Adhd 8wl Mows 12

return

S

oy
flows 12 - recencer |
—" ——r Add sub flow 12

Environment configursd-
1) Base flow A - 40

> — Ao
3} HIGh Prionty A - 20

Initial c onfiguration

Dielete =ub
floner 11 - mender

Dioiete sub flow 44

Delete hiah
Briort Now

=

Crelete sub
flowes 11 - recener g,

o Delete sub Now 11

St =k
o & - mender
—— At mub flow 9

=

Add sub Now 9

—— Disiete sub flow 12

return

— —— Add sub flow 10

—— Suctel muts flows 10

Figure A.2 Sequence for High Priority Request from User A Using OpenFlow — Case 2

128

Figure A.2, represents the sequence of steps involved in configuring the high priority
request using the OpenFlow protocol as SBI. The user interacts with the BoD application
and the resource manager receives the request. The system exists in the initial state with
10 sub flows or cross-connects provisioned. The user has requested for 2 additional sub
flows for handling the high priority traffic of user A. The resource manager decides to
drop the lower priority flow of user B. The resource manager communicates that the 9th
cross-connect or sub flow is to be deleted to both BTI7800 devices. Next, the resource
manager communicates that the 11th cross-connect or sub flow is to be added in the place
of the deleted sub flow to both BTI7800 devices. The same procedure is followed to
delete the 10th sub flow and add the 12th sub flow. The BoD application signals the
resource manager to set up the initial environment once the system has serviced the high
priority bandwidth requirement for 8 seconds. The resource manager follows the same

procedure to delete a sub flow and add a sub flow at both ends accordingly.

129

Appendix B : Sequence for High Priority Request from Both Users A and B

(Mutual Sharing)

In this appendix, the sequence explaining the detailed working of both protocols as SBIs
for the use cases demonstrated in Section 4.3.3 is discussed.

Figure B.1 represents the sequence involved in handling the high priority requests using
the NETCONF protocol as SBI. The user interacts with the BoD application and the
resource manager receives the request. The system exists in the initial state with 10 sub
flows or cross-connects provisioned. Both users have higher priority request and user B
has lower priority flow. The resource manager handles the scenario by mutual sharing of
resource among each user. The resource manager communicates the modified 10 cross-
connects information (that includes 9 existing cross-connects and 1 modified cross-
connect to satisfy the high priority flow of user A) to the sender BTI7800 device with the
help of the control plane. On completion of the request, the sender BTI7800 device
replies the status. The resource manager, through the control plane, communicates the
same information to the receiver BTI7800. At the end of 8 seconds, the BoD application
signals the resource manager to return back to the initial configuration. The resource
manager, through the control plane, communicates the list of 10 cross-connects or sub
flows that belongs to the initial configuration to both BTI7800 devices. As result, the
cross-connect created for handling high priority traffic of user A is torn down and a
cross-connect for servicing lower priority traffic for User B is configured.

Figure B.2 represents the sequence of steps involved in configuring the high priority
request using OpenFlow as SBI. The user interacts with the BoD application and the

resource manager receives the request. The system exists in its initial state with 10 sub

130

flows or cross-connects provisioned. The resource manager handles the high priority
request from both users by mutual sharing and there is only one sub flow modification.
The resource manager communicates that the 9th cross-connect or sub flow is to be
deleted at both BTI7800 devices. Next, the resource manager communicates that the 11th
cross-connect or sub flow is to be added in the place of the deleted sub flow to both
BTI7800 devices. The BoD application signals the resource manager to set up the initial
environment, once the system has serviced the high priority bandwidth requirement for 8
seconds. The resource manager follows the same procedure to delete a sub flow and add a

sub flow at both ends accordingly.

131

BoD Resource

user Application Manager Control Plane Sender BTIT800 Receiver BTITS00)
|
> |
High priority request Specifies sender METCONF i
for user A & user B BTI7800 information flow modify message :
__________________ . along with for 10 cross-connect R B
R fist of modified 10 drected lovards 1 |
. Pt . . ted L ender BTI7 b [
Environment configured ! N ;éﬁismcfgﬂﬁsﬁon ; -,
1_:3Elase flow A - 40) ' Delete one existing cross-
2 Base flow B - 40 ' Mutual iconnects (low priority) and add;
3) Low Priority B - 20 ' sharng | i cross-connects (high priority) |
: i oeum : |
| o] - return < | E |
; o ' [e - !
; o ') ; ;
Specifies receiver
i i BTIT800 information | ' i
i i along with ; NETCONF i
! ! izt of medified 10 flow modify message for !
| | cross-connected 10 cress-connect
i i ports information directed towards
| | receiver BTITS00
| | |
Fmmm e B ; ;
i i - return
| Environment configureth return STy T !
| 1)BaseflowA -40 | retum [mmmmmm e !
| \Dleem S B An ko e e S EI_ H
| 2)Base flow B-40 i< !
| 3)High Priority A- 10 | H i
| 4)High Priority B-10 | Service for 8 sec | !
L. I | |
v [i P
i [] i
: || i | ’ |
! 1-i ! Specifies sender ! NET_CDNF ! !
' ! Initial L BTIT800 information 1 flow modify message '
' ! Enviorment] along with ¢ for 10 cross-connect .
! ! list of modified 10 directed towards T [
| | cross-connected Sender BTI7800 L P
i i ports information ' TR
' ' i Delete one existing cross-
' ' connects (high priority) and !
| | : add :
i i et ! cross-connects (low priority) |
| | return i |
| | S - A .
]]]]
]]]]
]]]]
]]]]
| | | |
; ; L ; ;
; ; ; ; ;
| | B | |
| | Specifies receiver | |
i i BTIT800 information ' i
i i along with NETCONF i
! ! list of 10 flow modify message for !
| | cross-connected 10 cross-connect
i i ports information directed towards
i i receiver BTITE00
| | |
]]]
: ! refurn
: : e
i i RN return ______
]]
| | return
|
;
;
;
;
;
;
;
;
;
;
;
:

Figure B.1 Sequence for High Priority Request from User A and B Using NETCONF — Mutual

Sharing

132

BoD Resource

user Application Manager Control Plane Sender BTIT800 Receiver BTITS00)
- Hiah priorit, t Delete sub ;
High pricrity request 1gh priority reques - flow 9 - sender - i
for user_A. — » Delete sub flow 9 [
R s T i T H
i [i [. -
! Initial Environment s : i : Delete on.e ex!stl_ngl Cross
: configured ! Mutual ' return i :connec‘is (low prlor!t}-_. an_d ad_d
! 1)BaseflowA - 40 ! sharing ! return ST ek cross-connects (high priority)
¢ 2)Baseflow B - 40 g 1] 1
v 3)Low Priority B - 20 i H i
H YooooooollD H Deletesub ' 0 memmmeeeeeeoaoo
"""""""""""" flow 9 - receiver
— — Delete sub flow 9 -
>
e m e] T]
return
Add sub
flow 11 - sender
— —®- Addsubflow 11
Ll
b
P
P
P
. {______I'Et_”_rﬂ _______ i
- L
Add sub
flow 11 - receiver
— - Add sub flow 11 N
i >
H
1
return
{______['Et_”_rﬂ ________ L
e 1: ‘_,:_______l?t_l-l_l'[l _________
' Environment configureth ;
. 1)Baseflow A - 40 Wait for 8 secs
i 2)BaseflowB-40 !
1 3) High Priority A-10 | !
» 4)High Priority B- 10 |
Initial configuration
Delete sub
flow 11 - sender
o —* - Delete sub flow 11 -
>

return

return

Delete sub
L flow 11 - receiver

return

—+ Delete sub flow 11 -
j >

|

1

P return] 3
return
Add sub
flow 9 - sender .
— Loy Add sub flow 9

|

i

|

return !

return
Add sub
flow 9 - receiver
— — Add sub flow 8 -
>
return

€ ___

Figure B.2 Sequence for High Priority Request from User A and B Using OpenFlow — Mutual

Sharing

133

Appendix C : Sequence for Emergency Request

In this appendix, the sequence explaining the detailed working of both protocols as SBIs
for the use cases demonstrated in Section 5.2 is discussed.

Figure C.1 and Figure C.2 represent the steps involved in configuring the emergency
request using NETCONF and OpenFlow. The sequence is similar to the elephant request
discussed in Section 5.1. The user interacts with the BoD application and the resource
manager handles the request. The major change in the emergency use case is the number
of flows modified. The system exists in the initial state, with 10 sub flows or cross-
connects provisioned. The user A requests bandwidth for emergency traffic and as a
result six existing cross-connects are deleted and six new cross-connects are added. When
user B’s emergency request is provisioned, all the ten cross-connects are modified. When
the system returns back to the initial state, four cross-connects are modified. As discussed
earlier, in NETCONF the set of cross-connects that need to be provisioned are
communicated as a single request each time. The NETCONF agent on the BTI7800
device figures out the modification and will tear down and add cross-connects
accordingly. In OpenFlow the resource manager needs to identify the set of cross-
connects that need to be changed and communicates the change for each cross-connect in
a sequential order. OpenVSwitch, as it receives a sub flow modification request from the
controller, validates the received information and posts the cross-connect modification
into the message queue. confd then handles each modification one after another as

discussed in Section 3.4.4.

134

BoD Resource ;
user Application Managar Control Plane Sender BTITE00 Receiver BTIT800)
>

user &

|
i
Emergency Request i
i
i
i

L

H
| Specifies sender
| BTIT200 information

Specifies sender

| flow modify message

for 10 cress-connect
directed towards
Sender BTI7300

BTI7800 information
L along with
- T list of modified 10
Vo i . cross-connected
i ! preemptife’ ports information
{ i subflow from;
¢ tuserB &add;
! sub flows for
i v emergency || | |eo . T®
! i request | R return ______
[f
[{
o 1
-
i
i
i
i
1 -
|
i
| Specifies receiver
H BTI7800 information
| along with
| list of medified 10
i cross-connected
! ports information
h
|
i
i
i
|
[T reum ______
e return <
g T
Emergency Request | Service for 8 sec |
user B ['
[[
i '
i '
| i
i '
i '
i '
'
>

along with

' .. list of modified 10

[| y cross-connected

! preemptihg’ ports information

1 sub flow from,

user A & add|

! sub flows for |

emergency !

request . R return

i

nitia
: Communicate the
i

modified
cross-connects to |
sender and recievet
BTIT800 | N

Figure C.1 Sequence for Emergency Flow Request Using NETCONF

R . AEEEE

Specifies receiver
BTIT800 information

along with
list of 10

cross-connected
ports information

return

{ _________________

’

Perform the Sama.
sequence, four
cross-connects

are modified.

METCOMNF

METCONF
flow modify message
for 10 cross-connect
directed towards
Sender BTI7T800

return

return

METCONF
flow modify message for

10 cross-connect
directed towards
receiver IE!TITE‘»DD

i

i

i

return

€ mmmmmmmm e e

i
NETCOMNF
flow modify message for
10 cross-connect
directed towards
receiver BTIT800

7
H
H
.
[
[
P
H
o 10 new cross connects
o
: '
H
[
[
[
i 1

1 *a
6 mew cross connect+4-=,
existing cross connect
information

135

Receiver BTI7800

Sender BTI7800

Caontrol Plane

Resource
Manager

BoD
Application

user

d....
hol
@
@
==}
o e 3
o B
EH
BT o
% D [
@ oo M
ES0
Ao
TR
— m
L]
Qo
[=
=1
0O8E
N——
i
H
|
=z = ! =
= i
_m = _.ml ! _m
8 8 sl g - |
i =1 =D [t 2
L e e A
= ' oy i =
b ' k] ! i -]
E i o ' I <
: wf i
=] ' =
= = ' = = '
|
3 2 ! H | 2| <!
= = H = I = E
E]
E| 7 i E ! 2 &
5
o M H o ! M (=31
a0 ' a0 H H
1
k S ; @ ! S
i “ i | |
(=] [} ' |
IIIIIII T T i £ T - £ T i | I | 1Tt £ T - £
‘ ¢ H , ---- ---=f 1 |
| 1 H H 1 ! ! & .
| i i i
' ' . 1 = i = - '
5 | [| Hs o
B e H LE) i = ' e H]] = ' 7 St !
3] [= 3 [a = # m = '
a5 et ' |8 18T o a5 a2 ' -] =k} | S aa
=] = i o I=H =] 1= =] S i [=1 =] =y r SEE !
a5 El@n B Le 20E S @5 ad E! 8% 5122 5 L 2agcg
o 2 wE 3 B BB T » 0 wE 3 gv BT F i 285 |
T BEIT B Fz IE. T T T Bzl BE. B ! EBTE !
£z - ! 2 HE- | v o= uo T E 18 ! . EZ@®g
(= =0 P o=] H (= oz P] HE] H ! =] Foc
= bR wm _ : _ | = & i _ | i s85° |
_ y |y gEl v v _ | ; " - :
............ VAR A - (N /200 N 2N A /2 L
! w ! o T
| a | o 23
= i E i = sy
P —— ; R - 4T . _ = - s = ogE
{101 5 ' W ose ! 3] e = ' (=1 ! 2] 2 L]
ELd 2 : 2R ! a 2T 88§ ! - 1 o] o EE
B EE 7] = = L RN a = Ll = [[=J-
s oo =@ Q@ (vl =t ol Ffreg b o= @@ o =t o El SPe.3
1B Smg 23 =1 = (= Smg 3 L =4l = = Eg g 8@
| o = T =] | o - o o (=] e i = e
I DS EdE Qg s | PSS EdE @ g @ e 5 ETMEE
[LT F=T == ' @ [T aE= ' [H] < =T
g2 [== o [9 O E o
a & g ! - H =T = o ! - = =on
! .=] e i o]] e 2
bt ! I ol | trrmmmmmmmmmmmmeos ! I I} g
K Ak = ¥
|||||||||||||| . B
[. - s O LA I S P L .
F 9 F 3
= <]
N]
aom 5o
5 5=
s 5
2w 2w
[=] (]
= E
G iR

136

Figure C.2 Sequence for Emergency Flow Request Using OpenFlow

Appendix D : Packet Size of NETCONF Control Message

The ODL controller communicates flow modification control messages to the BTI7800

using NETCONF as a SBIL. As we know flow modification in NETCONF is

communicated as set of cross-connects. The size of the control messages communicated,

varies based on a number of cross-connects specified in the message. The Table D.1 list

all possible numbers of cross-connects that can be listed along with the respective control

message size and the size of response message. In all the experiments we communicated

10 cross-connects, except Section 4.3.2.1 where 8 cross-connects where communicated.

The table presents the control message packet size from controller to one BTI7800

device. In our experiment we have two BTI7800 devices, the same information is

communicated to both.

Number of Cross-Connects

Control Message Size

Response Message Size

1 cross-connects 660 bytes 52 bytes
2 cross-connects 900 bytes 52 bytes
3 cross-connects 1124 bytes 52 bytes
4 cross-connects 1332 bytes 52 bytes
5 cross-connects 1448 + 92 bytes 52 bytes
6 cross-connects 1448 + 316 bytes 52 bytes
7 cross-connects 1448 + 524 bytes 52 bytes
8 cross-connects 1448 + 732 bytes 52 bytes
9 cross-connects 1448 + 956 bytes 52 bytes
10 cross-connects 1448 + 1164 bytes 52 bytes

Table D.1

Packet Size of NETCONF Control Message

137

@ENGN B

SHOWCASING CANADA’S EXPERTI
IN NEXT GENERATION NETWORK
TECHNOLOGIES TO THE WORLD

SDN & OpenFlow World Congress 2015 | 12-16 October 2015 | Disseldorf, (&

Government of Canada
Trade Commissionar Serv

Appendix E : SDN & OpenFlow World Congress 2015 Demo

JOIN CENGN AND DFATD AT THE 2015 SDN &
OPENFLOW WORLD COMGRESS

CGanada'’s Cantre of Excellence in Next Generation Networks:
{CEMNGHN) is partnaring with the Trade Commissionar Sanvice
{TCS) of the Govemment of Canada to showcase Canadian
talant and technology at the SDMN & OpsnFlow World Congress
in Dussedorf, Garmany. This ewent ks an industry lasding forum
and showcasa for the biggest network transformation technolo-
gies in over a decade - Software-Defined Metworking (S DN) and
MNetwork Funcions Virtuslsation (MFV). Mow, with over 100
supparting partners and sponsers, and 1,000+ delegates, the
World Congress has established itsalf as the principal network
innovation conferanca in Europa fior the global telecommunica-
fions industny.

SDN B OPENFLOW Lo

1318, s I & Emmabeber, Sorrriarsy oO'F
H Sy vher A o
Eog e o
(LAY P —

.
ﬂ’{hl \Q;NE.
NFY PoC TOMNE 200505

Canadian companies ars invited to panicipate in the following
opportunities:

Canadian Mixer— Invite your partners and customars 1o &
mixer &t the CENGN booth featuring Canadian beer and

oopontunities to mest key rade officiats, technology compa-
rias, and prominent industry organizations.

Nicatel-Lucent ({3) al'..l:'strea'n. '&‘bfl

A=z OIDSU JUNPer

ETWORK"

Promotional Directory — Company desciption and contact
information will be featured at the CENGM and TGS booth
spaces and in promotional materiaks.

1:1 Masting Area — Companias can pre book meating room
times and have the opportunity to participate in pre-arranged
mestings between partnars and potential customears.

CENGN LIVE SDN DEMONSTRATIONS & NFV POCS

As a tachnology sponsor at the Word Congress, CEMGN's booth
space will be usad o promote Ganadian technology companies
and showcass Proof of Goncepts (PoCs) of innovative SDN

and NFV projects that we are curently commerncializing with our
medmibars. GEMGM will also be part of the Demonstration Zones
and has applied fior an MFY PoC in the ETSI area.

e Sparaar Praject Dvervies

=R - by AL Gymeree BAY or Devrs)

ceris L Sanis achasiaior Chrame: WP provsanng
Wire Fira ST Oparflow Sailch - Srirl-sleering ke MPLE

G2 T S0t comirolied Erengy TeEnsgeTssT: ko Daia Coren
Pt ot fEngn VEPC domeo s P Layer 123 S0 Work Corgress 205
CONTACT US

Join ug in Gemany! i your company & planning on afending this
event, and are inerested in taking sdvantage of any of CENGN's
promotional opportunities, plesse contact ws: infe@ cangn.ca.

st
CISCO.

YEWA EXFO

"YMistral {)ROGERS — TELUS

138

SCENARIOS

The following twe scananos utilize a Bve 100 GB/s CAMARIE network WAN link between data centers in Ottawa and Montraal, to show
how an elephant flow, during iner-data center transfier, can be addressed autormatically with a mutidayer SON solution — at both the

packst and optical layers.
Cantrma & . Cumtoemas A
Irocys S0 Conolien
Il]
l‘ Tt s ‘
- -y Pasiatm [
Doa Flar B e
Doty e
OT EAST
EAST £l g 435
F
oG1 e] B E . [£=]
Comm - - Corss
:‘;‘:" (= ™ s Fane
[all]
WEST prifily
Nh A kas @ 40 G0 Ao Betwen 1 arvd D7 e o
Cumbienas B || AaS el for i DG ey Pt 8 Tl bl ..

- B b 0 40 Gobis Biph pronty Sow betwess DG and DC2. 44—

USE CASE 1: HANDLED AT PACKET LAYER USING CORSA
Qos

» Customer A has 400G flow between DC1 and DC2, and
2x10G/s unusad flows

» Gustomer B has 40G/s flow between DC1 and DC2, and 20G/s
lowe-priority flows:

» Gustomer B exhausts resources during a DG workload
requiring additional 300G bandwidth fior 2 VM migration to DG2

» Migration neseds io be dona immediately and is unscheduled

» SDM Controber senses 200G of congastion and signals Corsa
devica o use low-pricrty links in conjunction with OoS to provide
Elephant Flow minimum bandwidth guaraniee (16G)

» In absenca of high prionty trafic on low-phicrity nks, the
lows-priority flows consume the entine bandwidth

USE CASE 2: HANDLED AT OPFTICAL LAYER VIA BTI OTU4
CROSS CONNECT

» Customer A has 40Gs flow between DC1 and DC2, 2x10Gs
uniused flows:

» Gustomer B has 20G/s flow between DC1 and DC2, and 20G/s
lowe-priority flows

» Gustomer A exhausts resourcas in a DC1 workload requining
additional 200G bandwidth for a VM migration to D2

« Migration neads o be done immediatety and is unschedulad

» SDN Controliar issues commands to establish 2 additional
10GE flows acnoss the unused ports, deprovision Gustomses B's

2¢10GE ports, pre-ampting the low-priority traffic, and provision
the new Customer A 2x10GE pors across the OTU4

» SDM Controliar issuss SON commands io re-establish 20G's
lows-priority andwidth between DCA and DC2 fior Customer B

» Optical device remairs unchanged
Michaal Weir, VP Technology / Operations Pedar Landon, Dirscior Product Architsctune
@ENGN & M michael weirfoengn o plandon @btigyshens com qhﬂ
CEMTRE OF EXCELLEMCE Davwid Whittaker, Product Managament Petar Wilenius, VP Business Development
1H HEXT GENERATIIM Woomsa dovid whitidker@corss com pete wileoius S canaria oo canare o
HETWORKS
XI& Karm Lacasse, Seior Business Manager Mathisu Lamay, CEO

139

References

1)

2)

3)

4)

5)

6)

7)

SDN The New Norm for Networks, ONF white paper, April 13, 2012.

(https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-

papers/wp-sdn-newnorm.pdf)

SDN Architecture Overview, Version 1.1, November, 2014, ONF TR-504.
(https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-
reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf)

OpenFlow Switch Specification, Version 1.3.0 (Wire Protocol 0x04), June 25, 2012,
ONF TS-006.
(https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.0.pdf)

SDN Architecture for Transport Networks, March 15, 2016, ONF TR-522.
(https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-
reports/SDN_ Architecture for Transport Networks TR522.pdf)

OpenFlow enabled Transport SDN, ONF Solution Brief, May 27, 2014.
(https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-
briefs/sb-of-enabled-transport-sdn.pdf)

Optical Transport Extensions, Version 1.0, March 15, 2015, ONF TS-022.
(https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/Optical Transport Protocol Extensions V1.0.pdf)

Optical Transport Use cases, August, 2014, ONF TR-509.
(https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-

reports/optical-transport-use-cases.pdf)

140

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

8) OpenDayLight Open Source OpenFlow controller wiki page and user manual,
November 2016
(https://wiki.opendaylight.org/view/Main_Page)

9) OpenVSwitch github code and details, Code tag — Master Branch, December 12,
2015.

(https://github.com/homework/openvswitch)

10) OpenConfig Working Group, November 21, 2016
(http://www.openconfig.net/)

11) Network Configuration Protocol (NETCONF), IETF, Request for Comments: 6241,
Obsoletes: 4741, Category: Standards, ISSN: 2070-1721.

12) YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF), IETF, Request for Comments: 6020, Category: Standards, ISSN: 2070-
1721.

13) Mayur Channegowda; Reza Nejabati; Dimitra Simeonidou, “Software Defined
Optical Networks Technology and Infrastructure: Enabling Software Defined Optical
Network Operations”, IEEE, Pages: A274 - A282, 23 October 2013.

14) Robert Doverspike; George Clapp; Pierre Douyon; Douglas M. Freimuth; Krishna
Gullapalli; Bo Han; Jeffrey Hartley; Ajay Mahimkar; Emmanuil Mavrogiorgis; James
O'Connor; Jorge Pastor; K. K. Ramakrishnan; Michael E. Rauch; Mark Stadler; Ann
Von Lehmen; Brian Wilson; Sheryl L. Woodward, “Using SDN Technology to
Enable Cost-Effective Bandwidth on Demand for Cloud Services”, IEEE/OSA
Journal of Optical Communications and Networking, Pages: A326 - A334, Febuary

2015.

141

15) Nick Feamster; Jennifer Rexford; Ellen Zegura, “The Road to SDN: An Intellectual
History of Programmable Networks”, ACM SIGCOMM Computer Communication
Review, vol. 44 no. 2, April 2014.

16) Xenofon Foukas; Mahesh K. Marina; Kimon Kontovasilis,” Software Defined
Networking Concepts”, The University of Edinburgh & NCSR Demokritos, Wiley,
2014.

17) D. B. Hoang; M. Pham, “On Software Defined Networking and The Design of SDN
Controller”, Network of the Future (NOF), Pages: 1 -3, September 2015.

18) D. Kreutz; F. Ramos; P. Esteves Verissimo; C. Esteve Rothenberg; S. Azodolmolky;
S. Uhlig, “Software Defined Networking: A Comprehensive Survey,” Proceedings of
the IEEE, Pages: 14 - 76, January 2015.

19) Anna Lidia Soso; Gianmarco Bruno; Jeroen Nijhof , “DWDM Optical Extension to
The Transport SDN Controller”, Fotonica AEIT Italian Conference on Photonics
Technologies, Pages: 1-4, May 2015.

20) Alaitz Mendiola; Jasone Astorga; Eduardo Jacob; Kostas Stamos; Artur Juszczyk;
Krzysztof Dombek; Jovana Vuleta-Radoici¢; Jordi Ortiz, “Multi-Domain Bandwidth
on Demand Service Provisioning Using SDN”, 2016 IEEE NetSoft Conference and
Workshops (NetSoft), Pages: 353 — 354, June 2016.

21)Jason Min Wang; Ying Wang; Xiangming Dai andBrahim Bensaou,” SDN-based
Multi-Class QoS-Quaranteed Inter Data Center Traffic Management”, Cloud
Networking (CloudNet), IEEE 3rd International Conference, Pages: 401 - 406,

October 2014.

142

22) Vijoy Pandey, “Towards Widespread SDN Adoption: Need for Synergy Between
Photonics and SDN Within the Data Center”, IEEE Photonics Society Summer
Topical Meeting Series, Pages: 227-228, July 2013.

23) Francesco Paolucci; Andrea Sgambelluri; Nicola Sambo; Filippo Cugini; Piero
Castoldi; “Hierarchical OAM Infrastructure for Proactive Control of SDN-Based
Elastic Optical Networks”, 2015 IEEE Global Communications Conference
(GLOBECOM), Pages: 1 — 6, December 2015.

24)S. A. Shah; J. Faiz; M. Farooq; A. Shafi; S. A. Mehdi, “An Architectural Evaluation
of SDN Controllers”, 2013 IEEE International Conference on Communications
(ICC), Pages: 3504 — 3508, June 2013.

25) Abhinava Sadasivarao; Sharfuddin Syed; Ping Pan; Chris Liou; Inder Monga; Chin
Guok and Andrew Lake, “Bursting Data Between Data Centers: Case for Transport
SDN”, IEEE 21st Annual Symposium on High-Performance Interconnects, Pages: 87
- 90, August 2013.

26) M. Siqueira and J. Oliveira, “An Optical SDN Controller for Transport Network
Virtualization and Autonomic Operation”, Globecom Workshops (GC Wkshps),
IEEE, pages: 1198-1203, December 2013.

27)L. Velasco; A. Asensio; J. L. Berral; A. Castro; V. Lopez, “Towards a Carrier SDN:
An Example for Elastic Inter-Datacenter Connectivity”, Optical Communication
(ECOC 2013), Pages 1-3, September. 2013.

28) Yongli Zhao; Jie Zhang; Hui Yang and Xiaosong Yu, “Data Center Optical Networks

(DCON) with OpenFlow Based Software Defined Networking (SDN)”,

143

Communications and Networking in China (CHINACOM), Pages: 771 — 775, August

2013.

144

