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Abstract

In the context of the IEEE 1588 Precision Time Protocol (PTP), estimating the de-

lay’s bias is a problem that appears in both one-way (using transparent devices) or

two-way message exchange mechanisms. For estimating the offset via the two-way

message exchange mechanism, it is usually being assumed that the expected value of

delays in forward and reverse directions are equal with each other. However this is not

a realistic assumption for packet-based wide area networks, where delays in down-link

and up-link directions may have a significant difference. In this work we propose a so-

lution to estimate the random delay’s bias and improve the synchronization accuracy

of IEEE 1588. Our method is easy to implement and is compatible with the current

version of the protocol. We compared our results with no bias correction and the

Boot-strap method. In addition to the improvement in synchronization accuracy, our

method allows us to update the slave clock recursively. The proposed method works

well even in the presence of large frequency offsets and can also be implemented by

using different filters.
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Chapter 1

Introduction

1.1 Overview

Computer clocks in servers, workstations and network devices are not inherently

accurate. These devices usually have inexpensive clocks which may drift as much as

a second per day, so if we let them to run by their own, after a short amount of time

we would not have any meaningful synchronization among the network devices.

Keeping devices synchronized in a network is a crucial task. Many aspects of

the network rely on this synchronicity. When the clocks in a network fall out of

synchronization many problems happen. Operations for example for automated tasks,

network consolidated tasks and interdependent application tasks may fail. Data is

lost. Security is compromised and organizations lose their credibility [?].

The IEEE 1588 Precision Time Protocol (PTP) specifies a clock synchronization

protocol to synchronize nodes in a distributed network [?]. The synchronization pro-

cess consists of two tasks. First it synchronizes the nodes to one common time by

estimating their offset with respect to a reference time (phase offset). The second

task is to correct the nodes’ clock frequency drift relative to a reference frequency

(frequency offset). Synchronization happens by periodic exchanging of timing infor-

mation between nodes in a network and a master node. The master clock periodically

1
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sends its local time to the slave clock as a Sync message. The arrival time of the Sync

message is recorded at the slave node. Then, the slave node sends its local time as a

Delay-Req signal to the master. The arrival time of the Delay-Req message is recorded

by the master node and is sent back as a Delay-Resp message to the slave node [?].

The offset in the slave local clock is adjusted based on these collected values. This

method works well only under the assumption of symmetrical delays, which means

that the down-link (from master to slave) and up-link (from slave to master) delays

are equal. Although this assumption is not true in practice, for some applications

it is possible to assume that the expected value of delays in the forward and reverse

direction are equal with each other. This assumption reduces the synchronization

process to an unbiased estimation problem. Unfortunately, in packet-based wide area

networks such as metro Ethernet, it happens frequently that delays in one direction

are dominant and down-link and up-link delays are not equal even statistically. As a

result we deal with a biased estimation problem. In this work we study the effect of

this bias in the synchronization accuracy. The objective of this thesis is to estimate

the bias and correct it from the slave clock.

1.2 Outline

The chapters in this thesis are organized in the following manner.

Chapter 2 introduces background information about the IEEE 1588 PTP. It pro-

vides a brief comparison between the IEEE 1588 and other network synchronization

protocols. then it elaborates on the details of the IEEE 1588 and the synchronization

process in this protocol.

Chapter 3 presents an analytic discussion on the sources of inaccuracy in the

synchronization process. In this chapter the synchronization process is modeled as

a filtering problem. Bias-aware filters are introduced and the effectiveness of these
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filters in the context of this synchronization problem is discussed.

Chapter 4 introduces a number of related works that have been presented in order

to solve the bias problem. In this chapter the packet filtering techniques and direct

estimation methods are introduced as two main approaches for solving the bias prob-

lem in the synchronization process. The next section of this chapter discusses about

the Packet Delay Variation (PDV) in networks. In this section a proper Probability

Distribution Function (PDF) for modeling PDVs in networks is introduced.

Chapter 5 presents our solutions for solving the bias problem.

Chapter 6 presents the simulation results. In this chapter our proposed solutions

are evaluated under different circumstances.

Chapter 7 concludes the thesis and propose a number of potential future works.

1.3 Contributions

The contributions of this thesis are as follows:

• Two new methods for estimation and correction of the delay bias are proposed.

Our methods are compatible with the current version of IEEE 1588 PTP. These

methods allow us to update the slave clock recursively.

• The simulation results show that our proposed solutions can improve the syn-

chronization accuracy of the IEEE 1588 PTP.

• We evaluate the performance of our methods in the presence of frequency offsets.

Simulation results show that the proposed methods work well even when there

is a large frequency offset between the master and slave clocks.

• If any knowledge about the network traffic load is available at the slave clock,

unlike many different methods, our methods are flexible enough to use this

knowledge in order to improve the synchronization accuracy.
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• We evaluate the performance of our methods when the traffic load changes with

time. In reality, traffic load in a network does not usually change very fast,

rather it changes gradually. Nevertheless we consider the extreme case that the

traffic load changes suddenly and significantly. We present a solution in order

to make our methods more adaptable with time changing traffic loads.



Chapter 2

Background Information

In this chapter, we first provide a brief introduction to crystal oscillators, a frequently

used source of timing information. Then we define some technical terms in the context

of synchronization. Finally, we introduce different network synchronization protocols.

Our focus is on the IEEE 1588 PTP and we will signify the importance of this protocol

in a distributed network.

2.1 Crystal Oscillators

A crystal oscillator is an electronic circuit device which generates periodic signals

by using the mechanical resonance of the piezoelectric material. The frequency of

these oscillations is relatively accurate and can be used to keep track of time. Crystal

oscillators are usually inexpensive and very small. For these reasons, crystal oscillators

are used widely as a heart of clocks in many devices. As a result the performance of

the clocks is severely dependent on the crystal oscillator which is used in them.

5
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2.2 Oscillator Stability and Accuracy

Crystal oscillators are like the heart of a clock. Any inaccuracy or instability of an

oscillator cause problems for the clock. The offset of an oscillator from a target fre-

quency is a measure of the oscillator’s accuracy. The inaccuracy of clocks in a network

causes that, over a period of time, their clocks drift with respect to the reference time

(for example a reference GPS clock). Unfortunately this drift is not avoidable and

inaccuracy happens in clock oscillators due to reasons such as temperature, ageing1

and retrace2.

Variations in the frequency of a crystal oscillator around its natural frequency over

a period of time is measured as the frequency stability of a crystal oscillator. Noise

is the most important factor which causes instability. The source of this noise can be

in the reference signal (if the clock is using any reference signal) or in the electronic

circuit itself. In Fig. 1 a comparison between frequency accuracy and stability is

shown [?].

Figure 1: Accuracy and stability of a clock oscillator [3]

1The crystal resonator frequency changes according to the operational time and this phenomenon
is called ageing [?]

2When power is removed from an oscillator for several hours, and then reapplied again, the
frequency of this oscillator stabilizes at a slightly different value. this frequency variation error is
called retrace error [?]
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2.3 Network Synchronization Protocols

By increasing the data rate in distributed networks, there is a growing need to use

more accurate synchronization protocols. Until relatively recent, Network Time Pro-

tocol (NTP) and IRIG time code have been the most common network synchroniza-

tion protocols. The more recently developed IEEE 1588 Precision Time Protocol

(PTP) introduced a new synchronization protocol that is able to increase the syn-

chronization accuracy significantly.

NTP has been one of the most popular synchronization protocols. This protocol

works well over LANs and WANs and is relatively inexpensive to implement [?].

NTP has evolved over the last thirty years as documented in RFC 5905 [?]. The

accuracy expectations of this protocol vary depending on the motherboard oscillator

but the protocol should be able to achieve a clock synchronization accuracy of 1-2

milliseconds on LAN or 1-20 milliseconds on a WAN [?]. The IRIG has improved

this accuracy to 1-10 microseconds, but this improved accuracy is achieved by adding

coaxial timing cables between the clocks. This means more expenses and also more

physical infrastructure of the facility [?]. As a result IRIG is used just for some special

purposes such as military, aerospace or power system devices. IEEE 1588 PTP on

the other hand improves the accuracy of IRIG and also has the cost effectiveness of

NTP. This standard specifies a clock synchronization protocol to synchronize nodes

in a distributed network. PTP is a packet-based timing mechanism. This protocol

improves the accuracy by hardware time stamping. PTP is applicable to packet-based

networks using regular hubs and switches. In a LAN Ethernet network, it can provide

synchronization accuracy to the sub microseconds and with the addition of IEEE 1588

boundary clocks or transparent devices 20-100 nanoseconds synchronization accuracy

can be achieved [?]. In the next section we will study the IEEE 1588 PTP in more

detail.
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2.4 IEEE 1588 Precision Time Protocol

The first version of the PTP was introduced in 2002 as an IEEE 1588-2002 standard

entitled ”Standard for a Precision Clock Synchronization Protocol for Networked

Measurement and Control Systems” [?]. In 2008 a revised standard, IEEE 1588-2008

was released which is also known as PTP Version 2 [?]. PTP is applicable to systems

communicating by local area networks supporting multi-cast messaging including,

but not limited to, Ethernet [?]. This protocol is designed to synchronize clocks

across packet-based networks and due to the remarkable interest in using packet-

based timing mechanism in industry [?], there is a growing interest in this protocol.

Before proceeding further, in the next section we define a number of technical terms

from [?] that are necessary for our work.

2.4.1 Definitions

accuracy: The mean of the time or frequency error between the clock under test

and a perfect reference clock.

stability: A measure of how the mean of the time or frequency error varies with

respect to variables such as time, temperature, etc.

precision: A measure of the deviation of the error from the mean.

domain: A number of clocks that are synchronized with each other, but are not

necessarily synchronized with other clocks in another domain.

event PTP message: Time-critical messages that require an accurate time stamp-

ing in the transmission or reception.
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general PTP message: PTP messages whose their information is important but

that do not need accurate time stamping.

grand master: the main source of time for clock synchronization.

master clock: A clock to which all the other clocks in a domain synchronize.

phase offset: The difference between a slave local time and its master time.

frequency offset: The difference between a slave clock frequency and its master

clock frequency.

2.4.2 PTP message classes

Sync: An event message which is sent from a master to its slave periodically and

contains the local time of the master.

Follow up: To improve the accuracy, the exact time that a Sync message is sent

is measured and a follow up message with the exact time information is immediately

sent to a slave. Follow up is a general message.

Delay Req: An event message that is sent from a slave to its master and contains

the local time of the slave.

Delay Resp: An event message that is sent from a master to a slave, and contains

the reception time of the Delay Req signal.

2.4.3 PTP devices

Ordinary clock: A clock that has a single PTP port and in a domain can act as

either a master clock or as a slave clock.
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Boundary Clock: A clock with multiple ports and that can serve as a master or

gets synchronized with another clock (acts as a slave clock).

End-to-end transparent clock: These devices forward all the messages just like a

normal switch, router, or repeater. However, for a PTP event message, they measure

the residence time of the packet, which is the time that it takes for the packet to

traverse inside the transparent clock. This measured value is put inside the PTP

message.

Peer-to-peer transparent clock: Peer-to-peer transparent clocks differ from the

end-to-end transparent clock in the way that they provide corrections for the link

propagation delay.

2.4.4 PTP systems

A PTP system is a distributed, networked system, consisting of a combination of PTP

and non-PTP devices [?]. Ordinary clocks, boundary clocks, end-to-end transparent

clocks and peer-to-peer transparent clocks are considered as PTP devices and bridges,

routers and devices such as computers, printers, etc are examples of non-PTP devices.

This protocol is a distributed protocol that organizes the system into a master-

slave hierarchy and the grand master is the time reference for the entire system.

The synchronization is achieved by exchanging timing messages between clocks. This

protocol divides the network into logical scopes called domains and all the synchro-

nization process is implemented independently for each of these domains.

2.4.5 Communication path asymmetry

PTP requires that the transmission time of certain messages be measured between

the master and slave clock and between the slave and master clock [?]. Typically,
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these times are not equal. The PTP characterizes the transmission time as:

• mean Path Delay

• delay Asymmetry

Figure 2: Propagation asymmetry [2]

The mean Path Delay is computed as:

mean Path Delay =
tms + tsm

2
(2.4.1)

where tms and tsm are the time that a packet takes to travel from the master to the

slave and from the slave to the master respectively. The value of delay asymmetry

should be known in order to compute the actual transmission time. The protocol

does not specify a method for measuring the delay asymmetry. However, if the delay

asymmetry is known, then the transmission time can be computed as follow:

tms = mean Path Delay + delayAsymmetry (2.4.2)

tsm = mean Path Delay − delayAsymmetry (2.4.3)
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2.4.6 Synchronization process

As it has already been mentioned, synchronization is implemented by periodic ex-

changing of timing information between a master node as a reference, and a slave

node which tries to get synchronized with the master. The message exchange process

is as follow:

a) The master sends a Sync message which includes its local time to the slave at

time t1.

b) In order to mitigate the operating system latency, the exact time that the Sync

is sent is marked, and a Follow up message with the exact time information is

sent immediately [?].

c) The slave sends its local time as a Delay Req message and notes it as t3.

d) The master receives the Delay Req at t4, and sends a Delay Resp to the slave,

containing the value of t4.

Fig. 3 shows the above process.

At the end of each synchronization interval, the slave node collects a set of four

numbers. The mean path delay and the phase offset between the master and slave

can be computed as follows [?]:

mean Path Delay =
(t2 − t1) + (t4 − t3)

2
(2.4.4)

Phase Offset =
(t2 − t1)− (t4 − t3)

2
(2.4.5)

The protocol does not specify how these values should be used. For example,

the calculated phase offset can be subtracted directly from the slave clock, or can be

passed through a filter to eliminate noise. In the later case the output of the filter can

be used to correct the slave clock. The effectiveness of these equations to synchronize



13

Figure 3: Basic synchronization message exchange [2]

a slave clock is a function of several factors. One factor is the frequency offset between

the master and slave clocks. Although this problem can degrade the results, frequency

offset can usually be estimated and compensated separately. The other problem arises

from asymmetric delays between the master and slave. The accuracy of (2.4.4) and

(2.4.5) is immensely dependent on the assumption that the delay from the master to

the slave is the same as the delay from the slave to the master. But this assumption,

in general, cannot be justified, neither in a deterministic nor a statistical view. A

more detailed discussion about this problem is presented in the next chapter.



Chapter 3

Problem Statement

In this chapter, we first present an analytic discussion on the sources of inaccuracy

in a synchronization process. Then we explain bias-aware filters as a natural ap-

proach to this problem and we will discuss on the effectiveness of these filters for this

synchronization problem.

3.1 Sources of inaccuracy

When the slave and master clocks do not agree with each other, the slave clock can

be considered as an unknown function of the master clock. So when the master clock

shows a time like t, the slave clock time would be C(t). By recalling from Section

2.4.6 of the last chapter and noticing that the synchronization process happens in a

periodic way, the four collected times after the nth synchronization interval can be

written as [?]:

t1 = tn

t2 = C(tn + dms + xn)

t3 = C(t′n − dsm − yn)

t4 = t′n

14
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where dms + xn and dsm + yn represent the time it takes for the Sync message to

travel from the master to the slave and the time it takes for the Delay Req message

to travel from the slave to the master, respectively. The terms dms and dsm are the

fixed parts and xn and yn are the random parts of the down-link and up-link delays

respectively. From Section 7.4.2 of [?], messages from master to slave and slave to

master traverse the same path in order to minimize the asymmetry. As a result it can

be assumed that the fixed parts of the delays in the down-link and up-link directions

are equal. This is one of the assumptions of this work. If for any reason the fixed

parts of the delays in the down-link and up-link directions differ significantly, then we

deal with an additional problem which is out of the scope of this work. We replace

dms and dsm with the term d. By substituting the above expressions in (2.4.5) we

have:

θm(n) =
[C(tn + d+ xn)− tn]− [t′n − C(t′n − d− yn)]

2
(3.1.1)

where θm(n) is the computed phase offset at the slave side. Master and slave clocks

are perfectly synchronized if C(t) = t, but if we assume that the phase offset at the

nth synchronization interval is θ(n), we would have:

C(tn) = tn + θ(n)

For short enough intervals (the size depends on how large the frequency offset is) it

is possible to assume that the phase offset is unchanged, so:

C(tn + ∆) = tn + ∆ + θ(n)
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Consequently, the four collected times can be written as:

t1 = tn

t2 = tn + d+ xn + θ(n)

t3 = t′n − d− yn + θ(n)

t4 = t′n

By substituting the above equations in (3.1.1), we have:

θm(n) = θ(n) +
xn − yn

2
(3.1.2)

From (3.1.2) it is clear that (3.1.1) is a good estimation of θ(n) only if xn and

yn are equal. Although this assumption is, generally, not true in practice, for some

applications it is possible to assume that the expected value of delays in forward

and reverse directions are equal with each other. This assumption would reduce the

synchronization process to an unbiased estimation problem. Unfortunately, in packet-

based wide area networks such as metro Ethernet, it happens frequently that delays

in one direction are dominant and down-link and up-link delays are not equal even

statistically. Inequality in the expected values of these delays causes a bias in the

convergence point of the estimated offset that should be removed.

3.2 Dealing with the frequency offset

The frequency offset can usually be estimated by the following equation [?]:
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fm(n) =
θm(n)− θm(n− 1)

tn − tn−1

(3.2.1)

The denominator of this equation represents the time difference between two suc-

cessive synchronization intervals. The calculated value from (3.2.1) can be passed

into a filter (for example a Kalman filter) and the output of the filter would be the

estimated value of the frequency offset.

One interesting characteristic of (3.2.1) is that because it is the subtraction of

two successive estimated phase offsets, it does not face the same bias problem due

to asymmetric delays. The reason is that the term related to asymmetric delays in

(3.1.2) appears both in θm(n) and θm(n− 1), and they statistically cancel each other

out. Consequently, we end up with an unbiased estimator of the frequency offset.

3.3 Dealing with the phase offset

Estimating the phase offset is a more difficult problem. As it has already been men-

tioned, the difficulty arises from the inequality in the expected values of the down-link

and up-link delays. As a result of this inequality, when the calculated values from

(3.1.1) are passed into a filter, the output of the filter would converge to a wrong

point. The convergence point is off of the exact value by an error equal to E(x)−E(y)
2

.

Here E(x) and E(y) represent the expected values of the down-link and up-link delays

respectively. To obtain a better insight into these delays, in the next few paragraphs,

we introduce three major sources of delay in networks.

Delays from a master to a slave and from a slave to a master are random variables

that should be modeled by a Probability Distribution Function (PDF). The changing

values of the end to end delays from one packet to another usually is referred to as the

Packet Delay Variation (PDV). The delay asymmetry in the synchronization process

mainly comes from packet delay variations that occur in the networks. Delay and the
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related delay variations can be divided into three different components [?].

Transmission delay: The transmission delay is the time that it takes for a signal

to pass between two end points of a transmission link. This delay is a function of

the velocity of the signal and the physical length of the link. Variations in this part

of the delay may happen due to any change in the physical characteristics of the

transmission link, like a change in the length of the wire or other reasons that may

affect the speed of signal. The PDV related to the transmission delay is in the range

of sub-microseconds [?].

Processing delay: This delay is due to the packet processing time in the network

elements and is dependent on the network hardware and software. The PDV related

to the processing time is in the order of 1-10 microseconds [?].

Queuing delay: The buffering or queuing delay is the total time that packets need

to wait in different network elements before getting processed. This time is dependent

on the network traffic load and also the priority of the packets. The queuing delay

by far is the most important source of PDV and asymmetric delays in networks. The

PDV resulting from queuing delays can be in the order of 10-10000 microseconds [?].

The total delay is the summation of all these three delays. In packet-based net-

works, specially due to different traffic loads in the down-link and up-link directions

and consequently, different queuing delays, PDVs in these two directions might have

a significant difference.

As it has already been mentioned, the calculated value from (3.1.1) can be passed

into a filter and the output of the filter would be the estimated value of the phase

offset. There are some standard methods for dealing with bias using filters, known as

bias-aware filters. To study the effectiveness of these methods, we implement bias-

aware Kalman filters as an example. This example will illustrate that the bias-aware
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filters cannot provide a solution to the bias estimation problem.

3.4 Kalman filter

A stochastic time-variant linear system is described by the following equations

[?]:

xk = Ak−1xk−1 +Bk−1uk−1 + wk−1 (3.4.1)

zk = Hkxk + vk (3.4.2)

These two equations are called the state and measurement equations respectively.

Dimension and description of the parameters are as follows [?]:

xk n× 1 − State vector

uk l × 1 − Input/control vector

wk n× 1 − Process noise

zk m× 1 − Observation vector

vk m× 1 − Measurement noise vector

Ak n× n − State transition matrix

Bk n× 1 − Input/control matrix

Hk m× n − Observation matrix

Qk n× n − Process noise covariance matrix

Rk m×m − Measurement noise covariance matrix

wk and vk captures uncertainties in the model and it is assumed that they are zero

mean with known covariance matrices and also are uncorrelated, so:

E[wk] = 0 E[wkw
T
k ] = 0 E[wkw

T
j ] = 0 for k 6= j
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E[vk] = 0 E[vkv
T
k ] = 0 E[vkv

T
j ] = 0 for k 6= j

and E[wkv
T
j ] = 0 for all values of k and j

Note that although in the basic form of a Kalman filter it is assumed that the

mean value of the noises are zero, this assumption is modified for bias-aware Kalman

filters which will be discussed in the next section.

The terms zk, uk, Ak, Bk and Hk are known parameters at the receiver. The pur-

pose of the filtering problem is to estimate the state vector (xk) from the observation

vector (zk).

In 1960 Kalman introduced the optimal estimator for this problem, under the

assumption that the process and measurement noises follow the Gaussian distribution.

A Kalman filter works in two steps: the model forecast step, also known as predictor,

and the data assimilation step, also called corrector. In the Kalman filtering process,

two other matrices appear. The P matrix is a measurement of the error covariance

(between the estimated value and the actual state vector), and the K matrix is called

the Kalman weight or Kalman gain. The process starts with an initial assumption

on the value of P and the state vector. The process continues as follows:

Predictor:

xfk = Ak−1x
a
k−1 +Bk−1uk−1 (3.4.3)

P f
k = Ak−1Pk−1A

T
k−1 +Qk−1 (3.4.4)

Corrector:

Kk = P f
kH

T
k (HkP

f
kH

T
k +Rk)

−1 (3.4.5)

xak = xfk +Kk(zk −Hkx
f
k) (3.4.6)

Pk = (I −KkHk)P
f
k (3.4.7)

The terms xa0, P0 are used to start the process and allow us to evaluate (3.4.3) and

(3.4.4) initially. By the reception of zk, the value of xaks, Pk and Kk are updated, and
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then the values of xfk andP f
k from (3.4.3) and (3.4.4) are readjusted. At each iteration,

xak is our estimation of the state vector. The following block diagram from [?] shows

the whole process:

Figure 4: The block diagram for a Kalman filter [10]

In the next section, we introduce a modified version of this filter, known as the

bias-aware Kalman filters.

3.4.1 Bias-aware Kalman filters

In general, the mean value of the process and measurement noises may not be zero.

This non zero mean value can be considered as a bias term in the state and measure-

ment equations. For this purpose, these equations should be modified as follows:

xk = Ak−1xk−1 +Bk−1uk−1 + Ck−1b+ wk−1 (3.4.8)
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zk = Hkxk +Dk−1b+ vk (3.4.9)

Here b is a bias that appears in the state and measurement equations. In [?], a

simple solution to this problem has been introduced. For removing the effect of bias

from the equations, we can simply change the state vector as follow:

xk
b

 =

Ak−1 Ck−1

0 1


xk−1

b

 + Bk−1uk−1 + wk−1

and:

zk =

[
Hk Dk

] xk
b

 +vk

so the new state and measurement equations can be written as :

x′k = A′k−1x
′
k−1 +Bk−1uk−1 + wk−1 (3.4.10)

zk = H ′kx
′
k + vk (3.4.11)

where:

x′k=

xk
b

 , A′k−1=

Ak−1 Ck−1

0 1

 ,and H ′k=

[
Hk Dk

]

And an algorithm identical to the original Kalman filter can be followed to deal
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with the above equations. To examine this method, we provide a numerical example.

Suppose that the state and measurement equations are:


xk = Axk−1 + wk−1

zk = xk + b+ vk

wk and vk, are zero mean Gaussian random variables with variances of 0.001 and

0.01 respectively. The value of the bias term b is assumed to be 10. The initial state

variable, x0, is assumed to be 1. We evaluate the effectiveness of this method for

different values of A.

First let us assume that A = 4. Fig. 5 shows the error in the estimated value

of the state variable, versus the number of iterations. So if at the kth iteration, we

denote the estimated value by xak, the error is defined to be xk − xak.

Figure 5: Kalman filter’s error for A=4

Fig. 5 shows that after a few iterations, the output of the Kalman filter can provide

a good estimation of the state variable. Note that after a number of iterations, the
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output neither gets better nor worse, but fluctuates with an amplitude which is a

function of the random properties of the process and measurement noises.

Fig. 6 shows the results for A = 2, A = 1.1 and A = 1. It can be observed that

as the value of A gets closer to one, the speed of convergence gets slower. Finally, for

A = 1, convergence cannot be achieved.

Figure 6: Kalman filter’s error for different values of A

To understand why convergence cannot be achieved for A=1, we examine the state

and measurement equations in our example. For simplicity, assume that the process

noise is zero. The equations reduce to:


xk = xk−1

zk = xk + b+ vk

As can be seen, the state variable is always a constant number, and the measured

value is the summation of the state variable, the bias, and a noise, which makes it

impossible to distinguish between the bias and the state variable.
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3.4.2 Modeling the synchronization process as a filtering

problem

The synchronization process which was described in Sections 3.1 and 3.2 can be

modeled as a filtering problem. We consider uθ(n) and uf (n) as the corrections

that we apply to the phase and frequency of the slave clock respectively at the nth

synchronization interval. Then the new phase and frequency offsets at the (n+ 1)th

synchronization interval (before the next correction), can be written as follow [?]:

θ(n) = θ(n− 1)− uθ(n− 1) + [f(n− 1)− uf (n− 1)].∆T + ωθ(n− 1) (3.4.12)

and

f(n) = f(n− 1)− uf (n− 1) + ωf (n− 1) (3.4.13)

The terms ωθ(n) and ωf (n) are the process noises for the phase offset and

frequency offset respectively. The terms uθ(n) and uf (n) are the estimated values for

the phase and frequency offsets. ∆T is the time difference between two successive

synchronization intervals and is the same as the denominator of (3.2.1). The above

equation means that the next phase offset would be the previous one, minus the

last estimated phase offset, plus the drift that happens between two successive

corrections, plus a process noise. For the frequency offset, the next offset is the

previous one, minus the last estimated frequency offset plus a process noise. We can

combine (3.4.12) and (3.4.13) into one state equation:

θ(n)

f(n)

 =

1 ∆T

0 1


θ(n− 1)

f(n− 1)

 +

−1 −∆T

0 −1


uθ(n− 1)

uf (n− 1)

 +

ωθ(n− 1)

ωf (n− 1)


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so:

x(n) = Ax(n− 1) +Bu(n− 1) + w(n− 1) (3.4.14)

The measurement equation can be written directly from (3.1.1) and (3.2.1). In fact

each estimation can be written as a summation of the actual offset plus a measurement

noise, so:

θm(n) = θ(n) + νθm(n)

fm(n) = f(n) + νfm(n)

Here νθm(n) and νfm(n) are the measurement noises for the phase offset and the

frequency offset respectively. The measurement noise for the phase offset from (3.1.2)

is determined by xn−yn
2

. As we already explained, the mean value of the down-link

and up-link delays are not necessarily equal and as a result the mean value of the

measurement noise for the phase offset in general is not zero. In contrast, since in the

numerator of (3.2.1) there is a subtraction of two successive phase offsets, in terms

of the bias, they cancel each other out and therefore (3.2.1) provides an unbiased

estimator for the frequency offset. By rewriting the above equation in matrix form:

θm(n)

fm(n)

 =

1 0

0 1


θ(n)

f(n)

 +

νθm(n)

νfm(n)


Finally, the measurement equation can be written as:

z(n) = Hx(n) + v(n) (3.4.15)

This filtering problem can be solved by different filters, including but not limited

to the Kalman filter. A summary of this filtering mechanism is as follow. At the

nth synchronization interval, the slave node receives z(n). This vector is passed into
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the filter. The output of the filter is the vector u(n). The vector u(n) is subtracted

from the slave clock in order to correct the phase and frequency offsets. Using a filter

in this way to estimate and correct the offset, in the simulations section, is referred

to as Basic 1588. The non zero mean value of the measurement noise for the phase

offset creates a bias in the estimated phase offset by the filter. Using bias-aware filters

like the one we studied in the last section may seem as a solution for estimating the

bias. However, these methods cannot help us here. To see the reason, we simplify the

filtering problem as follow. Let us assume that the process noise and frequency offset

are zero. We also assume that uθ = 0. As it has already been explained in Section

3.1, when the expected value of delays in up-link and down-link directions are not

equal to each other, there would be a bias in the estimated value of the phase offset.

This bias is hidden in the mean value of the measurement noise term in (3.4.15). We

can rewrite it as a summation of a bias, plus a zero mean measurement noise. In that

case, the state and measurement equations for the phase offset would be:

θ(n) = θ(n− 1)

θm(n) = θ(n) + b+ ν ′θm(n)

We observe that the state and measurement equations are exactly the same as the

example that we discussed in the last section, for the case that A = 1. As we showed

for that example, estimating the bias and state variable just by using these equations

is not possible. These equations have been imposed on us by the nature of the problem

and are not avoidable. It means that for the purpose of synchronization, we need to

find another solution to estimate the bias.

In the next chapter, we will review the literature with regard to proposed solutions

for improving the accuracy of this synchronization protocol with a focus on methods

for dealing with bias.



Chapter 4

Related Work

There are basically two main approaches for solving the bias problem in the synchro-

nization process. The first approach is by packet filtering techniques. This group of

solutions do not try to estimate the bias directly, rather they just try to filter packets

in a way to reduce the effect of bias. The second approach to this problem is to

estimate the bias directly or to provide an unbiased estimator of the phase offset.

The Boot-strap method is an example of this group of solutions. The Boot-strap

method provides the order statistic-based best linear unbiased estimator (o-BLUE)

of the phase offset under the assumption that the PDVs have exponential or Pareto

distributions. In this chapter we will study a number of these methods. Moreover,

for developing a good solution to the bias problem, a better knowledge about the

distribution of PDVs is very important. As a result, we also will study the statistical

characteristics of the PDVs in multi-hop networks.

4.1 Packet filtering techniques

Packet filtering techniques try to find some “good” packets based on a reasonable

condition. The definition of a good packet is subjective and varies from one paper

to another. In a number of papers such as [?] and [?], after collecting a number of

28
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received messages (this number is determined by the window size) the good packet

is the one with the least delay. Such algorithms are usually referred to as sample −

minimum filters. The mean value, maximum and mode are other criteria that can

be used to filter packets. These criteria also may be used in a hybrid way [?].

In order to mitigate deterioration of synchronization accuracy due to PDVs, the

authors of [?] proposed using a train of probing packets after the Sync and Delay-Req

messages. Fig. 7 shows the changes that need to be done in the IEEE 1588 PTP, in

order to implement this method.

Figure 7: Message sequence between master and slave[15]

The aim of using probing packets is to estimate the occurrence of delay in timing

packets and filter out the packets with large value of delays [?].

Fig. 8 shows the sequence of timing packets transmitted from the master to the

slave. In this sequence of packets, there is one Sync message and np probing packets.

Here SW stands for switch. The occurrence of large delays can be detected based on
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Figure 8: Transmission of Sync and probing packets [15]

the inter-frame gaps between received packets. We denote the gaps between the kth

and (k+ 1)th packets by τk. After experiencing the delay in the network, the value of

the gap at the receiver will change to τ ′k. The criteria of filtering in [?] is defined as:

i) If (τ ′k−1 − τk−1) > ∆τ or (τ ′k − τk) < ∆τ , delay occurred in the packet.

ii) Otherwise delay did not occur.

The threshold ∆τ should be selected based on the accuracy that is needed at

the slave clock. Finally, only the packets that pass this condition can be used for

synchronization. As can be observed, there is a trade off between the accuracy of

this method and the number of packets that will pass through this filtering condition.

There is also a possibility that the delay happens before the very first probing packet.

In this case all the transmitted packets would experience this delay in the same way

and it is not possible to detect it from the gap between the packets.
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Although using packet filtering methods can improve the synchronization accu-

racy, none of these methods actually estimates the value of bias (or provides and

unbiased estimator of the phase offset). One other problem with this group of solu-

tions is that we need to filter a large number of packets. Dropping packets means

loosing information and also causes more delay before correction (or alternatively

requires more network traffic overhead to collect a window’s worth of data within a

single correction interval).

4.2 Direct estimation techniques

Direct estimation techniques try to find an estimator for the bias or an unbiased

estimator for the phase offset. Using transparent devices is an example of this group

of solutions. As it was defined in Chapter 2, End to End transparent clocks are able to

measure the residence time of a PTP event message and put this value into a specific

field of the message. The measured time can be used at the receiver to calculate

the delay of the message. However, due to reasons such as the rate mismatch of

the transparent clocks with respect to the master clock, the calculated residence

time might be the subject of an unacceptably large error. This effect gets escalated

specially over a multi-hop network. Moreover, although using the transparent devices

has been predicted in IEEE 1588 v2, it requires changing the old infrastructures of

the network with transparent devices which may not be cost-effective.

As it was mentioned, the calculated residence time over a multi-hop network, using

the transparent devices, may not be very accurate. The authors of [?] proposed a

solution to solve this problem. In [?], it is assumed that instead of one Sync message,

we have two different kinds of Sync messages. They are denoted by Sync 1 and Sync

2. It is also been assumed that transparent devices somehow have the ability to give

the Sync 2 message a delay k times larger than Sync 1. Knowing that the delay for
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Sync 2 is k times larger than Sync 1 provides an additional independent equation,

that can be used for finding the value of the bias and phase offset. Fig. 9 shows the

message exchange mechanism in this method.

Figure 9: Enhanced PTP messaging timing diagram [16]

This method has two problematic requirements. First, using two different kinds of

Sync messages is not compatible with the current version of the IEEE 1588 protocol.

Moreover, the current transparent devices do not have this ability to give a delay k

times larger to one of the Sync messages with respect to the other one and producing

such devices may not be cost-effective. Consequently, these two problems make this

method impractical.

In [?] and [?], Jesk et al. used the Boot-strap method to find the order statistic-

based best linear unbiased estimator of the clock offset under the assumption that the

Packet Delay Variations (PDV) have exponential or Pareto distributions. Following
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the notation of [?], let x and y denote the master to slave and slave to master travel

times corresponding to a timing message exchange. An iteration of n timing message

exchanges yields the random samples {xi}ni=1 and {yi}ni=1. Let {x(i)}ni=1 and {y(i)}ni=1

denote the order statistic of these samples. The Boot-strap estimator is from a class

of estimators in the form of θ̃ =
∑n

i=1 wi[x(i) − y(i)] for a suitable choice of {wi}ni=1

which have the property
∑n

i=1wi = 1/2. If we denote the phase offset by θ, θ̃ is an

unbiased estimator of the phase offset. In [?] it was shown that if x and y have an

exponential distribution, then the best linear unbiased estimator of the phase offset

is:

θ̃ =
1

2

[
nT1 − T2/n

n− 1
− nS1 − S2/n

n− 1

]
(4.2.1)

where (T1, T2, S1, S2) = [min1≤i≤nxi,
∑n

i=1 xi,min1≤i≤nyi,
∑n

i=1 yi]. However, as

will be discussed in the next section, more recent papers such as [?] and [?] show that

the Gamma distribution is a better choice for modeling the PDVs in networks. The

non-exponential distribution of the PDVs will cause an error in the estimated phase

offset. The authors of the Boot-strap method also have not provided any solution for

estimation and correction of the frequency offset.

The results of [?] and [?], modeling the network delay by Gamma distributions, is

the main motivation and one key assumption of our work. As a result, we study the

characteristics of the PDVs in a network in the last remaining section of this chapter.

In the next chapter, we will explain how this results can help us to develop a better

solution for the bias problem.
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4.3 Packet Delay Variation in Networks

In [?] and [?], it was shown that the Packet Delay Variation (PDV) in multi-hop

Ethernet networks and for strict priority queuing can be modeled by a Gamma dis-

tribution. The parameters of the PDF are a function of the traffic load and also the

number of hops. The PDF of a Gamma distribution is:

fX(x) =


xα−1

Γ(α)βα
e
−x
β x > 0

0 x < 0

(4.3.1)

The terms α and β are called the shaping and scale parameters respectively. The

exponential distribution is a special case of the Gamma distribution for the case that

the shaping parameter is equal to one. As it was already mentioned, in [?], Jesk et

al. used a Boot-strap solution to provide an unbiased estimator of the phase offset.

This method was developed under the assumption that the PDV can be modeled by

an exponential distribution. However, the results of [?] and [?] show that the shaping

parameter is not always close to one. For example for 80% traffic load, over a 5 hops

network, the shaping parameter in [?] is determined as 11. This difference causes an

error in the estimated value of the phase offset for the Boot-strap method.

The experimental results in [?] are collected for the IEEE 1588v2 Sync messages

in a setup composed of five carrier-class switches for different traffic loads. The Sync

messages were sent at a rate of 16 packets per second in a strict priority queuing

class. Fig. 10 shows how by increasing the traffic load from 20% to 80%, packet delay

increases.

The authors of [?] and [?] modeled the PDVs by a Gamma distribution 1. Figures

10 to 13 show the PDVs for different traffic loads and also the Gamma distribution

1In [?] and [?] they use the Erlang distribution which is a special case of the Gamma distribution
for integer values of the shaping parameter
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Figure 10: Packet delay for different traffic loads [19]

that fits with the experimental results. Although in [?] and [?] the distributions have

not been defined explicitly, we regenerated the delays in Figures 10 to 13 using the

following MATLAB codes:

for 20 percent traffic load:

delay = 133 ∗ 10−6 + 10−6 ∗ gamrnd(2, 6.5);

for 40 percent traffic load:

delay = 133 ∗ 10−6 + 10−6 ∗ gamrnd(6, 6.5);

for 60 percent traffic load:

delay = 133 ∗ 10−6 + 10−6 ∗ gamrnd(8, 6.5);

for 80 percent traffic load:

delay = 133 ∗ 10−6 + 10−6 ∗ gamrnd(11, 6.5);
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Figure 11: 5 hops 20% traffic load, Gamma(α = 2) [14]

We observe that PDVs in a network do not follow the exponential distribution

and for higher traffic loads, they are not even close to this distribution. As has been

illustrated in Figures 11 to 14, as the traffic load increases from 20% to 80%, the

value of α increase from 2 to 11.

This result, modeling the network delay by Gamma distributions, is the main

motivation and one key assumption of this work. In the next chapter we introduce a

solution to estimate the bias and we compare our results with the case with no bias

correction and also with the Boot-strap method.
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Figure 12: 5 hops 40% traffic load, Gamma(α = 6) [19]

Figure 13: 5 hops 60% traffic load, Gamma(α = 8) [19]
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Figure 14: 5 hops 80% traffic load, Gamma(α = 11) [14]



Chapter 5

Proposed Solution

In this chapter we propose a solution to estimate the delay bias and improve the

synchronization accuracy of IEEE 1588 PTP. Our method is easy to implement and

is compatible with the current version of the protocol. As discussed in Section ??,

we know that the synchronization process can be modeled as a filtering problem. We

refer to the method of using a filter discussed in Section ?? to estimate and correct the

offset as, the Basic 1588 method. In this chapter we introduce a method to remove

the bias from the output of the filter. We call our method Bias Correcting 1588 (BC

1588). This method allows us to update the slave clock recursively. It also works well

even in the presence of large frequency offsets and can be implemented via different

filters.

5.1 Bias correcting 1588 (BC 1588)

From Section ?? we know that the synchronization process happens by exchanging

timing packets between master and slave. A master sends the nth Sync message which

includes its local time at tn. A slave receives this message at C(tn+d+xn). The term

C(t) represents the local time of the slave clock and d+ xn is the time that a packet

takes to travel from master to slave or the down-link delay where d is the fixed part

39
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and xn is the random part of the delay. Then the slave node sends its local time as a

Delay-Req message at C(t′n−d−yn) and the master receives this message at t′n, where

d+ yn is the up-link delay and similar to the down-link delay d is the fixed part and

yn is the random part of the delay. Note that following Section 3.1 we are assuming

that the fixed parts of the delays for the down-link and up-link directions are equal

with each other. For the sake of simplicity, we first assume that the frequency offset

is zero. So the phase offset is a constant number. From Section 4.3, we know that the

random delays from a master to slave and from a slave to master can be modeled by a

Gamma distribution. We denote the subtraction of a master time from the slave time

at the nth synchronization interval by δDL(n). Similarly, for the up-link direction we

denote the subtraction of a slave time from the master time by δUP (n). By using the

results of Section ??, for the down-link direction we have:

δDL(n) = C(tn + d+ xn)− tn = θ + d+ xn (5.1.1)

and for the up-link:

δUP (n) = t′n − C(t′n − yn) = −θ + d+ yn (5.1.2)

The term θ is the phase offset. From Chapter 3 we know that the bias term is

determined as (E(X)−E(Y ))/2. The terms E(X) and E(Y ) represent the expected

values of the random delays for the down-link and up-link directions respectively. As

a result, in order to estimate the bias we need to estimate the expected values of

the random delays. Our method estimates the expected value of the down-link and

up-link random delays separately and in symmetric fashion, so at this point let us

just consider the down-link delay.
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If the random variable X represents the random part of the down-link delay, then

its PDF is determined by (4.3.1). The CDF of the Gamma distribution is:

FX(x) =


γ(α, x

β
)

Γ(α)
x > 0

0 x < 0

(5.1.3)

We recall that α and β are called the shaping and scale parameters respectively.

The term γ(α, x
β
) is an incomplete Gamma function and is determined by:

γ(α,
x

β
) =

∫ x
β

0

yα−1e−ydy (5.1.4)

The expected value of the Gamma distribution is determined by the multiplication

of α and β, so:

E(X) = αβ (5.1.5)

It needs to be emphasized that the values of α and β are unknown, so we are not

able to calculate the expected value of the delay using (5.1.5).

Now assume that instead of one Gamma random variable, we consider the min-

imum of two successive random variables. In the context of IEEE 1588, this means

that when the receiver receives the (2i− 1)th Sync message, it waits for the next one,

then takes the following minimum:

δ′DL(i) = min[(C(t2i−1 + d+ x2i−1)− t2i−1), (C(t2i + d+ x2i)− t2i)]

= min[(θ + d+ x2i−1), (θ + d+ x2i)]

= θ + d+min(x2i−1, x2i) (5.1.6)
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Here DL stands for down-link.

It is known from stochastic text books (for example [?]) that if W = min(X, Y ),

where X and Y are independent random variables, then the distribution of W is:

fW (w) = fX(w) + fY (w)− [fX(w)FY (w) + fY (w)FX(w)] (5.1.7)

Here f and F represent the PDF and CDF of the random variables respectively. If

we assume that X and Y are from a Gamma distribution, then by using (4.3.1) and

(5.1.3), the distribution of W is determined by:

fW (w) =
2wα−1e

−w
β

Γ(α)βα

[
1−

γ(α, w
β

)

Γ(α)

]
. (5.1.8)

For finding the mean value of W , we expand γ(α, w
β

) by the following series [?]:

γ(α,
w

β
) = (

w

β
)αΓ(α)e

−w
β

∞∑
0

(w
β

)k

Γ(α + k + 1)
(5.1.9)

By substituting (5.1.9) in (5.1.8), we can rewrite (5.1.8) as:

fW (w) =
2wα−1e

−w
β

Γ(α)βα
−
∞∑
0

[
e
−w

(β/2)w2α+k−1

(β/2)2α+kΓ(2α + k)

Γ(2α + k)

22α+k−1Γ(α)Γ(α + k + 1)
] (5.1.10)

Now by taking the mean value, we finally have:

E(W ) = 2αβ −
∞∑
0

(2α + k)(β/2)Γ(2α + k)

22α+k−1Γ(α)Γ(α + k + 1)
(5.1.11)
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So the expected value of W can be determined by (5.1.11).

Let us assume that the slave node just uses the sequence of data that comes from

(5.1.1) to estimate the value of θ. The slave node passes the data into a filter (for

example a Kalman filter). Since the expected value of the random delay is not zero

(in this case it is the mean value of the Gamma distribution plus the fixed part of

the delay), the convergence point of the filter is:

∆DL = θ + d+ αβ (5.1.12)

Now assume that the slave clock uses (5.1.6) to estimate the value of θ. So it

passes the result of (5.1.6) into a filter. As a result, the new convergence point would

be:

∆′DL = θ + d+ E(W ) (5.1.13)

where E(W ) is determined by (5.1.11). By subtracting (5.1.12) from (5.1.13):

∆DL −∆′DL = αβ − E(W )

∆DL −∆′DL = αβ −

[
2αβ −

∞∑
0

(2α + k)(β/2)Γ(2α + k)

22α+k−1Γ(α)Γ(α + k + 1)

]

∆DL −∆′DL = −αβ +
β

2

∞∑
0

(2α + k)Γ(2α + k)

22α+k−1Γ(α)Γ(α + k + 1)︸ ︷︷ ︸
f(α)

∆DL −∆′DL = −αβ +
β

2
f(α) (5.1.14)
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where f(α) is:

f(α) =
∞∑
0

(2α + k)Γ(2α + k)

22α+k−1Γ(α)Γ(α + k + 1)
(5.1.15)

We can rewrite (5.1.14) as:

αβ =
∆DL −∆′DL

f(α)
2α
− 1

(5.1.16)

Equation (5.1.16) provides an explicit equation for estimating the mean value of

the noise, which is the bias that we were trying to determine. The problem with this

equation is the unknown value of α.

To proceed, we first focus on f(α) to study its characteristics. Fig. 15 shows

f(α)/α versus α.

Figure 15: f(α)/α versus α

As we observe in Fig. 15, as α decreases, f(α)/α changes more rapidly. For
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large values of α, this ratio gets closer to a constant number. By trial and error, we

determine that:

f(α)

α
' 2(1 +

0.56√
α + 0.3

) (5.1.17)

Equation (5.1.17) provides an equation much simpler than (5.1.15) for calculating the

denominator of (5.1.16).

Assume, that instead of the exact value of α, we know a neighborhood of it. This

assumption is in fact a realistic assumption, since in many practical problems we

may not be able to know the exact value of the delay parameters, but it is possible

to have an initial guess. For example, in the busy hour, when the traffic is at its

maximum, or during the night, when the traffic is at its minimum, we may have

different expectations for the traffic load. The shaping parameter should be adjusted

based on this knowledge about the traffic pattern. In the simulation results section, we

will evaluate the robustness of our method against incorrect assumptions. We observe,

however, that even under an incorrect assumption about the shaping parameter’s

value, we obtain a good estimation of the bias.

For estimating the frequency offset, we use the same method that was explained

in Section 3.2 with a little modification. Since the bias correction happens after

receiving two timing packets, equation (3.2.1) needs to be changed slightly as follow:

fm(n) =
θm(2n)− θm(2n− 1)

T2n − T2n−1

(5.1.18)

In this scheme the estimation of the frequency offset is updated after two successive

synchronization intervals.

In the context of IEEE 1588, bias correction from Equation (5.1.16) needs to

be done for the down-link and up-link separately. To see how to implement this

method, a summary of our algorithm is given by Algorithm 1.
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Algorithm 1 :BC 1588

f(α)
α

= 2(1 + 0.56√
α+0.3

) %by knowing an approximation of α

%four auxiliary variables to keep the summations

sumDL ← 0, sum′DL ← 0, sumUL ← 0, sum′UL ← 0

For n = 1, 2, ...

δDL(n) = C(tn + xn)− tn

δUL(n) = t′n − C(t′n − yn)

θm(n) = δDL(n)−δUL(n)
2

If n is even

k = n/2

δ′DL(k) = min(δDL(n), δDL(n− 1))

δ′UL(k) = min(δUL(n), δUL(n− 1))

sumDL = sumDL + δDL(n) + δDL(n− 1)

sum′DL = sum′DL + δ′DL(k)

sumUL = sumUL + δUL(n) + δUL(n− 1)

sum′UL = sum′UL + δ′UL(k)

∆DL = sumDL/n

∆′DL = sum′DL/k
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∆UL = sumUL/n

∆′UL = sum′UL/k

%expected value of the down-link delay

EDL =
∆DL−∆′DL
f(α)
2α
−1

%expected value of the up-link direction

EUL =
∆UL−∆′UL
f(α)
2α
−1

%bias

B = EDL−EUL
2

fm(k) = θm(n)−θm(n−1)
tn−tn−1

%θm(n) and fm(k) would be passed into the filter

[uθ(k), uf (k)] = Kalman(θm(n), fm(k))

C(t) = C(t)− uθ(k)

%C(t) is the slave time

f(t) = f(t)− uf (k)

%f(t) is the slave frequency

%The total bias is subtracted from the slave clock

CBC(t) = C(t)−B

end If

end For

Although using an approximated value for α can provide a good bias estimation,
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the next section provides an extension to this method which enables us to estimate

the value of α.

5.2 Estimating the shaping parameter

In order to estimate the shaping parameter, in addition to (5.1.16) we need to have

one more independent equation. This equation can be found from the variance of the

noise. So we first present a method for estimating the variance of the noise.

The bias estimator that we developed in Section 5.1 updates the slave clock not

at each iteration, but after two iterations. This characteristic in fact provides for us

a simple solution for estimating the variance of the noise. Fig. 16 shows two typical

signal exchanges between a master and a slave for the down-link direction.

Figure 16: Two successive signal exchange for the down-link direction

We compute the following expected value:
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E[((t2 − t1)− (t′2 − t′1))2] = E[((θ + x+ d)− (θ + x′ + d))2]

= E[(x− x′)2]

= E(x2) + E(x′ 2)− 2E(xx′)

x and x′ are i.i.d∼X−−−−−−−−−−−−→ = 2(E(X2)− E2(X)) = 2σ2

As a result, the above expected value can give us an estimate of the down-link

delay variance. A similar approach is then taken for the up-link delay. Note that

because we correct the slave clock after two iterations, the phase offset (θ) in these

two iterations is almost constant, so they cancel each other out.

By knowing the variance of the noise, we arrive at that additional equation that

we were looking for. Similar to the last section, since we estimate and correct the bias

for the down-link and up-link directions separately and in symmetric fashion, we just

explain the equations for the down-link direction. We denote the estimated variance

for the down-link delay as σ2
DL. If we assume that the packet delay variation follows

the Gamma distribution, we know:

αβ2 = σ2
DL (5.2.1)

where αβ2 is the expression for the variance of a Gamma distribution. By combin-

ing (5.2.1), (5.1.16) and (5.1.17), we end up with the following closed form equation

for estimating α:

α =
0.3(

0.56σ
∆DL−∆′DL

)2

− 1
(5.2.2)

All the variables on the right hand side of this equation are known. The terms σ,
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∆DL and ∆′DL can be estimated recursively. So the BC 1588 method that we explained

in the last section should be modified as follows. After two successive synchronization

intervals, the estimated values for σ, ∆DL and ∆′DL are updated. These new estimated

values are plugged into (5.2.2) to update the estimate of α. Then the new estimated

value for α is substituted in (5.1.16) in order to give us a new estimation of the bias.

This process is done for the down-link and up-link directions separately.

So far it seems that this solution provides an accurate estimation of the bias.

However, in practice it does not happen. We will study the simulation results in

the next chapter, but in order to show the problem with this method, consider the

following figure. Fig. 17 shows a typical synchronization error, when we estimate the

value of α by the above method. Here we have considered 20 percent down-link and

80 percent up-link traffic loads. The blue line close to zero shows the result for Basic

1588 (i.e., in the absence of bias estimation) and the range of the error in this case

is in the order of tens of micro seconds. The green line shows the result when we use

the bias correction method and estimate the value of α using (5.2.2).

As we observe the result for this method is much worse than the case that we have

no bias correction. We also observe some large spikes in the figure. To understand

the reason behind this we return to equation (5.2.2). Unfortunately the denominator

of this equation gets very close to zero. To see this more clearly, from (5.1.17) we

have:

f(α)

2α
− 1 =

0.56√
α + 0.3

also from (5.2.1):

σ =
√
αβ
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Figure 17: Error for 20 percent down-link and 80 percent up-link traffic loads

and finally from (5.1.16):

∆DL −∆′DL = αβ(
f(α)

2α
− 1)

By substituting these three equations into the denominator of (5.2.2), we have:

(
0.56σ

∆DL −∆′DL

)2

− 1 =
α + 0.3

α
− 1

As we see, if we remove 0.3 from the above equation, the denominator of (5.2.2)

gets zero. This observation also implies that if the shaping parameter (α) is a small

number, then 0.3 can have a stronger effect and we should be able to have a more

successful estimation.
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In order to solve this problem, we apply two additional mechanisms to the

algorithm. The first mechanism is to define a reasonable neighborhood for α.

As we saw in Fig. 17, when the denominator of (5.2.2) gets very close to zero,

due to computational problems, we get very bad estimates for α. By defining a

neighborhood for α, we can filter out all the bad estimated values of α before using

them for estimating the bias. This neighborhood should not be necessarily very tight

and is just for preventing very poor estimates of α. For example let us denote the

estimated value of α from (5.2.2) as α̂DL. If the value of α̂DL is more than a lower

boundary αlDL and less than an upper boundary αuDL, then it would be used for

estimating the bias. The second mechanism that we use is to take the average of the

estimated values for α. Taking the average smooths the results and will reduce the

effect of bad estimated values. The first few estimated values may not be accurate

enough, so we start to take the average of estimated values after a predetermined

number of iterations. A summary of these two additional mechanisms is as follows.

First we update our estimates of α using (5.2.2). If the estimated value falls between

αlDL and αuDL, it can be used for estimation of bias. For a few initial estimated αs,

we use them directly to update the bias (in the algorithm bellow, we consider the

ten first iterations). After a predetermined number of iterations we start to average

the estimates. Algorithm 2 summarizes the whole method:

Algorithm 2 :Advanced BC 1588

f(α)
α

= 2(1 + 0.56√
α+0.3

) %by knowing an approximation of α

%eight auxiliary variables to keep the summations

sumDL ← 0, sum′DL ← 0, sumUL ← 0, sum′UL ← 0, sumσ
UL ← 0, sumσ

UL ← 0,

sumα
DL ← 0, sumα

UL ← 0

iDL ← 1, iUL ← 1 %counters
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For n = 1, 2, ...

δDL(n) = C(tn + xn)− tn

δUL(n) = t′n − C(t′n − yn)

θm(n) = δDL(n)−δUL(n)
2

If n is even

k = n/2

δ′DL(k) = min(δDL(n), δDL(n− 1))

δ′UL(k) = min(δUL(n), δUL(n− 1))

sumDL = sumDL + δDL(n) + δDL(n− 1)

sum′DL = sum′DL + δ′DL(k)

sumUL = sumUL + δUL(n) + δUL(n− 1)

sum′UL = sum′UL + δ′UL(k)

sumσ
DL = sumσ

DL + (δDL(n)− δDL(n− 1))2

sumσ
UL = sumσ

UL + (δUL(n)− δUL(n− 1))2

∆DL = sumDL/n

∆′DL = sum′DL/k

∆UL = sumUL/n

∆′UL = sum′UL/k

σ2
DL = sumσ

DL/2k

σ2
UL = sumσ

UL/2k



54

%estimate the value of α

α̂DL = 0.3(
0.56σDL

∆DL−∆′
DL

)2

−1

α̂UL = 0.3(
0.56σUP

∆UL−∆′
UL

)2

−1

%the estimated α should be in the proper neighborhood

If αlDL < α̂DL < αuDL

If iDL > 10

sumα
DL = sumα

DL + α̂DL

α = sumα
DL/(iDL − 10)

else

α = α̂DL

end If

iDL = iDL + 1

end If

If αlUL < α̂UL < αuUL

If iUL > 10

sumα
UL = sumα

UL + α̂UL

α = sumα
UL/(iUL − 10)

else

α = α̂UL

end If

iUL = iUL + 1

end If

EDL =
∆DL−∆′DL
f(α)
2α
−1

%expected value for the down-link delay

EUL =
∆UL−∆′UL
f(α)
2α
−1

%expected value for the up-link delay
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B = EDL−EUL
2

%total bias

fm(k) = θm(n)−θm(n−1)
tn−tn−1

%θm(n) and fm(k) would be passed into the filter

[uθ(k), uf (k)] = Kalman(θm(n), fm(k))

C(t) = C(t)− uθ(k) %C(t) is the slave time

f(t) = f(t)− uf (k) %f(t) is the slave frequency

%The total bias is subtracted from the slave clock

CBC(t) = C(t)−B

end If

end For

When any information about the network traffic load is available, the neighbor-

hood that we defined for α in order to prevent those large spikes can also be used

as a tool for improving the synchronization accuracy. To see how this is possible,

consider the first version of our method where we used an approximate value of α for

estimating the bias. Instead of an approximate value, assume we just know that the

traffic load should be bounded by a possible range for α. Based on this knowledge

we can consider a tighter neighborhood for the value of α. In the next chapter we see

that this strategy can improve the synchronization accuracy.



Chapter 6

Simulation Results

To evaluate our method, we generated PDVs using the results of [?] and [?]. In the

first section of this chapter, we use Algorithm 1 (BC 1588) from the last chapter to

estimate the bias. This algorithm works using an approximated value for α. Then the

performance of Algorithm 2 (Advanced BC 1588) will be evaluated. Using Algorithm

2, we can jointly estimate the value of the shaping parameter and the bias.

We compare the performance of our methods with Basic 1588 (see Section 3.4.2)

and the Boot-strap method. The authors of the Boot-strap method did not pro-

vide any algorithm for estimating the frequency offset, so we first assume that the

frequency offset is zero and compare the performance of our method with the Boot-

strap method. Then we take the frequency offset into consideration and evaluate the

performance of our method in the presence of a frequency offset. Finally, as was de-

scribed in the algorithm section, we use a filter to process the data. In the following

simulations, a Kalman filter is used for this purpose.

6.1 Bias estimation using an approximated α

For estimating the bias using Algorithm 1, we need to have a coarse approximation

of α. In a fixed network, the value of α is different for different traffic loads. We first

56
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assume that we know the exact value of the shaping parameter, then the next step is

to examine the robustness of our method against incorrect assumptions.

In Fig. 18 we assume that we have a 20% traffic load from master to slave and

60% traffic load from slave to master. PDVs are generated based on the results of [?]

and [?], so the values of α for 20 and 60 percent traffic loads are 2 and 8 respectively.

The synchronization interval is assumed to be 1 sec and we assume that the frequency

offset is zero. The phase offset, however, is 1 sec. The time axis starts from t=15 sec.

In this figure we used the exact values of α to estimate the bias.

Figure 18: Error in the estimated phase offset for 20 percent down-link and 60
percent up-link traffic loads.

From the result for Basic 1588 it can be seen that the existence of the bias in

the estimated phase offset degrades the synchronization accuracy. It also can be

observed that because the PDVs are following the Gamma distribution instead of the

exponential distribution, the Boot-strap method is not very accurate. Our method,

however, can provide a more accurate synchronization.
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Of course it is not realistic to assume that we know the exact value of the shaping

parameter. So in the above example, let us assume that instead of the exact value of

the traffic loads, we just know that traffic load from the master to slave is somewhere

between 20 and 40 percent (from [?] the value of α for 40 percent traffic load is 6).

By considering the middle point between these values, we would have α = 4. Fig. 19

shows that using this approximation (rather than the correct value for α) causes our

results to be worse, but our method still works better than the Boot-strap.

Figure 19: Error in the estimated phase offset for 20 percent down-link and 60
percent up-link traffic loads, with an incorrect assumption about the shaping
parameter value.

In Fig. 20, the up-link and down-link traffic loads are assumed to be 80 and 20

percents respectively. The value of α for 80 percent traffic load from [?] is 11. By

increasing the traffic load, and as a result, increasing the value of α, the PDV becomes

less exponential. Consequently, as can be seen in Fig. 20, the Boot-strap method

suffers from a larger error. In Fig. 21, we evaluate the performance of BC 1588 for

different assumptions/approximations of α. For this purpose, we keep all the initial
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settings the same as in Fig. 20. However, this time, in addition to using the exact

value of α (for the up-link direction), we also evaluate the performance of BC 1588

using a number of approximated values for the shaping parameter. We observe that

when we use the exact value of α (α = 11), the error converges to zero. As we get far

from the exact shaping parameter the error increases. By comparing Fig. 21 and Fig.

20, it can be seen that for a wide range of incorrect assumptions/approximations of

α, BC 1588 still provides better results than the Boot-strap method. For example,

using α = 7 for estimating the bias while the actual α is 11 means that while the

actual traffic load is 80%, the receiver thinks that it is around 50%. Nevertheless,

even for α = 7, BC 1588 is still slightly better than the Boot-strap method.

Figure 20: Error in the estimated phase offset for 20 percent down-link and 80
percent up-link traffic loads.

In previous figures we assumed that the frequency offset is zero. In practice, this

assumption is clearly wrong and a slave clock drifts from a master clock gradually.

Unfortunately, in [?] no mechanism has been provided for estimating the frequency
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Figure 21: Performance evaluation of BC 1588 for 20 percent down-link and 80
percent up-link traffic loads, and different assumptions about the shaping pa-
rameter.

offset. As a result, in the presence of a frequency offset we just compare our results

with Basic 1588. In Fig. 22, all the initial conditions are the same as in Fig. 20,

except that the frequency offset of the slave clock is 10−6 per second. Therefore

the slave time drifts from the master time with a rate of 10−6 second per second.

Comparing the results in Fig. 22 with the results in Fig. 20, we observe that the

existence of a frequency offset does not degrade the results of our method. In fact, in

dealing with the frequency offset there is no difference between BC 1588 and Basic

1588. This is because BC 1588 and Basic 1588 estimate the frequency offset using

(3.2.1) and (5.1.18) respectively, both of which are based on the same principle.

In Fig. 23 we evaluate the performance of BC 1588 in the presence of different

frequency offsets. All the initial settings except of the variant frequency offsets are the

same as in Fig. 22. As we observe, after a few initial iterations, the frequency offset is

estimated and removed from the slave time. After correcting for the frequency offset,
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Figure 22: Error in the estimated phase offset for 20 percent down-link and 80
percent up-link traffic loads, with a frequency offset of 10−6.

no significant difference in their level of error is observed. So we see that BC 1588

works well even if there is a large frequency offset between the master and slave clock.

6.2 Joint estimation of the bias and the shaping

parameter

In this section we estimate the bias using Algorithm 2. We first assume that

αlDL=αlUL=1 and αuDL=αuUL=15. From [?] and [?] the value of α for 20 percent

and 80 percent traffic loads in a 5 hops network is 2 and 11 respectively. So the

neighborhood that we consider for the shaping parameter is loose and is just based

on a very approximate knowledge about the range of α.

In Fig. 24 we assume that we have a 20% traffic load from master to slave and

60% traffic load from slave to master. The initial settings are the same as in Fig. 18.
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Figure 23: Performance evaluation of BC 1588 for 20 percent down-link and 80
percent up-link traffic loads and different frequency offsets.

Advanced BC 1588 estimates the shaping parameters along with the bias. In Fig.

24, the estimated shaping parameters for the down-link and up-link directions are

2.4 and 9.4 respectively. In BC 1588, instead of estimating the shaping parameter,

we use an approximate value. Using a fixed value for α results in more predictable

simulation output, with the performance varying very little from simulation run to

simulation run. On the other hand, when we use Advanced BC 1588, it is possible

that we sometimes get better or worse results than Fig. 24, but this figure is a typical

output. We also observe that although Advanced BC 1588 still has better results

than the Boot-strap method, it suffers from a noticeable level of error.

The initial settings in Fig. 25 are the same as in Fig. 20. So the shaping parame-

ters for the down-link and up-link directions are 2 and 11 respectively. The estimated

shaping parameters from Advanced BC 1588 for the down-link and up-link directions

are 2.1 and 9.2 respectively.
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Figure 24: Error in the estimated phase offset for 20 percent down-link and 60
percent up-link traffic loads.

In both Fig. 24 and Fig. 25 we observe that for the initial iterations Advanced BC

1588 does not have a good performance. The reason is that this method, in addition

to the bias, estimates the variances and the shaping parameters of the down-link and

up-link delays. As a result it takes some time/iterations for the method to obtain

good estimates for each of these variables.

So far we assumed that the frequency offset is zero. In Fig. 26 we set all the initial

settings the same as in Fig. 25, except that the frequency offset of the slave clock is

10−6 per second. Similar to the last section, because the authors of the Boot-strap

method have not provided any method for estimating the frequency offset, we just

compare our method to Basic 1588.

Comparing the results in Fig. 26 with the results in Fig. 25, we observe that

the existence of a frequency offset does not degrade the results of our method. The

estimated shaping parameters for the down-link and up-link delays in Fig. 26, are

3.2 and 11.2 respectively.

At the end of the last chapter we mentioned that when information about the net-

work traffic load is available, our method is flexible enough to provide better results.
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Figure 25: Error in the estimated phase offset for 20 percent down-link and 80
percent up-link traffic loads.

For this purpose we can readjust the values of αlDL, αuDL, αlUL and αuUL based on the

available information. In Fig. 27 we considered 20 percent down-link and 40 percent

for the up-link traffic loads. The value of α for the 40 percent traffic load from [?]

is 6. Let us assume that the receiver just knows that the down-link traffic load is

somewhere between 10 to 40 percents and the up-link traffic load is somewhere be-

tween 10 to 60 percents. So αlDL = αlUL = 1, αuDL = 6 and αuUL = 8. We observe that

although these are not very tight neighborhoods, such boundaries can improve the

synchronization accuracy noticeably. The estimated values for the shaping parame-

ters are 2.3 and 5.5 for the down-link and up-link directions respectively. A tighter

neighborhood can also make the output more predictable. It means that we can be

sure that the level of error because of a wrong estimation never exceeds a specific

level.

To make the comparison easier, in Fig. 28 we compare the performance of Ad-

vanced BC 1588 with a looser neighborhood for α with Advanced BC 1588 with a

tighter neighborhood. Consider a 20 percent down-link and 60 percent up-link traffic

load. For the looser neighborhood, we consider the same neighborhood as in Fig. 25.
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Figure 26: Error in the estimated phase offset for 20 percent down-link and 80
percent up-link traffic loads, with a frequency offset of 10−6.

So αlDL = 1, αuDL = 15, αlUL = 1 and αuUL = 15. For the tighter neighborhood, assume

that the receiver just knows that the down-link traffic load is somewhere between 10

to 40 percents and the up-link traffic load is between 40 and 80 percents. So αlDL = 1,

αuDL = 6, αlUL = 6 and αuUL = 11.

The estimated values for the shaping parameters are 2.4 and 8.5 for the down-link

and up-link directions respectively. We observe that this coarse knowledge about the

traffic loads can improve the synchronization accuracy noticeably. This flexibility is

one of the advantages of our method that is observed in both BC 1588 and Advanced

BC 1588 (for the BC 1588 we use an approximated value for α so if we have a better

knowledge about the traffic loads, we would have a better approximation).
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Figure 27: Error in the estimated phase offset for 20 percent down-link and 40
percent up-link traffic loads, with a frequency offset of 10−6.

6.3 Non-Gamma distributed PDVs

Although the results of [?] and [?] show that the PDVs can be modeled by Gamma

distributions, in this section we answer what would happen if the PDVs do not follow

the Gamma distribution.

A rule of thumb is that even if the PDVs do not follow the Gamma distribution,

as long as there are some values for the shaping and scale parameters to make the

Gamma distribution similar to the non-Gamma distributed PDVs, our method still

can provide good results. However, if the PDVs are very different from the Gamma

distribution, then we may have a large amount of error. This problem is more seri-

ous specifically for Advanced BC 1588. The reason is that for this method we also

estimate the shaping parameters. In order to estimate the shaping parameters, we

first estimate the variance of the delays. When the estimated variances do not follow

the Gamma distribution, then the estimated values for the shaping parameters would
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Figure 28: Error in the estimated phase offset for 20 percent down-link and 60
percent up-link traffic loads, with a frequency offset of 10−6.

not be accurate anymore. Estimating the bias using a poor estimation of the shaping

parameters will result in a bad estimate of the bias.

Fig. 29 illustrates the result of using the Weibull distribution to generate the PDV

for the down-link delay. The delay is generated as follow:

delayDL = 133 ∗ 10−6 + 10−6 ∗Weibull(0.5, 6.5)

Here Weibull(0.5,6.5) is a Weibull random number generator with the scale pa-

rameter 0.5 and shape parameter 6.5. The up-link delay is generated using the results

of [?] for 80 percent traffic load. We assumed that αlDL = 1, αuDL = 6, αlUL = 6 and

αuUL = 11. As we observe in Fig. 29, although the distribution of the delay for the

down-link direction does not follow the Gamma distribution, Advanced BC 1588 can

estimate the bias successfully.

To make the comparison easier, in Fig.30 we compare the performance of Ad-

vanced BC 1588 when the down-link delay is generated using Weibull and uniform
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Figure 29: Error in the estimated phase offset for the Weibull distributed down-link
and Gamma distributed up-link delays.

distributions. The up-link delay is the same as in Fig.29. The uniform distribution

is generated as follow:

delayDL = 133 ∗ 10−6 + 10−6 ∗ (10 ∗ U(0, 1))

Here U(0, 1) generates random numbers between 0 and 1 from uniform distribu-

tion. We observe that changing the distribution from Weibull to uniform degrades

the result. This was predictable because there is less similarity between the Gamma

and uniform distributions in comparison with the Weibull and Gamma distribution.

6.4 Time changing traffic loads

So far we have assumed that we have a constant traffic load in the network. Clearly

this assumption is not valid and traffic loads and as a result PDVs change with time.

In this section we evaluate the performance of our method when traffic loads change

with time. In reality, changing the traffic load does not usually happen very fast

rather it happens gradually. However, in this section we consider the extreme case.

We assume that the traffic load changes instantly and significantly. In Fig. 31 we
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Figure 30: Comparison between the error in the estimated phase offset for the
Weibull and uniform distributed down-link and Gamma distributed up-link de-
lays.

assume that we have 20 percent traffic load from the master to the slave. The traffic

load from the slave to the master initially is assumed to be 60 percent. At t=500 sec,

the up-link traffic load suddenly changes from 60 to 80 percent. Then, at t=3000 the

up-link traffic load changes from 80 to 40 percent. The values of α for the 40, 60 and

80 percent traffic loads from [?] and [?] are 6, 8 and 11 respectively. We assumed

that αlDL = 1, αuDL = 6, αlUL = 6 and αuUL = 11.

Fig. 31 shows that when the traffic load changes, our method looses its accuracy.

The reason is that all the estimated variables until the time that PDV changes,

are based on the previous traffic load. When the traffic load changes the previous

estimated values act as a wrong memory. It means that, until after a long time when

the effect of the wrong memory fades, we cannot obtain an accurate estimation. The

relatively good results of Basic 1588 is partly accidental. In other words, in this

example, the wrong memory of the filter helps Basic 1588 method to obtain better
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Figure 31: Error in the estimated phase offset. The down-link traffic load is 20
percent. The up-link traffic load changes from 60 to 80 percent at t=500 sec
and changes form 80 to 40 percent at t=3000 sec.

results. The other reason is that when the traffic load for the up-link delay drops

down to 40 percent at t=3000 sec, given the 20 percent down-link traffic load, we

have relatively symmetric network. One other characteristic that is observed in Fig.

31 is that changing the traffic load, affects BC 1588 pretty much similar to Advanced

BC 1588. In Basic 1588 there is no bias correction and we are just updating the slave

clock using a Kalman filter. Comparing Basic 1588 and Advanced BC 1588 in Fig. 31

shows that regarding the time changing PDVs, the filter that we are using to update

the slave clock is more important than the bias correction part.

One simple solution to this problem is to restart the synchronization process

periodically. The process needs to be restarted often enough to catch significant

changes in network traffic load. For example, in [?], traffic loads change never faster

than every 12 minutes, and sometimes at an even slower frequency. All the initial

settings in Fig. 32 are the same as in Fig. 31. In Fig. 32 we restart Basic 1588
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and Advanced BC 1588 with a period of 1000 sec. It means that when the time is

a multiple of 1000, we restart all the summations and matrices that are involved in

Kalman filtering and bias estimation processes. The red line in Fig. 32 shows the

zero line, in order to make the comparison easier.

Figure 32: Error in the estimated phase offset. The down-link traffic load is 20
percent. The up-link traffic load changes from 60 to 80 percent at t=500 sec
and changes form 80 to 40 percent at t=3000 sec. The period of restart is 1000

Whenever the process is restarted, previous estimated values are assigned to be

zero. As a result when traffic load changes with time, in comparison with the case

that the process is not restarted, there is less outdated and potentially misleading

memory in the estimation equations. We observe that Advanced BC 1588 with Pe-

riodic Restart, between two successive restart points, has a better performance than

Advanced BC 1588. However, a serious problem with this approach are the ran-

dom spikes that happen, for the first initial iterations, whenever the synchronization

process is restarted.

In order to mitigate the effect of random spikes, we propose the following solution.

Suppose that whenever the synchronization process is restarted, a temporary slave

clock for a predetermined interval starts to work. The temporary slave clock, before

the synchronization process is restarted for the slave clock, sets its time and frequency
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to the slave clock. Whenever the synchronization process is restarted, the temporary

slave clock acts as the slave clock for a predetermined interval. Meanwhile, the slave

clock is updating its estimates and is passing the initial spikes. When the interval is

finished, the time again is read from the slave clock. In Fig. 33 all the initial settings

are the same as in the Fig. 32. The predetermined interval in Fig. 33 is assumed to

be 1/10 of the restart period so it is 100.

Figure 33: Error in the estimated phase offset. The down-link traffic load is 20
percent. The up-link traffic load changes from 60 to 80 percent at t=500 sec
and changes form 80 to 40 percent at t=3000 sec. The period of restart is 1000.
The interval for working the temporary clock is 100 sec

As we observe in Fig. 33, using this strategy mitigates the effect of random spikes

significantly. Consequently, Advanced BC 1588 with Periodic Restarts, provides good

results without severely getting affected by changing traffic loads.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we presented two methods for estimation and correction of the delay’s

bias. Both of these methods allow us to correct the slave clock recursively. They are

compatible with the current version of the IEEE 1588 PTP. They also can be applied

to different kinds of filters such as the Kalman filter.

For BC 1588, we just require a coarse approximation about the value of the shap-

ing parameters. It was shown that even when this approximation is incorrect, at

least for a noticeable range of error, we still can have a good estimation of the bias.

Advanced BC 1588 on the other hand, in addition to determining the bias is able to

estimate the shaping parameters too. As a result, unlike BC 1588, it does not re-

quire an approximation about the shaping parameters. Because Advanced BC 1588

estimates all the parameters itself it takes a larger numbers of iterations to provide a

good estimation than BC 1588. More importantly, for Advanced BC 1588 it is very

important that the PDVs can be modeled by a Gamma distribution or a distribution

close to it. Both Advanced BC 1588 and BC 1588 are flexible methods. It means

that if any knowledge about the network traffic load is available, these methods can

use it to improve their performance. This is an important characteristic because in

73
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reality a coarse knowledge about the network traffic load is usually available at the

slave node. Methods such as the Boot-strap method are not able to take advantage

of this knowledge. For our methods on the other hand, as the knowledge about the

traffic load is more accurate, they can improve their results.

7.2 Future Works

• Our methods are developed based on the assumption that PDVs are following

the Gamma distribution. We also showed that when PDVs are not Gamma

distributed but are close to this distribution, our methods still are able to pro-

vide good results. However, as the PDVs get less Gamma distributed, the

performance of our methods degrade. As a future work, these methods can

be extended to non-Gamma distributed PDVs. For this purpose two sugges-

tions can be considered. First, to use a more complicated distribution than the

Gamma distribution in order to model the PDVs. This suggestion does not

seem very promising for two reasons. First, finding a closed form equation for

bias, similar to the equations we found for the Gamma distribution, may not

be possible. Moreover, even if we can find a closed form equation for the bias,

the PDVs still may not follow the new distribution. The other suggestion is

to consider a combination of several distributions. For example, instead of one

Gamma distribution, we can consider several Gamma distributions. This can

be happen by putting the observed delay values into buckets, assuming that

delays of different values are caused by a different underlying PDV distribution.

This approach will make all the equations more complicated, but still seems

more promising than the first suggestion.

• In this work we assumed that the fixed part of the delays in the forward and

reverse directions are equal with each other. As we already mentioned, this
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assumption usually is true. However, there might be cases that we cannot make

this assumption. The fixed part of the delay is a constant number that needs to

be estimated separately and with another mechanism. Knowing the number of

hops between the master and slave nodes and the processing time of the devices

located in the path can be used to estimate the fixed part of the delay.

• Increasing the speed of estimation is an important topic for future work. Sup-

pose that the PDVs change with time with a fairly fast speed. In that case

the period of restart that we defined for the Advanced BC 1588 should get

smaller. But we know that reducing the restarting period is not desirable be-

cause whenever we reset the process there are some random fluctuations. In

the last chapter we explained how using a temporary slave clock can mitigate

the effect of random fluctuations. Nevertheless, a larger window size allows the

method to have a better estimation. One of the advantages of our methods

is that they can be implemented using different filters. Trying other kinds of

filters might be helpful in order to overcome fast-changing PDVs.

• As we just mentioned, different filters can be used to implement our method.

Given the fact that PDVs do not follow the Gaussian distribution, using other

filters such as particle filters may provide better results than the Kalman filter

and further improve the synchronization accuracy.
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