

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 1

Network Synchronization in Wireless Ad Hoc Networks

Carlos H. Rentel and Thomas Kunz
Department of Systems and Computer Engineering, Carleton University

 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada
{crentel, tkunz@sce.carleton.ca}

Abstract. This report presents a brief overview of network synchronization in the context of

Wireless Ad Hoc networks. A network synchronization algorithm is proposed and computer
performance evaluations presented that show the feasibility of a mutual network synchronization
algorithm compatible with an IEEE 802.11 complaint station. The algorithm proposed seeks to
synchronize the clocks of the nodes in a Wireless Ad Hoc network in which single-hop (Wireless
LAN) or multi-hop communication is supported. No use is made of a master clock such as the
one provided by the Global Positioning System (GPS) or by a fixed cluster of broadcasting
stations. The algorithm takes advantage of the simplicity of the clock-sampling technique to
exchange timing information among the nodes, and the truly distributed characteristic of a mutual
network synchronization approach. The beacon messages specified in the IEEE 802.11 standard
are used to periodically send the timestamps by each node. A steady-state inter-node time-
deviation error less than ten microseconds is obtained after a transition period during which the
clocks in the network learn about their drift differences. Performance results for the single-hop
and multi-hop case are presented using computer simulations that show a considerable
improvement in terms of scalability and maximum inter-node time deviation error with respect to
the timing synchronization function (TSF) of the IEEE 802.11 independent basic service set
(IBSS) network. Additional results are presented for a modification of the original algorithm in
which beacon transmission permission probabilities are computed per node in order to improve
the spreading of the synchronization information in a multi-hop network. The contribution of this
work is, 1) The performance evaluation of the TSF in a multi-hop scenario, 2) the performance
evaluation and approximate analysis of simple extensions to the TSF algorithm, and 3) The
introduction of a more scalable and accurate network synchronization algorithm for wireless Ad
Hoc networks.

1. Introduction

A Wireless Ad Hoc network is a distributed communication network comprised of
geographically separated radio terminal units or nodes (mobile or fixed) that perform the
management and regular operation of the network over a wireless transmission medium. A
Wireless Ad Hoc network is autonomous and operates by the shared responsibility of the entities
that provide the communication service itself, all or part of the nodes implement the required
applications to be host, router and transmission medium interface. In this respect a wireless Ad-
Hoc network differs from a cellular radio network in that it does not make use of a centralized
and fixed infrastructure. One of the most interesting advantages of Wireless Ad Hoc networks are
the possibility of multi-hop mode of communication, and the lack of a fixed centralized
infrastructure. These advantages make them attractive for battlefield and disaster relief
applications in which the deployment of a fixed infrastructure represents a high cost. Wireless
Ad Hoc networks have been traditionally related to wireless local area networks (wireless LANs),
however, recent advances in semiconductors have opened the venue for networks of tiny sensors
that can perform data collection and analysis. In the context of network synchronization we are
mainly concern with the performance of a distributed wireless computer network such as a

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 2

wireless LAN, a multi-hop LAN, mesh network (multi-hop WAN), and also a network of sensors.
However, we are less concern with the synchronization approaches that seek to find time-
relationships of events for data fusion in sensor networks, such as the works in [1], and [2]. The
Wireless Ad Hoc network concept is not new, and it embodies the same principles originally
envisioned for the packet radio networks.

The evolution of wireless Ad Hoc networks is mainly dependent on the efficient support of

multimedia applications. Users want to be able to simultaneously work or play with video, audio,
and data applications through existing and new services. The spectrum of applications and
services offered by wireless networks is expected to increase and mechanisms to support them are
needed. It is imperative therefore to focus on quality of service (QoS) mechanisms that can
support the performance requirements of different types of traffic simultaneously. Efforts are
underway to provide QoS in the Internet through the Integrated Services and Differentiated
Services architectures. Efforts must therefore follow to make wireless Ad Hoc networks QoS
aware as well.

Real-time applications such as voice, streaming video, and audio have specific requirements in

terms of end-to-end delay, delay jitter and packet loss ratio. Providing support for these
applications is particularly challenging in a wireless Ad Hoc network due to the lack of
infrastructure and the broadcasting and highly random nature of the wireless medium. Most
present day telecommunication networks rely on a fixed infrastructure to provide some level of
QoS support; examples of this are the cellular radio networks. The infrastructure in a cellular
radio network alleviates the complexity of supporting different mobile user applications by
providing time synchronization, and a central processing point through which important
information can be extracted from all mobile users simultaneously and in the same location. The
centralized architecture is not available to a pure wireless Ad Hoc network; therefore it is more
challenging to implement distributed QoS support to a group of nodes scattered in space yet
sharing a common transmission medium. One mechanism common to many telecommunication
networks is that of network synchronization. Network synchronization is utilized to simplify and
enhance the implementation and performance of medium access control protocols, security
protocols, and management operations to name just a few. Network synchronization is a key
function for instance in the IEEE 802.11 IBSS Ad Hoc mode to perform power management of
the nodes, and support of the medium access control (MAC) protocol in the Frequency Hoping
Spread Spectrum version of the physical (PHY) layer. Network synchronization is crucial in the
recently standardized 802.16a [3] mesh network option since the MAC protocol is based on
Time-Division-Multiple-Access (TDMA). Network synchronization can play a fundamental role
in the support of QoS for future Wireless Ad Hoc networks, particularly for real-time
applications, and more understanding of its advantages, and associated challenges is needed.

In this report we present a novel distributed network synchronization algorithm. The

performance of the proposed algorithm is evaluated and compared with that of the timing
synchronization function (TSF) in the IEEE 802.11 standard [4]. The remainder of this report is
organized as follows: In Section 2 we present some background and motivation on network
synchronization along with the description of some related work. In Section 3 the TSF is
presented along with analysis and discussion of some simple extensions to the original TSF
algorithm. Section 4 describes the proposed algorithm in detail. The performance evaluation for
the single-hop or Wireless LAN (WLAN) case is presented in Section 5. The multi-hop variation
of the proposed algorithm is discussed in Section 6. Performance evaluation of the multi-hop case
is presented in Section 7, and finally Section 8 concludes the report.

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 3

2. Network Synchronization

The synchronization of geographically separated clocks has intrigued researchers for a long
time. The first accurate clocks started to appear in the 17th century after the scientific work
pioneered by Galileo and expanded by Christian Huygens [5]. These scientists helped develop a
better clock based on their theories of the motion of pendulums. More recent advances in the area
of clocks include the development of the atomic clocks that are used in numerous applications
including the Global Positioning System (GPS), and in the digital telephone communication
network in order to provide timing reference [6]. In the area of clock synchronization we will
present a summary of some important related works later on this section, but first some
background on the basic theory of clocks.

A clock is a time measurement device. It fundamentally comprises an oscillator and an
accumulator (Figure 1). The oscillator’s task is to generate periodic events and the
accumulator (i.e., integrator) adds-up these events in order to obtain the measured time.
In Figure 1 the oscillator produces a sinusoidal waveform at its output; in this case the
zero-crossing events of the sinusoidal waveform are detected, and the accumulator adds-
up the number of zero-crossing events. Time represents the measured time in Figure 1.
The output of the accumulator in Figure 1 is an ideal straight line with a unit slope
()1/ =∂∂ timeTime , in practice this is not the case and several problems can be identified that
cause the measured time (Time) to differ from the absolute or reference time (time).

The most difficult errors to correct in a clock are those due to the oscillator imperfections.
These imperfections are due to ambient conditions such as temperature, relative humidity,
pressure, and also imperfections in the construction and materials used that cause frequency
instabilities. In this work an accurate oscillator is considered to be one based on quartz crystals up
to atomic standards with frequency accuracies in the order of tens of ppm. The IEEE 802.11
standard specifies a clock-accuracy for its Pseudo-Noise (PN) sequence generator not greater
than ±25ppm [4]. Clocks in personal computers utilized quartz-crystal oscillators with frequency
accuracy in the range of 10 to 100ppm. Frequency stability requirements for cellular radios are
very tight in the range of 1 or 2ppm [7]. A common model for the phase error of many free-
running accurate oscillators can be described by the following equation [8]

)(
2

1
)(2

00 tDttwt eee ξ+++Φ=Φ (1)

The phase error is measured using a phase detector that compares the phases of the oscillating

waveform under test and the waveform produced by a reference oscillator.)(teΦ is the phase

error as a function of real time, 0eΦ is the initial phase error, 0ew is the fixed frequency offset of

the oscillator with respect to its nominal frequency 0w , D is the frequency drift coefficient, and

)(tξ is a random process that models the short-term oscillator imperfections. In synchronization
parlance the D coefficient contributes to the phase or frequency wander of the oscillating
waveform with respect to a reference, and the)(tξ term contributes to its jitter. The)(tξ term is
a random process that has been characterized with a power-law spectra, in other words the
Fourier transform of the frequency or phase errors between an oscillator and its reference is
computed, and it has been found to be of the form fb , where b identifies the power of the process,

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 4

if b = 0, the process is a white noise process. All accurate clocks exhibit this random behavior, for
details see [8].

An ideal oscillator will have a zero frequency drift (i.e., D = 0 Hz/day), and no short-term
variations ()(tξ = 0), assuming the initial phase (0eΦ) and frequency offset (0ew) errors can be

corrected. Frequency is the derivative of phase, therefore the frequency error between the test and
reference oscillator is given by

)()(0 tDtwtw ee ξ
�

++= (2)

Equation (2) shows the instability of non-ideal oscillators due mainly to the frequency drift

coefficient. As time progresses the frequency of the test oscillator drifts from the frequency of the
reference oscillator linearly with respect to the reference time. It is possible however to estimate
the drift coefficient and adjust the phase of the oscillator accordingly, but no estimation is perfect
and therefore drifting of the frequency will dominate the frequency error of the clock again.
Equation (1) is still an imperfect model since the oscillator’s frequency and phase also depend on
ambient variables such as temperature, humidity, and pressure. For these reasons, it is common
practice to adjust the clock timing process utilizing a combination of several methods such as
drift coefficient estimation, temperature compensation, and periodic refresh coming from a more
accurate clock. Using equation (2), the frequency of the oscillator is

)()(0 tDtwwtw eo ξ&+++= (3)

Where 0w is the nominal frequency of the oscillator. If equation (3) is integrated in time we

obtain the phase of the oscillator

())0()0()(
2

)()(2

0
0000 Φ+−+++=+++=Φ ∫ ξξξ tt

D
twtwdttDtwwt

t

ee
& (4)

Where)0(Φ is the initial phase. Ideally a perfect clock’s phase equation would be

twtideal 0)(=Φ (5)

Therefore dividing the phase in (4) by the nominal frequency of the oscillator we obtain the

measured time of the clock modeled according to equation (1)

)0(
)(

2
)(

0

2

00

0 Θ++++=
w

t
t

w
D

t
w
w

ttT e ξ
 (6)

The measured time T(t) is a random process.

More formally, several important terms are defined for a clock based on the time process T(t)

[9].

The offset of a clock a with respect to a clock b or reference time t is)()(tTtT ba − or

ttTa −)(respectively. The skew is the difference between the rate of change of time of two

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 5

clocks,)()('' tTtT ba − or 1)(' −tTa , where dt
tdTtT)()(' = , and the drift is defined as

)()('''' tTtT ba − . Taking model (6), and assuming that 0)(=tξ and 0)0(=Θ , we have for two

clocks a and b with the same nominal frequency

Offset = 2

00

00

2
t

w

DD
t

w

ww babeea 



 −

+



 −

 (7)

Skew = t
w

DD

w

ww babeea 



 −

+



 −

00

00 (8)

Drift = 



 −

0w

DD ba (9)

Offset indicates the difference in units of time of the two time processes as real time evolves,

skew can be interpreted as the rate of change of offset in units of time over time, and drift is the
rate of change of skew in units of frequency over time. A more general equation modeling a clock
will include multiple derivatives of the offset beyond the second derivative (see [10]), but this
accurate analysis is beyond our interest in this paper.

According to our oscillator model in equation (1), time offset increases as a quadratic function
of real time, and skew increases linearly with respect to real time. Figure 2 shows the time offset
of an oscillator with respect to real time. The oscillator has a nominal frequency of 2GHz, a
maximum fixed frequency error of 10Hz, and a frequency drift coefficient of +100Hz/min. The
offset of T(t) with respect to t after one day is approximately +3 seconds. Note that this is a worst
case scenario since an oscillator will not drift its frequency indefinitely in one direction except
very slowly due to aging. The most common scenario for a crystal oscillator used in
telecommunication radios is to be at an approximately constant frequency offset from its nominal
frequency (e.g., accuracy in the range 10-100 ppm [7]), therefore, the time offset will be
approximately a linear function of reference time.

In two perfectly synchronized clocks the offset in equation (7) is zero. In practice however, this
is not the case, and ways to synchronize different clocks must be found if a useful measure of
time is desired in a different location to that in where the more accurate clock is located. In this
study we are interested in synchronizing clocks located in geographically separated nodes of a
wireless Ad Hoc network. Network synchronization is a difficult task particularly due to the real
characteristics of the oscillators in the clocks as described previously, and also due to the delay
and delay variation in the links used to transfer the timing information among the nodes
comprising the network.

There are two commonly known approaches for clock synchronization [10], centralized and
decentralized. The centralized synchronization approach is also known as master-slave
synchronization and it is the most common method encountered in practice in civilian
applications, there is one or more accurate clocks (the master(s)) to which all the rest of the
clocks listen and adjust their frequency and phases accordingly.

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 6

The decentralized synchronization approach is also known as mutual synchronization, in this
approach there is no master clock, but instead all clocks cooperate to achieve synchronization in a
distributed manner. In mutual synchronization the clock of a node tries to achieve
synchronization by reducing its phase or timing error with respect to a weighted average of the
other clocks’ phases.

In practice it is necessary to exchange timing information messages among the different nodes
comprising the network. There are several approaches for doing this and some of the most
important are:

� Burst position measurement
� Continuous correlation of timing signals and,
� Clock-sampling

In the burst position method each node schedules the periodic transmission of a burst or pulse.
At each receiving node the positions of the incoming bursts are compared with the position of the
local burst and the difference is used to correct the local clock period according to a many-to-one
mapping. This mapping usually takes the form of a weighted average of the errors. The
transmission of pulses has the disadvantage of requiring a large bandwidth and possibly a
dedicated channel if a wireless medium is used.

In the continuous correlation method each node continuously transmits a signal that is tracked

at the receiving node. At each receiving node the sequence is compared with a replica generated
by the local clock and a sliding correlation is performed in order to compute the phase offset. For
instance, a clock can drive a pseudo-noise (PN) sequence generator, and this sequence can be
transmitted to other nodes. As in previous cases a many-to-one mapping is needed to extract the
correction term used to adjust the local clock.

In the clock-sampling method each node reads the time of its clock and transmits it to other

neighbor nodes. At each receiving node the timing errors are computed as the difference between
the local and neighbor nodes' clocks. The errors are used in a many-to-one mapping rule to
determine the correction applied to the local clock. The main advantage of the clock-sampling
technique is its relative simplicity of implementation. The TSF in the IEEE 802.11 standard is a
clock-sampling method. In all these methods the timing information exchanged can be corrupted
during the time it travels from transmitter to receiver. Some of the most detrimental factors
include link delay, signal fading, signal delay spread, and collision of timing messages due to the
broadcasting nature of the wireless medium.

In the context of wireless Ad Hoc networks our goal is to achieve inter-node time

synchronization of clocks utilizing a combination of clock-sampling and mutual network
synchronization. The use of the master-slave approach is feasible by utilizing the reference time
provided by the atomic clocks in the GPS satellite system. Accuracy in the order of a few hundred
nanoseconds is possible [7]. However, it is of interest to study the feasibility of a distributed inter-
node time synchronization scheme due to its higher robustness, deployment flexibility and other
factors that will become clearer later. Known disadvantages of a GPS approach include the fact
that GPS signals can be jammed, and are only available in outdoor areas. For small networks of
devices or computers in conference rooms, classrooms, and secluded places it is also desirable to
achieve synchronization regardless of the operating environment (i.e., indoor or outdoor).
Additionally, the IEEE 802.11 IBSS network [4] takes advantage of synchronization for power
and channel management through the TSF, therefore a mechanism that improves over TSF can
also translate into improvements of network management that further translate into better QoS

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 7

support in an already standardized wireless local area network technology. Recent work [11] has
identified the necessity to improve the TSF mechanism due to its lack of scalability.

The algorithm proposed in this report is based on a mutual synchronization approach of which
the work by Gersho and Karafin [12] is one of the most representatives. In [12], stability of a
mutual network synchronization scheme is proved through a mathematical analysis based on
classical control theory. Geographically separated oscillators are directly controlled in a
distributed manner through a multiple-input phase-locked-loop (PLL) [13] approach. Each input
of the multiple-input PLL located in every oscillator is the timing information exchanged with
neighbor oscillators utilizing the available channels (i.e., wired or wireless). One important
parameter for the stability of the approach is the latency of the communication links. Link latency
affects the validity of the timing information exchanged among the oscillators and ways to
estimate it and compensate for it are required in case it is not negligible. The work in [14]
proposes a similar approach to the one in [12] for the time synchronization of time-division
multiple access (TDMA) cellular base stations. Our work differs from these early works in that
there is no direct physical control of the clocks or oscillators in every node. Other novelties of our
approach are the use of the simple clock-sampling technique to exchange timing information in
combination with a mutual network synchronization approach, and the introduction of a simple
mechanism to enhance the synchronization performance in the case of a multi-hop network.

Mutual network synchronization approaches are proposed for a wireless Ad Hoc network of

automobiles in [15] and [16]. However, no study is made of the performance of these approaches
in a multi-hop network, and in one case the timing information is exchanged using very short
pulses that use rather large bandwidth resources. In [11] and [17] the lack of scalability of the
TSF of IEEE 802.11 is first analyzed and new methods are proposed to improve it. Again, no
study is made of the multi-hop network case (The authors mention the interest in pursuing this
study later). A network synchronization scheme is proposed with multi-hop support in [2]. In this
approach the synchronization of multi-hop neighborhoods is achieved virtually through the
exchange of messages with an intermediate node (i.e., a node in between separated
neighborhoods). The purpose is to obtain a logical ordering of time events rather than achieving
real synchronization of the clocks, which is fundamentally the same approach of the work in [1]
for data fusion in sparse sensor networks. Our approach requires the connectivity of the network
at least momentarily in order to achieve clock synchronization; only partial connectivity of the
network is needed. Our algorithm does not require knowledge of the maximum drift of any clock
in the network. In practice a clock's maximum drift is specified within a positive and negative
range such as ±25ppm, this represents a maximum error of 50ppm between the real drift and the
assumed drift for two given clocks. Therefore, it is not accurate enough for our purposes to use
the maximum drift value for our network synchronization algorithm. We assume no link delay
since the maximum separation of neighboring nodes is in the order of few hundred meters as it is
the common case in a WLAN (i.e., 200m ≈ 0.6µsecs).

3. IEEE 802.11 Timing Synchronization Function (TSF)

 The TSF in the IEEE 802.11 standard is a network synchronization algorithm that utilizes the
clock-sampling method to exchange timing information. The TSF is summarized next for the
IBSS (Ad Hoc mode) case.

1. Each node sends a beacon periodically at a Target Beacon Transmission Time (TBTT) with

period aBeaconPeriod (e.g., 0.1sec [4]). At each TBTT each node shall:

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 8

2. Suspend the back-off timer of any pending non-beacon transmission.
3. Calculate a random delay uniformly distributed in the range between zero and

aSlotTimeaCW ⋅⋅ min2 . Table 1 shows the values of minaCW and aSlotTime for the IEEE
802.11 standard with different PHY layer versions.

4. Wait for the period of random delay before transmitting the beacon.
5. Cancel the remaining random delay and the pending beacon transmission, if a beacon arrives

before the random delay timer has expired.
6. Send a beacon if the random delay has expired and no beacon has arrived during the delay

period.

Upon reception of a beacon a node will adjust the received timestamp to take into account its
physical layer delay. The node will set its clock to the value of the adjusted timestamp if it is later
than the timestamp value of the given node's clock. The TSF clock is a 64 bit counter with a
1� sec resolution.

Parameter FHSS DSSS OFDM

minaCW 15 31 15
aSlotTime 50 20 20

Table 1. Beacon contention window parameters for IEEE 802.11

An approximate analysis of TSF in the single-hop case was first attempted in [11]. The
probability of sending one beacon successfully regardless of the node that sent it (anyP), and the

probability of sending a beacon successfully by a given node (givenP) were found under the

assumption that perfect synchronization has been achieved. That is, the beacon contention
window of every node starts at the same time for all the nodes in the network. However, the
analysis proves the inefficiency of TSF to scale even to a moderate number of nodes. The reason
for the lack of scalability of TSF is blamed to the beacon collisions, which make givenP small as

the number of nodes in the network increases. Figure 3 repeats the curve shown in [11] for givenP

versus the number of nodes in a network. The parameters used in Figure 3 correspond to those
used in an IEEE 802.11 FHSS network (see Table 1). The beacon transmission takes 11 slots (i.e.,
550µsecs). As seen in Figure 3, for a network of 20 nodes the probability of a given node to
transmit its beacon is approximately 0.05. This is equivalent to say that the probability of
receiving a beacon from the node with the fastest clock is 0.05 when the number of nodes in the
network is equal to 20. The low probability of sending a beacon successfully by the node with the
fastest clock translates into severe a-synchronism when the clocks of the network drift with
respect to one another. This affects power management, and the channel hoping procedure in the
IEEE 802.11 standard, furthermore, it proves the lack of scalability of the TSF algorithm.

A simple way to try to improve TSF is to allow beacon transmissions even after successfully
receiving a beacon (hereafter called secondary beacon transmissions). That is, modify steps 5 and
6 above in the description of TSF in order to allow a node to transmit its beacon even after
successfully receiving one. This approach is not the most ideal however, since we are improving
TSF at the expense of increasing overall network energy consumption and overhead. Energy
consumption will be increased since more beacons will be transmitted in average, and overhead
increases since it is more likely that the contention window will be extended further by the extra
beacon transmissions. A larger beacon contention window implies smaller bandwidth for actual
data transmission.

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 9

 The modified TSF is analyzed extending the approximate analysis in [11]. The probability of a

given station to transmit its beacon in the modified TSF (givenP̂) is given by

),,(ˆ
1

1
),(ˆ

0

kWnP
W

WnP
W

k

k
givengiven ∑

=+
= (10)

Where),,(ˆ kWnP k
given is the conditional probability that the given node successfully transmits a

beacon given that it is scheduled to transmit in slot k; 1+W is the contention window size (there
are 1+W slots labeled 0 through W), and n is the number of nodes in the network.

),,(ˆ kWnP k
given can be computed based on the same events outlined in [11] plus an additional one

allowing one node to transmit even after a successful beacon reception.),,(ˆ kWnP k
given is given by

��
��
��

�

��
��
��

�

�

≥≥��
���

−−−−−−
��

	
��
+

+−−⋅

��
�� � ��

	
��
+
−��

	
��
+

+
��

	
��
+
−

=≥�
��

�� �
−−−−−⋅

��
	
��

+
+

��
	
��

+
−

=≥∀<
��

	
��
+
−

=

−−−

−

=

−

=

−−

=

−−−
−

−

=

−

−

∑∑∑
∑

3,),,(ˆ
1

1

1
1

1
1

1

2,),,1(ˆ
1

1
1

1,0,,
1

),,(ˆ

1

0

1

1

1

0

11
1

0

1

1

nbkforbikbiWyxnP
W

biW

W
b

W
CC

W
kW

nbkforbikbiWnP
WW

kW

nbkornbkfor
W

kW

kWnP

k
given

yxn

bk

i

n

x

xn

y

yx
xn

y
n
x

n

bk

i

k
given

n

n

k
given (11)

The boundary conditions in equation (11) are),,0(ˆ kWP k
given =),0,(ˆ knP k

given = (),,(ˆ kWnP k
given

kW <∀) = 0, and
)!(!

!
xnx

n
C n

x −⋅
= . The first expression in equation (11) is the event that no

beacon transmissions occurred before slot k. The second expression is the event that a single
successful transmission or no transmissions occurred before slot k (at slot i) when only 2 nodes
are in the network. The third term is the event that exactly x beacon transmissions occurred in slot
i<k, where)11(−≤≤ nx , and that exactly y nodes)10(xny −−≤≤ are scheduled to transmit in
slots 1+i through 1−+ bi . The nodes scheduled to transmit during the latter interval will defer
their transmissions because of the beacon transmission that started at slot i (Carrier sense). A
beacon takes b slots to transmit.

Equation (11) is plotted in Figure 4 along with givenP of TSF and simulation points of the

modified TSF. The simulation points were obtained after 30 minutes of real-time simulation. As
can be seen, equation (11) corresponds to the simulation data quite well. The first thing to notice
about the modified TSF is that, as expected, it achieves a better probability of beacon
transmission than TSF, however, it still suffers from severe degradation when the number of
nodes in the network increases. Therefore, although in a lesser degree, the modified TSF suffers
from the same scalability problems of the original TSF. One could try to further improve the
modified TSF and allow secondary beacon transmissions only from those nodes that had a larger
timestamp than the timestamp received in the previous beacon. We performed simulations of this
approach in a network of 10 and 20 nodes in which the fastest clock drift at +25ppm (i.e., gains

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 10

2.5µsecs with respect to real time every aBeaconPeriod = 0.1 seconds), and the rest of the clocks
drift at –25ppm, with the FHSS parameters. Figure 5 shows the cumulative distribution function
(c.d.f) of the maximum time difference among the nodes of the network. The modified TSF
achieves better performance since the maximum time difference is smaller; however, it is still
unsatisfactory because the small accuracy is gained at the expense of almost twice as much
beacon transmissions. Note that the accuracy of the modified TSF with 20 nodes is roughly the
same as the original TSF with 10 nodes (Figure 5). This is approximately what we observe in
Figure 4 if a horizontal line is drawn from the point of 10 nodes in the TSF curve, to the
intersecting point with the curve of the modified TSF.

Based on the previous analysis, we argue that a synchronization algorithm that truly improves

over the IEEE 802.11 TSF should:

1. Abandon the idea of giving the responsibility of network synchronization to a node with
particular characteristics (e.g., fastest clock, node with largest cardinality etc). This will
improve the chances of spreading the timing information, increase the robustness of the
algorithm to network dynamics, and increase the speed of convergence of the algorithm
(more about this later).

2. Take full advantage of the exchanged timestamps in order to avoid the need to continuously
refresh the clocks in the network.

The latter goals should be achieved with small increase in energy expenditure and overhead

over the already standardized algorithm. We show that the algorithm presented in the next section
achieves a good performance in terms of accuracy, and scalability, with negligible extra energy
expenditure and overhead cost.

4. Clock-sampling Mutual Network Synchronization: WLAN case

The root of the TSF problems is that it differentiates among the nodes in the network based on
the drift of the clocks, which is an unknown parameter (i.e., only the maximum and minimum
drift values might be known). The TSF and the algorithms presented in [11] and [17] make the
node or a subset of nodes with fastest clocks the most important nodes in the network in terms of
synchronization. Giving explicit or implicit priority to a subset of the node population makes the
algorithm less distributed and therefore less resilient to node failure and network dynamics. The
argument to give priority to the fastest node is to avoid backward leaps in time, which is a
necessary requirement for some applications. Furthermore, a mechanism that tries to discover the
node with the fastest clock increases the latency of the network synchronization approach (time is
needed to find the node with the fastest clock). Our algorithm departs from the idea of giving
priority to any node, yet the time can be ensured to go forward. This algorithm is in principle a
mutual network synchronization scheme in which all nodes participate equally in the overall
synchronization of the network and therefore no time is spent discovering nodes with particular
characteristics.

The probability of transmitting a beacon successfully regardless of the node that transmitted it

(anyP) can give an indication of the improvement of a mutual network synchronization algorithm

over the more centralized TSF algorithm. The authors in [11] found a recursive formula for anyP ,

which matches our simulation shown in Figure 6 for the parameters of the FHSS and DSSS PHY
versions of IEEE 802.11. Figure 6 suggests that a mutual network synchronization algorithm

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 11

based on the same beacons transmitted in the IEEE 802.11 standard can greatly improve over the
TSF and the modified TSF algorithm presented earlier (see Figure 4). Therefore, our efforts
should be directed towards more distributed network synchronization approaches that exploit the
information carried by every beacon transmitted.

Our algorithm is as follows:

1. We define a controlled clock and a real clock in each node. The real clock can be the

same timer used in the TSF of IEEE 802.11 (64 bits @ 1µsec resolution). The
controlled clock reads from the real clock and adjusts the value read by a correction
factor we call s. Synchronization information for any purposes (e.g., management,
security, MAC support, space-time event relationships etc) is taken from the
controlled clock. We see s as a control parameter that adjusts the speed of the
controlled clock regardless of the real clock’s drift. If s = 1, the controlled clock is no
different from the real clock except for a negligible difference caused by the
processing time of s. Figure 7 shows the relationship between the controlled and real
clocks. Without loss of generality we assume that the physical layer and processing
delays have been taken into account and the controlled timestamp has been adjusted
accordingly if necessary.

2. A node must scan beacons for some period of time in order to acquire synchronization
before joining the network. The node listens for beacons and sets the timestamps of the
controlled and real clocks to the value of the timestamp received. The value of s is set to 1 at
initialization. The requirement to acquire some information at the beginning of a session
when a node enters a network is common for other protocols and other types of networks,
such as routing protocol information in wireless Ad Hoc networks or system information
parameters in cellular radio networks. It is, for instance, a requirement in the IEEE 802.16a
standard to acquire coarse synchronization at initialization. We assume that initial coarse
synchronization of the nodes has been achieved before the main algorithm is run.

3. All nodes contend at specific intervals of time in order to send their beacons with their
controlled timestamps.

4. When a node receives a beacon successfully it will not content in the next T_DELAY
TBTTs to send its beacon. Each node that received a beacon successfully less than
T_DELAY TBTTs ago will decrement the value of a T_DELAY counter by one in every
TBTT regardless of the successful reception of a beacon. Once the T_DELAY counter
reaches one, the node will store the value of the controlled timestamp in the real timestamp
register, set s =1, and contend again to send its beacon. If a node does not receive any
beacon successfully it will continue to send its beacons in every TBTT. We refer to the node
that wins the contentions as the reference node, and the process of changing the reference
node after some time dependent on the value of the T_DELAY counter as reference node
hoping. We also refer to the maximum value of the T_DELAY counter as T_DELAY
parameter or T_DELAY, with the understanding that the T_DELAY counter starts counting
down from a value equal to T_DELAY in steps of one until one.

5. If the ith node successfully receives a beacon, it will adjust s based on the error ie computed
as the difference between the received timestamp and the ith node controlled timestamp. The
value of s for the ith node at the nth TBTT is then computed as follows

)(

)(
)1()(

nstamptimecontrolled

neK
nsns

i

ip
ii +−= (12)

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 12

Where pK is the proportional design gain of the algorithm. Figure 8 depicts equation (12) in a

block diagram. The information of the maximum allowed drift of the clocks is not necessary for
the correct operation of the algorithm since it is effectively an automatic proportional controller.

Note that when a new value of s is smaller than the previous value, the new controlled
timestamp will be smaller than the previous one during a short period of time. In order to avoid
this it is necessary to adjust the real timestamp by increasing it before the multiplication by the
new smaller value of s is performed. Assume the value of s is updated from olds to a new smaller

value news just after receiving a new beacon, then the time span that needs to elapse before the
controlled timestamp shows a greater than or equal value to the previous one is given by

oldnew
interval s

timestampcontrolled

s

timestampcontrolled
T −≥ (13)

Where the controlled timestamp is the value of the timestamp in the controlled clock when news

is computed. The first ratio in (13) is the value that the real timestamp must have in order to
obtain the same controlled timestamp after being multiplied by news , and the second ratio is the
value of the real timestamp right before the change to news . Therefore, equation (13) is the time
that has to elapse before the controlled timestamp reaches its original value. Using equation (12)
(see also Figure 8) we have

()

timestampcontrolled

timestampcontrolledtimestamprxK
ss

p
oldnew

−
+=

_
 (14)

Substituting (14) in (13) and after some algebra we obtain

()
oldnew

p
interval ss

timestampcontrolledtimestamprxK
T

−−
≥

_
 (15)

Note that �< oldnew ss controlled timestamp > rx_timestamp, which implies that intervalT in (15)

is positive. Also, as will be shown in Section 6, 1≈≈ oldnew ss , therefore equation (15) can be
simplified to

()timestampcontrolledtimestamprxKT pinterval −−≥ _ (16)

The time during which the controlled timestamp goes backward in time is proportional to the

time difference between the received timestamp and the controlled timestamp. It is shown
through simulations in Section 5 and 6 that the time difference in (16) can be in the order of tens
of microseconds. If the real timestamp is adjusted to newstimestampcontrolled / before the real

timestamp is multiplied by news , then no backward leaps in time will be observed. Note that the
change to a new s value occurs after the contention window has finished because the last beacon
received successfully is taken as the reference beacon (i.e., more than one beacon can be received
in the same contention window due to beacons received in error).

In case the reference node fails, the other nodes will wait until their corresponding T_DELAY
counter is equal to one and will contend again for beacon transmission, therefore, the re-

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 13

acquisition of synchronization is ensured since any node can be a reference node regardless of its
drifting characteristics. Giving any node the possibility of being a reference node means that we
have increased the probability of successful (and useful) beacon transmission from being
approximately equal to givenP in TSF, to anyP in the proposed algorithm. This is a considerable

improvement, however more improvement is possible that makes this algorithm more scalable.
The fully distributive characteristic of the algorithm ensures that not all nodes need to contend for
beacon transmission. In order to improve the algorithm we require all nodes to have a rough
estimation of the number of nodes in their transmission range. Based on the number of neighbors,
a node will compute and periodically update a permission probability value perP which is used to

determine whether the node is going to transmit its beacon or not in every TBTT. Equation (17) is
a possible mapping between perP and the estimated number of nodes N̂ .

��
��
�

−<<

>
=

1ˆ0;1

ˆ;
ˆ

KN

KN
N

K

Pper (17)

Figure 9 shows equation (17) as solid line with 40=K . Since only a rough estimation of the
number of neighbors is required, we can approximate (17) as the step function shown as dotted
line in Figure 9. The performance of this additional mechanism is evaluated in Section 5. The
latter procedure represented by equation (17) only suggests a possible improvement to the
original algorithm, but it is not necessary for its correct operation.

It is important to note that the proposed algorithm described in this section is practically

memoryless. Each time a node reaches one in its T_DELAY counter, it resets its parameter s,
stores the controlled timestamp in the real clock’s register, and contends again. This is done in
order to avoid large differences between the real and controlled timestamps in each node, which
could cause instability. If more memory is incorporated into the approach through the increase in
the resetting period of s (i.e., setting s = 1 less often), a better performance is achieved as will be
shown through simulations in Section 5. However, the memoryless approach is more robust to
small disturbances in the value of s (i.e., when the real and controlled timestamps differ
substantially, a small deviation of s from the desired value can result in a large difference in the
controlled timestamp).

5. Performance Evaluation: WLAN case

We used MatlabÒ for the computer simulations. The general parameters used in the simulations
are shown in Table 2. A simplified flow diagram of the code can be found in the appendix. Where
not specified differently the following values were used: 1=pK , the number of nodes in the

network are 80, and 150, T_DELAY=10, and beacon error rate = 1%. Throughout our
simulations we assume the clocks drift with respect to real-time according to equation (6) with
maximum drifts values given in Table 2, and assuming negligible values for)(, tD ξ , and)0(Θ .
Other values for the maximum drift of the clocks are possible, however we assume in our
algorithm reasonably accurate clocks as the ones used in quality transceivers or computers (e.g.,
Max. Drift = [10, 100ppm]). Less accurate clocks will result in larger inter-node time difference.
We added in some cases a 1% probability of loosing beacons per node additional to the
simulation of beacon collisions; this emulates beacons received in error due to wireless medium

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 14

impairments and interference. A more sophisticated model for beacons in error will only increase
the complexity of the simulation without adding new insights to our discussion.

ABeaconPeriod 0.1secs

Beacon error rate 1%
Max. clock drifts ±25 ppm

Time for Beacon transmission 550µsecs

Total Real-time 30 min.

Table 2. General simulation parameters

Some results for the TSF were already presented in Figures 4, 5, and 6. The results showed are
for up to 20 nodes since the network becomes a-synchronous for a greater number of nodes
(i.e., time difference greater than 1000µsec). Note that the results in Figures 5 and 6 are for the
worst case scenario for TSF since there is only a single node with the fastest clock (+25ppm) that
has to contend with the other clocks in the network with completely opposite drifts (-25ppm). In
practice this might or might not be the case, but as was previously mentioned, the drift of the
clocks is an unknown parameter. Our algorithm adjusts automatically the controlled variable
(i.e., controlled timestamp) without knowledge of the maximum drift of the clocks. Figure 10
shows simulation results of anyP for the FHSS and the DSSS PHY versions of IEEE 802.11. The

results for FHSS show a worse performance due to the fact that the contention window is smaller
(see Table 1 for the additional parameter values of FHSS and DSSS).

Figure 11 shows a comparison of anyP using the proposed algorithm and the TSF. The result

shows a higher probability for the proposed algorithm in all cases. The reason is that the
instantaneous value of the T_DELAY counter is not always equal for each node since not all
nodes receive the beacons exactly on the same TBTT from its reference node due to wireless
medium losses. This effectively spreads the beacon transmissions in time and reduces the beacon
collision probability. Furthermore, in the proposed algorithm the nodes do not contend in every
TBTT as in the TSF, which greatly reduces energy consumption and overhead. The beacon error
rate is 0% for both algorithms in Figure 11 therefore the larger value of anyP for the proposed

algorithm is due exclusively to the latter point. The TSF in Figure 11 shows smaller probabilities
than the ones in Figure 10 because in the latter there is only a single fastest clock and the rest of
the clocks are all drifting with the same value and much slower. The result in Figure 11 however,
is for drifting clocks with values uniformly distributed in the range [–25, +25ppm] (except when
there are two nodes only, in which case one node drifts at +25ppm and the other one at –25ppm).
When there is a single fastest clock that is much faster than the rest of the clocks (the case in
Figure 10) its contention window is going to start before any other node’s contention window,
making its beacon transmission successful if it chooses a small slot to transmit. When the clocks
drift more uniformly however, the opportunity for the fastest node to transmit its beacon
successfully is not as high.

Figure 12 shows the c.d.f of the maximum time deviation observed with the proposed algorithm
when there is a single fastest node drifting at +25ppm and the rest of the nodes drift at –25ppm.
The results are shown for FHSS and DSSS parameters with perP = 1 in all cases. The maximum

time deviation observed for DSSS is 60µsecs and for FHSS is 413µsecs for 150 nodes with
98.6% of the values below 240µsecs. DSSS with 150 nodes shows slightly better performance
than FHSS for 80 nodes. Also note in Figure 11 that 80 nodes in FHSS have less chance of
sending beacons successfully than 150 nodes in DSSS. While the TSF is a-synchronous when

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 15

more than 20 nodes are in the network, the new algorithm still shows good performance for 150
nodes. The maximum time deviation observed when 80 nodes are in the network is even smaller
for the new algorithm compared to the TSF with 2 nodes. Figure 13 shows a sample of the
difference between the controlled timestamps of the fastest node and one of the other nodes
during the first 10 seconds of real-time in a network of 150 nodes. The peaks in Figure 13 are due
to the beacon collisions and/or beacons received in error (i.e., 1% beacon error rate is assumed).
The collision of messages is inevitable if the beacon messages of the IEEE 802.11 standard are
used to exchange the time information. Other mutual network synchronization algorithms
proposed in the literature make use of pulses that are used to correct the phase deviation of the
geographically separated oscillators in every clock of the network [15]. These methods can have
greater accuracy than our proposed algorithm, however, the large bandwidth required, and the
incompatibility with the IEEE 802.11 standard make then unattractive for present day Wireless
Ad Hoc networks. One of the main contributions of our work is the realization of a mutual
network synchronization algorithm that incorporates the simplicity of the clock-sampling method
used in the IEEE 802.11 standard. This is not the optimum is terms of performance, however, we
have choose a balance between performance and simplicity of implementation.

Figure 14 shows a sample of the variation of the parameter s as time evolves for the fastest

node. Note that during the first 5 TBTTs (0.5secs) node 1 has a value of s =1, this is due to the
initial beacon collisions that lasted the first 5 TBTTs which resulted in a deviation of 25µsecs
with respect to node 2. The other peaks are less noticeable due to their short duration, however
the effect of the second largest peak at around 62 TBTTs can also be observed as a small flat
value for s = 1 in Figure 14. The continuous resetting of the parameter s is evident from the plot
since the value of s returns to 1 every T_DELAY TBTTs. Note that the algorithm converges quite
rapidly as it is also evident in Figure 3 at the sixth TBTT, where the time difference drops to zero.
However, the continuous resetting of the parameter s makes the convergence of the algorithm
noisier. As explained previously in Section 4, the reset of the parameter s plus the update of the
real timer are cautionary measures used to avoid large differences between the real and controlled
timestamps.

Figure 15 shows the distribution of reference nodes for the 1st node in a network of 150 nodes
during 30 minutes of real-time simulation. Note that the distribution is uniform, therefore all
nodes have equal chance to become the reference node. Figure 16 shows a closer look at the
reference node hopping for three different nodes in a network of 10 nodes during 10 seconds of
real-time. Note that when one of the nodes in question (i.e., 1, 2, or 3) is the reference, it has a
value of zero, while the other two nodes have the corresponding value of the given reference
node. The T_DELAY counter in Figure 16 has a maximum value of 10 (i.e., That is,
T_DELAY = 10), in practice every T_DELAY counter will reach one at different points in the
time scale due to beacons received in error, therefore spreading the beacon transmissions in time.

Figure 17 shows the c.d.f of the maximum time deviation when all the clocks drift with
different values uniformly distributed in the range [–25, +25ppm] for 150 and 200 nodes using
equation (17), for FHSS and DSSS. The clocks remain synchronous with a maximum time
deviation of 39µsecs for DSSS and 264µsecs for FHSS with 99.97% of the values falling below
240µsecs and 200 nodes. For 150 nodes the maximum time deviation value is 60µsecs for FHSS.
This result shows the scalability potential of the proposed algorithm.

Figure 18 shows the c.d.f of maximum time deviation with 150 nodes and all clocks drifting
differently in the range [–25, +25ppm], with maximum values of 10, 40 and 60 TBTTs in every
T_DELAY counter, for FHSS and perP =1 for all nodes. Note the considerable improvement by

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 16

using a larger T_DELAY, however with a larger T_DELAY the reference nodes hop less
frequently and the maximum time deviation will be larger in case the reference node fails. By
indefinitely increasing T_DELAY we are effectively converging to the same performance of a
master-slave network synchronization approach. In Figure 18 the resetting of the parameter s is
done less frequently when T_DELAY is increased therefore the synchronization approach does
not need to re-learn about the clock differences as often. It is possible however, to hop faster the
reference nodes and yet introduce more memory into the algorithm by not resetting the value of
the parameter s every time the T_DELAY counter reaches one. Figure 19 shows the c.d.f of
maximum time deviation when the parameter s is never reset with 150, and 200 nodes; all clocks
drifting differently in the range [–25, +25ppm], and T_DELAY = 10 TBTTs. The result shows a
considerable improvement of the performance even without the mechanism represented by
equation (17).

The results presented so far are for the WLAN scenario (i.e., all nodes are able to hear each

other transmissions). The potential for the proposed algorithm in terms of scalability, reduced
extra overhead, energy consumption, and synchronization accuracy makes it an excellent solution
for the improvement of the IEEE 802.11 TSF. Note that we have made use of IEEE 802.11
standard parameters and beacon messages to achieve the results presented with the proposed
algorithm. Other advantages of the algorithm are the independence from the PHY layer used, the
fact that control of time is not exerted over the real clocks through, for instance, the use of Phase-
Locked-Loops as in previous studies, and the resilience to node failure thanks to the reference
node hopping feature. In the next sections we present a discussion, and performance evaluation of
the proposed algorithm in a multi-hop Ad Hoc network.

6. Clock-sampling Mutual Network Synchronization: Multi-hop case

In a multi-hop network it is important to spread the synchronization information as quickly as
possible among all the nodes in the network, this is because the network latency is higher (i.e., it
takes longer to send information from one extreme of the network to the other). A node that
received a beacon successfully can not afford to wait too long before sending its newly acquired
synchronization information. Therefore, the T_DELAY parameter should be smaller in a multi-
hop network in comparison to a single-hop network of the same size, where T_DELAY is not a
critical parameter (i.e., synchronization still works well with large values of T_DELAY for a
single-hop network as observed in Section 5). The original algorithm is not optimum for a multi-
hop network since as soon as a node receives a beacon successfully it will wait for T_DELAY
TBTTs before trying to transmit its own timestamp, delaying unnecessarily the spreading of the
synchronization information over the network. In order to avoid this it is important not to have a
large value for the maximum value of the T_DELAY counter. Additional to this, we add the
following mechanism to improve the efficiency of the original algorithm:

1. Define a pP parameter per node. This parameter is used to determine whether the node is

going to transmit its beacon once the T_DELAY counter reaches 1.

1≤≤ pPpermissionmin_ .

Where min_permission > 0.

2. At initialization, a node will set 1=pP .

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 17

3. If a node receives a beacon successfully, it will increase its pP value by an amount equal to

α. If a node does not receive a beacon in the current TBTT, it will decrement its pP by β.

If a beacon is received successfully, then

},1min{ α+= pp PP (18)

Otherwise,

},max{ β−= pp Ppermissionmin_P (19)

The next time the T_DELAY counter reaches 1, the node will determine whether it is allowed

to transmit its beacon by comparing its new value of pP with a uniform random number rand,

10 ≤≤ rand . If pPrand < , then the node is allowed to transmit, otherwise it is not allowed.

Note that being allowed to transmit does not necessarily mean the node is actually going to
successfully transmit a beacon since it is contending with other nodes in the network. In order to
increase the speed of response of the additional mechanism and avoid beacon starvation when the
number of nodes is large (i.e., most of the nodes having a low value of pP), we choose βα > .

Therefore, the additional mechanism will promptly increase the probability of beacon
transmission when a successful beacon is detected, and it will be more conservative otherwise.

7. Performance Evaluation: Multi-hop case

The additional parameters used in the multi-hop simulations are shown in Table 3. Throughout

the simulations we assume the clocks drift with respect to real-time linearly with maximum drifts
values equal to ±25ppm.

Transmission range 150m

α, β 0.4, 0.1

Detection range 300m

Table 3. Additional simulation parameters for the multi-hop case

In order to evaluate the performance of the new algorithm, we use a grid topology as
shown in Figure 20. In the particular case of Figure 20 we are showing a 4x4 network; for
a specific simulation we will refer to this topology by its size (e.g., 2x2, 5x5, 10x10 etc)
which will implicitly refer to a grid topology. The ordering of the nodes will follow the
same pattern as the one in Figure 20 (i.e., node 1 at lower left corner and incrementing
towards the up-right direction). The vertical and horizontal distances are equal to 150m.
The nodes do not move, however, in order to simulate some adverse conditions, we are
going to shut down some of the nodes temporarily in order to observe the response of the
network synchronization algorithm. The links joining the nodes in Figure 20 correspond to our
assumption that the transmission range is equal to 150m. That is, a node is able to correctly
decode a beacon if it is within transmission range of the transmitter. A beacon will not be

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 18

decoded successfully however, if there is a collision, or the beacon is received in error (i.e., a 1%
beacon error rate is added in the simulations) even if it is within transmission range.

In a multi-hop network we have more detrimental effects due to the hidden and exposed node

problems, this is also taken into account in the simulation. The hidden and exposed node
problems are also present in single-hop networks, but to a lesser degree and due to wireless
medium impairments; the topology of a multi-hop network increases the detrimental effects of
these two problems over the already present wireless medium impairments. An exposed node will
defer its beacon transmission if another node within its detection range (<300m) is transmitting; a
hidden node will cause a collision if it is within transmission range of a receiving node, but out of
the detection range (>300m) of the corresponding transmitting node.

We compare the new algorithm with the TSF of IEEE 802.11 with contention window and

beacon parameters for frequency hoping spread spectrum (FHSS) since this is the worst case
scenario. The FHSS has a smaller beacon contention window in comparison with the direct
sequence spread spectrum (DSSS) version of the standard. Figure 21 shows the cumulative
distribution function (c.d.f) of the maximum time difference between the nodes of a 5x5 network
using TSF. Node 1 has the fastest clock with a drift 1D = +25ppm, and the rest of the nodes all

drift at iD = -25ppm, 25...,,3,2=i . The simulation was run for 30min of real-time and a sample
of the time difference between nodes 1,7, and 25 is shown in Figures 22 and 23.

The differences between the nodes never fall below 5µsecs in Figure 23. This is because the

differences are taken in discrete steps every aBeaconPeriod (see Table 1), therefore the clock in
node 1 will always be at least 5µsecs ahead of any other clock in the network. Note also that, as
expected, the time difference between node 1 and node 25 is larger (average = 310µsecs) than
the one between nodes 1 and 7 (average = 10µsecs) due to their larger geographical separation.
TSF requires the fastest clock information to be relayed over the whole network through the
intermediate nodes in a continuous way because the rest of the nodes never learn what is the time
difference (i.e., the slower clocks will deviate if the information is not refreshed continuously).
By introducing a learning mechanism into our algorithm we show that it is possible to refresh the
synchronization information less often, and in fact use the refreshment exclusively to adapt to
topology variations and dynamics in the network. Even in an extreme situation of static network
(i.e., a network without mobility, no wireless medium impairments, and clocks that always drift
with a constant value), TSF still requires continuos refreshing to maintain synchronization, this is
also true for a single-hop network. Also note that the result in Figure 20 is optimistic since link
delay was assumed negligible. Link delay in TSF is more detrimental than in the proposed
algorithm since the timing information is extracted from a single point in space. It takes time to
deliver the timing information of the fastest clock to the clocks on the opposite boundaries of the
network. In a mutual synchronization approach however, the timing information is distributed in
space, therefore only the inter-node link delay has to be considered, which is negligible
considering the range of terrestrial WLANs (less than 1µsec).

Figure 24 shows the c.d.f of the maximum time difference when the clocks of the nodes drift

with different values chosen from a uniform distribution in the range [-25, 25] ppm (i.e., each
clock always drifts with the same value but different to other clocks’ drifts). We assume in our
simulations that a clock will drift with the same value D throughout the entire simulation; only
aging and sudden atmospheric variations will change this value substantially. The rest of the
parameters are equal to the ones used for Figure 21. Note that Figure 24 shows a better result
than Figure 21 (smaller time difference). This is because the result in Figure 21 is a worst case
scenario for TSF since there is only a single fastest clock that runs much faster than the rest of the

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 19

clocks in the network, whereas in Figure 24 the drift differences among the clocks are not as
drastic. The curves shown in Figures 21-24 can serve as basis of comparison between the TSF
and the proposed algorithm (to be presented next).

Figure 25 shows the maximum time difference among nodes 1, 7, and 25 in a 5x5 network
using the proposed algorithm. The clocks of the nodes drift with different values chosen from a
uniform distribution in the range ±25ppm, T_DELAY = 10, Kp = 0.5, and the permission
algorithm of equations (18) and (19) is not used. Since the algorithm learns after an initial
transition of approximately 100 seconds what is the required parameter s in all the clocks, future
adjustments are rarely needed. Only in a highly dynamic network will the algorithm try to adjust
its parameters to cope with variations more frequently (limited by the aBeaconPeriod value).
Note that Figure 25 only shows values for the first 200 seconds of real-time and the final time
variation remains approximately around ±3µsecs. This is a considerable improvement in terms of
steady-state behavior with respect to the TSF (see Figures 4-7). Note that the worst case scenario
for TSF (Figures 4-7) is actually quite favorable for the new algorithm since most of the clocks
are already synchronous to one another at –25ppm. Figure 26 shows the same scenario of Figure
8 with the permission algorithm of equations (18) and (19) enabled. In this case the time of
convergence, defined as the time at which the maximum time difference between two given
nodes falls and remains below 10µsecs, is reduced from approximately 100 seconds down to 40
seconds.

Figure 27 shows the same scenario of Figure 26, but a uniform random error equal to

±100µsecs is added to the initial clock value in every clock instead of starting with all clocks
synchronized. In this case the time of convergence is increased, but the algorithm still shows
good convergence properties. This models more accurately a real scenario since it is unlikely the
clocks will be exactly synchronized when first joining the network (usually a coarse
synchronization is achieved at initialization).

Figure 28 shows the plot of the maximum time difference of the nodes in a 10x10 network
using the new algorithm with permissions enabled for the first 500 seconds of simulation. The
plot in Figure 28 is the maximum time difference observed in the network regardless of the node-
pairs considered. This result shows promising scalability performance for the proposed
synchronization algorithm. The time of convergence is approximately 250 seconds when
T_DELAY = 10 and Kp = 0.5 is used, 147 seconds for T_DELAY = 2 and Kp = 0.5, and 80
seconds for T_DELAY = 2 and Kp = 0.8. Decreasing T_DELAY improves the convergence time;
however, it increases the overhead since beacons are sent more frequently. The increase in the
proportional gain Kp makes the algorithm faster as well, however, Kp can not be increased
indefinitely since the system can become unstable. Note that the result in Figure 11 is a worst
case scenario since all nodes start to exchange beacons at the same time without any previous
knowledge. In a more realistic scenario, the nodes will scan for beacons before joining the
network, and the transition will be smoother.

We simulated the failure of nodes 5, 9, 13, 17, and 21 for 200 seconds in a 5x5 network in order
to show the response of the new algorithm to network dynamics. Figure 29 shows the time
difference of nodes 1, 7, 19 and 25. The former nodes failed at 200 seconds of real-time for an
interval of 200 seconds. The initial conditions are random (±100µsecs), and all the clocks drift
with different values (in the range of ±25ppm). Note that this failure is quite drastic since it
effectively divides the original network into two isolated sub-networks. Nodes 19 and 25 remain
synchronous to each other, and the same occurs to nodes 1 and 7 since they are in the same sub-
net, however, inevitably the two sub-networks start drifting apart from each other since they can
not communicate. After 200 seconds the nodes are back and the algorithm converges to its

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 20

original state. Note that the clocks do not drift too much during this period since we assume good
quality clocks, furthermore the resultant drift is upper and lower bounded by the maximum and
minimum real drift of the clocks in every sub-net as will be shown later. The real drift of the
clock refers to the actual drift, and not the absolute maximum drift, which is equal to ±25ppm.

We are interested in observing the drift with respect to real-time of the whole network once it
has achieved synchronization. We simulated a symmetric 2x2 network in which nodes 1 and 3
drift with D = +25ppm, and nodes 2 and 4 drift with D = -25ppm. Figure 30 shows one sample of
the difference with respect to real-time of the nodes in this network utilizing Kp = 0.5 and
T_DELAY = 10 during the first 100 seconds of real-time with zero initial conditions. Figure 31
shows the equivalent result with Kp = 0.01 and T_DELAY = 1. By increasing the rate at which
the reference node is hopped (see Section IV) and by reducing the proportional gain of the
algorithm, the overall drift of the network tends to be closer to the average of the individual drifts
in the network (0ppm). However, the time of convergence increases as can be observed in
Figure 31. By reducing T_DELAY and Kp we are effectively giving more nodes the opportunity
to influence the final value of the network drift, which in turn reduces the deviation around the
average drift value (0ppm). This is a crude approximation of the behavior of this complex system.

We performed 100 simulations similar to the ones of Figures 30 and 31 in order to characterize
better the drift of the network after synchronization. The ensemble average was close to 0ppm
(approx. –2ppm) after different trials and different values of Kp. The simple proportional
controller used in every node consistently shows an offset on its final response. Additionally, it is
important to realize that the dynamics of this system correspond to a MIMO (Multiple-Input-
Multiple-Output) system which has inputs that are corrupted by random collisions and errors.
Therefore, a more powerful control strategy is needed for the purpose of synchronizing with real
time (the existence of such strategy is unknown to us). We simplified the system even further and
performed 100 simulations with a 2x1 network (2 nodes) drifting at equal and opposite drift
values (+25ppm and –25ppm). In this simpler case the proportional control law does achieve an
ensemble average closer to the average of the individual drifts. Figure 32 shows 200 sample
network drifts (100 per node) obtained when using Kp = 0.03 (also shown a case when node 1
and node 2 have unequal drifts equal to +25ppm and -5ppm respectively). Note that even a small
drift such as -2ppm might not be attainable in practice because the final drift of the network will
also be determined by the link latencies, which we assumed to be 0µsecs in our simulation due to
the relatively short distances involved. However, recall that our goal is not to synchronize with
real-time (build an accurate clock).

Figure 33 shows the parameter s corresponding to Figures 30 and 31. As expected, nodes 1 and

4 converge to a value of s smaller than 1 and nodes 2 and 3 converge to a value higher than 1.
When using a larger value for Kp (Figure 30) the convergence is much faster and the influence of
the nodes that transmit first are larger in determining the final drift of the network.

Finally, we performed 100 simulations of the new algorithm in a 5x5 network and recorded the

time of convergence in secs (this is done for the time difference of nodes 1-2, 1-25, and 7-19),
and maximum time difference observed (in µsecs) between any pair of nodes. Table 4 shows the
ensemble average and standard deviation of these two performance parameters with and without
permission as defined in equations (18) and (19).

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 21

Std. Dev Aver. Std. Dev Aver.
Max. time difference 203 933 41 431
Time of convergence 1-2 37 85 18 44
Time of convergence 7-19 40 114 23 65
Time of convergence 1-25 42 122 35 75

Permission OFF Permission ON

Table 4. Performance of the new algorithm in a 5x5 network for 100 simulations
of 200 seconds real-time each

The results show an improvement of roughly 50% by using the permission algorithm, both in

terms of maximum (or peak) time difference, and time of convergence. This is due to the
combined effects of beacon contention reduction and the more effective way in which
synchronization is spread throughout the network (nodes that received beacons successfully will
have higher probability of beacon transmission since they have captured more recent information
about the clock’s drift in the network). The algorithm without the permission mechanism still
achieves the same steady state performance, but its transient response has poorer qualities.

Increasing the aBeaconPeriod time can also reduce the overhead of sending beacons further.

Once a network has achieved synchronization through the initial learning transition, there is no
need to send beacons frequently. If the network dynamics do not change often through, for
instance, nodes joining and leaving the network frequently, then the beacon period can be
increased without a major impact. Note that this is implicitly shown through the results using
equations (18) and (19), and through the T_DELAY counter, since not all nodes are required to
send their beacons at every TBTT

.

8. Conclusion

We have shown through extensive computer simulations the feasibility to achieve mutual

network synchronization in a WLAN or in a multi-hop wireless Ad Hoc network by utilizing the
beacon messages in the IEEE 802.11 standard. Different from the IEEE TSF algorithm, which
requires continuous refresh of the synchronization in every node, the new algorithm learns after a
transition period from all the clocks in the network, and maintains very accurate synchronization
accuracy afterwards (approx. less than ±10µsecs). Node failure is emulated and the results for the
new algorithm show good performance. The new algorithm requires the connectivity of the
network at least temporarily in order to synchronize all the clocks in a given location. One of the
most attractive features of the new algorithm is its compatibility with the beacon messages used
in the IEEE 802.11 standard and its independence from the physical layer since no direct control
of clocks is performed. A more suitable mechanism is added to the algorithm represented by
equations (18) and (19) that better copes with the peculiarities of multi-hop communications with
promising results. Note that in our simulation set-up it is assumed that a beacon is received
properly if it is sent by a node within transmission range (only if collisions and wireless medium
impairments do not affect its reception). However, in a more realistic scenario the combination of
the signals transmitted by distant nodes (nodes farther than detection range) might lower the
signal-to-interference plus noise ratio to a level that could affect the reception of the given
beacon. This degrades the performance of any algorithm that requires exchanging timing
messages, such as TSF. After converging to a synchronous state, the network clocks drift with an
ensemble average that is close to the average of the individual clock’s drift. Obtaining very
accurate real-time synchronization (although not our main purpose in this work) is very difficult
due to the finite resolution of the clocks, the link latencies, and the spatial distribution of the

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 22

clocks in the network. Furthermore, it is important to realize that this is a distributed MIMO
control problem with noisy inputs, therefore more powerful control techniques are required in
order to achieve a better result. Future work includes further computer performance evaluations
with a more realistic wireless medium model, and the implementation of this algorithm in a
wireless Ad Hoc network test-bed currently under development.

Oscillator

Periodic epochs
of events

Accumulator

Output waveform
of oscillator

…
time

time

Time

Oscillator

Periodic epochs
of events

Accumulator

Output waveform
of oscillator

……
time

time

Time

dT/dt=1Oscillator

Periodic epochs
of events

Accumulator

Output waveform
of oscillator

……
time

time

Time

Oscillator

Periodic epochs
of events

Accumulator

Output waveform
of oscillator

……
time

time

Time

dT/dt=1

Figure 1. A simple clock structure

Figure 2. Time process example

Offset between T(t) and t

0

0.01

0.02

0.03

0.04

0.05

0.06

0 130 260 390 520 650 780 910 1040 1170 1300 1430
t (min)

T(
t)

-t
 (m

in
)

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 23

Figure 3. givenP in IEEE 802.11 TSF

Figure 4. givenP̂ for IEEE 802.11 and modified TSF

Figure 5. IEEE 802.11 and modified TSF c.d.f of maximum time deviation

Pgiven for IEEE 802.11 TSF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of nodes

P
gi

ve
n

Pgiven for IEEE 802.11 TSF and Modified TSF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of nodes

P
gi

ve
n

IEEE 802.11 Pgiven

Modified TSF Pgiven analysis

Modified TSF Pgiven simulation

c.d.f of maximum time deviation for IEEE 802.11 TSF and modified TSF

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 90 170 250 330 410 490 570 650 730 810 890 970

Maximum time difference
(usecs)

C
um

ul
at

iv
e

%

IEEE 802.11 TSF (10
nodes)
Modified TSF (10
nodes)
IEEE 802.11 TSF (20
nodes)
Modified TSF (20
nodes)

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 24

Figure 6. anyP and givenP for the IEEE 802.11 TSF

Figure 7. Controlled and real clocks in each node

Figure 8. New algorithm block diagram

Controlled clock Real clock

Oscillator (±25ppm)

64 bit controlled timestamp 64 bit real timestamp

xo

accumulator

××××

s

Controlled clock Real clock

Oscillator (±25ppm)

64 bit controlled timestamp 64 bit real timestamp

xo

accumulator

××××

s

Controlled clock Real clock

Oscillator (±25ppm)

64 bit controlled timestamp 64 bit real timestamp64 bit Rx timestamp

- +
)(nei xo

accumulator

pK

÷÷÷÷

××××

1−z

+

)(nsi

Controlled clock Real clock

Oscillator (±25ppm)

64 bit controlled timestamp 64 bit real timestamp64 bit Rx timestamp

- +
)(nei xo

accumulator

pK

÷÷÷÷

××××

1−z

+

)(nsi

Pany and Pgiven in IEEE 802.11 TSF

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 10 20 40 60 80 100 150
Number of nodes

p

Pany TSF DSSS
Pany TSF FHSS
Pgiven TSF

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 25

Figure 9. Mapping between Pper and N̂

Figure 10. anyP for the IEEE 802.11 TSF (FHSS vs DSSS)

Figure 11. anyP for IEEE 802.11 TSF and proposed algorithm with uniformly distributed drifts

Mapping function for Pper

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 20 40 60 80 100 120 140 160 180 200

N (est imated number of neighbors)

P
pe

r

P_Any TSF IEEE
802.11

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 10 20 40 60 80 100 150
Number of nodes

p

DSS
S
FHSS

P_Any for proposed algorithm and the IEEE 802.11 TSF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 10 20 40 60 80 100 150
Number of nodes

p

DSSS Proposed algorithm
FHSS Proposed algorithm
DSSS TSF
FHSS TSF

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 26

Figure 12. c.d.f of maximum time deviation during first 30 minutes of real time with
proposed algorithm

Time difference between 1st and 2nd nodes during first 10 seconds (with the
proposed algorithm)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

TBTT number (secondsx10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

Figure 13. Time difference between two nodes using the proposed algorithm

Figure 14. Sample of the parameter s for a single node in a network of 150 nodes

Parameter s for the 1st node during first 10 seconds

0.9999
0.99991
0.99992
0.99993
0.99994
0.99995
0.99996
0.99997
0.99998
0.99999

1
1.00001
1.00002
1.00003
1.00004
1.00005
1.00006
1.00007
1.00008
1.00009

1.0001

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

TBTT number (secondsx10)

 s

c.d.f of maximum time deviation among nodes using proposed algorithm
for 30 min. of real-time simulation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 15 30 45 60 75 90 105 120 135 150 165 180 195

Max. time deviation (usecs)

C
um

ul
at

iv
e

%

80 nodes DSSS

80 FHSS

150 DSSS

150 FHSS

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 27

Figure 15. Sample distribution of reference nodes of the 1st node

Figure 16. Reference node hopping

Figure 17. c.d.f of maximu time deviation using equation (17)

Reference nodes for nodes 1, 2 and 3 during first 10 seconds

0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

TBTT(seconds x 10)

R
ef

. N
od

e
nu

m
be

r

Ref. Node 1

Ref. Node 2

Ref. Node 3

Distribution of the reference nodes for the 1st node in a network
of 150 nodes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148

Reference node number

C
um

ul
at

iv
e

%

c.d.f of maximum time deviation for 200 and 150 nodes
using equation (17) with the proposed algorithm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Max. time deviation (usecs)

C
um

ul
at

iv
e

%

200 DSSS

200 FHSS

150 DSSS

150 FHSS

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 28

Figure 18. c.d.f of maximum time deviation for different values of the T_DELAY parameter

Figure 19. c.d.f of maximum tme deviation with memory

Figure 20. Network topology (example of a 4x4 grid)

150m

150m

1 2…

…16

5

150m

150m

1 2…

…16

5

c.d.f of maximum time deviation for 150 nodes with different T_DELAY
values in FHSS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Max. time deviation (usecs)

C
um

ul
at

iv
e

%

T_DELAY =
10

T_DELAY =
40

T_DELAY =
60

c.d.f of maximum time deviation for 200 and 150 nodes without
resetting parameter s

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Max. time deviation (usecs)

C
um

ul
at

iv
e

%

150 FHSS

200 FHSS

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 29

Figure 21. c.d.f of maximum time deviation for TSF in a 5x5 grid

Time difference between nodes 1-7 and nodes 1-25 during 30 minutes of
real-time (TSF)

0

100

200

300

400

500

600

700

800

900

1

10
00

19
99

29
98

39
97

49
96

59
95

69
94

79
93

89
92

99
91

10
99

0

11
98

9

12
98

8

13
98

7

14
98

6

15
98

5

16
98

4

17
98

3

TBT Ts (seconds x10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

Node 1 - Node 7

Node 1 - Node 25

Zoom-in of Figure 5

0

100

200

300

400

500

600

700

800

1 1000
TBTTs (seconds x10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

Node 1 - Node 7

Node 1 - Node 25

Figure 22. Time difference of nodes 1, 7, and 25 in a 5x5 network using TSF

Figure 23. Time difference of nodes 1, 7, and 25 in a 5x5 network using TSF (first 100 seconds).

c.d.f of the maximum time deviation using TSF in 5x5 network

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Time difference (usecs)

C
um

ul
at

iv
e

%

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 30

Figure 24. c.d.f of maximum time deviation in a 5x5 network using TSF and different
drifts per clock

Time difference between nodes 1-7 and nodes 1-25 during first
200 seconds of real-time (Proposed algorithm)

-100

-50

0

50

100

150

200

250

300

350

1 1000 1999

TBTTs (seconds x10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

Node 1 - Node 7

Node 1 - Node 25

Figure 25. Time difference among clocks of nodes 1,7, and 25 with new algorithm

Time difference between nodes 1-7 and nodes 1-25 during 200 seconds of
real-time (Proposed algorithm with permission enabled)

-20

0

20

40

60

80

100

120

1 1000 1999

TBTTs (seconds x10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

Node 1 - Node 7

Node 1 - Node 25

Figure 26. Time difference among nodes 1, 7 and 25 with the permission algorithm enabled

 c.d.f of the maximum time deviation using TSF in 5x5 network
(random clock drifts)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

50 100 150 200 250 300 350 400
Time difference (usecs)

C
um

ul
at

iv
e

%

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 31

Time difference between nodes 1-7 and nodes 1-25 during 200 seconds of
real-time (Proposed algorithm with permission enabled and random initial

conditions)

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

1 1000 1999

T BTTs (seconds x10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

Node 1 - Node 7

Node 1 - Node 25

Sample maximum time difference of the nodes of a 10x10 network with
different T_DELAY and Kp design parameters

0

50

100

150

200

250

300

350

400

450

500

1 500 999 1498 1997 2496 2995 3494 3993 4492 4991

TBTTs(secondsx10)

M
ax

im
um

 t
im

e
di

ff
er

en
ce

 (
us

ec
s)

 (1) 10x10, T_DELAY = 10, Kp = 0.5
 (2) 10x10, T_DELAY = 2, Kp = 0.5
 (3) 10x10, T_DELAY = 2, Kp = 0.8

(2)

(1)

(3)

Figure 27. Time difference among nodes 1, 7, and 25 with random initial conditions

Figure 28. Maximum time difference in a 10x10 network

Time difference between some nodes during a failure (Proposed algorithm
with permission disabled and random initial conditions)

-100

-50

0

50

100

150

200

1 1001 2001 3001 4001 5001

TBTTs (seconds x10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

Node 7 - Node 1
Node 7 - Node 19
Node 1 - Node 25

Node 19 - Node 25

failure of nodes

7-19 and 1-25

7-1 and 19-25

Figure 29. Time difference during a failure.

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 32

Time difference with respect to real time in a 2x2 network
(Kp=0.5, T_DELAY = 10, initial conditions = 0, permission disabled)

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

1 101 201 301 401 501 601 701 801 901

TBTTs (seconds x10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

time difference of real clocks
in nodes 1 and 4 (+25ppm)

time difference of real clocks
in nodes 2 and 3 (-25ppm)

time difference of controlled clocks
in all nodes (approx. -12ppm)

Figure 30. Time deviation with respect to real-time (Kp = 0.5 and T_DELAY = 10)

Time difference with respect to real time in a 2x2 network
(Kp=0.01, T_DELAY = 1, initial conditions = 0, permission disabled)

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

1 101 201 301 401 501 601 701 801 901

TBTTs (seconds x10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

t ime difference of real clocks
in nodes 1 and 4 (+25ppm)

time difference of real clocks
in nodes 2 and 3 (-25ppm)

time difference of controlled clocks
in nodes 1 and 4

t ime difference of controlled clocks
in nodes 2 and 3

Figure 31. Time deviation with respect to real-time (Kp = 0.01 and T_DELAY = 1)

Network drift with respect to real-time after synchronization is achieved in
a 2x1 network

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Sample per node per simulat ion

N
et

w
or

k
dr

if
t

af
te

r
sy

nc
hr

on
iz

at
io

n
(u

se
cs

)

Node 1 = 25ppm
Node 2 = -25ppm
Mean = -0.7
Node 1 = 25ppm
Node 2 = -5ppm
Mean = 9.8

Figure 32. Network drift with respect to real-time in a 2x1 network for 100
simulations of 100 seconds each with equal and unequal drifts.

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 33

References

[1] Kay Römer, " Time synchronization in Ad Hoc networks," Mobihoc. 2001, pp. 173-182

[2] J. Nelson, L. Girod, and D. Estrin, "Fine-Grained network time synchronization using

reference broadcast," Proc. of the 5th Symposium on Operating Systems Design and
Implementation (OSDI'02). December 2002.

[3] IEEE Std. 802.16a Amendment to IEEE 802.16-2001 “Air Interface for Fixed Broadband

Wireless Access Systems- Amendment 2: MAC modifications and Additional PHY
specifications for 2-11GHz,” 2003

[4] IEEE Std. 802.11. “Wireless LAN medium access control (MAC) and physical layer

specification,” 1999.
[5] Douglas M. Considine, Editor, “Van Nostrand’s scientific encyclopedia,” Eight ed. 1995.

[6] Kartaschoff, P, “Synchronization in digital communications networks,” Proceedings of the

IEEE ,Volume: 79 , Issue: 7 , July 1991

[7] John R. Vig, “ Quartz crystal resonators and oscillators for frequency control and timing

applications,” U.S Army communications-electronics command. http://www.ieee-
uffc.org/freqcontrol/tutorials/vig/vig_tutorial1_files/frame.htm

[8] D.W. Allan, “Clock characterization tutorial,” Proceedings of the 15th Annual Precise Time

and Time Interval (PTTI) Applications and Planning Meeting, 1983.

[9] S.B Moon, P. Skelly, and D. Towsley, “Estimation and removal of clock skew from

network delay measurements,” 18th Annual Joint Conference of the IEEE Computer and
Communications Societies INFOCOM '99. Volume: 1 , 21-25 March 1999, pp. 227 - 234
vol.1.

Parameter s corresponding to Figures 13 and 14

0.99995

0.99996

0.99997

0.99998

0.99999

1.00000

1.00001

1.00002

1.00003

1.00004

1.00005

1 101 201 301 401 501 601 701 801 901

TBTT s (seconds x10)

T
im

e
di

ff
er

en
ce

 (
us

ec
s)

parameter s of nodes 2 and 3
in Figure 13

parameter s of nodes 2 and 3
in Figure 14

parameter s of nodes 1 and 4
in Figure 14

parameter s of nodes 1 and 4
in Figure 13

Figure 33. Parameter s corresponding to Figures 30 and 31

Carleton University, Systems and Computer Engineering, Technical Report SCE-04-08, July 2004

 34

[10] W.C Lindsey, F. Ghazvinian, W. Hagmann, and K. Dessouky, “Network synchronization,”

Proceedings of the IEEE, vol. 73, No. 10, October 1985

[11] L. Huang, T-H Lai, “On the scalability of IEEE 802.11 Ad Hoc networks,” Mobihoc. June

2002, pp. 173-182

[12] A. Gersho and B. J. Karafin, "Mutual synchronization of geographically separated

oscillators," Bell Syst. Tech. J., vol. 45, December 1966, pp.1689-1904

[13] John G. Proakis, "Digital Communications," Mc-Graw Hill, 3rd edition, 1995

[14] Y. Akaiwa, H. Andoh, and T. Kohama, “Autonomous decentralized inter-base station

synchronization for TDMA microcellular systems,” IEEE Vehicular Technology
conference. May 1991, pp. 257-262

[15] E. Sourour, and M. Nakagawa, “Mutual decentralized synchronization of intervehicle

communications,” IEEE Transactions on Vehicular Technology, vol. 48, No. 6, November
1999, pp. 2015-2027

[16] A. Ebner, H. Rohling, M. Lott, R. Halfmann, "Decentralized slot synchronization in highly

dynamic Ad Hoc networks," www.fleetnet.de

[17] T-H Lai, and D. Zhou, " Efficient and scalable IEEE 802.11 Ad-Hoc-Mode timing

synchronization function," Proc. of the 17th International Conf. on Advanced Information
Networking and Applications (AINA'03). March 2003, pp. 1-6

