

GP-Pro: The Generative Programming

Protocol Generator for Routing

in Mobile Ad Hoc Networks

Pedro Eduardo Villanueva Peña

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the Doctor of Philosophy degree in Electrical Engineering

School of Information Technology and Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

University of Ottawa

© Pedro Eduardo Villanueva Peña, Ottawa, Canada, 2009

 ii

Abstract

Routing in mobile ad hoc networks (MANETs), where network topology is potentially highly

dynamic, is not a trivial task. Routing protocols have been profoundly researched but only

four of them have reached RFC status (AODV, OLSR, TBRPF and DSR). Simulation is the

tool of choice to test and analyze routing protocols in a controlled environment, however, its

credibility has decreased due to simulations being poorly performed and the inaccurate match

of performance results with the results obtained from real test-bed deployments. One of the

reasons for that is that simulation studies do not always correctly reflect the physical realities.

On the other hand, the constantly increasing network requirements in terms of bandwidth,

robustness, reliability and quality of service for a broad range of multiplatform scenarios

demand for fast development and implementation of routing protocols that satisfy specific

user requirements. However, current practices for protocol development and implementation

are costly and time-consuming, especially when existing knowledge is not properly reused.

Generative Programming is an attractive solution that makes use of reusable components and

is also powered with the knowledge to automatically assemble them. This thesis analyzes the

problem of developing ad hoc routing protocols, proposes an approach to automate the

development process, and discusses in detail the design and the steps to build the GP-Pro

protocol generator. GP-Pro is based on Generative Programming and automatically generates

ad hoc routing protocols according to user requirements, which are expressed by means of a

specification language. GP-Pro is designed with the explicit goal of generating a large

number of different protocols by different component combinations and it addresses the

generation of proactive, reactive and position-based routing protocols ready for deployment.

 To demonstrate the capabilities of GP-Pro, we generated deployable implementations

of the reactive protocol DYMO, the proactive protocol OLSR and the position-based

protocol GREEDY. It took about 8 months to develop GP-Pro and to generate the first

protocol (DYMO), but just about a week to generate the third protocol (GREEDY). The

more components are available, the faster the implementation can be achieved. Therefore,

 iii

generation time is considerably reduced. Through performance evaluation over real

networks, we show that the generated protocols perform very closely to their handcrafted

counterparts.

This research work provides the following contributions: 1) A domain specific

protocol architecture; 2) A component interconnection model; 3) A robust protocol

specification mechanism; 4) GP-Pro the software tool and; 5) Further insights in related

fields.

 iv

Acknowledgements

 The Ph.D. journey has been longer and tougher than I originally thought it would be,

however, I am glad that I took the challenge. It is certainly something that I could have not

achieved on my own. Therefore, I am thankful to everyone who helped me to accomplish it,

whether professionally, emotionally, or financially. First, I want to thank CONACYT, The

National Council of Science and Technology of Mexico (my beloved home country), who

sponsored me during most of my Ph.D. studies. Without its support I would not have even

considered pursuing a Ph.D. Next, I want to thank my supervisors Dr. Ivan Stojmenovic and

Dr. Thomas Kunz. Thanks Ivan for being a supervisor or co-supervisor for all three theses

that I have written: Bachelor, Masters and Ph.D. Your teachings and guidance introduced me

and took me through the ad hoc routing world that I enjoy so much. To Thomas, thanks for

all your advice, and for your many questions that made me work harder, but that also made

for a more valuable and rewarding research experience. The weekly meetings and

discussions were very challenging at the beginning, but became supportive at the end.

 Outside of the academia I owe a lot to my family and to my friends. Thanks to my

mother and sister whom I can always reach in Mexico through a phone call, and who always

take the time during my visits home to make it a very pleasant vacation. Very special thanks

to my long time friend Larissa Guzman who is always there when things get tough,

regardless of the distance (gracias Galleta). Thanks to my two good French Canadian friends

Anne Montpetit and Marc Billard, who I have shared many special moments with and who

are always willing to help when I need them (merci beaucoup les gars). Thanks to my

officemates Paul Elliot and Amy Cameron who shared similar joys of the Ph.D. life, which

made for more enjoyable hours during the Ph.D. isolation. Finally, I want to thank all my

other friends that I have met in Canada who have enriched my life experience during these

past five years, especially all those that I have met through various sports.

Pedro Eduardo Villanueva Peña, January 2009.

 v

Contents

ABSTRACT.. II

ACKNOWLEDGEMENTS ... IV

LIST OF FIGURES ...VIII

LIST OF TABLES .. IX

LIST OF ACRONYMS ... X

INTRODUCTION... 1

1.1 MOTIVATION ..3
1.2 DOMAIN..3
1.3 CHALLENGES ..4
1.4 THESIS CONTRIBUTIONS ...6
1.5 PUBLICATIONS ..9
1.6 THESIS ORGANIZATION...10

BACKGROUND ... 11

2.1 MOBILE AD HOC NETWORKS ...12
2.2 ROUTING ..13

2.2.1 Routing in MANETs ...13
2.2.2 MANET Routing Protocols ..14

2.2.2.1 Proactive Protocols.. 15
2.2.2.2 Reactive Protocols... 16
2.2.2.3 Hybrid Protocols ... 17
2.2.2.4 Position Based Protocols... 17

2.2.3 Path Computation Metrics ...18
2.2.4 QoS Routing...19
2.2.5 Routing Summary...19

2.3 LITERATURE REVIEW..20
2.3.1 Function Libraries ...21
2.3.2 Frameworks ...21
2.3.3 Component-Based Software Engineering ..23
2.3.4 Generative Programming ..25
2.3.5 Automatic Code Generation...27
2.3.6 Frameworks for Ad Hoc Routing Protocols...29

2.4 SUMMARY ..30

DOMAIN ANALYSIS .. 32

3.1 INTRODUCTION TO GENERATIVE PROGRAMMING ...32
3.2 DOMAIN ARCHITECTURE ..34
3.3 FEATURE MODELING ..38
3.4 SUBFAMILIES OF PROTOCOLS ...39

3.4.1 Proactive Protocols..40
3.4.2 Reactive Protocols ...42
3.4.3 Position-Based Protocols...43

GP-PRO: ARCHITECTURE AND IMPLEMENTATION ... 45

 vi

4.1 GP-PRO ARCHITECTURE...46
4.1.1 User Specification..47
4.1.2 Specification Validation...48
4.1.3 Graphic User Interface ..48
4.1.4 Specification Generator ...48
4.1.5 Buildability Checking...49
4.1.6 Completing Specification ...49
4.1.7 Components Selection ..49
4.1.8 Components Assembly..50
4.1.9 Additional Outputs ...50

4.2 GP-PRO IMPLEMENTATION ...50
4.2.1 Components Implementation..50
4.2.2 Architecture Implementation..53

4.2.2.1 XML and XVCL ... 54
4.2.2.2 OpenArchitectureWare and XVCL ... 55
4.2.2.3 OpenArchitectureWare only.. 57

4.2.3 Kernel Interaction..57
4.2.4 What GP-Pro Does Not Do..59

COMPONENT INTERCONNECTION MODEL... 60

5.1 BASIC COMPONENTS...62
5.2 COMPOSITE COMPONENTS ..64
5.3 ROUTING BETWEEN COMPONENTS ...68
5.4 LIMITATIONS ..70

GP-PRO: THE SOFTWARE TOOL.. 71

6.1 SPECIFICATION LANGUAGE ..71
6.2 PROTOCOL COMPONENTS ...74

6.2.1 Component Operation..78
6.2.2 Message Types ...80
6.2.3 Protocol Subfamilies ..81

6.3 PROTOCOL SPECIFICATION ...82
6.4 AUTOMATIC COMPLETION OF SPECIFICATIONS...87
6.5 ERROR HANDLING ..88
6.6 GENERATION TIME ...89

EVALUATION ... 91

7.1 GENERATED PROTOCOLS ..91
7.1.1 OLSR Protocol ...92
7.1.2 GREEDY Protocol ...95
7.1.3 Generalized Message Format ..100
7.1.4 Protocol Variants...101

7.2 COMPARING GP-PRO AGAINST EXISTING FRAMEWORKS..102
7.3 COMPARING THE GENERATED PROTOCOLS...104

7.3.1 Test-bed..106
7.3.2 Proper Routing...106
7.3.3 Resource Consumption ..110

7.3.3.1 Standalone Mode... 110
7.3.3.2 Data Transmission Mode... 112

7.4 SUMMARY ..114

CONCLUSIONS AND FUTURE WORK.. 116

APPENDICES... 120

APPENDIX A.. 121

 vii

APPENDIX B .. 128

APPENDIX C.. 130

C.1 MADINI – INFORMATION SUBCOMPONENTS ...130
C.2 DELIVERY MECHANISMS..133
C.3 CONI...135
C.4 ADDITIONAL COMPUTATIONS ..137
C.5 OPERATING SYSTEM INTERFACE..138
C.6 PATH DETERMINATION ..139
C.7 ROUTING INFORMATION REPOSITORY..141
C.8 EVENT MANAGER ..144
C.9 LOCATION INFORMATION...145

APPENDIX D.. 146

APPENDIX E .. 150

APPENDIX F .. 151

APPENDIX G.. 154

BIBLIOGRAPHY... 155

 viii

List of Figures

FIGURE 1. EXAMPLE OF AN AD HOC NETWORK ... 13

FIGURE 2. GP-PRO DOMAIN ARCHITECTURE .. 35

FIGURE 3. FEATURE DIAGRAM ... 38

FIGURE 4. ARCHITECTURE FOR THE SUBFAMILY OF PROACTIVE PROTOCOLS............................ 40

FIGURE 5. OLSR PROTOCOL ARCHITECTURE ... 41

FIGURE 6. ARCHITECTURE FOR THE SUBFAMILY OF REACTIVE PROTOCOLS 41

FIGURE 7. DSR PROTOCOL ARCHITECTURE .. 42

FIGURE 8. ARCHITECTURE FOR THE SUBFAMILY OF POSITION-BASED PROTOCOLS 43

FIGURE 9. GFG PROTOCOL ARCHITECTURE.. 44

FIGURE 10. GP-PRO ARCHITECTURE .. 45

FIGURE 11. HIERARCHICAL ARRANGEMENT OF COMPONENTS.. 61

FIGURE 12. BASIC COMPONENT.. 63

FIGURE 13. COMPOSITE COMPONENT ... 63

FIGURE 14. EXAMPLE OF GENERIC COMPOSITE COMPONENT .. 64

FIGURE 15. EXAMPLE OF GENERIC COMPOSITE COMPONENT .. 65

FIGURE 16. LOGICAL INTERCONNECTION OF COMPONENTS .. 66

FIGURE 17. MODIFIED LOGICAL INTERCONNECTION .. 67

FIGURE 18. MESSAGE WITH SENDER ID IN THE HEADER... 68

FIGURE 19. MESSAGE WITH DESTINATION ID IN THE HEADER .. 68

FIGURE 20. COMPONENTS HIERARCHY OF Z... 69

FIGURE 21. SCREENSHOT OF THE XTEXT FRAMEWORK INSIDE ECLIPSE 74

FIGURE 22. SCREENSHOT OF THE DEFINITION OF A TEMPLATE USING XPAND LANGUAGE 77

FIGURE 23. STATE MACHINE REPRESENTING PROTOCOL OPERATION.. 80

FIGURE 24. SCREENSHOT OF THE DYMO PROTOCOL SPECIFICATION USING THE NEW DSL..... 85

FIGURE 25. GP-PRO LOGO ... 154

 ix

List of Tables

TABLE 1. APPROACHES TO IMPLEMENT THE ARCHITECTURE OF GP-PRO 53

TABLE 2. SUBCOMPONENTS OF Z ... 65

TABLE 3. MESSAGE/DESTINATION FOR ALL THE MDC’S.. 66

TABLE 4. NEW MESSAGE/DESTINATION TABLE... 67

TABLE 5. MESSAGE TYPES... 80

TABLE 6. SPECIFICATION ERRORS AND WARNINGS... 88

TABLE 7. TLVS SPECIFICATION ... 100

TABLE 8. QUALITATIVE COMPARISON BETWEEN EXISTING FRAMEWORKS 102

TABLE 9. PERFORMANCE OF DYMOUM ... 107

TABLE 10. PERFORMANCE OF DYMO IMPLEMENTED WITH GP-PRO.................................... 107

TABLE 11. PERFORMANCE OF OLSRD... 108

TABLE 12. PERFORMANCE OF OLSR IMPLEMENTED WITH GP-PRO...................................... 108

TABLE 13. PERFORMANCE OF GREEDY IMPLEMENTED WITH GP-PRO................................ 109

TABLE 14. IMPLEMENTATION SIZES IN BYTES .. 111

TABLE 15. CONSUMED PHYSICAL MEMORY IN KBYTES... 111

TABLE 16. CPU UTILIZATION FOR DYMO OVER ONE HOP PATHS .. 112

TABLE 17. CPU UTILIZATION FOR DYMO OVER THREE HOP PATHS 113

TABLE 18. CPU UTILIZATION FOR OLSR OVER ONE HOP PATHS .. 113

TABLE 19. CPU UTILIZATION FOR OLSR OVER THREE HOP PATHS .. 113

TABLE 20. CPU UTILIZATION FOR GREEDY OVER ONE AND THREE HOP PATHS 114

TABLE 21. LIST OF GENERATED TEMPLATES .. 129

TABLE 22. RELATIONSHIP BETWEEN COMPONENT TYPES, XPAND TEMPLATES AND DSL

ABSTRACT RULES ... 152

 x

List of Acronyms

ACE Adaptive Communication Environment

AODV Ad hoc On-Demand Distance Vector

API Application Programming Interface

ASL Ad hoc Support Library

CBR Component-Based Routing

CBSE Component-Based Software Engineering

CEDAR Core Extraction Distributed Ad hoc Routing

CONI Collector of Network Information On-Demand

CPU Central Processing Unit

DREAM Distance Routing Effect Algorithm for Mobility

DSDV Destination-Sequenced Distance Vector

DSL Domain Specification Language

DSR Dynamic Source Routing

DTD Document Type Definition

DYMO Dynamic MANET On-Demand

ETX Expected Transmission Count

FreeBSD Free Berkeley Software Distribution

FSM Finite State Machine

GFG Greedy-Face-Greedy

GG Gabriel Graph

GP Generative Programming

GP-Pro Generative Programming Protocol Generator

GPS Global Positioning System

 xi

GUI Graphic User Interface

HNA Host and Network Association

HSLS Hazy Sighted Link State

HTML Hypertext Markup Language

IARP Intrazone Routing Protocol

IERP Interzone Routing Protocol

IETF Internet Engineering Task Force

IPC Inter-Process Communication

IPv4 Internet Protocol Version 4

ISO International Organization for Standardization

JAXP Java API for XML Processing

LAR Location-Aided Routing

LKM Loadable Kernel Module

MAC Media Access Control

MADINI Manager for Distribution of Network Information

MANET Mobile Ad hoc Network

MDD Model-Driven Development

MID Multiple Interface Declaration

MPEG Moving Picture Experts Group

MPR Multi-Point Relay

MPRS Multi-Point Relay Selector

NHDP Neighborhood Discovery Protocol

oAW OpenArchitectureWare

OLSR Optimized Link State Routing

OS Operating System

OverML Overlay Modeling Language

PIX Protocol Implementation Framework for Linux

 xii

PRAN Physical Realization of Ad hoc Networks

QoS Quality of Service

RFC Request for Comments

RIR Routing Information Repository

RNG Relative Neighborhood Graph

RREP Route Reply

RTT Route Trip Time

SGML Standard Generalized Markup Language

SMF Simplified Multicast Forwarding

SOCKS Abbreviation for Sockets

TBR Ticket Based Routing

TBRPF Topology Broadcast Based on Reverse-Path Forwarding

TC Topology Control

TTL Time to Live

UDP User Datagram Protocol

Wi-Fi Wireless Fidelity

WXS World Wide Web Consortium XML Schema

XML Extensible Markup Language

XORP Extensible Open Router Platform

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformation

XVCL XML-based Variant Configuration Language

ZRP Zone Routing Protocol

 1

Chapter 1

Introduction

MANETs (Mobile ad hoc networks) are infrastructure-less networks where the nodes are

potentially mobile and communication is achieved wirelessly. Due to node mobility and link

quality variations, the topology of such networks is potentially highly dynamic, which

challenges the performance and design of routing protocols. Substantial research has been

conducted in the field of ad hoc routing protocols and many protocols have been proposed.

Four protocols have been assigned RFC status by the IETF (Internet Engineering Task

Force), they are: AODV [1], OLSR [2], TBRPF [3], and more recently DSR [4]. However,

research is still ongoing, now trying to take advantage of the learned experiences. DYMO

[5], one of the newest protocols proposed by the IETF, which is a successor of AODV [1],

and OLSR version 2 [6] are examples of this trend. In order to test and analyze routing

protocols in a controlled environment under a large range of scenarios, simulation is the tool

of choice. However, as discussed in [7], the credibility of simulation studies has decreased

due to simulations being poorly performed and due to a lack of reliable and homogeneous

scenarios that allow repeatability and fair comparison. Actually, even if the simulation work

is well done, the results might not match those of real test-bed deployments well, as shown in

[8, 9] and [10]. One of the reasons for that is that simulation studies do not always correctly

reflect the physical realities, leading to performance results that do not match what is

obtained in the real world. Therefore, simulation work is not sufficient, as ultimately routing

protocols are to be implemented and tested in real test-beds. Thus, real protocol

implementations are required, even though implementing a protocol is no easy task.

Several approaches have been taken to support and to speed up the development of

communication protocols, some examples are: X-kernel [11], ACE [12] and PIX [13]. All of

these approaches are frameworks that support the implementation of protocols for any layer

in the protocol stack. Therefore, the programmer makes use of the available tools to

 2

implement the desired protocol, meaning that the programmer still has to do a considerable

amount of programming. PIX [13] tries to reduce the amount of additional programming by

making use of Generative Programming (GP) [14] in order to automate the protocol

generation process based on a protocol specification. However, only the main architecture of

the protocol is generated by PIX and it is left to the programmer to code complementary

functionalities and all of the packet processing. Some other approaches are specifically

oriented to the domain of ad hoc routing protocols (the domain of our interest) such as ASL

(Ad hoc Support Library) [15], which is a library that supports the implementation of

reactive protocols.

In order to advance the state of the art, this research proposes a protocol generator for

the specific domain of routing in ad hoc networks, which applies Generative Programming

for the first time to this domain. The generator is called GP-Pro, the Generative

Programming Protocol generator for ad hoc routing protocols. The objective of GP-Pro goes

farther than the previous approaches. GP-Pro is designed to generate ad hoc routing protocols

by assembling existing components, based on user specifications. Consequently, the

programmer’s job is reduced to selecting the components to build the protocol that she/he

wants, by means of a specification mechanism. The range of protocol variability that can be

generated with GP-Pro depends on the number of existing components and their granularity.

Additional components can be added to GP-Pro at any time as long as they comply with the

proposed protocol architecture. Therefore, GP-Pro reduces the generation time of routing

protocols by providing a common architecture that maximizes the reusability of existing

components.

This idea of implementing routing protocols out of components is a perfect match for

the current efforts of the MANET working group [16] in the routing area of the IETF, which

is trying to create several standard features that could be reused by any other routing

protocol. Some of these features are: 1) The Generalized Packet/Message format, which is a

multi-message packet format that is expected to be used by routing and other MANET

protocols; 2) The Neighborhood Discovery Protocol (NHDP) that describes one-hop and

symmetric two-hop neighborhood discovery and; 3) A Simplified Multicast Forwarding

 3

(SMF) mechanism which actually reuses the NHDP. In fact, the DYMO [5] protocol, which

was chosen to be the first protocol generated by GP-Pro, is described by the IETF to make

use of NHDP and the Generalized Packet Format. Both of these features could be

implemented as reusable components.

1.1 Motivation

MANETs are infrastructure-less networks consisting of wireless nodes that are potentially

mobile. Due to mobility and wireless connectivity, the network topology experiences

frequent and continuous changes. However, dynamic topology is not the only challenge for

MANETs; unidirectional links, asymmetric links, variable transmission ranges, resource

constraints (e.g., battery, bandwidth), nodes and platform heterogeneity, security, etc., are

additional scenario-dependant challenges that have to be considered when designing a

routing protocol that suits the target network. Designing, implementing and testing each new

routing protocol is an error-prone and time-consuming process that impedes the creation of

customized protocols to fit specific scenario requirements. As a result, the one-protocol-fits-

all approach tends to be chosen even though it is not best. Therefore, there is a necessity to

provide tools to rapidly prototype such protocols without starting from scratch every time.

GP-Pro is proposed as a software tool to support fast prototyping of ad hoc routing protocols

for real networks based on user specifications. Furthermore, the fact that each protocol is

assembled out of components provides the capability to interchange specific components

(performing particular protocol tasks), to better understand their individual impact on each

networking scenario and to create a broad variety of protocols.

1.2 Domain

The objective of GP-Pro is the generation of routing protocols for ad hoc networks based on

user specifications. Furthermore, the specific domain of GP-Pro is the generation of unicast

routing protocols for mobile ad hoc networks, which make use of a flat addressing

mechanism for IP-based networks over the Linux platform. Unicast protocols deliver

information from a single source to a single destination. They are discussed in Section 2.2.2.

 4

The reason to focus on unicast protocols and to leave multi-destination protocols aside is that

unicast routing protocols present enough feature variabilities to analyze their automatic

generation, based on a common protocol architecture. Also, unicast protocols are the

preferred choice, over multi-destination ones, when initiating research on any new feature of

interest (e.g., QoS, energy efficiency). Nevertheless, the generation of multi-destination

protocols might be a feasible extension for GP-Pro. From now on, whenever we talk about

protocols generated by GP-Pro, we refer to protocols that belong to the described domain

only.

1.3 Challenges

In order to generate a powerful tool such as GP-Pro, several challenges have to be overcome.

These challenges are listed next:

1. Domain Analysis – GP-Pro follows a system family approach instead of a single

system approach in order to generate ad hoc routing protocols. In a single system

approach, each new member is created from scratch. On the other hand, in a system

family, all of its members share common properties and have special properties, or

variabilities, which identify each family member. Consequently, the development of

components that represent those commonalities allows reusing them to quickly create

additional family members. Therefore, the commonalities and variabilities between

all of the possible members of the family have to be identified. This study, called

domain analysis, is essential in order to create a protocol architecture that

accommodates a broad range of protocol configurations.

2. Protocol Architecture – Once the domain analysis is performed, the protocol

architecture has to be designed. It defines the place that each component (representing

a protocol feature) holds in the hierarchy of components along with the relationship

between components and subcomponents. In order to support protocol variabilities,

the architecture has to be flexible enough to allow removing, adding or swapping

components and to construct multiple protocols by different component

combinations.

 5

3. Component Interconnection Model – The protocol architecture will allow replacing

subcomponents for other subcomponents of similar or extended functionality. But, it

will also allow replacing one subcomponent for several others of finer granularity

(similar to components, subcomponents might be composed of a set of sub-

subcomponents). This requires an interconnection model that supports multiple and

varying component levels. The use of well-defined interfaces for each component

could be too restrictive when replacing components for components of higher

granularity or extended functionality. However, a minimal set of interconnection rules

are required to properly combine multiple components.

4. Extensibility – As mentioned before, the protocol architecture has to be designed in a

way that fits commonalities and variabilities in the target domain. As a result, and in

order to confirm its correctness, a few sets of components will have to be developed

to implement different and complete routing protocols. However, any domain

analysis can only consider our current knowledge about the characteristics of existing

routing protocols. Therefore, GP-Pro has to be designed in a way that allows the

addition of new components that satisfy further user requirements without conflicting

with the protocol architecture. Or, in the worst case, the architecture should be easily

adaptable.

5. Full Protocol Implementations – The existence of a protocol architecture might set

constraints in terms of either the range of different protocols that can be generated or

in terms of the ability to generate full protocol implementations. Therefore, the

protocol generation process and code generator have to be carefully designed. The

goal is to minimize the amount of coding for each new protocol by maximizing the

reusability of existing components that fit the proposed architecture. We want to

generate full protocol implementations whenever all the required components are

available.

6. Robust Specification Mechanism – The protocols to be generated by the protocol

generator are based on user specifications. Therefore, the only way to take full

advantage of a protocol generator that overcomes all of the previous challenges is by

providing a specification mechanism that satisfies the specification requirements of

the user. In addition, it should support matching the specification with the

 6

corresponding set of components, in order to generate fully implemented routing

protocols. Such a specification mechanism has to be created.

7. Truly Reusable Components – The extent of protocol variability depends on the

reusability of existing components and subcomponents. Components of low

reusability could entail constant development of new components. This situation

would contradict the objective of simplifying the protocol generation process.

Therefore, components and subcomponents should be implemented in a way that

supports and encourages reuse.

8. Efficient Generated Protocols – GP-Pro aims to be a protocol generator that allows

users to create a broad range of routing protocols and speeds up the generation

process. Therefore, it will employ generic features, which might represent additional

costs in terms of performance or efficiency for the generated protocols when

compared to their handcrafted counterparts (protocols generated without the support

of generic tools). Therefore, a reasonable trade-off between generation time and

protocol efficiency has to be achieved and demonstrated.

1.4 Thesis Contributions

This research addresses all of the challenges listed above, and contributes with a feasible

solution for each case. The contributions of this thesis are listed next.

1. Protocol Architecture – The objective of GP-Pro is to be able to generate a broad range

of routing protocols for MANETs, which involves dealing with different and very

particular challenges. Some existing approaches in the MANET domain only provide

support for limited types of protocols such as ASL [15], which only provides support for

packet handling requirements specific to reactive protocols. On the contrary, GP-Pro

targets reactive, proactive and localized (position-based) protocols. The proposed

mechanism, which is based on Generative Programming [14], generates a variety of

routing protocols by automatically assembling reusable components. Therefore, to

achieve our objectives, the protocol architecture is designed to provide high flexibility in

terms of the amount of required components and subcomponents, along with their

possible combinations to create complete routing protocols. The architecture of routing

 7

protocols is described in Sections 3.2 and 3.4. In order to create this protocol architecture,

first, we identified the commonalities and variabilities between each member of the target

domain. This study, known as domain analysis, is described in Chapter 3.

2. Component Interconnection Model – The protocol architecture defines hierarchical

relationships between components and subcomponents. It also allows interchanging

components to introduce different or extended functionalities. There are no real

limitations on the number of components or subcomponents that can be used to

implement each routing protocol. This flexibility in the architecture is achieved thanks to

the proposed interconnection model, which provides a generic and well-defined message

exchange mechanism to achieve communication and cooperation between components.

Chapter 5 provides a detailed description of the interconnection model.

3. Robust Specification Mechanism – In order to automatically generate ad hoc routing

protocols based on user specifications, a robust specification mechanism has been

developed. This specification mechanism supports different specification levels. It

supports very simple specifications where no component properties or interconnections

are specified, and it also supports the most complete specifications where each

component is re-configured and every interconnection is listed. Therefore, we introduce a

new specification mechanism, which is supported by a domain specification language

especially designed for GP-Pro. Sections 6.1 and 6.3 describe the new specification

mechanism. In this specification mechanism each listed component receives a

synonym, and that is the way that the component is known along the specification.

Therefore, the same component can be used more that once in the same specification,

each time receiving a different synonym. Additionally, each component provides a set of

configurable properties for further tuning. Consequently, components are not only reused

to create different protocols; they are also reused inside a same protocol. Section 6.2

addresses the creation of new components and Section 6.3 discusses their use as part of a

new specification. Also, Section 7.1 shows actual protocol specifications where

components (e.g., delivery mechanism n_hops) are reused inside a same protocol, and to

create a different one.

4. GP-Pro as a Tool – All of the research work adds up to the creation of GP-Pro, a

software tool to generate ad hoc routing protocols based on user specifications, which

 8

will be available to the research community for their own use. Hopefully, the tool will be

used and extended while utilized as part of future research projects. The architecture and

implementation of GP-Pro are addressed in Chapter 4. Three of the most important

features of GP-Pro are listed next:

a. Extensibility – During the development of GP-Pro, a few sets of components were

developed to demonstrate the fact that different types of protocols can be easily

generated by reusing existing components. The developed components represent

features that characterize existing routing protocols, which is also a subset of future

protocol features. However, no matter how large the set of developed components is,

it will never be complete in the sense of providing all kinds of required protocol

functionalities. Therefore, GP-Pro is designed as an extensible protocol generator that

can accommodate forthcoming features by allowing new components to be added at

any time. Guidelines on how to create new components are given in Section 6.2.

b. Full Protocol Implementations – Differently from similar approaches to generate

communication protocols (e.g., [13]), which mainly generate protocol prototypes that

require further coding, the ultimate contribution is the generation of complete routing

protocols, where no further adjustments or additional coding has to be performed,

assuming that all the required components are available. Therefore, GP-Pro reduces

the generation time by providing a common protocol architecture that maximizes the

reusability of exisiting components. The output of the protocol generator is source

code that, once compiled, is ready for deployment. There is no other existing solution

that aims to achieve that. Section 4.2 discusses implementation issues.

c. Efficient Generated Protocols – In order to demonstrate the protocol generation

capabilities of GP-Pro, three routing protocols were generated: the reactive protocol

DYMO, the proactive protocol OLSR and the position-based protocol GREEDY. The

time to create the components required to generate each new protocol was

continuously reduced from months to days, between the first and the third protocol.

On the other hand, performance comparisons showed that all generated protocols can

deliver as many packets as their handcrafted counterparts. Therefore, GP-Pro can be

used to generate routing protocols in a shorter period of time, which achieve same

 9

delivery rates than their handcrafted counterparts, at the cost of increased resource

utilization (as detailed in Section 7.3).

5. Further Insights in Related Fields – As previously mentioned, GP-Pro is based on the

concept of Generative Programming, where existing components are automatically

assembled according to some configuration knowledge. Therefore, the creation of GP-Pro

demonstrates the applicability of Generative Programming to the field of ad hoc routing

protocols and it might also lead to further insights into Generative Programming itself.

Generative Programming is introduced in Section 3.1. On the other hand, current efforts

of the MANET working group [16] in the routing area of the IETF are oriented towards

the standardization of features (e.g., a generalized packet/message format) that can be

reused by several routing protocols. Hence, the design of a generic protocol architecture

based on components that can be reused and recombined might help to identify additional

units of standardization at the IETF. Existing standardization units are commented at the

beginning of this chapter.

1.5 Publications

The following is a list of publications that resulted from the research work performed on the

topic.

[1] P. E. Villanueva-Peña and T. Kunz, "OLSR Implementation Using GP-Pro: The

Automatic Protocol Generator," in Proceedings of the Fourth OLSR Interop and

Workshop, 2008, pp. 1-5.

[2] P. E. Villanueva-Peña, “GP-Pro: The Generative Programming Protocol Generator

for Routing in MANETs,” in Proceedings of the Eighth IEEE Workshop on Mobile

Computing Systems and Applications, 2007.

[3] P. E. Villanueva-Peña and T. Kunz, "GP-Pro: A protocol generator based on user

specifications for QoS routing in mobile ad hoc networks," in Proceedings of the

Workshop on Generative Programming and Component Engineering for QoS

Provisioning in Distributed Systems, 2006.

 10

[4] P. E. Villanueva-Peña and T. Kunz, "GP-Pro: The generative programming protocol

generator for routing in mobile ad hoc networks," in Proceedings of the Second IEEE

Workshop on Wireless Mesh Networks, 2006, pp. 129-131.

1.6 Thesis Organization

This thesis is organized as follows: Chapter 2 gives an introduction to mobile ad hoc

networks and routing. It also reviews different approaches to support the development of

communication protocols including those that are particular to routing protocols for ad hoc

networks. Chapter 3 introduces the concept of Generative Programming and presents the

outcomes of the domain analysis. Chapter 4 shows the architecture of GP-Pro and discusses

the different alternatives that were evaluated for its implementation. GP-Pro generates

routing protocols by assembling components. Therefore, an essential element for component

interaction and assembly is the component interconnection model. This model, which is a

fundamental contribution of this work, is fully described in Chapter 5. Next, Chapter 6

presents the actual software tool by describing the specification language, the way that

components are implemented, how to write new specifications and the mechanism to

automatically complete specifications with missing elements. Chapter 7 addresses the

evaluation of GP-Pro along with its generated protocols. Finally, Chapter 8 presents the

conclusions of this work and discusses the potential future work.

 11

Chapter 2

Background

The modern times necessity for information anytime/anywhere has been the cause of

increased interest and increased research efforts in the fields of wireless and mobile

communications. Mobile ad hoc networks are a special kind of networks where both of these

fields converge. The potentially highly dynamic topology of MANETs and their unreliable

transmission medium present new challenges for all layers in the protocol stack; challenges

that have to be solved differently than for wired and static networks. First attempts to solve

those challenges usually propose solutions that work well under the chosen scenario but fail

under different conditions (e.g., higher mobility, variable bandwidth, unidirectional links,

scarce node energy, etc). Therefore, solutions become very scenario dependant. In the field

of routing protocols for MANETs, which is the focus of this document, profound research

efforts have been made and some protocols have been adopted by the community as generic

solutions (that is the case of the four well-know protocols AODV [1], OLSR [2], TBRPF [3]

and DSR [4] that all have reached RFC status). However, their performance varies over

different scenarios, meaning that there is no single best protocol. Therefore, many more

protocols have been proposed [17] to comply with specific networking requirements, but, due

to the time-consuming process for designing, implementing, testing, debugging and

deploying new protocols, they usually do not leave the research lab and most of the time they

are only implemented inside network simulators. Simulation studies are useful to explore

protocol behavior in controlled environments, but are not sufficient, as ultimately protocols

are to be used in real test-beds. One of the reasons for that is that simulation studies do not

always correctly reflect the physical realities, leading to performance results that do not

correspond with the ones obtained in the real world. Hence, in order to satisfy the broad

range of networking scenarios without experiencing long periods of development time, new

mechanisms to support faster development are needed.

 12

This chapter presents the related literature review, focusing on different approaches to

support the development of communication protocols and it is ultimately oriented towards

the generation of routing protocols for ad hoc networks. However, before exploring the

existing work, we introduce the concept of ad hoc networks in more detail along with its

main characteristics. Also, we introduce routing and we discuss existing routing alternatives

for MANETs.

2.1 Mobile Ad Hoc Networks

Mobile ad hoc networks [17] are self-configuring infrastructure-less networks constructed by

mobile nodes, which communicate wirelessly and are free to move arbitrarily (e.g.,

randomly, in groups, or along pre-planned routes). Therefore, the network topology is very

dynamic and may change rapidly and unpredictably. Each node in the network behaves as an

end-host and as a router, and it is expected to carry traffic originated by, or destined to, other

nodes in the network. The communication between each pair of nodes might be established

in multi-hop fashion (traversing several nodes) if they are not direct neighbors. The network

may operate in isolation or may have gateways to interface with a fixed network or the

Internet. Due to the mobile nature of its nodes, which usually rely on limited power supply,

energy conservation is an important issue on the design of ad hoc networks. Ad hoc networks

can grow to several thousands of nodes and because of their high mobility and decentralized

operation they require reliable and dynamic addressing mechanisms. On the other hand, due

to the use of a shared wireless communication medium, ad hoc networks might experience

severe security threats due to eavesdropping and jamming. Ad hoc networks became more

popular as portable computers and 802.11/Wi-Fi wireless networking became widespread.

Even though ad hoc networks have been available for more than a decade, their applicability

has been restricted due to their initial orientation towards combat and disaster relief

scenarios, which are not part of common and every day situations. However, a new

application that could increase the applicability of ad hoc networks is their use to extend

home or campus networks, to areas not easily reached by wireless telephony or by wireless

local area networks. This application is called opportunistic ad hoc networking [18]. An

example of an ad hoc network is shown in Figure 1. In Figure 1, the concentric circles around

 13

the portable computers represent the omni-directional transmissions, which are commonly

assumed to be fixed in range, even though real scenarios demonstrate that the range varies

and that signal does not shape a perfect circle [19] when it propagates. The dotted lines

represent existing wireless links between nodes.

Figure 1. Example of an ad hoc network

2.2 Routing

Routing refers to the task of selecting paths in a network along which information could

travel. This task is performed by the so-called routing protocols. Routing protocols might

select full paths or just the next node (i.e. the next-hop) to forward the message to, in order to

eventually reach the target destination by successive forwarding. Therefore, full routing paths

might be defined by the source node or might be dynamically constructed by multiple nodes

during message forwarding. Routing information is usually stored by each protocol in a

repository commonly known as routing table. A complementary repository to support the

routing task is the forwarding table, which is maintained by the operating system. This

second table usually contains the information about the network interface to be used and the

next-hop to forward the message to.

2.2.1 Routing in MANETs

Routing is a task for which reliable and efficient solutions have been proposed and widely

used in the field of wired networks. However, when it comes to the field of mobile wireless

 14

networks, the routing task becomes more complicated and existing solutions cannot be

applied. Wired network solutions become inefficient, mainly because of their assumptions of

a fixed topology and the use of reliable channels, which contradict the mobile and wireless

characteristics of MANETs. Consequently, routing protocols for MANETs must assume that

nodes do not have a-priori knowledge about the network topology, which has to be

discovered. Therefore, the two main ideas to perform routing in MANETs are either that each

node continuously announces its presence and listens to periodic broadcast announcements

from its neighbors (even if no message is to be transmitted), or that each node looks for a

path to reach a specific destination node only when a message is to be transmitted. These two

ideas give origin to the two main types of routing protocols: proactive and reactive,

respectively, which are explained later on. [17] discusses some of the characteristics of

MANETs that make routing difficult. They are listed next:

• Dynamic topologies which may change randomly and rapidly at unpredictable

times.

• Bandwidth limitations.

• Wireless links of variable capacities, which achieve significantly lower capacity

than wired links.

• Changes on environmental conditions make the achieved throughput much less

than the radio’s maximum transmission rate.

• Low link capacities make congestion a norm rather than an exception when the

MANET is used as an extension of a higher capacity fixed network.

• Energy constrained operation of nodes that rely on exhaustible energy sources

(e.g., batteries).

• Diminished performance when the network size grows, meaning lack of

scalability.

2.2.2 MANET Routing Protocols

Substantial research efforts in the field of routing protocols for ad hoc networks have been

made. Therefore, a large amount of different routing protocols have been proposed. [20]

 15

provides an extensive list of them. Depending on the operation idea behind each routing

protocol they can be classified as proactive (table-driven), reactive, (on-demand) or hybrid

(combination of both). Additionally, they can be classified as position-based when supported

by location information to make routing decisions. Each of these classifications is discussed

in the following sections. However, before addressing them, we should comment on the

simplest mechanism to deliver packets to any given destination, which is known as flooding.

Flooding is also a component of many routing protocols (e.g., [21]) and does not require any

topological information. The idea behind flooding is that the source node transmits each data

packet once, and it is retransmitted by each other node in the network, with the hope that it

will eventually reach the destination node. The great disadvantage of flooding is the high

network load that it generates even by single transmission sources. Due to the high traffic

load, several optimizations have been proposed in order to reduce the number of packet

transmissions (e.g., [22]). An important characteristic of simple flooding is that all the traffic

sent into the network is composed of data packets carrying user information without sending

any control packets. Control packets are packets created by each routing protocol to support

its operation, which do not carry any user information at all. Control packets represent an

additional network load. However, their size is usually very small when compared to data

packets.

2.2.2.1 Proactive Protocols

The main idea behind proactive protocols, also known as table-driven protocols, is that each

node periodically announces its presence and it also listens to broadcast announcements from

its neighbors. Each of these broadcasts may contain additional status information about

neighboring nodes or network links in order to support path computation. The collected

information is locally stored and paths to every network destination are locally computed and

available at all times. Therefore, no additional delays are experienced when a routing path is

needed. Some well-know examples of proactive protocols are DSDV [23], TBPRF [3], and

OLSR [2]. As an example we describe OLSR [2]. OLSR is a table-driven, link-state routing

protocol that periodically advertises the links in the network. OLSR optimizes the link

advertisement process by reducing the amount of advertised links and the number of nodes

advertising them. OLSR also optimizes the message broadcasting mechanism by limiting

 16

message forwarding to MPRs (Multi Point Relays) only. OLSR nodes become aware of one-

hop and two-hop neighbors by continuously exchanging HELLO messages with the list of

one-hop neighbors. MPR nodes, which optimize broadcasting and support path calculation,

are selected by each node in the network (called MPR Selector) as the minimum set of one-

hop neighbors that allow reaching every two-hop neighbor. MPRs are the only nodes

generating TC messages and also the only ones forwarding them. TC messages advertise the

links between MPRs and MPR Selectors and those links are used by the shortest hop path

algorithm to construct paths reaching every node in the network.

2.2.2.2 Reactive Protocols

The main idea behind reactive protocols, also known as on-demand protocols, is that each

node looks for routing paths only when needed. This process to look for a path to a given

destination is commonly known as route discovery. Therefore, there is some additional

transmission delay that is experienced while the route is discovered, but just by the first few

packets. Some well-known examples of reactive protocols are DSR [4], AODV [1] and

DYMO [5]. As an example we describe DSR [4]. DSR is a reactive algorithm that quickly

adapts to routing changes when node movement is frequent and produces little or no

overhead when nodes move less frequently. In DSR, every source node S wishing to

communicate with any destination node D initiates a Route Discovery process (if no route to

D is available). During route discovery, the source node broadcasts a route request message

targeted to D and every node, other than D, re-broadcasts the message once, while adding its

own ID to the message header. Any route request message that reaches D contains a path

from S to D, which is sent back to S by means of a route reply message that follows the

reverse of the discovered path. Then S sends the data packets to D using the discovered path.

While data packets are being sent, path maintenance is performed. Assuming hop-by-hop

acknowledgements (Acks), when any node does not receive the corresponding Ack, it sends

a route error message to S reporting the link failure. Then, S looks for a different path to D

and all the cached paths using the broken link are truncated at that link. Every node applying

DSR maintains a route cache, where every discovered path is stored for a finite period of

time.

 17

2.2.2.3 Hybrid Protocols

Each of the two previous types of protocols is a better match for different scenarios and

provides different advantages and disadvantages. Proactive protocols are known to generate

more overhead, which might be the cause for dropping packets under high network loads.

However, they provide shorter end-to-end delay under light traffic loads and are preferred for

short-lived traffic sessions (no route discovery delay). On the other hand, reactive protocols

are not a good choice for delay-sensitive applications, however they generate less overhead

and usually provide better or similar efficiency for most common scenarios [18]. Therefore,

we can say that the best choice is scenario dependant. Hybrid protocols try to take the best

features of each type and combine reactive and proactive behavior in one single protocol.

Two examples of this type of protocols are ZRP [24] and HSLS [25]. Both of them share the

idea that it is more important to have accurate information about the close neighborhood than

about nodes located at the far distance. As an example we describe ZRP [24]. ZRP divides

the network into overlapping zones and runs different protocols inside and between each

zone. Inside each zone, the intra-zone protocol IARP proactively maintains each node

informed about the zone topology. When the destination node is not located inside the same

zone, the source node initiates a route discovery by using the reactive inter-zone protocol

IERP that sends route request messages to the zone-border nodes, which continue the process

until the destination is found. A key feature of this protocol is the selection of the zone

diameter size, which defines the boundaries between reactive and proactive operation.

2.2.2.4 Position Based Protocols

The last classification for ad hoc routing protocols is position based. Position based protocols

assume that each node is aware of its own location, the location of its neighbors (if beacons

are used) and the location of the destination. Each node forwards each data packet by making

local decisions, always trying to forward the packet to a node closer to the destination than

the current node itself. This kind of protocols relies on a localization technique (e.g., GPS -

global positioning system-) to obtain the location of each node and on a localization service

that distributes the location of each potential destination node to the rest of the network. The

location service accounts for the major fraction of the overhead, therefore, it has to be

efficient. Some well-known position-based protocols are DREAM [26], LAR [27] and GFG

 18

[28]. As an example we describe GFG [28]. GFG is a position-based protocol that combines

and switches back and forth between Greedy [28] and FACE [28] protocols. Greedy [28] is a

routing algorithm that achieves high delivery ratios by forwarding packets to the neighbor

that is the closest (in Euclidean distance) to the destination node. However, it does not

guarantee packet delivery. On the other hand, FACE [28] is a routing algorithm that

guarantees packet delivery, but causes large delivery delays. The combination of both

produces a lower delay routing algorithm that guarantees packet delivery. GFG applies

FACE whenever Greedy fails to find a node closer to the destination than the current node

itself, and switches back to Greedy once FACE finds a closer node. FACE performs routing

over a connected planar graph called Gabriel Graph (GG). The GG is extracted from the

network graph, it is locally and independently computed by each node, and partitions the

plane in faces made up of links of the network graph. FACE performs routing by traversing

the faces (using the corresponding network links) that overlap with an imaginary line from

the source to the destination node.

2.2.3 Path Computation Metrics

In all of the previous routing protocols given as example, the topology of the network (full or

partial) is always obtained first (proactively or reactively) and based on it the routing path is

determined. Assuming that the best way to reach a destination node is by taking the shortest

path, the shortest path algorithm, which uses the minimum hop count as its metric, tends to

be the favorite choice. However, [29] shows that such an assumption might not hold under

realistic scenarios where link quality varies drastically. Therefore, additional metrics other

than the minimum number of hops should be used to create more reliable paths. These new

metrics could be based on link status (e.g., link quality, link bandwidth), node status (e.g.,

node energy, buffer size) or network status (e.g., network load) information. [30] discusses

and compares different link-quality metrics. These metrics are: ETX [31] (Expected

Transmission Count), Per-hop Round Trip Time and Per-hop Packet Pair Delay. They are

compared against the minimum hop count metric. In terms of node status information, [32]

proposes to use the transmission power required to transmit each message and the remaining

load battery at each node, as metrics. Therefore, different and even multiple metrics could be

 19

combined to determine the best routing paths based on the specific requirements of each

network, and on specific characteristics of the operation environment.

2.2.4 QoS Routing

Most of the routing protocols for ad hoc networks are best-effort protocols. Best-effort means

that there are no guarantees that data will be delivered, or that traffic will be given a certain

priority, or that a certain Quality of Service (QoS) level will be provided. In best-effort

protocols, all of the traffic receives the best possible service but without guaranteeing a fixed

bit rate or delivery time, which depend on the current network load. However, current

applications such as multimedia or voice over IP, require QoS levels that guarantee a

minimum bit rate and data flow priority. Guaranteeing QoS levels in multi-hop ad hoc

wireless networks is very challenging due to channel quality fluctuations, packet contention

on adjacent links, long-range interference and packet collisions. The most commonly used

quality of service metrics in MANETs are: bandwidth, delay and jitter. In order to

incorporate quality of service guarantees in ad hoc routing protocols, some of the existing

protocols have been modified. An example is [33], where a QoS extension for DSR is

proposed. On the other hand, some protocols have been specifically designed with the goal of

providing QoS. That is the case for CEDAR [34] (Core Extraction Distributed Ad hoc

Routing) and TBR [35] (Ticket Based Routing).

2.2.5 Routing Summary

Section 2.2 and its subsections introduced routing in MANETs, discussed its challenges and

reviewed the main types of ad hoc routing protocols. This review, along with the examples of

path computation metrics and the discussion about QoS routing, show a glimpse of the broad

range of design choices for unicast routing protocols. In fact, this range of choices increases

every time that a new protocol feature is proposed. New features translate into new

variabilities that can be further combined to create new routing protocols. Therefore, the

domain of unicast routing protocols provides enough variability to be chosen as the target

domain of GP-Pro.

 20

2.3 Literature Review

This review looks into the field of alternative methods to generate software applications

(other than developing from scratch), which can be applied to the generation of routing

protocols. The discussed alternatives are organized, in increasing order, according to the

support that they provide to achieve the generation of complete applications. The first

alternative is the use of libraries that provide a large set of commonly used functions and

methods. The drawback of this approach is that it might not provide methods that are

specialized enough for the desired application domain (the ASL [15] library presented in

Section 2.3.1 is an example). A second alternative for the development of software

applications is the use of frameworks, which, according to [36], are reusable “semi-

complete” applications that can be specialized to produce custom applications. These

frameworks usually define the main software architecture or the interfaces between its

elements, which have to be implemented by every application. Even though frameworks

offer an attractive and faster approach for developing highly specialized applications, there is

still a lot of work that has to be done by the application developer. A third alternative is the

use of component-based software engineering, where existing components, which are mainly

treated as “black boxes”, are used to build the software applications. This approach is very

attractive if enough fine-grained components that can be used to construct a broad range of

applications are available. However, some challenges for this approach still exist, such as the

need for selecting and properly interconnecting the components building the application. One

of the recent and more attractive alternatives is called Generative Programming. Generative

Programming still makes use of components but it is also powered with the knowledge to

automatically select and assemble those components. The selection of components is based

on the user requirements, which are expressed by means of a specification language.

Generative Programming tremendously reduces the development time, and the built-in

knowledge considerably decreases the probability of errors introduced by the software

developers. Generative Programming strongly supports the concept of automatic generation

of applications, given that a language to specify user requirements exists and that the

software generator can understand it. Finally, research projects that make use of specification

languages for automatic code generation, along with existing frameworks for the specialized

area of ad hoc routing protocols are reviewed.

 21

2.3.1 Function Libraries

Each programming language provides a set of libraries with implementations of the most

commonly used functions and methods. Those functions and methods are specialized for the

same domain that the programming language targets, which tends to be somehow generic.

Therefore, it is not common to find libraries that are specialized enough for a specific

domain. Looking at function libraries for the domain of ad hoc routing protocols we find

ASL [15] (Ad hoc Support Library). ASL supports the implementation of reactive protocols.

Reactive protocols require intercepting packets at the kernel-level for packets with no routing

path towards the destination; otherwise, such packets would be dropped and never delivered.

To avoid modifications at the kernel-level and the need to recompile the kernel, a small

loadable kernel module is used to provide kernel interaction. ASL is provided as a user-space

library. ASL provides useful functions, but is only helpful when developing reactive

protocols.

2.3.2 Frameworks

A framework is defined in [36] as a reusable “semi-complete” application that can be

specialized to produce custom applications. [37] says that it is a partially complete software

system that is intended to be instantiated, which defines the architecture for a family of

systems and provides the basic building blocks to create them. It also defines the places

where adaptations for specific functionality should be made. In contrast to earlier object-

oriented reuse techniques based on class libraries, frameworks target particular business units

and application domains. Their benefits come from the modularity, reusability, extensibility

and inversion of control they provide to developers. Encapsulating implementation details

behind interfaces provides modularity, which helps to improve software quality by localizing

maintenance and design modifications. Frameworks enhance reusability by providing generic

components that can be reused to create new applications. These generic components

encapsulate the knowledge of experienced developers and avoid re-creating and revalidating

common solutions. Providing hook methods that allow applications to expand a framework’s

stable interfaces enhances extensibility. The inversion of control at run-time allows the

framework (e.g., Netfilter [38]) to determine which application methods should be invoked in

 22

response to external events. Finally, the main objective of frameworks is the acceleration and

the cost-reduction of the development process. However, beyond all those advantages,

frameworks face challenges such as portability among multiple platforms, rejection from

software developers and lack of specialization for more complex domains.

Regarding available techniques to extend frameworks, they can be classified into

white-box and black-box frameworks. White-box frameworks rely on object-oriented

language features such as inheritance and dynamic binding to achieve extensibility. In

contrast, black-box frameworks support extensibility by defining interfaces for components

that can be plugged via object composition. Black-box frameworks are easier to use but

harder to develop because components have to anticipate a wide range of possibilities.

The most common type of framework is the one based on object-oriented

technologies. Object-oriented application frameworks have been used for years. One example

is the X-kernel [11], which is an operating system architecture for constructing and

composing network protocols. The X-kernel integrates the following features: 1) a uniform

set of abstractions for encapsulating protocols, 2) structured abstractions for the most

common patterns of interaction, and 3) support for primitive routines that are applied to

common protocol tasks. The X-kernel views a protocol as a specification of a communication

abstraction through which collections of participants exchange a set of messages. The main

advantages of the X-kernel are that the architecture simplifies the process for implementing

protocols in the kernel and that the kernel can be configured with only those protocols

needed by the application. Every X-kernel configuration contains one protocol for each layer

of the protocol stack. Each protocol is implemented by the user as a collection of C source

files, and the implementation has to comply with the abstractions or interfaces that allow

interaction between protocols. X-kernel is not specialized for any kind of communication

protocols. Therefore, the lack of specialization is reflected by the fact that the whole protocol

has to be implemented by the user and has to match with the layer interaction rules.

ACE [12] (Adaptive Communication Environment) is another object-oriented

framework, whose main objective is to be cross-platform. It targets high-performance and

 23

real-time communication services and applications. ACE is written in C++ and provides a set

of reusable wrappers and components that help developers navigate between the limitations

of inflexible and non-portable low-level native OS (Operating System) APIs (Application

Programming Interfaces), and inefficient and unreliable higher-level middleware. The

components in ACE provide implementations of common communication tasks (e.g.,

connection establishment, service initialization, IPC, synchronization, etc.). ACE also

provides a standard library of distributed services that are packaged as self-contained

components, which demonstrate common use-cases and provide reusable implementations of

common distributed application tasks (e.g., naming, synchronization). In summary, ACE

provides multiple aids to implement cross-platform communication protocols. But, still the

implementation has to be done by the user.

Another cross-platform framework that provides an API (Application Programming

Interface) and its own model to implement communication protocols is XORP [39]

(eXtensible Open Router Platform). XORP aims to bridge the gap between network research

and Internet practice by providing a software platform where communication protocols can

be implemented. This platform also allows protocols to be used as the core of practically any

router that can be incorporated into operational networks. XORP aims to integrate the

developed protocols into operational networks, but again, the protocols have to be manually

implemented by the user.

2.3.3 Component-Based Software Engineering

A step forward towards generating complete applications is the assembly of fully functional

components. Component-based software engineering (CBSE) relies on software reuse and

emphasizes on the decomposition of systems into functional components with well-defined

interfaces. Such interfaces are used for communication with other components. Components

are considered much more abstract structures than objects because instead of sharing states,

they communicate exchanging messages. Therefore, when systems based on components are

constructed, components are treated as “black boxes”. When using components, two features

become very important. The first of them is the level of granularity. In general, fine

granularity of components allows higher reusability than coarse granularity, achieving a

 24

larger number of different combinations and different systems. The second feature is the

design of interfaces between components, which also defines the way that components

interact. Actually, there exist programming languages like Midas [40] which have been

specifically designed to define the styles of interaction between components. Once the

components are available, they can be configured and plugged together (e.g. using visual

tools or mark-up languages), to create new applications.

[41] examines the usefulness of component-based software engineering for the

implementation of software communication systems and explores visual programming as a

feasible and rapid prototyping alternative for network protocols. [41] makes use of Java

Beans as components and Visual-Age for Java as the visual tool for specification and

configuration of components. Events connect Java Beans, meaning that events trigger events

on some other beans. The main goal is flexibility to build a variety of protocols out of

existing components. Once the Java Beans are available, protocols are built by connecting

components and setting up some of their features using the drag-and-drop graphical interface.

The authors identify granularity and interface design as the most important issues to achieve

flexibility, and suggest that to achieve reusability, components must be largely de-coupled

and autonomous. Fine-granularity components simplify implementation and achieve higher

reuse. Coarse-granularity components built from a set of fine-granularity components are

rarely reused. The architecture presented in [41] supports re-use and introduces a visual tool

for component assembly. However, the implemented protocols have to be run on top of a

proprietary runtime system that does not match with the commonly used layered protocol

stack, meaning lack of compatibility. Additionally, no performance results of any

implemented protocol are provided, which forbids the verification of the architecture

contributions.

Another well known architecture based on components is the Click router [23]. Click

is an architecture for building flexible and configurable routers. Every router is assembled

from packet processing modules called elements, which perform simple functions like

classification, queuing and scheduling. Therefore, a Click router may be represented as a

directed graph with elements as vertices and packets traveling along the edges. Each element

 25

inside a router is a C++ object. The router configurations are created using the Click

language, which creates elements and defines how to interconnect them. Either an in-kernel

driver or a user-level driver can run Click configurations in Linux. Because each element is a

packet processor, if a routing table is required (routing tables do not process packets by

themselves), it is encapsulated inside the element making the routing decisions. The same

applies to any other algorithm performing tasks different from packet processing. Some of

the most common ad hoc routing protocols have been implemented using Click, such as:

DSR [42], OLSR [43] and DSDV [44]. However, due to the packet processing nature of the

Click components, the entire routing protocols have to be implemented inside only one or

two components, meaning that no modularity for their implementation is supported, and the

whole protocol implementation has to be performed by the user.

In the specific domain of ad hoc routing protocols, another research project attempts

to create routing protocols by assembling components: the Component-Based Routing (CBR)

[45]. CBR is inspired by the fact that protocol performance changes and even degrades with

changes on the environmental conditions and that the current research efforts have not been

able to explain the performance differences between existing protocols. CBR provides a

collection of elementary modules with various capabilities, limitations and efficiency that

support adaptation and can be manually combined. The objective is to fully understand the

impact of each component on the performance of the entire protocol and to understand when

and why the protocol works well over different operating environments. The ultimate goal of

the project is to systematically design a set of routing protocols that are specifically designed

to operate under rough military conditions (network security is one of the main concerns).

However, CBR does not consider automatic assembly of components nor does it provide a

mechanism for protocol specification, which GP-Pro does. Actually, if the CBR components

were ready and available to the research community, it could be a complementary effort

beneficial to GP-Pro.

2.3.4 Generative Programming

PIX [13] is the first attempt to use GP in network protocol development. PIX is a framework

to generate protocol stacks that attempts to solve the problem of reprogramming similar

 26

protocol behaviors at different layers of the protocol stack and the problem of combining

good solutions, proposed by different frameworks, to solve complementary concerns. PIX

was inspired by the X-Kernel [11]. Therefore, it models families of telecommunication

protocol stacks by using abstractions of the same protocol components proposed by the

former (session, protocol, participant, map, message, event and union interface). During the

implementation process, components with parameters are represented by C++ class

templates. The assembly of any specific protocol results from the composition of a series of

components and the information provided by the configuration repository. The output

provided by PIX is not the fully implemented protocol; instead it is a prototype with the PIX

architecture related code for the desired protocol. The generated code requires to be

complemented with the specific functionalities (e.g., message interpretation rules) of each

communication protocol in order to obtain a fully functional version. [46] uses the File

Transfer Protocol (FTP) to compare the performance of PIX and the X-kernel in terms of

latency, throughput, CPU time and memory usage. Results show very light additional

measurable cost experienced by PIX. These results encourage the use of Generative

Programming due to its high degree of configurability. In terms of ad hoc routing protocols,

an implementation of DSR with IPv4 using PIX is available in [47]. In this implementation, a

route discovery is initiated for each session and there is no interaction with the OS kernel.

The increased interest on accelerating software development procedures in general,

while building bug-free applications that reuse previous solutions and that are easy to

maintain, has brought into picture several development paradigms. Generative Programming

is one of them and perhaps the most promising in concept. However, another approach which

is very close to Generative Programming is Model Driven Development (MDD) [48, 49],

which attempts to fully capture the most important properties of software systems through

models. These models are abstract representations of the system and its environment of

interaction. The advantage of MDD is that its models can be compiled into implementation

code that can be deployed. Lately, MDD models have been represented by DSLs, a fact that

narrows the gap between GP and MDD. As the author of [48] explains, the main difference

between MDD and GP is the focus of GP on system families, which is not the case for MDD.

The advantage of this similarity is that MDD tools can be utilized for GP projects. An

 27

important example of such a tool is the oAW (OpenArchitectureWare) framework [50],

which has been widely adopted by the software development community.

2.3.5 Automatic Code Generation

As mentioned above, when automatic protocol generation is the goal, a code generator that

takes the protocol specification in the corresponding DSL format as an input is required.

Different combinations of tools and programming languages have been explored. Some of

them are discussed next.

The work presented in [51] does not focus on the generation of source code for

communication protocols. However, the approach taken could be transparently applied and

that is why it is discussed here. [51] presents an automatic multi-output generator based on

XML (eXtensible Markup Language). The output is not only constrained to code generation,

it also generates user information in HTML (Hypertext Markup Language) format. The

objective is to model intelligent instruments. From a graphical modeling of the intelligent

instrument, a global generic device description file is manually created in XML format (the

specification). The XML file can be easily transformed into any other type of file (e.g.

HTML, C, C++, Java) by applying a set of transformation rules. These rules are expressed by

using the XSLT (eXtensible Stylesheet Language Transformation) and are stored in XSL

(eXtensible Stylesheet Language) files. Each XSL file appears almost as a conventional file

written in the target transformation language. For example, an XSL file dedicated to

transforming an XML file into a C++ file is essentially C++ source code. This approach

allows specification independency from the target implementation language, meaning that if

an XML file represents the instrument, source code for any implementation language can be

created if the corresponding XSL transformation file is generated. The XML description is a

listing of the services provided by the instrument. Each service is associated with a piece of

C code that is loaded from a library by an XSLT transformer. This approach could be easily

applied to communication protocols, as done in [52], which generates protocols out of a

specification in XML. In this case, the source code is the only output. In [52], XML is used

to manually create the specification of protocols described through Finite State Machines

(FSMs) and XLST is used to transform the specification into Java source code. Interestingly,

 28

[52] suggests that protocol specifications in XML could be easily distributed over a network,

so that code could be automatically generated at a remote network node. This approach could

be useful for distributing new versions of any protocol over an existing network.

In the literature, there is a lot of work in the area of verification and automatic

generation of security protocols. An example of it is [53], which presents a project that

explores the following three areas of automatic generation: specification generation, protocol

verification and implementation (code generation). In [53], the protocol generator provides a

GUI for the user to define desired security properties and system requirements. Once the

input has been provided, the protocol space is explored to find all possible protocols and a

protocol screener is used to verify that the security properties are satisfied. Finally, the code

generator translates the protocol specifications into an internal data structure, which is

translated again to produce the source code. The code generator generates a Java class file

implementing the party's actions for each party of the security protocol.

GP-Pro aims to generate routing protocols for ad hoc networks from a user

specification while providing its own specification language and the entire protocol

generator. Two other projects, which also provide its own specification language and are also

oriented towards fast prototyping are OverML (Overlay Modeling Language) [54] and P2

[55]. However, both of them are applied to the domain of overlay networks. An overlay

network is a network built on top of another network, where nodes can be thought of as being

connected by virtual or logical links in the underlying network. Each of these links might

correspond to a path, perhaps built by many physical links. Both projects treat the network as

a distributed database where the nodes act as information repositories that are queried by the

overlay network to achieve specific tasks. Each project provides its own specification

language, and both of them are similar to a database query language. Additionally, both

projects provide a downloadable version to try out, but in a very early development stage

(alpha and sub-alpha versions, respectively). Due to goal similarities between these two

projects and GP-Pro, the possibility to adapt any of them to the domain of MANET routing,

in order to reuse the specification languages or the implementation tools, was analyzed.

However, the difference with respect to the target domains, and the fact that the main

 29

challenges for overlay networks focus on network topology selection and maintenance, rather

than on path determination, limits a possible adaptation of the aforementioned projects to our

target domain. Therefore, the reuse of P2 or OverML to create GP-Pro would not be

transparent and significant effort would be required without any guarantees that all the

particular features of routing protocols for MANETs could be supported. Actually, the

outcomes of P2 and OverML (meaning the generated overlay networks), both require to be

run on top of a proprietary runtime system (because the output is not source code ready for

deployment), which does not match with our goal of generating protocols ready for

deployment. Consequently, we concluded that no real benefits could be obtained by reusing

P2 or OverML, so, we proceeded with the design of GP-Pro based on Generative

Programming.

2.3.6 Frameworks for Ad Hoc Routing Protocols

After reviewing the different alternatives that are available to automatically generate

communication protocols, we next review the alternatives that are specially designed for ad

hoc routing protocols, which are actually scarce.

A portable, user-level framework for ad hoc routing written in C++ is proposed in

[56]. The authors make use of a SOCKS proxy that handles client requests and then uses an

implementation of an ad hoc routing protocol at the application layer to provide routing.

Implementations of DSR and flooding are discussed. The framework also provides an

integrated simulator that allows new routing protocols to be tested and the code moved to

production deployment without further modifications. The only requirement is that the

implementation be linked with a routing environment such as SOCKS. The objectives of the

framework are rapid implementation and testing over the integrated simulator. Reduced

configuration, portability between different operating systems and Internet connectivity are

also part of the goals for the routing protocol. The authors claim that testing on Windows

laptops was successfully done, but no performance study is presented. This framework seems

to be very useful for testing purposes; however, in terms of the mechanisms or tools to

implement each routing protocol, the framework does not provide many. It only forces the

 30

routing protocol to implement a routing interface for message handling, and the entire routing

protocol has to be implemented by the user.

The interest shown in [56] to use the same implementation source code for simulation

and for the actual protocol deployment on a real network is shared by [57] and [58]. [57]

investigates how to port a deployable implementation of AODV for real networks to the

well-known network simulator NS-2 [59]. [57] identifies the modifications that have to be

made to the deployable source code along with the additions to be made to NS-2 in the form

of patches. Therefore, additional deployable implementations of ad hoc routing protocols

could be simulated in NS-2 by using [57] as guideline. In fact, [60] provides a deployable

implementation of DYMO [5] called DYMOUM that can be simulated in NS-2 as well,

which follows the same approach. On the other hand, [58] initiates the migration of a

protocol implementation from the NS-2 end towards the deployable version. [58] provides a

system environment called PRAN (Physical Realization of Ad hoc Networks), where NS-2

implementations of ad hoc routing protocols can run unmodified at the user-level as long as

the simulation code implements specific programming interfaces that are claimed to be a

normal part of NS-2. [58] discusses the modifications to be made to the operating system

kernel in order to support PRAN using Linux and FreeBSD (Free Berkeley Software

Distribution) kernels as examples. The authors claim that PRAN is easy to port across

multiple operating systems, including Windows.

2.4 Summary

This chapter provided the background in the two main fields addressed by this research

document which are: routing in ad hoc networks, and the existing alternatives to support the

implementation of ad hoc routing protocols. We introduced the concept of MANETs along

with their particular characteristics. We also discussed routing and its challenges in the

MANET domain and the classification of routing protocols, along with protocol examples. In

terms of tools to support the development of communication protocols, we described the

main development approaches, which are either based on libraries, frameworks or

components. Or, on the software generation paradigm called Generative Programming that

 31

we propose to be used for the generation of ad hoc routing protocols. From this review we

notice that most of the alternatives are oriented to very general domains without real

specialization, which limits the provided support. On the other hand, in regards of the

specific domain of MANET routing, the only tool available is the ASL [15] library.

However, it only provides support for one type of routing protocol, the reactive type.

Therefore, the innovative contribution of GP-Pro is to apply Generative Programming to the

specific domain of MANET routing, in order to provide generation support for ad hoc

routing protocols. It does so as a protocol generator that can assemble existing components

according to a user specification, and that also aims to generate full protocol

implementations. Such a generator also allows to be further extended to keep up with the

evolution of the target domain along with its forthcoming requirements.

 32

Chapter 3

Domain Analysis

The previous chapter presented a comprehensive literature review about supportive tools and

mechanisms to accelerate the development of communication protocols, existing approaches

to automate code generation, and, more importantly, the related work strictly focused on

routing protocols for ad hoc networks. Next, we have to identify the protocols to be

generated by GP-Pro along with their commonalities and variabilities. As mentioned before,

the way to do so is by performing a Domain Analysis. Such a domain analysis is presented in

this chapter after Generative Programming is introduced. To identify the commonalities and

variabilities of the target protocols, most of the well-know protocols were considered (e.g.,

DSR [4], AODV [1], OLSR [2], DYMO [5], etc) along with some other protocols presented

in several surveys (e.g., [61, 62]).

3.1 Introduction to Generative Programming

Generative Programming addresses the automatic selection and assembly of components on

demand. It is a response to the fact that the current object-oriented technology does not

support reuse and configurability in an effective way. The use of a system family approach

instead of the one-of-a-kind approach supports the creation of reusable components. The

assembly of components is automated based on configuration knowledge. Component-based

software engineering current practice generates software from components too. However, the

selection of the right components and their interconnection has to be manually performed.

These tasks might require a lot of effort from the user, especially when the chosen

components are not a perfect fit and component adaptation is required. GP intends that the

programmer only states what she/he wants in abstract terms and the generator produces the

desired system. However, this scheme only works if the components are designed to fit a

 33

common architecture and if the configuration knowledge to translate abstract requirements

into sets of components is built-in inside the generator.

To support Generative Programming and to produce reusable components, it is

necessary to focus on families of systems rather than single systems. The author in [63] states

that a set of programs constitutes a family whenever it is worthwhile to study programs from

the set by first studying the common properties of the set and then determining the special

properties of the individual family members. The domain analysis presented in this chapter,

which is performed for the domain of ad hoc routing protocols, identifies these

commonalities and variabilities that support the design of GP-Pro. In order to produce the

software components, there is a need to differentiate between development for reuse, better

known as Domain Engineering, and with reuse, better known as Application Engineering.

Application Engineering focuses on a single system rather than a system family. It develops

software products from reusable software components created by the domain engineering

process and provides feedback to improve their reusability. Domain engineering [64] is

concerned with the development of the reusable assets (e.g., components), and is the process

to follow in order to create application families. Increased productivity is the main reason for

doing domain engineering. Domain analysis, domain design and domain implementation are

the steps that compose domain engineering.

Domain analysis involves domain scoping and feature modeling. Domain scoping

identifies which systems belong to the family and which do not. The outcome of this step is

often referred to as a product line. On the other hand, feature modeling identifies all the

commonalities and variabilities across the domain. The commonalities represent the potential

savings or productivity increase. Commonalities mean standardizing, which promotes

increased productivity and efficiency. However, the negative aspect of commonalities is that

each of them may constrain or shrink the size of the family. On the other hand, the

variabilities represent the features that change between the family members. Variabilities

promote variation and larger product families. The second phase of domain engineering,

called domain design, focuses on the development of a common architecture for the system

 34

family. Finally, domain implementation is the creation of components and tools (e.g., the

actual application generator) to generate the customized applications in the domain.

Once the components have been generated throughout the domain engineering

process, the mapping from the abstract user requirements to the assembly of the right set of

components has to be performed. This assembly process is to be automated and the

configuration knowledge, which maps between problem and solution space, is the key. The

problem space consists of the application-oriented concepts and features used by the

programmers to express their needs. The solution space consists of the implementation

components and all of their possible combinations. The configuration knowledge consists of

default settings, default dependencies, illegal feature combinations and construction rules and

it is implemented using generators.

However, to achieve automatic protocol generation using Generative Programming,

additional generation elements are required. First, a DSL or a visual tool to allow user

specifications is required. Second, a code generator is needed that takes the protocol

specification in the corresponding DSL as an input, and returns the source code as an output.

Finally, the generated code should be compiled with the corresponding compiler (language

and platform dependant) in order to be deployed. Furthermore, the availability of an

automatic protocol verifier (e.g., [65, 66]) to check the correct functionality of the generated

protocols could be a valuable addition. However, protocol verification is a separate and

challenging field of research on its own.

3.2 Domain Architecture

The domain architecture is the outcome of the domain design phase, and represents the

common underlying architecture of unicast routing protocols for IP based mobile ad hoc

networks. GP-Pro envisions the generation of proactive, reactive and position-based

protocols. The domain architecture is shown in Figure 2 and it is modeled by abstractions

(that we refer to as components) for collecting, distributing, storing and processing routing

information that is utilized to determine the “best” existing path towards any routing

 35

destination. Figure 2 shows nine main components, (the boxes with the diagonal line in the

upper left corner) which are expected to satisfy every ad hoc routing protocol requirement

within the chosen domain. Each of these main components is constructed from n

subcomponents (n≥0), also called first-level subcomponents, and each subcomponent might

be constructed from m sub-subcomponents (m≥0), also called second-level subcomponents.

There are no limitations on the number of subcomponent levels that each component can be

broken into, as long as they are compatible and satisfy the expected functionality of the main

component. Each of the main components is described next.

Figure 2. GP-Pro domain architecture

• MAnager for DIstribution of Network Information (MADINI): Keeps control of the

information that is pro-actively distributed over the network (e.g., one-hop neighbor

info), how often (e.g., timer based) and which node-specific information is to be

included. This component is essential for proactive (table-driven) routing protocols.

Timers and triggers based on network status changes are the criteria to distribute any kind

of information. Every piece of information that is to be distributed over the network is

assembled, as an “information subcomponent”, into the manager and is associated with a

delivery mechanism in particular. Each information subcomponent defines a different

kind of network information to be distributed and also knows how to process it, whenever

it is received. Each subcomponent could provide its own data repository (i.e., the

cylindrical figures) if required. Some examples of information subcomponents are: one-

 36

hop neighbors, known links in the network, node-specific information such as battery

power, or link-specific information such as link quality.

• Delivery mechanisms: Defines the mechanisms that can be used to forward any control

packet that is ready for transmission. The range of options goes from one hop

transmission and simple flooding to more efficient mechanisms such as multipoint relays

[2] or dominating sets [67], where only a pre-computed set of nodes retransmits each

message. Unicasting can be also used in some scenarios.

• COllector of Network Information on-demand (CONI): This component mainly

resembles the route discovery process of on-demand routing protocols but it is more

general. Its function is to obtain different kinds of information that might be needed by

the protocol and that are expected to be available somewhere in the network. It is

essentially composed of five subcomponents which are: 1) Initiation of information

collection (e.g., Initiation of Route Discovery), 2) Information Request (e.g., Route

Request), 3) Information Reply (e.g., Route Reply), 4) Notification of changes on

collected information (e.g., Route Error), 5) Total invalidation of collected information

(e.g., Route Erasure [68]). This component is essential for reactive (on-demand)

protocols.

• Additional computations: Different routing protocols might make use of very particular

computations or algorithms to perform tasks that are essential for them. These

computations can be called by any component or subcomponent at any time or can be

scheduled to run at specific time intervals. Each additional computation subcomponent

might provide its own data repository (i.e., the cylindrical figures) if required. Algorithms

to compute distribution structures such as MPRs [2] or dominating sets [67] exemplify

the subcomponents building this component.

• Operating system interface: This component provides an interface between the routing

protocol and the operating system. It allows interaction with the forwarding engine of the

OS; provides the functionality for processing packets before they reach the OS

 37

forwarding engine (pre-forwarding processing); and supports the exchange of control

packets. Pre-forwarding processing is required by protocols that do not maintain an

updated routing table and require initiating a protocol process whenever a packet is ready

for transmission or by protocols that require performing special packet header processing

(e.g., DSR [4]). It applies to reactive and position-based protocols.

• Path determination: Depending on the applied mechanism to collect network

information, this component either computes (from stored information) or selects (from

multiple route replies) a route towards a particular network node. Different metrics can be

applied to determine the “best” path towards the destination node. Some examples of

metrics are Minimum Hop Count, ETX [31], power-based metrics [67], geographic

progress [28], etc. Therefore, path determination depends on the chosen metric. Path

determination is not particular to proactive protocols; reactive protocols use it as well.

Depending on the kind of protocol, a routing table may be continuously updated.

• Routing Information Repository (RIR): Its function is to store the data particular to the

operation of the routing protocol. The RIR is designed to host all of the different data

repositories used by the different components building the routing protocol. It resembles

a database that stores multiple data tables. It also provides generic methods, available to

every routing component, to process queries aimed to retrieve, insert, update or delete

data entries from any of the repositories. Each of these repositories is assembled as a RIR

subcomponent and each of them provides the names and types of its data fields.

• Event manager: The event manager provides a mechanism for scheduling tasks that are

launched after a certain period of time such as the distribution of network information

messages (at periodic intervals), performing any of the periodic additional computations,

or expiring soft states (e.g., route discovery, routing table entry).

• Location information: The location component is in charge of providing the location

information of the node itself. The location information can be obtained by any absolute

 38

positioning system such as GPS, or by any relative positioning system (e.g. based on

signal strength).

3.3 Feature Modeling

Even though feature modeling was performed before the domain architecture was created, we

believe that by addressing them in reverse order, they can be better explained and

understood. Therefore, once the domain architecture has been presented, now we discuss

feature modeling. Feature modeling identifies the commonalities and variabilities across the

domain. The result of it is a feature diagram, which captures the important properties of the

domain and that complements the previously described GP-Pro domain architecture. It is at

the feature level where decisions can be made to define particular members of the ad hoc

routing protocols family. Figure 3 shows the corresponding feature diagram. The root

element of the diagram represents the domain or concept; the leaf nodes represent its

features. The filled circles on top of the features indicate mandatory features; the empty

circles indicate optional features. A filled arc connects or-features and open brackets indicate

an open feature (which can be replaced without affecting any other feature).

Ad Hoc Routing Protocol

OS

Interface

MADINI Delivery

Mechanisms

CONI Additional

Computations

Path

Determination

RIR
[Event

Manager]

[Location

Information]

Figure 3. Feature diagram

The ad hoc routing protocol domain has the nine features previously described and

summarized in the feature diagram. The OS interface is mandatory along with its control

packets exchange subcomponent. The pre-forwarding processing subcomponent is optional

and is only required by protocols that do not maintain routes to every possible destination.

The forwarding engine interaction is also optional and is only required by protocols that

 39

update the OS forwarding table. The MADINI is an or-feature, which becomes optional when

the CONI is part of the generated protocol (e.g., reactive protocols that make use of Hello

messages). Otherwise, it becomes mandatory (e.g., proactive protocols). These kinds of

conditional relationship between components, which cannot be expressed in the feature

diagram, are embedded in the configuration knowledge. On the other hand, the number of

information subcomponents is optional, with at least one subcomponent required. The CONI

or-feature becomes mandatory when the MADINI is not part of the protocol (e.g., reactive

protocols). The CONI subcomponents: notification of changes and information invalidation

are optional but the other three are mandatory in order to accomplish the information

collection process. However, all of them must be compatible in terms of the type of collected

information (e.g., routes or locations). The delivery mechanisms feature is mandatory

because at least one mechanism is required to transmit each control packet. The quantity of

its subcomponents is not limited. The additional computations feature is optional because not

all the protocols require support from it. There is no limitation on the number of its

subcomponents. The RIR feature is optional because components are allowed to provide their

own repositories to store supportive routing information. The path determination feature is

optional because some protocols build paths while forwarding control packets and they do

not require applying any other metric. The event manager feature is mandatory. It is also an

open feature because any event manager model such as the delta list model or the timing

wheel model could be used [13]. Finally, the location information feature is an open and

optional feature that is only used by position-based protocols.

3.4 Subfamilies of Protocols

In the previous sections, the GP-Pro domain architecture for ad hoc routing protocols was

described. However, the fact that ad hoc routing protocols can be further classified as

proactive, reactive or position-based allows refining the previous architecture in order to

create three sub-architectures or subfamilies corresponding to each protocol classification.

The difference between these sub-architectures and the original architecture is in the removal

of one or more of the main components, which are not commonly used by a specific

 40

subfamily of protocols. The variations of each subfamily with respect to the main

architecture are explained next.

3.4.1 Proactive Protocols

Proactive protocols maintain routing paths to every reachable destination node in the network

by periodically exchanging topology information that supports path determination. Figure 4

shows the architecture for the subfamily of proactive protocols. The essential component for

this subfamily of protocols is the manager for distribution of network information

(MADINI). On the other hand, the components that are not part of this architecture (shaded

components in Figure 4) are the collector of network information on-demand (CONI, which

mainly supports reactive protocols), the location information component (mainly supports

position-based protocols) and the pre-forwarding processing subcomponent of the OS

interface component (mainly supports reactive protocols).

Manager for distribution of network information

Information

(1)

Delivery Mechanisms

Mechanism

(1)

Information

(2)

Information

(N) Mechanism

(2)

Mechanism

(N)

Additional Computations

Computation

(1)

Computation

(N)

Collector of Network Information On-demand

Initiation of

Collection

Information

Request

Information

Reply

Information

Changes

Information

Invalidation

OS Interface

Forwarding

Engine

Interaction

Pre

Forwarding

Processing

Control

Packets

Exchange

Event Manager

Manager

Path Determination

Metric

Routing Information

Repository

Location Information

Own

Location

Figure 4. Architecture for the subfamily of proactive protocols

An example of a proactive protocol that can be generated by GP-Pro is OLSR [2].

OLSR was described in Section 2.2.2.1. Figure 5 shows the architecture of the OLSR

protocol. The shaded components/subcomponents are not part of it. The MADINI has four

subcomponents periodically broadcasting one-hop neighbors, network links, multiple

interfaces declaration (MID) and host and network association (HNA) control messages.

 41

When these messages are received, they are processed and stored in the corresponding

repositories located in the RIR. The delivery mechanisms for control messages are one-hop

transmission and message forwarding using MPR nodes. The selection of MPRs is performed

by the corresponding additional computation, which provides two more repositories. The

shortest path subcomponent in the path determination component computes the routing paths

and stores them in the routing table located in the RIR. Thus, the RIR hosts all of the routing

repositories along with the routing table repository. The control-packets-exchange

subcomponent sends all the control messages according to their scheduled timings in the

deltalist event manager.

Figure 5. OLSR protocol architecture

Figure 6. Architecture for the subfamily of reactive protocols

 42

3.4.2 Reactive Protocols

Reactive or on-demand routing protocols do not maintain routing paths towards the rest of

the nodes in the network; they only attempt to discover routing paths whenever they are

actually required. Figure 6 shows the architecture for the subfamily of reactive protocols. An

essential component for this subfamily of protocols is the collector of network information

on-demand (CONI). However, some of these protocols also require keeping track of their

surrounding neighborhood (e.g., one and two-hops away), which means that the MADINI

might be required as well. On the other hand, the location information component is not

required (shaded component in Figure 6) and is the only component that is not part of the

architecture for the subfamily of reactive protocols.

Figure 7. DSR protocol architecture

 An example of a well know reactive protocol that can be generated by GP-Pro with

its architecture shown in Figure 7 is DSR [4]. DSR was described in Section 2.2.2.2. In

Figure 7 the shaded components/subcomponents are not part of the architecture. CONI is

composed of the required subcomponents to perform the Route Discovery process along with

an additional subcomponent to advertise problems with known routes (Route Error). The

delivery mechanisms for control messages are flooding and unicasting. All of the OS

interface subcomponents are required due to the reactive nature of the protocol. To support

the route discovery process, DSR makes use of a route cache mechanism that is performed by

 43

the additional computation called Route Caching along with the Routes Cache repository

stored in the RIR. The path determination is performed based on the first route reply

received.

3.4.3 Position-Based Protocols

Manager for distribution of network information

Location

Update

Delivery Mechanism

Location

Update

Mechanism

Additional Computations

Computation

(1)

Information

(1)

Information

(N) Mechanism

(1)

Mechanism

(N)

Computation

(N)

Collector of Network Information On-demand

Initiation of

Collection

Information

Request

Information

Reply

Information

Changes

Information

Invalidation

Event Manager

Manager

Routing Information

Repository

Position Based Protocol

Default

Mode

Recovery

Mode

Path Determination

OS Interface

Forwarding

Engine

Interaction

Pre

Forwarding

Processing

Control

Packets

Exchange

Location Information

Own

Location

Figure 8. Architecture for the subfamily of position-based protocols

Figure 8 shows the architecture for the subfamily of position-based protocols. Position-based

routing protocols are localized protocols that base their routing decisions on the location of

the destination node, the location of its neighbors (if not based on beacons) and on its own

location. Therefore, the location information component, which provides the node’s own

location information, is an indispensable component. Also, the mechanism to exchange

location information with the rest of the network nodes is an essential mechanism. This

mechanism could be either a proactive location update mechanism that periodically

broadcasts the location of nodes into the network or a reactive location discovery mechanism

that looks for the location of the destination node only when required. The location update

mechanism fits in the architecture as a subcomponent of the MADINI supported by a

particular delivery mechanism (e.g. over rows and columns only [69]). On the other hand, the

location discovery mechanism fits in the collector of network information on-demand and

performs similarly to any route discovery process. Only one of these two mechanisms is

required and that is why the complementary component and subcomponent boxes in Figure 8

 44

are shown with dashed lines, visually indicating this alternative relationship. The selection of

the next hop towards the destination, meaning the core of the protocol, is a subcomponent of

the Path Determination component. This subcomponent is composed of the second-level

subcomponents: default mode and recovery mode. Default mode directs forwarding in a way

that at every hop each data packet is forwarded towards the destination node (the decision

might me made either at the sender or at the receiver node). On the other hand, recovery

mode is launched whenever the default mode fails.

Figure 9. GFG protocol architecture

 An example of a position-based protocol that could be generated by GP-Pro

according to the previous architecture is GFG [28]. GFG was described in Section 2.2.2.4.

Figure 9 shows the architecture of the GFG protocol. The location update mechanism is

expected to be supported by MADINI while advertising location update and Hello messages

using the respective delivery mechanisms. The planar graph is to be constructed by the

corresponding additional computation subcomponent. The location information is expected

to be obtained from a GPS device. Each path is determined in a hop-by-hop basis by

combining Greedy and FACE protocols. The known locations of other nodes in the network,

the known neighbors and the active routes are stored in three different repositories inside the

RIR. All of the OS interface subcomponents are required.

 45

Chapter 4

GP-Pro: Architecture and Implementation

The previous chapter presented the domain analysis that was performed in order to identify

the protocols to be generated by GP-Pro along with their commonalities and variabilities.

This chapter presents the proposed architecture for GP-Pro and discusses different issues

(e.g., languages, tools) related to its implementation.

Figure 10. GP-Pro architecture

 46

4.1 GP-Pro Architecture

One of the main reasons to design GP-Pro is to accelerate the protocol generation process

based on user requirements while achieving reasonable protocol performance [70]. Here, the

meaning of accelerating the generation process is not only related to quickly generating the

source code for the new protocol. It is also related to the mechanism to specify the required

protocol. Therefore, an easy to use but powerful mechanism is required. Such a mechanism

must be capable of processing a simple specification where only component names are listed,

but also capable of processing more complex specifications where each component is re-

configured and interconnected. Therefore, in terms of the protocol specification, GP-Pro

supports two different mechanisms to provide the user specification. The first mechanism,

which is the core and more powerful one, is a text-based user specification based on a

proprietary DSL. This is the best alternative for the more advanced user that wants to fully

specify a customized protocol. The second mechanism, which is simpler to use, is a GUI

(Graphic User Interface) that does not require any knowledge about any programming or

specification language. Only the selection of protocol features by means of lists and check

boxes is required.

Figure 10 shows the structure and processing flow of the protocol generator. Each of

the processes building the architecture of GP-Pro is described in the following sections. In

Figure 10, three processes that are not part of the processing flow are: Domain Analysis,

Domain Design and Components Implementation (shown with IDs 0.1, 0.2 and 0.3

respectively). These processes correspond to the three phases of domain engineering

described in the previous chapter. They denote the fact that domain engineering is performed

first, in order to support the protocol generator architecture. The process labeled “0.3-

Components Implementation”, which is part of the domain implementation phase emphasizes

that in order to make use of GP-Pro, the protocol components have to be implemented first.

In addition, the generator itself is also one of the outcomes of the domain implementation

phase.

 47

4.1.1 User Specification

As mentioned before, two specification mechanisms are to be supported by GP-Pro: the DSL

and the GUI. When the user specification is provided by means of the text-based DSL

(process 1.0), the user makes use of a proprietary DSL specifically created for the domain of

ad hoc routing protocols. To create such a DSL, there are two alternatives. Either the DSL is

crafted from scratch along with its own parser, tools, editors (text), generators, etc., or an

existing language that supports the creation of new DSLs, for which the previously

mentioned tools already exist, is used. Hence, assuming that the goal is to create a new DSL

but not necessarily the parsing tools, we decided to make use of either a common language

that has been used before to create DSLs (e.g. XML) or a language specifically designed to

create new DSLs (e.g. Xtext [71]). The selection of such a language is addressed later on.

However, regardless of the supportive language to be selected, each user specification written

in the new DSL should be structured as in the following example.

Protocol as GPPro_OLSR {

 MADINI{

Hello as hello_msg{}

 }

 DELIVERY{

 Broadcasting as one_hop{

 hops = 1

}

}

 }

This example shows the specification for a protocol called “GPPro_OLSR”, which

lists two GP-Pro core components (MADINI and DELIVERY), containing one

subcomponent each. These subcomponents are given a synonym (the name after the keyword

“as”) and one of them sets a new value for one of its properties (hops=1). Basically the

previous example shows the following: 1) that each protocol is specified by listing

components with different levels of specificity (specificity is represented by indentation),

2) that new values for component properties can be set when defaults are not to be used, and

3) that the amount of features constructing each protocol specification might vary. By listing

more components or their properties, more complete specifications could be created.

 48

4.1.2 Specification Validation

Once the user has written the specification of the desired routing protocol, which is the input

for GP-Pro, it has to be validated (process 2.0). The validation process consists of checking

that the specification is well formed and that it follows the syntax constraints imposed by the

DSL.

4.1.3 Graphic User Interface

A simpler and faster alternative to provide user specifications is by means of the GUI

(process 3.0). This interface should contain list boxes, check boxes and text fields to select

the components and features of the desired protocol. The GUI should have protocol

configuration knowledge built-in. This knowledge should be extracted from the database of

components, from the routing protocol architecture and from the configuration knowledge.

The reason to provide the GUI with configuration knowledge is to prevent conflicts between

components. For example, some protocol features might forbid the selection of some other

conflicting or unnecessary features (e.g., proactive protocols do not perform route discovery).

4.1.4 Specification Generator

After the user selects from the GUI the components and features that should be part of the

protocol to be generated, this selection is passed to an additional process (process 4.0) that is

in charge of generating the specification according to the DSL specifically created for GP-

Pro. The output of this process is a valid user specification and is exactly in the same format

as the output from the specification validation process (process 2.0). Actually, an advanced

user could make use of the GUI to quickly generate a complete user specification that could

be refined later on by further configuring each protocol component. And, once the new

specification has been refined, it should be passed through the specification validation

process. As we can see, the GUI is an addition to GP-Pro to further ease the specification

process. However, it relies on the DSL. Therefore, we decided to focus our efforts on the

creation of the DSL, and to leave the development of the GUI as a desired additional feature

that will be part of our further work.

 49

4.1.5 Buildability Checking

When the protocol generation reaches the buildability checking process, it is because a valid

user specification is available. However, the meaning of valid is simply that the specification

is well formed and that it conforms to the DSL syntax. Therefore, it could contain

components or features that are in conflict. In addition, it could be incomplete (notice that the

configuration knowledge built inside the GUI prevents conflicts between components). An

example of an incomplete specification that is valid is when any of the protocol components

requires some type of information that is not provided by any of the components listed in the

specification. Therefore, the buildability checking process (process 5.0) looks for conflicts

between components and for incomplete specifications. The user is informed about the

results of this process and whether the specification is complete or not.

4.1.6 Completing Specification

If the outcome from the buildability checking is that there are no conflicts between

components and that the specification is complete, then the generator proceeds to select and

assemble the components. However, in the case of conflicts and/or missing components, the

user is flagged. Depending on the nature of the problem, GP-Pro will either: a) fix the

problem by properly completing the specification (process 6.0), inform the user and proceed

with the generation, or 2) inform the user and stop the generation process. The proposal

provided by the generator to complete the specification is based on the existing components,

the protocol’s architecture and the configuration knowledge. Therefore, the output of this

process is the complete protocol specification.

4.1.7 Components Selection

The DSL specification serves as the guideline to select the components that form the new

protocol (process 7.0). The expected output from this process is the full set of components

and subcomponents that satisfy the user specification, where enough components to fulfill

the entire protocol architecture have been chosen. The relationship between elements in the

DSL specification and the chosen components is not strictly expected to be one-to-one.

 50

4.1.8 Components Assembly

Once the selection of components has been made, they have to be assembled (process 8.0)

according to the protocol architecture (shown in Section 3.2) and according to the component

interconnection model introduced along with GP-Pro. This component interconnection

model, which is fully described in a later chapter, interconnects pairs of components A and B,

when component B is capable of processing a message type generated by component A. Each

message type generated by any component can be seen as an output port. Likewise, each

message type processed by any component can be seen as an input port.

4.1.9 Additional Outputs

The generation of ad hoc routing protocols in the form of source code is the main purpose of

GP-Pro. This source code is the expected outcome from the component assembly process.

However, it does not have to be the only output. Additional outputs (process 9.0) such as

documentation about the implemented architecture or data flow diagrams could be produced

as well.

4.2 GP-Pro Implementation

The proposed architecture for GP-Pro has been introduced in the previous section. Next, we

discuss the feasible alternatives to implement each process in the architecture, along with the

alternatives to implement the protocol components.

4.2.1 Components Implementation

There are several options and decisions to be made in order to implement the protocol

components. These decisions mainly depend on the technology and programming languages

that the protocols are expected to be implemented in. While several programming languages

(e.g., Java, C, C++) can be used, [41] proposes using JavaBeans, which can be

interconnected by events; and [23] proposes the development of C++ components with well

defined input/output ports that are connected by the Click language. Therefore, we have to

make the following decisions: 1) Which programming language should be used to implement

 51

the components, 2) Whether to implement components from scratch or reusing components

implemented as part of some other project, and 3) How to implement each of the processes in

the architecture of GP-Pro. All of these decisions were made during the creation of GP-Pro.

The alternatives that were considered along the process are discussed next.

In terms of the implementation language, the decision to make was mainly choosing

between two of the most commonly used programming languages, Java and C. By looking at

existing frameworks [12, 13, 39] and some of the deployable implementations of ad hoc

routing protocols available [60, 72, 73], we realized that all of them are implemented in C or

C++ (languages that are also expected to achieve better performance than Java). Therefore,

those two languages seemed to be the best choice. Additionally, for evaluation purposes of

the protocols generated with GP-Pro, and in order to perform a fair comparison against their

handcrafted counterparts (those implemented without the use of any generic framework or

tool) we thought that the use of the same language would be a better choice. As a result, we

decided to use either C or C++. The final choice is addressed below.

The next decision to make was about reusing existing components or creating new

ones from scratch. We had two reasons pointing towards reusing existing components. The

first reason was that the development of new components without reusing any existing

implementation would be a very time-consuming task that could consume a considerable

amount of development time, which could be better spent focusing on the rest of the

processes in the architecture of GP-Pro. The Component Based Routing project (CBR) [45],

whose only objective is the development of ad hoc routing protocol components, is a clear

example of the effort that is required to develop new components. CBR is a four year joint

project between five universities and three corporations with more than fifteen participants.

The second reason was that the main idea behind GP-Pro is the reuse of available resources

(e.g., components) to generate different types of protocols with minimal effort. Therefore, the

reuse of existing components is a better match for the GP-Pro philosophy. The JavaBeans

proposed in [41] were discarded because of the small number of existing components, lack of

compatibility and the fact that they were not implemented in any of the chosen languages (C

or C++). Another alternative, which seemed to be a pretty obvious one, are the elements of

 52

the Click router project [23]. However, by analyzing the routing protocol implementations

available for DSDV [23], DSR [42] and OLSR [43] we realized that the packet processor

nature of the Click components (the so-called elements) limits the implementation of the

entire routing protocol to one or two components; an approach that does not support the idea

of developing components of fine-granularity to achieve higher reusability. A better match

are the components developed as part of the CBR project [45] which are actually components

to build ad hoc routing protocols. However, those components have not been made available.

Then, the last feasible alternative to reuse any existing implementation is to create our own

components by breaking into “pieces” one of the existing deployable, handcrafted

implementations. Hence, we decided to look at the existing implementations with two criteria

in mind. First, the implementations should be functional, meaning that they should be in fact

deployable and should perform routing on a real network (hopefully bug-free). Second, the

implementation should be modular. From over ten implementations that we attempted to test

(we say attempted because not all of them could be actually deployed), three of them were

deployed and performed proper routing. The useful implementations were DYMOUM [60],

AODV-UU [72] and OLSRD [73], all of them implemented in C. Out of those three,

DYMOUM and AODV-UU were the implementations with a more modular approach, which

are a better match to the idea of creating components out of existing implementations.

Additionally, preference was given to reactive protocols because of the additional complexity

to deal with the OS routing table when no route to the destination is available and packets are

not to be dropped. Therefore, DYMOUM, an implementation of the DYMO protocol written

in C, which is a simplified successor of AODV and the focus of current efforts by the IETF

in terms of reactive protocols, was the chosen implementation to be reused. Next, we had to

decide on the process of creating protocol components from this implementation.

[64] presents several alternatives to create program generators and suggests the use of

templates as elements that can be combined with a specification and processed by a template

engine to produce the desired program. [74] proposes another template engine called XVCL

(XML-based Variant Configuration Language) that can introduce changes (variabilities) into

programs represented as hierarchies of templates. XVCL templates called x-frames are based

on the framing technology proposed in [75]. This approach to generate programs as a

 53

composition of templates, according to a specification, also supports variabilities. We

therefore decided to implement our components as templates. Thus, the chosen

implementation, DYMOUM, of the routing protocol DYMO, has to be broken into templates,

which can be assembled back together according to a specification.

4.2.2 Architecture Implementation

Once the implementation language has been chosen, the decision to reuse existing

implementations has been made and the mechanism to implement the protocol components

has been selected, the next step is to decide how to implement each of the processes in the

GP-Pro architecture. Even though multiple methodologies could be combined, they have to

be fully compatible. After analyzing several alternatives, we evaluated three different

approaches to build the entire architecture. Table 1 summarizes the languages and tools used

by each approach and for each process in the toolchain. They are discussed next.

Task XML + XVCL oAW + XVCL oAW

GP-Pro DSL XML-based oAW Xtext language oAW Xtext language

User Specification Text editor or XML

editor

oAW Xtext custom

editor

oAW Xtext custom

editor

Validation rules XML Schema written

with RELAX NG

oAW Check language

to apply validations

oAW Check language

to apply validations

Specification

Validation

JAXP + RELAX NG

plug-in

DSL customized editor

and workflow engine

DSL customized editor

and workflow engine

GUI specification Java Eclipse IDE Eclipse IDE

Specification

generator (from

the GUI)

Java Java Java

Buildability

checking

DOM + Custom data

structures

oAW Check language

+ Xtend language

oAW Check language

+ Xtend language

Completing

Specification

XVCL default values

support

XVCL default values

support

Xpand default values

support

Selection of

Components

XSLT transformation

from GP-Pro language

into XVCL language

Xpand templates to

generate the

specification in XVCL

language

Component

dependencies and

default values in Xpand

templates

Components

Assembly

XVCL processor XVCL processor Xpand processor

Components XVCL frames (C code

from DYMOUM)

XVCL frames (C code

from DYMOUM)

Xpand templates (C

code from DYMOUM)

Table 1. Approaches to implement the architecture of GP-Pro

 54

4.2.2.1 XML and XVCL

The first approach consists of a combination of several programming languages and software

tools. The central features are XML (eXtensible Markup Language) and XVCL. The entire

architecture is created as follows. The DSL for GP-Pro is manually created as an XML-like

language. Therefore, existing parsers, editors, viewers and conversion tools for XML can be

used by the new DSL. GP-Pro components are represented by XML elements [64] and

configuration parameters by XML attributes. The user specification is written using any text

editor or XML editor. The validation rules for the user specification are defined by creating

the corresponding XML Schema. An XML Schema is a description of a type of XML

document, which is usually expressed by constraints on the content and structure of

documents of that type, above and beyond the basic constraints imposed by XML itself. The

list of languages developed specifically to express XML schemas is long [76]. However,

three have had greater influence on schema languages [77]. These schema languages are the

Document Type Definition (DTD) language, the World Wide Web Consortium XML

Schema language (XSD) and RELAX NG (Relax New Generation). DTD is native to the

Standard Generalized Markup Language (SGML) and XML specifications, but its

capabilities are somewhat limited compared to more modern schema languages. XML

Schema is the language supported by the World Wide Web Consortium (W3C) and it offers

advantages over DTD such as data types that can be used to constrain the character data in an

element’s content or attribute values. However, it involves some complex mechanisms, has a

long learning curve and is rather rigid [78]. On the other hand, RELAX NG [79] is a simpler

language, easier to learn, and an ISO standard, which provides XML and non-XML syntax

while providing functionalities similar to the XML Schema language plus some more.

Therefore, RELAX NG is the language used to express the XML Schema.

To actually perform the specification validation, the Java API for XML Processing

(JAXP) [80] is used along with the corresponding plug-in that supports RELAX NG. The

GUI alternative to specify the required protocol along with a supportive module to generate

the protocol specification out of the GUI is implemented by using the Java language. The

buildability checking process to look for conflicts between components or any missing

component is performed by using the Document Object Model (DOM), in order to access the

 55

XML user specification document, extract the user preferences and load them into a custom

data structure that is used to identify any existing conflict. DOM is a platform-independent

and language-independent object model to represent XML related formats, which supports

navigation through the hierarchical representation of the XML document. JAXP includes the

required Java DOM API. This approach assumes that the protocol components are available

as XVCL frames containing C code. Therefore, to generate a specification document with the

selection of components (frames in this case) that can be actually used to implement the

routing protocol, a transformation from the new DSL into XVCL language has to be

performed. Such a transformation is made by a set of XSLT templates (to be created) that

support the language transformation when injected into an XSLT processor along with the

complete DSL protocol specification. The output of such a transformation, which is in the

form of one main XVCL frame, is the input for the XVCL processor, along with the available

protocol components, in order to perform the assembly of components and finally generate

the expected implementation code. The completion of the specification (if required) is

supported by the default values supported by XVCL frames when some of the configuration

parameters are not provided. This capability to support default values was one of the main

reasons to consider XVCL as the engine to generate the source code. Another frame

processor that was considered instead of XVCL was ANGIE [81]. However, it is not as

mature or easy to use as XVCL. As can be noticed, this approach to generate the processes of

the GP-Pro architecture combines many languages and tools that add complexity to the

implementation process and certainly challenge further extensibility of the protocol

generator, especially for new users. Therefore, next, we explore another two approaches,

which provide a more transparent interoperability between the chosen tools and languages.

4.2.2.2 OpenArchitectureWare and XVCL

As mentioned in the literature review, several software generation paradigms have been

recently proposed and investigated. Model-Driven Development is one of them, which shares

similar objectives with Generative Programming. OpenArchitectureWare is a MDD

framework implemented in Java that provides a language family and tools to support the

development of software generators. It is available as an open-source tool which is meant to

be used within the well-known Eclipse [82] open-source software framework. Therefore,

 56

after analyzing its applicability to the implementation of GP-Pro, we decided to make use of

it, and combine it with the previously chosen XVCL. The second approach to implement the

processes of the GP-Pro architecture is therefore as follows. The DSL is created by using the

Xtext framework [71], which supports the generation of textual DSLs. Once the new DSL

has been described by using the Xtext language, the framework creates a custom editor for

the new DSL featuring syntax coloring, constrain checking (assuming that constraints have

been defined by using a complementary language, called Check) and basic code completion.

The user specification is provided by using the new custom editor for the new DSL, which

can be delivered as an Eclipse [82] plug-in. The validation rules for the user specification are

defined by using the Check language [83], which is another member of the oAW language

family. The constraints defined with Check can be applied in batch mode as well as

interactively. Therefore, the specification validation can be performed interactively inside

the custom editor or in batch by using the oAW workflow engine [84], which is a

configurable generator engine that provides an XML-based configuration language to define

a set of processes to be executed in sequence. The GUI and the corresponding module for

specification generation can be implemented using the Java language. The buildability

checking is performed with the support of additional constraints defined by using the Check

language and perhaps by using another member of the oAW languages family, the Xtend [85]

language, which enriches the capabilities of the other oAW languages. Even though the

family of oAW languages includes several members, they are based on a common expression

language and type system that simplifies their learning curve. The challenge to use them is

due to the limited amount of documentation available (a few pages for each language). This

approach makes use of the same types of components, the same process to assemble them,

and the same mechanism to complete the specification as the approach described in the

previous section. However, the selection of components is performed in a different way. In

this case, the transformation from the new DSL into XVCL is performed by a set of Xpand

[86] templates (to be created) that support the transformation when injected into the Xpand

processor along with the DSL specification. Xpand is the template language in the oAW

family, which is used to control the output (source code) generation. The output of the

transformation is in the form of one main XVCL frame as well. This second approach

simplifies the implementation by replacing the many different languages and tools from

 57

multiple sources, used for the first half of processes in the GP-Pro architecture, by the oAW

family. Even though the oAW family comprises several languages, they were designed to

interoperate and to be compatible. We consider this approach more feasible than the one

described before.

4.2.2.3 OpenArchitectureWare only

The second approach simplifies the implementation process. However, if we take a closer

look we can see that the user specification experiences two transformations before becoming

the actual source code for deployment. First, the user specification in the new DSL language

is transformed into the main XVCL frame (user specification in XVCL language) by using

the Xpand templates and the Xpand processor. Then, the XVCL frame, along with the

components implemented as additional frames, are transformed into the C source code, by

using the XVCL processor. Therefore, the third approach that we propose ignores XVCL,

and only relies on the oAW family of tools and languages. In this case the protocol

components are implemented as Xpand templates instead of XVCL frames. The assembly of

components is performed by the Xpand processor, which can combine the user specification

in the new DSL language with the Xpand templates in order to produce the protocol source

code. This approach reduces the number of transformations to a single one, from the DSL to

C code directly, which reduces implementation complexity and simplifies the extensibility of

GP-Pro. Therefore, we decided to proceed with the implementation of the GP-Pro

architecture by following this third proposed approach.

4.2.3 Kernel Interaction

Routing protocols can be implemented either at the user or at the kernel-level of an operating

system. Implementations at the kernel-level achieve better performance; however, they

consume more system resources (e.g., system memory) even if they are not in use because

they are always part of the system kernel. Also, any upgrade or modification to the protocol

implementation requires the regeneration of the system kernel, which challenges

maintenance. On the other hand, user-level implementations improve maintainability and

modularity. However, they experience lower performance because any message received or

 58

sent has to traverse the entire protocol stack at the kernel-level and reach the user-level.

Nevertheless, some other possibilities in between these two extremes exist. One of them is

the use of loadable kernel modules (LKM), which are object files that contain code to extend

the running kernel. The advantages of using LKMs is that they can be loaded and unloaded

as required, freeing memory when not used and no modifications to the running kernel are

required. This implementation approach is followed by [72] and [60]. Another approach

oriented to achieve platform-independency presented in [58] implements the routing protocol

at user-level and uses raw sockets (socket type that does not strip packet headers) to transfer

each packet received to the user-space. The drawbacks of the later approach are that it

requires kernel modifications to be performed and also that the continuous exchange of

packets between user and kernel-level degrades performance. Therefore, in order to avoid

performance degradation and kernel modifications, we decided to make use of LKMs.

 In terms of the types of routing protocols to be generated by GP-Pro, reactive and

position-based protocols are the ones that require some additional processing done at the

kernel-level. This situation arises when no routing path is available for a packet that is to be

sent through the network. In the case of reactive protocols, it usually means that a route

discovery process has to be started. In the case of position-based protocols, it happens

because no routing table is maintained and routing decisions are made on a hop-by-hop basis.

To the operating system, the unavailability of a routing path translates into dropping the

packet. Therefore, to avoid the scenario of packets being dropped, we decided to make use of

the Netfilter framework [38] (in combination with LKMs). Netfilter is a framework that

provides a set of hooks within the kernel to intercept and manipulate network packets. Such

packets can be altered, dropped or re-routed by code segments that have registered

themselves on each Netfilter hook. In the case that packets have to be processed in user-

space, Netfilter allows queuing packets at the kernel-level while information about the packet

is sent to user-space and until the user-space application returns a verdict indicating the

action to take for those packets.

 59

4.2.4 What GP-Pro Does Not Do

To further clarify the objectives and capabilities of GP-Pro, we want to comment on what

GP-Pro does NOT do.

• Even though there is configuration knowledge built-in inside GP-Pro, it does not

attempt to generate routing protocols based on subjective user requirements such as

“Generate an energy efficient protocol”. GP-Pro generates protocols by assembling

existing components that are chosen by the user by means of a protocol specification.

Additionally, GP-Pro completes user specifications by providing default component

parameter values and by adding missing interconnections between components that

were not defined by the user. The capability to understand subjective requirements

certainly is an attractive capability that could be incorporated later on by enriching

the configuration knowledge.

• GP-Pro generates routing protocols based on the chosen components expressed by the

user specification. Therefore, the expected output is indeed a routing protocol.

However, no formal verification of routing capabilities or any other property is

performed. Protocol verification is a complex research field on its own.

 60

Chapter 5

Component Interconnection Model

GP-Pro is a protocol generator of ad hoc routing protocols. The routing protocols are

generated by assembling components of diverse functionalities, which all together perform

routing tasks. Assuming that such compatible components can be implemented, common

interfaces to properly interconnect them along with interaction mechanisms have to be

designed. This chapter describes the generic architecture of the GP-Pro components, their

interfaces and the interconnection model that allows for component interaction.

 In GP-Pro, components are treated and implemented as black boxes that exchange

messages through communication ports. Communication ports pass messages in only one

single direction, meaning that no messages are expected to be received by an output port or

sent out by an input port. Therefore, any pair of components can communicate by

interconnecting the output port of the first one to the input port of the second one, and by

exchanging a message type that is known to both of them. In addition to this interaction

mechanism that provides direct communication between components, there are another two

mechanisms that provide indirect communication. The first of them is throughout the

scheduling component called Event Manager. Routing components might require scheduling

predefined tasks for future execution. They do so by sending a message to register a task with

the Event Manager. Each task is associated with a timer. Once the timer expires, a message is

delivered from the Event Manager to the component expected to execute the task. The

second mechanism is throughout the RIR (Routing Information Repository). Each

component carries out one or more tasks during execution. As a result it might need to make

use of repositories for information storage. Therefore, components communicate with the

RIR component to create and to maintain one or more repositories. All of the repositories

inside the RIR component can be accessed by any of the protocol components. Hence,

 61

repositories might act as a hub for interaction and information exchange between

components.

Regarding message exchange, each component provides a list of messages that it is

capable of processing, as its provided functionalities; and a list of messages that it generates,

as its required functionalities. The type and amount of information carried by each message

will vary; it could be as simple as just an indication to start a new process (e.g., a trigger), or

data requiring further processing. Generated messages are expected to carry enough

information and in the proper format to be understood and properly processed by the

destination component. To support the later, proper verification is performed during protocol

generation to guarantee message type compatibility between sending and receiving

components.

So far, we have described components as independent processing entities that interact

by exchanging messages as part of a flat architecture. However, in GP-Pro a set of

components can also be arranged in a way that their joint execution behaves as a single unit,

but of a larger scale. This arrangement resembles a hierarchical architecture, where the

highest component of the hierarchy is composed of one or more components (belonging to

the next lower level), which are called subcomponents. These subcomponents can also be

composed of further subcomponents and so on. To further explain the relationship between

components, at different levels in the hierarchy, and to introduce some related terminology

that is used along the text, we describe some of these relationships using Figure 11.

Figure 11. Hierarchical arrangement of components

 62

Figure 11 shows a component P (the highest in the hierarchy), which is composed of

13 subcomponents arranged in 4 subcomponent levels. The first level is composed of A, B,

and C. The second level is composed of D, E, F and G. The third level is composed of H, I

and J. Finally, the fourth level is composed of K, L and M. Any component Z, containing

subcomponents, is considered the super-component of all of its subcomponents, located at all

subcomponent levels. Any component Z is considered a subcomponent of all of those

components that are higher in the hierarchy than Z itself, which are also super-components of

Z. An immediate subcomponent of Z is any of its subcomponents at the next lower

hierarchical level. The immediate super-component of Z is its super-component at the next

higher hierarchical level. Components composed of one or more subcomponents are called

composite components. Components without any subcomponent are called basic components.

According to these definitions, all of the following sentences are true with respect to Figure

11:

• All of the components, except for P, are subcomponents of component P

• M is a subcomponent of J, G, C and P.

• C is the immediate subcomponent of P that contains M.

• J is the immediate super-component of M.

• J, G, C and P are super-components for M.

• M is a 4
th

 level subcomponent of P, 3
rd

 of C, 2
nd

 of G and 1
st
 of J.

• P, A, B, C, D, G and J are composite components.

• H, I, E, F, K, L and M are basic components.

5.1 Basic Components

After the previous introduction to the proposed interconnection model, and the hierarchical

relationship between components, next, we describe in detail the architecture of a generic

basic component. Figure 12 shows the structure of a basic component. It is composed of an

internal component process that executes the component’s task, a Message Distribution

Controller (MDC), one input port (the ‘T’ connector on the left side with the arrow pointing

away) and one output port (the ‘T’ connector on the right side with the arrow pointing

towards). Any message generated by the internal component process is delivered to the MDC

 63

for proper forwarding. The MDC is in charge of forwarding each message that has been

either received by the component at its input port, or generated by its internal process for the

corresponding destination component. Therefore, the messages processed by the MDC can

be forwarded either to the internal component process (when received at the input port), to a

further subcomponent or to the component’s output port (when internally generated). The

destination component can be located anywhere in the hierarchical structure of components

and subcomponents that compose the routing protocol.

Figure 12. Basic component

The MDC operation is supported by two tables, named M and S in Figure 12. The

information stored in these two tables is required for the proper operation of composite

components. These tables will be further explained below.

Component

Process

MDC

M S

Subcomponent

(N)

Subcomponent

(1)

Figure 13. Composite component

 64

5.2 Composite Components

Figure 13 shows a generic composite component. Different from the basic component

presented in Figure 12, a composite component Z is also composed of one or more

subcomponents, and not only of the internal component process. Each of these

subcomponents can be either a basic component or another composite component. All of

them, including the internal component process, have their output ports connected to the only

input port of the MDC and each of their input ports is connected to an independent output

port from the MDC. This means that every message to be forwarded has to always go

through the MDC no matter if the destination component is a subcomponent of the same

component Z, or if it is outside of it. The input and output ports of Z itself are both directly

connected to its MDC. The description of the two tables located inside the MDC is as

follows. Table S represents the subcomponents table, which keeps track of every

subcomponent composing Z. This information helps to locate the destination component

inside the protocol configuration. Table M represents the message/destination table, which

assigns a destination component to every message generated by the internal component

process of component Z. Therefore, in the case that a message generated by the internal

component process of Z has one of Z’s subcomponents as destination, the message is directly

forwarded to the corresponding subcomponent; otherwise, it is passed to the output port.

Figure 14. Example of generic composite component

Figure 14 and Figure 15 are two examples of composite components. Figure 14

shows a composite component Z with internal process PZ and MDC Z-MDC, which is

composed of another composite component A, which is composed of three basic components

 65

named B, C and D. Therefore, Z contains two subcomponent levels (A and A’s

subcomponents). All of Z’s subcomponents contain their own internal process, which are

named “P” + <component name> (e.g., PA). From Figure 14, we can notice the generic

features of the GP-Pro components, meaning that at all levels in the

component/subcomponent hierarchy, each component looks the same, and it is composed of

the same kind of elements. These elements are: the internal component process, the MDC

and the set of subcomponents (an empty set for the case of the basic component). This also

applies to the composite component with the highest hierarchy, meaning the full routing

protocol per se. Figure 15 shows another composite component Z that contains three

subcomponent levels. For simplicity, the MDCs (except for Z’s) and the internal component

processes are not shown. The first subcomponent level is composed of components A, B and

C. Subcomponents B and C both contain further second level subcomponents; BA in the case

of B and; CA and CB in the case of C. Finally, second-level subcomponent BA contains

subcomponent BAA as a third-level subcomponent of Z.

 Z

C

MDC

M S

A

B

BA BAA

CA

CB

Figure 15. Example of generic composite component

Subcomponent Immediate

subcomponent

A A

B B

C C

BA B

CA C

CB C

BAA B

Table 2. Subcomponents of Z

 66

MDC of

component

Message

name

Destination

component

A msg_find F

msg_start G B

 msg_stop G

BA msg_update C

BAA msg_reset BA

C msg_delete H

CA msg_init CB

CB msg_query A

Table 3. Message/destination for all the MDC’s

To further explain the composite component example shown in Figure 15, Table 2

and Table 3 show the corresponding configuration tables that are part of the MDC. Table 2 is

the subcomponents table and it lists all of component Z subcomponents (at its three

subcomponent levels), along with the immediate sub-component of Z that contains the listed

subcomponent. On the other hand, Table 3 shows the matching destination component for

each message generated by Z and by its subcomponents. Table 3 shows the information

stored in the MDCs of all the components shown in Figure 15. The first column identifies the

owner component of the MDC. The message/destination table includes two different types of

data (columns): message name and destination component. The message name (shown with

prefix “msg_”) plus the name of the component that generates it, uniquely identify every

generated message. Hence, each component can generate multiple message types while

implementing one single output port (e.g., in Table 3 component B generates msg_start and

msg_stop). On the other hand, the destination component is the name of the component that

will receive the generated message, and whose internal component process should be able to

handle it.

Figure 16. Logical interconnection of components

 67

Figure 17. Modified logical interconnection

MDC of

component

Message

name

Destination

component

A msg_find H

B msg_start G

B msg_stop G

BA msg_update A

BAA msg_schedule BA

C msg_delete F

CA msg_init C

CB msg_query B

Table 4. New message/destination table

By combining the information stored in all of the message/destination tables, of all

the components composing each routing protocol (or any composite component) it is possible

to obtain all of the interconnections between its subcomponents. We refer to these

interconnections between components as the logical configuration of the protocol (or of a

composite component). The logical configuration of Z, according to Table 3, is shown in

Figure 16. Figure 16 shows how components get interconnected according to their message

exchange. On the left side of Figure 16 and inside the dashed box, the seven subcomponent

of Z are shown. Three of them, A, B and C generate messages for three other components

located outside of Z. Therefore, their messages are forwarded through the output port

(represented as a dotted oval) towards the corresponding destination. What we can notice

from this example is that the configuration of a composite component and, actually, the

configuration of any routing protocol, can be easily modified by re-connecting its

subcomponents, just by changing the name of the destination component in the

corresponding message/destination table. Figure 17 shows a new component configuration

that is the result of changing the destination component for the messages generated by

components A, BA, C, CA and CB shown in Table 3 (these modifications assume that the new

 68

destination components can properly handle the new incoming messages). Table 4 shows the

new message/destination table corresponding to Figure 17.

5.3 Routing Between Components

In the previous section we show how components are interconnected by defining the

destination component for each type of message in the message/destination table. However,

now we have to explain how each generated message is actually delivered to the destination

component, which means that some routing has to be performed between the protocol

components.

Every message generated by the internal component process of any component

includes a header with the message name and the ID of the sender component (see Figure

18). Each of these messages is immediately passed to the MDC of the component and, as

mentioned before, it is at the MDC that the message is matched to a destination component.

The destination component is extracted from the message/destination table and the match is

made by adding the destination ID to the header of the original message (see Figure 19).

Figure 18. Message with sender ID in the header

Figure 19. Message with destination ID in the header

Then, at each MDC that the message traverses, beginning with the MDC of the

generating component, the following logic is applied. The destination ID is searched for in

the MDC’s subcomponents table. If the destination is found, it means that it is a

subcomponent of the current component, and then the MDC forwards the message to the

corresponding immediate subcomponent. On the other hand, if the destination is not found, it

means that it is not a subcomponent of the current node, and then the MDC forwards the

 69

message to the output port of the component. Therefore, a message travels up the hierarchical

structure, until reaching a component that is a super-component of the target destination.

Then, the message starts traveling down until reaching the actual destination. Once the

message reaches the destination component, the component’s MDC removes all header

fields, and delivers the original message to the internal component process.

Figure 20. Components hierarchy of Z

To further clarify how routing is performed, we will use Figure 20 to discuss an

example. Figure 20 shows the hierarchical relationship between the subcomponents of the

composite component Z shown in Figure 15. In this example, the subcomponent BA

generates a message named msg_find, and its MDC matches the message to the destination

component CB. Therefore, the routing process is performed as follows. The internal

component process of component BA generates the message msg_find with the corresponding

sender ID and message name header information and forwards it to its MDC. The MDC

looks for the corresponding message/sender pair in its own message/destination table and the

message is matched to the destination component CB by adding the destination ID to the

header. Next, the same MDC looks for the component CB in its subcomponents table. CB is

not a subcomponent of BA, therefore, it is not found, and the message is passed up in the

hierarchy to the subcomponent B. CB is still not a subcomponent of B so, the message is

passed up one more level reaching component Z. Z finds CB as its subcomponent, then it

forwards the message to its immediate subcomponent containing CB. Component C receives

the message and forwards it for the last time to its final destination, to CB. When the message

is received by the MDC of CB, the header is stripped off and the message body is delivered

to the internal component process. This is the mechanism that has to be followed in order to

deliver each message to its corresponding destination component.

 70

5.4 Limitations

The interconnection model presented in this chapter allows achieving component

communication, throughout message exchange, as required by GP-Pro. However, under some

conditions communication might fail. These conditions are discussed next. First, it was

explained above that for two components to successfully communicate throughout message

exchange, the sender and the destination components should be able to generate and to

process, respectively, a certain message of the same name. In this case, communication will

fail if the two components do not agree on a same message structure. Second, when

components interact through the Event Manager, the sender component is allowed to provide

some additional data to be delivered to the destination when the timer expires. As a result, if

sender and destination components do not agree on this data and/or on its structure,

communication will fail as well. Third, problems will also occur if a component attempts to

store data into an information repository, or if it attempts to retrieve it, and the data provided

or expected by the component does not match the data types of the repository fields. In all

three cases, there is nothing that GP-Pro can do to detect and/or to prevent the problem.

 On the other hand, message exchange between components is only performed in a

one-to-one fashion; it is not possible to send the same message to multiple components at the

same time. Even though none of the protocols generated as part of this research made use of

such a capability, further protocols might require it. In such case, creating a packet duplicator

component could be the solution to provide this extended capability.

 71

Chapter 6

GP-PRO: The Software Tool

Chapter 4 presented the proposed architecture for GP-Pro and discussed feasible

implementation approaches while making implementation decisions, including the method to

create the protocol components. Chapter 5 presented the interconnection model that allows

those components to be put together and to communicate by exchanging messages. Now, we

put in practice all those previous decisions along with the interconnection model to actually

generate deployable routing protocols by using our software tool: GP-Pro. Therefore, in this

chapter we present the DSL specifically created for the domain of ad hoc routing protocols,

which is meant to be used with GP-Pro; we introduce the way to implement routing

components in the form of Xpand [86] templates; and we show how to make use of the new

DSL in order to write real protocol specifications. As mentioned before, the entire

development was performed by using the integrated development environment Eclipse [82].

6.1 Specification Language

The new DSL was created by using the Xtext [71] framework. The DSL provides enough

rules for the user to write protocol specifications capable of requesting the generation of

reactive, proactive and position-based routing protocols.

Inside the Xtext framework resides the Xtext grammar language. The Xtext language

is used to describe the concrete syntax and the abstract syntax, or metamodel, of the new

DSL. A metamodel is a precise definition of the constructs and rules needed to create

semantic models. Therefore, the new DSL was created with Xtext by defining grammar

language abstractions called Rules. Two different types of rules that exist in Xtext were used

in our DSL. These rules are called Simple rule and Abstract rule. In the case of a Simple rule,

its name becomes the name of a concrete meta-type. Inside the rule, tokens are specified and

 72

the values are assigned to features of the actual meta-type. On the other hand, the Abstract

rules are used to let a feature contain elements of different types. In order to show examples

of both kinds of rules a brief excerpt of the new DSL is described next. The entire DSL is

listed in Appendix A.

Protocol :

 "Protocol" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Main_Component)*

 (interconnections+=Interconn)*

 "}";

 Main_Component :
MADINI | DELIVERY | CONI | ADD_COMPS | OS_IFACE | RIR | EV_MGR |

PATH_DET | LOC_INFO;

The previous piece of the DSL describes a Simple rule called Protocol (which is also

the name of the metatype corresponding to this rule). Indentation is used to show hierarchical

relationships between rules, which represent components, and bold face type is used to

identify new rules. The rule is described after the colon and is made up of tokens. The first

token ("Protocol") is a KeywordToken, which says that a specification of a protocol starts with

the keyword “Protocol”. The protocol’s feature synonym follows. The question mark after

the parenthesis means that this feature is optional. When this feature is listed in the

specification, it has to be preceded by the KeywordToken “ as ”. The possible values for

this feature correspond to the IdentifierToken ID. The ID token defined by Xtext can be

formed by any letter, digit or the underscore character. Then, enclosed in curly brackets (“{”

and “}”), the protocol properties indicated by ((properties+=Property)*, the subcomponents

indicated by (subcomponents+=Main_Component))* and the interconnections indicated by

(interconnections+=Interconn)* should be declared. Because the structure of these three

tokens (i.e. component features) is similar to each other, we will only further explain the

subcomponents feature. The “*” means that any number of subcomponents can be declared,

even none. This time the token points to another rule (called Main_Component) and each

subcomponent is added (defined by the += operator) to the protocol’s reference called

subcomponents. The Main_Component rule is an Abstract rule that contains elements of the

types: MADINI, DELIVERY, CONI, ADD_COMPS, OS_IFACE, RIR, EV_MGR, PATH_DET

and LOC_INFO (which are the core components of GP-Pro). Each of these types are rules

 73

themselves. The description of every single rule that is part of the DSL can be found in

Appendix A. All of them are either Simple or Abstract rules. Therefore, the previously

explained logic can be used to understand them all.

In the previous excerpt of the DSL we can see that the Protocol rule (or metatype),

which is the component with the highest hierarchy, might have a synonym (i.e. optional

feature), and it might be constructed by an unlimited number of properties, subcomponents

and interconnections. These features are generic and common to every other component in

the architecture. Therefore, every component (see Appendix A) allows for the same feature

specification making this component structure truly generic. In the previous excerpt we can

also see that the subcomponents of Protocol all have to be of the type Main_component,

which is a set of nine other types, each one representing one of the nine core components of

GP-Pro. The next DSL excerpt shows the rule definition of one of those other types, the

DELIVERY metatype.

 DELIVERY :

 "DELIVERY" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Del_mech)+

 (interconnections+=Interconn)*

 "}";

 Del_mech :

 Del_mech_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 Generic_component :

 Generic_component_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}" ;

In this second excerpt we can see that the same feature structure previously explained

is shared by all components. The difference between the DELIVERY metatype and Protocol

is the type of its subcomponents. In this case they have to be of the type Del_mech and the

metatype Del_mech has to have subcomponents of the type Generic_component. Finally, the

Generic_component metatype is built by subcomponents of its own type, which translates

 74

into a recursive rule that allows each Generic_component to be composed of as many

subcomponent levels as the user writing the specification wants. Therefore, the DSL enforces

to create specifications that match the proposed protocol architecture at the higher component

levels, but also provides full flexibility in terms of the component types at the lower levels,

and in terms of the number of component levels on every specification. Figure 21 is a

screenshot of the DSL definition using the Xtext framework inside Eclipse.

Figure 21. Screenshot of the Xtext framework inside Eclipse

6.2 Protocol Components

GP-Pro generates routing protocols by assembling existing components. The more

components are available, the more varieties of routing protocols can be generated.

Therefore, the architecture of GP-Pro was designed such that the set of available components

could be always enlarged. However, before thinking about expanding the set of available

components, we had to create an initial set of components that could be assembled together

to generate the first GP-Pro routing protocol. The authors in [46] suggest that the best way to

create an initial set of components to generate an application is by taking an existing

application and breaking it into pieces that can be put back together. In our case the

 75

application is a routing protocol and those pieces should match the component architecture

previously introduced. Therefore, in order to create the initial set of protocol components, the

DYMOUM [60] implementation was used and its source code was reorganized in Xpand

templates matching the GP-Pro domain architecture. The source code reorganization was

performed by carefully analyzing the role and functionality of each data structure, each

constant definition, each macro definition and each function in the DYMOUM code in order

to find its best fit inside the GP-Pro architecture. The entire list of existing component-

templates along with a brief description is shown in Appendix B.

 When a new protocol is generated, the source code is organized in one source file (.c

file) and one header file (.h file) for the user-level plus another two similar files for the

kernel-level. The kernel-level code (when required) corresponds to the pre-forwarding

processing subcomponent of the Operating System Interface core component (only used by

reactive and position-based protocols). Each source file (.c file) contains the code of all the

components that were required to generate the protocol at the corresponding level. Likewise,

the header files (.h files) contain the corresponding header declarations of each component

building the new protocol. Therefore, each time a new component is created in the form of an

Xpand template, the template should provide the code to be included in the source code file

and the code to be included in the header file. The following example shows the main

structure of an Xpand template that implements a protocol component.

«DEFINE info_subcomponent_template(String exp_type) FOR HELLO-»

 «IF exp_type == "INFO"»

 <properties and messages>

 «ENDIF»

 «IF exp_type == "HEADERS"»

 <header code>

 «ENDIF»

 «IF exp_type == "BODY"»

 <source code>

 «ENDIF»

«ENDDEFINE»

 This example shows that each Xpand template has a name, is created for a certain

DSL metatype and is enclosed between the tags «DEFINE» and «ENDDEFINE». Inside the

 76

«DEFINE» tag, the template name has to be provided along with the name of the metatype that

the template is created for. In this example, the template is named

info_subcomponent_template. The template receives the String type variable exp_type as a

parameter and it is created for the HELLO metatype. The minus character (“-”), shown after

the metatype name and before the closing bracket (“»”), is used in the Xpand language to

omit the output of superfluous white spaces.

The content of each template is divided into three main sections: INFO, HEADERS

and BODY. Each of them is delimited by IF-ENDIF blocks and is used at different stages

during the generation process. At generation time, the section of the template (one of the

previous three) that is utilized to generate the new protocol depends on the value of the

exp_type (expansion type) variable, which is controlled by the Main GP-Pro template (listed

in Appendix B). The first section (“INFO”) provides configuration information about the

component. This information is the list of configurable properties and the list of messages

that the component processes and generates. The next example is an actual INFO section of a

component template that shows how to create those listings.

 «IF exp_type=="INFO"-»

 «Property("msg_ival", "int", "3")»

 «ProcMsg("ctl_msg_request")»

 «ProcMsg("timer_timeout")»

 «GenMsg("register_timer")»

 «ENDIF»

 The example lists one component property, two processed messages and one

generated message. Each of them is listed in an individual line of code. And, each of those

lines of code begins with the opening symbol “«” and ends with the closing symbol “»”. The

syntax to list a property is: Property(“<prop_name>”, “<prop_type>”, “<prop_value>”)

where <prop_name> indicates the name of the property; <prop_type> the data type of the

property; and <prop_value> the value of the property. At generation time, each property is

transformed into a variable in C, therefore, the property name has to match the naming

conventions for C variables; the data type has to be a valid C data type and the value has to

be a valid value for such C data type. On the other hand, the syntax to list a processed

message is: ProcMsg(“<msg_name>”) where <msg_name> is the name of the message. The

 77

message name has to match the naming conventions for C variables as well. For each

processed message, the source code section of the component (the “BODY” section in the

template) should provide a function named: proc_<msg_name>, which is the name of the

message with the prefix “proc_”. Such functions process the corresponding message type

received from some other protocol component. Finally, the syntax to list a generated

message, which is very similar to the one for processed messages is:

GenMsg(“<msg_name>”), where <msg_name> is also the name of the message with the

same naming conventions. In this case no other particular coding is required. It is just

assumed that at some point the component generates a message with such name, which will

be sent to some other protocol component. The exchange of generated messages is what

allows components to operate together and to achieve routing. The information provided in

this first template section is fundamental because this is the information used to validate each

protocol specification.

Figure 22. Screenshot of the definition of a template using Xpand language

Figure 22 shows a screenshot with the beginning of an Xpand template. It shows the

actual template for the HELLO information subcomponent (HELLO metatype), which is part

of the initial set of components, and corresponds to the generation and processing of hello

 78

messages. Figure 22 shows the “INFO” section of the component template with the list of

properties, processed messages and generated messages (in that order).

Protocol components are implemented as Xpand templates. However, all of the code

that actually implements each component is pure C language code that fits the template

structure. As discussed above, when the routing protocols are generated, components are

transformed into two files: one .c source file and one .h header file. The code going into the

header file comes mainly from the second section of the component template ("HEADERS")

and the code going into the source file comes mainly from the third section of the template

("BODY"). Additional code and functionalities to make the components fit the GP-Pro

architecture, and to communicate according to the interconnection model is added during the

generation process but without user intervention. It is totally transparent to the user (it can

only be seen by exploring the generated source files). In fact, the execution of GP-Pro

protocols is multi-threaded. Every message received by the MDC, by the internal component

process or by the output port of each component creates its own execution thread, which

exists for as long as the message is being processed by any of these units.

6.2.1 Component Operation

The general structure of every component template was described above. It is composed of

three different sections containing C code and configuration information. The three of them

are transformed to generate components implemented in pure C code. During protocol

generation, each component is enabled with the required capabilities to communicate

according to the interconnection model described in Chapter 5. An essential element of this

interconnection model, which exists in every component, is the MDC. The MDC contains

two tables with the names of the subcomponents and the names of the generated messages.

Both of these tables are filled up during a process called component Initialization. This

process is created for each component, during the generation process, and it can be found

inside the generated code as a function named <component_name>_initialize, where

<component_name> is the synonym given to the component in the protocol specification (as

described in Section 6.3). The initialization is the first process launched when the routing

protocol is executed. Its job is to prepare every component to operate according to the

 79

interconnection model. The initialization process is sequentially executed by each component

according to its positioning in the hierarchy of components (see Figure 11 in page 61). It is

first executed by the component with the highest hierarchy, P, and then by each of its

subcomponents. Each of these subcomponents will follow suit by initializing themselves

first, and then all of their subcomponents before returning control to the parent component P.

Subsequent subcomponents will do the same until the lowest subcomponent level is reached.

Therefore, if we look at the hierarchy of components as a tree structure (see Figure 11), an

entire branch of components rooted at P will be initialized before the second subcomponent

of P is initialized (along with its corresponding subcomponents). This protocol initialization

process continues until all components have been initialized.

 Once all the protocol components have been initialized, they are ready to exchange

messages with every other component and not only with immediate subcomponents. That is,

routing between components, as described in Section 5.3, can be achieved. However, some of

the protocol components need to perform some additional auto-configuration (e.g., create

some data structures, register timers with the event manager) before being able to properly

support the operation of the protocol. Therefore, an additional process called start is executed

by each component after initialization. It can be found inside the generated code as the

function named start(). Different from the function initialize that is automatically generated,

the start() function has to be implemented by the user in the component template. This start()

function has to be part of the third template section called (“BODY”). The default component

template shown in Appendix E shows the function declaration and its location in the

template. Thus, any task to be executed by each component after initialization, but before the

regular operation of the protocol, has to be performed by the start process. Similarly to

initialize, the start function is executed by the highest component in the protocol hierarchy

first, and then by each of its subcomponents. Once all of the protocol components have

executed the initialize and start processes, the routing protocol is ready to operate.

 Finally, there is a third process that is executed by every protocol component: the stop

process. This process is executed when the operation of the routing protocol is to be stopped.

It can be found inside the generated code as the function named stop(). Similarly to the

 80

start() process, it has to be implemented by the user in the third section of the component

template. The default component template shown in Appendix E shows the function

declaration and its location in the template. The tasks to be executed by the stop process are

mainly those to release system resources (e.g., memory) allocated to each of the protocol

component. Therefore, the protocol operation can be represented by the state machine shown

in Figure 23. A guide on how to create new components can be found in Appendix F.

Figure 23. State machine representing protocol operation

6.2.2 Message Types

Message Type Identifier Description

Mandatory M This is the default type. If the message is a generated message then

there must be at least one other component in the specification

capable of processing it. If the message is a processed message then

there must be at least one other component that generates it.

Optional O It is not mandatory that another component in the specification,

capable of generating or processing such message, exists.

Mandatory at the child MC All of the immediate subcomponents (or children) of the component

generating/processing the message should be able to

process/generate it.

Mandatory at the parent MP The immediate super component (or parent) of the component

generating/processing the message should be able to

process/generate it.

Table 5. Message Types

As discussed in the previous section, each component provides a list of processed and

generated messages. The exchange of these messages is the mechanism that allows

components to communicate and operate together. In essence, components require that each

of their generated messages be processed by some other component in the specification; and

that some other component(s) generates every message processed by the component.

Therefore, the processing or generation of each generated or processed message,

respectively, becomes mandatory and is validated during the generation process. However,

not every component requires to make mandatory the processing or generation of all of its

 81

messages. Thus, generated and processed messages can be further classified as shown in

Table 5. The way to define the type of each message is by using the corresponding identifier

as second parameter when listing each generated or processed message. Examples of it are

shown next:

 «IF exp_type=="INFO"-»

 «ProcMsg("qry_madini_sub_props ", “MC”)»

 «ProcMsg("timer_timeout")»

 «GenMsg("register_timer",”M”)»

 «GenMsg("inc_counter",”O”)»

 «ENDIF»

 This example shows how to use the type identifier as second parameter. Three

different message types are shown. Because the mandatory type is the default message type,

both messages timer_timeout and register_timer are of the mandatory type. The generated

message inc_counter is optional; and the message qry_madini_sub_props, of type mandatory

at the child, makes mandatory that all of the immediate subcomponents are able to process it.

This last message is actually generated by the MADINI core component. Thus, it has to be

processed by each of its information subcomponents. The advantage of this kind of

hierarchical dependency allows implementing more of the routing infrastructure inside the

parent component, making it easier to implement the corresponding subcomponents. Like the

MADINI, other core components also take advantage of this idea. The RIR core component

is one of them. RIR provides, to every protocol component, the required functionalities to

launch queries (e.g., find, delete, insert, update, etc) on RIR’s subcomponents, which are

information repositories. Hence, the implementation of the repositories is limited to defining

field names and types. And, all protocol components query every repository in exactly the

same way. In conclusion, the existence of message types supports the validation of protocol

specifications, simplifies the implementation of new components, and also supports the

automatic completion of specifications described below.

6.2.3 Protocol Subfamilies

In order to show that GP-Pro is capable of generating protocols for all three protocol

subfamilies discussed in Chapter 3, and after creating the initial set of components to

generate the reactive protocol DYMO [5], we created additional components. The additional

 82

components allowed us to generate the proactive routing protocol OLSR [2], and the

position-based protocol Greedy [28]. Therefore, all nine core components of GP-Pro were

implemented along with their required subcomponents. The listing of components that were

created as part of this work, which are currently available is provided in Appendix C.

6.3 Protocol Specification

The previous two sections presented the way that the DSL was created and the method to

create protocol components by using Xpand templates. Now, we discuss how to write

protocol specifications according to the new DSL and based on the available components.

The DSL allows the user to describe each of the components that will be part of the routing

protocol, and to assign values to their configurable parameters. Additionally, the DSL allows

creating composite components and defining explicit interconnections between components.

The first protocol generated by GP-Pro according to a protocol specification was the DYMO

[5] protocol. DYMO shares many of the AODV [1] functionalities. However, it is easier to

implement and it is designed with future enhancements in mind. In DYMO, when a route to a

certain destination is required, a route discovery is initiated by broadcasting a route request

message. Each route request message is forwarded once by each node until reaching the

destination node. Then, the destination replies to the source node with a route reply message.

Each route request and each route reply message keep an ordered list of all the nodes they

passed through, so every receiver can immediately record a route back to the sender. To

detect link breakdowns DYMO makes use of Hello messages that are exchanged among one-

hop neighbors.

As mentioned before, a custom editor was created for the new DSL. Therefore, every

protocol specification should be written by using the custom editor in order to take advantage

of its support features such as: code completion and syntax and constraints checking. The

custom editor can be used inside Eclipse after GP-Pro and the new DSL have been installed

as Eclipse plug-ins. Next, we show an excerpt of the actual specification to generate the

DYMO [5] protocol. The full protocol specification can be found in Appendix D.

 83

Protocol as GPPro_DYMO {

 udp_port = 657

 CONI as Coni{

 Initiation as Init{

 routing_table = rtable

 }

 Request as Req{

 routing_table = rtable

 }

 }

 MADINI as mad1 {

 Hello as hello1 {

 msg_ival = 2

 ctl_msg_type = 4

 nb_repository = nb1

 routing_table = rtable

 nb_timeout = 6

 }

 }

 DELIVERY as del1 {

 n_hops as nh1 {

 hops = 1

 }

 n_hops as nh_net_diameter {

 hops = 255

 }

 }

 RIR as repo_pool{

 neighbors as nb1{}

 rir_dymo as rtable{}

 }

 control_message : hello1 -> nh1

 control_message : Req -> nh_net_diameter

}

 This specification defines a protocol, which is given the name GPPro_DYMO.

GPPro_DYMO is the value assigned to the property synonym for the component called

Protocol (as shown in Section 6.1, every component has an optional synonym property). The

use of a synonym allows giving different names to a component that is used more than once

in the same protocol specification. Synonyms are also useful to define explicit component

interconnections. In the next line, the configurable property udp_port for the component

Protocol is set to the value 657 by using the assignation sign “=”. As in this example, the re-

configured properties, of any component, are listed right after the opening curly bracket “{”

that is next to the component’s name (and next to the synonym, if provided), but before any

subcomponent. The values assigned to each configurable property have to match the

corresponding data type; otherwise, problems might appear when the generated protocol is

 84

compiled. Protocol, which is the component of highest hierarchy, is the super-component of

all other components in the specification. In this example, it contains four subcomponents

called CONI, MADINI, DELIVERY and RIR. The subcomponents of any component in

the specification are defined inside the curly brackets (“{}”) that open right after the

component’s name. Therefore, when any given component needs to be extended with further

subcomponents, it is simply added to the corresponding subcomponent section right after its

declaration. In this way, components can be extended to as many subcomponent levels as

required by using this simple mechanism, and by explicitly defining the corresponding

component interconnections. Going back to our example, we can see that the subcomponent

CONI is composed of another two subcomponents called Initiation and Request, which

receive the synonyms Init and Req respectively, by using the reserved word “as”. Both of

them list one property named routing_table, which is set to rtable. rtable is the synonym

given to the subcomponent rir_dymo of the core component RIR. That means that a

repository that is part of the RIR can be used by any other component, just by setting a

property of that other component to the synonym given to the repository. The specification

also shows the core component MADINI, which includes the subcomponent Hello with

synonym hello1. The component hello1 lists several configurable properties and one of them

is set to the synonym of a second repository, which is nb1. The last core component in this

specification is DELIVERY. This component shows two subcomponents: nh1 and

nh_net_diameter that are both instances of the component n_hops. This is an example of

how the use of synonyms allows reusing the same component several times in the same

specification. In this case, the difference between these two components is the value that the

property hops is set to (1 and 255), which defines the maximum number of times that a

message, using such delivery mechanism, should be retransmitted. The way to define which

components are using each delivery mechanism is by making use of component

interconnections.

After the protocol subcomponents have been listed, the explicit component

interconnections have to be defined. In general, these connections have to be defined at the

end of the subcomponent section of the lowest component in the hierarchy which is also a

super-component for both, the sender and the destination components. The previous

 85

specification shows two component interconnections: hello1 to nh1 and Req to

nh_net_diameter. In both cases Protocol is the lowest component in the hierarchy that

contains each pair of subcomponents (all of them second level subcomponents). This means

that the interconnections are listed after sender and destination components have been

defined in the specification. Alternatively, all of the interconnections can be listed at the end

of the subcomponent section of the protocol component, meaning at the end of the

specification. The way to define these interconnections is by matching the messages

generated by the sender component, to the corresponding destination component. In our

example, the sentence control_message : hello1 -> nh1 defines the first interconnection.

The syntax for it is: <message name> : <sender> -> <destination>. Therefore, our example

defines that every message named control_message generated by the component hello1

should be delivered to the component nh1 (this interconnection represents the forwarding of

the “hello” message, to the delivery mechanism that will broadcast it one hop away). The

second interconnection represents the forwarding of the route request message to the delivery

mechanism that will broadcast it as far as the diameter of the network is. 255 hops in this

case, which is the value that the property called hops, for the component nh_net_diameter,

is set to.

Figure 24. Screenshot of the DYMO protocol specification using the new DSL

 86

Figure 24 shows a screenshot of the protocol specification to generate the DYMO [5]

protocol. The figure shows the protocol specification along with a smaller pop up window,

which provides the code completion support specifically generated for the new DSL.

Interconnections are the source of information to fill up the message/destination table

of the MDC. On the other hand, the specification of subcomponents at several levels in the

component hierarchy is the source of information to fill up the subcomponents table of the

MDC.

From the previous example, we learned how a component (in this case Protocol) can

be extended by including additional subcomponents, and how those additional

subcomponents can be connected to each other. This same approach can be applied to any

other component, even to a basic component, until it becomes a complete routing protocol.

Both interconnections listed in the previous specification example are asynchronous

interconnections, denoted by the symbol “->”. It means that the sender component will

forward the message to the destination component, and immediately afterwards continues

processing any other pending task. Hence, the sender will not wait for the message to be

processed by the destination. This could be the most common operation mechanism for

interconnections. However, there are scenarios where the sender component needs to wait for

the processing of the message (plus some type of answer), before it continues with its regular

operation. An example of this scenario occurs when a component sends a query message to

an information repository and waits for an answer with the information matching the query.

Therefore, in this kind of scenario a second interconnection type is required, the synchronous

interconnection type. Components sending synchronous messages will wait for an answer

from the destination component before they continue their regular processing. Components

processing synchronous messages will generate a reply message with the same name plus the

prefix “reply_” (e.g., reply_find_query for message named find_query). The way to indicate

in the protocol specification that an interconnection is synchronous is by using the

bidirectional symbol “<->”, instead of the symbol “->”. The rest of the syntax to define the

interconnection remains the same.

 87

6.4 Automatic Completion of Specifications

Each component is capable of processing and generating multiple message types. Ideally,

each message generated by a component (or output port), has to be interconnected to the

input port of another component that is capable of processing such message, which is also

part of the specification. However, the interconnection of every port for every component

might be a tedious and laborious task. Therefore, based on the fact that each component

clearly identifies the types of messages that it generates and processes, GP-Pro can

automatically complete the protocol specification on behalf of the user. The only scenarios

where GP-Pro might not be able to properly add the missing interconnections occur when

more than one component in the specification is capable of processing the same message

type, and no other advice (e.g., a hierarchical relationship) on how to interconnect the

components is available. Therefore, even though GP-Pro would create the missing

interconnection, it is recommended that, in this type of situations, the user makes sure that

she/he is the one defining those interconnections to achieve the expected behavior. An

example of such a situation is when more than one delivery mechanism (for control

messages) is listed in the protocol specification, because control messages could use any of

them. In that case GP-Pro would pick the first listed component that can process the message.

This is exactly the reason why two interconnections had to be listed as part of the protocol

specification shown in the example of Section 6.3; otherwise, the automatic completion

feature could have added all of the interconnections without the help of the user. As an

example of the aid provided by automatic completion, the full specification of the DYMO

implementation (see Appendix D) requires the definition of 145 component interconnections,

however, thanks to automatic completion, the user only has to define four (4) of them.

Adding missing interconnections between components is one of the methods to

automatically complete protocol specifications, however, it is not the only one supported by

GP-Pro. The second method is related to setting all of the configurable properties of each

component. As mentioned before, the configurable properties of each component are listed in

the INFO section of each component template. Each property is listed along with a default

value. Therefore, when any of these configurable properties is not included in the protocol

specification along with its corresponding value, GP-Pro will assign the default value to each

 88

of them. Thus, GP-Pro allows further tuning of each protocol component that is part of the

specification, but it is not mandatory.

Description Type Action

A mandatory message processed by any of the protocol

components is not generated by any other component.

Error User will be flagged with the

name of the component that

processes the message.

A mandatory message generated by any of the protocol

components is not processed by any other component.
Error User will be flagged with the

name of the component that

generates the message.

A mandatory interconnection between two existing

components was not listed in the specification.

Warning GP-Pro completes the

specification by adding the

missing interconnection.

An interconnection defined in the specification makes

reference to a message that is not generated by the

sender component.

Error User will be flagged with a

message saying that the sender

does not generate the message.

An interconnection defined in the specification makes

reference to a message that is not processed by the

destination component.

Error User will be flagged with the

message saying that the

destination does not process the

message.

An interconnection defined at the DSL level makes

reference to a component that is not part of the

specification

Error User will be flagged with the

name of the missing component.

An interconnection between two components that

should have been defined as Asynchronous was not

defined as such.

Error The details of the erroneous

interconnection are provided to

the user.

An interconnection between two components that

should have been defined as Synchronous was not

defined as such.

Error The details of the erroneous

interconnection are provided to

the user.

A component property listed under a certain component

that does not belong to it.
Error The user is flagged with the

names of the component and the

property.

The value provided for one of the component properties

does not correspond to the expected data type.
Error The user is flagged with the

invalid value along with the

names of the component and the

property.

Table 6. Specification errors and warnings

6.5 Error Handling

User specifications written with the new DSL might contain mistakes. These mistakes will be

handled during the protocol generation process and proper action will be taken. Depending

on their impact on the protocol generation process, specification mistakes are classified as

Errors or Warnings. An Error means that the mistake prevents GP-Pro from completing the

generation process and the user has to take some action. On the other hand, a Warning means

that even though there is some information missing in the specification, the generator is able

 89

to provide it and continue with the generation process. Table 6 lists the mistakes that could

be made when writing the protocol specification. It also provides their classification, and the

action taken by GP-Pro.

6.6 Generation Time

In this section, we elaborate on the savings that can be obtained, in terms of reduced time to

generate a deployable protocol implementation, by using GP-Pro as the generation tool.

 GP-Pro was created to speed up the generation time of ad hoc routing protocols ready

for deployment. It was designed as a software tool that could take a protocol specification as

an input, and would return a fully implemented protocol (assuming that all required

components are available), coded in C language and ready to be deployed as its output. A

proprietary DSL was created for our target domain in order to simplify the task of writing

new specifications. Each routing protocol is generated by assembling existing components,

which communicate with others according to an also proposed component interconnection

model. The tool was designed to be extensible, in a way that at anytime new components

could be added, and it could also accommodate further and forthcoming protocol features.

The first goal, aimed to prove the feasibility of GP-Pro, was to be able to generate a reactive

protocol while providing all of the previous capabilities. The choice of a reactive protocol, as

the first protocol, was due to its additional complexity in order to route packets when no path

is available, which requires interacting with the OS Kernel. Thus, DYMO was chosen as the

first protocol. This first goal was achieved after approximately eight months of work, and

after a case study that was used to verify that all the supportive software tools were the right

fit (about four more months).

The generation of one single protocol would not be enough to demonstrate the

protocol generation capabilities of GP-Pro. Therefore, after generating DYMO a second

protocol was generated, the well-known OLSR routing protocol. To generate this second

protocol, which belongs to the family of proactive protocols, more than 50% of the existing

routing components created to generate DYMO were reused. Thus, even though new routing

 90

components had to be created, the generation of an OLSR implementation providing the core

functionalities described in [2], took about six weeks. In order to generate a deployable

routing protocol for each routing family, a third protocol was generated: the position-based

protocol called GREEDY. In this case, even more existing components were reused than

before, 75% of the components used by GREEDY existed already. It took about seven days

of work to create the required new components and generate a deployable version of

GREEDY. Hence, the time taken to generate GREEDY, compared to the time that took to

generate DYMO, was reduced from months to days (and to weeks in the case of OLSR).

Therefore, it becomes obvious that the more components are available, the shorter the

time required to generate each new protocol. This is independent of the fact that additional

components might be required by each new protocol. At the end, every time new components

are created, more components are available to be reused and the variety of protocols that can

be generated increases. More importantly, when all the components required by a new

protocol exist, meaning that no new components have to be created, the time to generate the

new protocol gets reduced to the time that takes to write the corresponding protocol

specification by using the proprietary DSL. To keep track of the components already

implemented, they should be grouped by the main component that they belong to. However,

further classification (based on component functionality), may be created for those

components that can be used in multiple main components. The specifications shown as

example in this document are between 39 and 60 lines long. Then, new protocols ready for

deployment over real networks could be generated in a matter of minutes. That is a drastic

reduction on the time required to generate deployable protocols, which, as shown in the next

chapter, perform proper and reliable routing at an affordable performance cost.

 91

Chapter 7

Evaluation

This chapter discusses the evaluation of the protocol generator along with the generated

protocols once that GP-Pro was implemented. By implemented we mean here that the full

software tool has been created along with the protocol architecture and the component

interconnection model. Hence, GP-Pro provides freedom to select the components building

each new routing protocol. The fact that GP-Pro can be continuously extended by creating

new components that satisfy further and forthcoming protocol requirements suggests that we

cannot say, at any time, that it is actually complete. GP-Pro is a tool to generate ad hoc

routing protocols, which simplifies the development process. Therefore, in order to evaluate

it, we can either qualitatively compare it against some of the existing frameworks that share

similar objectives or, we can compare the performance of the generated protocols against

protocols generated by other frameworks or even handcrafted protocols. These alternatives

are discussed in the following sections. However, before elaborating on the evaluation

alternatives, we present the two other routing protocols that were generated with GP-Pro as

part of this work, which are also part of the performance evaluation.

7.1 Generated Protocols

GP-Pro aims to generate routing protocols for the three subfamilies described above:

proactive, reactive and position-based. Therefore, in order to show that GP-Pro is capable of

achieving its goal, we generated one protocol for each protocol subfamily. Section 6.3

presented an excerpt of the protocol specification to generate the reactive routing protocol

DYMO [5] and Appendix D contains the full protocol specification. Next, we present the

protocol specifications used to generate the proactive protocol OLSR [2], and the position-

based protocol GREEDY [28], both specifications are fully explained. Also, we introduce the

packet format used by the different control packets generated by each protocol. Finally, we

 92

discuss possible variants for OLSR and GREEDY along with their integration in the existing

specifications.

7.1.1 OLSR Protocol

This section presents and explains the protocol specification used in GP-Pro to generate the

proactive routing protocol OLSR [2]. The specification describes OLSR as a protocol that

generates hello and TC messages that are broadcasted one hop away and over the entire

network, respectively. Broadcasting over the entire network is performed by using MPR

nodes, which are computed every time that topology changes are detected. Control packets

are sent through the UDP port 698 and all routing paths are computed by using the shortest

path algorithm. The specification is listed next (line numbers are shown on the left side).

1 Protocol as GPPro_OLSR {

 2 udp_port = 698

 3 MADINI as mad1 {

 4 Hello_1h as hello{}

 5 TC_message as tc_msg{

 6 ttl = 255

 7 }

 8 }

 9 EV_MGR as ev_mgr {

 10 }

 11 DELIVERY as del1 {

 12 n_hops as nh1 {

 13 hops = 1

 14 }

 15 MPR_forwarding as mpr_fwd{}

 16 }

 17 OS_IFACE as OS1{

 18 Fwd_eng_interaction as FEI{}

 19 Ctl_pkts_exch as CP1{}

 20 }

 21 RIR as repo_pool{

 22 linkSet as link_set{}

 23 neighborSet as neighbor_set{}

 24 twoHopNeighborSet as twoHopNeighbor_set{}

 25 mprSelectorSet as mprSelector_set{}

 26 topologySet as topology_set{}

 27 duplicateSet as duplicate_set{}

 28 rTable_OLSR as RIR_OLSR{}

 29 }

 30 ADD_COMPS as add_comps{

 31 MPR_computation as compute_mprs{}

 32 }

 93

 33 PATH_DET as path_det{

 34 shortest_path_OLSR as shortest_path{}

 35 }

 36

 37 control_message : hello -> nh1

 38 control_message : tc_msg -> mpr_fwd

39 }

 In the previous specification, line 1 says that a new protocol with the synonym

GPPro_OLSR will be created. The curly bracket “{” at the end of the line means that the

properties, subcomponents and interconnections will be listed next. Every protocol

specification has to start with the same statement, but (most likely) with a different protocol

synonym. Line 2 sets the udp_port property to port number 698. That is the only property

listed for Protocol. Properties have to be always listed before any subcomponent. The seven

subcomponents of Protocol are listed next, between line 3 and line 35. They are the core

components MADINI, EV_MGR, DELIVERY, OS_IFACE, RIR, ADD_COMPS and

PATH_DET. The first of them, MADINI is listed from line 3 to line 8. Line 3 says that the

MADINI component will be included with the synonym mad1 and its

properties/subcomponents/interconnections are listed next. In this case no properties for

MADINI are listed. Line 4 says that the first subcomponent of MADINI is Hello_1h, which

takes the synonym hello. This component generates hello messages with the list of one hop

neighbors. The opening and closing brackets “{}” listed at the end of the line indicate that no

properties/components/interconnections are provided. Lines 5 to 7 list the second

subcomponent for MADINI. This is the subcomponent TC_message, which receives the

synonym tc_msg and generates control messages that advertise the network links known to

the sender node. Line 6 shows the only property to be configured, which is ttl and is set to

the value 255. This property defines the Time to Live value for the control message. Lines 7

and 8 are the closing brackets “}” indicating the end of the declaration for components

TC_message and MADINI, respectively. Lines 9 and 10 indicate that the EV_MGR

component will be part of the generated protocol and will receive the synonym ev_mgr. No

properties/subcomponents are listed. Line 11 says that the component DELIVERY will be

added with synonym del1. This component contains two subcomponents. The first of them

shown in Line 12 is n_hops, which receives the synonym nh1. It has one property that is

shown in Line 13; it is called hops and is set to the value 1. n_hops is a delivery mechanism

 94

that forwards any control message N hops into the network. The number of hops is defined

by the property hops. In this case the messages will be forwarded only one hop away. Line

14 marks the end of the component declaration. Line 15 adds another delivery mechanism

called MPR_forwarding with the synonym mpr_fwd. This component provides the

optimized broadcasting mechanism that is part of the OLSR [2] protocol. Line 16 marks the

end of the DELIVERY component. Lines 17 to 20 show the OS_IFACE subcomponent

with the synonym OS1. It contains two subcomponents listed in Lines 18 and 19. The first

one provides communication between the routing protocol and the forwarding engine in the

Operating System. It is included with the synonym FEI. The second one provides the

capabilities for the router to send control packets over the network. It is included with the

synonym CP1. The next core component listed between lines 21 and 29 is the RIR, which

receives the synonym repo_pool and contains seven subcomponents that are repositories.

These are the repositories required by OLSR and are described in RFC 3626 [2]. Lines 30 to

32 describe the component ADD_COMPS with the synonym add_comps. It is composed of

one single subcomponent called MPR_computation that receives the synonym

compute_mprs. This subcomponent computes the Multipoint Relay set and the Multipoint

Relay Selector set, as described in [2]. The output of this computation is stored in the

corresponding repositories and is used by the MPR_forwarding component. OLSR is a

proactive protocol; therefore, routing paths to every possible destination are continuously

updated. Lines 33 to 35 include the PATH_DET component with the synonym path_det,

which takes care of determining the routing paths to every destination. It is composed of one

single subcomponent called shortest_path_OLSR with synonym shortest_path. This

subcomponent contains the algorithm to compute the shortest path to every destination node

as described by [2]. This algorithm makes use of the information stored in the repositories

link_set, neighbor_set, twoHopNeighbor_set and topology_set to compute the routes and

stores them in the repository called RIR_OLSR. All of these repositories are subcomponents

of the RIR component and are listed between lines 22 and 28. The shortest_path_OLSR

component needs to know the synonyms of the repositories where it can find and store the

required information is. This is achieved via the values set to its five properties that store

such information. In this case, these five properties are not listed in the specification because

their default values match the synonyms given to the corresponding repositories. Therefore,

 95

there is no need to list them in the specification; the default values will be used. To learn

more about the default values of each exiting component, which eases the task of writing new

specifications see Appendix C. If these five had been listed, the shortest_path_OLSR

component would look as shown next.

 PATH_DET as path_det{

 shortest_path_OLSR as shortest_path{

linkSet = link_set

neighborSet = neighbor_set

twoHopNeighborSet = twoHopNeighbor_set

topologySet = topology_set

rTable_OLSR = RIR_OLSR

}

 }

 Finally, lines 37 and 38 show the two component interconnections required by this

protocol in order to operate properly. Both of them match an actual control message

generated by a protocol component with another component that provides the corresponding

delivery mechanism. Line 37 says that every message named control_message generated by

the component with synonym hello should be asynchronously forwarded to the delivery

mechanism with synonym nh1. This corresponds to hello messages sent one hop away. Line

38 says that every message named control_message generated by the component with

synonym tc_msg should be asynchronously forwarded to the delivery mechanism with

synonym mpr_fwd. This corresponds to the topology control messages broadcasted into the

network by using the optimized broadcasting mechanism based on MPRs [2]. The end of the

protocol specification is marked by the closing curly bracket “}” shown in line 39. Blanks

lines like the one shown in line 36 are accepted at any point in the specification.

7.1.2 GREEDY Protocol

This section presents and explains the protocol specification used to generate the position-

based routing protocol GREEDY [28] with GP-Pro. Nodes running the GREEDY protocol

acquire neighborhood information by exchanging hello and location messages one hop away.

Also, each node periodically (but less frequently) advertises its own location information

over the entire network, so that when a new routing process is to be started, an estimated

location of any destination node is known to the sender. The location information of each

 96

node is expected to be obtained via a GPS receiver. Finally, each data packet is forwarded, at

every hop, to the neighbor that is the closest (in Euclidean distance) to the destination node.

The specification is listed next (line numbers are shown on the left side).

1 Protocol as GPPro_GREEDY {

 2 udp_port = 7690

 3 MADINI as mad1 {

 4 Hello as hello1 {

 5 msg_ival = 2

 6 ctl_msg_type = 4

 7 nb_repository = nb1

 8 routing_table = rtable

 9 nb_timeout = 6

 10 }

 11 location as loc1{}

 12 location as loc_wide{

 13 msg_ival = 20

 14 loc_info_timeout = 60

 15 ctl_msg_type = 16

 16 }

17 }

 18 EV_MGR as ev_mgr {

 19 }

 20 DELIVERY as del1 {

 21 //used by hellos

 22 n_hops as nh1 {

 23 hops = 1

 24 }

 25 //used by location update

 26 n_hops as nh_net_diameter {

 27 hops = 255

 28 }

 29 }

 30 OS_IFACE as OS1{

 31 Pre_forwarding as PF1{

 32 routing_table = rtable

 33 route_update_freq = 1000

 34 }

 35 Fwd_eng_interaction as FEI{}

 36 Ctl_pkts_exch as CP1{}

 37 }

 38 RIR as repo_pool{

 39 neighbors as nb1{}

 40 rir_dymo as rtable{}

 41 location_table as loc_table{}

 42 }

 43 LOC_INFO as loc_info{

 44 gps_receiver as gps{}

 45 }

 46 PATH_DET as path{

 47 GREEDY as gedir{}

 48 }

 97

 49

 50 control_message : hello1 -> nh1

 51 control_message : loc1 -> nh1

 52 control_message : loc_wide -> nh_net_diameter

 53 rt_entry_update : PF1 -> gedir

54 }

 As in the protocol specification presented in the previous section, this specification

starts by assigning the synonym GPPro_GREEDY to the new protocol in line 1 and by

setting the udp_port property to number 7690 in line 2. This specification contains seven

core components listed between lines 3 and 48 which are: MADINI, EV_MGR,

DELIVERY, OS_IFACE, RIR, LOC_INFO and PATH_DET. The first of them,

MADINI, with synonym mad1 is listed between lines 3 and 17. It contains 3

subcomponents. The first subcomponent listed between lines 4 and 10 is Hello with synonym

hello1. This component generates simple hello messages that advertise the identity of the

sender (without any additional neighbor information). This subcomponent also lists 5

properties. The first of them in line 5 is called msg_ival, it defines how often (in seconds)

messages are created. In this case it is set to every 2 seconds. The second property in line 6

ctl_msg_type assigns a type number to the control message. In this case it is set to 4. It is

important that different types of control messages receive different type numbers for proper

identification. Line 7 lists the property nb_repository to nb1. This property must be set to the

synonym of the repository where the information received by each hello message will be

stored. In this case the synonym of the repository is nb1, which is the synonym of one of the

repositories that are part of the RIR (see line 39). Line 8 is another property expecting the

synonym of a repository. The property routing_table expects the synonym of the repository

that stores the routing table, it is set to rtable. This repository is listed in line 40. The last

property listed in line 9 is nb_timeout. nb_timeout defines how many seconds after receiving

the hello message the neighbor information will become invalid. It is set to 6 seconds. The

closing curly bracket on line 10 marks the end of the Hello subcomponent. The two other

subcomponents are listed in lines 11 and 12. Both of them are instances of the location

component and are clear example of component reuse. In order to provide a different

functionality by each of them, their properties are set to different values. The location

component advertises the location information (i.e. longitude, latitude and altitude) of each

node into the network. The first location component receives the synonym loc1 but no

 98

properties are listed. This means that all of its properties will take the default values. For a

list of properties and default values of each component type see Appendix C. The second

location component receives the synonym loc_wide. Line 13 lists the first property called

msg_ival, which defines how often (in seconds) messages are sent; it is set to 20 (the default

value is 3). Line 14 lists the property called loc_info_timeout, which defines how many

seconds after the information has been received it is considered as invalid; it is set to 60 (the

default value is 12). Line 15 lists the last property called ctl_msg_type, which assigns a type

number to the control message. It is set to 16 (the default value is 15). Another property of

the location component that is not listed in the specification and thus takes the default value

is locationTable. This property expects the name of the repository that will store the location

information, the default value is loc_table, which is the synonym given to the repository

listed in line 41. Lines 18 to 19 add the EV_MGR component with synonym ev_mgr. Lines

20 to 29 include the DELIVERY component with synonym del1. This component contains

two subcomponents that are both instances of the component n_hops. The differences

between both of them are their synonyms and the value that the hops property is set to. The

first one has the synonym nh1 and the hops property is set to 1. The second one has the

synonym nh_net_diameter and the hops property is set to 255. This second delivery

subcomponent resembles regular broadcasting over the entire network (the value 255

represents the size of the network diameter). Lines 21 and 25 show that comments can be

written in the specification if the text is preceded by a double forward slash “//”. Lines 30 to

37 include the OS_IFACE component with synonym OS1. Different from the specification

of the OLSR protocol shown above, it includes a third subcomponent called Pre_forwarding

with synonym PF1. This subcomponent is meant to be used by reactive and position-based

protocols that do not maintain updated routes to every network destination. Therefore, this

component has to find a path or at least the next hop towards the destination, while buffering

data packets. Two properties are listed for this component. The first one is the routing_table

property shown in line 32. It is set to the synonym of the repository storing the routing table,

which is listed in line 40. The second property, route_update_freq, is set to 1000. This value

defines how often (in milliseconds), the validity of a routing table entry that is in use gets

updated. The description of DYMO [5] says that the validity of an entry in the routing table

has to be updated every time that a messages is received from, or forwarded to the

 99

destination node of that entry. Therefore, when high data transmission rates are experienced,

this continuous update can potentially saturate the device running the routing protocol.

During our protocol performance evaluation using the DYMO protocol generated with GP-

PRO and using the DYMOUM [60] implementation, we experienced computer crashings

with both implementations when streaming high quality video. Therefore, we decided to limit

the frequency of such an update. Hence, this frequency can be controlled by increasing the

value assigned to the route_update_freq property. The higher the value, the less often the

update is performed. Frequency updates at a rate of one per second (1000 ms) provided

protocol performance stability. Thus, 1000 is used as the value for route_update_freq.

Lines 38 to 42 add the RIR component that includes the three repositories already

mentioned as its subcomponents. Lines 43 to 45 include the LOC_INFO core component

with synonym loc_info. This component, which is responsible for providing the location

information of the node running the routing protocol, is composed of one subcomponent

called gps_receiver with synonym gps. The component gps_receiver provides the current

location information of the host. It assumes the existence of a system file where location

information collected by a GPS receiver gets updated. The default path for such a file is

"/home/greedy/host_location.dat", and can be modified by resetting the property file_path of

the gps_receiver component. Lines 46 to 48 list the PATH_DET component with synonym

path. It contains one single subcomponent called GREEDY with synonym gedir. This

component selects the next hop for every data transmission according to the GREEDY [28]

protocol. That is, the next hop is the neighbor node that is the closest (Euclidean distance), to

the destination. Finally, lines 50 to 53 list the required component interconnections. Line 50

to 52 say that every control_message generated by the components with synonym hello1 and

loc1 should be forwarded to the delivery mechanism nh1; and every control_message

generated by the component with synonym loc_wide should be forwarded to the delivery

mechanism nh_net_diameter. That is, hello messages generated every 2 seconds by hello1

and location information messages generated every 3 seconds by loc1 will be broadcast one-

hop away. On the other hand, location information messages generated every 20 seconds by

loc_wide will be broadcasted over the entire network. The last interconnection, shown in line

53, means that every rt_entry_update message generated by PF1, which requests the update

 100

of a routing table entry, will be forwarded to the path determination subcomponent with

synonym gedir. This last message should be generated every route_update_freq

milliseconds, for each active routing table entry.

7.1.3 Generalized Message Format

The current efforts of the MANET working group [16] in the routing area of the IETF are

focused on creating several standard features that could be reused by any routing protocol.

One of those features is the Generalized Packet/Message format, which is a multi-message

packet format. According to this format, each packet is composed of a header and of any

number of messages, and each message is composed of a header and sets of addresses called

address blocks. Multiple and different types of attributes can be associated to packets, to

messages and to address blocks. In order to represent these attributes, a generalized type-

length-value (TLV) format is also described. It is said that a unique TLV is created to

represent each type of attribute. Therefore, each TLV can be associated with a packet, a

message or an address block.

Name Used by Type Length Value

Dymo_seq_num DYMO 10 Two octets
The DYMO sequence number associated

with the address.

Hop_count DYMO 11 One octet
The number of hops traversed by the

information associated with the address

Validity_time OLSR 12 One octet

For how long after reception the

information associated with the message

must be considered as valid

Interval_time OLSR 13 One octet
Emission interval used by the node that

sent the message

MPR_willingness OLSR 14 One octet Node’s willingness to act as a relay node

Link_code OLSR 15 One octet
Information about the link between the

sender and the associated address

TC_ANSN OLSR 16 Two octets
Sequence number associated with the

advertised neighbor set

Longitude GREEDY 17 Four octets
The longitude of the location associated

with the address

Latitude GREEDY 18 Four octets
The latitude of the location associated

with the address

Altitude GREEDY 19 Four octets
The altitude of the location associated

with the address

Time GREEDY 20 Four octets
The time of the location information

associated with the address

Table 7. TLVs Specification

 101

 All of the protocols generated with GP-Pro make use of control messages matching

the message structure described in the version 12 of the internet draft of the Generalized

MANET Packet/Message format, created and published on-line by [16]. The protocols

generated with GP-Pro make use of multiple TLVs associated to messages and to address

blocks. Some of them have already been used by DYMO [5] or by OLSR version 2 [6], but

some others have been introduced by us, especially those used by the GREEDY protocol.

The listing of TLVs used by GP-Pro protocols is shown in Table 7.

7.1.4 Protocol Variants

As mentioned before, GP-Pro generates routing protocols by combining existing components

according to a protocol specification. Therefore, multiple variations of the same protocol can

be generated by exchanging one or few components. The exchange of components would be

reflected on a new protocol specification where only a few lines are modified. Therefore, GP-

Pro can be used to explore the impact of enhancements or new strategies applied to particular

protocols. For example, new MPR selection strategies could be explored for OLSR by

implementing new additional computations to replace the MPR_computation component,

which is listed in line 31 of the OLSR specification shown in Section 7.1.1. If the new

computation component was named Enhanced_MPR, then the line 31 of the OLSR

specification would be replaced by the line: “Enhanced_MPR as compute_mprs{}” and

probably a new name for the protocol variation should also be provided in line 1 (e.g.,

GPPro_Enhanced_OLSR). Furthermore, new algorithms to create routing paths, other than

the shortest path algorithm, could be tested by providing new path determination

components, which would replace the one listed in line 34 of the OLSR specification.

Similarly, and for the case of the second protocol presented in this chapter, the GREEDY

protocol, new algorithms to select the next hop could be implemented to replace the one

listed in line 47 of the specification shown in Section 7.1.2. This flexibility to easily generate

new protocol variations is one of the advantages provided by GP-Pro.

 102

7.2 Comparing GP-Pro against Existing Frameworks

The first method to evaluate GP-Pro consists of qualitatively comparing it against other

existing frameworks that also support the implementation of communication protocols.

Therefore, the comparison is made in terms of the support that each of them provides to the

protocol implementation process.

 GP-Pro ASL

[15]

X-Kernel

[11]

ACE

[12]

XORP

[39]

Click

[23]

CBR

[45]

PIX

[13]

Available to the public ○ ● ● ● ● ● ●

Domain specific ● ○ ●

Function libraries ● ●

API ●

Reusable elements ● ○ ● ●

Multi-platform ○ ● ●

Specification mechanism ● ● ●

Interconnection model ● ● ● ● ●

Protocols without coding ● ● ○

Code generation ● ●

Table 8. Qualitative comparison between existing frameworks

 Table 8 shows a comparison between GP-Pro and the frameworks discussed in

Section 2.3, for different features that are important when supporting the implementation of

routing protocols. In Table 8, the filled circles (●) indicate that the framework provides the

indicated feature. On the other hand, empty circles (○) indicate that the feature is partially

provided, and the absence of a circle means that the feature is not provided at all. For the

eight frameworks shown in Table 8, all of them are available to the public except for CBR,

which as far as we know is not planned to be made public, and for GP-Pro, which has not

been made public yet, but it will be in the short term. Only three of these frameworks are

designed for the specific domain of ad hoc routing protocols. They are ASL, CBR and GP-

Pro. However, ASL only provides support for the family of reactive routing protocols.

In order to support the actual code writing task, ASL and ACE provide function

libraries while XORP provides an API. Instead of providing code writing support, Click,

CBR, PIX and GP-Pro create protocols by composition of reusable elements that do not

require further modification. Therefore, they encourage reuse of existing elements, and take

advantage of this in order to simplify and to speed up the protocol implementation process.

 103

Click provides a similar method for protocol implementation than GP-Pro, unfortunately the

granularity of its elements is not fine enough to modularize a routing protocol into several

elements that can be reused and recombined. Actually, all of the ad hoc routing protocols that

have been implemented with Click are composed of only one or two Click elements.

Among all eight frameworks, only ACE and XORP are currently multi-platform.

GP-Pro was also designed to be multi-platform. The replacement of the OS Interface

component, by the one corresponding to the new target platform, would be the only change

required to generate a protocol for a different platform. However, no protocol for a platform

different than Linux has been generated with GP-Pro yet. On the other hand, when protocols

are implemented by composition of existing elements, the frameworks that do so can also

provide a specification mechanism for the user to request the desired protocol. Click, PIX

and GP-Pro are the only frameworks providing such mechanism in the form of a proprietary

DSL. Notice that the frameworks providing such a mechanism do not necessarily provide full

protocols, ready to be deployed, as an output. In order to define the way that each element

being part of a communication protocol interacts with others, an interconnection model is

required. The X-kernel, XORP, Click, PIX and GP-Pro define such interaction rules between

elements, which support framework extensibility.

 Some of the frameworks are capable of creating protocols without coding at all

when all of the required elements already exist. That is the case for Click, PIX and GP-Pro.

In order to automatically assemble those existing elements and to generate the desired

protocol, only the protocol specification is required from the user. In the case of PIX,

although the desired protocol is generated, it still requires some coding in order to implement

packet processing and some additional functionality. Additionally, two of them are also

capable of generating new code automatically. That is the case of PIX and GP-Pro, both of

them are based on Generative Programming. The difference being that the protocols

generated by GP-Pro are complete and ready to be deployed. Thus, no further coding is

required.

 104

 From the previous analysis and comparison of the features provided by each

framework, it is possible to draw the following conclusions. First, no single framework

provides all of the listed development features, however, some of them provide enough

support to generate protocols without performing any coding. Second, we consider CBR, PIX

and GP-Pro as the top three development frameworks because all of them reduce

development to the point of generating protocols without coding at all. Third, PIX was the

first framework to take development support to the next level by providing the capability to

generate new code, however, it does not generate full protocol implementations and further

coding is required. Moreover, the development of PIX was stopped before it could have been

embraced by the research community. Fourth, even thought Click is not capable of

generating new code, it can generate protocols that are ready for deployment. Also, its

development has not stopped since it was first introduced, and it continues to be used by the

community. However, the coarse granularity of its packet processing elements prevents them

from being largely reused to generate new protocols. This might be due to the fact that its

scope is not specific to routing protocols. On the other hand, GP-Pro combines the best

features of PIX and Click and it is specific to the domain of ad hoc routing protocols. It

encourages reusability by allowing the implementation of fine granularity components, and

generates protocols ready for deployment. Additionally, different from PIX and Click, GP-

Pro was designed to be multi-platform. Therefore, we consider GP-Pro to provide the most

complete development support for the domain of ad hoc routing protocols. Also, the research

community has demonstrated interest on using GP-Pro during all the conferences where it

has been presented (see Section 1.5). Thus, we expect GP-Pro to be used by the research

community once that it is released to the public.

7.3 Comparing the Generated Protocols

In order to evaluate GP-Pro by comparing the performance of its generated protocols against

same protocols generated by other implementation mechanisms, the following alternatives

have to be considered:

1. Against protocols generated using other frameworks: Given a certain routing

protocol implemented with GP-Pro and with some other chosen framework, both

 105

implementations would be deployed and compared over real networks. However, this

kind of comparison could be very time consuming and would involve a lot of

programming. It also may be difficult to argue that the implementation made by using

the other framework allows for fair comparison. This is due to the fact that the most

efficient implementation techniques of an alternative framework could be unknown to

new and inexperienced users and only be acquired with practical experience, which

could give an advantage to our own implementations using GP-Pro. The comparison

with such protocols, implemented by different frameworks, would make use of

quantitative performance metrics considering both protocols as black boxes, where

the implementation architecture would not considered.

2. Against handcrafted protocols: The problem to compare the generated protocols

against protocols generated by using some other framework is to justify fair

implementations of components or of any additional coding required after generation.

However, we want to demonstrate that the performance of the protocols generated

with GP-Pro makes worth the development of the entire tool. Therefore, the best

alternative is to select some of the reliable and well-known implementations of ad hoc

routing protocols (e.g., DYMO [60], OLSR [2]), implement the same protocols using

GP-Pro and deploy them both over a real network. In this case, each compared

protocol is considered as a black box, meaning that the implementation architecture is

not compared, and quantitative performance metrics are applied. We assume that each

handcrafted implementation was made to achieve the best possible performance.

After analyzing the possible evaluation mechanisms previously mentioned, we

decided to evaluate GP-Pro by quantitatively comparing two of its generated protocols

against their handcrafted counterparts. The protocols OLSR and DYMO generated by GP-

Pro are compared against OLSRD [73] and DYMOUM [60], respectively. Unfortunately,

there is no deployable implementation available of position-based routing protocols that we

are aware of. Thus, there is no handcrafted counterpart to compare against our

implementation of the GREEDY protocol. On the other hand, that makes our GREEDY

implementation another valuable contribution to the ad hoc routing community.

 106

The evaluation of the generated protocols was performed in two parts. First, we tested

that the protocol implementations performed proper routing and we measured packet delivery

rates. Second, we measured the resources consumed by each protocol implementation in

standalone mode and while transmitting data, audio and video between pairs of source and

destination nodes over different network topologies. Each time, the implementation

generated with GP-Pro, for a chosen protocol, was compared against its handcrafted

counterpart over exactly the same conditions. The following sections describe our test-bed

along with each testing scenario.

7.3.1 Test-bed

With the objective of evaluating the performance of the routing protocols generated with GP-

Pro, and to compare them with their handcrafted counterparts, we set up a test-bed composed

of five laptop computers running the Fedora Core 5 distribution of Linux. Each computer

joins the ad hoc network by using Netgear dual band Wireless PC cards. The availability of

these five computers along with the use of MAC address filtering to emulate topology

changes, allows constructing routing paths up to 4 hops in length inside our testing lab.

Therefore, multiple scenarios of different topologies and path lengths can be created.

7.3.2 Proper Routing

The first evaluation scenario was created to test that each implementation performed proper

routing, meaning that it was able to create routing paths for each target destination. In order

to generate data traffic, the network tool ping was used to send groups of 30 data packets of

5042 bytes in length, one second apart (using the command: ping -c 30 -s 5000 -i 1). The

data packets were transmitted over network paths that were 1, 2, 3 and 4 hops long (up to 3

hops for DYMO, see explanation below), and the network had a linear bus topology. Packet

delivery rate and Round Trip Time (RTT) were used as performance metrics. Additionally, to

estimate the route discovery delay experienced by reactive protocols, ping was used to

measure the elapsed time between the initiation of a new route discovery and the reception of

the acknowledgment for the first packet sent. The metric unit for all time values shown in

this section is milliseconds.

 107

 1-hop 2-hops 3-hops

Min RTT 2.88ms 6.20ms 9.67ms

Avg RTT 4.90ms 8.06ms 20.02ms

Max RTT 16.38ms 23.66ms 52.50ms

Packet delivery rate 100% 100% 100%

Route discovery delay 16.38ms 23.66ms 52.50ms

Table 9. Performance of DYMOUM

 1-hop 2-hops 3-hops

Min RTT 2.88ms 5.44ms 8.71ms

Avg RTT 5.16ms 8.34ms 13.30ms

Max RTT 33.00ms 47.29ms 94.42ms

Packet delivery rate 100% 100% 100%

Route discovery delay 33.00ms 47.29ms 94.42ms

Table 10. Performance of DYMO implemented with GP-PRO

 Tables 9 and 10 show the performance metrics obtained for DYMOUM, and for the

implementation of DYMO generated with GP-Pro, respectively. Both tables show minimum,

average and maximum RTT for 1, 2 and 3 hops long routing paths in the first three rows. As

expected RTT increases with path length. Minimum and average RTT are very similar for

both DYMO implementations, however, the maximum RTT is larger for the GP-Pro

implementation in all cases. This fact is explained by looking at the route discovery delay

shown in the last row of each table. Route discovery delay is always larger for the GP-Pro

implementation, about double the time experienced by DYMOUM. This is evidence of the

cost paid, in terms of performance, when a protocol is generated by using a generic software

tool such as GP-Pro. However, by looking at the packet delivery rate shown in the fourth row

of both tables, we can see that both implementations are capable of delivering every single

packet. Therefore, for this matter there is no performance penalty for the GP-Pro

implementation, and we verified that both DYMO implementations are capable of

performing proper routing.

 It is worth to mention that both DYMO implementations were only tested over paths

up to three hops in length, and not up to four, because it was not possible to get DYMOUM

to run in one of our laptops. Its kernel module could not be loaded. This problem was solved

in every other laptop by stopping the firewall service, but not in one of them. This

 108

unexpected situation jeopardizes the deployment capabilities of DYMOUM because four of

our five laptops have exactly the same software and hardware configurations. On the other

hand the DYMO implementation generated with GP-Pro did not experience any deployment

problems.

 1-hop 2-hops 3-hops 4-hops

Min RTT 3.88ms 6.38ms 9.67ms 12.59ms

Avg RTT 26.97ms 36.59ms 37.53ms 43.91ms

Max RTT 72.77ms 113.87ms 77.65ms 82.08ms

Packet delivery rate 100% 100% 97% 97%

Table 11. Performance of OLSRD

 1-hop 2-hops 3-hops 4-hops

Min RTT 2.79ms 5.68ms 8.38ms 11.82ms

Avg RTT 3.40ms 6.53ms 9.99ms 13.78ms

Max RTT 5.38ms 8.90ms 13.86ms 18.01ms

Packet delivery rate 100% 100% 97% 97%

Table 12. Performance of OLSR implemented with GP-PRO

 Tables 11 and 12 show similar performance metrics for OLSRD and for the

implementation of OLSR generated with GP-Pro, respectively. Again, the RTT increases

with the length of the routing paths. However, in this case, the minimum, average and

maximum RTT for all path lengths are larger for the handcrafted implementation of OLSR,

which is good news about the performance that can be achieved by protocols generated with

GP-Pro. OLSR is a proactive protocol that maintains routing paths to every possible

destination, even if the paths are not actually required. These paths are continuously updated

into the forwarding table of the OS, so they are available when required, and no further delay

should be experienced. Therefore, the longer RTT values obtained by the handcrafted OLSR

implementation suggest that it could be optimized. However, further study of the

implementation would be required to provide a more precise explanation about its inferior

performance. On the other hand, in terms of packet delivery rates, both implementations

achieved exactly the same rates, experiencing some packet loss (one lost packet) for the paths

with 3 and 4 hops in length. We attribute this loss to packet collisions due to the increased

control traffic generated by OLSR (i.e. Hello and TC messages). Thus, in the case of OLSR

that represents the family of proactive protocols, both implementations performed proper

 109

routing and there is no performance penalty for the implementation generated with GP-Pro,

actually, the opposite could be argued.

 1-hop 2-hops 3-hops 4-hops

Min RTT 2.88ms 5.50ms 9.11ms 12.36ms

Avg RTT 4.67ms 7.27ms 11.72ms 14.86ms

Max RTT 38.97ms 31.01ms 30.27ms 28.13ms

Packet delivery rate 100% 97% 93% 90%

Route discovery delay 38.97ms N/A N/A N/A

Table 13. Performance of GREEDY implemented with GP-PRO

 Table 13 shows the obtained values for the implementation of the position-based

protocol GREEDY, generated with GP-Pro. As mentioned before, no deployable

implementations for any other position-based protocol were found for comparison purposes.

Table 13 shows that the RTT increases with the path length, and the maximum RTT is much

larger than the minimum and average RTTs because it is affected by a route discovery delay.

Similar to reactive protocols, position-based protocols compute a routing path only when the

path is actually required. However, in this case, the path is not fully created before the source

node forwards the first data packet; it is cooperatively computed at every hop. Therefore,

some delay is experienced at every hop and until the full path is created. Furthermore, if the

discovered path is not maintained in the forwarding table of the OS, and the next hop has to

be computed at every hop and for every single data packet, similar delay would be

experienced by every single packet without decreasing after the path has been discovered.

Thus, in our implementation of GREEDY, routing entries are maintained for each discovered

path as long as the paths remain in use. Table 13 shows how the delivery rate decreases as

the path length increases. Basically, for routing paths longer than one hop, one packet is lost

for every additional hop. This situation is particular to the ping tool, which considers as lost

all those packets that were not acknowledged before the next packet was sent (within one

second in this case). Hence, the packet loss, which mainly occurs during the route discovery

process, has an impact on the estimation of the route discovery delay. This is because the first

data packet, which was used to estimate the route discovery delay, is only acknowledged on

time when the path is one hop in length. For longer paths, the first data packet is usually

dropped (along others), thus, the route discovery delay would increase by approximately one

 110

second (the time between every ping packet) for every additional hop. That is why Table 13

shows most of the route discovery delays as: N/A, meaning not available. It should also be

noticed that all the RTT values shown in Table 13, which were reported by the ping tool,

only consider the packets that were acknowledged on time. That is why the Max RTT values

seem to decrease as the path length increases. But in reality, if the packets that experienced

the longest delays which were thought lost during the route discovery, were also considered,

more accurate values for Max RTT from 1 to 4 hops would be: 38.97ms, 1,031.01ms,

2,030.27ms and 3,028.13ms, respectively. That is, one second longer for each packet that

was lost until the route was discovered. Avg RTT values should be longer as well; however,

the growth trend as the path length increases would remain the same. On the other hand, Min

RTT values are not affected. Finally, from the results shown in Table 13, we can also

conclude that the capability of GREEDY to perform proper routing has been verified.

7.3.3 Resource Consumption

The evaluation performed in the previous section showed that all of the protocol

implementations were capable of constructing the required routing paths. Their only

performance disadvantage, compared to their handcrafted counterparts, was a longer route

discovery delay experienced by the DYMO implementation. Next, we evaluate the

computing resources consumed by each protocol implementation, which are expected to be

higher for the implementations generated with GP-Pro.

Computing resources consumed by each implementation were measured in two

running modes. First, while running each routing protocol in standalone mode; and second,

while transmitting data, audio and video from a sender to a destination node. Each of these

scenarios is described below.

7.3.3.1 Standalone Mode

In order to measure the amount of resources consumed by each protocol implementation

while running in standalone mode, the size of the binary file and the amount of consumed

physical memory were used as metrics.

 111

 Handcrafted GP-Pro

DYMO 41,440 418,911

OLSR 161,324 479,020

GREEDY - 433,766

Table 14. Implementation sizes in Bytes

 Table 14 shows the size in bytes of the binary files (all binaries were generated by

using the same compiler) corresponding to each protocol implementation. The first column

corresponds to the handcrafted implementations DYMOUM and OLSRD, and the second

column corresponds to the three implementations generated with GP-Pro. Table 14 shows

that the DYMO implementation generated with GP-Pro is about ten times the size of

DYMOUM, and that the OLSR implementation generated with GP-Pro is about three times

the size of OLSRD. The three implementations generated with GP-Pro are similar in size,

with OLSR the largest one. These results suggest that the protocols generated with GP-Pro

might not be the best choice for systems that have very tight physical storage limitations.

 Handcrafted GP-Pro

DYMO 532 776

OLSR 772 800

GREEDY - 888

Table 15. Consumed Physical memory in KBytes

 Table 15 shows the amount of physical memory used by each implementation. This

physical memory is the data space devoted to the executable and non-executable code that

corresponds to each protocol implementation. It was measured by using the Linux program

called top, which provides real-time information about the system tasks. In this case, the

difference between handcrafted and GP-Pro generated implementations is not as big. The

GP-Pro implementation of DYMO consumes 45% more physical memory than DYMOUM,

and the GP-Pro implementation of OLSR consumes just 4% more physical memory than

OLSRD. The GREEDY implementation is the one consuming the most physical memory.

The reader should keep in mind that even though both implementations for the same

protocol provide the same core functionalities, they are not identical. And, in the case of the

OLSR implementations, the GP-Pro implementation only implements the core functionality

 112

described in [2], while the OLSRD implementation also provides the auxiliary functionality

described in [2]. Therefore, the results shown in this section should be considered as close

estimates of the consumed resources but not as precise values.

7.3.3.2 Data Transmission Mode

After measuring resource consumption in standalone mode, we measured it again, but this

time while transmitting data, audio and video from a sender to a destination located 1 and 3

hops away on a network with linear bus topology. This time we used CPU utilization

metrics. More precisely, we measured: 1) the total CPU time used by each implementation,

measured in seconds, and 2) the maximum CPU utilization (as a percentage) reached by each

implementation, during the execution of each testing application. The test applications that

were used to generate the data traffic, sorted by the amount of generated traffic in increasing

order, are the following four: 1) data packets of 5042 bytes in length, sent one second apart

for a period of one minute, by using ping (using the command: ping -s 5000 -i 1 -w 60),

which generates 0.041Mbits/s of traffic, 2) one minute of MP3 audio, which generated 17

packets per second and 0.19Mbits/s of traffic, 3) one minute of MPEG video, which

generated 155 packets per second and 1.684Mbits/s of traffic, and 4) data packets of 5042

bytes in length, sent 0.02 seconds apart for a period of one minute, by using ping (using the

command: ping -s 5000 -i 0.02 -w 60), which generated 1.990Mbits/s of traffic. All traffic

rates were measured on our test-bed.

 CPU Time CPU Max

 DYMOUM GP-Pro DYMO DYMOUM GP-Pro DYMO

Ping 1s 0.03s 0.24s 0% 1%

MP3 audio 0.03s 0.09s 0% 1%

MPEG Video 0.17s 3.17s 2% 12%

Ping 0.02s 0.59s 9.44s 3% 28%

Table 16. CPU utilization for DYMO over one hop paths

 Table 16 shows the CPU utilization reached by both DYMO implementations while

transmitting data, audio and video over a one hop path. The first column lists the four testing

applications mentioned above. The traffic generated by ping is labeled Ping 1s, for the case

of packets sent one second apart, and labeled Ping 0.02s, when sent 0.02 seconds apart. The

 113

total CPU time (in seconds) used by each protocol implementation while running each

application, for a period of one minute, is shown in the second and third columns. The

maximum share of CPU utilization (CPU Max) is shown in the fourth and fifth columns.

These values show a considerable higher CPU utilization by the GP-Pro implementation.

This higher utilization is mainly due to the continuous update of the active routing entries in

the forwarding table of the OS, which translates into an intensive message exchange between

several protocol components. It is also due to a continuous creation and destruction of

threads (as mentioned at the end of Section 6.2), which are very expensive tasks.

 CPU Time CPU Max

 DYMOUM GP-Pro DYMO DYMOUM GP-Pro DYMO

Ping 1s 0.06s 0.22s 1% 3%

MP3 audio 0.03s 0.14s 0% 2%

MPEG Video 0.18s 3.97s 3% 10%

Ping 0.02s 0.44s 4.55s 5% 18%

 Table 17. CPU utilization for DYMO over three hop paths

 Table 17 shows same results than Table 16, but for the case of routing paths that are

three hops in length. CPU utilization values are similar to those of one hop paths for the first

three applications. However, for the case of the fourth application that generates the largest

traffic, CPU utilization decreases. We attribute this to the fact that the processing done at

each node while multi-hopping, slows down traffic.

 CPU Time CPU Max

 OLSRD GP-Pro OLSR OLSRD GP-Pro OLSR

Ping 1s 0s 0.07s 0% 1%

MP3 audio 0s 0.09s 0% 1%

MPEG Video 0.01s 0.09s 0% 1%

Ping 0.02s 0s 0.12s 0% 1%

Table 18. CPU utilization for OLSR over one hop paths

 CPU Time CPU Max

 OLSRD GP-Pro OLSR OLSRD GP-Pro OLSR

Ping 1s 0s 0.20s 0% 2%

MP3 audio 0s 0.21s 0% 2%

MPEG Video 0s 0.34s 0% 3.9%

Ping 0.02s 0s 0.16s 0% 2%

Table 19. CPU utilization for OLSR over three hop paths

 114

 Tables 18 and 19 show the CPU utilization results obtained for both OLSR

implementations, over one and three hops paths, respectively. As we can see, the CPU

utilization for OLSRD is so little that almost all obtained values are equal to zero (except for

the CPU time when video is transmitted over one hop paths). Even though, the values

obtained for the implementation generated with GP-Pro are greater than for OLSRD, they are

very small too. The much lower CPU utilization, achieved by both OLSR implementations

when compared to both DYMO implementations, is due to the fact that OLSR processing

does not depend on traffic rate. Therefore, traffic rates have little impact on the performance

of OLSR.

 CPU Time CPU Max

 One hop Three hops One hop Three hops

Ping 1s 0.96s 1.22s 4% 4%

MP3 audio 1.18s 1.31s 4% 4%

MPEG Video 5.34s 5.12s 13% 12%

Ping 0.02s 9.74s 9.66s 26% 19%

Table 20. CPU utilization for GREEDY over one and three hop paths

 Finally, Table 20 shows the CPU utilization measured for the GREEDY protocol over

one and three hop paths. The obtained values are larger than for any other protocol

implementation. This fact might be explained by the additional processing that is performed

at each hop in order to compute every routing path, to maintain active routing paths, to

support the location update mechanism and to obtain own positioning information. Similar to

both DYMO implementations, CPU utilization decreases when running the applications

generating the largest traffic over longer paths (over three hops instead of one hop).

Unfortunately, there is no handcrafted implementation to compare against our GREEDY

implementation. However, the obtained results provide a guideline of the CPU utilization that

might be required by position-based protocols.

7.4 Summary

This chapter elaborated on the evaluation of GP-Pro. First, it presented a detailed description

of two of the three protocols generated as part of this research (the ones that were not

discussed before). Next, GP-Pro was compared against other existing frameworks in terms of

 115

the development support provided. Finally, the performance of well-know protocols

generated with GP-Pro was compared against the performance of their handcrafted

counterparts.

The detailed description of the specifications to generate the protocols OLSR and

GREEDY provided a full understanding on how to write protocol specification using GP-

Pro. Also, it discussed how different protocol variants could be generated by changing

current component selections. The comparison of GP-Pro against other existing frameworks

highlighted the most important development support features available, identified the top

development frameworks, and showed why we believe that GP-Pro provides the most

powerful development support for the domain of ad hoc routing protocols. Finally, the

performance evaluation of the protocols generated with GP-Pro demonstrated that they can

perform proper routing and that their performance is comparable to their handcrafted

counterparts. In some cases, the protocols generated with GP-Pro consumed more system

resources but their generation time was drastically reduced. That is the cost that we are

willing to pay in order to provide a fast protocol prototyping tool such as GP-Pro.

 116

Chapter 8

Conclusions and Future Work

This thesis described existing problems and challenges to implement routing protocols for

MANETs. It also identified an approach to solve these problems by applying Generative

Programming to the domain of ad hoc routing protocols, and it introduced the GP-Pro

protocol generator for automatic generation of ad hoc routing protocols according to user

specifications. GP-Pro contributes to the field of mobile wireless networks by providing a

specification mechanism and a complete generation tool to quickly generate full routing

protocol implementations when all required components are available, and to maximize the

reusability of existing components when new nontrivial features are required. It also creates a

link with the field of software development by applying Generative Programming.

Furthermore, to support forthcoming network requirements, GP-Pro is designed to be

extensible and to allow the addition of new protocol features, in the form of new

components, at any time and without limitations. In the previous chapters, GP-Pro was

introduced in detail, along with the proposed architecture for ad hoc routing protocols and the

suggested component interconnection model. Additionally, protocols for all three families of

routing protocols were generated with GP-Pro and they were compared against their

handcrafted counterparts (when available). The comparison was performed by deploying and

testing, each protocol, over a real network that we set up as test-bed. Evaluation results show

that all generated protocols are capable of performing proper routing, and of achieving the

same packet delivery rates as their handcrafted counterparts. GP-Pro is a generic tool that

drastically reduces the time to generate new protocols. The reduction in development time

was expected to introduce a cost in terms of efficiency. This cost, measured in terms of

consumed resources from the host system, was obvious in the case of the reactive protocol

DYMO, but barely noticeable for the proactive protocol OLSR. On the other hand, we

showed that the more routing components exist, the shorter the time to generate new

protocols becomes. And, when all required components are available, generation time gets

 117

reduced to the time that takes to write a protocol specification, about 50 lines long. No other

existing framework can achieve this.

 At the beginning of this research we defined what success would be, as: the capability

for GP-Pro to automatically generate a broad range of protocol variations, which were also

competitive with handcrafted protocol implementations. By competitive we meant that the

generated protocols should provide similar performance to their handcrafted counterparts,

while achieving a reasonable trade-off between efficiency and generation-time. We expected

a minimal generation time, but, most likely, a lower efficiency of the generated protocols.

The evaluation results presented in the Chapter 7, where the protocols generated by GP-Pro

achieved similar routing performance than their handcrafted counterparts, showed that we

achieved this at a reasonable resource consumption cost. And, also the fact that their

generation time was drastically reduced with the increase on the number of available

components, we can certainly conclude that what we have achieved is: satisfactory and actual

success.

Some additional and beneficial GP-Pro related efforts are still outstanding. For

example, it would be advantageous to add the capability to generate routing protocols for

multiple platforms, and not only for Linux. This capability would be provided by creating the

corresponding OS Interface components and subcomponents, for each other platform that is

to be supported. We are currently looking at the possibility of using the Protean Protocol

Prototyping Library (ProtoLib) developed by the Networks and Communication Systems

Branch of the U.S. Naval Research Laboratory, which provides interfacing support for

multiple platforms. Also, we would like to make GP-Pro public. That is, to give it to the

research community, so more researchers could take advantage of it, could test it, could

create additional components to provide further features, and perhaps they could enhance

GP-Pro too. This way we could also evaluate how short the GP-Pro learning curve actually

is. Because even though we assume that the creation of new components, in the form of

templates, which basically are pure C code, is not complicated; and, that protocol

specifications are pretty much listings of chosen components with some properties set

according to user preferences, the best evaluation will be obtained in the form of feedback

 118

from new users. Finally, we would like to generate code that could be also fed into a network

simulator, that way the protocols generated with GP-Pro could be tested both through

simulation and through real deployments.

Through this doctoral research work, and this thesis document, we were able to

demonstrate that it is possible to generate complete protocol implementations that are ready

for deployment, by automatically assembling components according to a protocol

specification (as represented by Figure 25 in Appendix G). This specification is written in a

proprietary DSL that is presumably easy to learn and use. The cost of these benefits, which

was discussed in Chapter 7, could be considered expensive in the case of the generated

reactive protocol, but not so in the case of the proactive protocol. That is good news in

general for the protocols generated with GP-Pro. However, there are some improvements that

we have on mind, which could improve protocol performance and efficiency. These ideas are

discussed next. First, we would like to replace the hierarchical routing of messages between

protocol components, by direct communication between any pair of components. From an

implementation point of view, this could be achieved by providing n-1 function pointers, to

each of the n components building the routing protocol. These n-1 pointers would point to the

different functions handling the input ports of the other n-1 components. In this way direct

communication would be achieved, and many message transmissions between components

would be avoided along with their corresponding overhead. Second, as described at the end

of Section 6.2, one new thread is created for every message that is received by the MDC, by

the internal component process or by the output port of each component, and it exists until

completing the corresponding processing. This policy of creating and destroying threads in a

regular basis is likely consuming a considerable amount of system resources. Therefore, we

want to modify this policy by only creating a new thread when a message is first created by a

protocol component, and only destroying this thread when the message has been processed

by its final destination. All required processing for the same message should happen within

the same thread. We believe that these two optimizations would decrease CPU utilization.

Additionally, in order to decrease the implementation size, we would like to explore ways to

shrink our interconnection model, by further customizing each component interconnection

 119

during the generation process. This way, a reduction in the size of the generated code should

be achieved.

 On the other hand, in terms of the ease to use GP-Pro, we want to implement an

application hosting the GUI described in Section 4.1.3. Also, we would like this application

to maintain a database of existing components along with their generated and processed

messages. If this information were available, the completion of specifications would not be

limited to missing interconnections only; missing components could be handled as well.

Further specification validations could be performed if the listings of configurable properties,

for each component, were also available in the same database. The information available in

this database could also allow us to explore ways to define, and to represent, further

dependencies between components. Finally, we would like to enhance our DSL to allow

writing subjective protocol specifications. These specifications would not need to list every

single component to request the generation of a new protocol, just a few words, such as: QoS

aware protocol or energy aware protocol would be enough. To achieve this last goal, we

would need to create further component classifications according to the subjective features

that each component could provide.

 120

Appendices

In the following pages we present seven appendices with useful information about key

elements of GP-Pro and about how to use GP-Pro to create new routing protocols. Appendix

A shows the entire DSL that was created for GP-Pro. Appendix B lists all the different

templates that were created to generate the first three protocols. Appendix C provides a

detailed description of each and every component that has been created for GP-Pro, so far.

Appendix D shows the entire protocol specification to create the DYMO protocol. It lists

every single component interconnection that would have to be defined if the automatic

completion feature (discussed in Section 6.4) had not been created. Appendix E provides a

default template that can be used to create every new protocol component. Appendix F

discusses how to create a new protocol component. Finally, Appendix G shows the logo that

we created to represent GP-Pro.

 121

Appendix A

GP-Pro DSL

In this appendix we show the entire DSL developed with the Xtext framework for the domain

of ad hoc routing protocols. The rules are in bold and are succeeded by a colon (:).

Protocol :

 "Protocol" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Main_Component)*

 (interconnections+=Interconn)*

 "}";

 Main_Component :

 MADINI | DELIVERY | CONI | ADD_COMPS | OS_IFACE | RIR | EV_MGR | PATH_DET | LOC_INFO ;

 MADINI :

 "MADINI" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Info_subcomponent)+

 (interconnections+=Interconn)*

 "}";

 Info_subcomponent :

 Info_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 DELIVERY :

 "DELIVERY" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Del_mech)+

 (interconnections+=Interconn)*

 "}";

 Del_mech :

 Del_mech_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 CONI :

 "CONI" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Coni_subcomponent)+

 (interconnections+=Interconn)*

 "}";

 Coni_subcomponent :

 Initiation | Request | Reply | Changes | Invalidation;

 Initiation :

 "Initiation" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Initiation_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 122

 Initiation_subcomponent :

 Initiation_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 Request :

 "Request" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Request_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Request_subcomponent :

 Request_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 Reply :

 "Reply" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Reply_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Reply_subcomponent :

 Reply_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 Changes :

 "Changes" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Changes_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Changes_subcomponent :

 Changes_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 Invalidation :

 "Invalidation" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Invalidation_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Invalidation_subcomponent :

 Invalidation_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 ADD_COMPS :

 "ADD_COMPS" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Add_computations)+

 (interconnections+=Interconn)*

 "}";

 Add_computations :

 Add_computations_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 OS_IFACE :

 "OS_IFACE" (" as " synonym=ID)? "{"

 123

 (properties+=Property)*

 (subcomponents += OS_Iface_subcomponent)+

 (interconnections+=Interconn)*

 "}";

 OS_Iface_subcomponent :

 Pre_forwarding | Fwd_eng_interaction | Ctl_pkts_exch;

 Pre_forwarding :

 "Pre_forwarding" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Pre_forwarding_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Pre_forwarding_subcomponent :

 Pre_forwarding_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}" ;

 Fwd_eng_interaction :

 "Fwd_eng_interaction" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Fwd_eng_interaction_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Fwd_eng_interaction_subcomponent :

 Fwd_eng_interaction_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}" ;

 Ctl_pkts_exch :

 "Ctl_pkts_exch" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Ctl_pkts_exch_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Ctl_pkts_exch_subcomponent :

 Ctl_pkts_exch_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}" ;

 RIR :

 "RIR" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Routing_repository)+

 (interconnections+=Interconn)*

 "}";

 Routing_repository :

 Routing_repository_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 EV_MGR :

 "EV_MGR" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Ev_mgr_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Ev_mgr_subcomponent :

 Ev_mgr_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 124

 PATH_DET :

 "PATH_DET" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Path_det_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Path_det_subcomponent :

 Path_det_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

 LOC_INFO :

 "LOC_INFO" (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Loc_info_subcomponent)*

 (interconnections+=Interconn)*

 "}";

 Loc_info_subcomponent :

 Loc_info_subcomponent_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}";

////////////////// COMMON ELEMENTS

 //All of the component types at the different levels, they share interconnections and properties

 Component :

 Protocol |

 Core_component |

 Leaf_component;

 //Components

 Core_component :

 Main_Component |

 Coni_subcomponent |

 OS_Iface_subcomponent;

 //Components with synonym property and composed by Generic_components only (interconnecions and properties too)

 Leaf_component:

 Info_subcomponent |

 Del_mech |

 Initiation_subcomponent |

 Request_subcomponent |

 Reply_subcomponent |

 Changes_subcomponent |

 Invalidation_subcomponent |

 Add_computations |

 Pre_forwarding_subcomponent |

 Fwd_eng_interaction_subcomponent |

 Ctl_pkts_exch_subcomponent |

 Routing_repository |

 Ev_mgr_subcomponent |

 Path_det_subcomponent |

 Loc_info_subcomponent |

 Generic_component;

 //Generic structure for all components

 Generic_component :

 Generic_component_types | (" as " synonym=ID)? "{"

 (properties+=Property)*

 (subcomponents+=Generic_component)*

 (interconnections+=Interconn)*

 "}" ;

 125

 //Configurable component properties

 Property :

 PropReal | PropSTR;

 PropReal :

 name=ID "=" value=Real_type;

 PropSTR :

 name=ID "=" value=ID;

 Native Real_type :

 "('-')? ('0'..'9')+ (('.') ('0'..'9')+)?";

 //Connections between components

 Interconn :

 msg_name=ID":"sender=ID(async?="->"|sync?="<->")destination=ID;

////////////////// COMPONENT DECLARATION

// MADINI

 // List of existing components <template_type>

 Info_subcomponent_types :

 HELLO |

 HELLO_1H |

 TC_MESSAGE |

 LOCATION;

 // Component Identifiers <template_type> : <specification_id>;

 HELLO :

 "Hello";

 HELLO_1H :

 "Hello_1h";

 TC_MESSAGE :

 "TC_message";

 LOCATION :

 "location";

//DELIVERY

 // List of existing components <template_type>

 Del_mech_types :

 n_hops |

 broadcast |

 unicast |

 MPR_forwarding;

 // Component Identifiers <template_type> : <specification_id>;

 n_hops :

 "n_hops";

 broadcast :

 "broadcast";

 unicast :

 "unicast";

 MPR_forwarding :

 "MPR_forwarding";

//CONI

 // List of existing components <template_type>

 Initiation_subcomponent_types :

 initiation_std;

 Request_subcomponent_types :

 request_std;

 Reply_subcomponent_types :

 reply_std;

 Changes_subcomponent_types :

 changes_std;

 Invalidation_subcomponent_types :

 invalidation_std;

 126

 // Component Identifiers <template_type> : <specification_id>;

 initiation_std :

 "initiation_std";

 request_std :

 "request_std";

 reply_std :

 "reply_std";

 changes_std :

 "changes_std";

 invalidation_std :

 "invalidation_std";

//ADD_COMPS

 // List of existing components <template_type>

 Add_computations_types :

 MPR_computation;

 // Component Identifiers <template_type> : <specification_id>;

 MPR_computation :

 "MPR_computation";

//OS_IFACE

 // List of existing components <template_type>

 Pre_forwarding_subcomponent_types :

 pre_fwd_std;

 Fwd_eng_interaction_subcomponent_types :

 fwd_eng_std;

 Ctl_pkts_exch_subcomponent_types :

 icmp;

 // Component Identifiers <template_type> : <specification_id>;

 pre_fwd_std :

 "pre_fwd_std";

 fwd_eng_std :

 "fwd_eng_std";

 icmp :

 "icmp_exchange";

//RIR

 // List of existing components <template_type>

 Routing_repository_types :

 RIR_DYMO |

 Neighbors |

 DuplicateSet |

 LinkSet |

 MPRSelectorSet |

 NeighborSet |

 RTable_OLSR |

 TopologySet |

 TwoHopNeighborSet |

 Location_table;

 // Component Identifiers <template_type> : <specification_id>;

 RIR_DYMO :

 "rir_dymo";

 Neighbors :

 "neighbors";

 DuplicateSet :

 "duplicateSet";

 LinkSet :

 "linkSet";

 MPRSelectorSet :

 "mprSelectorSet";

 NeighborSet :

 "neighborSet";

 RTable_OLSR :

 "rTable_OLSR";

 127

 TopologySet :

 "topologySet";

 TwoHopNeighborSet :

 "twoHopNeighborSet";

 Location_table :

 "location_table";

//EV_MGR

 // List of existing components <template_type>

 Ev_mgr_subcomponent_types :

 ev_mgr_std;

 // Component Identifiers <template_type> : <specification_id>;

 ev_mgr_std :

 "ev_mgr_std";

//PATH_DET

 // List of existing components <template_type>

 Path_det_subcomponent_types :

 shortest_path_OLSR |

 GREEDY;

 // Component Identifiers <template_type> : <specification_id>;

 shortest_path_OLSR :

 "shortest_path_OLSR";

 GREEDY:

 " GREEDY ";

//LOC_INFO

 // List of existing components <template_type>

 Loc_info_subcomponent_types :

 gps_receiver;

 // Component Identifiers <template_type> : <specification_id>;

 gps_receiver :

 "gps_receiver";

//Generic_component

 // List of existing components <template_type>

 Generic_component_types :

 gen_a | sync_cnx_source | sync_cnx_end;

 // Component Identifiers <template_type> : <specification_id>;

 gen_a :

 "gen_a";

 sync_cnx_source:

 "sync_cnx_source";

 sync_cnx_end:

 "sync_cnx_end";

 128

Appendix B

GP-Pro Templates

This appendix shows the list of templates that were generated as part of this work. The first

column is the template’s name, the number of “+” to the left of the name refers to its level as

subcomponent. The second column is the metatype that the template applies to, meaning that

when such metatype is part of the user specification, the corresponding template (component)

should be part of the generated protocol. Finally, the last column is a short description of the

template.

Template Name Metatype Description

Main Protocol Main template with the main processing

loop of each generated protocol.

Protocol Protocol The highest component in the hierarchy

Definitions Protocol Functions, structures, macros and

constants used by each component

libraries Protocol Messages, constants and data structures

to support GP-Pro architecture an

interconnection model

load_component_info Protocol Validates every protocol specification

complete_interconnections Protocol Completes the missing interconnections

in any specification

+component_template MADINI MADINI component

++info_subcomponent_template HELLO Hello message with sender ID

++info_subcomponent_template HELLO_1H Hello message with one-hop neighbors

++info_subcomponent_template TC_MESSAGE Topology Control message

++info_subcomponent_template LOCATION Location information of the sender node

+component_template DELIVERY DELIVERY component

++del_mech_template n_hops Broadcasting of control messages up to n

hops away

++del_mech_template unicast Unicasting of control messages

++ del_mech_template MPR_forwarding Mechanism that makes use of MPRs for

broadcasting

+component_template CONI CONI component

++Coni_subcomp_template Initiation Initiation of information collection

subcomponent

++Coni_subcomp_template Request Information Request subcomponent

++Coni_subcomp_template Reply Information Reply subcomponent

++Coni_subcomp_template Changes Notification of changes subcomponent

 129

Template Name Metatype Description

++Coni_subcomp_template Invalidation Invalidation of collected information

subcomponent

+component_template ADD_COMPS Additional computations component

++add_comps_template MPR_computation Computes MPR and MPRS sets

+component_template OS_IFACE OS interface component

++OS_Iface_subcomp_template Pre_forwarding Pre-forwarding processing

subcomponent

++OS_Iface_subcomp_template Fwd_eng_interaction Forwarding engine interaction

subcomponent

++OS_Iface_subcomp_template Ctl_pkts_exch Control Packets exchange subcomponent

+component_template RIR RIR component

++routing_repository_template RIR_DYMO Repository for DYMO routing table

++routing_repository_template Neighbors Repository for one hop neighbors

++routing_repository_template LinkSet Repository to store the OLSE link set

++routing_repository_template NeighborSet Repository to store the OLSR Neighbor

set

++routing_repository_template TwoHopNeighborSet Repository to store the OLSR Two Hops

Neighbor set

++routing_repository_template MPRSelectorSet Repository to store the OLSR MPR

selector set

++routing_repository_template TopologySet Repository to store the OLSR Topology

set

++routing_repository_template DuplicateSet Repository to store the Duplicate set

++routing_repository_template RTable_OLSR Repository for OLSR routing table

++routing_repository_template Location_table Repository to store the Greedy location

table

+component_template EV_MGR Event Manager component

+component_template PATH_DET Path determination component

++path_det_template shortest_path_OLSR Shortest hop algorithm (as used by

OLSR)

++path_det_template GREEDY Selects next hop according to Greedy

protocol

+component_template LOC_INFO Location Information component

++loc_info_template gps_receiver Provides location information that must

be stored as a system file

Common.xpt (set of templates) Component, Protocol Multiple templates that support the

operation of every protocol component

Make Protocol Makefile for user-level source code

Make_kernel Protocol Makefile for kernel-level source code

Table 21. List of generated templates

 130

Appendix C

Available Protocol Components

This appendix presents the menu of components that have already been implemented and that

can be used as part of any protocol specification. For each component, the list of generated

and processed messages along with its configurable properties is provided. A brief

description for each of them, and the default values for each property are included as well.

The first component is the one corresponding to the highest component in the hierarchy:

Protocol. Each of the following sections lists the components and subcomponents

corresponding to the different core components.

Name: Protocol

Type: Protocol (root component)

Description: This is the root component and has to be used in every protocol specification.

Properties
Name Type Default Value Description

debug boolean true Enables debug mode

daemonize boolean false Runs the protocol as a system daemon

udp_port int 653 The udp port number to send control messages

Generated Messages
Name Description

fd_ready Announces that a file descriptor is ready to be read

qry_age_queue Queries the queue of timers

fd_register_reply Reply to a sync message to register a file descriptor

qry_ifnames_reply Reply to a sync message that queries the names of the interfaces available

Processed Messages
Name Description

fd_register Registers a new file descriptor

qry_ifnames Queries the names of the interfaces available

C.1 MADINI – Information Subcomponents

Name: MADINI

Type: Core component

Description: Is the manager for distribution of network information

 131

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_madini_sub_props Queries the values of the properties of its subcomponents

register_timer Registers a timer with the event manager

deregister_timer Deregisters a timer with the event manager

ctl_msg_request Request the generation of a control message

register_ctl_msg Registers a control message type

ctl_msg_deregister Deregisters a control message type

Processed Messages
Name Description

timer_timeout Informs about an expired timer

Name: HELLO

Type: Information subcomponent

Description: Generates hello messages advertising the ID of the sender

Properties
Name Type Default Value Description

msg_ival int 3 Interval in seconds to send every Hello message

nb_timeout int 6 Timeout for each entry in the neighbor set

ctl_msg_type int 4 Number type for Hello message

jitter boolean True Introduces a jitter for each Hello message

nb_repository string nb1 Name of repository storing neighbor information

routing_table string rtable Name of repository the routing table

Generated Messages
Name Description

register_timer Request the registration of a new timer with the event manager

sched_timer Reschedules an existing timer with the event manager

repo_find_msg Finds data in a repository

repo_delete_entry_msg Deletes a specific entry from a repository

repo_insert_msg Inserts data in a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

qry_madini_sub_props_reply Reply to sync message that queries about the properties of the component

control_message Sends an actual control message particular to the protocol

Processed Messages
Name Description

qry_madini_sub_props Queries about the properties of the component

ctl_msg_request Request the generation of a new Hello message

ctl_msg_rcvd Forwards a received control message particular to the protocol

timer_timeout Announces that a timer has expired

Name: HELLO_1H

Type: Information subcomponent

Description: Generates hello messages advertising the ID of the sender and the one hop neighbors

Properties
Name Type Default Value Description

msg_ival int 3 Interval in seconds to send every Hello

message

 132

ctl_msg_type int 4 Number type for Hello message

willingness int 3 Willingness to forward control messages

linkSet string link_set Name of repository storing the link set

neighborSet string neighbor_set Name of repository storing neighbor set

twoHopNeighborSet string twoHopNeighbor_set Name of repository storing the two hops

neighbor set

mprSelectorSet string mprSelector_set Name of repository storing the selector set

Generated Messages
Name Description

register_timer Request the registration of a new timer with the event manager

sched_timer Reschedules an existing timer with the event manager

compute_rtable Request the computation of the routing table

compute_MPRs Request the computation of the MPR set

increase_ansn Request increasing the ansn

repo_find_msg Finds data in a repository

repo_delete_msg Deletes data from a repository

repo_delete_entry_msg Deletes a specific entry from a repository

repo_insert_msg Inserts data in a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

qry_madini_sub_props_reply Reply to sync message that queries about the properties of the component

control_message Sends an actual control message particular to the protocol

Processed Messages
Name Description

qry_madini_sub_props Queries about the properties of the component

ctl_msg_request Request the generation of a new Hello message

ctl_msg_rcvd Forwards a received control message particular to the protocol

timer_timeout Announces that a timer has expired

Name: TC_MESSAGE

Type: Information subcomponent

Description: Generates topology control messages used by OLSR

Properties
Name Type Default Value Description

msg_ival int 5 Interval in seconds to send every TC message

ctl_msg_type int 14 Number type for TC messages

ttl int 255 Time to live value

duplicateSet string duplicate_set Name of repository storing the duplicate set

neighborSet string neighbor_set Name of repository storing neighbor set

topologySet string topology_set Name of repository storing the topology set

mprSelectorSet string mprSelector_set Name of repository storing the selector set

Generated Messages
Name Description

register_timer Request the registration of a new timer with the event manager

sched_timer Reschedules an existing timer with the event manager

compute_rtable Request the computation of the routing table

repo_find_msg Finds data in a repository

repo_delete_entry_msg Deletes a specific entry from a repository

repo_insert_msg Inserts data in a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

qry_madini_sub_props_reply Reply to sync message that queries about the properties of the component

 133

control_message Sends an actual control message particular to the protocol

Processed Messages
Name Description

qry_madini_sub_props Queries about the properties of the component

ctl_msg_request Request the generation of a new Hello message

ctl_msg_rcvd Forwards a received control message particular to the protocol

timer_timeout Announces that a timer has expired

increase_ansn Request increasing the ansn

Name: LOCATION

Type: Information subcomponent

Description: Generates location information of the current node to be advertised into the network

Properties
Name Type Default Value Description

msg_ival int 3 Interval in seconds to send every message

ctl_msg_type int 15 Number type for location messages

loc_info_timeout int 12 Timeout for location information

locationTable string loc_table Repository storing the location information

Generated Messages
Name Description

register_timer Request the registration of a new timer with the event manager

sched_timer Reschedules an existing timer with the event manager

qry_location Queries the current location of the node

repo_find_msg Finds data in a repository

repo_delete_entry_msg Deletes a specific entry from a repository

repo_insert_msg Inserts data in a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

qry_madini_sub_props_reply Reply to sync message that queries about the properties of the component

control_message Sends an actual control message particular to the protocol

Processed Messages
Name Description

qry_madini_sub_props Queries about the properties of the component

ctl_msg_request Request the generation of a new Hello message

ctl_msg_rcvd Forwards a received control message particular to the protocol

timer_timeout Announces that a timer has expired

C.2 Delivery Mechanisms

Name: DELIVERY

Type: Core component

Description: Controls all the different delivery mechanisms

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

NONE

Processed Messages
Name Description

 134

NONE

Name: n_hops

Type: delivery mechanism

Description: broadcasts a control message n hops away

Properties
Name Type Default Value Description

hops Int 1 Number of hops that the message will be forwarded

Generated Messages
Name Description

control_message_wdest Sends an actual control message particular to the protocol with a defined

destination

Processed Messages
Name Description

control_message Sends an actual control message particular to the protocol

Name: unicast

Type: delivery mechanism

Description: forwards a control message to a specific destination

Properties
Name Type Default Value Description

hops int 1 Number of hops that the message will be forwarded

Generated Messages
Name Description

control_message_wdest Sends an actual control message particular to the protocol with a defined

destination

Processed Messages
Name Description

control_message Sends an actual control message particular to the protocol

Name: MPR_forwarding

Type: delivery mechanism

Description: Broadcasting a control message by using multipoint relay nodes only

Properties
Name Type Default Value Description

mprSelectorSet string mprSelector_set Name of repository storing the MPR selector set

neighborSet string neighbor_set Name of repository storing the neighbor set

duplicateSet string duplicate_set Name of repository storing the duplicate set

Generated Messages
Name Description

control_message_wdest Sends an actual control message particular to the protocol with a defined

destination

register_timer Request the registration of a new timer with the event manager

sched_timer Reschedules an existing timer with the event manager

repo_find_msg Finds data in a repository

repo_delete_entry_msg Deletes a specific entry from a repository

repo_insert_msg Inserts data in a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg

Updates data in a repository

 135

Processed Messages
Name Description

control_message Sends an actual control message particular to the protocol

timer_timeout Informs about an expired timer

C.3 CONI

Name: CONI

Type: Core component

Description: Collector of network information on-demand

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

NONE

Processed Messages
Name Description

NONE

Name: Initiation

Type: CONI Initiation

Description: Initiates a new route discovery

Properties
Name Type Default Value Description

routing_table string rtable The repository used as routing table

ROUTE_RREQ_WAIT_TIME float 1 Waiting time before sending a second request

RREQ_TRIES int 3 Maximum number of route discovery

attempts

Generated Messages
Name Description

repo_find_msg Finds data in a repository

rt_request_send Sends a route request

register_timer Registers a timer with the even manager

nl_no_route_found Announces that no route was found by Netfilter

timer_unregister Un-registers a timer from the event manager

Processed Messages
Name Description

rt_discovery_start Request to initiate a new route discovery

timer_timeout Announces that a timer has expired

rt_discovery_stop Request to stop an ongoing route discovery

Name: Request

Type: CONI Request

Description: Initiates a new route request as part of a route discovery process

Properties
Name Type Default Value Description

routing_table

string rtable The repository used as routing table

 136

Generated Messages
Name Description

register_ctl_msg Request the registration of a new control message type

ctl_msg_deregister Request to deregister a control message type

control_message Sends an actual control message particular to the protocol

register_timer Request the registration of a new timer with the event manager

sched_timer Reschedules an existing timer with the event manager

timer_disable Disables an existing timer with the event manager

repo_find_msg Finds data in a repository

repo_delete_entry_msg Deletes a specific entry from a repository

repo_find_entry_msg Finds a specific entry in a repository

repo_insert_msg Inserts data in a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

krnl_add_rt Adds a routing path to the kernel

krnl_chg_rt Updates a routing path in the kernel

krnl_del_rt Deletes a routing path from the kernel

nl_add_route Adds a routing path to the Netfilter record

nl_del_route Deletes a routing path from the Netfilter record

rt_discovery_stop Stops a route discovery process

rt_reply_send Sends a route reply message

Processed Messages
Name Description

rt_request_send Request sending a route request

ctl_msg_rcvd Forwards a received control message particular to the protocol

timer_timeout Announces that a timer has expired

Name: Reply

Type: CONI Reply

Description: Generates a route reply corresponding to a route discovery process

Properties
Name Type Default Value Description

routing_table string rtable The repository used as routing table

Generated Messages
Name Description

register_ctl_msg Request the registration of a new control message type

ctl_msg_deregister Request to deregister a control message type

control_message Sends an actual control message particular to the protocol

register_timer Request the registration of a new timer with the event manager

sched_timer Reschedules an existing timer with the event manager

timer_disable Disables an existing timer with the event manager

repo_find_msg Finds data in a repository

repo_delete_entry_msg Deletes a specific entry from a repository

repo_find_entry_msg Finds a specific entry in a repository

repo_insert_msg Inserts data in a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

krnl_add_rt Adds a routing path to the kernel

krnl_chg_rt Updates a routing path in the kernel

krnl_del_rt Deletes a routing path from the kernel

nl_add_route Adds a routing path to the Netfilter record

nl_del_route Deletes a routing path from the Netfilter record

 137

rt_discovery_stop Stops a route discovery process

Processed Messages
Name Description

rt_reply_send Request sending a route reply

ctl_msg_rcvd Forwards a received control message particular to the protocol

timer_timeout Announces that a timer has expired

Name: Changes

Type: CONI Changes

Description: Advertises route error messages

Properties
Name Type Default Value Description

routing_table string rtable The repository used as routing table

Generated Messages
Name Description

register_ctl_msg Request the registration of a new control message type

ctl_msg_deregister Request to deregister a control message type

control_message Sends an actual control message particular to the protocol

sched_timer Reschedules an existing timer with the event manager

repo_find_msg Finds data in a repository

Processed Messages
Name Description

rt_error_send Request sending a route error message

ctl_msg_rcvd Forwards a received control message particular to the protocol

C.4 Additional Computations

Name: ADD_COMPS

Type: Core component

Description: Controls all the additional computations

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

NONE

Processed Messages
Name Description

NONE

Name: MPR_computation

Type: Additional computation

Description: Computes the Mutipoint Relay nodes for each node

Properties
Name Type Default Value Description

neighborSet string neighbor_set Repository storing the neighbor set

twoHopNeighborSet string twoHopNeighbor_set Repository storing the two hops neighbor

set

 138

Generated Messages
Name Description

repo_find_msg Finds data in a repository

repo_replace_msg Replaces a repository with a new one

repo_unlock Unlocks a previously locked repository

Processed Messages
Name Description

compute_MPRs Request the computation of the MPR set

C.5 Operating System Interface

Name: OS_IFACE

Type: Core component

Description: Provides the interaction with the OS

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_ifnames Queries the names of the interfaces available

Processed Messages
Name Description

NONE

Name: Pre_forwarding

Type: OS_Iface Pre-forwarding

Description: Takes care of initiating the creation og routing paths when they are not available

Properties
Name Type Default Value Description

route_update_freq int 1000 Frequency to update an active routing entry

routing_table string rtable Repository storing the routing table

Generated Messages
Name Description

fd_register Register a new file descriptor

sched_timer Reschedules an existing timer with the event manager

fd_ready_reply Reply to sync message announcing that a file descriptor is ready to be read

repo_find_msg Finds data in a repository

rt_discovery_start Requests to initiate a new route discovery

rt_entry_update Request to update a routing table entry

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

rt_error_send Request sending a route error message

qry_ifnames Queries the names of the interfaces available

Processed Messages
Name Description

fd_ready Announces that a file descriptor is ready to be read

nl_add_route Adds a route to the Netfilter record

nl_del_route Deletes a route from the Netfilter record

nl_no_route_found Announces that the route could not be found

 139

Name: Fwd_eng_interaction

Type: OS_Iface Fwd_engine Interaction

Description: Provides an interaction mechanism to modify the forwarding table of the OS

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

krnl_add_rt_reply Reply to sync message to add a routing entry to the forwarding table of the OS

krnl_chg_rt_reply Reply to sync message to update a routing entry in the forwarding table of the

OS

krnl_del_rt_reply Reply to sync message to delete a routing entry from the forwarding table of

the OS

Processed Messages
Name Description

krnl_add_rt Adds a routing entry to the forwarding table of the OS

krnl_chg_rt Updates a routing entry in the forwarding table of the OS

krnl_del_rt Deletes a routing entry from the forwarding table of the OS

Name: Ctl_pkts_exch

Type: OS_Iface Pre-Ctl_Pkts_Exch

Description: Is in charge of supporting the exchange of udp control messages trough the network interface

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

fd_register Registers a new file descriptor

ctl_msg_rcvd Forwards a control message received on the network interface

ctl_msg_deregister_reply Reply to a sync message requesting to deregister a control message type

fd_ready_reply Reply to a sync message announcing that a file descriptor is ready to be read

Processed Messages
Name Description

control_message_wdest Sends an actual control message particular to the protocol with a defined

destination

fd_ready Announces that a file descriptor is ready to be read

register_ctl_msg Registers a control message type

ctl_msg_deregister Deregisters a control message type

C.6 Path Determination

Name: PATH_DET

Type: Core component

Description: Controls all path determination mechanisms

Properties
Name Type Default Value Description

NONE

 140

Generated Messages
Name Description

NONE

Processed Messages
Name Description

NONE

Name: shortest_path_OLSR

Type: Path Determination Subcomponent

Description: Computes the shortest path between a source and destination nodes

Properties
Name Type Default Value Description

linkSet string link_set Name of repository storing the link set

neighborSet string neighbor_set Name of repository storing neighbor set

twoHopNeighborSet string twoHopNeighbor_set Name of repository storing the two hops

neighbor set

topologySet string topology_set Name of repository storing the topology

set

rTable_OLSR string RIR_OLSR Name of repository storing the routing

table of OLSR

Generated Messages
Name Description

repo_find_msg Finds data in a repository

repo_delete_entry_msg Deletes a specific entry from a repository

repo_insert_msg Inserts data in a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

krnl_add_rt Adds a routing entry to the forwarding table of the OS

krnl_chg_rt Updates a routing entry in the forwarding table of the OS

krnl_del_rt Deletes a routing entry from the forwarding table of the OS

register_timer Request the registration of a new timer with the event manager

sched_timer Reschedules an existing timer with the event manager

Processed Messages
Name Description

compute_rtable Request the computation of the routing table

Name: GREEDY

Type: Path Determination Subcomponent

Description: Computes each forwarding hop according to the GREEDY protocol

Properties
Name Type Default Value Description

nb_repository string nb1 Name of repository storing neighbor information

locationTable string loc_table Name of repository storing location information

routing_table string rtable Name of repository storing the routing table

default_hop_dst int 1 Default hop distance

route_timeout int 5000 Routing table entry timeout

Generated Messages
Name Description

repo_find_msg Finds data in a repository

repo_find_entry_msg Finds a specific entry in a repository

repo_delete_entry_msg Deletes a specific entry from a repository

 141

repo_insert_msg Inserts data in a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

krnl_add_rt Adds a routing entry to the forwarding table of the OS

krnl_chg_rt Updates a routing entry in the forwarding table of the OS

krnl_del_rt Deletes a routing entry from the forwarding table of the OS

nl_no_route_found Announces that a routing path could not be found

nl_add_route Adds a routing entry to the Netfilter record

nl_del_route Deletes a routing entry from the Netfilter record

register_timer Request the registration of a new timer with the event manager

sched_timer Reschedules an existing timer with the event manager

Processed Messages
Name Description

rt_discovery_start Requests to start a new route discovery

rt_entry_update Requests to update a routing entry

rt_error_send Requests to send a route error message

timer_timeout Announce that a timer has expired

C.7 Routing Information Repository

Name: RIR

Type: Core component

Description: Hosts all the protocol repositories

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props Queries for the values of the properties of all of its subcomponents

repo_insert_msg_reply Reply to a sync message to insert an entry into a repository

repo_find_msg_reply Reply to a sync message to find data in a repository

repo_find_entry_msg_reply Reply to a sync message to find a specific entry in a repository

repo_delete_msg_reply Reply to a sync message to delete data from a repository

repo_update_msg_reply Reply to a sync message to update data in a repository

repo_replace_msg_reply Reply to a sync message to replace a repository

Processed Messages
Name Description

repo_insert_msg Inserts data in a repository

repo_find_msg Finds data in a repository

repo_find_entry_msg Finds a specific entry in a repository

repo_delete_msg Deletes data from a repository

repo_delete_entry_msg Deletes a specific entry from a repository

repo_unlock Unlocks a previously locked repository

repo_update_msg Updates data in a repository

repo_replace_msg Replaces a repository with a new one

 142

Name: RIR_DYMO

Type: RIR Repository

Description: Repository to store the routing table of DYMO

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

Name: Neighbors

Type: RIR Repository

Description: Repository to store neighbors information, mainly the ID of the neighbors

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

Name: LinkSet

Type: RIR Repository

Description: Repository to store the link set used by OLSR

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

Name: NeighborSet

Type: RIR Repository

Description: Repository to store the neighbor set used by OLSR

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

 143

Name: TwoHopNeighborSet

Type: RIR Repository

Description: Repository to store the two hops neighbor set used by OLSR

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

Name: MPRSelectorSet

Type: RIR Repository

Description: Repository to store the MPR selector set used by OLSR

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

Name: TopologySet

Type: RIR Repository

Description: Repository to store the topology set used by OLSR

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

Name: DuplicateSet

Type: RIR Repository

Description: Repository to store the duplicate set used by OLSR

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

 144

Name: RTable_OLSR

Type: RIR Repository

Description: Repository to store the routing table used by OLSR

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

Name: Location_table

Type: RIR Repository

Description: Repository to store the location information repository used by GREEDY

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository

Processed Messages
Name Description

qry_rir_sub_props Sync message to query about the properties of the repository

C.8 Event Manager

Name: EV_MGR

Type: Core component

Description: Is the event manager that controls all the timers

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

qry_age_queue_reply Reply to a sync message that queries for the next timer to expire

timer_timeout Informs that a timer just expired

register_timer_reply Reply to a sync message that registers a new timer

deregister_timer_reply Reply to a sync message that deregisters an existing timer

fd_register Registers a new file descriptor

fd_ready_reply Reply to a sync message that announces that a file descriptor is ready to be read

Processed Messages
Name Description

qry_age_queue Query about the next timer to expire

register_timer Registers a new timer

timer_unregister Un-registers an existing timer

sched_timer Reschedules an existing timer

deregister_timer Deregisters an existing timer

timer_disable Disables an active timer

fd_ready Announces that a file descriptor is ready to be read

 145

C.9 Location Information

Name: LOC_INFO

Type: Core component

Description: Controls all methods providing location information

Properties
Name Type Default Value Description

NONE

Generated Messages
Name Description

NONE

Processed Messages
Name Description

NONE

Name: gps_receiver

Type: Location information subcomponent

Description: Provides the location information of the current node assuming that it is collected by a GPS

receiver and stored in a file in the system.

Properties
Name Type Default Value Description

file_path string /home/greedy/host_location.dat Location in the file system

Generated Messages
Name Description

qry_location_reply Reply to a sync message requesting the location of the node

Processed Messages
Name Description

qry_location Requests the location of the node

 146

Appendix D

Full DYMO Specification

This Appendix presents the full protocol specification used to generate the reactive routing

protocol DYMO with GP-Pro. It shows all the interconnections that had to be written if the

automatic completion feature did not exist. However, only the first four interconnections are

actually required when automatic completion is used (shown in boldface).

Protocol as GPPro_DYMO{

 udp_port = 657

 CONI as Coni{

 Initiation as Init{

 routing_table = rtable

 }

 Request as Req{

 routing_table = rtable

 }

 Reply as Rep{

 routing_table = rtable

 }

 Changes as Rerr{

 routing_table = rtable

 }

 }

 MADINI as mad1 {

 Hello as hello1 {

 msg_ival = 2

 ctl_msg_type = 4

 nb_repository = nb1

 routing_table = rtable

 nb_timeout = 6

 }

 }

 EV_MGR as ev_mgr {

 }

 DELIVERY as del1 {

 n_hops as nh1 {

 hops = 1

 }

 n_hops as nh_net_diameter {

 hops = 10

 }

 147

 unicast as unicasting{

 hops = 100

 }

 }

 OS_IFACE as OS1{

 Pre_forwarding as PF1{

 routing_table = rtable

 route_update_freq = 1000

 }

 Fwd_eng_interaction as FEI{

 }

 Ctl_pkts_exch as CP1{

 }

 }

 RIR as repo_pool{

 neighbors as nb1{

 }

 rir_dymo as rtable{

 }

 }

 control_message : hello1 -> nh1

 control_message : Rep -> unicasting

 control_message : Req -> nh_net_diameter

 control_message : Rerr -> nh_net_diameter

 control_message_wdest : nh1 -> CP1

 control_message_wdest : nh_net_diameter -> CP1

 control_message_wdest : unicasting -> CP1

 ctl_msg_deregister: mad1 <-> CP1

 ctl_msg_deregister: Rep <-> CP1

 ctl_msg_deregister: Req <-> CP1

 ctl_msg_deregister: Rerr <-> CP1

 ctl_msg_rcvd : CP1 -> hello1

 ctl_msg_rcvd : CP1 -> Rep

 ctl_msg_rcvd : CP1 -> Req

 ctl_msg_rcvd : CP1 -> Rerr

 ctl_msg_request : mad1 -> hello1

 deregister_timer : mad1 <-> ev_mgr

 fd_ready : gp_pro1 <-> CP1

 fd_ready : gp_pro1 <-> ev_mgr

 fd_ready : gp_pro1 <-> PF1

 fd_register : CP1 <-> gp_pro1

 fd_register : ev_mgr <-> gp_pro1

 fd_register : PF1 <-> gp_pro1

 krnl_add_rt : Rep <-> FEI

 krnl_add_rt : Req <-> FEI

 krnl_chg_rt : Rep <-> FEI

 krnl_chg_rt : Req <-> FEI

 krnl_del_rt : Rep <-> FEI

 krnl_del_rt : Req <-> FEI

 nl_no_route_found : Init -> PF1

 nl_add_route : Rep -> PF1

 nl_add_route : Req -> PF1

 nl_del_route : Rep -> PF1

 nl_del_route : Req -> PF1

 qry_age_queue : gp_pro1 <-> ev_mgr

 148

 qry_madini_sub_props : mad1 <-> hello1

 qry_rir_sub_props : repo_pool <-> nb1

 qry_rir_sub_props : repo_pool <-> rtable

 register_ctl_msg : mad1 -> CP1

 register_ctl_msg : Rep -> CP1

 register_ctl_msg : Req -> CP1

 register_ctl_msg : Rerr -> CP1

 register_timer : hello1 <-> ev_mgr

 register_timer : Init <-> ev_mgr

 register_timer : mad1 <-> ev_mgr

 register_timer : Rep <-> ev_mgr

 register_timer : Req <-> ev_mgr

 repo_delete_entry_msg : hello1 -> repo_pool

 repo_delete_entry_msg : Rep -> repo_pool

 repo_delete_entry_msg : Req -> repo_pool

 repo_find_entry_msg : Rep <-> repo_pool

 repo_find_entry_msg : Req <-> repo_pool

 repo_find_msg : hello1 <-> repo_pool

 repo_find_msg : Init <-> repo_pool

 repo_find_msg : PF1 <-> repo_pool

 repo_find_msg : Rep <-> repo_pool

 repo_find_msg : Req <-> repo_pool

 repo_find_msg : Rerr <-> repo_pool

 repo_insert_msg : hello1 <-> repo_pool

 repo_insert_msg : Rep <-> repo_pool

 repo_insert_msg : Req <-> repo_pool

 repo_unlock : hello1 -> repo_pool

 repo_unlock : PF1 -> repo_pool

 repo_unlock : Rep -> repo_pool

 repo_unlock : Req -> repo_pool

 repo_update_msg : hello1 <-> repo_pool

 repo_update_msg : PF1 <-> repo_pool

 repo_update_msg : Rep <-> repo_pool

 repo_update_msg : Req <-> repo_pool

 rt_discovery_start : PF1 -> Init

rt_discovery_stop : Rep -> Init

 rt_discovery_stop : Req -> Init

 rt_error_send : PF1 -> Rerr

 rt_reply_send : Req -> Rep

 rt_request_send : Init -> Req

 sched_timer : hello1 -> ev_mgr

 sched_timer : PF1 -> ev_mgr

 sched_timer : Rep -> ev_mgr

 sched_timer : Req -> ev_mgr

 sched_timer : Rerr -> ev_mgr

 sync_initialize : gp_pro1 <-> Coni

 sync_initialize : gp_pro1 <-> mad1

 sync_initialize : gp_pro1 <-> ev_mgr

 sync_initialize : gp_pro1 <-> del1

 sync_initialize : gp_pro1 <-> OS1

 sync_initialize : gp_pro1 <-> repo_pool

 sync_initialize : repo_pool <-> nb1

 sync_initialize : repo_pool <-> rtable

 sync_initialize : del1 <-> nh1

 sync_initialize : del1 <-> nh_net_diameter

 sync_initialize : del1 <-> unicasting

 149

 sync_initialize : Coni <-> Init

 sync_initialize : Coni <-> Req

 sync_initialize : Coni <-> Rep

 sync_initialize : Coni <-> Rerr

 sync_initialize : OS1 <-> PF1

 sync_initialize : OS1 <-> FEI

 sync_initialize : OS1 <-> CP1

 sync_initialize : mad1 <-> hello1

 sync_start : gp_pro1 <-> Coni

 sync_start : gp_pro1 <-> mad1

 sync_start : gp_pro1 <-> ev_mgr

 sync_start : gp_pro1 <-> del1

 sync_start : gp_pro1 <-> OS1

 sync_start : gp_pro1 <-> repo_pool

 sync_start : repo_pool <-> nb1

 sync_start : repo_pool <-> rtable

 sync_start : del1 <-> nh1

 sync_start : del1 <-> nh_net_diameter

 sync_start : del1 <-> unicasting

 sync_start : Coni <-> Init

 sync_start : Coni <-> Req

 sync_start : Coni <-> Rep

 sync_start : Coni <-> Rerr

 sync_start : OS1 <-> PF1

 sync_start : OS1 <-> FEI

 sync_start : OS1 <-> CP1

 sync_start : mad1 <-> hello1

 sync_stop : gp_pro1 <-> Coni

 sync_stop : gp_pro1 <-> mad1

 sync_stop : gp_pro1 <-> ev_mgr

 sync_stop : gp_pro1 <-> del1

 sync_stop : gp_pro1 <-> OS1

 sync_stop : gp_pro1 <-> repo_pool

 sync_stop : repo_pool <-> nb1

 sync_stop : repo_pool <-> rtable

 sync_stop : del1 <-> nh1

 sync_stop : del1 <-> nh_net_diameter

 sync_stop : del1 <-> unicasting

 sync_stop : Coni <-> Init

 sync_stop : Coni <-> Req

 sync_stop : Coni <-> Rep

 sync_stop : Coni <-> Rerr

 sync_stop : OS1 <-> PF1

 sync_stop : OS1 <-> FEI

 sync_stop : OS1 <-> CP1

 sync_stop : mad1 <-> hello1

 timer_disable : Rep -> ev_mgr

 timer_disable : Req -> ev_mgr

 timer_timeout : ev_mgr -> mad1

 timer_timeout : ev_mgr -> hello1

 timer_timeout : ev_mgr -> Init

 timer_timeout : ev_mgr -> Rep

 timer_timeout : ev_mgr -> Req

 timer_unregister : Init -> ev_mgr

}

 150

Appendix E

Default Component Template

The following is a default Xpand template that can be used to create any new component. In

order to properly use it, the correct template name and metatype (shown in shaded text) have

to be provided (as explained in Appendix F).

«DEFINE <Template Name>(String exp_type) FOR <Metatype>-»

 «IF exp_type=="INFO"-»

 «EXPAND Messages::Msg_functions::std_msgs_names-»

 //---------- PROPERTIES AND MESSAGES -----

 «ENDIF»

 «IF exp_type=="HEADERS"-»

 «FILE name()+".h"-»

 «EXPAND common::header_file_functions-»

 //--------------- HEADER FILE (.h) -----------

«ENDFILE-»

 «ENDIF»

 «IF exp_type=="BODY"-»

 «FILE name()+".c"-»

 «EXPAND common::component_header»

 //-------------- FUNCTION HEADERS ----------------

 «EXPAND common::component_body»

 //-------------- FUNCTIONS TO GENERATE MESSAGES --

 //-------------- FUNCTIONS TO PROCESS MESSAGES --

 //-------------- ADDITIONAL CODE ---------------

 static void start(){

 }

 static void stop(){

 }

«ENDFILE»

 «ENDIF-»

«EXPAND Generic_components::component_template(exp_type) FOREACH subcomponents-»

«ENDDEFINE»

 151

Appendix F

How to Create New Components

This Appendix is a brief guide to create new routing components for GP-Pro.

Component

Type

Template Name Xpand Filename (.xpt) DSL Abstract Rule

Information

subcomponent

info_subcomponent_template Madini_subcomponents Info_subcomponent_types

Delivery

Mechanism

del_mech_template Delivery_subcomponents Del_mech_types

CONI

Initiation

Coni_subcomp_template Coni_subcomponents Coni_subcomponent

CONI

Initiation

Subcomponent

initiation_subcomp_template Coni_Initiation_subcomponents Initiation_subcomponent_types

CONI Request Coni_subcomp_template Coni_subcomponents Coni_subcomponent

CONI Request

Subcomponent

request_subcomp_template Coni_Request_subcomponents Request_subcomponent_types

CONI Reply Coni_subcomp_template Coni_subcomponents Coni_subcomponent

CONI Reply

Subcomponent

reply_subcomp_template Coni_Reply_subcomponents Reply_subcomponent_types

CONI Changes Coni_subcomp_template Coni_subcomponents Coni_subcomponent

CONI Changes

Subcomponent

changes_subcomp_template Coni_Changes_subcomponents Changes_subcomponent_types

CONI

Invalidation

Coni_subcomp_template Coni_subcomponents Coni_subcomponent

CONI

Invalidation

Subcomponent

invalidation_subcomp_template Coni_Invalidation_subcomponents Invalidation_subcomponent_types

Additional

Computation

add_comps_template Add_comps_subcomponents Add_computations_types

OS_Iface Pre-

forwarding

OS_Iface_subcomp_template OS_Iface_subcomponents OS_Iface_subcomponent

OS_Iface Pre-

forwarding

Subcomponent

pre_fwd_subcomp_template OS_Iface_Pre_fwd_subcomponents Pre_forwarding_subcomponent_typ

es

OS_Iface

Fwd_engine

Interacion

OS_Iface_subcomp_template OS_Iface_subcomponents OS_Iface_subcomponent

OS_Iface Pre-

Fwd_engine

Interacion

Subcomponent

fwd_eng_interaction_subcomp_tem

plate

OS_Iface_Fwd_eng_interaction_su

bcomponents

Fwd_eng_interaction_subcompone

nt_types

OS_Iface Pre-

Ctl_Pkts_Exch

OS_Iface_subcomp_template OS_Iface_subcomponents OS_Iface_subcomponent

OS_Iface Pre-

Ctl_Pkts_Exch

Subcomponent

ctl_pkts_exch_subcomp_template OS_Iface_Ctl_pkts_exch_subcomp

onents

Ctl_pkts_exch_subcomponent_type

s

RIR

Repository

routing_repository_template RIR_subcomponents Routing_repository_types

Event Manager

subcomponent

ev_mgr_template Ev_mgr_subcomponents Ev_mgr_subcomponent_types

 152

Component

Type

Template Name Xpand Filename (.xpt) DSL Abstract Rule

Path

Determination

Subcomponent

path_det_template Path_det_subcomponents Path_det_subcomponent_types

Location

Information

Subcomponent

loc_info_template Loc_info_subcomponents Loc_info_subcomponent_types

Generic

Component

component_template Generic_components Generic_component_types

Table 22. Relationship between component types, Xpand templates and DSL abstract rules

 Before creating any new component, we should keep the following in mind: 1) that

the proposed protocol architecture defines a hierarchical relationship between routing

components, and the location of each component in this hierarchy defines the component

type, 2) that each new component is created as a new metatype in a new Xpand template,

with a template name corresponding to the component type that it represents, 3) that all the

component templates that belong to the same component type are grouped together in the

same Xpand file with extension .xpt, 4) that each component (or metatype) that is to be used

in any protocol specification has to be added first to the abstract rule that represents the

component type in the DSL. Table 22 provides these relationships for every component type

in the protocol architecture.

 The steps to create a new component are listed next:

1. According to the component type that the new component belongs to, find in Table

22 the name of the Xpand file where the new template should be added.

2. At the bottom of the Xpand file create a new template. For simplicity just use the

default template shown in Appendix E.

3. Once the default template has been added to the Xpand file, replace <Template

Name> with the corresponding template name listed in Table 22.

4. Next, replace <Metatype> with the chosen name for the new component.

5. In the section INFO of the new template, list all the configurable properties of the

new component as discussed in Section 6.2. You should provide the corresponding

data type and default value.

6. Also, in the section INFO of the new template, list all the generated and processed

messages as discussed in Section 6.2.

 153

7. Provide all the C code that belongs to the new component in the section BODY of the

new template. Remember that each listed property becomes a variable with the entire

component as scope.

8. Provide a function for each processed message. The name of the function should be

the name of the processed message with prefix “proc_”, as discussed in Section 6.2.

9. Use the section HEADER of the new template as you would use a .h header file when

programming in C language (e.g., to declare function headers).

10. Any function, task or statement that is to be executed when the component starts to

operate, should be included in the function start() listed in the section BODY of the

new template.

11. Any function, task or statement that is to be executed before the component stops

operation, should be included in the function stop() listed in the section BODY of the

new template.

12. The metatype of the new component should be added to the DSL as part of the

abstract rule that corresponds to the component type (the DSL is contained in the file

GPPro_icm.xtxt). To do so, before the semicolon that defines the end of the rule, the

following syntax should be added: | <Metatype>. That is, the vertical bar plus one

white space and the name of the metatype.

13. Right after the abstract rule, a new rule should be added to the DSL by using the

following syntax: <Metatype> : “<name_in_specfication>”;. That is the name of

the metatype, white space, colon, white space, a random name to be used in any

specification to make reference to the new component (written between quotation

marks) and a semicolon.

14. Once the DSL is modified as described in steps 12 and 13, the DSL should be re-

generated by using oAW inside Eclipse. Then, the DSL should be exported as a

deployable plug-in inside Eclipse.

15. Finally, restart Eclipse and the new component could be used as part of any

specification.

NOTE: A wizard to create new components will be integrated in the application hosting the

GUI. This wizard should also automate steps 12 to 14.

 154

Appendix G

GP-Pro Logo

Figure 25. GP-Pro logo

GP-Pro aims to generate routing protocols by assembling existing components addressing

different features of routing protocols. Each of those components can be assembled by one of

more subcomponents of finer granularity. Figure 25 shows the GP-Pro logo, which resembles

the previous description, a set of components of different shapes and sizes providing different

functionalities (different colors), which might contain additional subcomponents.

 155

Bibliography

[1] C. Perkins, E. Belding-Royer, and S. Das, "Ad hoc on-demand distance vector (AODV)

routing," IETF Mobile Ad Hoc Networks Working Group, IETF RFC 3561, July 2003.

[2] T. Clausen and P. Jacquet, "Optimized link state routing protocol (OLSR)," IETF Mobile

Ad Hoc Networks Working Group, IETF RFC 3626, October 2003.

[3] R. G. Ogier, M. Lewis, and F. L. Templin, "Topology dissemination based on reverse-

path forwarding (TBPRF)," IETF Mobile Ad Hoc Networks Working Group, IETF RFC

3684, February 2004.

[4] D. Johnson, Y. Hu, and D. Maltz, "The dynamic source routing protocol (DSR) for

mobile ad hoc networks for IPv4," IETF Mobile Ad Hoc Networks Working Group, IETF

RFC 4728, February 2007.

[5] I. D. Chakeres, E. M. Royer, and C. E. Perkins, "Dynamic MANET on-demand routing

protocol," in Proceedings of the Sixty-Second Internet Engineering Task Force, 2004.

[6] Laboratoire d'informatique de l'ecole polytechnique, hipercom, "OLSRv2 development

blog," March 2007, http://olsrv2.online.fr/blog/.

[7] S. Kurkowski, T. Camp, and M. Colagrosso, "MANET simulation studies: The

incredibles," ACM's Mobile Computing and Communications Review, vol. 9, pp. 50-61,

October 2005.

[8] T. Kunz, "Implementation vs. simulation: Evaluating a MANET multicast protocol," in

Proceedings of the Global Mobile Congress 2004, 2004, pp. 129-134.

[9] F. Haq and T. Kunz, "Simulation vs. emulation: Evaluating mobile ad hoc network

routing protocols," in Proceedings of the International Workshop on Wireless Ad-hoc

Networks, 2005.

[10] E. Göktürk, "Emulating ad hoc networks: differences from simulations and emulation

specific problems," in New Trends in Computer Networks, Vol. 1, Advances in Computer

Science and Engineering Series, Ed. Imperial College Press, 2005, pp. 329-338.

 156

[11] N. C. Hutchinson and L. L. Peterson, "The x-kernel: An architecture for implementing

network protocols," IEEE Transactions on Software Engineering, vol. 17, pp. 64-76, January

1991.

[12] D. C. Schmidt, "The ADAPTIVE communication environment: An object-oriented

network programming toolkit for developing communication software," in Proceedings of

the Twelfth Annual Sun Users Group Conference, 1994, pp. 214- 225.

[13] M. Barbeau and F. Bordeleau, "A protocol stack development tool using generative

programming," in Proceedings of Generative Programming and Component Engineering,

2002, pp. 93-109.

[14] K. Czarnecki and U. W. Eisenecker, "Components and generative programming," in

Proceedings of the Seventh European Software Engineering Conference, 1999, pp. 2-19.

[15] V. Kawadia, Y. Zhang, and B. Gupta, "System services for ad-hoc routing: Architecture,

implementation and experiences," in Proceedings of the First International Conference on

Mobile Systems, Applications, and Services, 2003, pp. 99-112.

[16] The Internet Engineering Task Force (IETF), "Mobile ad hoc networks working group,"

last accessed on May 2009, http://www.ietf.org/html.charters/manet-charter.html.

[17] S. Corson and J. Macker, "Mobile ad hoc networking (MANET): Routing protocol

performance issues and evaluation considerations," IETF Mobile Ad Hoc Networks Working

Group, IETF RFC 2501, January 1999.

[18] P. Mohapatra and S. Krishnamurthy, Ad Hoc Networks: Technologies and Protocols.

Boston: Springer, 2004, ISBN 0-387-22690-7.

[19] I. Stojmenovic, A. Nayak, J. Kuruvila, F. Ovalle-Martinez, and E. Villanueva-Peña,

"Physical layer impact on the design and performance of routing and broadcasting protocols

in ad hoc and sensor networks," Computer Communications, vol. 28, pp. 1138-1151, June

2005.

[20] Wikipedia, "List of ad-hoc routing protocols," last accessed on May 2009,

http://en.wikipedia.org/wiki/List_of_ad-hoc_routing_protocols.

[21] J. Moy, "OSPF version 2," IETF Mobile Ad Hoc Networks Working Group, IETF RFC

2328, April 1998.

[22] Z. Haas, J. Halpern, and L. Li, "Gossip-based ad hoc routing," in Proceedings of the

IEEE Conference on Computer Communications, 2002, pp. 1707–1716.

 157

[23] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, "The Click modular

router," ACM Transactions on Computer Systems, vol. 18, pp. 263-297, August 2000.

[24] M. Pearlman and Z. Haas, "Determining the optimal configuration for the zone routing

protocol," IEEE Journal on Selected Areas in Communications, vol. 17, pp. 1395-1414,

August 1999.

[25] C. Santivanez, R. Ramanathan, and I. Stavrakakis, "Making link-state routing scale for

ad hoc networks," in Proceedings of the ACM International Symposium on Mobile Ad Hoc

Networking and Computing, 2001, pp. 22–32.

[26] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, "A distance routing

effect algorithm for mobility (DREAM)," in Proceedings of the IEEE/ACM Annual

International Conference on Mobile Computing and Networking, 1998, pp. 76–84.

[27] Y. Ko and N. H. Vaidya, "Location-aided routing (LAR) in mobile ad hoc networks," in

Proceedings of the ACM/IEEE International Conference on Mobile Computing and

Networking, 1998, pp. 66–75.

[28] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, "Routing with guaranteed delivery in

ad hoc wireless networks," ACM Wireless Networks, vol. 7, pp. 609-616, November 2001.

[29] L. Qin and T. Kunz, "On-demand routing in MANETs: The impact of a realistic

physical layer model," in Proceedings of the Second International Conference on Ad Hoc

Networks and Wireless, 2003, pp. 37-48.

[30] R. Draves, J. Padhye, and B. Zill, "Comparison of routing metrics for static multi-hop

wireless networks," in Proceedings of the ACM Annual Conference of the Special Interest

Group on Data Communication, 2004, pp. 133-144.

[31] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, "A high-throughput path metric for

multi-hop wireless routing," in Proceedings of the ACM Annual International Conference on

Mobile Computing and Networking, 2003, pp. 134-146.

[32] I. Stojmenovic and Xu Lin, "Power-aware localized routing in wireless networks," IEEE

Transactions on Parallel and Distributed Systems, vol. 12, pp. 1122-1133, November 2001.

[33] R. Leung, J. Lio, E. Poon, C. Chan, and B. Li, "MP-DSR: A qos-aware multi-path

dynamic source routing protocol for wireless ad-hoc networks," in Proceedings of Twenty-

Sixth Annual IEEE Conference on Local Computer Networks, 2001, pp. 132-141.

 158

[34] P. Sinha, R. Sivakumar, and V. Bharghavan, "CEDAR: A core-extraction distributed ad

hoc routing algorithm," in Proceedings of the IEEE Conference on Computer

Communications, 1999, pp. 1454-1465.

[35] L. Xiao, J. Wang, and K. Nahrstedt, "The enhanced ticket based routing algorithm," in

Proceedings of the IEEE International Conference on Communications, 2002, pp. 2222-

2226.

[36] M. E. Fayad and D. Schmidt, "Object-Oriented application frameworks,"

Communications of ACM, vol. 40, pp. 32-38, October 1997.

[37] J. Parssinen, "Java protocol framework," M.S. thesis, Helsinki University of

Technology, Helsinki, Finland, 1998.

[38] Netfilter Core Team, "Netfilter framework," last accessed on May 2009,

http://www.netfilter.org.

[39] M. Handley, O. Hodson, and E. Kohler, "Xorp: An open platform for network research,"

ACM Computer Communication Review, vol. 33, pp. 53-57, January 2003.

[40] N. Pryce and S. Crane, "A model of interaction in concurrent and distributed systems,"

in Proceedings of the Second International Workshop on Development and Evolution of

Software Architectures for Product Families, 1998, pp. 26-27.

[41] M. Jung and E. W. Biersack, "A component-based architecture for software

communication systems," in Proceedings of the IEEE International Conference on the

Engineering of Computer-Based Systems, 2000, pp. 36-44.

[42] Pervasive Communications Lab, University of Colorado at Boulder, "The Click DSR

router project," last accessed on May 2009, http://pecolab.colorado.edu/html/dsrClick.html.

[43] T. E. Dorum, "ClickOLSR Element Documentation," last accessed on May 2009,

http://www.olsr.org.

[44] C. E. Perkins and P. Bhagwat, "Highly dynamic destination-sequenced distance-vector

routing (DSDV) for mobile computers," in Proceedings of the ACM Annual Conference of

the Special Interest Group on Data Communication, 1993, pp. 234–244.

[45] H. Huang and J. S. Baras, "Component based routing: A new methodology for designing

routing protocols for MANET," presented at 25th Army Science Conference, Orlando, USA,

2006.

 159

[46] Z. Li and M. Barbeau, "Performance of generative programming based protocol

implementation," in Proceedings of the Second Annual Conference on Communication

Networks and Services Research, 2004, pp. 113-120.

[47] M. Barbeau, "An Implementation of DSR in IPv4," March 2002,

http://www.scs.carleton.ca/~barbeau.

[48] K. Czarnecki, "Overview of generative software development," in Proceedings of

Unconventional Programming Paradigms, 2004, pp. 313-328.

[49] T. Stahl and M. Volter, Model-Driven Software Development: Technology, Engineering,

Management. West Sussex: Wiley, 2006, ISBN 0470025700.

[50] M. Volter, "OpenArchitectureWare, a flexible open source platform for model-driven

software development," presented at Eclipse Technology Exchange Workshop at the

European Conference on Object-Oriented Programming, Nantes, France, 2006.

[51] S. Perrin, E. Benoit, and L. Foulloy, "Automatic code generation based on generic

description of intelligent instrument," in Proceedings of the IEEE International Conference

on Systems, Man, and Cybernetics, 2002, pp. 569-574.

[52] I. S. Abdullah and D. A. Menasce, "Protocol specification and automatic

implementation using XML and CBSE," in Proceedings of the International Conference on

Communications, Internet and Information Technology, 2003.

[53] D. Song, "An automatic approach for building secure systems," Ph.D. dissertation,

University of California at Berkeley, Berkeley, CA, USA, 2003.

[54] S. Behnel and A. Buchmann, "Overlay networks - implementation by specification," in

Proceedings of the International Middleware Conference, 2005, pp. 401-410.

[55] B. T. Loo, J. M. Hellerstein, and I. Stoica, "Customizable routing with declarative

queries," in Proceedings of the ACM Workshop on Hot Topics in Networks, 2004.

[56] J. Allard, P. Gonin, M. Singh, and G. G. Richard III, "A user level framework for ad hoc

routing," in Proceedings of the Twenty-Seventh Annual IEEE Conference Local Computer

Networks, 2002, pp. 13-19.

[57] B. Wiberg, "Porting AODV-UU implementation to ns-2 and enabling trace-based

simulation," M.S. thesis, Uppsala University, Uppsala, Sweden, 2002.

 160

[58] A. K. Saha, K. A. To, S. PalChaudhuri, S. Du, and D. B. Johnson, "Design and

performance of PRAN: A system for physical implementation of ad hoc network routing

protocols," IEEE Transactions on Mobile Computing, vol. 6, pp. 463-479, April 2007.

[59] The Virtual InterNetwork Testbed (VINT) Project Research Staff, The NS Manual

(Formerly NS Notes and Documentation), The Virtual InterNetwork Testbed (VINT) Project,

2007.

[60] F. J. Ros, "DYMOUM, DYMO implementation for real world and simulation," last

accessed on May 2009, http://masimum.dif.um.es/?Software:DYMOUM.

[61] I. Stojmenovic, "Position based routing in ad hoc networks," IEEE Communications

Magazine, vol. 40, pp. 128-134, July 2002.

[62] S. Giordano and I. Stojmenovic, "Position based ad hoc routes in ad hoc networks," in

The Handbook of Ad Hoc Wireless Networks, CRC Press, 2003, pp.1-14.

[63] D. Parnas, "On the design and development of program families," IEEE Transactions on

Software Engineering, vol. 2, pp. 1-9, March 1976.

[64] J. C. Cleaveland, Program Generators with XML and Java. New Jersey: Prentice-Hall,

2001, ISBN 0130258784.

[65] O. Wibling, J. Parrow, and A. Pears, "Automatized verification of ad hoc routing

protocols," in Proceedings of the Twenty-Fourth International Conference on Formal

Techniques for Networked and Distributed Systems of the International Federation for

Information Processing Working Group 6.1, 2004, pp. 343-358.

[66] R. de Renesse and A. Aghvami, "Formal verification of ad-hoc routing protocols using

SPIN model checker," in Proceedings of the Twelfth Mediterranean Electrotechnical

Conference, 2004, pp. 1177-1182.

[67] J. Wu, B. Wu, and I. Stojmenovic, "Power-aware broadcasting and activity scheduling

in ad hoc wireless networks using connected dominating sets," Wireless Communications

and Mobile Computing, vol. 4, pp. 425-438, June 2003.

[68] V. Park and M. S. Corson, "A highly adaptive distributed routing algorithm for mobile

wireless networks," in Proceedings of the IEEE Conference on Computer Communications,

1997, pp. 1405-1413.

 161

[69] I. Stojmenovic and E. Villanueva-Peña, "A scalable quorum based location update

scheme for routing in ad hoc wireless networks," SITE, University of Ottawa, TR-99-09,

September 1999.

[70] P. E. Villanueva-Peña and T. Kunz, "GP-Pro: The generative programming protocol

generator for routing in mobile ad hoc networks," in Proceedings of the Second IEEE

Workshop on Wireless Mesh Networks, 2006, pp. 129-131.

[71] S. Efftinge, "Xtext Reference Documentation," last accessed on May 2009,

http://www.openarchitectureware.org/.

[72] E. Nordström, "Ad-hoc on-demand distance vector routing: For real world and

simulation," last accessed on May 2009, http://core.it.uu.se/core/index.php/AODV-UU.

[73] A. Tonnesen, "Implementing and extending the optimized link state routing protocol,"

M.S. thesis, University of Oslo, Oslo, Norway, 2004.

[74] S. Jarzabek, P. Basset, H. Zhang, and W. Zhang, "XVCL: XML-based variant

configuration language," in Proceedings of the International Conference on Software

Engineering, 2003, pp. 810-811.

[75] P. Bassett, Framing Software Reuse - Lessons from Real World. Upper Saddle River,

NJ: Yourdon Press, 1997, ISBN 013327859X.

[76] M. Murata, D. Lee, and M. Mani, "Taxonomy of XML schema languages using formal

language theory," in Proceedings of Extreme Markup Languages, 2001, pp. 153-166.

[77] E. Van der Vlist, "Comparing XML schema languages," last accessed on May 2009,

http://www.xml.com/pub/a/2001/12/12/schemacompare.html.

[78] E. Van der Vlist, "Relax NG, compared," last accessed on May 2009,

http://www.xml.com/pub/a/2002/01/23/relaxng.html.

[79] E. Van der Vilst, Relax NG. California: O’Reilly, 2003, ISBN 0596004214.

[80] Sun developer network, "Java API for XML processing (JAXP)," last accessed on May

2009, http://java.sun.com/webservices/jaxp/.

[81] Delta Software Technology GmbH Technical Staff, "ANGIE - An introduction," last

accessed on May 2009, http://www.d-s-t-g.com/neu/pages/pageseng/etop.htm.

[82] The Eclipse Foundation, "Eclipse: An open development platform," last accessed on

May 2009, http://www.eclipse.org/.

 162

[83] S. Efftinge, "OpenArchitectureWare 4.1: Check - Validation Language," last accessed

on May 2009, http://www.openarchitectureware.org/.

[84] S. Efftinge and M. Voelter, "OpenArchitectureWare 4.1: Workflow Engine Reference,"

last accessed on May 2009, http://www.openarchitectureware.org/.

[85] S. Efftinge, "OpenArchitectureWare 4.1: Extend Language Reference," last accessed on

May 2009, http://www.openarchitectureware.org/.

[86] S. Efftinge and C. Kadura, "OpenArchitectureWare 4.1: Xpand Language Reference,"

last accessed on May 2009, http://www.openarchitectureware.org/.

