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Abstract 

 

Routing in mobile ad hoc networks (MANETs), where network topology is potentially highly 

dynamic, is not a trivial task. Routing protocols have been profoundly researched but only 

four of them have reached RFC status (AODV, OLSR, TBRPF and DSR). Simulation is the 

tool of choice to test and analyze routing protocols in a controlled environment, however, its 

credibility has decreased due to simulations being poorly performed and the inaccurate match 

of performance results with the results obtained from real test-bed deployments. One of the 

reasons for that is that simulation studies do not always correctly reflect the physical realities. 

On the other hand, the constantly increasing network requirements in terms of bandwidth, 

robustness, reliability and quality of service for a broad range of multiplatform scenarios 

demand for fast development and implementation of routing protocols that satisfy specific 

user requirements. However, current practices for protocol development and implementation 

are costly and time-consuming, especially when existing knowledge is not properly reused. 

Generative Programming is an attractive solution that makes use of reusable components and 

is also powered with the knowledge to automatically assemble them. This thesis analyzes the 

problem of developing ad hoc routing protocols, proposes an approach to automate the 

development process, and discusses in detail the design and the steps to build the GP-Pro 

protocol generator. GP-Pro is based on Generative Programming and automatically generates 

ad hoc routing protocols according to user requirements, which are expressed by means of a 

specification language. GP-Pro is designed with the explicit goal of generating a large 

number of different protocols by different component combinations and it addresses the 

generation of proactive, reactive and position-based routing protocols ready for deployment.  

 

 To demonstrate the capabilities of GP-Pro, we generated deployable implementations 

of the reactive protocol DYMO, the proactive protocol OLSR and the position-based 

protocol GREEDY. It took about 8 months to develop GP-Pro and to generate the first 

protocol (DYMO), but just about a week to generate the third protocol (GREEDY).  The 

more components are available, the faster the implementation can be achieved. Therefore, 
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generation time is considerably reduced. Through performance evaluation over real 

networks, we show that the generated protocols perform very closely to their handcrafted 

counterparts.  

 

This research work provides the following contributions: 1) A domain specific 

protocol architecture; 2) A component interconnection model; 3) A robust protocol 

specification mechanism; 4) GP-Pro the software tool and; 5) Further insights in related 

fields. 
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Chapter 1 

 

Introduction 

 

MANETs (Mobile ad hoc networks) are infrastructure-less networks where the nodes are 

potentially mobile and communication is achieved wirelessly. Due to node mobility and link 

quality variations, the topology of such networks is potentially highly dynamic, which 

challenges the performance and design of routing protocols. Substantial research has been 

conducted in the field of ad hoc routing protocols and many protocols have been proposed. 

Four protocols have been assigned RFC status by the IETF (Internet Engineering Task 

Force), they are: AODV [1], OLSR [2], TBRPF [3], and more recently DSR [4]. However, 

research is still ongoing, now trying to take advantage of the learned experiences. DYMO 

[5], one of the newest protocols proposed by the IETF, which is a successor of AODV [1], 

and OLSR version 2 [6] are examples of this trend. In order to test and analyze routing 

protocols in a controlled environment under a large range of scenarios, simulation is the tool 

of choice. However, as discussed in [7], the credibility of simulation studies has decreased 

due to simulations being poorly performed and due to a lack of reliable and homogeneous 

scenarios that allow repeatability and fair comparison. Actually, even if the simulation work 

is well done, the results might not match those of real test-bed deployments well, as shown in 

[8, 9] and [10]. One of the reasons for that is that simulation studies do not always correctly 

reflect the physical realities, leading to performance results that do not match what is 

obtained in the real world. Therefore, simulation work is not sufficient, as ultimately routing 

protocols are to be implemented and tested in real test-beds. Thus, real protocol 

implementations are required, even though implementing a protocol is no easy task. 

 

Several approaches have been taken to support and to speed up the development of 

communication protocols, some examples are: X-kernel [11], ACE [12] and PIX [13]. All of 

these approaches are frameworks that support the implementation of protocols for any layer 

in the protocol stack. Therefore, the programmer makes use of the available tools to 
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implement the desired protocol, meaning that the programmer still has to do a considerable 

amount of programming. PIX [13] tries to reduce the amount of additional programming by 

making use of Generative Programming (GP) [14] in order to automate the protocol 

generation process based on a protocol specification. However, only the main architecture of 

the protocol is generated by PIX and it is left to the programmer to code complementary 

functionalities and all of the packet processing. Some other approaches are specifically 

oriented to the domain of ad hoc routing protocols (the domain of our interest) such as ASL 

(Ad hoc Support Library) [15], which is a library that supports the implementation of 

reactive protocols.  

 

In order to advance the state of the art, this research proposes a protocol generator for 

the specific domain of routing in ad hoc networks, which applies Generative Programming 

for the first time to this domain. The generator is called GP-Pro, the Generative 

Programming Protocol generator for ad hoc routing protocols. The objective of GP-Pro goes 

farther than the previous approaches. GP-Pro is designed to generate ad hoc routing protocols 

by assembling existing components, based on user specifications. Consequently, the 

programmer’s job is reduced to selecting the components to build the protocol that she/he 

wants, by means of a specification mechanism. The range of protocol variability that can be 

generated with GP-Pro depends on the number of existing components and their granularity. 

Additional components can be added to GP-Pro at any time as long as they comply with the 

proposed protocol architecture. Therefore, GP-Pro reduces the generation time of routing 

protocols by providing a common architecture that maximizes the reusability of existing 

components. 

 

This idea of implementing routing protocols out of components is a perfect match for 

the current efforts of the MANET working group [16] in the routing area of the IETF, which 

is trying to create several standard features that could be reused by any other routing 

protocol. Some of these features are: 1) The Generalized Packet/Message format, which is a 

multi-message packet format that is expected to be used by routing and other MANET 

protocols; 2) The Neighborhood Discovery Protocol (NHDP) that describes one-hop and 

symmetric two-hop neighborhood discovery and; 3) A Simplified Multicast Forwarding 
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(SMF) mechanism which actually reuses the NHDP. In fact, the DYMO [5] protocol, which 

was chosen to be the first protocol generated by GP-Pro, is described by the IETF to make 

use of NHDP and the Generalized Packet Format. Both of these features could be 

implemented as reusable components. 

 

1.1 Motivation 

MANETs are infrastructure-less networks consisting of wireless nodes that are potentially 

mobile. Due to mobility and wireless connectivity, the network topology experiences 

frequent and continuous changes. However, dynamic topology is not the only challenge for 

MANETs; unidirectional links, asymmetric links, variable transmission ranges, resource 

constraints (e.g., battery, bandwidth), nodes and platform heterogeneity, security, etc., are 

additional scenario-dependant challenges that have to be considered when designing a 

routing protocol that suits the target network. Designing, implementing and testing each new 

routing protocol is an error-prone and time-consuming process that impedes the creation of 

customized protocols to fit specific scenario requirements. As a result, the one-protocol-fits-

all approach tends to be chosen even though it is not best. Therefore, there is a necessity to 

provide tools to rapidly prototype such protocols without starting from scratch every time. 

GP-Pro is proposed as a software tool to support fast prototyping of ad hoc routing protocols 

for real networks based on user specifications. Furthermore, the fact that each protocol is 

assembled out of components provides the capability to interchange specific components 

(performing particular protocol tasks), to better understand their individual impact on each 

networking scenario and to create a broad variety of protocols. 

 

1.2 Domain 

The objective of GP-Pro is the generation of routing protocols for ad hoc networks based on 

user specifications. Furthermore, the specific domain of GP-Pro is the generation of unicast 

routing protocols for mobile ad hoc networks, which make use of a flat addressing 

mechanism for IP-based networks over the Linux platform. Unicast protocols deliver 

information from a single source to a single destination. They are discussed in Section 2.2.2. 
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The reason to focus on unicast protocols and to leave multi-destination protocols aside is that 

unicast routing protocols present enough feature variabilities to analyze their automatic 

generation, based on a common protocol architecture. Also, unicast protocols are the 

preferred choice, over multi-destination ones, when initiating research on any new feature of 

interest (e.g., QoS, energy efficiency). Nevertheless, the generation of multi-destination 

protocols might be a feasible extension for GP-Pro. From now on, whenever we talk about 

protocols generated by GP-Pro, we refer to protocols that belong to the described domain 

only. 

 

1.3 Challenges 

In order to generate a powerful tool such as GP-Pro, several challenges have to be overcome. 

These challenges are listed next: 

1. Domain Analysis – GP-Pro follows a system family approach instead of a single 

system approach in order to generate ad hoc routing protocols. In a single system 

approach, each new member is created from scratch. On the other hand, in a system 

family, all of its members share common properties and have special properties, or 

variabilities, which identify each family member. Consequently, the development of 

components that represent those commonalities allows reusing them to quickly create 

additional family members. Therefore, the commonalities and variabilities between 

all of the possible members of the family have to be identified. This study, called 

domain analysis, is essential in order to create a protocol architecture that 

accommodates a broad range of protocol configurations. 

2. Protocol Architecture – Once the domain analysis is performed, the protocol 

architecture has to be designed. It defines the place that each component (representing 

a protocol feature) holds in the hierarchy of components along with the relationship 

between components and subcomponents. In order to support protocol variabilities, 

the architecture has to be flexible enough to allow removing, adding or swapping 

components and to construct multiple protocols by different component 

combinations. 
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3. Component Interconnection Model – The protocol architecture will allow replacing 

subcomponents for other subcomponents of similar or extended functionality. But, it 

will also allow replacing one subcomponent for several others of finer granularity 

(similar to components, subcomponents might be composed of a set of sub-

subcomponents). This requires an interconnection model that supports multiple and 

varying component levels. The use of well-defined interfaces for each component 

could be too restrictive when replacing components for components of higher 

granularity or extended functionality. However, a minimal set of interconnection rules 

are required to properly combine multiple components. 

4. Extensibility – As mentioned before, the protocol architecture has to be designed in a 

way that fits commonalities and variabilities in the target domain. As a result, and in 

order to confirm its correctness, a few sets of components will have to be developed 

to implement different and complete routing protocols. However, any domain 

analysis can only consider our current knowledge about the characteristics of existing 

routing protocols. Therefore, GP-Pro has to be designed in a way that allows the 

addition of new components that satisfy further user requirements without conflicting 

with the protocol architecture. Or, in the worst case, the architecture should be easily 

adaptable.  

5. Full Protocol Implementations – The existence of a protocol architecture might set 

constraints in terms of either the range of different protocols that can be generated or 

in terms of the ability to generate full protocol implementations. Therefore, the 

protocol generation process and code generator have to be carefully designed. The 

goal is to minimize the amount of coding for each new protocol by maximizing the 

reusability of existing components that fit the proposed architecture. We want to 

generate full protocol implementations whenever all the required components are 

available. 

6. Robust Specification Mechanism – The protocols to be generated by the protocol 

generator are based on user specifications. Therefore, the only way to take full 

advantage of a protocol generator that overcomes all of the previous challenges is by 

providing a specification mechanism that satisfies the specification requirements of 

the user. In addition, it should support matching the specification with the 
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corresponding set of components, in order to generate fully implemented routing 

protocols. Such a specification mechanism has to be created. 

7. Truly Reusable Components – The extent of protocol variability depends on the 

reusability of existing components and subcomponents. Components of low 

reusability could entail constant development of new components. This situation 

would contradict the objective of simplifying the protocol generation process. 

Therefore, components and subcomponents should be implemented in a way that 

supports and encourages reuse.  

8. Efficient Generated Protocols – GP-Pro aims to be a protocol generator that allows 

users to create a broad range of routing protocols and speeds up the generation 

process. Therefore, it will employ generic features, which might represent additional 

costs in terms of performance or efficiency for the generated protocols when 

compared to their handcrafted counterparts (protocols generated without the support 

of generic tools). Therefore, a reasonable trade-off between generation time and 

protocol efficiency has to be achieved and demonstrated. 

 

1.4 Thesis Contributions 

This research addresses all of the challenges listed above, and contributes with a feasible 

solution for each case. The contributions of this thesis are listed next. 

1. Protocol Architecture – The objective of GP-Pro is to be able to generate a broad range 

of routing protocols for MANETs, which involves dealing with different and very 

particular challenges. Some existing approaches in the MANET domain only provide 

support for limited types of protocols such as ASL [15], which only provides support for 

packet handling requirements specific to reactive protocols. On the contrary, GP-Pro 

targets reactive, proactive and localized (position-based) protocols. The proposed 

mechanism, which is based on Generative Programming [14], generates a variety of 

routing protocols by automatically assembling reusable components. Therefore, to 

achieve our objectives, the protocol architecture is designed to provide high flexibility in 

terms of the amount of required components and subcomponents, along with their 

possible combinations to create complete routing protocols. The architecture of routing 
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protocols is described in Sections 3.2 and 3.4. In order to create this protocol architecture, 

first, we identified the commonalities and variabilities between each member of the target 

domain. This study, known as domain analysis, is described in Chapter 3. 

2. Component Interconnection Model – The protocol architecture defines hierarchical 

relationships between components and subcomponents. It also allows interchanging 

components to introduce different or extended functionalities. There are no real 

limitations on the number of components or subcomponents that can be used to 

implement each routing protocol. This flexibility in the architecture is achieved thanks to 

the proposed interconnection model, which provides a generic and well-defined message 

exchange mechanism to achieve communication and cooperation between components. 

Chapter 5 provides a detailed description of the interconnection model. 

3. Robust Specification Mechanism – In order to automatically generate ad hoc routing 

protocols based on user specifications, a robust specification mechanism has been 

developed. This specification mechanism supports different specification levels. It 

supports very simple specifications where no component properties or interconnections 

are specified, and it also supports the most complete specifications where each 

component is re-configured and every interconnection is listed. Therefore, we introduce a 

new specification mechanism, which is supported by a domain specification language 

especially designed for GP-Pro. Sections 6.1 and 6.3 describe the new specification 

mechanism. In this specification mechanism each listed component receives a 

synonym, and that is the way that the component is known along the specification. 

Therefore, the same component can be used more that once in the same specification, 

each time receiving a different synonym. Additionally, each component provides a set of 

configurable properties for further tuning. Consequently, components are not only reused 

to create different protocols; they are also reused inside a same protocol. Section 6.2 

addresses the creation of new components and Section 6.3 discusses their use as part of a 

new specification. Also, Section 7.1 shows actual protocol specifications where 

components (e.g., delivery mechanism n_hops) are reused inside a same protocol, and to 

create a different one. 

4. GP-Pro as a Tool – All of the research work adds up to the creation of GP-Pro, a 

software tool to generate ad hoc routing protocols based on user specifications, which 
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will be available to the research community for their own use. Hopefully, the tool will be 

used and extended while utilized as part of future research projects. The architecture and 

implementation of GP-Pro are addressed in Chapter 4. Three of the most important 

features of GP-Pro are listed next: 

a. Extensibility – During the development of GP-Pro, a few sets of components were 

developed to demonstrate the fact that different types of protocols can be easily 

generated by reusing existing components. The developed components represent 

features that characterize existing routing protocols, which is also a subset of future 

protocol features. However, no matter how large the set of developed components is, 

it will never be complete in the sense of providing all kinds of required protocol 

functionalities. Therefore, GP-Pro is designed as an extensible protocol generator that 

can accommodate forthcoming features by allowing new components to be added at 

any time. Guidelines on how to create new components are given in Section 6.2. 

b. Full Protocol Implementations – Differently from similar approaches to generate 

communication protocols (e.g., [13]), which mainly generate protocol prototypes that 

require further coding, the ultimate contribution is the generation of complete routing 

protocols, where no further adjustments or additional coding has to be performed, 

assuming that all the required components are available. Therefore, GP-Pro reduces 

the generation time by providing a common protocol architecture that maximizes the 

reusability of exisiting components. The output of the protocol generator is source 

code that, once compiled, is ready for deployment. There is no other existing solution 

that aims to achieve that. Section 4.2 discusses implementation issues. 

c. Efficient Generated Protocols – In order to demonstrate the protocol generation 

capabilities of GP-Pro, three routing protocols were generated: the reactive protocol 

DYMO, the proactive protocol OLSR and the position-based protocol GREEDY. The 

time to create the components required to generate each new protocol was 

continuously reduced from months to days, between the first and the third protocol. 

On the other hand, performance comparisons showed that all generated protocols can 

deliver as many packets as their handcrafted counterparts. Therefore, GP-Pro can be 

used to generate routing protocols in a shorter period of time, which achieve same 
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delivery rates than their handcrafted counterparts, at the cost of increased resource 

utilization (as detailed in Section 7.3). 

5. Further Insights in Related Fields – As previously mentioned, GP-Pro is based on the 

concept of Generative Programming, where existing components are automatically 

assembled according to some configuration knowledge. Therefore, the creation of GP-Pro 

demonstrates the applicability of Generative Programming to the field of ad hoc routing 

protocols and it might also lead to further insights into Generative Programming itself. 

Generative Programming is introduced in Section 3.1. On the other hand, current efforts 

of the MANET working group [16] in the routing area of the IETF are oriented towards 

the standardization of features (e.g., a generalized packet/message format) that can be 

reused by several routing protocols. Hence, the design of a generic protocol architecture 

based on components that can be reused and recombined might help to identify additional 

units of standardization at the IETF. Existing standardization units are commented at the 

beginning of this chapter. 

 

1.5 Publications 

The following is a list of publications that resulted from the research work performed on the 

topic. 

 

[1] P. E. Villanueva-Peña and T. Kunz, "OLSR Implementation Using GP-Pro: The 

Automatic Protocol Generator," in Proceedings of the Fourth OLSR Interop and 

Workshop, 2008, pp. 1-5. 

[2] P. E. Villanueva-Peña, “GP-Pro: The Generative Programming Protocol Generator 

for Routing in MANETs,” in Proceedings of the Eighth IEEE Workshop on Mobile 

Computing Systems and Applications, 2007. 

[3] P. E. Villanueva-Peña and T. Kunz, "GP-Pro: A protocol generator based on user 

specifications for QoS routing in mobile ad hoc networks," in Proceedings of the 

Workshop on Generative Programming and Component Engineering for QoS 

Provisioning in Distributed Systems, 2006. 
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[4] P. E. Villanueva-Peña and T. Kunz, "GP-Pro: The generative programming protocol 

generator for routing in mobile ad hoc networks," in Proceedings of the Second IEEE 

Workshop on Wireless Mesh Networks, 2006, pp. 129-131. 

 

1.6 Thesis Organization  

This thesis is organized as follows: Chapter 2 gives an introduction to mobile ad hoc 

networks and routing. It also reviews different approaches to support the development of 

communication protocols including those that are particular to routing protocols for ad hoc 

networks. Chapter 3 introduces the concept of Generative Programming and presents the 

outcomes of the domain analysis. Chapter 4 shows the architecture of GP-Pro and discusses 

the different alternatives that were evaluated for its implementation. GP-Pro generates 

routing protocols by assembling components. Therefore, an essential element for component 

interaction and assembly is the component interconnection model. This model, which is a 

fundamental contribution of this work, is fully described in Chapter 5. Next, Chapter 6 

presents the actual software tool by describing the specification language, the way that 

components are implemented, how to write new specifications and the mechanism to 

automatically complete specifications with missing elements. Chapter 7 addresses the 

evaluation of GP-Pro along with its generated protocols. Finally, Chapter 8 presents the 

conclusions of this work and discusses the potential future work. 
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Chapter 2 

 

Background 

 

The modern times necessity for information anytime/anywhere has been the cause of 

increased interest and increased research efforts in the fields of wireless and mobile 

communications. Mobile ad hoc networks are a special kind of networks where both of these 

fields converge. The potentially highly dynamic topology of MANETs and their unreliable 

transmission medium present new challenges for all layers in the protocol stack; challenges 

that have to be solved differently than for wired and static networks. First attempts to solve 

those challenges usually propose solutions that work well under the chosen scenario but fail 

under different conditions (e.g., higher mobility, variable bandwidth, unidirectional links, 

scarce node energy, etc). Therefore, solutions become very scenario dependant. In the field 

of routing protocols for MANETs, which is the focus of this document, profound research 

efforts have been made and some protocols have been adopted by the community as generic 

solutions (that is the case of the four well-know protocols AODV [1], OLSR [2], TBRPF [3] 

and DSR [4] that all have reached RFC status). However, their performance varies over 

different scenarios, meaning that there is no single best protocol. Therefore, many more 

protocols have been proposed [17] to comply with specific networking requirements, but, due 

to the time-consuming process for designing, implementing, testing, debugging and 

deploying new protocols, they usually do not leave the research lab and most of the time they 

are only implemented inside network simulators. Simulation studies are useful to explore 

protocol behavior in controlled environments, but are not sufficient, as ultimately protocols 

are to be used in real test-beds. One of the reasons for that is that simulation studies do not 

always correctly reflect the physical realities, leading to performance results that do not 

correspond with the ones obtained in the real world. Hence, in order to satisfy the broad 

range of networking scenarios without experiencing long periods of development time, new 

mechanisms to support faster development are needed. 
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This chapter presents the related literature review, focusing on different approaches to 

support the development of communication protocols and it is ultimately oriented towards 

the generation of routing protocols for ad hoc networks. However, before exploring the 

existing work, we introduce the concept of ad hoc networks in more detail along with its 

main characteristics. Also, we introduce routing and we discuss existing routing alternatives 

for MANETs. 

 

2.1 Mobile Ad Hoc Networks 

Mobile ad hoc networks [17] are self-configuring infrastructure-less networks constructed by 

mobile nodes, which communicate wirelessly and are free to move arbitrarily (e.g., 

randomly, in groups, or along pre-planned routes). Therefore, the network topology is very 

dynamic and may change rapidly and unpredictably. Each node in the network behaves as an 

end-host and as a router, and it is expected to carry traffic originated by, or destined to, other 

nodes in the network. The communication between each pair of nodes might be established 

in multi-hop fashion (traversing several nodes) if they are not direct neighbors. The network 

may operate in isolation or may have gateways to interface with a fixed network or the 

Internet. Due to the mobile nature of its nodes, which usually rely on limited power supply, 

energy conservation is an important issue on the design of ad hoc networks. Ad hoc networks 

can grow to several thousands of nodes and because of their high mobility and decentralized 

operation they require reliable and dynamic addressing mechanisms. On the other hand, due 

to the use of a shared wireless communication medium, ad hoc networks might experience 

severe security threats due to eavesdropping and jamming. Ad hoc networks became more 

popular as portable computers and 802.11/Wi-Fi wireless networking became widespread. 

Even though ad hoc networks have been available for more than a decade, their applicability 

has been restricted due to their initial orientation towards combat and disaster relief 

scenarios, which are not part of common and every day situations. However, a new 

application that could increase the applicability of ad hoc networks is their use to extend 

home or campus networks, to areas not easily reached by wireless telephony or by wireless 

local area networks. This application is called opportunistic ad hoc networking [18]. An 

example of an ad hoc network is shown in Figure 1. In Figure 1, the concentric circles around 
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the portable computers represent the omni-directional transmissions, which are commonly 

assumed to be fixed in range, even though real scenarios demonstrate that the range varies 

and that signal does not shape a perfect circle [19] when it propagates. The dotted lines 

represent existing wireless links between nodes. 

 
Figure 1. Example of an ad hoc network 

 

2.2 Routing 

Routing refers to the task of selecting paths in a network along which information could 

travel. This task is performed by the so-called routing protocols. Routing protocols might 

select full paths or just the next node (i.e. the next-hop) to forward the message to, in order to 

eventually reach the target destination by successive forwarding. Therefore, full routing paths 

might be defined by the source node or might be dynamically constructed by multiple nodes 

during message forwarding. Routing information is usually stored by each protocol in a 

repository commonly known as routing table. A complementary repository to support the 

routing task is the forwarding table, which is maintained by the operating system. This 

second table usually contains the information about the network interface to be used and the 

next-hop to forward the message to. 

 

2.2.1 Routing in MANETs 

Routing is a task for which reliable and efficient solutions have been proposed and widely 

used in the field of wired networks. However, when it comes to the field of mobile wireless 
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networks, the routing task becomes more complicated and existing solutions cannot be 

applied. Wired network solutions become inefficient, mainly because of their assumptions of 

a fixed topology and the use of reliable channels, which contradict the mobile and wireless 

characteristics of MANETs. Consequently, routing protocols for MANETs must assume that 

nodes do not have a-priori knowledge about the network topology, which has to be 

discovered. Therefore, the two main ideas to perform routing in MANETs are either that each 

node continuously announces its presence and listens to periodic broadcast announcements 

from its neighbors (even if no message is to be transmitted), or that each node looks for a 

path to reach a specific destination node only when a message is to be transmitted. These two 

ideas give origin to the two main types of routing protocols: proactive and reactive, 

respectively, which are explained later on. [17] discusses some of the characteristics of 

MANETs that make routing difficult. They are listed next:  

 

• Dynamic topologies which may change randomly and rapidly at unpredictable 

times. 

• Bandwidth limitations. 

• Wireless links of variable capacities, which achieve significantly lower capacity 

than wired links. 

• Changes on environmental conditions make the achieved throughput much less 

than the radio’s maximum transmission rate. 

• Low link capacities make congestion a norm rather than an exception when the 

MANET is used as an extension of a higher capacity fixed network. 

• Energy constrained operation of nodes that rely on exhaustible energy sources 

(e.g., batteries). 

• Diminished performance when the network size grows, meaning lack of 

scalability. 

 

2.2.2 MANET Routing Protocols 

Substantial research efforts in the field of routing protocols for ad hoc networks have been 

made. Therefore, a large amount of different routing protocols have been proposed. [20] 
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provides an extensive list of them. Depending on the operation idea behind each routing 

protocol they can be classified as proactive (table-driven), reactive, (on-demand) or hybrid 

(combination of both). Additionally, they can be classified as position-based when supported 

by location information to make routing decisions. Each of these classifications is discussed 

in the following sections. However, before addressing them, we should comment on the 

simplest mechanism to deliver packets to any given destination, which is known as flooding. 

Flooding is also a component of many routing protocols (e.g., [21]) and does not require any 

topological information. The idea behind flooding is that the source node transmits each data 

packet once, and it is retransmitted by each other node in the network, with the hope that it 

will eventually reach the destination node. The great disadvantage of flooding is the high 

network load that it generates even by single transmission sources. Due to the high traffic 

load, several optimizations have been proposed in order to reduce the number of packet 

transmissions (e.g., [22]). An important characteristic of simple flooding is that all the traffic 

sent into the network is composed of data packets carrying user information without sending 

any control packets. Control packets are packets created by each routing protocol to support 

its operation, which do not carry any user information at all. Control packets represent an 

additional network load. However, their size is usually very small when compared to data 

packets. 

 

2.2.2.1 Proactive Protocols 

The main idea behind proactive protocols, also known as table-driven protocols, is that each 

node periodically announces its presence and it also listens to broadcast announcements from 

its neighbors. Each of these broadcasts may contain additional status information about 

neighboring nodes or network links in order to support path computation. The collected 

information is locally stored and paths to every network destination are locally computed and 

available at all times. Therefore, no additional delays are experienced when a routing path is 

needed. Some well-know examples of proactive protocols are DSDV [23], TBPRF [3], and 

OLSR [2]. As an example we describe OLSR [2]. OLSR is a table-driven, link-state routing 

protocol that periodically advertises the links in the network. OLSR optimizes the link 

advertisement process by reducing the amount of advertised links and the number of nodes 

advertising them. OLSR also optimizes the message broadcasting mechanism by limiting 
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message forwarding to MPRs (Multi Point Relays) only. OLSR nodes become aware of one-

hop and two-hop neighbors by continuously exchanging HELLO messages with the list of 

one-hop neighbors. MPR nodes, which optimize broadcasting and support path calculation, 

are selected by each node in the network (called MPR Selector) as the minimum set of one-

hop neighbors that allow reaching every two-hop neighbor. MPRs are the only nodes 

generating TC messages and also the only ones forwarding them. TC messages advertise the 

links between MPRs and MPR Selectors and those links are used by the shortest hop path 

algorithm to construct paths reaching every node in the network. 

 

2.2.2.2 Reactive Protocols 

The main idea behind reactive protocols, also known as on-demand protocols, is that each 

node looks for routing paths only when needed. This process to look for a path to a given 

destination is commonly known as route discovery. Therefore, there is some additional 

transmission delay that is experienced while the route is discovered, but just by the first few 

packets. Some well-known examples of reactive protocols are DSR [4], AODV [1] and 

DYMO [5].  As an example we describe DSR [4]. DSR is a reactive algorithm that quickly 

adapts to routing changes when node movement is frequent and produces little or no 

overhead when nodes move less frequently. In DSR, every source node S wishing to 

communicate with any destination node D initiates a Route Discovery process (if no route to 

D is available). During route discovery, the source node broadcasts a route request message 

targeted to D and every node, other than D, re-broadcasts the message once, while adding its 

own ID to the message header. Any route request message that reaches D contains a path 

from S to D, which is sent back to S by means of a route reply message that follows the 

reverse of the discovered path. Then S sends the data packets to D using the discovered path. 

While data packets are being sent, path maintenance is performed. Assuming hop-by-hop 

acknowledgements (Acks), when any node does not receive the corresponding Ack, it sends 

a route error message to S reporting the link failure. Then, S looks for a different path to D 

and all the cached paths using the broken link are truncated at that link. Every node applying 

DSR maintains a route cache, where every discovered path is stored for a finite period of 

time. 
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2.2.2.3 Hybrid Protocols 

Each of the two previous types of protocols is a better match for different scenarios and 

provides different advantages and disadvantages. Proactive protocols are known to generate 

more overhead, which might be the cause for dropping packets under high network loads. 

However, they provide shorter end-to-end delay under light traffic loads and are preferred for 

short-lived traffic sessions (no route discovery delay). On the other hand, reactive protocols 

are not a good choice for delay-sensitive applications, however they generate less overhead 

and usually provide better or similar efficiency for most common scenarios [18]. Therefore, 

we can say that the best choice is scenario dependant. Hybrid protocols try to take the best 

features of each type and combine reactive and proactive behavior in one single protocol. 

Two examples of this type of protocols are ZRP [24] and HSLS [25]. Both of them share the 

idea that it is more important to have accurate information about the close neighborhood than 

about nodes located at the far distance. As an example we describe ZRP [24]. ZRP divides 

the network into overlapping zones and runs different protocols inside and between each 

zone. Inside each zone, the intra-zone protocol IARP proactively maintains each node 

informed about the zone topology. When the destination node is not located inside the same 

zone, the source node initiates a route discovery by using the reactive inter-zone protocol 

IERP that sends route request messages to the zone-border nodes, which continue the process 

until the destination is found. A key feature of this protocol is the selection of the zone 

diameter size, which defines the boundaries between reactive and proactive operation. 

 

2.2.2.4 Position Based Protocols 

The last classification for ad hoc routing protocols is position based. Position based protocols 

assume that each node is aware of its own location, the location of its neighbors (if beacons 

are used) and the location of the destination. Each node forwards each data packet by making 

local decisions, always trying to forward the packet to a node closer to the destination than 

the current node itself. This kind of protocols relies on a localization technique (e.g., GPS -

global positioning system-) to obtain the location of each node and on a localization service 

that distributes the location of each potential destination node to the rest of the network. The 

location service accounts for the major fraction of the overhead, therefore, it has to be 

efficient. Some well-known position-based protocols are DREAM [26], LAR [27] and GFG 
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[28]. As an example we describe GFG [28]. GFG is a position-based protocol that combines 

and switches back and forth between Greedy [28] and FACE [28] protocols. Greedy [28] is a 

routing algorithm that achieves high delivery ratios by forwarding packets to the neighbor 

that is the closest (in Euclidean distance) to the destination node. However, it does not 

guarantee packet delivery. On the other hand, FACE [28] is a routing algorithm that 

guarantees packet delivery, but causes large delivery delays. The combination of both 

produces a lower delay routing algorithm that guarantees packet delivery. GFG applies 

FACE whenever Greedy fails to find a node closer to the destination than the current node 

itself, and switches back to Greedy once FACE finds a closer node. FACE performs routing 

over a connected planar graph called Gabriel Graph (GG). The GG is extracted from the 

network graph, it is locally and independently computed by each node, and partitions the 

plane in faces made up of links of the network graph. FACE performs routing by traversing 

the faces (using the corresponding network links) that overlap with an imaginary line from 

the source to the destination node. 

 

2.2.3 Path Computation Metrics 

In all of the previous routing protocols given as example, the topology of the network (full or 

partial) is always obtained first (proactively or reactively) and based on it the routing path is 

determined. Assuming that the best way to reach a destination node is by taking the shortest 

path, the shortest path algorithm, which uses the minimum hop count as its metric, tends to 

be the favorite choice. However, [29] shows that such an assumption might not hold under 

realistic scenarios where link quality varies drastically. Therefore, additional metrics other 

than the minimum number of hops should be used to create more reliable paths. These new 

metrics could be based on link status (e.g., link quality, link bandwidth), node status (e.g., 

node energy, buffer size) or network status (e.g., network load) information. [30] discusses 

and compares different link-quality metrics. These metrics are: ETX [31] (Expected 

Transmission Count), Per-hop Round Trip Time and Per-hop Packet Pair Delay. They are 

compared against the minimum hop count metric. In terms of node status information, [32] 

proposes to use the transmission power required to transmit each message and the remaining 

load battery at each node, as metrics. Therefore, different and even multiple metrics could be 
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combined to determine the best routing paths based on the specific requirements of each 

network, and on specific characteristics of the operation environment.  

 

2.2.4 QoS Routing 

Most of the routing protocols for ad hoc networks are best-effort protocols. Best-effort means 

that there are no guarantees that data will be delivered, or that traffic will be given a certain 

priority, or that a certain Quality of Service (QoS) level will be provided. In best-effort 

protocols, all of the traffic receives the best possible service but without guaranteeing a fixed 

bit rate or delivery time, which depend on the current network load. However, current 

applications such as multimedia or voice over IP, require QoS levels that guarantee a 

minimum bit rate and data flow priority. Guaranteeing QoS levels in multi-hop ad hoc 

wireless networks is very challenging due to channel quality fluctuations, packet contention 

on adjacent links, long-range interference and packet collisions. The most commonly used 

quality of service metrics in MANETs are: bandwidth, delay and jitter. In order to 

incorporate quality of service guarantees in ad hoc routing protocols, some of the existing 

protocols have been modified. An example is [33], where a QoS extension for DSR is 

proposed. On the other hand, some protocols have been specifically designed with the goal of 

providing QoS. That is the case for CEDAR [34] (Core Extraction Distributed Ad hoc 

Routing) and TBR [35] (Ticket Based Routing).  

 

2.2.5 Routing Summary 

Section 2.2 and its subsections introduced routing in MANETs, discussed its challenges and 

reviewed the main types of ad hoc routing protocols. This review, along with the examples of 

path computation metrics and the discussion about QoS routing, show a glimpse of the broad 

range of design choices for unicast routing protocols. In fact, this range of choices increases 

every time that a new protocol feature is proposed. New features translate into new 

variabilities that can be further combined to create new routing protocols. Therefore, the 

domain of unicast routing protocols provides enough variability to be chosen as the target 

domain of GP-Pro. 
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2.3 Literature Review 

This review looks into the field of alternative methods to generate software applications 

(other than developing from scratch), which can be applied to the generation of routing 

protocols. The discussed alternatives are organized, in increasing order, according to the 

support that they provide to achieve the generation of complete applications. The first 

alternative is the use of libraries that provide a large set of commonly used functions and 

methods. The drawback of this approach is that it might not provide methods that are 

specialized enough for the desired application domain (the ASL [15] library presented in 

Section 2.3.1 is an example). A second alternative for the development of software 

applications is the use of frameworks, which, according to [36], are reusable “semi-

complete” applications that can be specialized to produce custom applications. These 

frameworks usually define the main software architecture or the interfaces between its 

elements, which have to be implemented by every application. Even though frameworks 

offer an attractive and faster approach for developing highly specialized applications, there is 

still a lot of work that has to be done by the application developer. A third alternative is the 

use of component-based software engineering, where existing components, which are mainly 

treated as “black boxes”, are used to build the software applications. This approach is very 

attractive if enough fine-grained components that can be used to construct a broad range of 

applications are available. However, some challenges for this approach still exist, such as the 

need for selecting and properly interconnecting the components building the application. One 

of the recent and more attractive alternatives is called Generative Programming. Generative 

Programming still makes use of components but it is also powered with the knowledge to 

automatically select and assemble those components. The selection of components is based 

on the user requirements, which are expressed by means of a specification language. 

Generative Programming tremendously reduces the development time, and the built-in 

knowledge considerably decreases the probability of errors introduced by the software 

developers. Generative Programming strongly supports the concept of automatic generation 

of applications, given that a language to specify user requirements exists and that the 

software generator can understand it. Finally, research projects that make use of specification 

languages for automatic code generation, along with existing frameworks for the specialized 

area of ad hoc routing protocols are reviewed.  
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2.3.1 Function Libraries 

Each programming language provides a set of libraries with implementations of the most 

commonly used functions and methods. Those functions and methods are specialized for the 

same domain that the programming language targets, which tends to be somehow generic. 

Therefore, it is not common to find libraries that are specialized enough for a specific 

domain. Looking at function libraries for the domain of ad hoc routing protocols we find 

ASL [15] (Ad hoc Support Library). ASL supports the implementation of reactive protocols. 

Reactive protocols require intercepting packets at the kernel-level for packets with no routing 

path towards the destination; otherwise, such packets would be dropped and never delivered. 

To avoid modifications at the kernel-level and the need to recompile the kernel, a small 

loadable kernel module is used to provide kernel interaction. ASL is provided as a user-space 

library. ASL provides useful functions, but is only helpful when developing reactive 

protocols.  

 

2.3.2 Frameworks 

A framework is defined in [36] as a reusable “semi-complete” application that can be 

specialized to produce custom applications. [37] says that it is a partially complete software 

system that is intended to be instantiated, which defines the architecture for a family of 

systems and provides the basic building blocks to create them. It also defines the places 

where adaptations for specific functionality should be made. In contrast to earlier object-

oriented reuse techniques based on class libraries, frameworks target particular business units 

and application domains. Their benefits come from the modularity, reusability, extensibility 

and inversion of control they provide to developers. Encapsulating implementation details 

behind interfaces provides modularity, which helps to improve software quality by localizing 

maintenance and design modifications. Frameworks enhance reusability by providing generic 

components that can be reused to create new applications. These generic components 

encapsulate the knowledge of experienced developers and avoid re-creating and revalidating 

common solutions. Providing hook methods that allow applications to expand a framework’s 

stable interfaces enhances extensibility. The inversion of control at run-time allows the 

framework (e.g., Netfilter [38]) to determine which application methods should be invoked in 
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response to external events. Finally, the main objective of frameworks is the acceleration and 

the cost-reduction of the development process. However, beyond all those advantages, 

frameworks face challenges such as portability among multiple platforms, rejection from 

software developers and lack of specialization for more complex domains. 

 

Regarding available techniques to extend frameworks, they can be classified into 

white-box and black-box frameworks. White-box frameworks rely on object-oriented 

language features such as inheritance and dynamic binding to achieve extensibility. In 

contrast, black-box frameworks support extensibility by defining interfaces for components 

that can be plugged via object composition. Black-box frameworks are easier to use but 

harder to develop because components have to anticipate a wide range of possibilities.  

 

The most common type of framework is the one based on object-oriented 

technologies. Object-oriented application frameworks have been used for years. One example 

is the X-kernel [11], which is an operating system architecture for constructing and 

composing network protocols. The X-kernel integrates the following features: 1) a uniform 

set of abstractions for encapsulating protocols, 2) structured abstractions for the most 

common patterns of interaction, and 3) support for primitive routines that are applied to 

common protocol tasks. The X-kernel views a protocol as a specification of a communication 

abstraction through which collections of participants exchange a set of messages. The main 

advantages of the X-kernel are that the architecture simplifies the process for implementing 

protocols in the kernel and that the kernel can be configured with only those protocols 

needed by the application. Every X-kernel configuration contains one protocol for each layer 

of the protocol stack. Each protocol is implemented by the user as a collection of C source 

files, and the implementation has to comply with the abstractions or interfaces that allow 

interaction between protocols. X-kernel is not specialized for any kind of communication 

protocols. Therefore, the lack of specialization is reflected by the fact that the whole protocol 

has to be implemented by the user and has to match with the layer interaction rules.  

 

ACE [12] (Adaptive Communication Environment) is another object-oriented 

framework, whose main objective is to be cross-platform. It targets high-performance and 
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real-time communication services and applications. ACE is written in C++ and provides a set 

of reusable wrappers and components that help developers navigate between the limitations 

of inflexible and non-portable low-level native OS (Operating System) APIs (Application 

Programming Interfaces), and inefficient and unreliable higher-level middleware. The 

components in ACE provide implementations of common communication tasks (e.g., 

connection establishment, service initialization, IPC, synchronization, etc.). ACE also 

provides a standard library of distributed services that are packaged as self-contained 

components, which demonstrate common use-cases and provide reusable implementations of 

common distributed application tasks (e.g., naming, synchronization). In summary, ACE 

provides multiple aids to implement cross-platform communication protocols. But, still the 

implementation has to be done by the user.  

 

Another cross-platform framework that provides an API (Application Programming 

Interface) and its own model to implement communication protocols is XORP [39] 

(eXtensible Open Router Platform). XORP aims to bridge the gap between network research 

and Internet practice by providing a software platform where communication protocols can 

be implemented. This platform also allows protocols to be used as the core of practically any 

router that can be incorporated into operational networks. XORP aims to integrate the 

developed protocols into operational networks, but again, the protocols have to be manually 

implemented by the user.  

 

2.3.3 Component-Based Software Engineering 

A step forward towards generating complete applications is the assembly of fully functional 

components. Component-based software engineering (CBSE) relies on software reuse and 

emphasizes on the decomposition of systems into functional components with well-defined 

interfaces. Such interfaces are used for communication with other components. Components 

are considered much more abstract structures than objects because instead of sharing states, 

they communicate exchanging messages. Therefore, when systems based on components are 

constructed, components are treated as “black boxes”. When using components, two features 

become very important. The first of them is the level of granularity. In general, fine 

granularity of components allows higher reusability than coarse granularity, achieving a 
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larger number of different combinations and different systems. The second feature is the 

design of interfaces between components, which also defines the way that components 

interact. Actually, there exist programming languages like Midas [40] which have been 

specifically designed to define the styles of interaction between components. Once the 

components are available, they can be configured and plugged together (e.g. using visual 

tools or mark-up languages), to create new applications. 

 

[41] examines the usefulness of component-based software engineering for the 

implementation of software communication systems and explores visual programming as a 

feasible and rapid prototyping alternative for network protocols. [41] makes use of Java 

Beans as components and Visual-Age for Java as the visual tool for specification and 

configuration of components. Events connect Java Beans, meaning that events trigger events 

on some other beans. The main goal is flexibility to build a variety of protocols out of 

existing components. Once the Java Beans are available, protocols are built by connecting 

components and setting up some of their features using the drag-and-drop graphical interface. 

The authors identify granularity and interface design as the most important issues to achieve 

flexibility, and suggest that to achieve reusability, components must be largely de-coupled 

and autonomous. Fine-granularity components simplify implementation and achieve higher 

reuse. Coarse-granularity components built from a set of fine-granularity components are 

rarely reused. The architecture presented in [41] supports re-use and introduces a visual tool 

for component assembly. However, the implemented protocols have to be run on top of a 

proprietary runtime system that does not match with the commonly used layered protocol 

stack, meaning lack of compatibility. Additionally, no performance results of any 

implemented protocol are provided, which forbids the verification of the architecture 

contributions. 

 

Another well known architecture based on components is the Click router [23]. Click 

is an architecture for building flexible and configurable routers. Every router is assembled 

from packet processing modules called elements, which perform simple functions like 

classification, queuing and scheduling. Therefore, a Click router may be represented as a 

directed graph with elements as vertices and packets traveling along the edges. Each element 
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inside a router is a C++ object. The router configurations are created using the Click 

language, which creates elements and defines how to interconnect them. Either an in-kernel 

driver or a user-level driver can run Click configurations in Linux. Because each element is a 

packet processor, if a routing table is required (routing tables do not process packets by 

themselves), it is encapsulated inside the element making the routing decisions. The same 

applies to any other algorithm performing tasks different from packet processing. Some of 

the most common ad hoc routing protocols have been implemented using Click, such as: 

DSR [42], OLSR [43] and DSDV [44]. However, due to the packet processing nature of the 

Click components, the entire routing protocols have to be implemented inside only one or 

two components, meaning that no modularity for their implementation is supported, and the 

whole protocol implementation has to be performed by the user.  

 

In the specific domain of ad hoc routing protocols, another research project attempts 

to create routing protocols by assembling components: the Component-Based Routing (CBR) 

[45]. CBR is inspired by the fact that protocol performance changes and even degrades with 

changes on the environmental conditions and that the current research efforts have not been 

able to explain the performance differences between existing protocols. CBR provides a 

collection of elementary modules with various capabilities, limitations and efficiency that 

support adaptation and can be manually combined. The objective is to fully understand the 

impact of each component on the performance of the entire protocol and to understand when 

and why the protocol works well over different operating environments. The ultimate goal of 

the project is to systematically design a set of routing protocols that are specifically designed 

to operate under rough military conditions (network security is one of the main concerns). 

However, CBR does not consider automatic assembly of components nor does it provide a 

mechanism for protocol specification, which GP-Pro does. Actually, if the CBR components 

were ready and available to the research community, it could be a complementary effort 

beneficial to GP-Pro.  

 

2.3.4 Generative Programming 

PIX [13] is the first attempt to use GP in network protocol development. PIX is a framework 

to generate protocol stacks that attempts to solve the problem of reprogramming similar 
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protocol behaviors at different layers of the protocol stack and the problem of combining 

good solutions, proposed by different frameworks, to solve complementary concerns. PIX 

was inspired by the X-Kernel [11]. Therefore, it models families of telecommunication 

protocol stacks by using abstractions of the same protocol components proposed by the 

former (session, protocol, participant, map, message, event and union interface). During the 

implementation process, components with parameters are represented by C++ class 

templates. The assembly of any specific protocol results from the composition of a series of 

components and the information provided by the configuration repository. The output 

provided by PIX is not the fully implemented protocol; instead it is a prototype with the PIX 

architecture related code for the desired protocol. The generated code requires to be 

complemented with the specific functionalities (e.g., message interpretation rules) of each 

communication protocol in order to obtain a fully functional version. [46] uses the File 

Transfer Protocol (FTP) to compare the performance of PIX and the X-kernel in terms of 

latency, throughput, CPU time and memory usage. Results show very light additional 

measurable cost experienced by PIX. These results encourage the use of Generative 

Programming due to its high degree of configurability. In terms of ad hoc routing protocols, 

an implementation of DSR with IPv4 using PIX is available in [47]. In this implementation, a 

route discovery is initiated for each session and there is no interaction with the OS kernel. 

 

The increased interest on accelerating software development procedures in general, 

while building bug-free applications that reuse previous solutions and that are easy to 

maintain, has brought into picture several development paradigms. Generative Programming 

is one of them and perhaps the most promising in concept. However, another approach which 

is very close to Generative Programming is Model Driven Development (MDD) [48, 49], 

which attempts to fully capture the most important properties of software systems through 

models. These models are abstract representations of the system and its environment of 

interaction. The advantage of MDD is that its models can be compiled into implementation 

code that can be deployed. Lately, MDD models have been represented by DSLs, a fact that 

narrows the gap between GP and MDD. As the author of [48] explains, the main difference 

between MDD and GP is the focus of GP on system families, which is not the case for MDD. 

The advantage of this similarity is that MDD tools can be utilized for GP projects. An 
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important example of such a tool is the oAW (OpenArchitectureWare) framework [50], 

which has been widely adopted by the software development community. 

 

2.3.5 Automatic Code Generation 

As mentioned above, when automatic protocol generation is the goal, a code generator that 

takes the protocol specification in the corresponding DSL format as an input is required. 

Different combinations of tools and programming languages have been explored. Some of 

them are discussed next.  

 

The work presented in [51] does not focus on the generation of source code for 

communication protocols. However, the approach taken could be transparently applied and 

that is why it is discussed here. [51] presents an automatic multi-output generator based on 

XML (eXtensible Markup Language). The output is not only constrained to code generation, 

it also generates user information in HTML (Hypertext Markup Language) format. The 

objective is to model intelligent instruments. From a graphical modeling of the intelligent 

instrument, a global generic device description file is manually created in XML format (the 

specification). The XML file can be easily transformed into any other type of file (e.g. 

HTML, C, C++, Java) by applying a set of transformation rules. These rules are expressed by 

using the XSLT (eXtensible Stylesheet Language Transformation) and are stored in XSL 

(eXtensible Stylesheet Language) files. Each XSL file appears almost as a conventional file 

written in the target transformation language. For example, an XSL file dedicated to 

transforming an XML file into a C++ file is essentially C++ source code. This approach 

allows specification independency from the target implementation language, meaning that if 

an XML file represents the instrument, source code for any implementation language can be 

created if the corresponding XSL transformation file is generated. The XML description is a 

listing of the services provided by the instrument. Each service is associated with a piece of 

C code that is loaded from a library by an XSLT transformer. This approach could be easily 

applied to communication protocols, as done in [52], which generates protocols out of a 

specification in XML. In this case, the source code is the only output. In [52], XML is used 

to manually create the specification of protocols described through Finite State Machines 

(FSMs) and XLST is used to transform the specification into Java source code. Interestingly, 
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[52] suggests that protocol specifications in XML could be easily distributed over a network, 

so that code could be automatically generated at a remote network node. This approach could 

be useful for distributing new versions of any protocol over an existing network.  

 

In the literature, there is a lot of work in the area of verification and automatic 

generation of security protocols. An example of it is [53], which presents a project that 

explores the following three areas of automatic generation: specification generation, protocol 

verification and implementation (code generation). In [53], the protocol generator provides a 

GUI for the user to define desired security properties and system requirements. Once the 

input has been provided, the protocol space is explored to find all possible protocols and a 

protocol screener is used to verify that the security properties are satisfied. Finally, the code 

generator translates the protocol specifications into an internal data structure, which is 

translated again to produce the source code. The code generator generates a Java class file 

implementing the party's actions for each party of the security protocol. 

 

GP-Pro aims to generate routing protocols for ad hoc networks from a user 

specification while providing its own specification language and the entire protocol 

generator. Two other projects, which also provide its own specification language and are also 

oriented towards fast prototyping are OverML (Overlay Modeling Language) [54] and P2 

[55]. However, both of them are applied to the domain of overlay networks. An overlay 

network is a network built on top of another network, where nodes can be thought of as being 

connected by virtual or logical links in the underlying network. Each of these links might 

correspond to a path, perhaps built by many physical links. Both projects treat the network as 

a distributed database where the nodes act as information repositories that are queried by the 

overlay network to achieve specific tasks. Each project provides its own specification 

language, and both of them are similar to a database query language. Additionally, both 

projects provide a downloadable version to try out, but in a very early development stage 

(alpha and sub-alpha versions, respectively). Due to goal similarities between these two 

projects and GP-Pro, the possibility to adapt any of them to the domain of MANET routing, 

in order to reuse the specification languages or the implementation tools, was analyzed. 

However, the difference with respect to the target domains, and the fact that the main 
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challenges for overlay networks focus on network topology selection and maintenance, rather 

than on path determination, limits a possible adaptation of the aforementioned projects to our 

target domain. Therefore, the reuse of P2 or OverML to create GP-Pro would not be 

transparent and significant effort would be required without any guarantees that all the 

particular features of routing protocols for MANETs could be supported. Actually, the 

outcomes of P2 and OverML (meaning the generated overlay networks), both require to be 

run on top of a proprietary runtime system (because the output is not source code ready for 

deployment), which does not match with our goal of generating protocols ready for 

deployment. Consequently, we concluded that no real benefits could be obtained by reusing 

P2 or OverML, so, we proceeded with the design of GP-Pro based on Generative 

Programming. 

 

2.3.6 Frameworks for Ad Hoc Routing Protocols 

After reviewing the different alternatives that are available to automatically generate 

communication protocols, we next review the alternatives that are specially designed for ad 

hoc routing protocols, which are actually scarce. 

 

A portable, user-level framework for ad hoc routing written in C++ is proposed in 

[56]. The authors make use of a SOCKS proxy that handles client requests and then uses an 

implementation of an ad hoc routing protocol at the application layer to provide routing. 

Implementations of DSR and flooding are discussed. The framework also provides an 

integrated simulator that allows new routing protocols to be tested and the code moved to 

production deployment without further modifications. The only requirement is that the 

implementation be linked with a routing environment such as SOCKS. The objectives of the 

framework are rapid implementation and testing over the integrated simulator. Reduced 

configuration, portability between different operating systems and Internet connectivity are 

also part of the goals for the routing protocol. The authors claim that testing on Windows 

laptops was successfully done, but no performance study is presented. This framework seems 

to be very useful for testing purposes; however, in terms of the mechanisms or tools to 

implement each routing protocol, the framework does not provide many. It only forces the 
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routing protocol to implement a routing interface for message handling, and the entire routing 

protocol has to be implemented by the user.  

 

The interest shown in [56] to use the same implementation source code for simulation 

and for the actual protocol deployment on a real network is shared by [57] and [58]. [57] 

investigates how to port a deployable implementation of AODV for real networks to the 

well-known network simulator NS-2 [59]. [57] identifies the modifications that have to be 

made to the deployable source code along with the additions to be made to NS-2 in the form 

of patches. Therefore, additional deployable implementations of ad hoc routing protocols 

could be simulated in NS-2 by using [57] as guideline. In fact, [60] provides a deployable 

implementation of DYMO [5] called DYMOUM that can be simulated in NS-2 as well, 

which follows the same approach. On the other hand, [58] initiates the migration of a 

protocol implementation from the NS-2 end towards the deployable version. [58] provides a 

system environment called PRAN (Physical Realization of Ad hoc Networks), where NS-2 

implementations of ad hoc routing protocols can run unmodified at the user-level as long as 

the simulation code implements specific programming interfaces that are claimed to be a 

normal part of NS-2. [58] discusses the modifications to be made to the operating system 

kernel in order to support PRAN using Linux and FreeBSD (Free Berkeley Software 

Distribution) kernels as examples. The authors claim that PRAN is easy to port across 

multiple operating systems, including Windows.  

 

2.4 Summary 

This chapter provided the background in the two main fields addressed by this research 

document which are: routing in ad hoc networks, and the existing alternatives to support the 

implementation of ad hoc routing protocols. We introduced the concept of MANETs along 

with their particular characteristics. We also discussed routing and its challenges in the 

MANET domain and the classification of routing protocols, along with protocol examples. In 

terms of tools to support the development of communication protocols, we described the 

main development approaches, which are either based on libraries, frameworks or 

components. Or, on the software generation paradigm called Generative Programming that 
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we propose to be used for the generation of ad hoc routing protocols. From this review we 

notice that most of the alternatives are oriented to very general domains without real 

specialization, which limits the provided support. On the other hand, in regards of the 

specific domain of MANET routing, the only tool available is the ASL [15] library. 

However, it only provides support for one type of routing protocol, the reactive type. 

Therefore, the innovative contribution of GP-Pro is to apply Generative Programming to the 

specific domain of MANET routing, in order to provide generation support for ad hoc 

routing protocols. It does so as a protocol generator that can assemble existing components 

according to a user specification, and that also aims to generate full protocol 

implementations. Such a generator also allows to be further extended to keep up with the 

evolution of the target domain along with its forthcoming requirements. 
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Chapter 3 

 

Domain Analysis 

 

The previous chapter presented a comprehensive literature review about supportive tools and 

mechanisms to accelerate the development of communication protocols, existing approaches 

to automate code generation, and, more importantly, the related work strictly focused on 

routing protocols for ad hoc networks. Next, we have to identify the protocols to be 

generated by GP-Pro along with their commonalities and variabilities. As mentioned before, 

the way to do so is by performing a Domain Analysis. Such a domain analysis is presented in 

this chapter after Generative Programming is introduced. To identify the commonalities and 

variabilities of the target protocols, most of the well-know protocols were considered (e.g., 

DSR [4], AODV [1], OLSR [2], DYMO [5], etc) along with some other protocols presented 

in several surveys (e.g., [61, 62]). 

 

3.1 Introduction to Generative Programming 

Generative Programming addresses the automatic selection and assembly of components on 

demand. It is a response to the fact that the current object-oriented technology does not 

support reuse and configurability in an effective way. The use of a system family approach 

instead of the one-of-a-kind approach supports the creation of reusable components. The 

assembly of components is automated based on configuration knowledge. Component-based 

software engineering current practice generates software from components too. However, the 

selection of the right components and their interconnection has to be manually performed. 

These tasks might require a lot of effort from the user, especially when the chosen 

components are not a perfect fit and component adaptation is required. GP intends that the 

programmer only states what she/he wants in abstract terms and the generator produces the 

desired system. However, this scheme only works if the components are designed to fit a 
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common architecture and if the configuration knowledge to translate abstract requirements 

into sets of components is built-in inside the generator. 

 

To support Generative Programming and to produce reusable components, it is 

necessary to focus on families of systems rather than single systems. The author in [63] states 

that a set of programs constitutes a family whenever it is worthwhile to study programs from 

the set by first studying the common properties of the set and then determining the special 

properties of the individual family members. The domain analysis presented in this chapter, 

which is performed for the domain of ad hoc routing protocols, identifies these 

commonalities and variabilities that support the design of GP-Pro. In order to produce the 

software components, there is a need to differentiate between development for reuse, better 

known as Domain Engineering, and with reuse, better known as Application Engineering. 

Application Engineering focuses on a single system rather than a system family. It develops 

software products from reusable software components created by the domain engineering 

process and provides feedback to improve their reusability. Domain engineering [64] is 

concerned with the development of the reusable assets (e.g., components), and is the process 

to follow in order to create application families. Increased productivity is the main reason for 

doing domain engineering. Domain analysis, domain design and domain implementation are 

the steps that compose domain engineering. 

 

Domain analysis involves domain scoping and feature modeling. Domain scoping 

identifies which systems belong to the family and which do not. The outcome of this step is 

often referred to as a product line. On the other hand, feature modeling identifies all the 

commonalities and variabilities across the domain. The commonalities represent the potential 

savings or productivity increase. Commonalities mean standardizing, which promotes 

increased productivity and efficiency. However, the negative aspect of commonalities is that 

each of them may constrain or shrink the size of the family. On the other hand, the 

variabilities represent the features that change between the family members. Variabilities 

promote variation and larger product families. The second phase of domain engineering, 

called domain design, focuses on the development of a common architecture for the system 
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family. Finally, domain implementation is the creation of components and tools (e.g., the 

actual application generator) to generate the customized applications in the domain. 

 

Once the components have been generated throughout the domain engineering 

process, the mapping from the abstract user requirements to the assembly of the right set of 

components has to be performed. This assembly process is to be automated and the 

configuration knowledge, which maps between problem and solution space, is the key. The 

problem space consists of the application-oriented concepts and features used by the 

programmers to express their needs. The solution space consists of the implementation 

components and all of their possible combinations. The configuration knowledge consists of 

default settings, default dependencies, illegal feature combinations and construction rules and 

it is implemented using generators. 

 

However, to achieve automatic protocol generation using Generative Programming, 

additional generation elements are required. First, a DSL or a visual tool to allow user 

specifications is required. Second, a code generator is needed that takes the protocol 

specification in the corresponding DSL as an input, and returns the source code as an output. 

Finally, the generated code should be compiled with the corresponding compiler (language 

and platform dependant) in order to be deployed. Furthermore, the availability of an 

automatic protocol verifier (e.g., [65, 66]) to check the correct functionality of the generated 

protocols could be a valuable addition. However, protocol verification is a separate and 

challenging field of research on its own. 

 

3.2 Domain Architecture 

The domain architecture is the outcome of the domain design phase, and represents the 

common underlying architecture of unicast routing protocols for IP based mobile ad hoc 

networks. GP-Pro envisions the generation of proactive, reactive and position-based 

protocols. The domain architecture is shown in Figure 2 and it is modeled by abstractions 

(that we refer to as components) for collecting, distributing, storing and processing routing 

information that is utilized to determine the “best” existing path towards any routing 
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destination. Figure 2 shows nine main components, (the boxes with the diagonal line in the 

upper left corner) which are expected to satisfy every ad hoc routing protocol requirement 

within the chosen domain. Each of these main components is constructed from n 

subcomponents (n≥0), also called first-level subcomponents, and each subcomponent might 

be constructed from m sub-subcomponents (m≥0), also called second-level subcomponents. 

There are no limitations on the number of subcomponent levels that each component can be 

broken into, as long as they are compatible and satisfy the expected functionality of the main 

component. Each of the main components is described next. 

 

 
Figure 2. GP-Pro domain architecture 

 

• MAnager for DIstribution of Network Information (MADINI): Keeps control of the 

information that is pro-actively distributed over the network (e.g., one-hop neighbor 

info), how often (e.g., timer based) and which node-specific information is to be 

included. This component is essential for proactive (table-driven) routing protocols. 

Timers and triggers based on network status changes are the criteria to distribute any kind 

of information. Every piece of information that is to be distributed over the network is 

assembled, as an “information subcomponent”, into the manager and is associated with a 

delivery mechanism in particular. Each information subcomponent defines a different 

kind of network information to be distributed and also knows how to process it, whenever 

it is received. Each subcomponent could provide its own data repository (i.e., the 

cylindrical figures) if required. Some examples of information subcomponents are: one-
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hop neighbors, known links in the network, node-specific information such as battery 

power, or link-specific information such as link quality. 

 

• Delivery mechanisms: Defines the mechanisms that can be used to forward any control 

packet that is ready for transmission. The range of options goes from one hop 

transmission and simple flooding to more efficient mechanisms such as multipoint relays 

[2] or dominating sets [67], where only a pre-computed set of nodes retransmits each 

message. Unicasting can be also used in some scenarios. 

 

• COllector of Network Information on-demand (CONI): This component mainly 

resembles the route discovery process of on-demand routing protocols but it is more 

general. Its function is to obtain different kinds of information that might be needed by 

the protocol and that are expected to be available somewhere in the network. It is 

essentially composed of five subcomponents which are: 1) Initiation of information 

collection (e.g., Initiation of Route Discovery), 2) Information Request (e.g., Route 

Request), 3) Information Reply (e.g., Route Reply), 4) Notification of changes on 

collected information (e.g., Route Error), 5) Total invalidation of collected information 

(e.g., Route Erasure [68]). This component is essential for reactive (on-demand) 

protocols. 

 

• Additional computations: Different routing protocols might make use of very particular 

computations or algorithms to perform tasks that are essential for them. These 

computations can be called by any component or subcomponent at any time or can be 

scheduled to run at specific time intervals. Each additional computation subcomponent 

might provide its own data repository (i.e., the cylindrical figures) if required. Algorithms 

to compute distribution structures such as MPRs [2] or dominating sets [67] exemplify 

the subcomponents building this component. 

 

• Operating system interface: This component provides an interface between the routing 

protocol and the operating system. It allows interaction with the forwarding engine of the 

OS; provides the functionality for processing packets before they reach the OS 
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forwarding engine (pre-forwarding processing); and supports the exchange of control 

packets. Pre-forwarding processing is required by protocols that do not maintain an 

updated routing table and require initiating a protocol process whenever a packet is ready 

for transmission or by protocols that require performing special packet header processing 

(e.g., DSR [4]). It applies to reactive and position-based protocols. 

 

• Path determination: Depending on the applied mechanism to collect network 

information, this component either computes (from stored information) or selects (from 

multiple route replies) a route towards a particular network node. Different metrics can be 

applied to determine the “best” path towards the destination node. Some examples of 

metrics are Minimum Hop Count, ETX [31], power-based metrics [67], geographic 

progress [28], etc. Therefore, path determination depends on the chosen metric. Path 

determination is not particular to proactive protocols; reactive protocols use it as well. 

Depending on the kind of protocol, a routing table may be continuously updated.  

 

• Routing Information Repository (RIR): Its function is to store the data particular to the 

operation of the routing protocol. The RIR is designed to host all of the different data 

repositories used by the different components building the routing protocol. It resembles 

a database that stores multiple data tables. It also provides generic methods, available to 

every routing component, to process queries aimed to retrieve, insert, update or delete 

data entries from any of the repositories. Each of these repositories is assembled as a RIR 

subcomponent and each of them provides the names and types of its data fields. 

 

• Event manager: The event manager provides a mechanism for scheduling tasks that are 

launched after a certain period of time such as the distribution of network information 

messages (at periodic intervals), performing any of the periodic additional computations, 

or expiring soft states (e.g., route discovery, routing table entry). 

 

• Location information: The location component is in charge of providing the location 

information of the node itself. The location information can be obtained by any absolute 
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positioning system such as GPS, or by any relative positioning system (e.g. based on 

signal strength). 

 

3.3 Feature Modeling 

Even though feature modeling was performed before the domain architecture was created, we 

believe that by addressing them in reverse order, they can be better explained and 

understood. Therefore, once the domain architecture has been presented, now we discuss 

feature modeling. Feature modeling identifies the commonalities and variabilities across the 

domain. The result of it is a feature diagram, which captures the important properties of the 

domain and that complements the previously described GP-Pro domain architecture. It is at 

the feature level where decisions can be made to define particular members of the ad hoc 

routing protocols family. Figure 3 shows the corresponding feature diagram. The root 

element of the diagram represents the domain or concept; the leaf nodes represent its 

features. The filled circles on top of the features indicate mandatory features; the empty 

circles indicate optional features. A filled arc connects or-features and open brackets indicate 

an open feature (which can be replaced without affecting any other feature).  

 

Ad Hoc Routing Protocol

OS 

Interface
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Mechanisms

CONI Additional 

Computations

Path 

Determination

RIR
[Event 

Manager]

[Location 

Information]

 
Figure 3. Feature diagram 

 

The ad hoc routing protocol domain has the nine features previously described and 

summarized in the feature diagram. The OS interface is mandatory along with its control 

packets exchange subcomponent.  The pre-forwarding processing subcomponent is optional 

and is only required by protocols that do not maintain routes to every possible destination. 

The forwarding engine interaction is also optional and is only required by protocols that 
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update the OS forwarding table. The MADINI is an or-feature, which becomes optional when 

the CONI is part of the generated protocol (e.g., reactive protocols that make use of Hello 

messages). Otherwise, it becomes mandatory (e.g., proactive protocols). These kinds of 

conditional relationship between components, which cannot be expressed in the feature 

diagram, are embedded in the configuration knowledge. On the other hand, the number of 

information subcomponents is optional, with at least one subcomponent required. The CONI 

or-feature becomes mandatory when the MADINI is not part of the protocol (e.g., reactive 

protocols). The CONI subcomponents: notification of changes and information invalidation 

are optional but the other three are mandatory in order to accomplish the information 

collection process. However, all of them must be compatible in terms of the type of collected 

information (e.g., routes or locations). The delivery mechanisms feature is mandatory 

because at least one mechanism is required to transmit each control packet. The quantity of 

its subcomponents is not limited. The additional computations feature is optional because not 

all the protocols require support from it. There is no limitation on the number of its 

subcomponents. The RIR feature is optional because components are allowed to provide their 

own repositories to store supportive routing information. The path determination feature is 

optional because some protocols build paths while forwarding control packets and they do 

not require applying any other metric. The event manager feature is mandatory. It is also an 

open feature because any event manager model such as the delta list model or the timing 

wheel model could be used [13]. Finally, the location information feature is an open and 

optional feature that is only used by position-based protocols.  

 

3.4 Subfamilies of Protocols 

In the previous sections, the GP-Pro domain architecture for ad hoc routing protocols was 

described. However, the fact that ad hoc routing protocols can be further classified as 

proactive, reactive or position-based allows refining the previous architecture in order to 

create three sub-architectures or subfamilies corresponding to each protocol classification. 

The difference between these sub-architectures and the original architecture is in the removal 

of one or more of the main components, which are not commonly used by a specific 
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subfamily of protocols. The variations of each subfamily with respect to the main 

architecture are explained next. 

 

3.4.1 Proactive Protocols 

Proactive protocols maintain routing paths to every reachable destination node in the network 

by periodically exchanging topology information that supports path determination. Figure 4 

shows the architecture for the subfamily of proactive protocols. The essential component for 

this subfamily of protocols is the manager for distribution of network information 

(MADINI). On the other hand, the components that are not part of this architecture (shaded 

components in Figure 4) are the collector of network information on-demand (CONI, which 

mainly supports reactive protocols), the location information component (mainly supports 

position-based protocols) and the pre-forwarding processing subcomponent of the OS 

interface component (mainly supports reactive protocols).  
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Figure 4. Architecture for the subfamily of proactive protocols 

 

An example of a proactive protocol that can be generated by GP-Pro is OLSR [2]. 

OLSR was described in Section 2.2.2.1. Figure 5 shows the architecture of the OLSR 

protocol. The shaded components/subcomponents are not part of it. The MADINI has four 

subcomponents periodically broadcasting one-hop neighbors, network links, multiple 

interfaces declaration (MID) and host and network association (HNA) control messages. 
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When these messages are received, they are processed and stored in the corresponding 

repositories located in the RIR. The delivery mechanisms for control messages are one-hop 

transmission and message forwarding using MPR nodes. The selection of MPRs is performed 

by the corresponding additional computation, which provides two more repositories. The 

shortest path subcomponent in the path determination component computes the routing paths 

and stores them in the routing table located in the RIR. Thus, the RIR hosts all of the routing 

repositories along with the routing table repository. The control-packets-exchange 

subcomponent sends all the control messages according to their scheduled timings in the 

deltalist event manager. 

 

 
Figure 5. OLSR protocol architecture 

 

 
Figure 6. Architecture for the subfamily of reactive protocols 
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3.4.2 Reactive Protocols 

Reactive or on-demand routing protocols do not maintain routing paths towards the rest of 

the nodes in the network; they only attempt to discover routing paths whenever they are 

actually required. Figure 6 shows the architecture for the subfamily of reactive protocols. An 

essential component for this subfamily of protocols is the collector of network information 

on-demand (CONI). However, some of these protocols also require keeping track of their 

surrounding neighborhood (e.g., one and two-hops away), which means that the MADINI 

might be required as well. On the other hand, the location information component is not 

required (shaded component in Figure 6) and is the only component that is not part of the 

architecture for the subfamily of reactive protocols. 

 

 
Figure 7. DSR protocol architecture 

 

 An example of a well know reactive protocol that can be generated by GP-Pro with 

its architecture shown in Figure 7 is DSR [4]. DSR was described in Section 2.2.2.2. In 

Figure 7 the shaded components/subcomponents are not part of the architecture. CONI is 

composed of the required subcomponents to perform the Route Discovery process along with 

an additional subcomponent to advertise problems with known routes (Route Error). The 

delivery mechanisms for control messages are flooding and unicasting. All of the OS 

interface subcomponents are required due to the reactive nature of the protocol. To support 

the route discovery process, DSR makes use of a route cache mechanism that is performed by 
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the additional computation called Route Caching along with the Routes Cache repository 

stored in the RIR. The path determination is performed based on the first route reply 

received.  

 

3.4.3 Position-Based Protocols 
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Figure 8. Architecture for the subfamily of position-based protocols 

 

Figure 8 shows the architecture for the subfamily of position-based protocols. Position-based 

routing protocols are localized protocols that base their routing decisions on the location of 

the destination node, the location of its neighbors (if not based on beacons) and on its own 

location. Therefore, the location information component, which provides the node’s own 

location information, is an indispensable component. Also, the mechanism to exchange 

location information with the rest of the network nodes is an essential mechanism. This 

mechanism could be either a proactive location update mechanism that periodically 

broadcasts the location of nodes into the network or a reactive location discovery mechanism 

that looks for the location of the destination node only when required. The location update 

mechanism fits in the architecture as a subcomponent of the MADINI supported by a 

particular delivery mechanism (e.g. over rows and columns only [69]). On the other hand, the 

location discovery mechanism fits in the collector of network information on-demand and 

performs similarly to any route discovery process. Only one of these two mechanisms is 

required and that is why the complementary component and subcomponent boxes in Figure 8 
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are shown with dashed lines, visually indicating this alternative relationship. The selection of 

the next hop towards the destination, meaning the core of the protocol, is a subcomponent of 

the Path Determination component. This subcomponent is composed of the second-level 

subcomponents: default mode and recovery mode. Default mode directs forwarding in a way 

that at every hop each data packet is forwarded towards the destination node (the decision 

might me made either at the sender or at the receiver node). On the other hand, recovery 

mode is launched whenever the default mode fails. 

 

 
Figure 9. GFG protocol architecture 

 

 An example of a position-based protocol that could be generated by GP-Pro 

according to the previous architecture is GFG [28]. GFG was described in Section 2.2.2.4. 

Figure 9 shows the architecture of the GFG protocol. The location update mechanism is 

expected to be supported by MADINI while advertising location update and Hello messages 

using the respective delivery mechanisms. The planar graph is to be constructed by the 

corresponding additional computation subcomponent. The location information is expected 

to be obtained from a GPS device. Each path is determined in a hop-by-hop basis by 

combining Greedy and FACE protocols. The known locations of other nodes in the network, 

the known neighbors and the active routes are stored in three different repositories inside the 

RIR. All of the OS interface subcomponents are required. 
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Chapter 4 

 

GP-Pro: Architecture and Implementation 

 

The previous chapter presented the domain analysis that was performed in order to identify 

the protocols to be generated by GP-Pro along with their commonalities and variabilities. 

This chapter presents the proposed architecture for GP-Pro and discusses different issues 

(e.g., languages, tools) related to its implementation. 

 

 
Figure 10. GP-Pro architecture 
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4.1 GP-Pro Architecture 

One of the main reasons to design GP-Pro is to accelerate the protocol generation process 

based on user requirements while achieving reasonable protocol performance [70]. Here, the 

meaning of accelerating the generation process is not only related to quickly generating the 

source code for the new protocol. It is also related to the mechanism to specify the required 

protocol. Therefore, an easy to use but powerful mechanism is required. Such a mechanism 

must be capable of processing a simple specification where only component names are listed, 

but also capable of processing more complex specifications where each component is re-

configured and interconnected. Therefore, in terms of the protocol specification, GP-Pro 

supports two different mechanisms to provide the user specification. The first mechanism, 

which is the core and more powerful one, is a text-based user specification based on a 

proprietary DSL. This is the best alternative for the more advanced user that wants to fully 

specify a customized protocol. The second mechanism, which is simpler to use, is a GUI 

(Graphic User Interface) that does not require any knowledge about any programming or 

specification language. Only the selection of protocol features by means of lists and check 

boxes is required. 

 

Figure 10 shows the structure and processing flow of the protocol generator. Each of 

the processes building the architecture of GP-Pro is described in the following sections. In 

Figure 10, three processes that are not part of the processing flow are: Domain Analysis, 

Domain Design and Components Implementation (shown with IDs 0.1, 0.2 and 0.3 

respectively). These processes correspond to the three phases of domain engineering 

described in the previous chapter. They denote the fact that domain engineering is performed 

first, in order to support the protocol generator architecture. The process labeled “0.3-

Components Implementation”, which is part of the domain implementation phase emphasizes 

that in order to make use of GP-Pro, the protocol components have to be implemented first. 

In addition, the generator itself is also one of the outcomes of the domain implementation 

phase. 
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4.1.1 User Specification 

As mentioned before, two specification mechanisms are to be supported by GP-Pro: the DSL 

and the GUI. When the user specification is provided by means of the text-based DSL 

(process 1.0), the user makes use of a proprietary DSL specifically created for the domain of 

ad hoc routing protocols. To create such a DSL, there are two alternatives. Either the DSL is 

crafted from scratch along with its own parser, tools, editors (text), generators, etc., or an 

existing language that supports the creation of new DSLs, for which the previously 

mentioned tools already exist, is used. Hence, assuming that the goal is to create a new DSL 

but not necessarily the parsing tools, we decided to make use of either a common language 

that has been used before to create DSLs (e.g. XML) or a language specifically designed to 

create new DSLs (e.g. Xtext [71]). The selection of such a language is addressed later on. 

However, regardless of the supportive language to be selected, each user specification written 

in the new DSL should be structured as in the following example. 

 

Protocol as GPPro_OLSR { 

    MADINI{ 

Hello as hello_msg{} 

    } 

    DELIVERY{ 

     Broadcasting as one_hop{ 

      hops = 1 

} 

} 

   } 

 

This example shows the specification for a protocol called “GPPro_OLSR”, which 

lists two GP-Pro core components (MADINI and DELIVERY), containing one 

subcomponent each. These subcomponents are given a synonym (the name after the keyword 

“as”) and one of them sets a new value for one of its properties (hops=1). Basically the 

previous example shows the following: 1) that each protocol is specified by listing 

components with different levels of specificity (specificity is represented by indentation),    

2) that new values for component properties can be set when defaults are not to be used, and 

3) that the amount of features constructing each protocol specification might vary. By listing 

more components or their properties, more complete specifications could be created.  
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4.1.2 Specification Validation 

Once the user has written the specification of the desired routing protocol, which is the input 

for GP-Pro, it has to be validated (process 2.0). The validation process consists of checking 

that the specification is well formed and that it follows the syntax constraints imposed by the 

DSL.  

 

4.1.3 Graphic User Interface 

A simpler and faster alternative to provide user specifications is by means of the GUI 

(process 3.0). This interface should contain list boxes, check boxes and text fields to select 

the components and features of the desired protocol. The GUI should have protocol 

configuration knowledge built-in. This knowledge should be extracted from the database of 

components, from the routing protocol architecture and from the configuration knowledge. 

The reason to provide the GUI with configuration knowledge is to prevent conflicts between 

components. For example, some protocol features might forbid the selection of some other 

conflicting or unnecessary features (e.g., proactive protocols do not perform route discovery).  

 

4.1.4 Specification Generator 

After the user selects from the GUI the components and features that should be part of the 

protocol to be generated, this selection is passed to an additional process (process 4.0) that is 

in charge of generating the specification according to the DSL specifically created for GP-

Pro. The output of this process is a valid user specification and is exactly in the same format 

as the output from the specification validation process (process 2.0). Actually, an advanced 

user could make use of the GUI to quickly generate a complete user specification that could 

be refined later on by further configuring each protocol component. And, once the new 

specification has been refined, it should be passed through the specification validation 

process. As we can see, the GUI is an addition to GP-Pro to further ease the specification 

process. However, it relies on the DSL. Therefore, we decided to focus our efforts on the 

creation of the DSL, and to leave the development of the GUI as a desired additional feature 

that will be part of our further work. 
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4.1.5 Buildability Checking 

When the protocol generation reaches the buildability checking process, it is because a valid 

user specification is available. However, the meaning of valid is simply that the specification 

is well formed and that it conforms to the DSL syntax. Therefore, it could contain 

components or features that are in conflict. In addition, it could be incomplete (notice that the 

configuration knowledge built inside the GUI prevents conflicts between components). An 

example of an incomplete specification that is valid is when any of the protocol components 

requires some type of information that is not provided by any of the components listed in the 

specification. Therefore, the buildability checking process (process 5.0) looks for conflicts 

between components and for incomplete specifications. The user is informed about the 

results of this process and whether the specification is complete or not.  

 

4.1.6 Completing Specification 

If the outcome from the buildability checking is that there are no conflicts between 

components and that the specification is complete, then the generator proceeds to select and 

assemble the components. However, in the case of conflicts and/or missing components, the 

user is flagged. Depending on the nature of the problem, GP-Pro will either: a) fix the 

problem by properly completing the specification (process 6.0), inform the user and proceed 

with the generation, or 2) inform the user and stop the generation process. The proposal 

provided by the generator to complete the specification is based on the existing components, 

the protocol’s architecture and the configuration knowledge. Therefore, the output of this 

process is the complete protocol specification. 

 

4.1.7 Components Selection 

The DSL specification serves as the guideline to select the components that form the new 

protocol (process 7.0). The expected output from this process is the full set of components 

and subcomponents that satisfy the user specification, where enough components to fulfill 

the entire protocol architecture have been chosen. The relationship between elements in the 

DSL specification and the chosen components is not strictly expected to be one-to-one. 
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4.1.8 Components Assembly 

Once the selection of components has been made, they have to be assembled (process 8.0) 

according to the protocol architecture (shown in Section 3.2) and according to the component 

interconnection model introduced along with GP-Pro. This component interconnection 

model, which is fully described in a later chapter, interconnects pairs of components A and B, 

when component B is capable of processing a message type generated by component A. Each 

message type generated by any component can be seen as an output port. Likewise, each 

message type processed by any component can be seen as an input port. 

 

4.1.9 Additional Outputs 

The generation of ad hoc routing protocols in the form of source code is the main purpose of 

GP-Pro. This source code is the expected outcome from the component assembly process. 

However, it does not have to be the only output. Additional outputs (process 9.0) such as 

documentation about the implemented architecture or data flow diagrams could be produced 

as well. 

 

4.2 GP-Pro Implementation 

The proposed architecture for GP-Pro has been introduced in the previous section. Next, we 

discuss the feasible alternatives to implement each process in the architecture, along with the 

alternatives to implement the protocol components.  

 

4.2.1 Components Implementation 

There are several options and decisions to be made in order to implement the protocol 

components. These decisions mainly depend on the technology and programming languages 

that the protocols are expected to be implemented in. While several programming languages 

(e.g., Java, C, C++) can be used, [41] proposes using JavaBeans, which can be 

interconnected by events; and [23] proposes the development of C++ components with well 

defined input/output ports that are connected by the Click language. Therefore, we have to 

make the following decisions: 1) Which programming language should be used to implement 
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the components, 2) Whether to implement components from scratch or reusing components 

implemented as part of some other project, and 3) How to implement each of the processes in 

the architecture of GP-Pro. All of these decisions were made during the creation of GP-Pro. 

The alternatives that were considered along the process are discussed next.  

 

In terms of the implementation language, the decision to make was mainly choosing 

between two of the most commonly used programming languages, Java and C. By looking at 

existing frameworks [12, 13, 39] and some of the deployable implementations of ad hoc 

routing protocols available [60, 72, 73], we realized that all of them are implemented in C or 

C++ (languages that are also expected to achieve better performance than Java). Therefore, 

those two languages seemed to be the best choice. Additionally, for evaluation purposes of 

the protocols generated with GP-Pro, and in order to perform a fair comparison against their 

handcrafted counterparts (those implemented without the use of any generic framework or 

tool) we thought that the use of the same language would be a better choice. As a result, we 

decided to use either C or C++. The final choice is addressed below. 

 

The next decision to make was about reusing existing components or creating new 

ones from scratch. We had two reasons pointing towards reusing existing components. The 

first reason was that the development of new components without reusing any existing 

implementation would be a very time-consuming task that could consume a considerable 

amount of development time, which could be better spent focusing on the rest of the 

processes in the architecture of GP-Pro. The Component Based Routing project (CBR) [45], 

whose only objective is the development of ad hoc routing protocol components, is a clear 

example of the effort that is required to develop new components. CBR is a four year joint 

project between five universities and three corporations with more than fifteen participants. 

The second reason was that the main idea behind GP-Pro is the reuse of available resources 

(e.g., components) to generate different types of protocols with minimal effort. Therefore, the 

reuse of existing components is a better match for the GP-Pro philosophy. The JavaBeans 

proposed in [41] were discarded because of the small number of existing components, lack of 

compatibility and the fact that they were not implemented in any of the chosen languages (C 

or C++). Another alternative, which seemed to be a pretty obvious one, are the elements of 
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the Click router project [23]. However, by analyzing the routing protocol implementations 

available for DSDV [23], DSR [42] and OLSR [43] we realized that the packet processor 

nature of the Click components (the so-called elements) limits the implementation of the 

entire routing protocol to one or two components; an approach that does not support the idea 

of developing components of fine-granularity to achieve higher reusability. A better match 

are the components developed as part of the CBR project [45] which are actually components 

to build ad hoc routing protocols. However, those components have not been made available. 

Then, the last feasible alternative to reuse any existing implementation is to create our own 

components by breaking into “pieces” one of the existing deployable, handcrafted 

implementations. Hence, we decided to look at the existing implementations with two criteria 

in mind. First, the implementations should be functional, meaning that they should be in fact 

deployable and should perform routing on a real network (hopefully bug-free). Second, the 

implementation should be modular. From over ten implementations that we attempted to test 

(we say attempted because not all of them could be actually deployed), three of them were 

deployed and performed proper routing. The useful implementations were DYMOUM [60], 

AODV-UU [72] and OLSRD [73], all of them implemented in C. Out of those three, 

DYMOUM and AODV-UU were the implementations with a more modular approach, which 

are a better match to the idea of creating components out of existing implementations. 

Additionally, preference was given to reactive protocols because of the additional complexity 

to deal with the OS routing table when no route to the destination is available and packets are 

not to be dropped. Therefore, DYMOUM, an implementation of the DYMO protocol written 

in C, which is a simplified successor of AODV and the focus of current efforts by the IETF 

in terms of reactive protocols, was the chosen implementation to be reused. Next, we had to 

decide on the process of creating protocol components from this implementation.  

 

[64] presents several alternatives to create program generators and suggests the use of 

templates as elements that can be combined with a specification and processed by a template 

engine to produce the desired program. [74] proposes another template engine called XVCL 

(XML-based Variant Configuration Language) that can introduce changes (variabilities) into 

programs represented as hierarchies of templates. XVCL templates called x-frames are based 

on the framing technology proposed in [75]. This approach to generate programs as a 
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composition of templates, according to a specification, also supports variabilities. We 

therefore decided to implement our components as templates. Thus, the chosen 

implementation, DYMOUM, of the routing protocol DYMO, has to be broken into templates, 

which can be assembled back together according to a specification. 

 

4.2.2 Architecture Implementation 

Once the implementation language has been chosen, the decision to reuse existing 

implementations has been made and the mechanism to implement the protocol components 

has been selected, the next step is to decide how to implement each of the processes in the 

GP-Pro architecture. Even though multiple methodologies could be combined, they have to 

be fully compatible. After analyzing several alternatives, we evaluated three different 

approaches to build the entire architecture. Table 1 summarizes the languages and tools used 

by each approach and for each process in the toolchain. They are discussed next. 

 

Task XML + XVCL oAW + XVCL oAW 

GP-Pro DSL XML-based oAW Xtext language oAW Xtext language 

User Specification  Text editor or XML 

editor 

oAW Xtext custom 

editor  

oAW Xtext custom 

editor 

Validation rules XML Schema written 

with RELAX NG 

oAW Check language 

to apply validations 

oAW Check language 

to apply validations 

Specification 

Validation 

JAXP + RELAX NG 

plug-in  

DSL customized editor 

and workflow engine 

DSL customized editor 

and workflow engine 

GUI specification Java Eclipse IDE Eclipse IDE 

Specification 

generator (from 

the GUI) 

Java Java Java 

Buildability 

checking  

DOM + Custom data 

structures 

oAW Check language 

+ Xtend language 

oAW Check language 

+ Xtend language 

Completing 

Specification 

XVCL default values 

support 

XVCL default values 

support 

Xpand default values 

support 

Selection of 

Components 

XSLT transformation 

from GP-Pro language 

into XVCL language 

Xpand templates to 

generate the 

specification in XVCL 

language 

Component 

dependencies and 

default values in Xpand 

templates 

Components 

Assembly 

XVCL processor XVCL processor Xpand processor 

Components XVCL frames (C code 

from DYMOUM) 

XVCL frames (C code 

from DYMOUM) 

Xpand templates (C 

code from DYMOUM) 

Table 1. Approaches to implement the architecture of GP-Pro 
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4.2.2.1 XML and XVCL 

The first approach consists of a combination of several programming languages and software 

tools. The central features are XML (eXtensible Markup Language) and XVCL. The entire 

architecture is created as follows. The DSL for GP-Pro is manually created as an XML-like 

language. Therefore, existing parsers, editors, viewers and conversion tools for XML can be 

used by the new DSL. GP-Pro components are represented by XML elements [64] and 

configuration parameters by XML attributes. The user specification is written using any text 

editor or XML editor. The validation rules for the user specification are defined by creating 

the corresponding XML Schema. An XML Schema is a description of a type of XML 

document, which is usually expressed by constraints on the content and structure of 

documents of that type, above and beyond the basic constraints imposed by XML itself. The 

list of languages developed specifically to express XML schemas is long [76]. However, 

three have had greater influence on schema languages [77]. These schema languages are the 

Document Type Definition (DTD) language, the World Wide Web Consortium XML 

Schema language (XSD) and RELAX NG (Relax New Generation). DTD is native to the 

Standard Generalized Markup Language (SGML) and XML specifications, but its 

capabilities are somewhat limited compared to more modern schema languages. XML 

Schema is the language supported by the World Wide Web Consortium (W3C) and it offers 

advantages over DTD such as data types that can be used to constrain the character data in an 

element’s content or attribute values. However, it involves some complex mechanisms, has a 

long learning curve and is rather rigid [78]. On the other hand, RELAX NG [79] is a simpler 

language, easier to learn, and an ISO standard, which provides XML and non-XML syntax 

while providing functionalities similar to the XML Schema language plus some more. 

Therefore, RELAX NG is the language used to express the XML Schema. 

 

To actually perform the specification validation, the Java API for XML Processing 

(JAXP) [80] is used along with the corresponding plug-in that supports RELAX NG. The 

GUI alternative to specify the required protocol along with a supportive module to generate 

the protocol specification out of the GUI is implemented by using the Java language. The 

buildability checking process to look for conflicts between components or any missing 

component is performed by using the Document Object Model (DOM), in order to access the 
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XML user specification document, extract the user preferences and load them into a custom 

data structure that is used to identify any existing conflict. DOM is a platform-independent 

and language-independent object model to represent XML related formats, which supports 

navigation through the hierarchical representation of the XML document. JAXP includes the 

required Java DOM API. This approach assumes that the protocol components are available 

as XVCL frames containing C code. Therefore, to generate a specification document with the 

selection of components (frames in this case) that can be actually used to implement the 

routing protocol, a transformation from the new DSL into XVCL language has to be 

performed. Such a transformation is made by a set of XSLT templates (to be created) that 

support the language transformation when injected into an XSLT processor along with the 

complete DSL protocol specification. The output of such a transformation, which is in the 

form of one main XVCL frame, is the input for the XVCL processor, along with the available 

protocol components, in order to perform the assembly of components and finally generate 

the expected implementation code. The completion of the specification (if required) is 

supported by the default values supported by XVCL frames when some of the configuration 

parameters are not provided. This capability to support default values was one of the main 

reasons to consider XVCL as the engine to generate the source code. Another frame 

processor that was considered instead of XVCL was ANGIE [81]. However, it is not as 

mature or easy to use as XVCL. As can be noticed, this approach to generate the processes of 

the GP-Pro architecture combines many languages and tools that add complexity to the 

implementation process and certainly challenge further extensibility of the protocol 

generator, especially for new users. Therefore, next, we explore another two approaches, 

which provide a more transparent interoperability between the chosen tools and languages. 

 

4.2.2.2 OpenArchitectureWare and XVCL 

As mentioned in the literature review, several software generation paradigms have been 

recently proposed and investigated. Model-Driven Development is one of them, which shares 

similar objectives with Generative Programming. OpenArchitectureWare is a MDD 

framework implemented in Java that provides a language family and tools to support the 

development of software generators. It is available as an open-source tool which is meant to 

be used within the well-known Eclipse [82] open-source software framework. Therefore, 
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after analyzing its applicability to the implementation of GP-Pro, we decided to make use of 

it, and combine it with the previously chosen XVCL. The second approach to implement the 

processes of the GP-Pro architecture is therefore as follows. The DSL is created by using the 

Xtext framework [71], which supports the generation of textual DSLs. Once the new DSL 

has been described by using the Xtext language, the framework creates a custom editor for 

the new DSL featuring syntax coloring, constrain checking (assuming that constraints have 

been defined by using a complementary language, called Check) and basic code completion. 

The user specification is provided by using the new custom editor for the new DSL, which 

can be delivered as an Eclipse [82] plug-in. The validation rules for the user specification are 

defined by using the Check language [83], which is another member of the oAW language 

family. The constraints defined with Check can be applied in batch mode as well as 

interactively. Therefore, the specification validation can be performed interactively inside 

the custom editor or in batch by using the oAW workflow engine [84], which is a 

configurable generator engine that provides an XML-based configuration language to define 

a set of processes to be executed in sequence. The GUI and the corresponding module for 

specification generation can be implemented using the Java language. The buildability 

checking is performed with the support of additional constraints defined by using the Check 

language and perhaps by using another member of the oAW languages family, the Xtend [85] 

language, which enriches the capabilities of the other oAW languages. Even though the 

family of oAW languages includes several members, they are based on a common expression 

language and type system that simplifies their learning curve. The challenge to use them is 

due to the limited amount of documentation available (a few pages for each language). This 

approach makes use of the same types of components, the same process to assemble them, 

and the same mechanism to complete the specification as the approach described in the 

previous section. However, the selection of components is performed in a different way. In 

this case, the transformation from the new DSL into XVCL is performed by a set of Xpand 

[86] templates (to be created) that support the transformation when injected into the Xpand 

processor along with the DSL specification. Xpand is the template language in the oAW 

family, which is used to control the output (source code) generation. The output of the 

transformation is in the form of one main XVCL frame as well. This second approach 

simplifies the implementation by replacing the many different languages and tools from 
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multiple sources, used for the first half of processes in the GP-Pro architecture, by the oAW 

family. Even though the oAW family comprises several languages, they were designed to 

interoperate and to be compatible. We consider this approach more feasible than the one 

described before.  

 

4.2.2.3 OpenArchitectureWare only 

The second approach simplifies the implementation process. However, if we take a closer 

look we can see that the user specification experiences two transformations before becoming 

the actual source code for deployment. First, the user specification in the new DSL language 

is transformed into the main XVCL frame (user specification in XVCL language) by using 

the Xpand templates and the Xpand processor. Then, the XVCL frame, along with the 

components implemented as additional frames, are transformed into the C source code, by 

using the XVCL processor. Therefore, the third approach that we propose ignores XVCL, 

and only relies on the oAW family of tools and languages. In this case the protocol 

components are implemented as Xpand templates instead of XVCL frames. The assembly of 

components is performed by the Xpand processor, which can combine the user specification 

in the new DSL language with the Xpand templates in order to produce the protocol source 

code. This approach reduces the number of transformations to a single one, from the DSL to 

C code directly, which reduces implementation complexity and simplifies the extensibility of 

GP-Pro. Therefore, we decided to proceed with the implementation of the GP-Pro 

architecture by following this third proposed approach. 

 

4.2.3 Kernel Interaction 

Routing protocols can be implemented either at the user or at the kernel-level of an operating 

system. Implementations at the kernel-level achieve better performance; however, they 

consume more system resources (e.g., system memory) even if they are not in use because 

they are always part of the system kernel. Also, any upgrade or modification to the protocol 

implementation requires the regeneration of the system kernel, which challenges 

maintenance. On the other hand, user-level implementations improve maintainability and 

modularity. However, they experience lower performance because any message received or 
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sent has to traverse the entire protocol stack at the kernel-level and reach the user-level. 

Nevertheless, some other possibilities in between these two extremes exist. One of them is 

the use of loadable kernel modules (LKM), which are object files that contain code to extend 

the running kernel. The advantages of using LKMs is that they can be loaded and unloaded 

as required, freeing memory when not used and no modifications to the running kernel are 

required. This implementation approach is followed by [72] and [60]. Another approach 

oriented to achieve platform-independency presented in [58] implements the routing protocol 

at user-level and uses raw sockets (socket type that does not strip packet headers) to transfer 

each packet received to the user-space. The drawbacks of the later approach are that it 

requires kernel modifications to be performed and also that the continuous exchange of 

packets between user and kernel-level degrades performance. Therefore, in order to avoid 

performance degradation and kernel modifications, we decided to make use of LKMs. 

 

 In terms of the types of routing protocols to be generated by GP-Pro, reactive and 

position-based protocols are the ones that require some additional processing done at the 

kernel-level. This situation arises when no routing path is available for a packet that is to be 

sent through the network. In the case of reactive protocols, it usually means that a route 

discovery process has to be started. In the case of position-based protocols, it happens 

because no routing table is maintained and routing decisions are made on a hop-by-hop basis. 

To the operating system, the unavailability of a routing path translates into dropping the 

packet. Therefore, to avoid the scenario of packets being dropped, we decided to make use of 

the Netfilter framework [38] (in combination with LKMs). Netfilter is a framework that 

provides a set of hooks within the kernel to intercept and manipulate network packets. Such 

packets can be altered, dropped or re-routed by code segments that have registered 

themselves on each Netfilter hook. In the case that packets have to be processed in user-

space, Netfilter allows queuing packets at the kernel-level while information about the packet 

is sent to user-space and until the user-space application returns a verdict indicating the 

action to take for those packets. 
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4.2.4 What GP-Pro Does Not Do 

To further clarify the objectives and capabilities of GP-Pro, we want to comment on what 

GP-Pro does NOT do. 

• Even though there is configuration knowledge built-in inside GP-Pro, it does not 

attempt to generate routing protocols based on subjective user requirements such as 

“Generate an energy efficient protocol”. GP-Pro generates protocols by assembling 

existing components that are chosen by the user by means of a protocol specification. 

Additionally, GP-Pro completes user specifications by providing default component 

parameter values and by adding missing interconnections between components that 

were not defined by the user. The capability to understand subjective requirements 

certainly is an attractive capability that could be incorporated later on by enriching 

the configuration knowledge. 

• GP-Pro generates routing protocols based on the chosen components expressed by the 

user specification. Therefore, the expected output is indeed a routing protocol. 

However, no formal verification of routing capabilities or any other property is 

performed.  Protocol verification is a complex research field on its own. 
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Chapter 5 

 

Component Interconnection Model 

 

GP-Pro is a protocol generator of ad hoc routing protocols. The routing protocols are 

generated by assembling components of diverse functionalities, which all together perform 

routing tasks. Assuming that such compatible components can be implemented, common 

interfaces to properly interconnect them along with interaction mechanisms have to be 

designed. This chapter describes the generic architecture of the GP-Pro components, their 

interfaces and the interconnection model that allows for component interaction.  

 

 In GP-Pro, components are treated and implemented as black boxes that exchange 

messages through communication ports. Communication ports pass messages in only one 

single direction, meaning that no messages are expected to be received by an output port or 

sent out by an input port. Therefore, any pair of components can communicate by 

interconnecting the output port of the first one to the input port of the second one, and by 

exchanging a message type that is known to both of them. In addition to this interaction 

mechanism that provides direct communication between components, there are another two 

mechanisms that provide indirect communication. The first of them is throughout the 

scheduling component called Event Manager. Routing components might require scheduling 

predefined tasks for future execution. They do so by sending a message to register a task with 

the Event Manager. Each task is associated with a timer. Once the timer expires, a message is 

delivered from the Event Manager to the component expected to execute the task. The 

second mechanism is throughout the RIR (Routing Information Repository). Each 

component carries out one or more tasks during execution. As a result it might need to make 

use of repositories for information storage. Therefore, components communicate with the 

RIR component to create and to maintain one or more repositories. All of the repositories 

inside the RIR component can be accessed by any of the protocol components. Hence, 
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repositories might act as a hub for interaction and information exchange between 

components. 

  

Regarding message exchange, each component provides a list of messages that it is 

capable of processing, as its provided functionalities; and a list of messages that it generates, 

as its required functionalities. The type and amount of information carried by each message 

will vary; it could be as simple as just an indication to start a new process (e.g., a trigger), or 

data requiring further processing. Generated messages are expected to carry enough 

information and in the proper format to be understood and properly processed by the 

destination component. To support the later, proper verification is performed during protocol 

generation to guarantee message type compatibility between sending and receiving 

components. 

 

So far, we have described components as independent processing entities that interact 

by exchanging messages as part of a flat architecture. However, in GP-Pro a set of 

components can also be arranged in a way that their joint execution behaves as a single unit, 

but of a larger scale. This arrangement resembles a hierarchical architecture, where the 

highest component of the hierarchy is composed of one or more components (belonging to 

the next lower level), which are called subcomponents. These subcomponents can also be 

composed of further subcomponents and so on. To further explain the relationship between 

components, at different levels in the hierarchy, and to introduce some related terminology 

that is used along the text, we describe some of these relationships using Figure 11.  

 

 
Figure 11. Hierarchical arrangement of components 
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Figure 11 shows a component P (the highest in the hierarchy), which is composed of 

13 subcomponents arranged in 4 subcomponent levels. The first level is composed of A, B, 

and C. The second level is composed of D, E, F and G. The third level is composed of H, I 

and J. Finally, the fourth level is composed of K, L and M. Any component Z, containing 

subcomponents, is considered the super-component of all of its subcomponents, located at all 

subcomponent levels. Any component Z is considered a subcomponent of all of those 

components that are higher in the hierarchy than Z itself, which are also super-components of 

Z. An immediate subcomponent of Z is any of its subcomponents at the next lower 

hierarchical level. The immediate super-component of Z is its super-component at the next 

higher hierarchical level. Components composed of one or more subcomponents are called 

composite components. Components without any subcomponent are called basic components. 

According to these definitions, all of the following sentences are true with respect to Figure 

11: 

• All of the components, except for P, are subcomponents of component P 

• M is a subcomponent of J, G, C and P. 

• C is the immediate subcomponent of P that contains M. 

• J is the immediate super-component of M. 

• J, G, C and P are super-components for M. 

• M is a 4
th

 level subcomponent of P, 3
rd

 of C, 2
nd

 of G and 1
st
 of J. 

• P, A, B, C, D, G and J are composite components. 

• H, I, E, F, K, L and M are basic components. 

 

5.1 Basic Components 

After the previous introduction to the proposed interconnection model, and the hierarchical 

relationship between components, next, we describe in detail the architecture of a generic 

basic component. Figure 12 shows the structure of a basic component. It is composed of an 

internal component process that executes the component’s task, a Message Distribution 

Controller (MDC), one input port (the ‘T’ connector on the left side with the arrow pointing 

away) and one output port (the ‘T’ connector on the right side with the arrow pointing 

towards). Any message generated by the internal component process is delivered to the MDC 
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for proper forwarding. The MDC is in charge of forwarding each message that has been 

either received by the component at its input port, or generated by its internal process for the 

corresponding destination component. Therefore, the messages processed by the MDC can 

be forwarded either to the internal component process (when received at the input port), to a 

further subcomponent or to the component’s output port (when internally generated). The 

destination component can be located anywhere in the hierarchical structure of components 

and subcomponents that compose the routing protocol. 

 

 
Figure 12. Basic component 

 

The MDC operation is supported by two tables, named M and S in Figure 12. The 

information stored in these two tables is required for the proper operation of composite 

components. These tables will be further explained below. 

 

Component 

Process

MDC

M S

Subcomponent  

(N)

Subcomponent  

(1)

 
Figure 13. Composite component 
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5.2 Composite Components 

Figure 13 shows a generic composite component. Different from the basic component 

presented in Figure 12, a composite component Z is also composed of one or more 

subcomponents, and not only of the internal component process. Each of these 

subcomponents can be either a basic component or another composite component. All of 

them, including the internal component process, have their output ports connected to the only 

input port of the MDC and each of their input ports is connected to an independent output 

port from the MDC. This means that every message to be forwarded has to always go 

through the MDC no matter if the destination component is a subcomponent of the same 

component Z, or if it is outside of it. The input and output ports of Z itself are both directly 

connected to its MDC. The description of the two tables located inside the MDC is as 

follows. Table S represents the subcomponents table, which keeps track of every 

subcomponent composing Z. This information helps to locate the destination component 

inside the protocol configuration. Table M represents the message/destination table, which 

assigns a destination component to every message generated by the internal component 

process of component Z. Therefore, in the case that a message generated by the internal 

component process of Z has one of Z’s subcomponents as destination, the message is directly 

forwarded to the corresponding subcomponent; otherwise, it is passed to the output port.  

 

 
Figure 14. Example of generic composite component 

 

Figure 14 and Figure 15 are two examples of composite components. Figure 14 

shows a composite component Z with internal process PZ and MDC Z-MDC, which is 

composed of another composite component A, which is composed of three basic components 
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named B, C and D. Therefore, Z contains two subcomponent levels (A and A’s 

subcomponents). All of Z’s subcomponents contain their own internal process, which are 

named “P” + <component name> (e.g., PA). From Figure 14, we can notice the generic 

features of the GP-Pro components, meaning that at all levels in the 

component/subcomponent hierarchy, each component looks the same, and it is composed of 

the same kind of elements. These elements are: the internal component process, the MDC 

and the set of subcomponents (an empty set for the case of the basic component). This also 

applies to the composite component with the highest hierarchy, meaning the full routing 

protocol per se. Figure 15 shows another composite component Z that contains three 

subcomponent levels. For simplicity, the MDCs (except for Z’s) and the internal component 

processes are not shown. The first subcomponent level is composed of components A, B and 

C. Subcomponents B and C both contain further second level subcomponents; BA in the case 

of B and; CA and CB in the case of C. Finally, second-level subcomponent BA contains 

subcomponent BAA as a third-level subcomponent of Z. 

 

  Z

C

MDC

M S

A

B

BA BAA

CA

CB

 
Figure 15. Example of generic composite component 

 

Subcomponent Immediate  

subcomponent 

A A 

B B 

C C 

BA B 

CA C 

CB C 

BAA B 

Table 2. Subcomponents of Z 
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MDC of 

component 

Message 

name 

Destination 

component 

A msg_find F 

msg_start G B 

 msg_stop G 

BA msg_update C 

BAA msg_reset BA 

C msg_delete H 

CA msg_init CB 

CB msg_query A 

Table 3. Message/destination for all the MDC’s 

 

To further explain the composite component example shown in Figure 15, Table 2 

and Table 3 show the corresponding configuration tables that are part of the MDC. Table 2 is 

the subcomponents table and it lists all of component Z subcomponents (at its three 

subcomponent levels), along with the immediate sub-component of Z that contains the listed 

subcomponent. On the other hand, Table 3 shows the matching destination component for 

each message generated by Z and by its subcomponents. Table 3 shows the information 

stored in the MDCs of all the components shown in Figure 15. The first column identifies the 

owner component of the MDC. The message/destination table includes two different types of 

data (columns): message name and destination component. The message name (shown with 

prefix “msg_”) plus the name of the component that generates it, uniquely identify every 

generated message. Hence, each component can generate multiple message types while 

implementing one single output port (e.g., in Table 3 component B generates msg_start and 

msg_stop). On the other hand, the destination component is the name of the component that 

will receive the generated message, and whose internal component process should be able to 

handle it.  

 

 
Figure 16. Logical interconnection of components 
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Figure 17. Modified logical interconnection 

 

MDC of 

component 

Message 

name 

Destination 

component 

A msg_find H 

B msg_start G 

B msg_stop G 

BA msg_update A 

BAA msg_schedule BA 

C msg_delete F 

CA msg_init C 

CB msg_query B 

Table 4. New message/destination table 

 

By combining the information stored in all of the message/destination tables, of all 

the components composing each routing protocol (or any composite component) it is possible 

to obtain all of the interconnections between its subcomponents. We refer to these 

interconnections between components as the logical configuration of the protocol (or of a 

composite component). The logical configuration of Z, according to Table 3, is shown in 

Figure 16. Figure 16 shows how components get interconnected according to their message 

exchange. On the left side of Figure 16 and inside the dashed box, the seven subcomponent 

of Z are shown. Three of them, A, B and C generate messages for three other components 

located outside of Z. Therefore, their messages are forwarded through the output port 

(represented as a dotted oval) towards the corresponding destination. What we can notice 

from this example is that the configuration of a composite component and, actually, the 

configuration of any routing protocol, can be easily modified by re-connecting its 

subcomponents, just by changing the name of the destination component in the 

corresponding message/destination table. Figure 17 shows a new component configuration 

that is the result of changing the destination component for the messages generated by 

components A, BA, C, CA and CB shown in Table 3 (these modifications assume that the new 
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destination components can properly handle the new incoming messages). Table 4 shows the 

new message/destination table corresponding to Figure 17. 

 

5.3 Routing Between Components 

In the previous section we show how components are interconnected by defining the 

destination component for each type of message in the message/destination table. However, 

now we have to explain how each generated message is actually delivered to the destination 

component, which means that some routing has to be performed between the protocol 

components. 

 

Every message generated by the internal component process of any component 

includes a header with the message name and the ID of the sender component (see Figure 

18). Each of these messages is immediately passed to the MDC of the component and, as 

mentioned before, it is at the MDC that the message is matched to a destination component. 

The destination component is extracted from the message/destination table and the match is 

made by adding the destination ID to the header of the original message (see Figure 19). 

 

 
Figure 18. Message with sender ID in the header 

 

 
Figure 19. Message with destination ID in the header 

 

Then, at each MDC that the message traverses, beginning with the MDC of the 

generating component, the following logic is applied. The destination ID is searched for in 

the MDC’s subcomponents table. If the destination is found, it means that it is a 

subcomponent of the current component, and then the MDC forwards the message to the 

corresponding immediate subcomponent. On the other hand, if the destination is not found, it 

means that it is not a subcomponent of the current node, and then the MDC forwards the 
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message to the output port of the component. Therefore, a message travels up the hierarchical 

structure, until reaching a component that is a super-component of the target destination. 

Then, the message starts traveling down until reaching the actual destination. Once the 

message reaches the destination component, the component’s MDC removes all header 

fields, and delivers the original message to the internal component process.  

 

 
Figure 20. Components hierarchy of Z 

 

To further clarify how routing is performed, we will use Figure 20 to discuss an 

example. Figure 20 shows the hierarchical relationship between the subcomponents of the 

composite component Z shown in Figure 15. In this example, the subcomponent BA 

generates a message named msg_find, and its MDC matches the message to the destination 

component CB. Therefore, the routing process is performed as follows. The internal 

component process of component BA generates the message msg_find with the corresponding 

sender ID and message name header information and forwards it to its MDC. The MDC 

looks for the corresponding message/sender pair in its own message/destination table and the 

message is matched to the destination component CB by adding the destination ID to the 

header. Next, the same MDC looks for the component CB in its subcomponents table. CB is 

not a subcomponent of BA, therefore, it is not found, and the message is passed up in the 

hierarchy to the subcomponent B. CB is still not a subcomponent of B so, the message is 

passed up one more level reaching component Z. Z finds CB as its subcomponent, then it 

forwards the message to its immediate subcomponent containing CB. Component C receives 

the message and forwards it for the last time to its final destination, to CB. When the message 

is received by the MDC of CB, the header is stripped off and the message body is delivered 

to the internal component process. This is the mechanism that has to be followed in order to 

deliver each message to its corresponding destination component. 
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5.4 Limitations 

The interconnection model presented in this chapter allows achieving component 

communication, throughout message exchange, as required by GP-Pro. However, under some 

conditions communication might fail. These conditions are discussed next. First, it was 

explained above that for two components to successfully communicate throughout message 

exchange, the sender and the destination components should be able to generate and to 

process, respectively, a certain message of the same name. In this case, communication will 

fail if the two components do not agree on a same message structure. Second, when 

components interact through the Event Manager, the sender component is allowed to provide 

some additional data to be delivered to the destination when the timer expires. As a result, if 

sender and destination components do not agree on this data and/or on its structure, 

communication will fail as well. Third, problems will also occur if a component attempts to 

store data into an information repository, or if it attempts to retrieve it, and the data provided 

or expected by the component does not match the data types of the repository fields. In all 

three cases, there is nothing that GP-Pro can do to detect and/or to prevent the problem.  

 

 On the other hand, message exchange between components is only performed in a 

one-to-one fashion; it is not possible to send the same message to multiple components at the 

same time. Even though none of the protocols generated as part of this research made use of 

such a capability, further protocols might require it. In such case, creating a packet duplicator 

component could be the solution to provide this extended capability. 
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Chapter 6 

 

GP-PRO: The Software Tool 

 

Chapter 4 presented the proposed architecture for GP-Pro and discussed feasible 

implementation approaches while making implementation decisions, including the method to 

create the protocol components. Chapter 5 presented the interconnection model that allows 

those components to be put together and to communicate by exchanging messages. Now, we 

put in practice all those previous decisions along with the interconnection model to actually 

generate deployable routing protocols by using our software tool: GP-Pro. Therefore, in this 

chapter we present the DSL specifically created for the domain of ad hoc routing protocols, 

which is meant to be used with GP-Pro; we introduce the way to implement routing 

components in the form of Xpand [86] templates; and we show how to make use of the new 

DSL in order to write real protocol specifications. As mentioned before, the entire 

development was performed by using the integrated development environment Eclipse [82]. 

 

6.1 Specification Language 

The new DSL was created by using the Xtext [71] framework. The DSL provides enough 

rules for the user to write protocol specifications capable of requesting the generation of 

reactive, proactive and position-based routing protocols.  

 

Inside the Xtext framework resides the Xtext grammar language. The Xtext language 

is used to describe the concrete syntax and the abstract syntax, or metamodel, of the new 

DSL. A metamodel is a precise definition of the constructs and rules needed to create 

semantic models. Therefore, the new DSL was created with Xtext by defining grammar 

language abstractions called Rules. Two different types of rules that exist in Xtext were used 

in our DSL. These rules are called Simple rule and Abstract rule. In the case of a Simple rule, 

its name becomes the name of a concrete meta-type. Inside the rule, tokens are specified and 
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the values are assigned to features of the actual meta-type. On the other hand, the Abstract 

rules are used to let a feature contain elements of different types. In order to show examples 

of both kinds of rules a brief excerpt of the new DSL is described next. The entire DSL is 

listed in Appendix A.  

 

Protocol : 

 "Protocol" (" as " synonym=ID)? "{" 

  (properties+=Property)*  

  (subcomponents+=Main_Component)* 

  (interconnections+=Interconn)*   

 "}";   

 Main_Component : 
MADINI | DELIVERY | CONI | ADD_COMPS | OS_IFACE | RIR | EV_MGR | 

PATH_DET | LOC_INFO; 

 

The previous piece of the DSL describes a Simple rule called Protocol (which is also 

the name of the metatype corresponding to this rule). Indentation is used to show hierarchical 

relationships between rules, which represent components, and bold face type is used to 

identify new rules. The rule is described after the colon and is made up of tokens. The first 

token ("Protocol") is a KeywordToken, which says that a specification of a protocol starts with 

the keyword “Protocol”. The protocol’s feature synonym follows. The question mark after 

the parenthesis means that this feature is optional. When this feature is listed in the 

specification, it has to be preceded by the KeywordToken    “ as ”. The possible values for 

this feature correspond to the IdentifierToken ID. The ID token defined by Xtext can be 

formed by any letter, digit or the underscore character. Then, enclosed in curly brackets (“{” 

and “}”), the protocol properties indicated by ((properties+=Property)*, the subcomponents 

indicated by (subcomponents+=Main_Component))* and the interconnections indicated by 

(interconnections+=Interconn)* should be declared. Because the structure of these three 

tokens (i.e. component features) is similar to each other, we will only further explain the 

subcomponents feature. The “*” means that any number of subcomponents can be declared, 

even none. This time the token points to another rule (called Main_Component) and each 

subcomponent is added (defined by the += operator) to the protocol’s reference called 

subcomponents. The Main_Component rule is an Abstract rule that contains elements of the 

types: MADINI, DELIVERY, CONI, ADD_COMPS, OS_IFACE, RIR, EV_MGR, PATH_DET 

and LOC_INFO (which are the core components of GP-Pro). Each of these types are rules 



 73 

themselves. The description of every single rule that is part of the DSL can be found in 

Appendix A. All of them are either Simple or Abstract rules. Therefore, the previously 

explained logic can be used to understand them all.  

 

In the previous excerpt of the DSL we can see that the Protocol rule (or metatype), 

which is the component with the highest hierarchy, might have a synonym (i.e. optional 

feature), and it might be constructed by an unlimited number of properties, subcomponents 

and interconnections. These features are generic and common to every other component in 

the architecture. Therefore, every component (see Appendix A) allows for the same feature 

specification making this component structure truly generic. In the previous excerpt we can 

also see that the subcomponents of Protocol all have to be of the type Main_component, 

which is a set of nine other types, each one representing one of the nine core components of 

GP-Pro. The next DSL excerpt shows the rule definition of one of those other types, the 

DELIVERY metatype. 

 

 DELIVERY : 

  "DELIVERY" (" as " synonym=ID)? "{" 

   (properties+=Property)*   

   (subcomponents+=Del_mech)+ 

   (interconnections+=Interconn)*    

  "}";   

  Del_mech :  

   Del_mech_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}"; 

 Generic_component : 

  Generic_component_types | (" as " synonym=ID)? "{" 

   (properties+=Property)* 

   (subcomponents+=Generic_component)* 

   (interconnections+=Interconn)* 

  "}" ; 

 

In this second excerpt we can see that the same feature structure previously explained 

is shared by all components. The difference between the DELIVERY metatype and Protocol 

is the type of its subcomponents. In this case they have to be of the type Del_mech and the 

metatype Del_mech has to have subcomponents of the type Generic_component. Finally, the 

Generic_component metatype is built by subcomponents of its own type, which translates 
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into a recursive rule that allows each Generic_component to be composed of as many 

subcomponent levels as the user writing the specification wants. Therefore, the DSL enforces 

to create specifications that match the proposed protocol architecture at the higher component 

levels, but also provides full flexibility in terms of the component types at the lower levels, 

and in terms of the number of component levels on every specification. Figure 21 is a 

screenshot of the DSL definition using the Xtext framework inside Eclipse.  

 

 
Figure 21. Screenshot of the Xtext framework inside Eclipse 

 

6.2 Protocol Components 

GP-Pro generates routing protocols by assembling existing components. The more 

components are available, the more varieties of routing protocols can be generated. 

Therefore, the architecture of GP-Pro was designed such that the set of available components 

could be always enlarged. However, before thinking about expanding the set of available 

components, we had to create an initial set of components that could be assembled together 

to generate the first GP-Pro routing protocol. The authors in [46] suggest that the best way to 

create an initial set of components to generate an application is by taking an existing 

application and breaking it into pieces that can be put back together. In our case the 
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application is a routing protocol and those pieces should match the component architecture 

previously introduced. Therefore, in order to create the initial set of protocol components, the 

DYMOUM [60] implementation was used and its source code was reorganized in Xpand 

templates matching the GP-Pro domain architecture. The source code reorganization was 

performed by carefully analyzing the role and functionality of each data structure, each 

constant definition, each macro definition and each function in the DYMOUM code in order 

to find its best fit inside the GP-Pro architecture. The entire list of existing component-

templates along with a brief description is shown in Appendix B. 

 

 When a new protocol is generated, the source code is organized in one source file (.c 

file) and one header file (.h file) for the user-level plus another two similar files for the 

kernel-level. The kernel-level code (when required) corresponds to the pre-forwarding 

processing subcomponent of the Operating System Interface core component (only used by 

reactive and position-based protocols). Each source file (.c file) contains the code of all the 

components that were required to generate the protocol at the corresponding level. Likewise, 

the header files (.h files) contain the corresponding header declarations of each component 

building the new protocol. Therefore, each time a new component is created in the form of an 

Xpand template, the template should provide the code to be included in the source code file 

and the code to be included in the header file. The following example shows the main 

structure of an Xpand template that implements a protocol component. 

 

«DEFINE info_subcomponent_template(String exp_type) FOR HELLO-» 

 «IF exp_type == "INFO"» 

  ....<properties and messages> 

 «ENDIF» 

 

 «IF exp_type == "HEADERS"» 

  ....<header code> 

 «ENDIF» 

 

 «IF exp_type == "BODY"» 

  ....<source code> 

 «ENDIF» 

«ENDDEFINE» 

 

 This example shows that each Xpand template has a name, is created for a certain 

DSL metatype and is enclosed between the tags «DEFINE» and «ENDDEFINE». Inside the 
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«DEFINE» tag, the template name has to be provided along with the name of the metatype that 

the template is created for. In this example, the template is named 

info_subcomponent_template. The template receives the String type variable exp_type as a 

parameter and it is created for the HELLO metatype. The minus character (“-”), shown after 

the metatype name and before the closing bracket (“»”), is used in the Xpand language to 

omit the output of superfluous white spaces.  

 

The content of each template is divided into three main sections: INFO, HEADERS 

and BODY. Each of them is delimited by IF-ENDIF blocks and is used at different stages 

during the generation process. At generation time, the section of the template (one of the 

previous three) that is utilized to generate the new protocol depends on the value of the 

exp_type (expansion type) variable, which is controlled by the Main GP-Pro template (listed 

in Appendix B). The first section (“INFO”) provides configuration information about the 

component. This information is the list of configurable properties and the list of messages 

that the component processes and generates. The next example is an actual INFO section of a 

component template that shows how to create those listings.  

 

 «IF exp_type=="INFO"-» 

  «Property("msg_ival", "int", "3")» 

  «ProcMsg("ctl_msg_request")» 

  «ProcMsg("timer_timeout")» 

  «GenMsg("register_timer")» 

 «ENDIF» 
 

 The example lists one component property, two processed messages and one 

generated message. Each of them is listed in an individual line of code. And, each of those 

lines of code begins with the opening symbol “«” and ends with the closing symbol “»”. The 

syntax to list a property is: Property(“<prop_name>”, “<prop_type>”, “<prop_value>”) 

where  <prop_name> indicates the name of the property; <prop_type> the data type of the 

property; and <prop_value> the value of the property. At generation time, each property is 

transformed into a variable in C, therefore, the property name has to match the naming 

conventions for C variables; the data type has to be a valid C data type and the value has to 

be a valid value for such C data type. On the other hand, the syntax to list a processed 

message is: ProcMsg(“<msg_name>”) where <msg_name> is the name of the message. The 
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message name has to match the naming conventions for C variables as well. For each 

processed message, the source code section of the component (the “BODY” section in the 

template) should provide a function named: proc_<msg_name>, which is the name of the 

message with the prefix “proc_”. Such functions process the corresponding message type 

received from some other protocol component. Finally, the syntax to list a generated 

message, which is very similar to the one for processed messages is: 

GenMsg(“<msg_name>”), where <msg_name> is also the name of the message with the 

same naming conventions. In this case no other particular coding is required. It is just 

assumed that at some point the component generates a message with such name, which will 

be sent to some other protocol component. The exchange of generated messages is what 

allows components to operate together and to achieve routing. The information provided in 

this first template section is fundamental because this is the information used to validate each 

protocol specification. 

 

 
Figure 22. Screenshot of the definition of a template using Xpand language 

 

Figure 22 shows a screenshot with the beginning of an Xpand template. It shows the 

actual template for the HELLO information subcomponent (HELLO metatype), which is part 

of the initial set of components, and corresponds to the generation and processing of hello 
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messages. Figure 22 shows the “INFO” section of the component template with the list of 

properties, processed messages and generated messages (in that order). 

 

Protocol components are implemented as Xpand templates. However, all of the code 

that actually implements each component is pure C language code that fits the template 

structure. As discussed above, when the routing protocols are generated, components are 

transformed into two files: one .c source file and one .h header file. The code going into the 

header file comes mainly from the second section of the component template ("HEADERS") 

and the code going into the source file comes mainly from the third section of the template 

("BODY"). Additional code and functionalities to make the components fit the GP-Pro 

architecture, and to communicate according to the interconnection model is added during the 

generation process but without user intervention. It is totally transparent to the user (it can 

only be seen by exploring the generated source files). In fact, the execution of GP-Pro 

protocols is multi-threaded. Every message received by the MDC, by the internal component 

process or by the output port of each component creates its own execution thread, which 

exists for as long as the message is being processed by any of these units. 

 

6.2.1 Component Operation 

The general structure of every component template was described above. It is composed of 

three different sections containing C code and configuration information. The three of them 

are transformed to generate components implemented in pure C code. During protocol 

generation, each component is enabled with the required capabilities to communicate 

according to the interconnection model described in Chapter 5. An essential element of this 

interconnection model, which exists in every component, is the MDC. The MDC contains 

two tables with the names of the subcomponents and the names of the generated messages. 

Both of these tables are filled up during a process called component Initialization. This 

process is created for each component, during the generation process, and it can be found 

inside the generated code as a function named <component_name>_initialize, where 

<component_name> is the synonym given to the component in the protocol specification (as 

described in Section 6.3). The initialization is the first process launched when the routing 

protocol is executed. Its job is to prepare every component to operate according to the 
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interconnection model. The initialization process is sequentially executed by each component 

according to its positioning in the hierarchy of components (see Figure 11 in page 61). It is 

first executed by the component with the highest hierarchy, P, and then by each of its 

subcomponents. Each of these subcomponents will follow suit by initializing themselves 

first, and then all of their subcomponents before returning control to the parent component P. 

Subsequent subcomponents will do the same until the lowest subcomponent level is reached. 

Therefore, if we look at the hierarchy of components as a tree structure (see Figure 11), an 

entire branch of components rooted at P will be initialized before the second subcomponent 

of P is initialized (along with its corresponding subcomponents). This protocol initialization 

process continues until all components have been initialized.  

 

 Once all the protocol components have been initialized, they are ready to exchange 

messages with every other component and not only with immediate subcomponents. That is, 

routing between components, as described in Section 5.3, can be achieved. However, some of 

the protocol components need to perform some additional auto-configuration (e.g., create 

some data structures, register timers with the event manager) before being able to properly 

support the operation of the protocol. Therefore, an additional process called start is executed 

by each component after initialization. It can be found inside the generated code as the 

function named start(). Different from the function initialize that is automatically generated, 

the start() function has to be implemented by the user in the component template. This start() 

function has to be part of the third template section called (“BODY”). The default component 

template shown in Appendix E shows the function declaration and its location in the 

template. Thus, any task to be executed by each component after initialization, but before the 

regular operation of the protocol, has to be performed by the start process. Similarly to 

initialize, the start function is executed by the highest component in the protocol hierarchy 

first, and then by each of its subcomponents. Once all of the protocol components have 

executed the initialize and start processes, the routing protocol is ready to operate. 

 

 Finally, there is a third process that is executed by every protocol component: the stop 

process. This process is executed when the operation of the routing protocol is to be stopped. 

It can be found inside the generated code as the function named stop(). Similarly to the 
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start() process, it has to be implemented by the user in the third section of the component 

template. The default component template shown in Appendix E shows the function 

declaration and its location in the template. The tasks to be executed by the stop process are 

mainly those to release system resources (e.g., memory) allocated to each of the protocol 

component. Therefore, the protocol operation can be represented by the state machine shown 

in Figure 23. A guide on how to create new components can be found in Appendix F. 

 

 
Figure 23. State machine representing protocol operation 

 

6.2.2 Message Types 

Message Type Identifier Description 

Mandatory M This is the default type. If the message is a generated message then 

there must be at least one other component in the specification 

capable of processing it. If the message is a processed message then 

there must be at least one other component that generates it. 

Optional O It is not mandatory that another component in the specification, 

capable of generating or processing such message, exists. 

Mandatory at the child MC All of the immediate subcomponents (or children) of the component 

generating/processing the message should be able to 

process/generate it. 

Mandatory at the parent MP The immediate super component (or parent) of the component 

generating/processing the message should be able to 

process/generate it. 

Table 5. Message Types 

 

As discussed in the previous section, each component provides a list of processed and 

generated messages. The exchange of these messages is the mechanism that allows 

components to communicate and operate together. In essence, components require that each 

of their generated messages be processed by some other component in the specification; and 

that some other component(s) generates every message processed by the component. 

Therefore, the processing or generation of each generated or processed message, 

respectively, becomes mandatory and is validated during the generation process. However, 

not every component requires to make mandatory the processing or generation of all of its 
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messages. Thus, generated and processed messages can be further classified as shown in 

Table 5. The way to define the type of each message is by using the corresponding identifier 

as second parameter when listing each generated or processed message. Examples of it are 

shown next: 

 

 «IF exp_type=="INFO"-» 

  «ProcMsg("qry_madini_sub_props ", “MC”)» 

  «ProcMsg("timer_timeout")» 

  «GenMsg("register_timer",”M”)» 

  «GenMsg("inc_counter",”O”)» 

 «ENDIF» 
 

 This example shows how to use the type identifier as second parameter. Three 

different message types are shown. Because the mandatory type is the default message type, 

both messages timer_timeout and register_timer are of the mandatory type. The generated 

message inc_counter is optional; and the message qry_madini_sub_props, of type mandatory 

at the child, makes mandatory that all of the immediate subcomponents are able to process it. 

This last message is actually generated by the MADINI core component. Thus, it has to be 

processed by each of its information subcomponents. The advantage of this kind of 

hierarchical dependency allows implementing more of the routing infrastructure inside the 

parent component, making it easier to implement the corresponding subcomponents. Like the 

MADINI, other core components also take advantage of this idea. The RIR core component 

is one of them. RIR provides, to every protocol component, the required functionalities to 

launch queries (e.g., find, delete, insert, update, etc) on RIR’s subcomponents, which are 

information repositories. Hence, the implementation of the repositories is limited to defining 

field names and types. And, all protocol components query every repository in exactly the 

same way. In conclusion, the existence of message types supports the validation of protocol 

specifications, simplifies the implementation of new components, and also supports the 

automatic completion of specifications described below. 

 

6.2.3 Protocol Subfamilies 

In order to show that GP-Pro is capable of generating protocols for all three protocol 

subfamilies discussed in Chapter 3, and after creating the initial set of components to 

generate the reactive protocol DYMO [5], we created additional components. The additional 
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components allowed us to generate the proactive routing protocol OLSR [2], and the 

position-based protocol Greedy [28]. Therefore, all nine core components of GP-Pro were 

implemented along with their required subcomponents. The listing of components that were 

created as part of this work, which are currently available is provided in Appendix C. 

 

6.3 Protocol Specification 

The previous two sections presented the way that the DSL was created and the method to 

create protocol components by using Xpand templates. Now, we discuss how to write 

protocol specifications according to the new DSL and based on the available components. 

The DSL allows the user to describe each of the components that will be part of the routing 

protocol, and to assign values to their configurable parameters. Additionally, the DSL allows 

creating composite components and defining explicit interconnections between components. 

The first protocol generated by GP-Pro according to a protocol specification was the DYMO 

[5] protocol. DYMO shares many of the AODV [1] functionalities. However, it is easier to 

implement and it is designed with future enhancements in mind. In DYMO, when a route to a 

certain destination is required, a route discovery is initiated by broadcasting a route request 

message. Each route request message is forwarded once by each node until reaching the 

destination node. Then, the destination replies to the source node with a route reply message. 

Each route request and each route reply message keep an ordered list of all the nodes they 

passed through, so every receiver can immediately record a route back to the sender. To 

detect link breakdowns DYMO makes use of Hello messages that are exchanged among one-

hop neighbors.  

 

As mentioned before, a custom editor was created for the new DSL. Therefore, every 

protocol specification should be written by using the custom editor in order to take advantage 

of its support features such as: code completion and syntax and constraints checking. The 

custom editor can be used inside Eclipse after GP-Pro and the new DSL have been installed 

as Eclipse plug-ins. Next, we show an excerpt of the actual specification to generate the 

DYMO [5] protocol. The full protocol specification can be found in Appendix D. 

 
 



 83 

Protocol as GPPro_DYMO { 

 udp_port = 657 

  CONI as Coni{ 

  Initiation as Init{ 

   routing_table = rtable 

  } 

  Request as Req{ 

   routing_table = rtable 

  } 

 } 

 MADINI as mad1 { 

  Hello as hello1 { 

   msg_ival = 2 

   ctl_msg_type = 4 

   nb_repository = nb1 

   routing_table = rtable 

   nb_timeout = 6 

  } 

 } 

 DELIVERY as del1 { 

  n_hops as nh1 { 

   hops = 1 

  } 

  n_hops as nh_net_diameter { 

   hops = 255 

  } 

 } 

 RIR as repo_pool{   

  neighbors as nb1{}   

  rir_dymo as rtable{} 

 }   

 control_message : hello1 -> nh1    

 control_message : Req -> nh_net_diameter 

} 

 

 This specification defines a protocol, which is given the name GPPro_DYMO. 

GPPro_DYMO is the value assigned to the property synonym for the component called 

Protocol (as shown in Section 6.1, every component has an optional synonym property). The 

use of a synonym allows giving different names to a component that is used more than once 

in the same protocol specification. Synonyms are also useful to define explicit component 

interconnections. In the next line, the configurable property udp_port for the component 

Protocol is set to the value 657 by using the assignation sign “=”. As in this example, the re-

configured properties, of any component, are listed right after the opening curly bracket “{” 

that is next to the component’s name (and next to the synonym, if provided), but before any 

subcomponent. The values assigned to each configurable property have to match the 

corresponding data type; otherwise, problems might appear when the generated protocol is 
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compiled. Protocol, which is the component of highest hierarchy, is the super-component of 

all other components in the specification. In this example, it contains four subcomponents 

called CONI, MADINI, DELIVERY and RIR. The subcomponents of any component in 

the specification are defined inside the curly brackets (“{}”) that open right after the 

component’s name. Therefore, when any given component needs to be extended with further 

subcomponents, it is simply added to the corresponding subcomponent section right after its 

declaration. In this way, components can be extended to as many subcomponent levels as 

required by using this simple mechanism, and by explicitly defining the corresponding 

component interconnections. Going back to our example, we can see that the subcomponent 

CONI is composed of another two subcomponents called Initiation and Request, which 

receive the synonyms Init and Req respectively, by using the reserved word “as”. Both of 

them list one property named routing_table, which is set to rtable. rtable is the synonym 

given to the subcomponent rir_dymo of the core component RIR. That means that a 

repository that is part of the RIR can be used by any other component, just by setting a 

property of that other component to the synonym given to the repository. The specification 

also shows the core component MADINI, which includes the subcomponent Hello with 

synonym hello1. The component hello1 lists several configurable properties and one of them 

is set to the synonym of a second repository, which is nb1. The last core component in this 

specification is DELIVERY. This component shows two subcomponents: nh1 and 

nh_net_diameter that are both instances of the component n_hops. This is an example of 

how the use of synonyms allows reusing the same component several times in the same 

specification. In this case, the difference between these two components is the value that the 

property hops is set to (1 and 255), which defines the maximum number of times that a 

message, using such delivery mechanism, should be retransmitted. The way to define which 

components are using each delivery mechanism is by making use of component 

interconnections.  

 

After the protocol subcomponents have been listed, the explicit component 

interconnections have to be defined. In general, these connections have to be defined at the 

end of the subcomponent section of the lowest component in the hierarchy which is also a 

super-component for both, the sender and the destination components. The previous 
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specification shows two component interconnections: hello1 to nh1 and Req to 

nh_net_diameter. In both cases Protocol is the lowest component in the hierarchy that 

contains each pair of subcomponents (all of them second level subcomponents). This means 

that the interconnections are listed after sender and destination components have been 

defined in the specification. Alternatively, all of the interconnections can be listed at the end 

of the subcomponent section of the protocol component, meaning at the end of the 

specification. The way to define these interconnections is by matching the messages 

generated by the sender component, to the corresponding destination component. In our 

example, the sentence control_message : hello1 -> nh1 defines the first interconnection. 

The syntax for it is: <message name> : <sender> -> <destination>. Therefore, our example 

defines that every message named control_message generated by the component hello1 

should be delivered to the component nh1 (this interconnection represents the forwarding of 

the “hello” message, to the delivery mechanism that will broadcast it one hop away). The 

second interconnection represents the forwarding of the route request message to the delivery 

mechanism that will broadcast it as far as the diameter of the network is. 255 hops in this 

case, which is the value that the property called hops, for the component nh_net_diameter, 

is set to.  

 

 
Figure 24. Screenshot of the DYMO protocol specification using the new DSL 
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Figure 24 shows a screenshot of the protocol specification to generate the DYMO [5] 

protocol. The figure shows the protocol specification along with a smaller pop up window, 

which provides the code completion support specifically generated for the new DSL.  

 

Interconnections are the source of information to fill up the message/destination table 

of the MDC. On the other hand, the specification of subcomponents at several levels in the 

component hierarchy is the source of information to fill up the subcomponents table of the 

MDC. 

 

From the previous example, we learned how a component (in this case Protocol) can 

be extended by including additional subcomponents, and how those additional 

subcomponents can be connected to each other. This same approach can be applied to any 

other component, even to a basic component, until it becomes a complete routing protocol. 

 

Both interconnections listed in the previous specification example are asynchronous 

interconnections, denoted by the symbol “->”. It means that the sender component will 

forward the message to the destination component, and immediately afterwards continues 

processing any other pending task. Hence, the sender will not wait for the message to be 

processed by the destination. This could be the most common operation mechanism for 

interconnections. However, there are scenarios where the sender component needs to wait for 

the processing of the message (plus some type of answer), before it continues with its regular 

operation. An example of this scenario occurs when a component sends a query message to 

an information repository and waits for an answer with the information matching the query. 

Therefore, in this kind of scenario a second interconnection type is required, the synchronous 

interconnection type. Components sending synchronous messages will wait for an answer 

from the destination component before they continue their regular processing. Components 

processing synchronous messages will generate a reply message with the same name plus the 

prefix “reply_” (e.g., reply_find_query for message named find_query). The way to indicate 

in the protocol specification that an interconnection is synchronous is by using the 

bidirectional symbol “<->”, instead of the symbol “->”. The rest of the syntax to define the 

interconnection remains the same. 
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6.4 Automatic Completion of Specifications 

Each component is capable of processing and generating multiple message types. Ideally, 

each message generated by a component (or output port), has to be interconnected to the 

input port of another component that is capable of processing such message, which is also 

part of the specification. However, the interconnection of every port for every component 

might be a tedious and laborious task. Therefore, based on the fact that each component 

clearly identifies the types of messages that it generates and processes, GP-Pro can 

automatically complete the protocol specification on behalf of the user. The only scenarios 

where GP-Pro might not be able to properly add the missing interconnections occur when 

more than one component in the specification is capable of processing the same message 

type, and no other advice (e.g., a hierarchical relationship) on how to interconnect the 

components is available. Therefore, even though GP-Pro would create the missing 

interconnection, it is recommended that, in this type of situations, the user makes sure that 

she/he is the one defining those interconnections to achieve the expected behavior. An 

example of such a situation is when more than one delivery mechanism (for control 

messages) is listed in the protocol specification, because control messages could use any of 

them. In that case GP-Pro would pick the first listed component that can process the message. 

This is exactly the reason why two interconnections had to be listed as part of the protocol 

specification shown in the example of Section 6.3; otherwise, the automatic completion 

feature could have added all of the interconnections without the help of the user. As an 

example of the aid provided by automatic completion, the full specification of the DYMO 

implementation (see Appendix D) requires the definition of 145 component interconnections, 

however, thanks to automatic completion, the user only has to define four (4) of them. 

 

Adding missing interconnections between components is one of the methods to 

automatically complete protocol specifications, however, it is not the only one supported by 

GP-Pro. The second method is related to setting all of the configurable properties of each 

component. As mentioned before, the configurable properties of each component are listed in 

the INFO section of each component template. Each property is listed along with a default 

value. Therefore, when any of these configurable properties is not included in the protocol 

specification along with its corresponding value, GP-Pro will assign the default value to each 
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of them. Thus, GP-Pro allows further tuning of each protocol component that is part of the 

specification, but it is not mandatory.  

 
Description Type Action 

A mandatory message processed by any of the protocol 

components is not generated by any other component. 

Error User will be flagged with the 

name of the component that 

processes the message. 

A mandatory message generated by any of the protocol 

components is not processed by any other component. 
Error User will be flagged with the 

name of the component that 

generates the message. 

A mandatory interconnection between two existing 

components was not listed in the specification. 

Warning GP-Pro completes the 

specification by adding the 

missing interconnection. 

An interconnection defined in the specification makes 

reference to a message that is not generated by the 

sender component. 

Error User will be flagged with a 

message saying that the sender 

does not generate the message. 

An interconnection defined in the specification makes 

reference to a message that is not processed by the 

destination component. 

Error User will be flagged with the 

message saying that the 

destination does not process the 

message. 

An interconnection defined at the DSL level makes 

reference to a component that is not part of the 

specification 

Error User will be flagged with the 

name of the missing component. 

An interconnection between two components that 

should have been defined as Asynchronous was not 

defined as such. 

Error The details of the erroneous 

interconnection are provided to 

the user. 

An interconnection between two components that 

should have been defined as Synchronous was not 

defined as such. 

Error The details of the erroneous 

interconnection are provided to 

the user. 

A component property listed under a certain component 

that does not belong to it. 
Error The user is flagged with the 

names of the component and the 

property. 

The value provided for one of the component properties 

does not correspond to the expected data type. 
Error The user is flagged with the 

invalid value along with the 

names of the component and the 

property. 

Table 6. Specification errors and warnings 

 

6.5 Error Handling 

User specifications written with the new DSL might contain mistakes. These mistakes will be 

handled during the protocol generation process and proper action will be taken. Depending 

on their impact on the protocol generation process, specification mistakes are classified as 

Errors or Warnings. An Error means that the mistake prevents GP-Pro from completing the 

generation process and the user has to take some action. On the other hand, a Warning means 

that even though there is some information missing in the specification, the generator is able 
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to provide it and continue with the generation process. Table 6 lists the mistakes that could 

be made when writing the protocol specification. It also provides their classification, and the 

action taken by GP-Pro. 

 

6.6 Generation Time 

In this section, we elaborate on the savings that can be obtained, in terms of reduced time to 

generate a deployable protocol implementation, by using GP-Pro as the generation tool.  

 

 GP-Pro was created to speed up the generation time of ad hoc routing protocols ready 

for deployment. It was designed as a software tool that could take a protocol specification as 

an input, and would return a fully implemented protocol (assuming that all required 

components are available), coded in C language and ready to be deployed as its output. A 

proprietary DSL was created for our target domain in order to simplify the task of writing 

new specifications. Each routing protocol is generated by assembling existing components, 

which communicate with others according to an also proposed component interconnection 

model. The tool was designed to be extensible, in a way that at anytime new components 

could be added, and it could also accommodate further and forthcoming protocol features. 

The first goal, aimed to prove the feasibility of GP-Pro, was to be able to generate a reactive 

protocol while providing all of the previous capabilities. The choice of a reactive protocol, as 

the first protocol, was due to its additional complexity in order to route packets when no path 

is available, which requires interacting with the OS Kernel. Thus, DYMO was chosen as the 

first protocol. This first goal was achieved after approximately eight months of work, and 

after a case study that was used to verify that all the supportive software tools were the right 

fit (about four more months).  

  

The generation of one single protocol would not be enough to demonstrate the 

protocol generation capabilities of GP-Pro. Therefore, after generating DYMO a second 

protocol was generated, the well-known OLSR routing protocol. To generate this second 

protocol, which belongs to the family of proactive protocols, more than 50% of the existing 

routing components created to generate DYMO were reused. Thus, even though new routing 
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components had to be created, the generation of an OLSR implementation providing the core 

functionalities described in [2], took about six weeks. In order to generate a deployable 

routing protocol for each routing family, a third protocol was generated: the position-based 

protocol called GREEDY. In this case, even more existing components were reused than 

before, 75% of the components used by GREEDY existed already. It took about seven days 

of work to create the required new components and generate a deployable version of 

GREEDY. Hence, the time taken to generate GREEDY, compared to the time that took to 

generate DYMO, was reduced from months to days (and to weeks in the case of OLSR).  

 

Therefore, it becomes obvious that the more components are available, the shorter the 

time required to generate each new protocol. This is independent of the fact that additional 

components might be required by each new protocol. At the end, every time new components 

are created, more components are available to be reused and the variety of protocols that can 

be generated increases. More importantly, when all the components required by a new 

protocol exist, meaning that no new components have to be created, the time to generate the 

new protocol gets reduced to the time that takes to write the corresponding protocol 

specification by using the proprietary DSL. To keep track of the components already 

implemented, they should be grouped by the main component that they belong to. However, 

further classification (based on component functionality), may be created for those 

components that can be used in multiple main components. The specifications shown as 

example in this document are between 39 and 60 lines long. Then, new protocols ready for 

deployment over real networks could be generated in a matter of minutes. That is a drastic 

reduction on the time required to generate deployable protocols, which, as shown in the next 

chapter, perform proper and reliable routing at an affordable performance cost.  
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Chapter 7 

 

Evaluation 

 

This chapter discusses the evaluation of the protocol generator along with the generated 

protocols once that GP-Pro was implemented. By implemented we mean here that the full 

software tool has been created along with the protocol architecture and the component 

interconnection model. Hence, GP-Pro provides freedom to select the components building 

each new routing protocol. The fact that GP-Pro can be continuously extended by creating 

new components that satisfy further and forthcoming protocol requirements suggests that we 

cannot say, at any time, that it is actually complete. GP-Pro is a tool to generate ad hoc 

routing protocols, which simplifies the development process. Therefore, in order to evaluate 

it, we can either qualitatively compare it against some of the existing frameworks that share 

similar objectives or, we can compare the performance of the generated protocols against 

protocols generated by other frameworks or even handcrafted protocols. These alternatives 

are discussed in the following sections. However, before elaborating on the evaluation 

alternatives, we present the two other routing protocols that were generated with GP-Pro as 

part of this work, which are also part of the performance evaluation.  

 

7.1 Generated Protocols 

GP-Pro aims to generate routing protocols for the three subfamilies described above: 

proactive, reactive and position-based. Therefore, in order to show that GP-Pro is capable of 

achieving its goal, we generated one protocol for each protocol subfamily. Section 6.3 

presented an excerpt of the protocol specification to generate the reactive routing protocol 

DYMO [5] and Appendix D contains the full protocol specification. Next, we present the 

protocol specifications used to generate the proactive protocol OLSR [2], and the position-

based protocol GREEDY [28], both specifications are fully explained. Also, we introduce the 

packet format used by the different control packets generated by each protocol. Finally, we 
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discuss possible variants for OLSR and GREEDY along with their integration in the existing 

specifications. 

 

7.1.1 OLSR Protocol 

This section presents and explains the protocol specification used in GP-Pro to generate the 

proactive routing protocol OLSR [2]. The specification describes OLSR as a protocol that 

generates hello and TC messages that are broadcasted one hop away and over the entire 

network, respectively. Broadcasting over the entire network is performed by using MPR 

nodes, which are computed every time that topology changes are detected. Control packets 

are sent through the UDP port 698 and all routing paths are computed by using the shortest 

path algorithm. The specification is listed next (line numbers are shown on the left side). 

 

1 Protocol as GPPro_OLSR { 

  2  udp_port = 698 

  3  MADINI as mad1 { 

  4   Hello_1h as hello{} 

  5   TC_message as tc_msg{ 

  6    ttl = 255 

  7   } 

  8  } 

  9  EV_MGR as ev_mgr { 

  10  } 

  11  DELIVERY as del1 { 

  12   n_hops as nh1 { 

  13    hops = 1 

  14   } 

  15   MPR_forwarding as mpr_fwd{} 

  16  } 

  17  OS_IFACE as OS1{ 

  18   Fwd_eng_interaction as FEI{} 

  19   Ctl_pkts_exch as CP1{} 

  20  } 

  21  RIR as repo_pool{ 

  22   linkSet as link_set{} 

  23   neighborSet as neighbor_set{} 

  24   twoHopNeighborSet as twoHopNeighbor_set{} 

  25   mprSelectorSet as mprSelector_set{} 

  26   topologySet as topology_set{} 

  27   duplicateSet as duplicate_set{} 

  28   rTable_OLSR as RIR_OLSR{} 

  29  } 

  30  ADD_COMPS as add_comps{ 

  31   MPR_computation as compute_mprs{} 

  32  } 
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  33  PATH_DET as path_det{ 

  34   shortest_path_OLSR as shortest_path{} 

  35  } 

  36 

  37  control_message : hello -> nh1 

  38  control_message : tc_msg -> mpr_fwd 

39 } 

 

 In the previous specification, line 1 says that a new protocol with the synonym 

GPPro_OLSR will be created. The curly bracket “{” at the end of the line means that the 

properties, subcomponents and interconnections will be listed next. Every protocol 

specification has to start with the same statement, but (most likely) with a different protocol 

synonym. Line 2 sets the udp_port property to port number 698. That is the only property 

listed for Protocol. Properties have to be always listed before any subcomponent. The seven 

subcomponents of Protocol are listed next, between line 3 and line 35. They are the core 

components MADINI, EV_MGR, DELIVERY, OS_IFACE, RIR, ADD_COMPS and 

PATH_DET. The first of them, MADINI is listed from line 3 to line 8. Line 3 says that the 

MADINI component will be included with the synonym mad1 and its 

properties/subcomponents/interconnections are listed next. In this case no properties for 

MADINI are listed. Line 4 says that the first subcomponent of MADINI is Hello_1h, which 

takes the synonym hello. This component generates hello messages with the list of one hop 

neighbors. The opening and closing brackets “{}” listed at the end of the line indicate that no 

properties/components/interconnections are provided. Lines 5 to 7 list the second 

subcomponent for MADINI. This is the subcomponent TC_message, which receives the 

synonym tc_msg and generates control messages that advertise the network links known to 

the sender node. Line 6 shows the only property to be configured, which is ttl and is set to 

the value 255. This property defines the Time to Live value for the control message. Lines 7 

and 8 are the closing brackets “}” indicating the end of the declaration for components 

TC_message and MADINI, respectively. Lines 9 and 10 indicate that the EV_MGR 

component will be part of the generated protocol and will receive the synonym ev_mgr. No 

properties/subcomponents are listed. Line 11 says that the component DELIVERY will be 

added with synonym del1. This component contains two subcomponents. The first of them 

shown in Line 12 is n_hops, which receives the synonym nh1. It has one property that is 

shown in Line 13; it is called hops and is set to the value 1. n_hops is a delivery mechanism 
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that forwards any control message N hops into the network. The number of hops is defined 

by the property hops. In this case the messages will be forwarded only one hop away. Line 

14 marks the end of the component declaration. Line 15 adds another delivery mechanism 

called MPR_forwarding with the synonym mpr_fwd. This component provides the 

optimized broadcasting mechanism that is part of the OLSR [2] protocol. Line 16 marks the 

end of the DELIVERY component. Lines 17 to 20 show the OS_IFACE subcomponent 

with the synonym OS1. It contains two subcomponents listed in Lines 18 and 19. The first 

one provides communication between the routing protocol and the forwarding engine in the 

Operating System. It is included with the synonym FEI. The second one provides the 

capabilities for the router to send control packets over the network. It is included with the 

synonym CP1. The next core component listed between lines 21 and 29 is the RIR, which 

receives the synonym repo_pool and contains seven subcomponents that are repositories. 

These are the repositories required by OLSR and are described in RFC 3626 [2]. Lines 30 to 

32 describe the component ADD_COMPS with the synonym add_comps. It is composed of 

one single subcomponent called MPR_computation that receives the synonym 

compute_mprs. This subcomponent computes the Multipoint Relay set and the Multipoint 

Relay Selector set, as described in [2]. The output of this computation is stored in the 

corresponding repositories and is used by the MPR_forwarding component. OLSR is a 

proactive protocol; therefore, routing paths to every possible destination are continuously 

updated. Lines 33 to 35 include the PATH_DET component with the synonym path_det, 

which takes care of determining the routing paths to every destination. It is composed of one 

single subcomponent called shortest_path_OLSR with synonym shortest_path. This 

subcomponent contains the algorithm to compute the shortest path to every destination node 

as described by [2]. This algorithm makes use of the information stored in the repositories 

link_set, neighbor_set, twoHopNeighbor_set and topology_set to compute the routes and 

stores them in the repository called RIR_OLSR. All of these repositories are subcomponents 

of the RIR component and are listed between lines 22 and 28. The shortest_path_OLSR 

component needs to know the synonyms of the repositories where it can find and store the 

required information is. This is achieved via the values set to its five properties that store 

such information. In this case, these five properties are not listed in the specification because 

their default values match the synonyms given to the corresponding repositories. Therefore, 



 95 

there is no need to list them in the specification; the default values will be used. To learn 

more about the default values of each exiting component, which eases the task of writing new 

specifications see Appendix C. If these five had been listed, the shortest_path_OLSR 

component would look as shown next. 

 

   PATH_DET as path_det{ 

    shortest_path_OLSR as shortest_path{ 

linkSet = link_set 

neighborSet = neighbor_set 

twoHopNeighborSet = twoHopNeighbor_set 

topologySet = topology_set 

rTable_OLSR = RIR_OLSR 

} 

   } 

 

 Finally, lines 37 and 38 show the two component interconnections required by this 

protocol in order to operate properly. Both of them match an actual control message 

generated by a protocol component with another component that provides the corresponding 

delivery mechanism. Line 37 says that every message named control_message generated by 

the component with synonym hello should be asynchronously forwarded to the delivery 

mechanism with synonym nh1. This corresponds to hello messages sent one hop away. Line 

38 says that every message named control_message generated by the component with 

synonym tc_msg should be asynchronously forwarded to the delivery mechanism with 

synonym mpr_fwd. This corresponds to the topology control messages broadcasted into the 

network by using the optimized broadcasting mechanism based on MPRs [2]. The end of the 

protocol specification is marked by the closing curly bracket “}” shown in line 39. Blanks 

lines like the one shown in line 36 are accepted at any point in the specification. 

 

7.1.2 GREEDY Protocol 

This section presents and explains the protocol specification used to generate the position-

based routing protocol GREEDY [28] with GP-Pro. Nodes running the GREEDY protocol 

acquire neighborhood information by exchanging hello and location messages one hop away. 

Also, each node periodically (but less frequently) advertises its own location information 

over the entire network, so that when a new routing process is to be started, an estimated 

location of any destination node is known to the sender. The location information of each 
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node is expected to be obtained via a GPS receiver. Finally, each data packet is forwarded, at 

every hop, to the neighbor that is the closest (in Euclidean distance) to the destination node. 

The specification is listed next (line numbers are shown on the left side). 

 

 

1 Protocol as GPPro_GREEDY { 

  2  udp_port = 7690 

  3  MADINI as mad1 { 

  4   Hello as hello1 { 

  5    msg_ival = 2 

  6    ctl_msg_type = 4 

  7    nb_repository = nb1 

  8    routing_table = rtable 

  9    nb_timeout = 6 

  10   } 

  11   location as loc1{} 

  12   location as loc_wide{ 

  13    msg_ival = 20 

  14    loc_info_timeout = 60 

  15    ctl_msg_type = 16 

  16   } 

17  } 

  18  EV_MGR as ev_mgr { 

  19  } 

  20  DELIVERY as del1 { 

  21   //used by hellos 

  22   n_hops as nh1 {   

  23    hops = 1 

  24   } 

  25   //used by location update 

  26   n_hops as nh_net_diameter {   

  27    hops = 255 

  28   } 

  29  } 

  30  OS_IFACE as OS1{ 

  31   Pre_forwarding as PF1{ 

  32    routing_table = rtable 

  33    route_update_freq = 1000    

  34   } 

  35   Fwd_eng_interaction as FEI{} 

  36   Ctl_pkts_exch as CP1{} 

  37  } 

  38  RIR as repo_pool{ 

  39   neighbors as nb1{} 

  40   rir_dymo as rtable{} 

  41   location_table as loc_table{} 

  42  }  

  43  LOC_INFO as loc_info{ 

  44   gps_receiver as gps{} 

  45  } 

  46  PATH_DET as path{ 

  47   GREEDY as gedir{} 

  48  } 
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  49 

  50  control_message : hello1 -> nh1 

  51  control_message : loc1 -> nh1 

  52  control_message : loc_wide -> nh_net_diameter 

  53  rt_entry_update : PF1 -> gedir 

54 } 

 

 As in the protocol specification presented in the previous section, this specification 

starts by assigning the synonym GPPro_GREEDY to the new protocol in line 1 and by 

setting the udp_port property to number 7690 in line 2. This specification contains seven 

core components listed between lines 3 and 48 which are: MADINI, EV_MGR, 

DELIVERY, OS_IFACE, RIR, LOC_INFO and PATH_DET. The first of them, 

MADINI, with synonym mad1 is listed between lines 3 and 17. It contains 3 

subcomponents. The first subcomponent listed between lines 4 and 10 is Hello with synonym 

hello1. This component generates simple hello messages that advertise the identity of the 

sender (without any additional neighbor information). This subcomponent also lists 5 

properties. The first of them in line 5 is called msg_ival, it defines how often (in seconds) 

messages are created. In this case it is set to every 2 seconds. The second property in line 6 

ctl_msg_type assigns a type number to the control message. In this case it is set to 4. It is 

important that different types of control messages receive different type numbers for proper 

identification. Line 7 lists the property nb_repository to nb1. This property must be set to the 

synonym of the repository where the information received by each hello message will be 

stored. In this case the synonym of the repository is nb1, which is the synonym of one of the 

repositories that are part of the RIR (see line 39). Line 8 is another property expecting the 

synonym of a repository. The property routing_table expects the synonym of the repository 

that stores the routing table, it is set to rtable. This repository is listed in line 40. The last 

property listed in line 9 is nb_timeout. nb_timeout defines how many seconds after receiving 

the hello message the neighbor information will become invalid. It is set to 6 seconds. The 

closing curly bracket on line 10 marks the end of the Hello subcomponent. The two other 

subcomponents are listed in lines 11 and 12. Both of them are instances of the location 

component and are clear example of component reuse. In order to provide a different 

functionality by each of them, their properties are set to different values. The location 

component advertises the location information (i.e. longitude, latitude and altitude) of each 

node into the network. The first location component receives the synonym loc1 but no 
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properties are listed. This means that all of its properties will take the default values. For a 

list of properties and default values of each component type see Appendix C. The second 

location component receives the synonym loc_wide. Line 13 lists the first property called 

msg_ival, which defines how often (in seconds) messages are sent; it is set to 20 (the default 

value is 3). Line 14 lists the property called loc_info_timeout, which defines how many 

seconds after the information has been received it is considered as invalid; it is set to 60 (the 

default value is 12). Line 15 lists the last property called ctl_msg_type, which assigns a type 

number to the control message. It is set to 16 (the default value is 15). Another property of 

the location component that is not listed in the specification and thus takes the default value 

is locationTable. This property expects the name of the repository that will store the location 

information, the default value is loc_table, which is the synonym given to the repository 

listed in line 41. Lines 18 to 19 add the EV_MGR component with synonym ev_mgr. Lines 

20 to 29 include the DELIVERY component with synonym del1. This component contains 

two subcomponents that are both instances of the component n_hops. The differences 

between both of them are their synonyms and the value that the hops property is set to. The 

first one has the synonym nh1 and the hops property is set to 1. The second one has the 

synonym nh_net_diameter and the hops property is set to 255. This second delivery 

subcomponent resembles regular broadcasting over the entire network (the value 255 

represents the size of the network diameter). Lines 21 and 25 show that comments can be 

written in the specification if the text is preceded by a double forward slash “//”. Lines 30 to 

37 include the OS_IFACE component with synonym OS1. Different from the specification 

of the OLSR protocol shown above, it includes a third subcomponent called Pre_forwarding 

with synonym PF1. This subcomponent is meant to be used by reactive and position-based 

protocols that do not maintain updated routes to every network destination. Therefore, this 

component has to find a path or at least the next hop towards the destination, while buffering 

data packets. Two properties are listed for this component. The first one is the routing_table 

property shown in line 32. It is set to the synonym of the repository storing the routing table, 

which is listed in line 40. The second property, route_update_freq, is set to 1000. This value 

defines how often (in milliseconds), the validity of a routing table entry that is in use gets 

updated. The description of DYMO [5] says that the validity of an entry in the routing table 

has to be updated every time that a messages is received from, or forwarded to the 
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destination node of that entry. Therefore, when high data transmission rates are experienced, 

this continuous update can potentially saturate the device running the routing protocol. 

During our protocol performance evaluation using the DYMO protocol generated with GP-

PRO and using the DYMOUM [60] implementation, we experienced computer crashings 

with both implementations when streaming high quality video. Therefore, we decided to limit 

the frequency of such an update. Hence, this frequency can be controlled by increasing the 

value assigned to the route_update_freq property. The higher the value, the less often the 

update is performed. Frequency updates at a rate of one per second (1000 ms) provided 

protocol performance stability. Thus, 1000 is used as the value for route_update_freq. 

 

Lines 38 to 42 add the RIR component that includes the three repositories already 

mentioned as its subcomponents. Lines 43 to 45 include the LOC_INFO core component 

with synonym loc_info. This component, which is responsible for providing the location 

information of the node running the routing protocol, is composed of one subcomponent 

called gps_receiver with synonym gps. The component gps_receiver provides the current 

location information of the host. It assumes the existence of a system file where location 

information collected by a GPS receiver gets updated. The default path for such a file is 

"/home/greedy/host_location.dat", and can be modified by resetting the property file_path of 

the gps_receiver component. Lines 46 to 48 list the PATH_DET component with synonym 

path. It contains one single subcomponent called GREEDY with synonym gedir. This 

component selects the next hop for every data transmission according to the GREEDY [28] 

protocol. That is, the next hop is the neighbor node that is the closest (Euclidean distance), to 

the destination. Finally, lines 50 to 53 list the required component interconnections. Line 50 

to 52 say that every control_message generated by the components with synonym hello1 and 

loc1 should be forwarded to the delivery mechanism nh1; and every control_message 

generated by the component with synonym loc_wide should be forwarded to the delivery 

mechanism nh_net_diameter. That is, hello messages generated every 2 seconds by hello1 

and location information messages generated every 3 seconds by loc1 will be broadcast one-

hop away. On the other hand, location information messages generated every 20 seconds by 

loc_wide will be broadcasted over the entire network. The last interconnection, shown in line 

53, means that every rt_entry_update message generated by PF1, which requests the update 
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of a routing table entry, will be forwarded to the path determination subcomponent with 

synonym gedir. This last message should be generated every route_update_freq 

milliseconds, for each active routing table entry. 

 

7.1.3 Generalized Message Format 

The current efforts of the MANET working group [16] in the routing area of the IETF are 

focused on creating several standard features that could be reused by any routing protocol. 

One of those features is the Generalized Packet/Message format, which is a multi-message 

packet format. According to this format, each packet is composed of a header and of any 

number of messages, and each message is composed of a header and sets of addresses called 

address blocks. Multiple and different types of attributes can be associated to packets, to 

messages and to address blocks. In order to represent these attributes, a generalized type-

length-value (TLV) format is also described. It is said that a unique TLV is created to 

represent each type of attribute. Therefore, each TLV can be associated with a packet, a 

message or an address block.  

 

Name Used by Type Length Value 

Dymo_seq_num DYMO 10 Two octets 
The DYMO sequence number associated 

with the address. 

Hop_count DYMO 11 One octet 
The number of hops traversed by the 

information associated with the address 

Validity_time OLSR 12 One octet 

For how long after reception the 

information associated with the message 

must be considered as valid 

Interval_time OLSR 13 One octet 
Emission interval used by the node that 

sent the message 

MPR_willingness OLSR 14 One octet Node’s willingness to act as a relay node 

Link_code OLSR 15 One octet 
Information about the link between the 

sender and the associated address 

TC_ANSN OLSR 16 Two octets 
Sequence number associated with the 

advertised neighbor set 

Longitude GREEDY 17 Four octets 
The longitude of the location associated 

with the address 

Latitude GREEDY 18 Four octets 
The latitude of the location associated 

with the address 

Altitude GREEDY 19 Four octets 
The altitude of the location associated 

with the address 

Time GREEDY 20 Four octets 
The time of the location information 

associated with the address 

Table 7. TLVs Specification 
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 All of the protocols generated with GP-Pro make use of control messages matching 

the message structure described in the version 12 of the internet draft of the Generalized 

MANET Packet/Message format, created and published on-line by [16]. The protocols 

generated with GP-Pro make use of multiple TLVs associated to messages and to address 

blocks. Some of them have already been used by DYMO [5] or by OLSR version 2 [6], but 

some others have been introduced by us, especially those used by the GREEDY protocol. 

The listing of TLVs used by GP-Pro protocols is shown in Table 7. 

 

7.1.4 Protocol Variants 

As mentioned before, GP-Pro generates routing protocols by combining existing components 

according to a protocol specification. Therefore, multiple variations of the same protocol can 

be generated by exchanging one or few components. The exchange of components would be 

reflected on a new protocol specification where only a few lines are modified. Therefore, GP-

Pro can be used to explore the impact of enhancements or new strategies applied to particular 

protocols. For example, new MPR selection strategies could be explored for OLSR by 

implementing new additional computations to replace the MPR_computation component, 

which is listed in line 31 of the OLSR specification shown in Section 7.1.1. If the new 

computation component was named Enhanced_MPR, then the line 31 of the OLSR 

specification would be replaced by the line: “Enhanced_MPR as compute_mprs{}” and 

probably a new name for the protocol variation should also be provided in line 1 (e.g., 

GPPro_Enhanced_OLSR). Furthermore, new algorithms to create routing paths, other than 

the shortest path algorithm, could be tested by providing new path determination 

components, which would replace the one listed in line 34 of the OLSR specification. 

Similarly, and for the case of the second protocol presented in this chapter, the GREEDY 

protocol, new algorithms to select the next hop could be implemented to replace the one 

listed in line 47 of the specification shown in Section 7.1.2. This flexibility to easily generate 

new protocol variations is one of the advantages provided by GP-Pro. 
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7.2 Comparing GP-Pro against Existing Frameworks 

The first method to evaluate GP-Pro consists of qualitatively comparing it against other 

existing frameworks that also support the implementation of communication protocols. 

Therefore, the comparison is made in terms of the support that each of them provides to the 

protocol implementation process.  

 

 GP-Pro ASL 

[15] 

X-Kernel 

[11] 

ACE 

[12] 

XORP 

[39] 

Click 

[23] 

CBR 

[45] 

PIX 

[13] 

Available to the public ○ ● ● ● ● ●  ● 

Domain specific ● ○     ●  

Function libraries  ●  ●     

API     ●    

Reusable elements ●     ○ ● ● 

Multi-platform ○   ● ●    

Specification mechanism ●     ●  ● 

Interconnection model ●  ●  ● ●  ● 

Protocols without coding ●     ●  ○ 

Code generation ●       ● 

Table 8. Qualitative comparison between existing frameworks 

 

 Table 8 shows a comparison between GP-Pro and the frameworks discussed in 

Section 2.3, for different features that are important when supporting the implementation of 

routing protocols. In Table 8, the filled circles (●) indicate that the framework provides the 

indicated feature. On the other hand, empty circles (○) indicate that the feature is partially 

provided, and the absence of a circle means that the feature is not provided at all. For the 

eight frameworks shown in Table 8, all of them are available to the public except for CBR, 

which as far as we know is not planned to be made public, and for GP-Pro, which has not 

been made public yet, but it will be in the short term. Only three of these frameworks are 

designed for the specific domain of ad hoc routing protocols. They are ASL, CBR and GP-

Pro. However, ASL only provides support for the family of reactive routing protocols. 

 

In order to support the actual code writing task, ASL and ACE provide function 

libraries while XORP provides an API. Instead of providing code writing support, Click, 

CBR, PIX and GP-Pro create protocols by composition of reusable elements that do not 

require further modification. Therefore, they encourage reuse of existing elements, and take 

advantage of this in order to simplify and to speed up the protocol implementation process. 
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Click provides a similar method for protocol implementation than GP-Pro, unfortunately the 

granularity of its elements is not fine enough to modularize a routing protocol into several 

elements that can be reused and recombined. Actually, all of the ad hoc routing protocols that 

have been implemented with Click are composed of only one or two Click elements.  

 

Among all eight frameworks, only ACE and XORP are currently multi-platform. 

GP-Pro was also designed to be multi-platform. The replacement of the OS Interface 

component, by the one corresponding to the new target platform, would be the only change 

required to generate a protocol for a different platform. However, no protocol for a platform 

different than Linux has been generated with GP-Pro yet. On the other hand, when protocols 

are implemented by composition of existing elements, the frameworks that do so can also 

provide a specification mechanism for the user to request the desired protocol. Click, PIX 

and GP-Pro are the only frameworks providing such mechanism in the form of a proprietary 

DSL. Notice that the frameworks providing such a mechanism do not necessarily provide full 

protocols, ready to be deployed, as an output. In order to define the way that each element 

being part of a communication protocol interacts with others, an interconnection model is 

required. The X-kernel, XORP, Click, PIX and GP-Pro define such interaction rules between 

elements, which support framework extensibility.  

 

 Some of the frameworks are capable of creating protocols without coding at all 

when all of the required elements already exist. That is the case for Click, PIX and GP-Pro. 

In order to automatically assemble those existing elements and to generate the desired 

protocol, only the protocol specification is required from the user. In the case of PIX, 

although the desired protocol is generated, it still requires some coding in order to implement 

packet processing and some additional functionality. Additionally, two of them are also 

capable of generating new code automatically. That is the case of PIX and GP-Pro, both of 

them are based on Generative Programming. The difference being that the protocols 

generated by GP-Pro are complete and ready to be deployed. Thus, no further coding is 

required. 
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 From the previous analysis and comparison of the features provided by each 

framework, it is possible to draw the following conclusions. First, no single framework 

provides all of the listed development features, however, some of them provide enough 

support to generate protocols without performing any coding. Second, we consider CBR, PIX 

and GP-Pro as the top three development frameworks because all of them reduce 

development to the point of generating protocols without coding at all. Third, PIX was the 

first framework to take development support to the next level by providing the capability to 

generate new code, however, it does not generate full protocol implementations and further 

coding is required. Moreover, the development of PIX was stopped before it could have been 

embraced by the research community. Fourth, even thought Click is not capable of 

generating new code, it can generate protocols that are ready for deployment. Also, its 

development has not stopped since it was first introduced, and it continues to be used by the 

community. However, the coarse granularity of its packet processing elements prevents them 

from being largely reused to generate new protocols. This might be due to the fact that its 

scope is not specific to routing protocols. On the other hand, GP-Pro combines the best 

features of PIX and Click and it is specific to the domain of ad hoc routing protocols. It 

encourages reusability by allowing the implementation of fine granularity components, and 

generates protocols ready for deployment. Additionally, different from PIX and Click, GP-

Pro was designed to be multi-platform. Therefore, we consider GP-Pro to provide the most 

complete development support for the domain of ad hoc routing protocols. Also, the research 

community has demonstrated interest on using GP-Pro during all the conferences where it 

has been presented (see Section 1.5). Thus, we expect GP-Pro to be used by the research 

community once that it is released to the public. 

 

7.3 Comparing the Generated Protocols 

In order to evaluate GP-Pro by comparing the performance of its generated protocols against 

same protocols generated by other implementation mechanisms, the following alternatives 

have to be considered: 

1. Against protocols generated using other frameworks: Given a certain routing 

protocol implemented with GP-Pro and with some other chosen framework, both 
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implementations would be deployed and compared over real networks. However, this 

kind of comparison could be very time consuming and would involve a lot of 

programming. It also may be difficult to argue that the implementation made by using 

the other framework allows for fair comparison. This is due to the fact that the most 

efficient implementation techniques of an alternative framework could be unknown to 

new and inexperienced users and only be acquired with practical experience, which 

could give an advantage to our own implementations using GP-Pro. The comparison 

with such protocols, implemented by different frameworks, would make use of 

quantitative performance metrics considering both protocols as black boxes, where 

the implementation architecture would not considered. 

2. Against handcrafted protocols: The problem to compare the generated protocols 

against protocols generated by using some other framework is to justify fair 

implementations of components or of any additional coding required after generation. 

However, we want to demonstrate that the performance of the protocols generated 

with GP-Pro makes worth the development of the entire tool. Therefore, the best 

alternative is to select some of the reliable and well-known implementations of ad hoc 

routing protocols (e.g., DYMO [60], OLSR [2]), implement the same protocols using 

GP-Pro and deploy them both over a real network. In this case, each compared 

protocol is considered as a black box, meaning that the implementation architecture is 

not compared, and quantitative performance metrics are applied. We assume that each 

handcrafted implementation was made to achieve the best possible performance. 

 

After analyzing the possible evaluation mechanisms previously mentioned, we 

decided to evaluate GP-Pro by quantitatively comparing two of its generated protocols 

against their handcrafted counterparts. The protocols OLSR and DYMO generated by GP-

Pro are compared against OLSRD [73] and DYMOUM [60], respectively. Unfortunately, 

there is no deployable implementation available of position-based routing protocols that we 

are aware of. Thus, there is no handcrafted counterpart to compare against our 

implementation of the GREEDY protocol. On the other hand, that makes our GREEDY 

implementation another valuable contribution to the ad hoc routing community. 
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The evaluation of the generated protocols was performed in two parts. First, we tested 

that the protocol implementations performed proper routing and we measured packet delivery 

rates. Second, we measured the resources consumed by each protocol implementation in 

standalone mode and while transmitting data, audio and video between pairs of source and 

destination nodes over different network topologies. Each time, the implementation 

generated with GP-Pro, for a chosen protocol, was compared against its handcrafted 

counterpart over exactly the same conditions. The following sections describe our test-bed 

along with each testing scenario. 

 

7.3.1 Test-bed 

With the objective of evaluating the performance of the routing protocols generated with GP-

Pro, and to compare them with their handcrafted counterparts, we set up a test-bed composed 

of five laptop computers running the Fedora Core 5 distribution of Linux. Each computer 

joins the ad hoc network by using Netgear dual band Wireless PC cards. The availability of 

these five computers along with the use of MAC address filtering to emulate topology 

changes, allows constructing routing paths up to 4 hops in length inside our testing lab. 

Therefore, multiple scenarios of different topologies and path lengths can be created.  

 

7.3.2 Proper Routing 

The first evaluation scenario was created to test that each implementation performed proper 

routing, meaning that it was able to create routing paths for each target destination. In order 

to generate data traffic, the network tool ping was used to send groups of 30 data packets of 

5042 bytes in length, one second apart (using the command: ping -c 30 -s 5000 -i 1). The 

data packets were transmitted over network paths that were 1, 2, 3 and 4 hops long (up to 3 

hops for DYMO, see explanation below), and the network had a linear bus topology. Packet 

delivery rate and Round Trip Time (RTT) were used as performance metrics. Additionally, to 

estimate the route discovery delay experienced by reactive protocols, ping was used to 

measure the elapsed time between the initiation of a new route discovery and the reception of 

the acknowledgment for the first packet sent. The metric unit for all time values shown in 

this section is milliseconds. 
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 1-hop 2-hops 3-hops 

Min RTT 2.88ms 6.20ms 9.67ms 

Avg RTT 4.90ms 8.06ms 20.02ms 

Max RTT 16.38ms 23.66ms 52.50ms 

Packet delivery rate 100% 100% 100% 

Route discovery delay 16.38ms 23.66ms 52.50ms 

Table 9. Performance of DYMOUM 

 

 1-hop 2-hops 3-hops 

Min RTT 2.88ms 5.44ms 8.71ms 

Avg RTT 5.16ms 8.34ms 13.30ms 

Max RTT 33.00ms 47.29ms 94.42ms 

Packet delivery rate 100% 100% 100% 

Route discovery delay 33.00ms 47.29ms 94.42ms 

Table 10. Performance of DYMO implemented with GP-PRO 

 

 Tables 9 and 10 show the performance metrics obtained for DYMOUM, and for the 

implementation of DYMO generated with GP-Pro, respectively. Both tables show minimum, 

average and maximum RTT for 1, 2 and 3 hops long routing paths in the first three rows. As 

expected RTT increases with path length. Minimum and average RTT are very similar for 

both DYMO implementations, however, the maximum RTT is larger for the GP-Pro 

implementation in all cases. This fact is explained by looking at the route discovery delay 

shown in the last row of each table. Route discovery delay is always larger for the GP-Pro 

implementation, about double the time experienced by DYMOUM. This is evidence of the 

cost paid, in terms of performance, when a protocol is generated by using a generic software 

tool such as GP-Pro. However, by looking at the packet delivery rate shown in the fourth row 

of both tables, we can see that both implementations are capable of delivering every single 

packet. Therefore, for this matter there is no performance penalty for the GP-Pro 

implementation, and we verified that both DYMO implementations are capable of 

performing proper routing. 

 

 It is worth to mention that both DYMO implementations were only tested over paths 

up to three hops in length, and not up to four, because it was not possible to get DYMOUM 

to run in one of our laptops. Its kernel module could not be loaded. This problem was solved 

in every other laptop by stopping the firewall service, but not in one of them. This 



 108 

unexpected situation jeopardizes the deployment capabilities of DYMOUM because four of 

our five laptops have exactly the same software and hardware configurations. On the other 

hand the DYMO implementation generated with GP-Pro did not experience any deployment 

problems. 

 

 1-hop 2-hops 3-hops 4-hops 

Min RTT 3.88ms 6.38ms 9.67ms 12.59ms 

Avg RTT 26.97ms 36.59ms 37.53ms 43.91ms 

Max RTT 72.77ms 113.87ms 77.65ms 82.08ms 

Packet delivery rate 100% 100% 97% 97% 

Table 11. Performance of OLSRD 

 

 1-hop 2-hops 3-hops 4-hops 

Min RTT 2.79ms 5.68ms 8.38ms 11.82ms 

Avg RTT 3.40ms 6.53ms 9.99ms 13.78ms 

Max RTT 5.38ms 8.90ms 13.86ms 18.01ms 

Packet delivery rate 100% 100% 97% 97% 

Table 12. Performance of OLSR implemented with GP-PRO 

 

 Tables 11 and 12 show similar performance metrics for OLSRD and for the 

implementation of OLSR generated with GP-Pro, respectively. Again, the RTT increases 

with the length of the routing paths. However, in this case, the minimum, average and 

maximum RTT for all path lengths are larger for the handcrafted implementation of OLSR, 

which is good news about the performance that can be achieved by protocols generated with 

GP-Pro. OLSR is a proactive protocol that maintains routing paths to every possible 

destination, even if the paths are not actually required. These paths are continuously updated 

into the forwarding table of the OS, so they are available when required, and no further delay 

should be experienced. Therefore, the longer RTT values obtained by the handcrafted OLSR 

implementation suggest that it could be optimized. However, further study of the 

implementation would be required to provide a more precise explanation about its inferior 

performance. On the other hand, in terms of packet delivery rates, both implementations 

achieved exactly the same rates, experiencing some packet loss (one lost packet) for the paths 

with 3 and 4 hops in length. We attribute this loss to packet collisions due to the increased 

control traffic generated by OLSR (i.e. Hello and TC messages). Thus, in the case of OLSR 

that represents the family of proactive protocols, both implementations performed proper 
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routing and there is no performance penalty for the implementation generated with GP-Pro, 

actually, the opposite could be argued. 

 

 1-hop 2-hops 3-hops 4-hops 

Min RTT 2.88ms 5.50ms 9.11ms 12.36ms 

Avg RTT 4.67ms 7.27ms 11.72ms 14.86ms 

Max RTT 38.97ms 31.01ms 30.27ms 28.13ms 

Packet delivery rate 100% 97% 93% 90% 

Route discovery delay 38.97ms N/A N/A N/A 

Table 13. Performance of GREEDY implemented with GP-PRO 

 

 Table 13 shows the obtained values for the implementation of the position-based 

protocol GREEDY, generated with GP-Pro. As mentioned before, no deployable 

implementations for any other position-based protocol were found for comparison purposes. 

Table 13 shows that the RTT increases with the path length, and the maximum RTT is much 

larger than the minimum and average RTTs because it is affected by a route discovery delay. 

Similar to reactive protocols, position-based protocols compute a routing path only when the 

path is actually required. However, in this case, the path is not fully created before the source 

node forwards the first data packet; it is cooperatively computed at every hop. Therefore, 

some delay is experienced at every hop and until the full path is created. Furthermore, if the 

discovered path is not maintained in the forwarding table of the OS, and the next hop has to 

be computed at every hop and for every single data packet, similar delay would be 

experienced by every single packet without decreasing after the path has been discovered. 

Thus, in our implementation of GREEDY, routing entries are maintained for each discovered 

path as long as the paths remain in use. Table 13 shows how the delivery rate decreases as 

the path length increases. Basically, for routing paths longer than one hop, one packet is lost 

for every additional hop. This situation is particular to the ping tool, which considers as lost 

all those packets that were not acknowledged before the next packet was sent (within one 

second in this case). Hence, the packet loss, which mainly occurs during the route discovery 

process, has an impact on the estimation of the route discovery delay. This is because the first 

data packet, which was used to estimate the route discovery delay, is only acknowledged on 

time when the path is one hop in length. For longer paths, the first data packet is usually 

dropped (along others), thus, the route discovery delay would increase by approximately one 
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second (the time between every ping packet) for every additional hop. That is why Table 13 

shows most of the route discovery delays as: N/A, meaning not available. It should also be 

noticed that all the RTT values shown in Table 13, which were reported by the ping tool, 

only consider the packets that were acknowledged on time. That is why the Max RTT values 

seem to decrease as the path length increases. But in reality, if the packets that experienced 

the longest delays which were thought lost during the route discovery, were also considered, 

more accurate values for Max RTT from 1 to 4 hops would be: 38.97ms, 1,031.01ms, 

2,030.27ms and 3,028.13ms, respectively. That is, one second longer for each packet that 

was lost until the route was discovered. Avg RTT values should be longer as well; however, 

the growth trend as the path length increases would remain the same. On the other hand, Min 

RTT values are not affected. Finally, from the results shown in Table 13, we can also 

conclude that the capability of GREEDY to perform proper routing has been verified. 

 

7.3.3 Resource Consumption 

The evaluation performed in the previous section showed that all of the protocol 

implementations were capable of constructing the required routing paths. Their only 

performance disadvantage, compared to their handcrafted counterparts, was a longer route 

discovery delay experienced by the DYMO implementation. Next, we evaluate the 

computing resources consumed by each protocol implementation, which are expected to be 

higher for the implementations generated with GP-Pro. 

 

Computing resources consumed by each implementation were measured in two 

running modes. First, while running each routing protocol in standalone mode; and second, 

while transmitting data, audio and video from a sender to a destination node. Each of these 

scenarios is described below. 

 

7.3.3.1 Standalone Mode 

In order to measure the amount of resources consumed by each protocol implementation 

while running in standalone mode, the size of the binary file and the amount of consumed 

physical memory were used as metrics.  
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 Handcrafted GP-Pro 

DYMO   41,440 418,911 

OLSR 161,324 479,020 

GREEDY - 433,766 

Table 14. Implementation sizes in Bytes 

 

 Table 14 shows the size in bytes of the binary files (all binaries were generated by 

using the same compiler) corresponding to each protocol implementation. The first column 

corresponds to the handcrafted implementations DYMOUM and OLSRD, and the second 

column corresponds to the three implementations generated with GP-Pro. Table 14 shows 

that the DYMO implementation generated with GP-Pro is about ten times the size of 

DYMOUM, and that the OLSR implementation generated with GP-Pro is about three times 

the size of OLSRD. The three implementations generated with GP-Pro are similar in size, 

with OLSR the largest one. These results suggest that the protocols generated with GP-Pro 

might not be the best choice for systems that have very tight physical storage limitations. 

 
 Handcrafted GP-Pro 

DYMO 532 776 

OLSR 772 800 

GREEDY - 888 

Table 15. Consumed Physical memory in KBytes 

 

 Table 15 shows the amount of physical memory used by each implementation. This 

physical memory is the data space devoted to the executable and non-executable code that 

corresponds to each protocol implementation. It was measured by using the Linux program 

called top, which provides real-time information about the system tasks. In this case, the 

difference between handcrafted and GP-Pro generated implementations is not as big. The 

GP-Pro implementation of DYMO consumes 45% more physical memory than DYMOUM, 

and the GP-Pro implementation of OLSR consumes just 4% more physical memory than 

OLSRD. The GREEDY implementation is the one consuming the most physical memory.  

 

The reader should keep in mind that even though both implementations for the same 

protocol provide the same core functionalities, they are not identical. And, in the case of the 

OLSR implementations, the GP-Pro implementation only implements the core functionality 



 112 

described in [2], while the OLSRD implementation also provides the auxiliary functionality 

described in [2]. Therefore, the results shown in this section should be considered as close 

estimates of the consumed resources but not as precise values. 

 

7.3.3.2 Data Transmission Mode 

After measuring resource consumption in standalone mode, we measured it again, but this 

time while transmitting data, audio and video from a sender to a destination located 1 and 3 

hops away on a network with linear bus topology. This time we used CPU utilization 

metrics. More precisely, we measured: 1) the total CPU time used by each implementation, 

measured in seconds, and 2) the maximum CPU utilization (as a percentage) reached by each 

implementation, during the execution of each testing application. The test applications that 

were used to generate the data traffic, sorted by the amount of generated traffic in increasing 

order, are the following four: 1) data packets of 5042 bytes in length, sent one second apart 

for a period of one minute, by using ping (using the command: ping -s 5000 -i 1 -w 60), 

which generates 0.041Mbits/s of traffic, 2) one minute of MP3 audio, which generated 17 

packets per second and 0.19Mbits/s of traffic, 3) one minute of MPEG video, which 

generated 155 packets per second and 1.684Mbits/s of traffic, and 4) data packets of 5042 

bytes in length, sent 0.02 seconds apart for a period of one minute, by using ping (using the 

command: ping -s 5000 -i 0.02 -w 60), which generated 1.990Mbits/s of traffic. All traffic 

rates were measured on our test-bed. 

 

  CPU Time CPU Max 

  DYMOUM GP-Pro DYMO DYMOUM GP-Pro DYMO 

Ping 1s 0.03s 0.24s 0% 1% 

MP3 audio 0.03s 0.09s 0% 1% 

MPEG Video 0.17s 3.17s 2% 12% 

Ping 0.02s 0.59s 9.44s 3% 28% 

Table 16. CPU utilization for DYMO over one hop paths 

 

 Table 16 shows the CPU utilization reached by both DYMO implementations while 

transmitting data, audio and video over a one hop path. The first column lists the four testing 

applications mentioned above. The traffic generated by ping is labeled Ping 1s, for the case 

of packets sent one second apart, and labeled Ping 0.02s, when sent 0.02 seconds apart. The 
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total CPU time (in seconds) used by each protocol implementation while running each 

application, for a period of one minute, is shown in the second and third columns. The 

maximum share of CPU utilization (CPU Max) is shown in the fourth and fifth columns. 

These values show a considerable higher CPU utilization by the GP-Pro implementation. 

This higher utilization is mainly due to the continuous update of the active routing entries in 

the forwarding table of the OS, which translates into an intensive message exchange between 

several protocol components. It is also due to a continuous creation and destruction of 

threads (as mentioned at the end of Section 6.2), which are very expensive tasks. 

 

  CPU Time CPU Max 

  DYMOUM GP-Pro DYMO DYMOUM GP-Pro DYMO 

Ping 1s 0.06s 0.22s 1% 3% 

MP3 audio 0.03s 0.14s 0% 2% 

MPEG Video 0.18s 3.97s 3% 10% 

Ping 0.02s 0.44s 4.55s 5% 18% 

 Table 17. CPU utilization for DYMO over three hop paths 

 

 Table 17 shows same results than Table 16, but for the case of routing paths that are 

three hops in length. CPU utilization values are similar to those of one hop paths for the first 

three applications. However, for the case of the fourth application that generates the largest 

traffic, CPU utilization decreases. We attribute this to the fact that the processing done at 

each node while multi-hopping, slows down traffic. 

 

  CPU Time CPU Max 

  OLSRD GP-Pro OLSR OLSRD GP-Pro OLSR 

Ping 1s 0s 0.07s 0% 1% 

MP3 audio 0s 0.09s 0% 1% 

MPEG Video 0.01s 0.09s 0% 1% 

Ping 0.02s 0s 0.12s 0% 1% 

Table 18. CPU utilization for OLSR over one hop paths 

 

  CPU Time CPU Max 

  OLSRD GP-Pro OLSR OLSRD GP-Pro OLSR 

Ping 1s 0s 0.20s 0% 2% 

MP3 audio 0s 0.21s 0% 2% 

MPEG Video 0s 0.34s 0% 3.9% 

Ping 0.02s 0s 0.16s 0% 2% 

Table 19. CPU utilization for OLSR over three hop paths 
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 Tables 18 and 19 show the CPU utilization results obtained for both OLSR 

implementations, over one and three hops paths, respectively. As we can see, the CPU 

utilization for OLSRD is so little that almost all obtained values are equal to zero (except for 

the CPU time when video is transmitted over one hop paths). Even though, the values 

obtained for the implementation generated with GP-Pro are greater than for OLSRD, they are 

very small too. The much lower CPU utilization, achieved by both OLSR implementations 

when compared to both DYMO implementations, is due to the fact that OLSR processing 

does not depend on traffic rate. Therefore, traffic rates have little impact on the performance 

of OLSR. 

 

  CPU Time CPU Max 

  One hop Three hops One hop Three hops 

Ping 1s 0.96s 1.22s 4% 4% 

MP3 audio 1.18s 1.31s 4% 4% 

MPEG Video 5.34s 5.12s 13% 12% 

Ping 0.02s 9.74s 9.66s 26% 19% 

Table 20. CPU utilization for GREEDY over one and three hop paths 

 

 Finally, Table 20 shows the CPU utilization measured for the GREEDY protocol over 

one and three hop paths. The obtained values are larger than for any other protocol 

implementation. This fact might be explained by the additional processing that is performed 

at each hop in order to compute every routing path, to maintain active routing paths, to 

support the location update mechanism and to obtain own positioning information. Similar to 

both DYMO implementations, CPU utilization decreases when running the applications 

generating the largest traffic over longer paths (over three hops instead of one hop). 

Unfortunately, there is no handcrafted implementation to compare against our GREEDY 

implementation. However, the obtained results provide a guideline of the CPU utilization that 

might be required by position-based protocols. 

 

7.4 Summary 

This chapter elaborated on the evaluation of GP-Pro. First, it presented a detailed description 

of two of the three protocols generated as part of this research (the ones that were not 

discussed before). Next, GP-Pro was compared against other existing frameworks in terms of 
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the development support provided. Finally, the performance of well-know protocols 

generated with GP-Pro was compared against the performance of their handcrafted 

counterparts.  

 

The detailed description of the specifications to generate the protocols OLSR and 

GREEDY provided a full understanding on how to write protocol specification using GP-

Pro. Also, it discussed how different protocol variants could be generated by changing 

current component selections. The comparison of GP-Pro against other existing frameworks 

highlighted the most important development support features available, identified the top 

development frameworks, and showed why we believe that GP-Pro provides the most 

powerful development support for the domain of ad hoc routing protocols. Finally, the 

performance evaluation of the protocols generated with GP-Pro demonstrated that they can 

perform proper routing and that their performance is comparable to their handcrafted 

counterparts. In some cases, the protocols generated with GP-Pro consumed more system 

resources but their generation time was drastically reduced. That is the cost that we are 

willing to pay in order to provide a fast protocol prototyping tool such as GP-Pro. 
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Chapter 8 

 

Conclusions and Future Work 

 

This thesis described existing problems and challenges to implement routing protocols for 

MANETs. It also identified an approach to solve these problems by applying Generative 

Programming to the domain of ad hoc routing protocols, and it introduced the GP-Pro 

protocol generator for automatic generation of ad hoc routing protocols according to user 

specifications. GP-Pro contributes to the field of mobile wireless networks by providing a 

specification mechanism and a complete generation tool to quickly generate full routing 

protocol implementations when all required components are available, and to maximize the 

reusability of existing components when new nontrivial features are required. It also creates a 

link with the field of software development by applying Generative Programming. 

Furthermore, to support forthcoming network requirements, GP-Pro is designed to be 

extensible and to allow the addition of new protocol features, in the form of new 

components, at any time and without limitations. In the previous chapters, GP-Pro was 

introduced in detail, along with the proposed architecture for ad hoc routing protocols and the 

suggested component interconnection model. Additionally, protocols for all three families of 

routing protocols were generated with GP-Pro and they were compared against their 

handcrafted counterparts (when available). The comparison was performed by deploying and 

testing, each protocol, over a real network that we set up as test-bed. Evaluation results show 

that all generated protocols are capable of performing proper routing, and of achieving the 

same packet delivery rates as their handcrafted counterparts. GP-Pro is a generic tool that 

drastically reduces the time to generate new protocols. The reduction in development time 

was expected to introduce a cost in terms of efficiency. This cost, measured in terms of 

consumed resources from the host system, was obvious in the case of the reactive protocol 

DYMO, but barely noticeable for the proactive protocol OLSR. On the other hand, we 

showed that the more routing components exist, the shorter the time to generate new 

protocols becomes. And, when all required components are available, generation time gets 
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reduced to the time that takes to write a protocol specification, about 50 lines long. No other 

existing framework can achieve this. 

 

 At the beginning of this research we defined what success would be, as: the capability 

for GP-Pro to automatically generate a broad range of protocol variations, which were also 

competitive with handcrafted protocol implementations. By competitive we meant that the 

generated protocols should provide similar performance to their handcrafted counterparts, 

while achieving a reasonable trade-off between efficiency and generation-time. We expected 

a minimal generation time, but, most likely, a lower efficiency of the generated protocols. 

The evaluation results presented in the Chapter 7, where the protocols generated by GP-Pro 

achieved similar routing performance than their handcrafted counterparts, showed that we 

achieved this at a reasonable resource consumption cost. And, also the fact that their 

generation time was drastically reduced with the increase on the number of available 

components, we can certainly conclude that what we have achieved is: satisfactory and actual 

success. 

 

Some additional and beneficial GP-Pro related efforts are still outstanding. For 

example, it would be advantageous to add the capability to generate routing protocols for 

multiple platforms, and not only for Linux. This capability would be provided by creating the 

corresponding OS Interface components and subcomponents, for each other platform that is 

to be supported. We are currently looking at the possibility of using the Protean Protocol 

Prototyping Library (ProtoLib) developed by the Networks and Communication Systems 

Branch of the U.S. Naval Research Laboratory, which provides interfacing support for 

multiple platforms. Also, we would like to make GP-Pro public. That is, to give it to the 

research community, so more researchers could take advantage of it, could test it, could 

create additional components to provide further features, and perhaps they could enhance 

GP-Pro too. This way we could also evaluate how short the GP-Pro learning curve actually 

is. Because even though we assume that the creation of new components, in the form of 

templates, which basically are pure C code, is not complicated; and, that protocol 

specifications are pretty much listings of chosen components with some properties set 

according to user preferences, the best evaluation will be obtained in the form of feedback 
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from new users. Finally, we would like to generate code that could be also fed into a network 

simulator, that way the protocols generated with GP-Pro could be tested both through 

simulation and through real deployments. 

 

Through this doctoral research work, and this thesis document, we were able to 

demonstrate that it is possible to generate complete protocol implementations that are ready 

for deployment, by automatically assembling components according to a protocol 

specification (as represented by Figure 25 in Appendix G). This specification is written in a 

proprietary DSL that is presumably easy to learn and use. The cost of these benefits, which 

was discussed in Chapter 7, could be considered expensive in the case of the generated 

reactive protocol, but not so in the case of the proactive protocol. That is good news in 

general for the protocols generated with GP-Pro. However, there are some improvements that 

we have on mind, which could improve protocol performance and efficiency. These ideas are 

discussed next. First, we would like to replace the hierarchical routing of messages between 

protocol components, by direct communication between any pair of components. From an 

implementation point of view, this could be achieved by providing n-1 function pointers, to 

each of the n components building the routing protocol. These n-1 pointers would point to the 

different functions handling the input ports of the other n-1 components. In this way direct 

communication would be achieved, and many message transmissions between components 

would be avoided along with their corresponding overhead. Second, as described at the end 

of Section 6.2, one new thread is created for every message that is received by the MDC, by 

the internal component process or by the output port of each component, and it exists until 

completing the corresponding processing. This policy of creating and destroying threads in a 

regular basis is likely consuming a considerable amount of system resources. Therefore, we 

want to modify this policy by only creating a new thread when a message is first created by a 

protocol component, and only destroying this thread when the message has been processed 

by its final destination. All required processing for the same message should happen within 

the same thread. We believe that these two optimizations would decrease CPU utilization. 

Additionally, in order to decrease the implementation size, we would like to explore ways to 

shrink our interconnection model, by further customizing each component interconnection 
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during the generation process. This way, a reduction in the size of the generated code should 

be achieved. 

 

 On the other hand, in terms of the ease to use GP-Pro, we want to implement an 

application hosting the GUI described in Section 4.1.3. Also, we would like this application 

to maintain a database of existing components along with their generated and processed 

messages. If this information were available, the completion of specifications would not be 

limited to missing interconnections only; missing components could be handled as well. 

Further specification validations could be performed if the listings of configurable properties, 

for each component, were also available in the same database. The information available in 

this database could also allow us to explore ways to define, and to represent, further 

dependencies between components. Finally, we would like to enhance our DSL to allow 

writing subjective protocol specifications. These specifications would not need to list every 

single component to request the generation of a new protocol, just a few words, such as: QoS 

aware protocol or energy aware protocol would be enough. To achieve this last goal, we 

would need to create further component classifications according to the subjective features 

that each component could provide. 
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Appendices 

 

In the following pages we present seven appendices with useful information about key 

elements of GP-Pro and about how to use GP-Pro to create new routing protocols. Appendix 

A shows the entire DSL that was created for GP-Pro. Appendix B lists all the different 

templates that were created to generate the first three protocols. Appendix C provides a 

detailed description of each and every component that has been created for GP-Pro, so far. 

Appendix D shows the entire protocol specification to create the DYMO protocol. It lists 

every single component interconnection that would have to be defined if the automatic 

completion feature (discussed in Section 6.4) had not been created. Appendix E provides a 

default template that can be used to create every new protocol component. Appendix F 

discusses how to create a new protocol component. Finally, Appendix G shows the logo that 

we created to represent GP-Pro. 
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Appendix A 

 

GP-Pro DSL 

 

In this appendix we show the entire DSL developed with the Xtext framework for the domain 

of ad hoc routing protocols. The rules are in bold and are succeeded by a colon (:). 

 
Protocol : 

 "Protocol" (" as " synonym=ID)? "{" 

  (properties+=Property)*  

  (subcomponents+=Main_Component)* 

  (interconnections+=Interconn)*   

 "}";   

 Main_Component : 

  MADINI | DELIVERY | CONI | ADD_COMPS | OS_IFACE | RIR | EV_MGR | PATH_DET | LOC_INFO ; 

 

 MADINI : 

  "MADINI" (" as " synonym=ID)? "{" 

   (properties+=Property)* 

   (subcomponents+=Info_subcomponent)+ 

   (interconnections+=Interconn)* 

  "}";   

  Info_subcomponent : 

   Info_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}"; 

    

 DELIVERY : 

  "DELIVERY" (" as " synonym=ID)? "{" 

   (properties+=Property)*   

   (subcomponents+=Del_mech)+ 

   (interconnections+=Interconn)*    

  "}";   

  Del_mech :  

   Del_mech_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}"; 

  

 CONI : 

  "CONI" (" as " synonym=ID)? "{" 

   (properties+=Property)*   

   (subcomponents+=Coni_subcomponent)+ 

   (interconnections+=Interconn)*    

  "}";   

  Coni_subcomponent : 

   Initiation | Request | Reply | Changes | Invalidation; 

  Initiation : 

   "Initiation" (" as " synonym=ID)? "{" 

    (properties+=Property)*   

    (subcomponents+=Initiation_subcomponent)* 

    (interconnections+=Interconn)* 

   "}"; 
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   Initiation_subcomponent : 

    Initiation_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}";       

  Request : 

   "Request" (" as " synonym=ID)? "{" 

    (properties+=Property)*    

    (subcomponents+=Request_subcomponent)* 

    (interconnections+=Interconn)* 

   "}"; 

   Request_subcomponent : 

    Request_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}";  

  Reply : 

   "Reply" (" as " synonym=ID)? "{" 

    (properties+=Property)*    

    (subcomponents+=Reply_subcomponent)* 

    (interconnections+=Interconn)* 

   "}"; 

   Reply_subcomponent : 

    Reply_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}";  

  Changes : 

   "Changes" (" as " synonym=ID)? "{" 

    (properties+=Property)*    

    (subcomponents+=Changes_subcomponent)* 

    (interconnections+=Interconn)* 

   "}"; 

   Changes_subcomponent : 

    Changes_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}";  

  Invalidation : 

   "Invalidation" (" as " synonym=ID)? "{" 

    (properties+=Property)*    

    (subcomponents+=Invalidation_subcomponent)* 

    (interconnections+=Interconn)* 

   "}"; 

   Invalidation_subcomponent : 

    Invalidation_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}";  

 

 ADD_COMPS : 

  "ADD_COMPS" (" as " synonym=ID)? "{" 

   (properties+=Property)*   

   (subcomponents+=Add_computations)+ 

   (interconnections+=Interconn)*    

  "}";   

  Add_computations :  

   Add_computations_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}"; 

 

 OS_IFACE : 

  "OS_IFACE" (" as " synonym=ID)? "{" 
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   (properties+=Property)* 

   (subcomponents += OS_Iface_subcomponent)+ 

   (interconnections+=Interconn)* 

  "}"; 

  OS_Iface_subcomponent : 

   Pre_forwarding | Fwd_eng_interaction | Ctl_pkts_exch; 

    

  Pre_forwarding : 

   "Pre_forwarding" (" as " synonym=ID)? "{" 

    (properties+=Property)*    

    (subcomponents+=Pre_forwarding_subcomponent)* 

    (interconnections+=Interconn)* 

   "}"; 

   Pre_forwarding_subcomponent : 

    Pre_forwarding_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}" ; 

  Fwd_eng_interaction : 

   "Fwd_eng_interaction" (" as " synonym=ID)? "{" 

    (properties+=Property)*    

    (subcomponents+=Fwd_eng_interaction_subcomponent)* 

    (interconnections+=Interconn)* 

   "}"; 

   Fwd_eng_interaction_subcomponent : 

    Fwd_eng_interaction_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}" ; 

  Ctl_pkts_exch : 

   "Ctl_pkts_exch" (" as " synonym=ID)? "{" 

    (properties+=Property)*    

    (subcomponents+=Ctl_pkts_exch_subcomponent)* 

    (interconnections+=Interconn)* 

   "}"; 

   Ctl_pkts_exch_subcomponent : 

    Ctl_pkts_exch_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}" ;     

 

 RIR : 

  "RIR" (" as " synonym=ID)? "{" 

   (properties+=Property)*   

   (subcomponents+=Routing_repository)+ 

   (interconnections+=Interconn)*    

  "}";   

  Routing_repository :  

   Routing_repository_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}";  

  

 EV_MGR : 

  "EV_MGR" (" as " synonym=ID)? "{" 

   (properties+=Property)*   

   (subcomponents+=Ev_mgr_subcomponent)* 

   (interconnections+=Interconn)*    

  "}";   

  Ev_mgr_subcomponent :  

   Ev_mgr_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}";  
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 PATH_DET : 

  "PATH_DET" (" as " synonym=ID)? "{" 

   (properties+=Property)* 

   (subcomponents+=Path_det_subcomponent)* 

   (interconnections+=Interconn)*    

  "}";   

  Path_det_subcomponent :  

   Path_det_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}"; 

  

 LOC_INFO : 

  "LOC_INFO" (" as " synonym=ID)? "{" 

   (properties+=Property)* 

   (subcomponents+=Loc_info_subcomponent)* 

   (interconnections+=Interconn)*    

  "}"; 

  Loc_info_subcomponent :  

   Loc_info_subcomponent_types | (" as " synonym=ID)? "{" 

    (properties+=Property)* 

    (subcomponents+=Generic_component)* 

    (interconnections+=Interconn)* 

   "}"; 

 

//////////////////     COMMON ELEMENTS 

 

 //All of the component types at the different levels, they share interconnections and properties 

 Component : 

  Protocol | 

  Core_component | 

  Leaf_component; 

   

 //Components  

 Core_component : 

  Main_Component |  

  Coni_subcomponent | 

  OS_Iface_subcomponent; 

 

 //Components with synonym property and composed by Generic_components only (interconnecions and properties too) 

 Leaf_component: 

  Info_subcomponent |  

  Del_mech |  

  Initiation_subcomponent |  

  Request_subcomponent |  

  Reply_subcomponent |  

  Changes_subcomponent |  

  Invalidation_subcomponent |  

  Add_computations | 

  Pre_forwarding_subcomponent |  

  Fwd_eng_interaction_subcomponent |  

  Ctl_pkts_exch_subcomponent |  

  Routing_repository |  

  Ev_mgr_subcomponent |  

  Path_det_subcomponent |  

  Loc_info_subcomponent |  

  Generic_component; 

 

 //Generic structure for all components 

 Generic_component : 

  Generic_component_types | (" as " synonym=ID)? "{" 

   (properties+=Property)* 

   (subcomponents+=Generic_component)* 

   (interconnections+=Interconn)* 

  "}" ; 
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 //Configurable component properties 

 Property : 

  PropReal | PropSTR;   

  PropReal : 

   name=ID "=" value=Real_type; 

  PropSTR : 

   name=ID "=" value=ID; 

  

  Native Real_type : 

   "('-')? ('0'..'9')+ (('.') ('0'..'9')+)?"; 

  

 //Connections between components 

 Interconn : 

  msg_name=ID":"sender=ID(async?="->"|sync?="<->")destination=ID; 

   

//////////////////    COMPONENT DECLARATION 

 

// MADINI 

 // List of existing components <template_type> 

 Info_subcomponent_types : 

  HELLO |  

  HELLO_1H | 

  TC_MESSAGE | 

  LOCATION; 

   

 // Component Identifiers  <template_type> : <specification_id>; 

 HELLO :  

  "Hello"; 

 HELLO_1H : 

  "Hello_1h"; 

 TC_MESSAGE : 

  "TC_message"; 

 LOCATION : 

  "location"; 

 

//DELIVERY  

 // List of existing components <template_type> 

 Del_mech_types : 

  n_hops | 

  broadcast | 

  unicast | 

  MPR_forwarding;  

 

 // Component Identifiers  <template_type> : <specification_id>; 

 n_hops :  

  "n_hops"; 

 broadcast : 

  "broadcast";  

 unicast : 

  "unicast"; 

 MPR_forwarding : 

  "MPR_forwarding";  

 

//CONI 

 // List of existing components <template_type> 

 Initiation_subcomponent_types : 

  initiation_std; 

 

 Request_subcomponent_types : 

  request_std; 

 

 Reply_subcomponent_types : 

  reply_std; 

 

 Changes_subcomponent_types : 

  changes_std; 

 

 Invalidation_subcomponent_types : 

  invalidation_std; 
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 // Component Identifiers  <template_type> : <specification_id>; 

 initiation_std : 

  "initiation_std"; 

 request_std : 

  "request_std";   

 reply_std : 

  "reply_std"; 

 changes_std : 

  "changes_std"; 

 invalidation_std : 

  "invalidation_std"; 

  

//ADD_COMPS  

 // List of existing components <template_type> 

 Add_computations_types : 

  MPR_computation; 

  

 // Component Identifiers  <template_type> : <specification_id>; 

 MPR_computation : 

  "MPR_computation"; 

 

//OS_IFACE 

 // List of existing components <template_type> 

 Pre_forwarding_subcomponent_types : 

  pre_fwd_std; 

 

 Fwd_eng_interaction_subcomponent_types : 

  fwd_eng_std; 

 

 Ctl_pkts_exch_subcomponent_types : 

  icmp; 

   

 // Component Identifiers  <template_type> : <specification_id>; 

 pre_fwd_std : 

  "pre_fwd_std"; 

 fwd_eng_std : 

  "fwd_eng_std"; 

 icmp : 

  "icmp_exchange"; 

 

//RIR 

 // List of existing components <template_type> 

 Routing_repository_types : 

  RIR_DYMO | 

  Neighbors | 

  DuplicateSet | 

  LinkSet | 

  MPRSelectorSet | 

  NeighborSet | 

  RTable_OLSR | 

  TopologySet | 

  TwoHopNeighborSet | 

  Location_table; 

   

 // Component Identifiers  <template_type> : <specification_id>; 

 RIR_DYMO : 

  "rir_dymo"; 

 Neighbors : 

  "neighbors"; 

 DuplicateSet : 

  "duplicateSet"; 

 LinkSet : 

  "linkSet"; 

 MPRSelectorSet : 

  "mprSelectorSet"; 

 NeighborSet : 

  "neighborSet"; 

 RTable_OLSR : 

  "rTable_OLSR"; 
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 TopologySet : 

  "topologySet"; 

 TwoHopNeighborSet : 

  "twoHopNeighborSet"; 

 Location_table : 

  "location_table"; 

 

//EV_MGR 

 // List of existing components <template_type> 

 Ev_mgr_subcomponent_types : 

  ev_mgr_std; 

   

 // Component Identifiers  <template_type> : <specification_id>; 

 ev_mgr_std : 

  "ev_mgr_std"; 

  

 

//PATH_DET 

 // List of existing components <template_type> 

 Path_det_subcomponent_types : 

  shortest_path_OLSR | 

  GREEDY; 

 // Component Identifiers  <template_type> : <specification_id>; 

 shortest_path_OLSR : 

  "shortest_path_OLSR"; 

 GREEDY: 

  " GREEDY "; 

 

//LOC_INFO 

 // List of existing components <template_type> 

 Loc_info_subcomponent_types : 

  gps_receiver; 

  

 // Component Identifiers  <template_type> : <specification_id>; 

 gps_receiver : 

  "gps_receiver"; 

 

//Generic_component 

 // List of existing components <template_type> 

 Generic_component_types : 

  gen_a | sync_cnx_source | sync_cnx_end; 

 // Component Identifiers  <template_type> : <specification_id>; 

 gen_a : 

  "gen_a"; 

 sync_cnx_source: 

  "sync_cnx_source";  

 sync_cnx_end: 

  "sync_cnx_end"; 
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Appendix B 

 

GP-Pro Templates 

 

This appendix shows the list of templates that were generated as part of this work. The first 

column is the template’s name, the number of “+” to the left of the name refers to its level as 

subcomponent. The second column is the metatype that the template applies to, meaning that 

when such metatype is part of the user specification, the corresponding template (component) 

should be part of the generated protocol. Finally, the last column is a short description of the 

template. 

 

Template Name Metatype Description 

Main Protocol Main template with the main processing 

loop of each generated protocol. 

Protocol Protocol The highest component in the hierarchy 

Definitions Protocol Functions, structures, macros and 

constants used by each component 

libraries Protocol Messages, constants and data structures 

to support GP-Pro architecture an 

interconnection model 

load_component_info Protocol Validates every protocol specification 

complete_interconnections Protocol Completes the missing interconnections 

in any specification 

+component_template MADINI MADINI component 

++info_subcomponent_template HELLO Hello message with sender ID 

++info_subcomponent_template HELLO_1H Hello message with one-hop neighbors 

++info_subcomponent_template TC_MESSAGE Topology Control message 

++info_subcomponent_template LOCATION Location information of the sender node 

+component_template DELIVERY DELIVERY component 

++del_mech_template n_hops Broadcasting of control messages up to n 

hops away 

++del_mech_template unicast Unicasting of control messages 

++ del_mech_template MPR_forwarding Mechanism that makes use of MPRs for 

broadcasting 

+component_template CONI CONI component 

++Coni_subcomp_template Initiation Initiation of information collection 

subcomponent 

++Coni_subcomp_template Request Information Request subcomponent 

++Coni_subcomp_template Reply Information Reply subcomponent 

++Coni_subcomp_template Changes Notification of changes subcomponent 
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Template Name Metatype Description 

++Coni_subcomp_template Invalidation Invalidation of collected information 

subcomponent 

+component_template ADD_COMPS Additional computations component 

++add_comps_template MPR_computation Computes MPR and MPRS sets 

+component_template OS_IFACE OS interface component 

++OS_Iface_subcomp_template Pre_forwarding Pre-forwarding processing 

subcomponent 

 

++OS_Iface_subcomp_template Fwd_eng_interaction Forwarding engine interaction 

subcomponent 

++OS_Iface_subcomp_template Ctl_pkts_exch Control Packets exchange subcomponent 

+component_template RIR RIR component 

++routing_repository_template RIR_DYMO Repository for DYMO routing table 

++routing_repository_template Neighbors Repository for one hop neighbors 

++routing_repository_template LinkSet Repository to store the OLSE link set 

++routing_repository_template NeighborSet Repository to store the OLSR Neighbor 

set 

++routing_repository_template TwoHopNeighborSet Repository to store the OLSR Two Hops 

Neighbor set 

++routing_repository_template MPRSelectorSet Repository to store the OLSR MPR 

selector set 

++routing_repository_template TopologySet Repository to store the OLSR Topology 

set 

++routing_repository_template DuplicateSet Repository to store the Duplicate set 

++routing_repository_template RTable_OLSR Repository for OLSR routing table 

++routing_repository_template Location_table Repository to store the Greedy location 

table 

+component_template EV_MGR Event Manager component 

+component_template PATH_DET Path determination component 

++path_det_template shortest_path_OLSR Shortest hop algorithm (as used by 

OLSR) 

++path_det_template GREEDY Selects next hop according to Greedy 

protocol 

+component_template LOC_INFO Location Information component 

++loc_info_template gps_receiver Provides location information that must 

be stored as a system file 

Common.xpt (set of templates) Component, Protocol Multiple templates that support the 

operation of every protocol component 

Make Protocol Makefile for user-level source code 

Make_kernel Protocol Makefile for kernel-level source code 

Table 21. List of generated templates 

 



 130 

 

Appendix C 

 

Available Protocol Components  

 

This appendix presents the menu of components that have already been implemented and that 

can be used as part of any protocol specification. For each component, the list of generated 

and processed messages along with its configurable properties is provided. A brief 

description for each of them, and the default values for each property are included as well. 

The first component is the one corresponding to the highest component in the hierarchy: 

Protocol. Each of the following sections lists the components and subcomponents 

corresponding to the different core components. 

 

Name: Protocol 

Type: Protocol (root component) 

Description: This is the root component and has to be used in every protocol specification. 

Properties 
Name Type Default Value Description 

debug boolean true Enables debug mode 

daemonize boolean false Runs the protocol as a system daemon 

udp_port int 653 The udp port number to send control messages 

Generated Messages 
Name Description 

fd_ready Announces that a file descriptor is ready to be read 

qry_age_queue Queries the queue of timers 

fd_register_reply Reply to a sync message to register a file descriptor 

qry_ifnames_reply Reply to a sync message that queries the names of the interfaces available 

Processed Messages 
Name Description 

fd_register Registers a new file descriptor 

qry_ifnames Queries the names of the interfaces available 

 

C.1 MADINI – Information Subcomponents 

Name: MADINI 

Type: Core component 

Description: Is the manager for distribution of network information 
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Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_madini_sub_props Queries the values of the properties of its subcomponents 

register_timer Registers a timer with the event manager 

deregister_timer Deregisters a timer with the event manager 

ctl_msg_request Request the generation of a control message 

register_ctl_msg Registers a control message type 

ctl_msg_deregister Deregisters a control message type 

Processed Messages 
Name Description 

timer_timeout Informs about an expired timer 

 

Name: HELLO 

Type: Information subcomponent 

Description: Generates hello messages advertising the ID of the sender 

Properties 
Name Type Default Value Description 

msg_ival int 3 Interval in seconds to send every Hello message 

nb_timeout int 6 Timeout for each entry in the neighbor set 

ctl_msg_type int 4 Number type for Hello message 

jitter boolean True Introduces a jitter for each Hello message 

nb_repository string nb1 Name of repository storing neighbor information 

routing_table string rtable Name of repository the routing table 

Generated Messages 
Name Description 

register_timer Request the registration of a new timer with the event manager 

sched_timer Reschedules an existing timer with the event manager 

repo_find_msg Finds data in a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 

repo_insert_msg Inserts data in a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

qry_madini_sub_props_reply Reply to sync message that queries about the properties of the component 

control_message Sends an actual control message particular to the protocol 

Processed Messages 
Name Description 

qry_madini_sub_props Queries about the properties of the component 

ctl_msg_request Request the generation of a new Hello message 

ctl_msg_rcvd Forwards a received control message particular to the protocol 

timer_timeout Announces that a timer has expired 

 

Name: HELLO_1H 

Type: Information subcomponent 

Description: Generates hello messages advertising the ID of the sender and the one hop neighbors 

Properties 
Name Type Default Value Description 

msg_ival int 3 Interval in seconds to send every Hello 

message 
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ctl_msg_type int 4 Number type for Hello message 

willingness int 3 Willingness to forward control messages 

linkSet string link_set Name of repository storing the link set 

neighborSet string neighbor_set Name of repository storing neighbor set 

twoHopNeighborSet string twoHopNeighbor_set Name of repository storing the two hops 

neighbor set 

mprSelectorSet string mprSelector_set Name of repository storing the selector set 

Generated Messages 
Name Description 

register_timer Request the registration of a new timer with the event manager 

sched_timer Reschedules an existing timer with the event manager 

compute_rtable Request the computation of the routing table 

compute_MPRs Request the computation of the MPR set 

increase_ansn Request increasing the ansn  

repo_find_msg Finds data in a repository 

repo_delete_msg Deletes data from a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 

repo_insert_msg Inserts data in a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

qry_madini_sub_props_reply Reply to sync message that queries about the properties of the component 

control_message Sends an actual control message particular to the protocol 

Processed Messages 
Name Description 

qry_madini_sub_props Queries about the properties of the component 

ctl_msg_request Request the generation of a new Hello message 

ctl_msg_rcvd Forwards a received control message particular to the protocol 

timer_timeout Announces that a timer has expired 

 

Name: TC_MESSAGE 

Type: Information subcomponent 

Description: Generates topology control messages used by OLSR 

Properties 
Name Type Default Value Description 

msg_ival int 5 Interval in seconds to send every TC message 

ctl_msg_type int 14 Number type for TC messages 

ttl int 255 Time to live value 

duplicateSet string duplicate_set Name of repository storing the duplicate set 

neighborSet string neighbor_set Name of repository storing neighbor set 

topologySet string topology_set Name of repository storing the topology set 

mprSelectorSet string mprSelector_set Name of repository storing the selector set 

Generated Messages 
Name Description 

register_timer Request the registration of a new timer with the event manager 

sched_timer Reschedules an existing timer with the event manager 

compute_rtable Request the computation of the routing table 

repo_find_msg Finds data in a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 

repo_insert_msg Inserts data in a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

qry_madini_sub_props_reply Reply to sync message that queries about the properties of the component 
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control_message Sends an actual control message particular to the protocol 

Processed Messages 
Name Description 

qry_madini_sub_props Queries about the properties of the component 

ctl_msg_request Request the generation of a new Hello message 

ctl_msg_rcvd Forwards a received control message particular to the protocol 

timer_timeout Announces that a timer has expired 

increase_ansn Request increasing the ansn 

 

Name: LOCATION 

Type: Information subcomponent 

Description: Generates location information of the current node to be advertised into the network 

Properties 
Name Type Default Value Description 

msg_ival int 3 Interval in seconds to send every message 

ctl_msg_type int 15 Number type for location messages 

loc_info_timeout int 12 Timeout for location information 

locationTable string loc_table Repository storing the location information 

Generated Messages 
Name Description 

register_timer Request the registration of a new timer with the event manager 

sched_timer Reschedules an existing timer with the event manager 

qry_location Queries the current location of the node 

repo_find_msg Finds data in a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 

repo_insert_msg Inserts data in a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

qry_madini_sub_props_reply Reply to sync message that queries about the properties of the component 

control_message Sends an actual control message particular to the protocol 

Processed Messages 
Name Description 

qry_madini_sub_props Queries about the properties of the component 

ctl_msg_request Request the generation of a new Hello message 

ctl_msg_rcvd Forwards a received control message particular to the protocol 

timer_timeout Announces that a timer has expired 

 

C.2 Delivery Mechanisms 

Name: DELIVERY 

Type: Core component 

Description: Controls all the different delivery mechanisms  

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

NONE  

Processed Messages 
Name Description 
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NONE  

 

Name: n_hops 

Type: delivery mechanism 

Description: broadcasts a control message n hops away 

Properties 
Name Type Default Value Description 

hops Int 1 Number of hops that the message will be forwarded 

Generated Messages 
Name Description 

control_message_wdest Sends an actual control message particular to the protocol with a defined 

destination 

Processed Messages 
Name Description 

control_message Sends an actual control message particular to the protocol 

 

Name: unicast 

Type: delivery mechanism 

Description: forwards a control message to a specific destination 

Properties 
Name Type Default Value Description 

hops int 1 Number of hops that the message will be forwarded 

Generated Messages 
Name Description 

control_message_wdest Sends an actual control message particular to the protocol with a defined 

destination 

Processed Messages 
Name Description 

control_message Sends an actual control message particular to the protocol 

 

Name: MPR_forwarding 

Type: delivery mechanism 

Description: Broadcasting a control message by using multipoint relay nodes only 

Properties 
Name Type Default Value Description 

mprSelectorSet string mprSelector_set Name of repository storing the MPR selector set 

neighborSet string neighbor_set Name of repository storing the neighbor set 

duplicateSet string duplicate_set Name of repository storing the duplicate set 

Generated Messages 
Name Description 

control_message_wdest Sends an actual control message particular to the protocol with a defined 

destination 

register_timer Request the registration of a new timer with the event manager 

sched_timer Reschedules an existing timer with the event manager 

repo_find_msg Finds data in a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 

repo_insert_msg Inserts data in a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg 

 

Updates data in a repository 
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Processed Messages 
Name Description 

control_message Sends an actual control message particular to the protocol 

timer_timeout Informs about an expired timer 

 

C.3 CONI 

Name: CONI 

Type: Core component 

Description: Collector of network information on-demand 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

NONE  

Processed Messages 
Name Description 

NONE  

 

Name: Initiation 

Type: CONI Initiation 

Description: Initiates a new route discovery 

Properties 
Name Type Default Value Description 

routing_table string rtable The repository used as routing table 

ROUTE_RREQ_WAIT_TIME float 1 Waiting time before sending a second request 

RREQ_TRIES int 3 Maximum number of route discovery 

attempts 

Generated Messages 
Name Description 

repo_find_msg Finds data in a repository 

rt_request_send Sends a route request 

register_timer Registers a timer with the even manager 

nl_no_route_found Announces that no route was found by Netfilter 

timer_unregister Un-registers a timer from the event manager 

Processed Messages 
Name Description 

rt_discovery_start Request to initiate a new route discovery 

timer_timeout Announces that a timer has expired 

rt_discovery_stop Request to stop an ongoing route discovery 

 

Name: Request 

Type: CONI Request 

Description: Initiates a new route request as part of a route discovery process 

Properties 
Name Type Default Value Description 

routing_table 

 

string rtable The repository used as routing table 
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Generated Messages 
Name Description 

register_ctl_msg Request the registration of a new control message type 

ctl_msg_deregister Request to deregister a control message type 

control_message Sends an actual control message particular to the protocol 

register_timer Request the registration of a new timer with the event manager 

sched_timer Reschedules an existing timer with the event manager 

timer_disable Disables an existing timer with the event manager 

repo_find_msg Finds data in a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 

repo_find_entry_msg Finds a specific entry in a repository 

repo_insert_msg Inserts data in a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

krnl_add_rt Adds a routing path to the kernel  

krnl_chg_rt Updates a routing path in the kernel 

krnl_del_rt Deletes a routing path from the kernel 

nl_add_route Adds a routing path to the Netfilter record 

nl_del_route Deletes a routing path from the Netfilter record 

rt_discovery_stop Stops a route discovery process 

rt_reply_send Sends a route reply message 

Processed Messages 
Name Description 

rt_request_send Request sending a route request 

ctl_msg_rcvd Forwards a received control message particular to the protocol 

timer_timeout Announces that a timer has expired 

 

Name: Reply 

Type: CONI Reply 

Description: Generates a route reply corresponding to a route discovery process 

Properties 
Name Type Default Value Description 

routing_table string rtable The repository used as routing table 

Generated Messages 
Name Description 

register_ctl_msg Request the registration of a new control message type 

ctl_msg_deregister Request to deregister a control message type 

control_message Sends an actual control message particular to the protocol 

register_timer Request the registration of a new timer with the event manager 

sched_timer Reschedules an existing timer with the event manager 

timer_disable Disables an existing timer with the event manager 

repo_find_msg Finds data in a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 

repo_find_entry_msg Finds a specific entry in a repository 

repo_insert_msg Inserts data in a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

krnl_add_rt Adds a routing path to the kernel  

krnl_chg_rt Updates a routing path in the kernel 

krnl_del_rt Deletes a routing path from the kernel 

nl_add_route Adds a routing path to the Netfilter record 

nl_del_route Deletes a routing path from the Netfilter record 
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rt_discovery_stop Stops a route discovery process 

Processed Messages 
Name Description 

rt_reply_send Request sending a route reply 

ctl_msg_rcvd Forwards a received control message particular to the protocol 

timer_timeout Announces that a timer has expired 

 

Name: Changes 

Type: CONI Changes 

Description: Advertises route error messages 

Properties 
Name Type Default Value Description 

routing_table string rtable The repository used as routing table 

Generated Messages 
Name Description 

register_ctl_msg Request the registration of a new control message type 

ctl_msg_deregister Request to deregister a control message type 

control_message Sends an actual control message particular to the protocol 

sched_timer Reschedules an existing timer with the event manager 

repo_find_msg Finds data in a repository 

Processed Messages 
Name Description 

rt_error_send Request sending a route error message 

ctl_msg_rcvd Forwards a received control message particular to the protocol 

 

C.4 Additional Computations 

Name: ADD_COMPS 

Type: Core component 

Description: Controls all the additional computations 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

NONE  

Processed Messages 
Name Description 

NONE  

 

Name: MPR_computation 

Type: Additional computation 

Description: Computes the Mutipoint Relay nodes for each node 

Properties 
Name Type Default Value Description 

neighborSet string neighbor_set Repository storing the neighbor set 

twoHopNeighborSet string twoHopNeighbor_set Repository storing the two hops neighbor 

set 
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Generated Messages 
Name Description 

repo_find_msg Finds data in a repository 

repo_replace_msg Replaces a repository with a new one 

repo_unlock Unlocks a previously locked repository 

Processed Messages 
Name Description 

compute_MPRs Request the computation of the MPR set 

 

C.5 Operating System Interface 

Name: OS_IFACE 

Type: Core component 

Description: Provides the interaction with the OS 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_ifnames Queries the names of the interfaces available 

Processed Messages 
Name Description 

NONE  

 

Name: Pre_forwarding 

Type: OS_Iface Pre-forwarding 

Description: Takes care of initiating the creation og routing paths when they are not available 

Properties 
Name Type Default Value Description 

route_update_freq int 1000 Frequency to update an active routing entry 

routing_table string rtable Repository storing the routing table 

Generated Messages 
Name Description 

fd_register Register a new file descriptor 

sched_timer Reschedules an existing timer with the event manager 

fd_ready_reply Reply to sync message announcing that a file descriptor is ready to be read 

repo_find_msg Finds data in a repository 

rt_discovery_start Requests to initiate a new route discovery 

rt_entry_update Request to update a routing table entry 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

rt_error_send Request sending a route error message 

qry_ifnames Queries the names of the interfaces available 

Processed Messages 
Name Description 

fd_ready Announces that a file descriptor is ready to be read 

nl_add_route Adds a route to the Netfilter record 

nl_del_route Deletes a route from the Netfilter record 

nl_no_route_found Announces that the route could not be found 
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Name: Fwd_eng_interaction  

Type: OS_Iface Fwd_engine Interaction 

Description: Provides an interaction mechanism to modify the forwarding table of the OS 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

krnl_add_rt_reply Reply to sync message to add a routing entry to the forwarding table of the OS 

krnl_chg_rt_reply Reply to sync message to update a routing entry in the forwarding table of the 

OS 

krnl_del_rt_reply Reply to sync message to delete a routing entry from the forwarding table of 

the OS 

Processed Messages 
Name Description 

krnl_add_rt Adds a routing entry to the forwarding table of the OS 

krnl_chg_rt Updates a routing entry in the forwarding table of the OS 

krnl_del_rt Deletes a routing entry from the forwarding table of the OS 

 

Name: Ctl_pkts_exch 

Type: OS_Iface Pre-Ctl_Pkts_Exch 

Description: Is in charge of supporting the exchange of udp control messages trough the network interface 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

fd_register Registers a new file descriptor 

ctl_msg_rcvd Forwards a control message received on the network interface 

ctl_msg_deregister_reply Reply to a sync message requesting to deregister a control message type 

fd_ready_reply Reply to a sync message announcing that a file descriptor is ready to be read 

Processed Messages 
Name Description 

control_message_wdest Sends an actual control message particular to the protocol with a defined 

destination 

fd_ready Announces that a file descriptor is ready to be read 

register_ctl_msg Registers a control message type 

ctl_msg_deregister Deregisters a control message type 

 

C.6 Path Determination  

Name: PATH_DET 

Type: Core component 

Description: Controls all path determination mechanisms 

Properties 
Name Type Default Value Description 

NONE 
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Generated Messages 
Name Description 

NONE  

Processed Messages 
Name Description 

NONE  

 

Name: shortest_path_OLSR 

Type: Path Determination Subcomponent 

Description: Computes the shortest path between a source and destination nodes 

Properties 
Name Type Default Value Description 

linkSet string link_set Name of repository storing the link set 

neighborSet string neighbor_set Name of repository storing neighbor set 

twoHopNeighborSet string twoHopNeighbor_set Name of repository storing the two hops 

neighbor set 

topologySet string topology_set Name of repository storing the topology 

set 

rTable_OLSR string RIR_OLSR Name of repository storing the routing 

table of OLSR 

Generated Messages 
Name Description 

repo_find_msg Finds data in a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 

repo_insert_msg Inserts data in a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

krnl_add_rt Adds a routing entry to the forwarding table of the OS 

krnl_chg_rt Updates a routing entry in the forwarding table of the OS 

krnl_del_rt Deletes a routing entry from the forwarding table of the OS 

register_timer Request the registration of a new timer with the event manager 

sched_timer Reschedules an existing timer with the event manager 

Processed Messages 
Name Description 

compute_rtable Request the computation of the routing table 

 

Name: GREEDY 

Type: Path Determination Subcomponent 

Description: Computes each forwarding hop according to the GREEDY protocol 

Properties 
Name Type Default Value Description 

nb_repository string nb1 Name of repository storing neighbor information 

locationTable string loc_table Name of repository storing location information 

routing_table string rtable Name of repository storing the routing table 

default_hop_dst int 1 Default hop distance 

route_timeout int 5000 Routing table entry timeout 

Generated Messages 
Name Description 

repo_find_msg Finds data in a repository 

repo_find_entry_msg Finds a specific entry in a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 
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repo_insert_msg Inserts data in a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

krnl_add_rt Adds a routing entry to the forwarding table of the OS 

krnl_chg_rt Updates a routing entry in the forwarding table of the OS 

krnl_del_rt Deletes a routing entry from the forwarding table of the OS 

nl_no_route_found Announces that a routing path could not be found 

nl_add_route Adds a routing entry to the Netfilter record 

nl_del_route Deletes a routing entry from the Netfilter record 

register_timer Request the registration of a new timer with the event manager 

sched_timer Reschedules an existing timer with the event manager 

Processed Messages 
Name Description 

rt_discovery_start Requests to start a new route discovery 

rt_entry_update Requests to update a routing entry 

rt_error_send Requests to send a route error message 

timer_timeout Announce that a timer has expired 

 

C.7 Routing Information Repository 

Name: RIR 

Type: Core component 

Description: Hosts all the protocol repositories 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props Queries for the values of the properties of all of its subcomponents 

repo_insert_msg_reply Reply to a sync message to insert an entry into a repository 

repo_find_msg_reply Reply to a sync message to find data in a repository 

repo_find_entry_msg_reply Reply to a sync message to find a specific entry in a repository 

repo_delete_msg_reply Reply to a sync message to delete data from a repository 

repo_update_msg_reply Reply to a sync message to update data in a repository 

repo_replace_msg_reply Reply to a sync message to replace a repository 

Processed Messages 
Name Description 

repo_insert_msg Inserts data in a repository 

repo_find_msg Finds data in a repository 

repo_find_entry_msg Finds a specific entry in a repository 

repo_delete_msg Deletes data from a repository 

repo_delete_entry_msg Deletes a specific entry from a repository 

repo_unlock Unlocks a previously locked repository 

repo_update_msg Updates data in a repository 

repo_replace_msg Replaces a repository with a new one 
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Name: RIR_DYMO 

Type: RIR Repository 

Description: Repository to store the routing table of DYMO 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 

 
Name: Neighbors 

Type: RIR Repository 

Description: Repository to store neighbors information, mainly the ID of the neighbors 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 

 
Name: LinkSet 

Type: RIR Repository 

Description: Repository to store the link set used by OLSR 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 

 
Name: NeighborSet 

Type: RIR Repository 

Description: Repository to store the neighbor set used by OLSR 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 
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Name: TwoHopNeighborSet 

Type: RIR Repository 

Description: Repository to store the two hops neighbor set used by OLSR 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 

 
Name: MPRSelectorSet 

Type: RIR Repository 

Description: Repository to store the MPR selector set used by OLSR 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 

 
Name: TopologySet 

Type: RIR Repository 

Description: Repository to store the topology set used by OLSR 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 

 
Name: DuplicateSet 

Type: RIR Repository 

Description: Repository to store the duplicate set used by OLSR 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 
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Name: RTable_OLSR 

Type: RIR Repository 

Description: Repository to store the routing table used by OLSR 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 

 
Name: Location_table 

Type: RIR Repository 

Description: Repository to store the location information repository used by GREEDY 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_rir_sub_props_reply Reply to a sync message to query about the properties of the repository 

Processed Messages 
Name Description 

qry_rir_sub_props Sync message to query about the properties of the repository 

 

C.8 Event Manager 

Name: EV_MGR 

Type: Core component 

Description: Is the event manager that controls all the timers  

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

qry_age_queue_reply Reply to a sync message that queries for the next timer to expire 

timer_timeout Informs that a timer just expired 

register_timer_reply Reply to a sync message that registers a new timer 

deregister_timer_reply Reply to a sync message that deregisters an existing timer 

fd_register Registers a new file descriptor 

fd_ready_reply Reply to a sync message that announces that a file descriptor is ready to be read 

Processed Messages 
Name Description 

qry_age_queue Query about the next timer to expire 

register_timer Registers a new timer 

timer_unregister Un-registers an existing timer 

sched_timer Reschedules an existing timer 

deregister_timer Deregisters an existing timer 

timer_disable Disables an active timer 

fd_ready Announces that a file descriptor is ready to be read 
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C.9 Location Information 

Name: LOC_INFO 

Type: Core component 

Description: Controls all methods providing location information 

Properties 
Name Type Default Value Description 

NONE    

Generated Messages 
Name Description 

NONE  

Processed Messages 
Name Description 

NONE  

 

Name: gps_receiver 

Type: Location information subcomponent 

Description: Provides the location information of the current node assuming that it is collected by a GPS 

receiver and stored in a file in the system. 

Properties 
Name Type Default Value Description 

file_path string /home/greedy/host_location.dat Location in the file system 

Generated Messages 
Name Description 

qry_location_reply Reply to a sync message requesting the location of the node 

Processed Messages 
Name Description 

qry_location Requests the location of the node 
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Appendix D 

 

Full DYMO Specification 

 

This Appendix presents the full protocol specification used to generate the reactive routing 

protocol DYMO with GP-Pro. It shows all the interconnections that had to be written if the 

automatic completion feature did not exist. However, only the first four interconnections are 

actually required when automatic completion is used (shown in boldface). 

 

Protocol as GPPro_DYMO{ 

 udp_port = 657 

  CONI as Coni{ 

  Initiation as Init{ 

   routing_table = rtable 

  } 

  Request as Req{ 

   routing_table = rtable 

  } 

  Reply as Rep{ 

   routing_table = rtable   

  } 

  Changes as Rerr{ 

   routing_table = rtable 

  } 

 } 

 MADINI as mad1 { 

  Hello as hello1 { 

   msg_ival = 2 

   ctl_msg_type = 4 

   nb_repository = nb1 

   routing_table = rtable 

   nb_timeout = 6 

  } 

 } 

 EV_MGR as ev_mgr { 

 } 

 DELIVERY as del1 { 

  n_hops as nh1 { 

   hops = 1 

  } 

  n_hops as nh_net_diameter { 

   hops = 10 

  } 
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  unicast as unicasting{ 

   hops = 100 

  } 

 } 

 OS_IFACE as OS1{ 

  Pre_forwarding as PF1{ 

   routing_table = rtable 

   route_update_freq = 1000    

  } 

  Fwd_eng_interaction as FEI{ 

  } 

  Ctl_pkts_exch as CP1{ 

  } 

 } 

 RIR as repo_pool{   

  neighbors as nb1{ 

  }   

  rir_dymo as rtable{ 

  } 

 } 

   

 control_message : hello1 -> nh1 

 control_message : Rep -> unicasting  

 control_message : Req -> nh_net_diameter  

 control_message : Rerr -> nh_net_diameter 

 control_message_wdest : nh1 -> CP1 

 control_message_wdest : nh_net_diameter -> CP1 

 control_message_wdest : unicasting -> CP1 

 ctl_msg_deregister: mad1 <-> CP1 

 ctl_msg_deregister: Rep <-> CP1 

 ctl_msg_deregister: Req <-> CP1 

 ctl_msg_deregister: Rerr <-> CP1  

 ctl_msg_rcvd : CP1 -> hello1 

 ctl_msg_rcvd : CP1 -> Rep 

 ctl_msg_rcvd : CP1 -> Req 

 ctl_msg_rcvd : CP1 -> Rerr 

 ctl_msg_request : mad1 -> hello1 

 deregister_timer : mad1 <-> ev_mgr 

 fd_ready : gp_pro1 <-> CP1 

 fd_ready : gp_pro1 <-> ev_mgr 

 fd_ready : gp_pro1 <-> PF1 

 fd_register : CP1 <-> gp_pro1 

 fd_register : ev_mgr <-> gp_pro1 

 fd_register : PF1 <-> gp_pro1 

 krnl_add_rt : Rep <-> FEI 

 krnl_add_rt : Req <-> FEI 

 krnl_chg_rt : Rep <-> FEI 

 krnl_chg_rt : Req <-> FEI 

 krnl_del_rt : Rep <-> FEI 

 krnl_del_rt : Req <-> FEI 

 nl_no_route_found : Init -> PF1 

 nl_add_route : Rep -> PF1  

 nl_add_route : Req -> PF1  

 nl_del_route : Rep -> PF1 

 nl_del_route : Req -> PF1 

 qry_age_queue : gp_pro1 <-> ev_mgr 
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 qry_madini_sub_props : mad1 <-> hello1 

 qry_rir_sub_props : repo_pool <-> nb1 

 qry_rir_sub_props : repo_pool <-> rtable 

 register_ctl_msg : mad1 -> CP1 

 register_ctl_msg : Rep -> CP1 

 register_ctl_msg : Req -> CP1 

 register_ctl_msg : Rerr -> CP1 

 register_timer : hello1 <-> ev_mgr 

 register_timer : Init <-> ev_mgr 

 register_timer : mad1 <-> ev_mgr 

 register_timer : Rep <-> ev_mgr 

 register_timer : Req <-> ev_mgr 

 repo_delete_entry_msg : hello1 -> repo_pool  

 repo_delete_entry_msg : Rep -> repo_pool  

 repo_delete_entry_msg : Req -> repo_pool  

 repo_find_entry_msg : Rep <-> repo_pool 

 repo_find_entry_msg : Req <-> repo_pool 

 repo_find_msg : hello1 <-> repo_pool 

 repo_find_msg : Init <-> repo_pool  

 repo_find_msg : PF1 <-> repo_pool 

 repo_find_msg : Rep <-> repo_pool 

 repo_find_msg : Req <-> repo_pool 

 repo_find_msg : Rerr <-> repo_pool 

 repo_insert_msg : hello1 <-> repo_pool 

 repo_insert_msg : Rep <-> repo_pool 

 repo_insert_msg : Req <-> repo_pool 

 repo_unlock : hello1 -> repo_pool 

 repo_unlock : PF1 -> repo_pool 

 repo_unlock : Rep -> repo_pool 

 repo_unlock : Req -> repo_pool 

 repo_update_msg : hello1 <-> repo_pool 

 repo_update_msg : PF1 <-> repo_pool 

 repo_update_msg : Rep <-> repo_pool 

 repo_update_msg : Req <-> repo_pool 

 rt_discovery_start : PF1 -> Init  

rt_discovery_stop : Rep -> Init 

 rt_discovery_stop : Req -> Init 

 rt_error_send : PF1 -> Rerr 

 rt_reply_send : Req -> Rep 

 rt_request_send : Init -> Req 

 sched_timer : hello1 -> ev_mgr 

 sched_timer : PF1 -> ev_mgr 

 sched_timer : Rep -> ev_mgr 

 sched_timer : Req -> ev_mgr 

 sched_timer : Rerr -> ev_mgr 

 sync_initialize : gp_pro1 <-> Coni 

 sync_initialize : gp_pro1 <-> mad1 

 sync_initialize : gp_pro1 <-> ev_mgr 

 sync_initialize : gp_pro1 <-> del1 

 sync_initialize : gp_pro1 <-> OS1 

 sync_initialize : gp_pro1 <-> repo_pool 

 sync_initialize : repo_pool <-> nb1 

 sync_initialize : repo_pool <-> rtable 

 sync_initialize : del1 <-> nh1 

 sync_initialize : del1 <-> nh_net_diameter 

 sync_initialize : del1 <-> unicasting 
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 sync_initialize : Coni <-> Init 

 sync_initialize : Coni <-> Req 

 sync_initialize : Coni <-> Rep 

 sync_initialize : Coni <-> Rerr 

 sync_initialize : OS1 <-> PF1 

 sync_initialize : OS1 <-> FEI 

 sync_initialize : OS1 <-> CP1 

 sync_initialize : mad1 <-> hello1 

 sync_start : gp_pro1 <-> Coni 

 sync_start : gp_pro1 <-> mad1 

 sync_start : gp_pro1 <-> ev_mgr 

 sync_start : gp_pro1 <-> del1 

 sync_start : gp_pro1 <-> OS1 

 sync_start : gp_pro1 <-> repo_pool 

 sync_start : repo_pool <-> nb1 

 sync_start : repo_pool <-> rtable 

 sync_start : del1 <-> nh1 

 sync_start : del1 <-> nh_net_diameter 

 sync_start : del1 <-> unicasting 

 sync_start : Coni <-> Init 

 sync_start : Coni <-> Req 

 sync_start : Coni <-> Rep 

 sync_start : Coni <-> Rerr 

 sync_start : OS1 <-> PF1 

 sync_start : OS1 <-> FEI 

 sync_start : OS1 <-> CP1 

 sync_start : mad1 <-> hello1 

 sync_stop : gp_pro1 <-> Coni 

 sync_stop : gp_pro1 <-> mad1 

 sync_stop : gp_pro1 <-> ev_mgr 

 sync_stop : gp_pro1 <-> del1 

 sync_stop : gp_pro1 <-> OS1 

 sync_stop : gp_pro1 <-> repo_pool 

 sync_stop : repo_pool <-> nb1 

 sync_stop : repo_pool <-> rtable 

 sync_stop : del1 <-> nh1 

 sync_stop : del1 <-> nh_net_diameter 

 sync_stop : del1 <-> unicasting 

 sync_stop : Coni <-> Init 

 sync_stop : Coni <-> Req 

 sync_stop : Coni <-> Rep 

 sync_stop : Coni <-> Rerr 

 sync_stop : OS1 <-> PF1 

 sync_stop : OS1 <-> FEI 

 sync_stop : OS1 <-> CP1 

 sync_stop : mad1 <-> hello1 

 timer_disable : Rep -> ev_mgr 

 timer_disable : Req -> ev_mgr 

 timer_timeout : ev_mgr -> mad1 

 timer_timeout : ev_mgr -> hello1 

 timer_timeout : ev_mgr -> Init 

 timer_timeout : ev_mgr -> Rep 

 timer_timeout : ev_mgr -> Req 

 timer_unregister : Init -> ev_mgr 

} 
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Appendix E 

 

Default Component Template 

 

The following is a default Xpand template that can be used to create any new component. In 

order to properly use it, the correct template name and metatype (shown in shaded text) have 

to be provided (as explained in Appendix F). 

 

«DEFINE <Template Name>(String exp_type) FOR <Metatype>-» 

 «IF exp_type=="INFO"-» 

  «EXPAND Messages::Msg_functions::std_msgs_names-»   

  //---------- PROPERTIES AND MESSAGES  ----- 

 

 «ENDIF» 

  

 «IF exp_type=="HEADERS"-» 

  «FILE name()+".h"-»  

   «EXPAND common::header_file_functions-» 

   //--------------- HEADER FILE (.h) -----------  

  

«ENDFILE-» 

 «ENDIF» 

 

 «IF exp_type=="BODY"-» 

  «FILE name()+".c"-» 

   «EXPAND common::component_header» 

   //--------------  FUNCTION HEADERS ---------------- 

 

   «EXPAND common::component_body» 

   //-------------- FUNCTIONS TO GENERATE MESSAGES  -- 

   

   //-------------- FUNCTIONS TO PROCESS MESSAGES   -- 

  

   //--------------  ADDITIONAL CODE --------------- 

 

   static void start(){ 

   } 

    

   static void stop(){ 

   }    

«ENDFILE» 

 «ENDIF-» 

   

«EXPAND Generic_components::component_template(exp_type) FOREACH subcomponents-» 

«ENDDEFINE» 
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Appendix F 

 

How to Create New Components 

 

This Appendix is a brief guide to create new routing components for GP-Pro. 

 

Component 

Type 

Template Name Xpand Filename (.xpt) DSL Abstract Rule 

Information 

subcomponent 

info_subcomponent_template Madini_subcomponents Info_subcomponent_types 

Delivery 

Mechanism 

del_mech_template Delivery_subcomponents Del_mech_types 

CONI 

Initiation  

Coni_subcomp_template Coni_subcomponents Coni_subcomponent 

CONI 

Initiation 

Subcomponent 

initiation_subcomp_template Coni_Initiation_subcomponents Initiation_subcomponent_types 

CONI Request Coni_subcomp_template Coni_subcomponents Coni_subcomponent 

CONI Request 

Subcomponent 

request_subcomp_template Coni_Request_subcomponents Request_subcomponent_types 

CONI Reply Coni_subcomp_template Coni_subcomponents Coni_subcomponent 

CONI Reply 

Subcomponent 

reply_subcomp_template Coni_Reply_subcomponents Reply_subcomponent_types 

CONI Changes Coni_subcomp_template Coni_subcomponents Coni_subcomponent 

CONI Changes 

Subcomponent 

changes_subcomp_template Coni_Changes_subcomponents Changes_subcomponent_types 

CONI 

Invalidation  

Coni_subcomp_template Coni_subcomponents Coni_subcomponent 

CONI 

Invalidation 

Subcomponent 

invalidation_subcomp_template Coni_Invalidation_subcomponents Invalidation_subcomponent_types 

Additional 

Computation 

add_comps_template Add_comps_subcomponents Add_computations_types 

OS_Iface Pre-

forwarding 

OS_Iface_subcomp_template OS_Iface_subcomponents OS_Iface_subcomponent 

OS_Iface Pre-

forwarding 

Subcomponent 

pre_fwd_subcomp_template OS_Iface_Pre_fwd_subcomponents Pre_forwarding_subcomponent_typ

es 

OS_Iface 

Fwd_engine 

Interacion 

OS_Iface_subcomp_template OS_Iface_subcomponents OS_Iface_subcomponent 

OS_Iface Pre- 

Fwd_engine 

Interacion 

Subcomponent 

fwd_eng_interaction_subcomp_tem

plate 

OS_Iface_Fwd_eng_interaction_su

bcomponents 

Fwd_eng_interaction_subcompone

nt_types 

OS_Iface Pre-

Ctl_Pkts_Exch 

OS_Iface_subcomp_template OS_Iface_subcomponents OS_Iface_subcomponent 

OS_Iface Pre- 

Ctl_Pkts_Exch 

Subcomponent 

ctl_pkts_exch_subcomp_template OS_Iface_Ctl_pkts_exch_subcomp

onents 

Ctl_pkts_exch_subcomponent_type

s 

 

RIR 

Repository 

routing_repository_template RIR_subcomponents Routing_repository_types 

Event Manager 

subcomponent 

 

ev_mgr_template Ev_mgr_subcomponents Ev_mgr_subcomponent_types 
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Component 

Type 

Template Name Xpand Filename (.xpt) DSL Abstract Rule 

Path 

Determination 

Subcomponent 

path_det_template Path_det_subcomponents Path_det_subcomponent_types 

Location 

Information 

Subcomponent 

loc_info_template Loc_info_subcomponents Loc_info_subcomponent_types 

Generic 

Component 

component_template Generic_components Generic_component_types 

Table 22. Relationship between component types, Xpand templates and DSL abstract rules 

 

 Before creating any new component, we should keep the following in mind: 1) that 

the proposed protocol architecture defines a hierarchical relationship between routing 

components, and the location of each component in this hierarchy defines the component 

type, 2) that each new component is created as a new metatype in a new Xpand template, 

with a template name corresponding to the component type that it represents, 3) that all the 

component templates that belong to the same component type are grouped together in the 

same Xpand file with extension .xpt, 4) that each component (or metatype) that is to be used 

in any protocol specification has to be added first to the abstract rule that represents the 

component type in the DSL. Table 22 provides these relationships for every component type 

in the protocol architecture.  

 

 The steps to create a new component are listed next: 

1. According to the component type that the new component belongs to, find in Table 

22 the name of the Xpand file where the new template should be added. 

2. At the bottom of the Xpand file create a new template. For simplicity just use the 

default template shown in Appendix E. 

3. Once the default template has been added to the Xpand file, replace <Template 

Name> with the corresponding template name listed in Table 22.  

4. Next, replace <Metatype> with the chosen name for the new component. 

5. In the section INFO of the new template, list all the configurable properties of the 

new component as discussed in Section 6.2. You should provide the corresponding 

data type and default value. 

6. Also, in the section INFO of the new template, list all the generated and processed 

messages as discussed in Section 6.2. 
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7. Provide all the C code that belongs to the new component in the section BODY of the 

new template. Remember that each listed property becomes a variable with the entire 

component as scope. 

8. Provide a function for each processed message. The name of the function should be 

the name of the processed message with prefix “proc_”, as discussed in Section 6.2. 

9. Use the section HEADER of the new template as you would use a .h header file when 

programming in C language (e.g., to declare function headers). 

10. Any function, task or statement that is to be executed when the component starts to 

operate, should be included in the function start() listed in the section BODY of the 

new template. 

11. Any function, task or statement that is to be executed before the component stops 

operation, should be included in the function stop() listed in the section BODY of the 

new template. 

12. The metatype of the new component should be added to the DSL as part of the 

abstract rule that corresponds to the component type (the DSL is contained in the file 

GPPro_icm.xtxt). To do so, before the semicolon that defines the end of the rule, the 

following syntax should be added: | <Metatype>. That is, the vertical bar plus one 

white space and the name of the metatype. 

13. Right after the abstract rule, a new rule should be added to the DSL by using the 

following syntax: <Metatype> : “<name_in_specfication>”;. That is the name of 

the metatype, white space, colon, white space, a random name to be used in any 

specification to make reference to the new component (written between quotation 

marks) and a semicolon. 

14. Once the DSL is modified as described in steps 12 and 13, the DSL should be re-

generated by using oAW inside Eclipse. Then, the DSL should be exported as a 

deployable plug-in inside Eclipse.  

15. Finally, restart Eclipse and the new component could be used as part of any 

specification. 

 

NOTE: A wizard to create new components will be integrated in the application hosting the 

GUI. This wizard should also automate steps 12 to 14. 
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Appendix G 

 

GP-Pro Logo 

 

 
Figure 25. GP-Pro logo 

 

GP-Pro aims to generate routing protocols by assembling existing components addressing 

different features of routing protocols. Each of those components can be assembled by one of 

more subcomponents of finer granularity. Figure 25 shows the GP-Pro logo, which resembles 

the previous description, a set of components of different shapes and sizes providing different 

functionalities (different colors), which might contain additional subcomponents.  
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