

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

Evaluating the Impact of Application Design Factors on
Performance in Publish/Subscribe Systems over

Wireline and Wireless Networks

Abdulbaset Gaddah and Thomas Kunz

Department of Systems and Computer Engineering
Carleton University, 1125 Colonel by Drive

Ottawa, Ontario, Canada K1S 5B6

{agaddah, tkunz}@sce.carleton.ca

Abstract
The publish/subscribe interaction paradigm has recently received great
attention due to its flexibility and scalability in distributed applications. The
decoupling of publishers and subscribers in time and space along with the
inherently asynchronous communication pattern make the publish/subscribe
paradigm well-suited for mobile wireless environments. A careful design of
the publish/subscribe applications is required however for achieving high
performance. This paper evaluates the performance of a publish/subscribe
system in wireline and wireless network domains. We first identify the
factors that affect the performance of the publish/subscribe system and study
their behavior in both network environments. In our analysis, we have used
different test cases as a suitable means to cover a broad range of such factors
and to motivate their selections. Based on our evaluation study, we observe
that the performance of publish/subscribe system can be greatly affected by
several factors. The results also show that wireless characterizations
influence the system performance. We believe that our measurements provide
valuable insights into system behavior and performance.

1 Introduction
The advances in wireless technologies and portable handheld devices like pocket PCs and
cell phones have created a new paradigm of computation that allows mobile users to
access different services and information while they are roaming. However, such a
dynamic paradigm introduces many challenges for the developers and users of
information dissemination applications. Intermittent connectivity of wireless

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 2

environments and user’s mobility are good examples of these challenges. Users may get
disconnected from the network due to poor network connectivity or when commuting
between locations. They expect that data disseminated while they are disconnected can
still be delivered upon their reconnection. Under these circumstances, the notion of
middleware is crucial for supporting disconnected operations and facilitating the
development of mobile information dissemination applications.

It has become apparent that traditional client/server middleware such as CORBA, RMI,
and DCOM are not adequate to provide seamless support to mobile wireless computing
systems. They mainly impose a tight coupling between the sender and receiver parties
and rely on the permanent availability of the connection. In mobile scenarios, such type
of communication is impractical as the users often move from one access point to another
and inter-communicate through extremely variable connectivity. Traditional and next
generation middleware solutions are discussed in more detail in [1] in terms of their
suitability in mobile wireless computing domains. This research however focuses on
publish/subscribe middleware that is currently considered as one of the most promising
candidate paradigms for supporting mobile information dissemination applications.

The interaction style of publish/subscribe systems has been effectively used to model
information dissemination applications [2], where publishers are information sources,
subscribers are information destinations, and a broker entity is a router mechanism. The
publish/subscribe systems naturally support a number of desirable features for mobile
applications. They are characterized by decoupling the interacting parties, both in time
and space, allowing them to communicate without being connected simultaneously or
being aware of each other. They also employ an asynchronous communication style that
allows mobile clients to issue requests for services, disconnect from the network, and
collect their results later. Publish/subscribe systems moreover can efficiently filter and
disseminate a significant amount of data to a large number of clients. These
characteristics thus make the publish/subscribe paradigm a very good candidate for
supporting mobile applications.

Although extensive research on publish/subscribe systems has been conducted
[3][4][5][6], both in industry and in academia, for the fixed environments, comparatively
few research has studied the behavior of these systems in the mobile wireless
environments [7][8]. In this paper, we study the behavior of a distributed
publish/subscribe system running on wireline and wireless environments. The main goals
of our evaluation study are as follows:

• To assess the performance of publish/subscribe systems under various combinations
of workload parameters.

• To explore the application design factors that impact performance and motivate their
selections.

• To present the evaluation of publish/subscribe system over two types of network
infrastructures and compare their performance.

• To gain insights into system behavior and understand the performance challenges.

This paper is organized as follows. Section 2 provides background knowledge on the
publish/subscribe paradigm. Section 3 describes the semantics of Java Message Service

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 3

(JMS) [9], one of the most widely accepted messaging system standards. Section 4
presents the experimental environment and Section 5 discusses the results of the
experiments. Section 6 describes insights gained into system behavior and performance.
Section 7 draws our conclusions.

2 Publish/Subscribe Background
A publish/subscribe system is a collection of autonomous components, which interact by
delivering events (or messages) from sources to interested destinations. Components that
generate messages are known as publishers, whereas components that consume messages
are known as subscribers. The interactions among publisher and subscriber components
are coordinated by a mediated entity called dispatcher (or event broker). Publishers are
the information providers that notify the outside world about the occurrence of certain
events. When subscribers want to receive particular classes of events they express their
interest by means of subscriptions. Upon the publication of a new event to the system, the
event broker matches the event against all the subscriptions and then forwards it to all
interested subscribers. Hence, the architecture of a publish/subscribe system relies on the
mediated entity that handles the collection of subscriptions as well as the distribution of
events and acknowledgements.

Publish/subscribe systems are based on two different types of event subscriptions known
as topic-based and content-based subscriptions. In topic-based systems, subscribers may
register to one or more topics and hence receive all the events delivered to those topics.
Subscribers that share the same topic will receive a copy of each event within that topic.
Content-based systems on the other hand allow subscribers to assign certain queries on
the event content as part of their subscriptions. Thus, subscribers are able to receive a
specific set of events within a topic. It should be noted that events do not rely on an
explicit destination address set by the publishers. They are instead routed to the end
destination based on their content.

The architecture of the event broker can be either centralized or distributed. A centralized
architecture consists of a single broker entity that connects several publisher and
subscriber components. This central entity is potentially a performance bottleneck and a
single point of failure. This affects system scalability and limits the use of centralized
architectures to small scale deployments. In a distributed architecture, a number of
interconnected brokers collaborate in collecting subscriptions and forwarding events to
the interested subscribers. Publishers and subscribers are not attached to a single broker
entity; instead, they are distributed over several interconnected brokers. This can
potentially reduce the network load and alleviate system scalability. The interconnected
brokers can be represented in several topologies that differ in terms of their strategies in
routing subscriptions and events. Two different broker topologies are presented in
Figures 1 and 2.

In a hierarchical (or multicast) topology, the event brokers are organized in a forwarding
tree that has a root broker and several downward brokers. Excluding the root broker, each
broker is considered as a client to the broker at the upward level of the hierarchy.
Subscribers may connect to any broker regardless of the location of the corresponding
publishers in the hierarchy. Whenever a new subscription is received, the broker

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 4

propagates it upward to the root broker. Each broker on the way from the subscriber to
the root broker stores a copy of the subscription. When an event is received by a broker,
it is forwarded to the broker’s parent. The event is also matched against all the stored
subscriptions. This includes any subscriptions from downstream brokers. The broker
propagates the event to any interested children (subscriber/broker) only if the matching
result is true. Thus, events are always forwarded upward to the root broker, and
downward towards any interested subscribers. In this topology, each broker node is a
critical point of failure. Also, parent brokers are potentially overloaded as they perform
extra work for their children.

Figure 1: Hierarchical Client/Broker Topology

A peer-to-peer (or broadcast) topology consists of a set of brokers that are connected in
the form of symmetrical peers. Their communication protocol supports a bi-directional
flow of subscriptions and events. Each broker is responsible for a partial number of
subscriptions. A publisher delivers an event to any broker that it is connected to. That
broker than becomes responsible for broadcasting the event to all other brokers in the
topology. When a new event enters the system, each broker checks the event against its
own subscriptions and forwards it as necessary. It is apparent that the matching and
forwarding overhead is reduced in comparison with the previous topology. This is
because each broker needs to match events against a portion of subscriptions. In this
topology, the network will be flooded by the generated events since they travel to all
brokers.

Figure 2: Peer-to-Peer Broker Topology

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 5

3 The Java Message Service Semantics
This research is based on one of the most popular messaging system standards know as
Java Message Service [9] (JMS). The motivations of selecting JMS as our standard
platform in this research come from surveying a set of representative publish/subscribe
systems in our literature review. JMS is a Java API, developed by Sun Microsystems and
partners. It allows applications to create, send, receive, and read messages. It supports
two domains of messaging styles (point-to-point and publish/subscribe) and messaging
consumptions (asynchronous and synchronous). A high level description of the JMS
interaction architecture is presented in Figure 3.

Figure 3: JMS Architecture [10]

The JMS architecture [10] consists of a number of components that are an essential part
of any JMS application. The following is a brief description of these components.

JMS Provider: this is a messaging system that implements JMS interfaces in addition to
the other administrative and control functionalities.

JMS Clients: these are Java programs that produce and consume messages.

Messages: these are the entities that are used to exchange information between JMS
clients.

Administrated Objects: these are predefined JMS objects that are administratively created
and customized and later used by JMS clients.

Native Clients: these are client applications that implement a message system’s native
API client instead of JMS. These refer to the applications that were developed before the
availability of JMS.

The connection factories and destinations are two types of administrated objects. It is
desirable that these objects are created administratively rather than programmatically
since their underlying technology might vary from one JMS implementation to another.
JMS administered objects are created and placed into the Java Naming and Directory
Interface (JNDI) namespace by using administrative tools. A JMS client first looks up the
JMS objects in the namespace and then connects to these objects through the JMS
provider.

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 6

� �
��

�
��

� �
��

� ��

� �
�

� 	

�

�
��
� 	

�
�

� �
��

�
��

Figure 4: The JMS Programming Model [10]

Figure 4 shows the relationship between the basic building blocks of the JMS
programming model [10]. A connection factory object encapsulates a collection of
connection parameters that are ordinarily configured by an administrator. A JMS client
uses this object to establish a connection with a JMS provider. A destination object is
used by a JMS client to define the ultimate address of all messages it generates and the
source poll of messages it consumes. The object contains provider-specific addresses and
other configurable information. A connection object represents a client’s active
connection with a JMS provider. A connection may represent an open TCP/IP socket
between a client and a provider service daemon. The connection object is used to create
one or more session objects. A session object is a single-threaded context for generating
and consuming messages. It is responsible for creating message producers, message
consumers, and messages. A message producer is an object that is used for delivering
messages to a destination while a message consumer object is used to drain messages
from a destination. The JMS provider is responsible for forwarding messages from a
particular destination to the interested consumers. A message is an object that carries
information from the producers to the consumers. JMS messages compose of three parts:
header, properties, and body.

• A message header has a set of predefined fields that contain values used by both
clients and providers to identify and route messages.

• Message properties are extra fields to those provided by the message header fields
that can be used to provide compatibility with other messaging systems or to create
message selectors.

• A message body represents the part that holds the actual information. JMS supports
five types of message body formats: BytesMessage, TextMessage, StreamMessage,
ObjectMessage, and MapMessage, which provide compatibility with existing
messaging styles currently in use.

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 7

JMS supports two types of subscriptions, nondurable and durable, that can be used by a
subscriber to register with a JMS provider. Upon receiving a message, the provider
matches the message against all the subscriptions and forwards the message to a
subscriber whose subscription matches the message.

Nondurable subscriptions allow subscribers to receive messages published on their topic
destinations as long as they are active. If a nondurable subscriber disconnects from the
network, it will then miss all the published messages during the period of its inactivation.
This scenario is presented in Figure 5. Nondurable subscriptions maintain low levels of
reliability as the JMS provider does not keep the records of inactive subscribers. On the
other hand, they achieve high levels of throughput since the published messages are not
stored persistently for inactive subscribers, thereby reducing the overhead costs.

Figure 5: Nondurable Subscribers and Subscriptions

Durable subscriptions provide high levels of reliability at the cost of higher overhead. If
a durable subscriber becomes inactive for a certain period of time, the JMS provider
retains all the messages for the subscriber until it reactivates and consumes them. Figure
6 illustrates the concept of durable subscriptions. Thus, durable subscriptions naturally
support disconnected operations in mobile environments. However, they increase the
system overheads due to maintaining inactive subscriber lists, storing messages
persistently, and forwarding the messages as the subscribers become active again. Thus,
the throughput values of durable subscriptions are usually diminished as the number of
inactive subscribers is increased.

Figure 6: A Durable Subscriber and Subscription

Message consumption in publish/subscribe systems is inherently asynchronous in which
there is no time dependency between message producers and message consumers. JMS
supports two consumption models that can be used for consuming messages. The
Synchronous model allows a subscriber to consume messages by explicitly invoking the

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 8

receive() method. Once the method is invoked the subscriber gets blocked until the
message is received or the method timeout is reached. The Asynchronous model is
achieved by registering an event listener object with a subscriber. This object acts as an
asynchronous event handler for messages and encapsulates only one method called
onMessage(). This method contains the necessary action to be taken when the subscriber
receives the messages. Whenever a message enters to the destination, the JMS provider
sends the message to the subscriber by invoking the listener’s onMessage() method.

Subscribers sometimes would like to receive a particular type of messages rather than
receiving all the messages with a destination. This can be done with the help of message
selectors. A message selector is an object of type String that is used to hold conditional
expressions. JMS allows subscribers to specify their message selectors as an argument
when they create their subscriptions. Thus, a subscriber receives only the messages
whose header and property fields match the selection syntax. The matching work is
assigned to the JMS provider. As a result, the matching overhead can affect the provider
as it increases linearly with the number of submitted selectors to the system.

JMS provides two modes of message delivery, non-persistent and persistent. The non-
persistent mode has lower overhead since it does not require the JMS provider to log the
messages in a stable storage. Accordingly, messages can be lost if the provider fails. By
contrast, persistent mode introduces extra overheads as it instructs the JMS provider to
ensure that messages will still be delivered even in the case of provider failure. Thus,
messages are logged in an external storage until it is confirmed that they are consumed
successfully.

The delivery of messages can be acknowledged by one of the following three options:

DUPS_OK_ACKNOWLEDGE: this option minimizes the overhead on the JMS provider
since it is not required to prevent message duplication. The acknowledgement of message
delivery is performed in a lazy manner that most likely leads to the delivery of some
duplicated messages. It is recommended to use this option with consumers that tolerate
duplicated messages.

AUTO_ACKNOWLEDGE: with this option, some extra overhead is introduced as the
JMS provider has to ensure the delivery of messages once-and-only-once. The system
automatically acknowledges the receipt of a message as soon as it has been consumed by
a subscriber.

CLIENT_ACKNOWLEDGE: here, a subscriber acknowledges the message delivery by
explicitly invoking the acknowledge() method. This acknowledgement option is similar
to the previous one except it has to be done manually. If a particular message is
acknowledged, this will automatically acknowledge the receipt of all messages that have
been consumed by its session. For example, if a subscriber has consumed five messages
and then acknowledges the receipt of the second message; all five messages will be
acknowledged.

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 9

4 Experimental Setup
For our experimental study, we have reviewed several JMS implementations that are
available in the public and commercial domains. The purpose of this review is to
motivate our selection of the target platform for our research activities. The platform
availability for public use and its true support for distributed implementation are the
major criteria in our choice. Among the platforms that have met our selection criteria are
OpenJMS [11], Joram [12], FiornaMQ [13], JBossMQ [14], and JavaSMQ [15]. We have
selected JavaSMQ as a base platform for our research work. JavaSMQ is considered a
robust, reliable, and scalable JMS implementation [10].

 Figure 7: General View of Experimental Environment

4.1 Experimental Environment
Figure 7 illustrates a general view of our experimental environment. Experiments were
performed by executing the publish/subscribe system on an overlay network of six Intel
based Pentium 4 nodes running RedHat Linux operating system version 9 and inter-
connected by a 100 Mbps switch. One node was used for running JMS broker with its
default configuration values. A router node was used for running a wireless network
emulator. The sender and receiver clients were equally distributed and run on the
remaining nodes. To avoid the difficulty of clock synchronization for measuring message
latency, we run the sender and receiver clients on the same machine. Clients that share
the same machine run in separate threads and connections, but use the same Java Virtual
Machine and JMS client’s library. The JVM used for running the JMS broker and the
clients is Sun SDK 1.4.2 (build 1.4.2_05-b04), started with the options –Xms64m and –
Xmx256m as a minimum and maximum heap size. Although this is a limited
configuration for our evaluation environment, it is sufficient for investigating the system
performance which is the focus of this paper.

We mapped this configuration onto two types of network environments. The first one
represents the scenario where the sender and receiver clients are connected to the
publish/subscribe system through wireline links, while in the second one the clients are
connected to the publish/subscribe system via an IP network tunneled through a wireless
network emulator called NistNet [16].

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 10

NistNet is well-known software that is implemented as a kernel module extension to the
Linux operating system. It can be used to emulate various network environments. We
used NistNet to model the characteristics of IEEE 802.11 wireless LAN network based
on a set of configuration parameters such as packet delay, packet loss, bandwidth, and
packet duplication. All these parameters were set to the following values: 0ms packet
delay, 3% packet loss, 1Mbps bandwidth, and 0% packet duplication. In our experiment,
NistNet works by emulating a point-to-point communication channel extending over an
IEEE 802.11 wireless LAN network. One end corresponds to the mobile host, running a
client application and the other end represents the fixed host, running a publish/subscribe
access point. Using IP addresses of both ends, we configured NistNet in such a way that
all IP traffic between the two ends was routed through a single adapter with a specific set
of configuration parameters. This represents the realistic scenario where a wireless
channel is shared by many users for their inflow and outflow traffic, thereby; they share
the same resources available on that channel.

There are a number of well-known methods (i.e. simulation, analytic modeling, and
measurement) used in system performance evaluation. We have selected the simulation
approach to capture the effect of real system behavior and overheads that is difficult to
achieve with other methods. Thus, we have implemented a Java based program to
simulate all test scenarios in the two experiment sets. Our program uses JMS APIs to
perform several operations such as creating a TCP connection, producing messages and
asynchronously consuming messages.

We ran a number of experiments for evaluating the performance of the publish/subscribe
system under different workload parameters. During the course of our experiments, seven
factors were used to control the workload of the experimental system. Before presenting
the results of the experiments, we briefly describe these factors and the performance
measures of our interest in the following two subsections.

4.2 Workload Parameters

4.2.1 Connection Load

Connection load refers to the number of concurrent connections utilized by publishers or
subscribers. Since each publisher/subscriber client uses a separate connection to
send/receive messages, the overhead to handle each connection is expected to increase
with the number of clients.

4.2.2 Delivery Mode

Persistent and non-persistent messages are the two types of delivery mode provided by
JMS implementations. Persistent messages are stored in a stable storage (i.e. hard drive)
by the broker until all interested consumers acknowledge the receipt of the messages.
This mode can guarantee the delivery of messages in the event of a message server
failure. However, it introduces an extra load on the system.

4.2.3 Acknowledgement Mode

A client can use one of three acknowledgement modes: AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE, or CLIENT_ACKNOWLEDGE. In this paper, we focus
on the first two modes since the last mode is similar to the first one except it has to be

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 11

done manually. The AUTO mode ensures that the system automatically acknowledges a
message once the client has received it. In the DUPS_OK mode, the system is instructed
to acknowledge messages in a lazy manner. In the case of system failure, the AUTO
mode guarantees that messages can be redelivered only once, whereas the DUPS_OK
mode allows a message server to send duplicated messages to speed up the
acknowledgement processing.

4.2.4 Subscription Type

Subscribes can use two different types of subscriptions, non-durable and durable, when
they register with a broker. Subscribes with non-durable subscription can only receive
messages produced during their period of activation. By contrast, subscribes with durable
subscription can still see their messages after they become active again. Durable
subscription provides a higher reliability, but increases the cost.

4.2.5 Message Filtration

Message selectors allow consumers to receive messages of their interest. A selector is a
string of a logical condition that is used to match the property values of the produced
messages. For example, the selector age > 20 allows only the messages with an age
property value greater than 20 to be delivered to a consumer. When selectors are applied,
each message property needs to be retrieved and parsed against the selector as each
message is routed. This can influence the overall performance of the messaging system.

4.2.6 Message Size

In JMS, a message consists of three parts: message header, message properties, and
message body. Thus, the total length of a message is the sum of the lengths of the three
parts. Since the size of the header and properties is almost the same with all the messages,
we only varied the length of the message body. We evaluated the system performance
against three different values of body length: 100 bytes, 2 Kbytes, and 5 Kbytes.

4.2.7 Message Body Type

JMS provides five different types of message bodies, with simple and complex formats as
listed below roughly in ascending order of complexity:

• BytesMessage
• TextMessage
• StreamMessage
• MapMessage
• ObjectMessage
In general, complicated types such as MapMessage and ObjectMessage can increase the
overhead cost due to data serialization and deserialization. Thus, the system performance
depends on how simple or complex the data is. In our experiments, we used two types of
message bodies, BytesMessage and ObjectMessage to evaluate the impact of simple and
complex data formats on performance.

In the two experimental sets, the above parameters were used as the variable factors. By
using various combinations of these parameters it is possible to explore different types of
computation and communication bound systems. In a computation bound system, the
message providers are heavily loaded whereas the message body sizes are small. A

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 12

communication bound system is characterized by large messages and/or long end-to-end
latency but small service times for client requests. Different combinations of workload
parameters were used in our experiments to cover a broad range of such systems.

4.3 Performance Measures
Publisher throughput: the average total number of messages per second that can be
pumped to a messaging system by all publishers. It is obtained by the summation of the
mean throughputs of all the publishers. This metric is a measure of system capacity for
delivering messages to the topics.

Subscriber throughput: the average total number of messages received per second by all
subscribers in the system. It is also obtained by the summation of the mean throughputs
of all the subscribers. This metric is a measure of system capacity for delivering
messages to subscribers.

Message latency: the average total time, in milliseconds, it takes messages to be
delivered from a publisher to a subscriber. It is obtained by calculating the mean latency
of all received messages. This is the sum of the total messages’ latencies divided by the
total number of received messages.

To measure the actual performance of the server, it is necessary to take multiple
measurements over the duration of the experiment. Durations long enough can often
discover situations of server stress and performance issues. We run all our experiments
for a sufficiently long period of time which this paper refers to it as a measurement time
window. The throughput of a publisher/subscriber is measured by using a counter in their
threads to capture the number of messages produced/consumed. At the end of each test
cycle, the mean throughput of all publishers/subscribers is calculated. When the
measurement time window expires, the throughput of publisher/subscriber is calculated
by adding up the mean throughput of all publishers/subscribers.

The results of the performance indices were captured from the measurement data
obtained by applying a number of testing conditions. In each experiment, the number of
test cycles was large enough to generate an interval that is less than ±5% of the mean at a
confidence level of 95% for most of these performance metrics. It was ensured that client
and broker machines were not the bottleneck region in these performance tests. As a
result, neither clients’ machines nor broker’s machine exceeded 60% of CPU or memory
utilization. Before running each experiment, topic destinations and message stores were
purged and reinitiated to start each test with a clean slate. Publishers were producing
messages as fast as possible. There was no thinking time introduced among produced
messages. At the other side, subscribers were consuming messages in asynchronous
manner. Each client was using a separate connection to produce or consume messages. In
addition, network latencies for establishing client connections were not included in our
results. We next discuss the achieved results of experiment set 1 and 2 under the above
test conditions.

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 13

5 Experimental Results
We conducted two sets of experiments to cover a variety of different combinations for
workload parameters. The results of these sets presented in total 50 different test cases.
All the test cases were evaluated over wireline and emulated wireless environments. The
overall results provide valuable insights into system behavior and performance that are
important to the designers of publish/subscribe applications in general and middleware
systems in particular. The following two subsections provide a detailed description and
discussion of the results in both experimental sets.

Table 1: Publish/Subscribe Results of Experimental Set 1

Publisher
Throughput

Subscriber
Throughput Latency

Test# Number of
Pubs/Subs/Topics

Message
Size (Byte)

Subscription Type &
Delivery Mode

Wireline Wireless Wireline Wireless Wireline Wireless

Test 01 1 / 1 / 1 100 DURABLE / PERSISTENT 49.4 27.9 49.4 27.9 3.4 143.1

Test 02 1 / 1 / 1 5120 DURABLE / PERSISTENT 49.3 7.6 49.3 7.6 5.3 365.3

Test 03 1 / 1 / 1 100 NON_DUR / NON_PERS 49.9 27.7 49.9 27.6 0.5 111.2

Test 04 1 / 1 / 1 5120 NON_DUR / NON_PERS 49.8 7.6 49.8 7.6 1.7 318.6

Test 05 50 / 50 / 50 100 DURABLE / PERSISTENT 148.2 96.8 78.4 55.2 226388.0 137402.2

Test 06 50 / 50 / 50 5120 DURABLE / PERSISTENT 52.7 11.0 28.0 10.9 165571.8 14848.1

Test 07 50 / 50 / 50 100 NON_DUR / NON_PERS 2481.4 110.7 2480.1 107.7 3.9 10640.7

Test 08 50 / 50 / 50 5120 NON_DUR / NON_PERS 1879.8 11.3 1879.2 11.0 13.5 13685.5

Test 09 200 / 200 / 200 100 DURABLE / PERSISTENT 119.1 89.1 59.8 45.7 209588.9 218178.4

Test 10 200 / 200 / 200 5120 DURABLE / PERSISTENT 56.5 13.4 29.5 12.4 218677.0 55460.3

Test 11 200 / 200 / 200 100 NON_DUR / NON_PERS 3363.2 114.2 3362.0 107.5 183.0 23648.6

Test 12 200 / 200 / 200 5120 NON_DUR / NON_PERS 1729.0 12.8 1725.4 12.8 213.8 52012.6

Test 13 400 / 400 / 400 100 DURABLE / PERSISTENT 131.4 83.6 65.7 44.6 260629.8 268192.3

Test 14 400 / 400 / 400 5120 DURABLE / PERSISTENT 58.9 15.0 30.6 14.1 251992.8 106196.6

Test 15 400 / 400 / 400 100 NON_DUR / NON_PERS 3249.2 130.7 3248.0 126.4 509.7 32827.3

Test 16 400 / 400 / 400 5120 NON_DUR / NON_PERS 1586.7 16.0 1586.7 15.1 469.3 102529.8

Test 17 1 / 50 / 1 100 DURABLE / PERSISTENT 7.7 3.5 382.9 176.7 2240.6 1834.1

Test 18 1 / 50 / 1 5120 DURABLE / PERSISTENT 7.3 0.4 363.4 19.6 3086.6 7074.3

Test 19 1 / 50 / 1 100 NON_DUR / NON_PERS 49.5 3.4 2472.8 171.8 3.3 622.9

Test 20 1 / 50 / 1 5120 NON_DUR / NON_PERS 25.4 0.4 1270.0 19.3 33.9 7233.0

Test 21 10 / 100 / 10 100 DURABLE / PERSISTENT 27.7 16.1 265.1 154.0 12668.3 15421.1

Test 22 10 / 100 / 10 5120 DURABLE / PERSISTENT 22.4 2.0 213.4 19.7 12871.3 18931.0

Test 23 10 / 100 / 10 100 NON_DUR / NON_PERS 491.3 17.3 4913.4 168.4 4.3 10729.6

Test 24 10 / 100 / 10 5120 NON_DUR / NON_PERS 207.8 2.0 2078.1 19.7 45.2 13344.4

Test 25 50 / 1 / 1 100 DURABLE / PERSISTENT 248.1 228.6 3.5 4.6 499811.9 411579.2

Test 26 50 / 1 / 1 5120 DURABLE / PERSISTENT 102.6 21.2 1.2 0.2 556062.0 564913.2

Test 27 50 / 1 / 1 100 NON_DUR / NON_PERS 2294.4 211.6 2214.8 4.5 12358.1 246694.9

Test 28 50 / 1 / 1 5120 NON_DUR / NON_PERS 77.5 20.7 22.6 0.2 489474.6 545201.9

Test 29 100 / 10 / 10 100 DURABLE / PERSISTENT 252.0 200.0 13.2 19.1 329637.3 361336.7

Test 30 100 / 10 / 10 5120 DURABLE / PERSISTENT 103.8 18.2 5.4 0.9 476159.3 396149.8

Test 31 100 / 10 / 10 100 NON_DUR / NON_PERS 2290.3 227.9 2107.6 22.6 36044.0 289654.5

Test 32 100 / 10 / 10 5120 NON_DUR / NON_PERS 204.5 18.3 152.3 1.0 152140.6 402138.6

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 14

5.1 Experiment Set 1: Effect of Subscription Types, Connection Loads, and Message Sizes.
Experiment set 1 consisted of 32 testing scenarios as shown in Table 1. It presents and
discusses the impact of three factors (durable and non-durable subscriptions, number of
connections, and message body sizes) on the performance. The test scenarios of this set
were varied in the number of publishers, subscribers, and topics. They also included two
types of subscriptions, durable and non-durable, which were configured to be used with
persistent and non-persistent messages respectively. In all figures of this set, we refer to
the publisher that sends messages to the durable and non-durable subscribers as publisher
(Durable) and publisher (Nondurable) respectively. For all messages, the message body
type and acknowledgement mode were held at fixed values: BytesMessage and AUTO,
whereas a message body size of 100bytes and 5Kbytes were used. To explore the impact
of different connection models, we have divided this set of experiments into three
different models (one-to-one, few-to-many, and many-to-few). In each model, a two
factor-at-a-time method is adopted to minimize the number of experiments and to
compare the effect of two parameters at a time on system performance. All of the models
were executed over wireline and emulated wireless environments. The following
subsections present and discuss the results achieved for each connection model.

5.1.1 One-to-One Model

In the one-to-one model, each publisher and subscriber inter-communicates via a single
pre-defined topic destination. This model helps us to achieve a direct comparison
between the publisher and subscriber throughputs. The first sixteen test scenarios shown
in Table 1 represent the one-to-one publish/subscribe model. Figure 8 shows the average
message throughputs as experienced by both subscriber and publisher clients at
increasingly higher number of connections in the system. Both graphs illustrate the
results obtained from test scenario 1, 3, 5, 7, 9, 11, 13, and 15 presented in Table 1.
Messages with a fixed size of 100bytes each were created and sent to all receivers. Since
each publisher and subscriber uses a separate connection, the number of connections in
any test scenario is twice the value of the x-axis. Therefore, our test scenarios included
results of 2 to 800 connections.

(a) Scenarios of Fixed Wireline Network

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 15

(b) Scenarios of Emulated Wireless Network

Figure 8: Publish/Subscribe One-to-One Model: 100 Byte Messages

We can see in Figure 8(a) that non-durable subscription is far outperforming durable
subscription. With a heavy load of connections (400×2), the average throughputs of non-
durable subscriptions was 50 times the one achieved by durable subscriptions. On the
other hand, at a relatively light load (1×2) the two subscription types achieved almost the
same throughputs. The non-durable and durable subscriptions reached their peak values
at 3361 and 78 msgs/sec respectively. The reason that durable subscription achieved
lower throughput can be attributed to the overhead of processing persistent messages.
Each received message gives rise to an overhead resulting in a significant drop in
throughput. By comparing the throughput of non-durable subscriptions with their
publishers, it is apparent that they achieved approximately similar results. This implies
that almost all of the produced messages were received by all consumers within the
measurement time window. By contrast, except for the test case 1, the throughput
achieved by publishers is over double the subscriber throughput for durable subscriptions.
As a result, more than 50% of the produced messages were received by subscribers after
the measurement time expiration. As the connection load rises, the throughput results hits
a knee point for both subscription types. The knee point of durable subscription occurs
when the number of concurrent connections exceeds (50×2). As for non-durable
subscription, the drop point appears after opening (200×2) connections. This gives some
idea about the limitation of connection load with each subscription type.

The results shown in Figure 8(b) follow a similar trend of the results in Figure 8(a).
However, the overall throughput has decreased in both subscription types, in particularly
by an order of magnitude for non-durable subscription. This is due to the wireless
channel characterizations, low bandwidth, high latency, and high error rate. Even with the
wireless scenario, non-durable subscription is still outperforming in most test cases.
Except for the test case 1 and 3, the throughput of non-durable subscriptions is twice that
of durable subscriptions. This difference is much less than what we saw in the wireline

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 16

scenarios. The reason is that the network link becomes the bottleneck region, thereby
reducing the load on the message provider. Therefore, the results of both subscriptions
become much closer. Interestingly, we have not seen a knee point in the scaling curve
shown in Figure 8(b) for non-durable subscription as the number of connections tops
(400×2). By contrast, the peak value for durable subscription reached 55 msgs/sec with
(50×2) connections, the throughput results gradually degraded beyond this number of
connections. It can be noted that there is a small difference between the throughput
results of non-durable subscribers and their publishers, whereas the throughput results of
publishers exceeded the corresponded durable subscriptions by at least a factor of 1.7.
This indicates that a large percentage of messages arrived at the subscribers after the
measurement time expiration.

(a) Scenarios of Fixed Wireline Network

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 17

(b) Scenarios of Emulated Wireless Network

Figure 9: Publish/Subscribe One-to-one Model: 5KByte Messages

The results in Figure 9 correspond to the test cases 2, 4, 6, 8, 10, 12, 14, and 16 presented
in Table 1. In these cases, we have increased the message body size to 5Kbytes in order
to study the impact of message size on performance. Compared to 100bytes scenarios
depicted in Figure 8, the throughput results of both non-durable and durable subscriptions
tend to decrease with increasing message size. This is due to the fact that large messages
require a considerable amount of time for processing and delivery during which the
publisher remains idle until the delivered messages are acknowledged. As a result, fewer
messages can be produced with a substantial end-to-end delivery time. Test results shown
in Figure 9(a) indicate that non-durable subscription consistently achieves higher
throughput than durable subscription, yielding better performance results. At the most
pronounced case, non-durable subscription peaks at 1879 msgs/sec which is over 35
times faster than durable subscription. Almost identical throughput results were achieved
by non-durable subscriptions and their publishers. This indicates that the service time of
the message provider is relatively small due to the lower publication rate.

On the other hand, the throughput results of publishers in the durable scenarios exceeded
that of durable subscriptions by at least a factor of 1.8. This is more likely because of the
overhead introduced by processing persistent messages. In comparison with the results in
Figure 8(a), we notice a more pronounced knee in the scaling curve shown in Figure 9(a)
as the number of connections increases. The non-durable subscription hit its knee point at
a value of (50×2) connections, whereas the knee point of durable subscription occurred
just after a value of (1×2) connections.

From Figure 9(b), we clearly see the impact of message size and network characterization
on performance in comparison with the results in Figure 8(b) and 9(a). The throughput
results were severely diminished. The durable and non-durable subscriptions as well as
their publishers approximately achieved similar throughput results. This might be a good

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 18

example for communication-bound system, where the message size and/or latency are
large but the service time is small. The scaling curve in Figure 9(b) shows a linear
relationship between the number of connections and the achieved throughputs. The peak
values of durable and non-durable subscriptions are 14 and 15 msgs/sec respectively.
Almost all the produced messages reached the consumers side. There was little affect on
performance by opening up to (400×2) concurrent connections.

In Table 1, we listed the end-to-end latency in elapsed milliseconds for the first sixteen
scenarios. We have defined message latency as the difference between the time a
publisher sends a message and the time a subscriber receives it. The latency results of the
scenarios presented in Figure 8 and 9(a) show that non-durable subscription experienced
much lower latency than durable subscription. This is because of the extra overhead
involved with durable subscription to provide a higher reliability. On the other hand, both
durable and non-durable subscriptions experienced roughly similar latency results in the
scenarios illustrated in Figure 9(b). This is due to the effect of message size and wireless
network characterization; thereby both subscriptions achieved similar throughput results.
It also should be noted that opening more connections causes a substantial increase in
latency for all one-to-one test scenarios. This behavior is an outcome of the overhead
introduced at higher number of connections. Large messages may increase the latency by
an order of magnitude since they incur a longer time to process them. This is explained
further with the latency results reflected by the scenarios in Figure 9. These results show
a noticeable rise in the latency with a message size of 5Kbytes. We note that the latency
results of non-durable subscription in wireless scenarios were significantly increased in
comparison to ones in fixed wireline scenarios. A large portion of message latency was
experienced during message transmission due to the low bandwidth offered by the
wireless environment. This moves the bottleneck region to the wireless link and hence
small service times are provided by message server. To some extent, this can benefit
durable subscription where an extra overhead is introduced to process persistent
messages. On the other hand, it affects the performance of non-durable subscription since
the transmission delay is increased but the same service times are required to process
messages.

5.1.2 Few-to-Many Model

The few-to-many model presents the scenarios where there are fewer senders and many
receivers attached to a particular topic destination. All messages delivered to that topic
will be distributed to all receivers registered to that topic. The few-to-many model
corresponds to the test cases 17 to 24 shown in Table 1. Figure 10 presents the achieved
results in these cases as experienced by both subscription types and their publisher clients
with small and large message size. The results of durable subscriptions, nondurable
subscriptions, and their publishers are illustrated from left to right in each category of the
bar chart. The first two sets of results are for 100bytes messages whereas the last two sets
are for 5Kbytes messages.

From Figure 10(a), we can see that non-durable subscription outperforms durable
subscription by 6 to 18 times in the case of 100bytes message size. By doubling the
number of subscribers and increasing the number of publishers and topics by 10 times,
the throughput result of non-durable subscription increased by almost a factor of 2. By
contrast, an inferior throughput was achieved in the durable subscription scenarios when

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 19

the number of subscriber/publisher clients and topics were increased. This is most likely
because the overhead of processing persistent messages has increased. Each topic needs
to store its messages persistently and updates its information table at the time of receiving
a subscriber’s acknowledgement. Similar results are held for both subscription types with
a large message size of 5Kbytes. However, the overall throughput is decreased by almost
50% compared to the case of 100bytes message size. We can note that for either message
length (100bytes or 5Kbytes) non-durable subscription achieved higher throughput
results.

In Figure 10(b), we note that both subscription types achieved approximately similar
throughput results. These results are much less than what was demonstrated in Figure
10(a). This is again due to the wireless channel characterization. It is apparent that
increasing message length to 5Kbytes impacted the system performance. The overall
throughput was decreased by more than 50% for both subscription types. On the other
hand, increasing the number of subscriber/publisher clients and topics had little impact on
the throughput results for both subscription types in the two cases of message sizes.

(a) Scenarios of Fixed Wireline Network

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 20

(b) Scenarios of Emulated Wireless Network

Figure 10: Publish/subscribe Few-to-Many Model

The end-to-end latency for the few-to-many model (test scenarios 17 to 24) is presented
in Table 1. For the scenarios presented in Figure 10(a), durable subscription experienced
much higher latency in comparison with nondurable subscription. This is mainly due to
the extra overhead for processing persistent messages. Interestingly, message latency
forms a linear relationship with the number of opening connections in both message size
cases: 100bytes and 5Kbytes. Compared to durable subscription, there was a less
noticeable increase in latency for non-durable subscription when the number of
connections increased. With a large message size of 5Kbytes, the latency increased by a
factor of 1.2 to 10. This is because large messages require longer processing and
transmission time.

The level of latency for the wireless scenarios illustrated in Figure 10(b) was higher than
the one in the fixed network scenarios presented in Figure 10(a). This is due to wireless
network limitations. We note again that the latency results of non-durable subscription
were significantly increased due to the same reasons explained previously. With a larger
message size of 5Kbytes, the message latency increased by a factor of 1.2 to 11.6. This
confirms that message size can greatly affect the system performance.

5.1.3 Many-to-Few Model

The many-to-few model presents an opposite interaction approach from the one presented
in the previous subsection. Here, the number of receivers is fewer than the number of
senders attached to the same topic destination. The test scenarios of this model allow us
to investigate the flow-control behavior of the message server. This refers to the broker’s
capability for handling messages when its topics are filling or filled to capacity. The
scenarios of the many-to-few model are presented in the test cases 25 to 32 of Table 1.
Figure 11 demonstrates the throughput results for both subscription types as well as their
publisher clients with the two cases of message size: 100bytes and 5Kbytes.

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 21

From Figure 11(a), we can see that durable subscription achieved lower throughput
results in all cases compared to non-durable subscription. By contrast, under the flow-
control conditions, non-durable subscription as well as their publisher clients reached
impressive throughput results with 100bytes and 5Kbytes message sizes. It is apparent
that a large message size severely reduced message throughputs. The throughput results
of non-durable subscription and their publisher clients are relatively close. This indicates
that non-durable subscription was slightly affected by the flow-control behavior.
However, there is a dramatic difference between the throughput results achieved by
durable subscriptions and their publishers. It can be noted that there was a slight gain in
the throughput as the number of publishers increased by a factor of 2. We suspect that
this behavior is a result of the flow-control mechanism used by the message server.

The graph shown in Figure 11(b) indicates that both subscription types approximately
achieved similar throughput results in our emulated wireless scenarios. This also applies
to the publisher clients. Compared to the scenarios in Figure 11(a), the publishers’
throughputs are higher than the subscribers’ throughputs in all cases. This implies that
consumers are slow in draining messages out of the topic. This is due to the flow-control
behavior overhead. By default, the JMS broker tends to return a JMSException to a
publisher when an attempt to send a message to a full topic destination is made. This
requires the publisher to catch the exception and attempt to resend the message. Hence,
the publisher keeps trying until a successful attempt occurred. This introduces an extra
overhead to the broker since it has to deal with all unsuccessful attempts. There is a
possibility to decrease this overhead by configuring the broker to block the publisher
until becomes ready to process the messages. However, this is not the default behavior of
the broker. With the scenarios of 5Kbytes message-sized, the throughput results were
degraded by more than 50%. We can see that there was much gain in the throughput as
the number of subscribers, topics, and publishers increased by a factor of 10, 10, and 2
respectively. This is because we have more topics to fill, thereby reducing the overhead
of flow-control.

(a) Scenarios of Fixed Wireline Network

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 22

(b) Scenarios of Emulated Wireless Network

Figure 11: Publish/Subscribe Many-to-Few Model

Table 1 presents the results of message latency of the many-to-few model for both
durable and non-durable subscription types. In both network scenarios, durable
subscription experienced a large amount of latency in comparison with non-durable
subscription. Compared to the scenarios of the few-to-many model, we observed a much
more pronounced increase in latency for both subscription types. This is mainly because
of the flow-control behavior. We note that 5Kbytes of message length increased the
latency by a factor of 1.1 to 39.5 in the scenarios of fixed wireline network. Similarly in
the wireless network scenarios, the message size of 5Kbytes relatively increased the
latency by a factor of 1.1 to 2.2. In most cases, adding more publishers, topics, and
subscribers results in reducing the message latency. This is a result of using more topics
to minimize the behavior of flow-control. We note that the latency of all non-durable
subscriptions running over a wireless environment was increased by a large order of
magnitude. On the other hand, a relative increase in the latency was experienced by all
durable subscriptions as they run over wireless environment. This is because of the same
reason as explained in Subsection 5.1.1.

5.2 Experiment Set 2: Effect of Acknowledgement Modes, Delivery Modes, Message
Filtration, and Message Body Types.

Experiment set 2 demonstrates and discusses the affect of four factors on performance.
These factors are as follows: acknowledgement modes, delivery modes, message
selectors, and message body types. The experimental set consisted of 18 testing scenarios
as presented in Table 2. In each test case, we used a single publisher, subscriber, and
topic destination. We consistently varied the acknowledgement (AUTO and DUPS_OK)
and delivery (PERSISTENT and NON-PERSISTENT) modes as well as the subscription
types, durable and non-durable. We also introduced the notion of message selectors to
receive a specific set of messages. For simplicity, we used only two types of message
bodies (BytesMessage and ObjectMessage) to explore the impact of simple and complex

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 23

data formats on performance. In all the test scenarios, we fixed the message size to
2Kbytes. We also run all the scenarios over fixed wireline and emulated wireless
environments. Next we present and discuss the achieved results of some tested scenarios
due to the space limitation. For a complete list of results, readers are referred to Table 2.

Table 2: Publish/Subscribe Results of Experimental Set 2

Publishers
Throughput

Subscriber
Throughput Latency

Test# Subscription Type &
Delivery Mode

ACK
Mode Selector

Wireline Wireless Wireline Wireless Wireline Wireless

BytesMessage Body Type

Test 01 DURABLE / PERSISTENT DUPS_OK NO 102.29 14.28 47.31 14.28 116653.46 136.29

Test 02 DURABLE / PERSISTENT AUTO NO 113.03 13.99 59.44 13.99 141056.05 542.48

Test 03 DURABLE / NON_ PERS DUPS_OK NO 122.06 13.95 58.86 13.94 162888.40 144.71

Test 04 DURABLE / NON_ PERS AUTO NO 122.78 14.15 70.81 14.15 140999.99 512.43

Test 05 NON_DUR / PERSISTENT DUPS_OK NO 799.65 14.49 799.63 14.48 2.13 124.26

Test 06 NON_DUR / PERSISTENT AUTO NO 777.23 14.29 777.21 14.26 1.33 455.19

Test 07 NON_DUR / NON_ PERS DUPS_OK NO 802.07 14.26 802.06 14.26 1.73 119.53

Test 08 NON_DUR / NON_ PERS AUTO NO 786.69 14.43 786.68 14.42 1.37 473.25

Test 09 DURABLE / PERSISTENT DUPS_OK YES 871.07 18.67 86.56 1.91 6.38 107.21

Test 10 DURABLE / PERSISTENT AUTO YES 873.54 18.50 87.87 1.76 6.55 109.08

Test 11 DURABLE / NON_ PERS DUPS_OK YES 871.99 18.87 87.32 1.90 6.34 107.11

Test 12 DURABLE / NON_ PERS AUTO YES 880.04 18.90 87.81 1.86 6.29 124.76

Test 13 NON_DUR / PERSISTENT DUPS_OK YES 1228.76 18.65 122.35 1.80 1.25 97.12

Test 14 NON_DUR / PERSISTENT AUTO YES 1227.51 18.66 123.35 1.85 1.25 101.54

Test 15 NON_DUR / NON_ PERS DUPS_OK YES 1227.28 18.47 123.78 1.87 1.25 95.57

Test 16 NON_DUR / NON_ PERS AUTO YES 1226.11 18.55 123.32 1.93 1.25 98.15

ObjectMessage Body Type

Test 17 DURABLE / PERSISTENT AUTO NO 467.33 14.27 46731 14.27 1.75 444.90

Test 18 NON_DUR / PERSISTENT AUTO NO 105.78 13.77 57.19 13.76 142271.55 537.01

Figure 12 illustrates the throughput results of sending 2Kbytes persistent and non-
persistent messages with no selectors to a topic destination. In both graphs, the left and
right bars in each category present the results of the two delivery modes. Meanwhile, the
bars on the left and right categories respectively illustrate the results of AUTO and
DUPS-OK acknowledgment modes. These results correspond to the test cases 1 to 4
presented in Table 2.

From Figure 12(a) we note that non-persistent messages relatively achieved higher
throughput results than persistent messages with both types of acknowledgement mode.
This is due to the overhead required for storing messages persistently. It was noted that
AUTO acknowledgement in both delivery modes achieved slightly better results than the
ones achieved by DUPS-OK acknowledgement. We believe that the reason behind this is
the behavior of DUPS-OK mode. This mode instructs the system to acknowledge
messages in a lazy manner that most likely leads to the delivery of some duplicated
messages. It can be noted that more than 40% of the produced messages arrived after the
test time expiration. This is due to the overhead cost introduced by durable subscription.

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 24

The throughput results in Figure 12(b) are much lower than the results presented in
Figure 12(a). This is due the impact of the wireless network characterization. Figure
12(b) shows that approximately both delivery and acknowledgement modes achieved
similar results. This is most likely because the bandwidth becomes the bottleneck point in
the system. We observed that less message latency was experienced compared to the
scenarios presented in Figure 12(a). This is again because the overhead on the message
server is much less than what it was in the scenarios shown in Figure 12(a). Thus, most of
the produced messages were consumed before the measurement time expiration.

(a) Scenarios of Fixed Wireline Network

(b) Scenarios of Emulated Wireless Network

Figure 12: Durable Publish/Subscriber One-to-One Model: 2KByte Messages

Test cases 9 to 16 presented in Table 2 illustrate the throughput results when the message
selector is introduced. For simplicity, we have assigned a single selector value ranging

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 25

from 0 to 99 to each produced message. The selector values were randomly generated
with uniform distribution by the publisher. The subscriber registers to receive messages
within a specific selector range. The range values were also randomly chosen to be 1/5th
of the total range. Even though this is a simple way of using selectors, it is sufficient to
illustrate the impact on performance. Figure 13 demonstrates a sample of the achieved
throughput results that correspond to the test case 6 and 14 shown in Table 2. In these test
cases, the values of message size, delivery mode, and acknowledgement mode were fixed
to 2Kbytes, PERSISTENT, and AUTO respectively. Nondurable subscription with a
particular selector value was used to receive messages that match its selector value. From
the figure, it is obvious that using message selector has degraded the throughput of the
nondurable subscription running on both network environments. As expected, the
overhead of processing message filtration adds extra load on the broker, thereby
decreasing performance.

Figure 13: The Impact of Message Selectors on Performance: Nondurable Subscriber, Persistent Messages,

and Auto Acknowledgement Mode

The last two test cases shown in Table 2 demonstrate the throughput results of using
ObjectMessage as a message body type. In these cases, we fixed the values of message
size to 2Kbytes, delivery mode to PERSISTENT, and acknowledgement mode to AUTO.
Figure 14 illustrates the throughput results of BytesMessage body type (test case 6) and
ObjectMessage body type (test case 17). A nondurable subscriber was used to consume
these types of messages. It can be noted from the figure that ObjectMessage has achieved
lower throughput than BytesMessage in the wireline environment. This is due to the
overhead cost of ObjectMessage serialization and deserialization. As expected, both
message body types approximately achieved similar throughput results in the wireless
environment. The reason is that the network link becomes the bottleneck region, thereby
reducing the load on the broker.

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 26

Figure 14: The Impact of Message Body Types on Performance: Nondurable Subscriber, Persistent

Messages, and Auto Acknowledgement Mode

6 Discussion and Insights into System Behaviour
The experimental results shed some light on a number of performance scenarios of a
publish/subscribe middleware system that is based on JMS technology. These results
provide insights into the system behavior and performance that can be valuable to the
system designers and users. We briefly discuss some of these observations in this section.

The nondurable subscription is observed to achieve a better performance results in most
situations. However, in wireless environments where the available bandwidth is low and
the transmission delay is large the performance of nondurable subscription seems to be
severely affected: for different experimental tests the nondurable subscriptions were
observed to perform comparably with the durable subscriptions. The publication rate
relatively depends on the transmission delay among nodes running the publisher and the
broker. This occurs because a publisher sends a message to a broker and then gets
blocked until it receives an acknowledgement for the message delivery. Thus a large
delay reduces the number of messages that can be generated by the publisher and
decreases the load on the broker. This may benefit the durable subscription where the
overhead of message storing is involved. By contrast, the performance results show that
the nondurable subscription is greatly affected in low bandwidth environments.

It was observed that a small number of messages arrived after the test time expiration in
most experiments of nondurable subscriptions. This mainly occurs because nondurable
subscription imposes a low overhead on the broker to forward the published messages
even with a large number of subscribers. The situation of durable subscriptions is
different as the overhead cost of message processing is high. Due to this a significant
number of messages were received after the test time expiration. It was interesting to
notice that large messages delivered over the wireless channel arrived within the test time

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 27

duration. This most likely happened because the wireless link becomes the bottleneck
region, thereby reducing the load on the broker.

It was noticed that large message sizes have a great impact on the performance of durable
and nondurable subscriptions in the experiments we have conducted. Although
nondurable subscriptions demonstrate better performance results with small and large
messages, they tend to be more sensitive to the large messages than durable
subscriptions. The throughput ratio between the small and large messages for both
subscription types shows that nondurable subscriptions achieved a higher ratio in most
test scenarios. Large message sizes require a long time to be transmitted and hence
decrease the publication rate as stated previously. This will reduce the load on the
message provider and improve its service time. As a result, this may benefit durable
subscriptions as they incur a large service time compared to nondurable subscriptions. On
the other hand, nondurable subscriptions do not gain a significant performance benefit as
the condition and the characteristic of network link seem to considerably influence their
behavior. This can be clearly seen in the wireless scenarios with large messages where
both subscription types achieved approximately similar throughput results.

By varying the number of interacted subscribers and publishers, we noted that durable
subscriptions performed poorly as the number of durable subscribers and/or publishers
was increased. The throughput results of the one-to-one model for example show that
durable subscriptions reached the breakpoint at a low number of clients. Similarly, in the
few-to-many model, the performance of durable subscriptions was affected as the number
of subscribers doubled. Moreover, durable subscriptions achieved very poor results as the
number of publishers in many-to-few model was increased. This expected behavior is an
outcome of the excessive load on the broker incurred at higher number of durable
subscribers and/or publishers. This load is a function of the total number of clients
associated with the broker. The load includes storing and forwarding messages as well as
receiving acknowledgements and removing messages from a local storage. As a result,
durable subscriptions perform considerably poor as the message provider becomes the
bottleneck region.

Message selector is one of the JMS features that allow subscribers to receive a certain set
of messages. As expected, applying this feature can greatly affect the performance of
durable and nondurable subscriptions. This is because message selectors add extra
overhead on the broker as it has to match all messages against the provided selectors. By
increasing the numbers of subscriber we can expect system performance to be severely
diminished. Selectors may benefit durable subscriptions since the broker stores only the
messages that match the selectors, thereby decreasing the storing load. On the other hand,
they may influence the performance of nondurable subscriptions as selectors add an
additional load without any compromising. This can be seen from the results shown in
Table 2.

This paper has focused on the evaluation of different application design factors. The
appropriate choice of the investigated factors is beyond the scope of this paper. These
factors should be chosen in such a way that it suits applications needs. There is always a
tradeoff between reliability and system performance. Parameters that provide high
reliability tend to negatively affect system performance.

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 28

7 Conclusions
The popularity of publish/subscribe systems that combine the advantages of Java
Message Services (JMS) technology with the support of distributed applications is rising.
The publish/subscribe systems support many features that facilitate their deployments
over wireless environments. However, much work still needs to be done to make these
systems achieve high reliability and performance in such environments. In this paper we
have described our performance evaluations of a distributed publish/subscribe system
deployed over wireline and wireless networks. For now, we have narrowed our
evaluation to multiple clients and a single message provider without any mobility. The
main goal of our analysis is to investigate the impact of different factors on performance.
We achieved this goal by using two different experimental sets that investigated various
combinations of parameters.

The first set of experiments focused on measuring the impact of three factors:
subscription types, connection loads, and message sizes. A total of 32 test scenarios were
conducted to study the behavior of these factors under wireline and wireless
environments. Results of the experiments show that nondurable subscriptions
outperformed durable subscriptions in most situations. This occurs because nondurable
subscriptions incur a small overhead on the broker since they provide low reliability. By
increasing the number of connections the performance of both subscription types was
severely affected due to the higher overhead cost involved. Similarly, increasing message
sizes impact the system performance as they require longer time to be processed.

The second set of the experiments looked at the impact of the following factors: delivery
and acknowledgement mode as well as message selectors and message body types. A
total of 18 test scenarios were performed to investigate the behavior of these factors over
wireline and wireless environments. Our experiments reveal that persistent messages add
extra overhead on the broker as they need to be stored and removed from a local storage.
Therefore, persistent messages affect system performance but provide higher reliability.
We were not able to observe a considerable impact on performance from our study for
two different acknowledgement modes: AUTO and DUPS_OK. However, we expect that
AUTO mode has some influence on performance since it provides higher reliability. It
was observed that using message selectors introduces extra overhead cost that can affect
performance. This overhead is a result of matching each message against all selectors.
There are five types of message body that can be in simple or complex formats. Simple
message bodies introduce lower overhead than the complex ones. Hence, they achieve
higher performance results as it is shown in Table 2. Therefore, message bodies should be
selected carefully as they may impact the performance.

This paper illustrates our evaluation study of a publish/subscribe middleware system and
provides a number of insights into the relationship between various workload parameters
and performance. This work is part of our study of publish/subscribe middleware and a
primary step in considering the suitability of these systems in mobile wireless domains.
Further performance investigations are still need to be done when user mobility is
introduced. In continuing work, we wish to develop a service that supports user mobility
in a seamless fashion and evaluate its performance.

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 29

8 References
[1] Abdulbaset Gaddah and Thomas Kunz, ‘Does Modern Middleware Address Mobile
Computing Requirements?’, in Proceedings of the 8th World Multi-Conference on
Systemics, Cybernetics and Informatics, Orlando, USA, Vol. 5, pp. 493-499, July 2004.

[2] A. Carzaniga and A. L. Wolf, ‘Content-based networking: A New Communication
Infrastructure’, In NSF Workshop on an Infrastructure for Mobile and Wireless Systems,
Number 2536 in Lecture Notes in Computer Science, pp. 59-68, Scottsdale, Arizona,
October 2001. Springer-Verlag.

[3] M.K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley and T. D. Chandra, ‘Matching
Events in a Content-Based Subscription System’, in Proceedings of the 18 th ACM
Symposium on Principles of Distributed Computing (PODC'99), Atlanta, GA, May 1999,
pp. 53-61.

[4] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom and D. C.
Sturman, ‘An Efficient Multicast Protocol for Content-based Publish/Subscribe Systems’,
in Proceedings of the 19th IEEE International Conference on Distributed Computing
Systems (ICDCS'99), Austin, TX, May 1999, pp. 262-272.

[5] L. Opyrchal, M. Astley, J. S. Auerbach, G. Banavar, R. E. Strom and D. C. Sturman,
‘Exploiting IP Multicast in Content-Based Publish/Subscribe Systems’, in Proceedings of
1FIP/ACM International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware 2000), New York, NY, April 2000, pp. 185-207.

[6] Y. Zhao and R. Strom, ‘Exploiting Event Stream Interpretation in Publish/Subscribe
Systems’, in Proceedings of the 20th ACM Symposium on Principles of Distributed
Computing (PODC 2001), Newport, RI, August 2001, pp. 219-228.

[7] B. Segall and D. Arnold, ‘Elvin has Left the Building: A Publish/Subscribe
Notification Service with Quenching’, in Proceedings of AUUG97 Conference, Brisbane,
Australia, September 1997, pp. 243-255.

[8] G. Cugola, E. Di Nitto and A. Fuggetta, ‘The JEDI Event-Based Infrastructure and its
Application to the Development of the OPSS WFMS’, IEEE Transactions on Software
Engineering, Vol. 27, No. 9, September 2001, pp. 827–850.

[9] Sun Microsystems, ‘Java Message Service (JMS) API Specification’,
http://java.sun.com/products/jms

[10] Sun Microsystems, ‘Java Message Service (JMS) Tutorial’, Tutorial. Available from
http://java.sun.com/products/jms/tutorial/index.html

[11] Exolab Group, OpenJMS, http://openjms.sourceforge.net/license.html

[12] Object Web, Joram, http://www.objectweb.org/joram

Carleton University, Systems and Computer Engineering, Technical Report SCE-05-14, August 2005

 30

[13] Fiorano Software Inc., FioranoMQ, http://www.fiorano.com/products/fmq

[14] JBoss Group, JBoss, http://www.jboss.org.

[15] Sun Microsystems, Java System Message Queue (JavaSMQ),
http://www.sun.com/software/products/message_queue

[16] National Institute of Standards and Technology, NIST Network Emulation Tool,
http://snad.ncsl.nist.gov/itg/nistnet/index.html

