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Abstract

In this work, we explore different aspects and steps of building a joint network coding

and scheduling solution for wireless multihop networks. Network coding allows transmis-

sion networks to combine data at intermediate network nodes. In contrast to routing, where

nodes only relay and replicate data in network nodes, network coding provides an opportu-

nity to improve a performance measure of interest like the throughput or the transmission

energy.

The focus of this work is on formulating a joint linear optimization problem for wireless

networks. The optimization problem is formulated on a wired graph that represents the

wireless graph, allowing us to apply known code-design techniques for wired networks. We

also study network codes design methods for the equivalent wired graph which satisfy two

constraints: wireless broadcast links have to transmit the same (coded) information, and

the transfer of codes from the wired back to the wireless domain has to correctly deal with

scheduling sets with unequal timeshares. Furthermore, we compare the performance and

run-time complexities of the two most well-known interference models in wireless networks,

physical model and protocol model, for scheduling transmissions. The performance of the

protocol model is very close to that of the physical model in throughput maximization prob-

lems, while its run-time complexity is significantly lower. Therefore, the protocol model can

be used in those problems without loss of the performance. In minimum energy problems

however, the run-time complexities of the two model are not very different and the perfor-

mance of the protocol model is worse than that of the physical model. Therefore, using

the physical model is a better choice when studying the minimum energy problem. Finally,

we propose a new scheduling heuristic that outperforms the existing heuristics for networks

with central schedulers. Our new scheduling method, capacity-bundling scheduling, builds

scheduling sets based on their link capacities, which results in improved throughput in

throughput maximization problems and energy savings in energy minimization problems.

Our results show that this improvement is up to about 80% for the throughput, and about

55% for the energy consumption in the scenarios simulated in this work.
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Chapter 1

Introduction

During the past decade, network coding has become the focus of many research groups

in communications and computer networks fields. Starting with the pioneering work of

Ahlswede et al. [1], network coding is currently well established for wired networks. Much

of the research in this area is devoted to a) finding the optimal performance of a network

under a certain criterion, where the network nodes are capable of performing coding opera-

tions, and b) constructing a network coding solution that achieves the optimal performance.

Although these two aspects of network coding are studied in detail for wired networks, they

can not be directly applied to wireless networks. Unique properties of the wireless networks

such as broadcast media and the possibility of having interferences or collisions among con-

current transmissions result in additional complexities in both determining the achievable

throughput and designing network codes. One important consequence is that network cod-

ing does not necessarily result in an improvement in the performance measure of interest like

throughput or energy, if Media Access Control (MAC) and network coding are designed in-

dependently. This has been demonstrated in [2] for the throughput maximization problem,

where the authors compare independent and joint designs of network coding and MAC. It

is therefore important to create a joint optimization framework for the access to the shared

media and network coding in wireless networks. The following three steps would be needed

in such a framework:

1. Scheduling: Constructing a set of realizations for the wireless network.
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2. Optimization: Solving a joint optimization problem based on the realizations to obtain

the transmission flows and the timeshares in which realizations should be active and

transmitting.

3. Coding: Constructing network codes that can achieve the optimal performance pre-

dicted by the solution to the optimization problem.

1.1 Research Motivations and Contributions

It is shown that the general problem of scheduling for multi-hop wireless networks is NP-

hard, [3]- [5]. As a result many researchers fall back on heuristics to schedule transmission

in these networks [9], [10]. In our work, we investigate each of the three mentioned steps

towards jointly solving the scheduling and network coding problem in wireless networks.

1.1.1 Formulating a Joint Linear Optimization Problem

The joint design of MAC scheduling and network coding has been the subject of much

recent research, see, e.g., [6], [7], [8] , [9], and [10]. The formulations of [6], and [8] are

linear but the link flows that result from solving the optimization problem are the total

flows during the whole set of timeshares (one working cycle of the network). In general,

such flows can not be used for coding purposes, because we need to know the exact share

of each link flows in each timeshare. If a link is a member of more than one realization,

then the assignment of flows to different schedules corresponding to those realizations is not

specified. In [9] and [10], this issue is resolved by formulating the problem as a nonlinear

and mixed-integer problem. Such a problem in general is complex to solve. In our work,

we formulate a linear optimization problem that results in schedule-specific flows that can

be readily used for coding purposes. Our formulation can be easily applied to different

performance criteria of interest. In our work, we performed simulations to maximize the

throughput or to minimize the energy in wireless networks.
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1.1.2 Unequal Scheduling Timeshares and Network Code Design Re-

quirements for Wireless Networks

According to our study, the problem of having unequal scheduling timeshares is not ad-

dressed in designing network codes for wireless networks. Therefore, we first study the

importance of enabling the code design approach to deal with unequal timeshares and then

present requirements of the code construction algorithms for wireless networks to capture

both the broadcast property of these networks and design proper codes when timeshares

are unequal. Our simulations of the significance of considering unequal timeshares show

that the throughput can be improved by about 35% in maximum flow problems and energy

savings are between 13% and 30%, depending on the network size, in minimum energy

problems.

1.1.3 Performance Comparison of Physical and Protocol Interference Mod-

els in Joint Scheduling and Network Coding Optimization Problems

There are two commonly used interference models in wireless networks. They are the phys-

ical model, also known as the SINR (Signal to Interference plus Noise Ratio) model and the

protocol model. The physical model is an elaborate yet computationally complex interfer-

ence model whose application becomes even more complicated when it is used to schedule

feasible wireless transmissions (through iterative approaches) in a network. The protocol

model, on the other hand, is a simplified interference model that does not consider the wire-

less interferences at the physical level and hence decreases the computational complexity

at the expense of possibly not having an achievable solution in actual wireless settings. In

our work, we compare the joint scheduling and network coding throughput/energy optimal

solutions of networks that employ a set of embedded M-ary Quadrature Amplitude Mod-

ulation (MQAM) signal constellations for transmission and use either of the two models

as their interference model. Our simulation results show that the performance of the pro-

tocol model and the physical model are very close in throughput maximization problems,

while the run-time complexity of the protocol model is significantly lower. Therefore, the
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protocol model can be used to study those problems without sacrificing predicted perfor-

mance gains. In the minimum energy problem however, the run-time complexities of the

two models are quite close and the performance of the protocol model is inferior to that of

the physical model. Therefore, we conclude that the physical model is still the best choice

when studying the energy problem.

1.1.4 Capacity-bundling Scheduling: An Improved MAC Scheme for Joint

Scheduling and Network Coding in Wireless Networks

As we explained before, the scheduling problem in general is an NP-hard problem. Therefore

if heuristics are used to schedule wireless transmissions, the outcome of the optimization

problems based on a sub-optimal scheduling depends on the selected set of realizations. To

the best of our knowledge, there is no prior work on using the link capacities as a criterion

for such a selection. The existing heuristics are agnostic of link properties, our proposed

heuristic improves on that by considering one important link property, its capacity. In

this work, we propose a capacity-bundling scheduling heuristic, where links with similar

capacities are bundled together in one realization. We later demonstrate that using the

proposed scheduling heuristic, results in improved throughput in throughput maximization

problems and energy savings in energy minimization problems. Our results show that

this improvement is up to about 80% for the throughput, and about 55% for the energy

consumption in the scenarios simulated in this work.

1.2 Published and Submitted Work

The following list of published and submitted works summarizes the peer-reviewed papers

that appeared as a result of this work.

1.2.1 Published Journal Paper

• R. Niati, A. H. Banihashemi, and T. Kunz, “Throughput and Energy Optimization in

Wireless Networks: Joint MAC Scheduling and Network Coding,” IEEE Transactions
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on Vehicular Technology, Vol. 61, No. 3, Mar 2011, pp. 1372-1382.

1.2.2 Submitted Journal Paper

• R. Niati, T. Kunz, A. H. Banihashemi, “An Improved Multiple Access Control (MAC)

Scheme for Joint MAC Scheduling and Network Coding in Wireless Networks,” Sub-

mitted to IEEE/ACM Transactions on Networking, Feb. 2012.

1.2.3 Published Conference Papers

• R. Niati, T. Kunz, and A. H. Banihashemi, “The effect of transmission capacities on

interference-free scheduling in wireless networks”, Proceedings of the 9th Conference

on Communications Networks and Services Research (CNSR 2011), Ottawa, Canada,

May 2-5, 2011, pp. 257-262.

• R. Niati, A. H. Banihashemi, and T. Kunz, “Scheduling and Network Coding in

Wireless Multicast Networks: A Case for Unequal Time Shares,” Proceedings of IEEE

WCNC 2011, Quintana-Roo, Mexico, March 28-31, 2011, pp. 456-460.

• R. Niati, A. H. Banihashemi, and T. Kunz, “On Code Design in Joint MAC Schedul-

ing and Wireless Network Coding,” Proceedings of the 25th Biennial Symposium on

Communications, Queens University, Kingston, Canada, May 12-14, 2010, pp. 456-

460.

1.3 Organization

The rest of this document is organized as follows: Chapter 2 introduces the problem for-

mulation, network model and notations. Chapter 3 presents the linear joint optimization

problem for throughput and energy. Chapter 4 investigates the scheduling timeshares and

examines the result of a code design that is not capable of dealing with unequal timeshares.

We also specify network code design requirements in this chapter. In Chapter 5, we compare

the performance and run-time complexities of maximum rate or minimum energy problems
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when the interference model is either the physical model or the protocol model. In Chap-

ter 6, we propose “capacity-bundling scheduling” which is an improved scheduling method

for joint scheduling and network coding optimization problems. Through simulations we

show it outperforms a scheduling method whose scheduling criterion is based on considering

interferences only. Finally the document concludes in Chapter 7.
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Chapter 2

Problem Formulation

2.1 Network Coding and its Advantages in Wired and Wire-

less Networks

Network Coding started with the seminal paper of Ahlswede et al. [1] in 2000. In [1],

network coding is defined as “coding at a node in a network”. By coding, they mean an

arbitrary mapping from input information streams of a node to its outputs. They look

at specific networks consisting of nodes connected by error-free, point-to-point links. The

network model of Ahlswede et al. is a special case of those ordinarily studied in network

information theory, and as a result, essentially all wireline networks can be cast into their

model once the physical layer has been abstracted into error-free conduits for carrying bits.

From another perspective, network coding can be seen as coding above the physical layer.

This is unlike network information theory, which is generally concerned with coding at the

physical layer.

In general, network coding is superior to routing. In network coding, routers and

switches are replaced by devices called coders. Instead of directing the packets toward

their ultimate destination, like the traffic flow of vehicles in streets, the coders transmit

combinations of their incoming messages along multiple paths simultaneously. This distri-

bution method can increase the effective capacity of a network by minimizing the number

and severity of bottlenecks. When a receiver has enough message combinations, it can
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compute the intended message/packet. Even if some packets on some of the routes are lost

or corrupted, the original message gets through if there are enough coded packets available

at the receivers to retrieve the original message. Network coding can improve throughput,

robustness, complexity and security of transmission networks. Here we present an example

to show how the throughput is improved using network coding.

The most well-known advantage of using network coding is improving the throughput.

It is achieved by communicating more information with fewer packet transmissions. In

this way, packet transmissions are used more efficiently. The most famous example of

throughput efficiency is presented by Ahlswede et al. [1]. Their example, widely known as

the “butterfly network”, depicts a multicast session from one source node to two destination

nodes. This network is shown in Figure 2.1. Both of the destinations wish to receive all the

messages from the source node. The messages are in the form of packets and each packet

is a collection of bits. A capacity-achieving solution can be established only if one of the

intermediate nodes (i.e., a node that is neither source nor destination) performs a coding

operation. Node 3 in Figure 2.1 forms a new packet by taking the binary sum, or XOR, of

its two received packets, and outputs the resulting packet. Thus if the contents of the two

received packets are vectors b1 and b2, then the output packet is b1 ⊕ b2, formed by the

bitwise XOR of b1 and b2. The destinations decode by performing decoding operations

on the packets that they receive. Destination t1 recovers b2 by taking the XOR of b1 and

b1 ⊕ b2.

In routing, intermediate nodes are only allowed to forward copies of the received packets

on their outputs. Therefore, under routing, we could communicate, for example b1 and b2

to t1, but we would then only be able to communicate one of b1 or b2 to t2.
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Figure 2.1: The butterfly network

The main features that distinguish wireless from wireline networks are shared medium

and time variability. By increasing its transmission power, a wireless node will eventually

reach sufficient signal-to-noise ratio to be able to transmit to every node in the network, but

it will at the same time create significant interference to other nodes. Moreover, channels

may vary over time due to fading or node mobility. Finally, resources such as computational

power or battery life are often limited in wireless networks [14].

In a wireless environment, network coding can be used to offer benefits in terms of

battery life, wireless bandwidth, and delay. We describe this with an example in Figure

2.2. Consider a wireless ad hoc network in which nodes A and C would like to exchange

binary files x1 and x2. Node B is a relay node. Assuming half-duplex communication,

each node can either transmit or receive at any timeslot. Figure 2.2 shows the approach

with routing and network coding. The network coding approach takes advantage of the

natural capability of wireless channels to broadcast and gives benefits in terms of resource

utilization. Node C receives both x1 and x2, bitwise XORs them to create x1 ⊕ x2 and

broadcasts the result to both receivers using one transmission. Node A has x1 and thus can

decode x2. Node C has x2 and therefore can decode x1 [15], [16].

This example shows benefits in terms of energy efficiency (node B transmits once instead

of twice), delay (the transmission is concluded in 3 transmissions instead of 4), wireless
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bandwidth (the wireless channel is occupied for a smaller amount of time), and interference

(if there are other wireless nodes attempting to communicate in the neighborhood).

Figure 2.2: Wireless network example

Most wireless networking protocols operating today use the wireless medium to cre-

ate point-to-point connections, and do not exploit the broadcasting capabilities of wireless

transmissions. Network coding that uses the broadcast nature of the wireless medium is con-

sidered to be a great step forward to move from existing wireless systems towards practical

information-theoretic based solutions. MIT’s COPE project is the first network-coding-

based wireless network that shows throughput gains over the routing solution [17]. This

approach treats interference at a receiver as harmful to the system performance, and relies

on appropriately scheduling the broadcast transmissions to minimize it.

In the next section we present general notations and the network model used in our

work and then introduce the min-cut max-flow theorem.

2.2 Notations and Network Model

The focus of our studies are wireless multihop networks. We consider multicast scenarios in

such networks. A multicast is transmitting common information from a set of one or more

source nodes to a fixed set of destination nodes. The wireless nodes in our model have a
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single transceiver per node and operate in half-duplex mode. Transmissions are assumed to

be error-free and omnidirectional. Furthermore, interferences caused by simultaneous trans-

missions are modeled with one of the interference models introduced in the next chapters

and handled via scheduling.

The general system model for a multihop wireless network is a directed acyclic graph

(DAG) G := (V,E), where V is the set of all nodes and E ⊆ V × V denotes the set of

all the edges. We assume that G is finite, i.e., |E| < ∞ and |V | < ∞. Nodes represent

wireless terminals that can transmit and/or receive messages and edges represent links over

which the messages can be transmitted. A directed edge from node i to node j is denoted

by e = (i, j). In this case, i = tail(e) and j = head(e). Furthermore, In(i) denotes the set

of incoming edges to node i and Out(i) is the set of outgoing edges of node i. Let S ⊂ V

be the set of independent sources, and D ⊂ V be the set of destinations (D ∩ S = φ). In a

wireless multicast scenario, each source si ∈ S sends some messages to all the destination

nodes dj ∈ D. As long as the si’s have independent information, they can be modeled as a

single source node. In this case, a virtual source node is added to the network graph that

connects to all the actual source nodes [18].

2.3 The Min-cut Max-flow Theorem

The min-cut max-flow theorem characterizes the maximum achievable rate of a network

that is represented with a graph based on its minimum cut value. We will later explain

that this maximum rate is achievable by network coding. The min-cut max-flow theorem

is a special case of the duality theorem in linear programming. It was proven by P. Elias,

A. Feinstein, and C.E. Shannon in 1956, and independently by L.R. Ford, Jr., and D.R.

Fulkerson in the same year [19].

In this theorem we consider a graph G = (V,E), and a unicast connection from a source

node s ∈ V to a destination node d ∈ V . The maximum flow from s to d is characterized

by the minimum cut value between these two nodes.

Definition 2.1. A cut between s and d is a set of graph edges whose removal disconnects
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s from d. A min-cut is a cut with the smallest (minimal) value. The value of the cut is the

sum of the capacities of the edges in the cut. �

For unit capacity edges, the value of a cut is equal to the number of edges in the cut,

and it is sometimes referred to as the size of the cut. The min-cut can be considered as the

bottleneck for the information transmission between s and d. In fact,the min-cut max-flow

theorem discussed below states that the maximum information rate from s to d is equal to

the min-cut value.

Theorem 2.1. If the min-cut between s and d in a graph G = (V,E) with unit capacity

edges is equal to h, then the information can be sent from s to d at a maximum rate of h.

Equivalently, there exist h edge-disjoint paths between s and d [15]. �

Theorem 2.1 relates the maximum flow of a unicast transmission to the minimum cut

value of the graph representing the communication network. Paper [20] presents another

theorem called the “main theorem of network coding” that proves there exists a network

coding scheme over a large enough finite field that delivers the rate from the max-flow,

min-cut theorem.

The main theorem of network coding can be proved for the multicast case by extending

the preceding results for the unicast case and the following theorem and corollary are a

result of that for the multicast case.

Theorem 2.2. Consider an acyclic delay-free multicast problem with h source processes

originating at a source node s and demanded by a set D of destination nodes. There exists

a solution if and only if for each destination node d ∈ D there exists a flow of rate h between

s and d [21]. �

The following corollary is a direct result of Theorem 3.2.

Corollary 2.1. The maximum multicast rate is the minimum, over all destination

nodes, of the minimum cut between the source node and each destination node. �
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2.4 Related Work

In [3], [4] and [5], it is shown that the general problem of interference-free scheduling for

multi-hop wireless networks is NP-hard. The reason is that the problem of interference-free

scheduling of a wireless network is equivalent to finding maximal independent sets of a graph

that represents the wireless network. In [2] it is shown that from a practical point of view,

network coding does not necessarily result in an improvement of throughput if network

coding and MAC scheduling are designed independently. The result is compared to a joint

design of network coding and scheduling. References [6] and [7] were the first to propose a

cross-layer approach to minimize energy for multiple multicast scenarios in ad hoc networks.

They used artificial nodes to model omnidirectional transmissions in wireless networks.

In [6], [7], the energy minimization problem is formulated based on elementary capacity

graphs (ECG). Transmissions in each ECG do not interfere with each other and timesharing

takes place among different multicast sessions. However, the timesharing in these works is

not defined for link flows, so although the optimization problem proposed in [6], [7] results

in optimal values of flows and time shares for multiple multicast scenarios, the assignment of

flows to time shares is not clear. It means the optimization results can not be directly used

to schedule the flows. Also, the work of [8] maximizes the throughput for single multicast

scenarios and similar to [6], the assignment of the flows to the timeshares is not specified.

Our formulation aims at specifying the membership of flows to timeshares. This assignment

is important in the code design. In [11], scheduling the realizations is based on a conflict

graph approach. Then the constraints of the flow optimization problem are built based on

the non-interfering transmissions from the conflict graph, but the optimization problem to

maximize the throughput does not consider time sharing variables for each transmission and

the time shares are implicitly assumed to be equal. Finally, in [9] and [10], the joint design

of MAC scheduling and network coding is formulated as a non-linear optimization problem.

The formulation however fails to deliver correct code design if the scheduling timeshares are

not all equal to each other. In general, most of the past studies only focus on one or part

of the three steps mentioned in Chapter 1 and the solutions either do not cover a proper

13



code design that is practical for wireless networks, or the designed code does not satisfy

the broadcast property of the wireless networks. In our work we focus on formulating a

linear optimization problem that can be applied to different objective functions as well as

specifying a code design approach that can model the broadcast property of the wireless

transmissions as well as properly handle the unequal scheduling timeshares.

Regarding the scheduling problem, the previous works are scheduling based on building

the elementary capacity graphs in [6], [7], building the scheduling sets based on the conflict

graph approach [11], or building the realizations based on the heuristic presented in [9],

[10]. Since the last two references introduce a complete solution for joint scheduling and

network coding, we used their heuristic as a starting point before formulating our linear joint

optimization problem. The mentioned heuristic builds realizations based on the following

approach: it starts with assigning a random node (excluding the source) of the wireless

graph as a receiver and finds a transmitter (if possible) with minimum cost (power) to

reach that node. Receivers and transmitters are added to a realization until we can add no

more transmitters to the realization without violating the interference-free condition. The

same process will start over for the next realization by choosing another random node as

receiver. The stopping criterion for this process is when each node (except the source node)

is assigned to be a transmitter and receiver at least once in the total set of realizations. The

heuristic implicitly chooses each wireless link at most once. Later we modify this heuristic

to add realizations with equal capacity to the existing set and our results show that it

outperforms the one proposed by [9], [10].

About designing network codes, there are many code design schemes available for wired

networks. Authors of [22] present low-complexity network coding schemes in their work.

Both deterministic polynomial time and randomized coding algorithms are discussed in [22].

[21] and [23] are two examples of well-known code construction algorithms that are highly

complex. The algorithms presented in [22] are less complex and are hierarchical. Random

network coding presented in [24] is also one of the probabilistic approaches of distributed

nature that can accommodate the broadcasting constraints and unequal timeshares. Yet
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since the coding scheme is random, there is a failure probability associated with the designed

code. Furthermore, each packet has to carry the coding coefficients that relate the coded

packet to the source packets. This increases the overhead transmission through the network.

For the scheme of [22], however, although the information about such coding coefficients

are required at the destinations, they do not need to be transmitted through the network

and can be sent directly to the destination nodes by the central control unit. Our focus

is on the deterministic and centralized code design of [22] and we modify it to include the

broadcast property of wireless transmissions.

Regarding the interference models, there are a number of previous works that compared

and evaluated different interference models [25]- [29]. In [28], it is shown that if we use

the protocol model only, we may determine throughputs that are not achievable in a real

setting due to the neglected interferences in that model. It is also shown that if we modify

the interference range of the protocol model appropriately, we can get close to the results

from the physical model in a routing solution of multi-hop wireless networks. The authors

of [25], [26] introduce three methods of adjusting the interference range of the protocol model

considering the SINR. Their adjustments are applied to wireless mesh networks and include:

all node adjustment (ANA) method, all interference node adjustment (AINA) method, and

nearest interference node adjustment (NINA) method. The adjustments in the interference

range of these models are done based on the calculated set of SINRs for all the nodes and

trying to satisfy a threshold for them. The work of [27] compares the physical interference

model with two other simplified models (one of them is the protocol model) for wireless mesh

networks and concludes that the performance of the simplified models are not very close

to the exact model and care should be taken before accepting the results of the simplified

models. In this work, we compare the results of a joint network coding and scheduling

optimization problem for throughput and energy when the interference model is either

the physical or the protocol model. We also calculate the achievable result of the protocol

model based on the interferences in the environment. Our work applies to wireless multihop

networks that use MQAM modulations and therefore have variable transmit power and link
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capacities. In comparison with our work, [25], [26] only consider fixed transmission power

which contradicts with adjusting the interference ranges with their introduced methods.

Furthermore, our work is the first to compare the optimization results for network coding

solutions and we also compare the run-time complexities of the mentioned methods.

2.5 Research Approach

During this whole thesis we assume that the wireless networks are static, and we have

complete knowledge about the nodes and the sources and the destinations of each network.

Using a centralized approach, we study the impact of different factors such as changing

the interference model or modifying the scheduling heuristic on both the throughput and

the minimum energy problems. The goal is to make the wireless models realistic by going

above and beyond the fixed rate, fixed transmission power levels commonly used in other

works. Furthermore, we want to emphasize that our work does not include the distributed

implementation and performance measurement of the proposed solutions. As such, the

results presented in the thesis can be considered as “benchmarks”, showing the impact of

performing certain changes in formulation, scheduling heuristic, or interference models. For

the same reason, the actual network codes being used will not matter as much, as long

as the codes adhere to the criteria defined in Chapter 4, so either well-designed codes or

random linear network codes could be used.

In the next chapter, we introduce the joint linear scheduling and network coding op-

timization problem as well as the wireless broadcast model to correctly model wireless

transmissions.
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Chapter 3

Joint MAC Scheduling and Network Coding

Optimization Problem

The contributions of this chapter are briefly explained in Section 1.1.1. In general, a joint

scheduling and network coding optimization should provide not only the optimal values

of the transmission flows, but also the timeshares allocated to each realization and their

corresponding link flows. It is also desirable to have a formulation that can accommodate

different objective functions, including throughput and energy. In this work, we address all

the above issues based on a linear program formulation of the joint optimization problem.

Our work builds mainly on the framework first introduced in [9] and [10]. Within

that framework, we formulate the joint optimization problem in a linear form that yields

link flows that can be scheduled over scheduling timeshares. We also extend the wireless

broadcast model of [6], [7] to tailor it to our optimization problems. This model is used

in both solving the optimization problem and designing a network code that preserves the

broadcast properties of the wireless network. The network model is previously presented in

Section 2.2. In Section 3.1 we introduce our wireless channel model. Section 3.2 discusses

the scheduling problem in wireless networks and its complexity. In Section 3.3, we formulate

a linear optimization problem to jointly optimize the link flows and scheduling timeshares

in a graph corresponding to a wireless network with independent sources. The chapter

concludes in Section 3.5.
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3.1 Wireless Channel Model

For the wireless channel model, to keep things relatively simple for the time being, we

consider channels with fixed, unit capacity data rates (1 symbol/timeslot) and fixed trans-

mission ranges with probabilistic propagation [30] and fixed transmission powers. Each

node i has an inner radio range (Rini ) and an outer radio range (Routi ). If a node is inside

the inner range of a transmitting node, it can receive messages. If a node is outside the

outer range of a transmitting node, it can not receive any message. Nodes that are between

the inner and the outer range may receive messages with a probability that is uniformly

decreasing with the distance from the transmitting node. More formally, if we have two

nodes i and j placed at a distance dij from each other and want to determine the existence

of a connection from i to j, (i.e., if link (i, j) belongs to the set of network edges E), we use

the following conditional probabilities based on inner and outer ranges of node i:

P ((i, j) ∈ E|dij ≤ Rini ) = 1, (3.1)

P ((i, j) ∈ E|dij ≥ Routi ) = 0, (3.2)

P ((i, j) ∈ E|Rini ≤ dij ≤ Routi ) =
Routi − dij
Routi −Rini

. (3.3)

In later chapters, we will refine this channel model to accommodate power-controlled

multi-rate transmitters as commonly used in modern communication systems. Throughout

this chapter, we apply our formulations on an example network. This network is presented

below.

Example 3.1. We consider a wireless network with 3 sources and 3 destinations. The

connectivity graph associated with this network is shown in Figure 3.1. Given some values

of the inner and outer radio ranges for different nodes in the network, this graph is a

realization of the probabilistic model described above. We consider a multicast scenario

from the three sources to the set of three destinations. The virtual source node S is also

shown in the figure. �
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Figure 3.1: A wireless network example

In the next section, we introduce the wireless interference model used in this chapter as

well as explore the scheduling problem and its complexity.

3.2 Wireless Interference Model and Scheduling

The purpose of scheduling wireless transmissions is to share the media among transmitters.

Starting from a DAG that represents a wireless network, a scheduling scheme is responsible

for assigning the wireless transmissions within a number of subsets so that the members

of each subset can be active at the same time without violating each other’s transmission.

In [5], it is shown that the problem of establishing a throughput optimal scheduling in a

radio network is NP-hard. The author defines the capacity region of a packet radio network

(PRN) as the set of all origin-to-destination (o-d) message rates that are achievable via any

arbitrary protocol. Then he shows that the problem of determining whether a given point

belongs to the capacity region of a PRN is NP-hard. I.e., there exists no polynomial time

algorithm for determining the feasibility of a set of o-d rates unless existing well-known

combinatorial problems have polynomial time algorithms [31].

The scheduling problem, however, is proved to be solvable in polynomial time if sec-

ondary conflicts are acceptable and only primary conflicts are avoided [32]. A primary
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conflict happens when a node transmits and receives at the same time, or receives more

than one transmission destined to it at the same time [33]. A secondary conflict happens

when a receiver tuned to a particular transmitter is also within the transmission range of

another transmitter whose signal is intended for other receivers. The secondary conflicts

are assumed to be permitted when the communication is based on spread spectrum tech-

niques [34]. Therefore, small changes in the problem definition result in huge difference in

the complexity. In our work, we define scheduling to be the assignment of transmissions to

a number of node sets that avoids both primary and secondary conflicts. In [35], it is shown

that finding the optimal link scheduling for multicast scenarios is NP-hard.

In this chapter, we use the protocol interference model to model interferences and there-

fore determine secondary conflicts. In this model, each node i has a fixed interference range

around it (Ŕi) (potentially larger than the communication ranges introduced in Section 3.1).

Transmissions from node j to i are successful only if node i is not inside the interference

range of any other actively transmitting node k [36]. Since scheduling transmissions while

avoiding both primary and secondary conflicts is NP-hard, we use the heuristic method

of [9], [10]. Note that applying the probabilistic model explained in Section 3.1 to a group

of wireless nodes results in a DAG which is the starting point of building the realizations

using a heuristic based on the protocol interference model.

Following [9], [10], we call the mth scheduling set a network realization and denote it

by Nf
m = (V f

m, E
f
m), where V f

m and Efm are the node and the link sets of the realization,

respectively. The set of all realizations is denoted by Nf =
{
Nf

1 , ..., N
f
M

}
, where M is

the total number of realizations. A timeshare τm is assigned to each realization Nf
m. It

shows the duration of time that realization Nf
m is active during one working cycle of the

network. A working cycle of the network is the duration of time it takes until each of the

M realizations are activated according to their timeshare. The working cycle is repeated

periodically with each of the M realizations taking turn to be activated in the specified

20



order. The indicator function I
Ef

m
: E −→ {0, 1} is defined by

I
Ef

m
((i, j)) =


1 (i, j) ∈ Efm

0 (i, j) /∈ Efm

This function shows the membership of link (i, j) in realization Nf
m. In this paper, we

use the heuristic approach of [9], [10] to generate a sufficient set of realizations Nf . This set

will be used as the starting point of our joint scheduling and network coding optimization.

Example 3.2. For the network graph of Figure 3.1, we can build the set of realizations

according to the above mentioned heuristic approach. This heuristic schedules the trans-

missions into realizations such that there exist at most one active transmitter closer than

its interference range for every receiving node. For example, no more than one of the three

source nodes of Figure 3.1 can be active at the same time because they cause interference

on node u. Figure 3.2 shows one possible set of network realizations. �

3.3 Joint Linear Optimization Problem with Schedule-Specific

Flows

The characteristics of wireless networks in general require time-varying network flows. Wire-

less nodes should be scheduled in different timeshares to deal with the interferences by other

transmitters. As a result, network coding coefficients of wireless nodes are a function of

their scheduling timeshares. In the following, we formulate the joint optimization of net-

work flows and scheduling timeshares as a linear optimization problem. We first construct

a hypothetical wired network Ng = (V g, Eg), based on the superposition of the set of M

network realizations Nf , where V g = ∪Mm=1V
f
m and Eg = ∪Mm=1E

f
m. The link capacity of

an edge e = (i, j) ∈ Eg is equal to ci,j =

M∑
m=1

τmI
Ef

m
((i, j)). In a single multicast scenario

with a source node s and D destination nodes, we define f
(m)
i,j (d) as the portion of the flow

on link (i, j) ∈ Eg destined to node d ∈ D and f
(m)
i,j as the total flow on that link, both
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Figure 3.2: Network realizations for the network of Figure 3.1.

during the activation of the mth realization with timeshare τm. Then, we have the following

constraints based on the wired graph representation:

0 ≤ f (m)
i,j (d) ≤ f (m)

i,j , ∀m ∈ {1, ...,M} , ∀(i, j) ∈ Eg,∀d ∈ D, (3.4)

capacity constraint:

0 ≤ f (m)
i,j ≤ τmI

Ef
m

((i, j)), ∀m ∈ {1, ...,M} , ∀(i, j) ∈ Eg, (3.5)

flow conservation constraint:

M∑
m=1

(
∑

j:(i,j)∈Ef
m

f
(m)
i,j (d)−

∑
j:(j,i)∈Ef

m

f
(m)
j,i (d)) = σi, ∀i ∈ V g,∀d ∈ D, (3.6)

where σi = r if i = s, −r if i = d, or 0, otherwise. Assuming a normalized working cycle

for the network operation, we also have
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M∑
m=1

τm = 1, (3.7)

0 ≤ τm ≤ 1. (3.8)

Therefore, an optimization problem to maximize the multicast throughput, r, of a wireless

network is formulated as:

max r (3.9)

s.t. Constraints (3.4)-(3.8).

This optimization problem is in fact, optimizing the throughput for a wired network with

unknown link capacities. Note that here we only have a constraint on link capacities. The

optimization solution is the optimal value of r and the optimal values of f
(m)
i,j (d), f

(m)
i,j , and

τm, which result in the optimal throughput. The formulation that we introduced here has

specific flow variables for different scheduling timeshares. This allows us to know how the

link flows should be assigned during different timeshares. However, before we can apply

the formulated optimization problem to a wireless network, we need to incorporate the

broadcast property of the wireless node in the optimization problem.

The wireless broadcast model introduced here is an extension of the model in [6]. Assume

that node i of a wireless network broadcasts over a set of links Ebm,i during the timeshare

τm. We indicate the set of nodes that receive the broadcast messages by V b
m,i. Since node i

broadcasts during τm, the message combinations delivered to V b
m,i should be the same, and

the rate of transmission from node i should be upperbounded by τm.

Node i is a broadcast node of the interference free set Nf
m if the cardinality of the set{

j|(i, j) ∈ Efm
}

is larger than 1. For a broadcast node i, we add a node í and the following

set of links to our graph: (i, í) and
{

(́i, v)|v ∈ V b
m,i

}
. We refer to node í and the added links

as being virtual. This modification is performed on broadcast edges of every realization

Nf
m. We set the capacity of those links equal to τm. The expanded realizations are denoted

by N ex
m = (V ex

m , Eexm ) and the superposition of all the expanded realizations is called an

expanded graph, N ex = (V ex, Eex). Here, V ex = ∪Mm=1V
ex
m and Eex = ∪Mm=1E

ex
m . We also
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define an indicator function, IEex
m

((i, j)), for N ex
m according to the following relations. For

each link (i, j) ∈ Eexm ,

IEex
m

((i, j)) =


1 if (i, j) ∈ Efm,

or (i, j) /∈ Efm & ∃k|(i, k) ∈ Efm & (j, k) ∈ Eex,

or (i, j) /∈ Efm & ∃k|(k, j) ∈ Efm & (k, i) ∈ Eex.

0 otherwise.

Since the expanded graph preserves the broadcast property of wireless transmissions,

we formulate the optimization problem of Section 3.3 for N ex instead of Ng. As a result we

can use the same formulation without introducing new constraints to preserve the broadcast

property. Therefore, the steps towards formulating an optimization problem for a wireless

network graph G is as follows: build the set of realizations Nf , expand the realizations

for broadcast transmissions to obtain N ex and then formulate the optimization problem of

Section 3.3 for N ex. Graph Ng, in this case, can be thought of as a condensed version of

N ex, where the virtual node and edges are retracted back to the original broadcast node

and its outgoing edges. Either Ng or N ex can be used to design network codes.

Example 3.3. Figure 3.3 shows a broadcast node i and its set of broadcast edges and

Figure 3.4 shows its corresponding broadcast model. �

Figure 3.3: Wireless node i broadcasts to nodes l and m during the 3rd timeshare

Lemma 3.1. The optimal value of a flow on a virtual edge (in N ex) is the same as the
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Figure 3.4: Wireless broadcast model of node i

optimal value of the broadcast flow on the corresponding edges in Ng. �

Proof. The proof is not provided here as it is similar to that of Theorem 3.1 in [6].

Lemma 1 however, generalizes the result of Theorem 1 of [6] to the case where each wireless

node may have up to a maximum of M virtual edges. �

3.4 Optimization Problem for Minimizing the Energy

The same general approach can be used to formulate an optimization problem for mini-

mum energy, which is also of importance in wireless networks, where devices are frequently

battery-operated. Small modifications are required however. As described in Section 3.1,

our network model of choice has nodes with fixed transmission powers. Transmission power

from node i is denoted by Pi. Nodes can be active during different time fractions. The

summation of all the transmission powers for transmitting nodes that belong to the mth

realization (V f,T
m ) is: P (m) =

∑
i∈V f,T

m

Pi. Therefore the energy consumption during time

fraction τm is equal to: τmP (m) and the objective function of the optimization problem of

Section 3.3 changes to

min

M∑
m=1

τmP (m). (3.10)
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The above objective function results in the minimum energy for a normalized working

cycle of a multicast network. Note that the multicast rate, r, has to be fixed in (3.6). As

we explained in Section 3.3, the optimization solution is the optimal value of the objective

function and the optimal values of f
(m)
i,j (d), f

(m)
i,j , and τm. Now if the optimal value of the

total flow on all links (i, j) in realization Nf
m that originate from node i ∈ V f,T

m is zero,

then we need to exclude node i from the summation P (m) =
∑

i∈V f,T
m

Pi. This lowers the

energy consumed by the realization during τm. To incorporate this in the optimization

formulation, P (m) should be replaced by
∑

i∈V f,T
m

PiU(
∑

(i,j)∈Ef
m

f
(m)
i,j ), where U(x) is the unit

step function defined by U(x) = 1, if x > 0, and = 0, if x ≤ 0. This will make the objective

function non-linear. To maintain the linearity of the optimization problem, we resort to

an iterative approach, where in each iteration l, the total transmit power in realization m,

P l(m), is calculated based on the active links (those with f
(m)
i,j > 0) in iteration l − 1. In

the first iteration, it is assumed that all the links in Efm are active. If we show the total and

fractional flows on link (i, j) ∈ Efm in the l-th iteration with f
(m),l
i,j and f

(m),l
i,j (d) respectively,

the iterative version of the energy minimization problem is as follows:

min

M∑
m=1

τmP
l(m) (3.11)

subject to

0 ≤ f (m),l
i,j (d) ≤ f (m),l

i,j , ∀m ∈ {1, ...,M} ,∀(i, j) ∈ Eg, ∀d ∈ D,

0 ≤ f (m),l
i,j ≤ τmI

Ef
m

((i, j)), ∀m ∈ {1, ...,M} ,∀(i, j) ∈ Eg,

M∑
m=1

(
∑

j:(i,j)∈Ef
m

f
(m),l
i,j (d)−

∑
j:(j,i)∈Ef

m

f
(m),l
j,i (d)) = σi, ∀i ∈ V g,∀d ∈ D,

M∑
m=1

τm = 1, 0 ≤ τm ≤ 1,

where σi = r if i = s, −r if i = d, or 0, otherwise. Also we have,
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P 1(m) =
∑

i:∃(i,j)∈Ef
m

Pi,

P l(m) =
∑

i:∃(i,j)∈Ef
m,f

(m),l−1
i,j >0

Pi.

In each iteration, the optimization problem (3.11) is solved and the iterations will con-

tinue until convergence, i.e., the solution does not change in two successive iterations.

3.5 Conclusions

In this chapter we examined the problem of joint scheduling and network coding in wireless

networks. Designing a network coding and scheduling solution for wireless networks involves

three consecutive steps: scheduling, optimization, and coding. Here, we formulated a linear

optimization problem that results in schedule-specific link flows that are important for

coding purposes. Our formulation can be easily applied to different objective functions

such as flow and energy.
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Chapter 4

Unequal Scheduling Timeshares and Requirements

of Constructing Network Codes for Wireless

Networks

We briefly presented the contributions of this chapter in Section 1.1.2. When we deter-

mine the maximum throughput or the minimum energy for an equivalent wired graph, we

have the sufficient information to design the network codes from the optimization problem.

However, for the approach that we follow, these codes are being designed in the context of

a wired network and need to be transferred back to the wireless graph. This transfer has to

be proper to deal with unequal scheduling timeshares and broadcast links. Unequal time-

shares result in parallel edges in the wired graph and broadcast links are required to carry

identical coding information. In this chapter we first show through a motivating example

in Section 4.1 that if scheduling timeshares are not all equal to each other then additional

measures should be advised in designing network codes in order to achieve the same perfor-

mance predicted by the optimization problem. Section 4.2 is devoted to code construction

algorithms that preserve the broadcast property in wireless networks. We investigate the

statistics of unequal scheduling timeshares and the effect of considering them in designing

network codes in the next two sections. Section 4.3 provides simulation results for ran-

domly generated networks to maximize the network throughput and Section 4.4 presents

the results for minimizing the energy, given a (feasible) transmission rate. In particular, our
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statistics show a throughput improvement of about 35% in maximum flow problems, and

energy savings between 13% and 30% depending on the network size, in minimum energy

problems. The chapter concludes in Section 4.5.

4.1 Review of Wireless Network Code Construction

In [23], Koetter & Medard proposed an algebraic approach to construct linear network codes

that achieve the capacity of the network. Their formulation is used for wired networks

because the network coefficients they introduced are all link-based. It is assumed that

there are a total of µ(v) discrete and independent random processes at each node v of the

network. These random processes are going to be delivered and replicated in the network

to be received by a group of nodes. In this way, for any link of the network, e=(v,u) such

that u = head(e) & v = tail(e) there exists a random process, called Y(e) that satisfies

Y(e) =

µ(v)∑
l=1

αe,lX(v, l) +
∑

é:head(é)=tail(e)

βé,eY (é) (4.1)

Coding coefficients αe,l and βé,e are elements of a finite field F2m and X(v, l) is one of

the total µ(v) source streams received at tail(e). The following relation shows the decoding

process at any receiver node v

Z(v,j) =
∑

é:head(é)=v

εé,jY (é) (4.2)

εe,j ’s are decoding coefficients and members of F2m and max(j) is the total number of

independent random processes that are going to be decoded at node v. Figure 4.1-a shows

the relationship between X’s and Y ’s. If we want to employ the same strategy to design

wireless network codes, omnidirectional transmission of nodes has to be incorporated into

the coding coefficients. In other words, network coding in wireless networks is called to be

a node-based design rather than link-based.

Relation 4.3 shows the linear combination of messages at a wireless node:
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Figure 4.1: Coding coefficients in a) wired networks, b) wireless networks

Y (n)(v) =
∑
m

(
∑

u:(u,v)∈Ef
m

β(m,n)((u, v))Y (m)(u) +

µ(v)∑
j=1

α
(m,n)
j (v)X

(m)
j (v)) (4.3)

Y (n)(v) is the encoded flow at node v and during realization Nf
n . It uses the coding

coefficients β(m,n)((u, v)) and α
(m,n)
j that weigh the incoming streams from node v and the

jth source stream at node u respectively. Also, the kth output flow is decoded at node v ∈ V

in network realization Nf
n as

Z
(n)
k (v) =

∑
m

∑
u:(u,v)∈Ef

m

ε
(m,n)
k ((u, v))Y (m)(u) (4.4)

Figure 4.1-b shows the relation between X’s and Y ’s. By comparing Figure 4.1-a & 4.1-

b, the node-based versus link-based design of network codes for wireless and wired networks

becomes quite apparent.

According to Lemma 1 in [10], the wireless network realizations (Nf ) and the cor-

responding hypothetical wired network graph (Ng) and also N ex based on the results in

Chapter 3 have the same cut values and therefore have the same maximum flows. Therefore

a capacity-achieving coding solution for Nf achieves the capacity in Ng as well, of course,

after the capacity-achieving code is transfered from Nf to Ng.

The claim is correct only if all of the coding characteristics of the wired network are
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preserved in the wireless network. The transformation introduced by [10] preserves the om-

nidirectionality of wireless nodes and assigns the wired coding coefficients to the realizations

that occur in different time fractions.

It is instructive to look at the rules of transforming a network coding solution from the

wired network (Ng) to the wireless one (Nf ). Relations (4.5-4.7) describe the mappings

from αj(.), β(., .), and εk(.) to α
(m,n)
j (.), β

(m,n)
j (.), and ε

(m,n)
k (.). A more detailed description

is presented in [10]. Although these transformations are intended to maintain the wireless

properties in the resulting wireless coding coefficients, they fail to deliver all properties

of the link-based coding coefficients. We will describe this with an example below. The

importance and necessity of properly transferring the wired coding solution to the wireless

coding solution arises because otherwise there can be no guarantee that the resulting wireless

coding solution will achieve the same predicted optimal result as the coding solution for the

wired network.

α
(m,n)
j (tail(e)) = 1, if αj(e) = 1, e ∈ Efn (4.5)

β
(m,n)
j (é) = 1, if β(e, é) = 1, é ∈ Efm, e ∈ Efn and m 6= n (4.6)

ε
(m,n)
k (e) = 1, if εk(e) = 1, e ∈ Efm, and n = max

{
p : εk(e) = 1, e ∈ Efp

}
(4.7)

Continuing with the example network from Chapter 3, we next demonstrate that a

capacity-achieving linear network code for Ng does not necessarily achieve the capacity of

Nf if the transformation is performed using only the rules in [10]. In the transformation

from the wireless to the wired graph with τm capacities, if all of the τm’s are equal, then

the links of the wired graph are exactly the same as those of the wireless graph. In this

particular case, by choosing a sufficiently large unit of time, all of the link capacities will

be equal to 1 and we can build network codes using relations (4.3) & (4.4). However, in

case of non-equal time fractions, some modifications are required to maintain all properties

of the link-based transmission of Ng in the wireless graph.

Example 4.1. If we solve the optimization problem of Section 3.3 for the example

graph in Figure 3.1, using the realizations of Figure 3.2 we have the following results for
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the flow maximization problem:

τ1 = τ2 = τ3 = 1/7, τ4 = τ5 = 2/7,

r = 3/7 = 0.42 symbols/timeslot.

Achieving the maximum rate (here r = 0.42 symbols/timeslot) requires using realiza-

tions 4 and 5 twice as often as the other three realizations. A working period of the wireless

network thus includes one timeshare allocated to each of the realizations Nf
1 , Nf

2 , and Nf
3

and two timeshares to realizations Nf
4 and Nf

5 . �

A prerequisite for the network code design is that each edge e of the network must have

an integer capacity [37], [22]. By choosing a sufficiently large unit of time, any network can

be approximated arbitrarily accurately by a network with edges having integer capacities

[37] and any fractional throughput r can be represented with an integer value h. After

representing all edge capacities by integers, capacities larger than 1 are modeled by parallel

edges between two nodes. Now if we build a wired graph based on the capacities (time

fractions) that we determined above, Figure 4.2-a shows the resulting graph. A capacity-

achieving network coding solution for the wired graph is shown in Figure 4.2-b. For this

specific wired graph, there is no capacity-achieving coding scheme such that the coding

coefficients for the two outgoing edges of u are the same. To avoid ambiguity we do not

show all of the network coding coefficients in both networks. Wireless coefficients are

derived using Relations 4.5-4.7. Now if we focus on two of the edges in Ng defined by:

e7 = e8 = (u, v) we see that based on Relation 4.1, random processes leaving node u in the

wired network are:

Y (e7) = β(e4, e7)Y (e4) + β(e5, e7)Y (e5)

Y (e8) = β(e5, e8)Y (e5) + β(e6, e8)Y (e6)

According to Relation 4.3, the stream out of node u in the wireless graph will be the

following
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Y (4)(u) = β(1,4)(e7)Y (1)(s1) + β(2,4)(e7)Y (2)(s2)

+β(2,4)(e8)Y (2)(s2) + β(3,4)(e8)Y (3)(s3)

Because wireless coding is a node-based scheme rather than link-based, it does not

differentiate between e7 and e8. When the coding coefficients of the wired graph are trans-

ferred back to the wireless one, it represents a broadcast model which does not preserve the

properties of the wired coding scheme. Knowing that β(2,4)(e7) = β(2,4)(e8) = 1 and the

coefficients are in F2, the stream out of node u will be:

Y (4)(u) = β(1,4)(e7)Y (1)(s1) + β(3,4)(e8)Y (3)(s3)

Figure 4.2: a) Equivalent wired graph corresponding to the wireless network graph of Fig.
3.1, b) Capacity achieving coding coefficients for the wired network

Accordingly, nodes d1 and d3 can receive information from the first and the third sources

during 5 time fractions and node d2 is only able to receive information from the second

source in the same time duration, because it is unable to decode the rest of the messages.

Consequently, the receiving rate at nodes d1 and d3 is 2
5 = 0.4 packets/timeslot and the

receiving rate at node d2 is 1
5 = 0.2 packets/timeslot. None of these rates are the maximum

achievable rate of the wireless graph. In order for Ng and Nf to have the same rate, nodes

in Nf should perform the same encoding and decoding operations as determined for the

corresponding wired network.
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The approach presented in [10] works for wireless graphs in which all of the time frac-

tions are equal. Otherwise, we have to preserve the following condition while wired coding

coefficients are transferred to wireless ones:

• If there are two (or more) edges like ei and ej in the wired graph such that tail(ei) =

tail(ej) = u, and they are part of the same network realization, but their coding

coefficients are different, they belong to repetitions of a network realization. Therefore,

messages transmitted from node u during the repetitions of a realization should be

specified separately.

In our example graph, we can specify messages on edges e7 and e8 of the wired graph

in the following two wireless linear combinations transmitted from node u during the two

repetitions of the fourth realization:

Y
(4)

1 (u) = β(1,4)(e7)Y (1)(s1) + β(2,4)(e7)Y (2)(s2)

Y
(4)

2 (u) = β(2,4)(e8)Y (2)(s2) + β(3,4)(e8)Y (3)(s3)

Figure 4.3 shows a network coding solution with scheduling based on these Y
(4)

1 (u) and

Y
(4)

2 (u) that allows the network to transmit different linear combinations when a realization

is repeated. In this table s1
~b1u means s1 transmits b1 to u. The total flow of this solution

is 0.42 packets/timeslot and is equal to the optimal rate.

Figure 4.3: Network coding solution for the wireless network in Figure 3.1

So far, we examined the effect of having non-equal time fractions when we solve a linear

programming problem to optimize a criterion of interest in the wireless networks through an

example. Theorem 4.1 generalizes the (potential) impact of such non-equal time fractions

on network codes to achieve the equivalent performance in both networks.
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Theorem 4.1. The equivalent wired graph of a wireless graph will have parallel edges

with different coding combinations, if and only if solving an LP optimization problem (of

interest) for the set of conflict-free realizations of the wireless graph results in non-equal

time fractions.

Proof. (forward direction) Suppose τi is the time fraction of nodes in realization i and

τi = mτ , where m is a constant and τ is the smallest time fraction of all of the realizations

in the network. Now assume for every node in realization i, there are less than m outgoing

messages with different coding coefficients. Suppose that the maximum number of different

coding coefficients out of all nodes in realization i is ḿ (ḿ < m). Therefore, all of the nodes

in realization i can transfer their messages during ḿτ duration of time. It means mτ is not

part of the optimal solution.

(backward direction) Suppose there are m different encoding combinations to be deliv-

ered by one wireless node (let’s say u) in realization i. Also assume that there exists at

least one node v that is interested in all of the m different combinations from node u. These

coded streams must belong to realization i, because all of them are transmitted over link

(u, v). Therefore, realization i must happen m times during one schedule period. �

4.2 Wireless-Aware Network Code Construction

Now that we presented an example that shows how the performance can be affected if the

wireless code is not designed properly, we explain wireless-aware code construction here. In

this section, our focus is on linear network codes over the finite field F2m , where each element

of the field can be represented by a binary vector of length m. There are a number of coding

schemes for wired networks that can be tailored to the wireless networks discussed in this

paper. The important issue is to make sure that the coding scheme accommodates the

constraints imposed by broadcasting. An attractive low-complexity network coding scheme

for wired networks is presented in [22]. Both deterministic polynomial time and randomized

coding algorithms are discussed in [22]. Compared to the well-known code constructions

of [21], [23], these algorithms are less complex. Random network coding presented in [24]
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is a probabilistic approach of a distributed nature that can accommodate the broadcasting

constraints and unequal timeshares. Yet since the coding scheme is random, there is a failure

probability associated with the designed code. Furthermore, each packet has to carry the

coding coefficients that relate the coded packet to the source packets. This increases the

overhead transmission through the network. For the scheme of [22], however, although the

information about such coding coefficients are required at the destinations, they do not need

to be transmitted through the network and can be sent directly to the destination nodes

by the central control unit. In the following, we focus on the deterministic and centralized

code design of [22] and explain how the design is modified for wireless networks.

In Section 4.1, we explained that we represent the fractional multicast rate r with a

corresponding integer value h, by scaling up the normalized working cycle in time, resulting

in edges with integer capacities. To design a network code that supports a multicast rate

of h from a virtual source S to all the destinations, the algorithms of [22] first solve a flow

problem to find h edge-disjoint paths between the source and each of the destinations d ∈ D.

For each destination d, then, an h× h matrix Cd is formed whose columns store the global

encoding vectors of h edges, each belonging to one of the edge-disjoint paths between S and

d. The matrix Cd is initiated by the identity matrix and is updated as the local coding

coefficients of edges are designed by traversing the paths from S to d. In this process, the

coding coefficients of an edge are determined only when the coding coefficients of all its

upstream edges are already assigned. The goal is to design the coding coefficients one edge

at a time such that all the Cd matrices stay full rank until all the edges are processed.

This means that the decoding matrices in all D destinations will be full-rank, which in turn

implies successful decoding of information at rate h in all destinations.

To adopt the construction of [22] for wireless networks, we can solve the flow problem

for either N ex or Ng to find the h edge-disjoint paths between S and each of the destina-

tions. This is a simple task based on the outcomes of the joint optimization problem. The

algorithm of [22] can then be applied by keeping track of which edges are the broadcast

edges in the same network realization. The following lemma proves that such edges carry
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data destined for different destinations. Yet, due to the broadcast property, such edges

must carry the same data and thus must have the same local and global coding vectors.

Care should then be taken in assigning the coding vectors of such edges, making sure that

the global coding matrices of all destinations which are to use this data for decoding remain

full-rank.

Lemma 4.1. The destination nodes reachable from different broadcast edges (through

the edge-disjoint paths) that originate from a common node and belong to the same real-

ization are different. �

Proof (by contradiction): If two broadcast edges are part of two edge-disjoint paths

going to the same destination, they must have linearly independent global coding vectors.

This contradicts the requirement that the coding vectors for the two edges are equal due to

the broadcast property. �

The following example explains the details of designing a network coding solution for

the network of Figure 4.2-a.

Example 4.2. Consider the wireless network of Figure 4.2-a and the problem of network

code design to achieve the maximum throughput of 3
7 symbols/timeslot. The graph N ex

corresponding to the optimal throughput is given in Figure 4.4, where the virtual source

node S is added and is connected to the three actual source nodes. Corresponding to the

optimal throughput, we have h = 3, and as the first step of the code design, we need to

identify the three edge-disjoint paths between S and each of the destinations (fdis). This

is an easy task, e.g., for d1, we have the following edge-disjoint paths:

fd11 = {(S, s1), (s1, ś1), (ś1, d1)} ,

fd12 = {(S, s2), (s2, ś2), (ś2, u), eu1, ev1, (v́, d1)1} ,

fd13 = {(S, s3), (s3, ś3), (ś3, u), eu2, ev2, (v́, d1)2} ,

where the subscript i on (v́, d1)i distinguishes between the two parallel edges between v́ and

d1. The network code can now be designed by going through the edges of N ex one at a time

starting from the edges connecting S to s1, s2, and s3 and moving downstream towards
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d1, d2, and d3. At each step, the local coding coefficients for an edge are selected such

that the three 3 × 3 global coding matrices associated with the three destinations remain

full-rank. In this process, the coding coefficients for a virtual edge (s, ś) are just copied to

the downstream virtual edges (ś, i), i ∈ V b
m,s. A coding solution obtained by this technique

is presented in Figure 4.2-b, where the graph N ex is retracted back to Ng and the virtual

node S and its edges are also removed. In this figure, the two parallel edges between v and

every di, i = 1, 2, 3, carry a+ b and b+ c, respectively. �

Figure 4.4: Graph N ex of the graph in Figure 4.2-a

4.3 Unequal Time Fractions in Wireless Multicast Networks:

Maximizing the Throughput

In Example 4.1, we presented an example whose realizations had different timeshares. We

also showed in Section 4.1 that a code design solution that enforces equal timeshares would

result in a lower throughput. Dealing with unequal timeshares in the code design increases

the complexity as described in [38]. Here, using the linear program described in Section

3.3, we explore in depth whether the occurrence of unequal timeshares is rare or common
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in randomly generated networks, and how much performance improvement can be expected

when unequal timeshares are adequately considered. Our simulations are based on two dif-

ferent objective functions: maximizing the multicast throughput, or minimizing the energy

consumption during one working cycle of the network. To simulate a wireless multicast

network, we consider random placement of N uniformly distributed nodes in a two dimen-

sional (2D) rectangular field. Based on the channel model described in Section 3.1, we

establish the connections among the nodes. We then choose a random node as a source

node and also pick nD random nodes as destinations. We decide about the directivity of

the edges (and therefore built a DAG) according to all the existing paths from the source to

all the destinations. Using the heuristic approach of [9] based on the protocol interference

model, we determine a set of interference-free link sets for the network. We then solve the

optimization problem described in Section 3.3. As a result, we obtain the optimal values of

time fractions and link flows and the optimal value of the cost function. In the following

sections, we present our simulation results for different scenarios concerning the maximiza-

tion of throughput. Simulation results related to the energy minimization are presented in

Section 4.4.

4.3.1 Varying Number of Destination Nodes

In the first scenario, we solve the throughput optimization problem for random networks

with different number of nodes and nD = {2, 3, 4, 5} destinations. We assume the average

density of neighboring nodes (D) in each network is fixed and is equal to 6. The size of the

rectangular field changes for different values of N to keep the density fixed and the ratio of

the two sides of the field is 1
3 . Appendix A shows how to achieve that for the nodes with

probabilistic propagation. All results presented here are the averages over 200 simulated

networks for each network size. The same 200 networks are used for different nD values

to make the comparisons fair. Figure 4.5 shows the percentage of all simulated networks

in which achieving the optimal throughput (ropt) requires unequal scheduling timeshares.

For those networks whose optimal values of timeshares are unequal, we also compute the
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throughput that the network can achieve if the timeshares are forced to be equal (req).

We compute req by assigning equal values to all the non-zero timeshares that result from

the optimization problem in (3.9). Then we solve a linear program with fixed and equal

timeshares to maximize the throughput. Figure 4.6 shows the average of the normalized

throughput improvement defined by

ηr =
ropt − req
ropt

. (4.8)

These figures show the significant performance improvements that can be achieved by cor-

rectly dealing with unequal timeshares when optimizing the network throughput.

Figure 4.5: Percentage of networks that require unequal timeshares for optimal throughput
(the average number of neighboring nodes is D = 6).

Figure 4.5 shows that as the network size grows, more networks tend to require un-

equal timeshares for optimal throughput. The number of variables and constraints in the

optimization problem of Section 3.3 grows linearly with the network size. We associate the

higher chances of having unequal timeshares with the more complex optimization problems

in terms of the number of variables and constraints. The lower percentage of the networks

with unequal timeshares for small N may explain the reason why unequal timeshares have
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Figure 4.6: Throughput improvement using unequal timeshares (the average number of
neighboring nodes is D = 6).

not been considered in designing network codes before. We also examined the 95% con-

fidence intervals for this graph to justify the noise on the curves. Figure 4.5 shows these

intervals for the results with 2 destination nodes. As seen on the figure, the confidence

intervals for the consecutive data items overlap, and therefore there is statistical evidence

to believe that the rapid changes in the figure are random and not statistically significant.

Furthermore, Figure 4.5 shows that the percentage of networks with unequal timeshares

changes slightly with nD. This trend can be explained as follows: for a given network, the

number of relations in (3.4) and (3.6) is a linear function of nD, so the joint optimization

problem for networks with larger nD is more complex and there is a larger probability of

having unequal timeshares in the optimal answer. Figure 4.6 shows that ηr does not change

significantly with the number of destinations or the network size, and is in the range of

25% to 33%. We also calculated 95% confidence intervals for the networks with different

number of destinations. These confidence intervals were relatively small, i.e., about ±5%

of the reported results.
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4.3.2 Varying Neighboring Node Densities

We also explore the impact of network density on the frequency of having unequal time

fractions in multicast networks. Here, we consider different neighboring node densities

(D) and a fixed number of destination nodes nD = 2. The densities in our simulations

are 6, 8, and 10. The percentage of networks requiring unequal timeshares for optimal

throughput is shown in Figure 4.7. The figure shows that the percentage decreases slightly

with an increase in D. We also considered the 95% confidence intervals for this figure. The

differences are statistically significant for most of the network sizes. Some of the confidence

intervals overlap for consecutive density sizes, but they are non-overlapping if we compare

the results of D = 6 and D = 10.

Figure 4.7: Percentage of networks that require unequal timeshares for optimal throughput
(nD = 2).

Figure 4.8 shows that ηr does not depend much on D and stays in the same range for

all network sizes. (Again, the 95% confidence intervals are relatively small and show that

the average improvement in throughput remains in between about 30% and 40%.)
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Figure 4.8: Throughput improvement using unequal timeshares (nD = 2).

4.4 Unequal Time Fractions in Wireless Multicast Networks:

Minimizing the Energy Per Working Cycle

4.4.1 Minimizing the Energy for a Set of Fixed Rates

When exploring the impact of unequal timeshares on the problem of minimizing the required

energy to achieve a given throughput rate r, we consider multicast networks with nD = 2

destinations. The average density of neighboring nodes (D) in each network is fixed and

is equal to 7. For each multicast network, we first solve the flow optimization problem

with equal time fractions (req) to determine the maximum achievable rate for the network

with equal timeshares. For each network, we then fix the rate at different fractions of req

and compare the network solutions for minimizing the energy with both equal timeshares

and unequal timeshares. (The reason that we use req instead of the maximum flow with

unequal timeshares, ropt, is to ensure that the chosen (fixed) rate has a feasible solution for

minimizing the energy with equal timeshares as well.) The data rates that we use for the
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energy minimization problem are {0.6, 0.7, 0.8, 0.9} × req. Minimum energy with unequal

timeshares is represented by Eopt. For the case where timeshares are forced to be equal,

the minimum energy is represented by Eeq. Figure 4.9 shows the minimum required energy

to deliver a fixed rate in normalized working cycles of networks for different rates. The

network size varies from N = 10 to N = 100 and the number of simulated networks for

each network size is 200. This figure shows that supporting unequal scheduling timeshares

drastically lowers the minimum energy for smaller networks and achieves a fairly constant

saving in energy for larger networks.

Figure 4.9: Minimum energy to deliver a fixed rate (nD = 2, D = 7).

We define ηE as the normalized energy saving that results from using unequal timeshares:

ηE =
Eeq − Eopt
Eeq

. (4.9)

Figure 4.10 shows the value of ηE versus the network size for different rates. The figure

shows that the saving in small networks can be up to 31% while the saving for larger

networks is at least 13%. We also checked the percentage of all the simulated networks

where the minimum energy solution involves unequal timeshares. Figure 4.11 shows that,
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starting with network sizes of N = 20, almost all the simulated networks required unequal

timeshares to minimize the energy.

Figure 4.10: Energy saving using unequal timeshares (nD = 2, D = 7).

We also performed some simulations to examine the energy consumption of a throughput

optimal solution and also the energy consumption of the solutions to the energy minimiza-

tion problem that achieve portions of the optimal throughput ({0.95, 0.9, .85, .8} × ropt).

These results follow similar trends as the curves presented in Figure 4.9 for unequal time-

shares, and are thus omitted to prevent redundancy.
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Figure 4.11: Percentage of networks that require unequal timeshares to minimize the
energy consumption (nD = 2, D = 7).

4.4.2 Varying Number of Destination Nodes

In this section, we present simulation results on networks with different number of destina-

tion nodes, nD = {2, 5, 8}. The density of the neighboring nodes is equal to 7. We fix the

rate at 0.8 × req and then minimize the energy using the optimization problem of Section

3.4. Figure 4.12 shows the minimum required energy to deliver a fixed rate for different

network sizes and different number of destination nodes. The figure shows that while the

minimum energy using unequal timeshares is well below the energy when we enforce equal

timesharing, it increases with the number of destination nodes. The 95% confidence interval

for these plots shows the energy difference between unequal timeshares and equal ones are

statistically significant. The confidence intervals are shown in the figure.
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Figure 4.12: Minimum energy to deliver a fixed rate (nD = {2, 5, 8}, D = 7, r = 0.8×req).

Figure 4.13 shows ηE versus the network size for different number of destination nodes.

This figure shows that the amount of saving in energy decreases with the increase in the

number of destinations for smaller networks, and is rather unaffected by the change in the

number of destinations for larger networks. Also, Figure 4.14 shows that almost all the

simulated networks require unequal timeshares to minimize the energy. This is particularly

the case for larger networks with larger number of destinations.
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Figure 4.13: Energy saving using unequal timeshares (nD = {2, 5, 8}, D = 7, r = 0.8×req).

Figure 4.14: Percentage of networks that require unequal timeshares to minimize the
energy consumption (nD = {2, 5, 8}, D = 7, r = 0.8× req).
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4.4.3 Varying Neighboring Node Densities

Next, we focus on minimizing the energy for different node densities. In our simulations,

nD = 2 and D = {6, 8, 10}. We fix the rate at 0.8 × req and then minimize the energy

using the optimization problem of Section 3.4. Figure 4.15 presents the minimum required

energy to deliver a fixed rate for different densities. This figure shows that, as expected, the

minimum energy decreases with an increase in the node density. Also, expectedly the results

of unequal timesharing is always better than the ones with equal timeshares. We calculated

the 95% confidence interval for these plots which show the energy difference between the

two groups of equal and unequal timeshares are statistically significant. Figure 4.16 shows

ηE versus the network size for different node densities. The energy saving is slightly higher

for larger node densities, but remains in the same range for most network sizes. Figure 4.17

shows that almost all the simulated networks, particularly the larger ones, require unequal

timeshares to minimize the energy.

Figure 4.15: Minimum energy to deliver a fixed rate (nD = 2, D = {6, 8, 10}, r = 0.8×req).
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Figure 4.16: Energy saving using unequal timeshares (nD = 2, D = {6, 8, 10}, r =
0.8× req).

Figure 4.17: Percentage of networks that require unequal timeshares to minimize the
energy consumption (nD = 2, D = {6, 8, 10}, r = 0.8× req).
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4.5 Conclusions

Having formulated the optimization problem on the equivalent wired graph Gex, the output

provides sufficient information to design network codes that achieve the optimization result

in a wired network. To apply this solution to the wireless network, the codes have to be

transformed from their link-based nature in wired networks to a node-based representation.

As shown by an example, such a transfer has to be done carefully to ensure that the predicted

performance can indeed be achieved. So we presented modifications to the code construction

to successfully deal with unequal timeshares while supporting wireless broadcast as well.

Simulation results confirm that correctly incorporating unequal timeshares can improve the

multicast throughput by 35% for maximum flow problems and will result in energy savings

between 13% to 30% in minimum energy problems.
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Chapter 5

Performance Comparison of Physical and Protocol

Interference Models in Wireless Networks with

Joint MAC Scheduling and Network Coding

So far, we studied joint scheduling and network coding in networks where transmitters have

fixed transmit power levels, links have unit capacity, and under a specific, simple interfer-

ence model called the protocol interference model. In real networks, transmitters may have

variable transmission powers and their capacities are based on different modulations that

they use. So the simple protocol model might not be the best choice for different settings.

In this chapter, we focus on the impact of two different interference models when modeling

wireless networks. The physical model, also known as the SINR (Signal to Interference and

Noise Ratio) model and the protocol model are studied in the context of solving a joint

multiple access control (MAC) scheduling and network coding problem in wireless multihop

networks. Both throughput and energy optimization problems are considered. In previous

chapters, we used the protocol model for the simple scenario of networks with unit capac-

ity links and fixed transmission powers to study unequal timeshares in optimal solutions.

In this chapter, we compare the joint scheduling and network coding throughput/energy

optimal solutions of networks that employ a set of embedded M-ary Quadrature Ampli-

tude Modulation (MQAM) signal constellations for transmission. Our simulation results

show that the performance of the protocol model and the physical model are very close in
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throughput maximization problems, while the run-time complexity of the protocol model

is significantly lower. Therefore, the protocol model can be used in those problems without

loosing the performance. In minimum energy problems however, the complexities of the two

model are quite close and the performance of the protocol model is not quite comparable

to that of the physical model. Therefore, we conclude that the physical model is still the

best choice for the energy problem.

5.1 Related Work

The physical and the protocol models are the two most popular interference models in

wireless networks. Interference at a receiver is caused by transmissions from unintended

transmitters. It affects the reception rate at the receiver from the intended transmitter.

A transmission is successful according to the physical model if the SINR at the receiving

node is higher than a specified threshold. In this model, interferences from other active

transmitting nodes are considered as being undesirable and their power is added to that of

noise. The protocol model however, decides based only on the distance between a potential

pair of transmitter and receiver and also the distance between the already active transmitters

and a potential receiver [39]. Briefly, if the distance between a potential transmitter-receiver

pair is less than the transmission range of the transmitter and the receiver is beyond the

interference range of other active transmitters, we assume successful transmission between

the considered pair of nodes. The transmission range of a transmitter depends on its

transmission power and the acceptable SNR (signal to noise ratio) threshold at the receiving

nodes. The interference range is a parameter unique to the protocol model which shows the

distance that transmissions interfere with each other. We define these terms in more detail

in Section 5.2. Using either of these interference models for wireless networks has its own

advantages and disadvantages. The physical model is an exact model of the interferences

in a wireless setting but applying it in a network is computationally complex. The protocol

model is an approximate and straightforward model of less complexity but might result in

solutions that are not feasible. As a result, there are a number of previous works that discuss
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what model is best suited for different wireless networks [25], [26], [27], and how we can

correctly apply the protocol model to the wireless networks [28]. We apply our comparison

of the interference models on a network coding solution for throughput maximization or

energy minimization as explained in Chapter 3.

We explained in Section 2.4 that a number of previous works compared and evaluated

different interference models [25]- [29] and we explained the contributions of each work. In

this work, we compare the results of a joint network coding and scheduling optimization

problem for throughput and energy when the interference model is either the physical or

the protocol model. We also calculate the achievable result of the protocol model based on

the interferences in the environment. Our work applies to wireless multihop networks that

use MQAM modulations and therefore have variable transmit power and link capacities. In

comparison with our work, [25], [26] only consider fixed transmission power which contra-

dicts with adjusting the interference ranges with their introduced methods. Furthermore,

our work is the first to compare the optimization results for network coding solutions and

we also compare the run-time complexities of the mentioned methods.

5.2 Channel and Wireless Interference Models

We use the same network model that we introduced in Section 2.2. In the following, the

channel and the two interference models are explained in more detail.

5.2.1 Channel Model

We assume that the communication channel is lossless and the transceivers of wireless

networks employ a set of Q embedded MQAM signal constellations, with sizes M1 < ... <

MQ. The spectral efficiency of the transmissions over a link (i, j) of a graph G is equal

to [10]:

cij
Bij

= log2M, (5.1)
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where cij and Bij are the transmission capacity (in bits/second) and the bandwidth of the

channel (in Hz), respectively, and M is the size of the constellation. We further assume

that the channel experiences AWGN (Additive White Gaussian Noise) as well. The chosen

modulation can be easily replaced with other modulations that have a range of constellation

sizes like PSK or MFSK. Each constellation size of the mentioned modulation schemes

requires a SINR level to satisfy a BER threshold. Furthermore, we do not use channel

coding in our work and using the channel coding would not affect our results. It only

changes the choice of SINR thresholds to satisfy a certain BER.

5.2.2 Interference Models

According to the physical model, a transmission from node i to j is successful if and only

if the SINR at node j is higher than a specified threshold. The SINR is defined as follows,

in which the interference from other transmitting nodes are treated as noise.

γij =
aijPi

σ2 +
∑

k∈X,k 6=i
akjPk

. (5.2)

In (5.2), σ2 is the power of the AWGN at node j, Pi is the transmit power at node i, aij

is the power gain (less than one) of the link (i, j), and X is the set of active transmitters in

the network. The link gain aij represents the attenuation due to the path loss. The general

formula for path loss for transmitting from node i to j is equal to [40]:

aij = K(
d0

dij
)α, (5.3)

where K = ( λ
4πd0

)2, d0 is a reference distance for the transmitting antenna’s far field, α is the

pathloss exponent and varies for different environments, dij is the distance between nodes i

and j, and λ is the wavelength of the transmitted signal. For free space propagation, with

no obstacles, α = 2, the value we will use in the remainder of this thesis. The information

received at each node j over a link (i, j) is acceptable only if it satisfies a target bit error
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rate pb,ij for MQAM. Corresponding to pb,ij and the constellation size M , node j has a

target SINR, γt,ij , approximated by [41]

γt,ij = −2

3
(M − 1) ln(5pb,ij) , (5.4)

with the assumption that the receiver has an ideal coherent detector.

The protocol model on the other hand, is a simplified interference model. A successful

transmission under the protocol model happens when a receiving node (j), falls inside the

transmission range of an intended transmitter (i), and is outside the interference range of

other active transmitters [39]. The transmission range of node i (i.e. Ri), which is a radio

range that transmissions of a certain capacity from node i can reach, is set based on an

SNR threshold and can be appropriately set based on the thresholds in the physical model

so that the two models become comparable [28]. The interference range of node i (i.e.

Ŕi) however is unique to the protocol model and Ŕi ≥ Ri. If a receiving node j falls in

the interference range of an active transmitter i, the receiver will not be able to receive

another transmitter’s signal because of the interference caused by i. The transmission and

the interference ranges of the protocol model are fixed parameters. However for a system

with a set of MQAM constellation sizes, M ∈ {M1, ...,MQ}, there is one transmission range

per constellation size. In order for the protocol and the physical model to be comparable,

we determine the transmission range of each constellation size (defined as R(q)) for free

space using the following relation:

γq =

(
λ

σ4πR(q)

)2

Pmax, (5.5)

where γq is the target SNR of constellation size Mq and is given by (5.4), and Pmax is the

maximum transmit power of the nodes. The maximum transmit power and the target BER

are assumed to be fixed for all the nodes. To set the interference range, we have to note that

the interference is caused by the transmitted signal and is independent of the transmission

capacity. Therefore, the interference range is independent of the constellation size. We set
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the interference range of node i as Ŕi = (1 + ∆)R(1), ∆ ≥ 0. In summary, for a system with

the mentioned set of constellation sizes, we have a set of transmission ranges
{
R(1), ..., R(Q)

}
,

and a fixed interference range. As we explained before, the interference range is unique to

the protocol model. The closer the interference range is to the transmission range, the less

sensitive is the model to possible interferences from other transmitters. Consequently, in

throughput maximization problems, there is a higher chance of determining a maximum

throughput that is higher than that of the physical model. However that solution might not

necessarily be an achievable solution because of all the neglected but existing interferences.

In this case, the chosen interference range is overly optimistic about the interferences. On

the other hand, if the interference range is a lot larger than the transmission range, it

may suppress concurrent transmissions that cause small interference. As a result of being

too conservative in this case, we may end up having very low throughput for maximum

throughput optimization problems. Overall, different values for the interference range result

in different solutions, an issue we will explore in more detail later.

5.3 Scheduling for a Network with Variable-Rate, Variable-

Power Nodes

As discussed previously, the scheduling problem in wireless networks is NP-hard, and there-

fore transmissions are scheduled using heuristic approaches. As a result, depending on how

the links are scheduled to transmit, the result of the optimization problem (maximizing the

throughout or minimizing the energy) would differ. Here we use the basic idea of scheduling

transmissions presented in [9], [10] and adapt it to networks with variable-power, variable-

rate nodes. We consider that the transceivers in a wireless network are enabled to use one

of the Q constellations with sizes M1, ...,MQ, resulting in links with different transmission

capacities. We first explain the common steps and assumptions for building a set of re-

alizations when the interference model is either the physical model or the protocol model

and then continue with explaining the steps unique to each model. We assume the network
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nodes are placed in known locations, and that we know the distances between the nodes,

and that each node i has a maximum transmission power Pmax (Pi ≤ Pmax). We assume

that the power level for transmission from each node in each realization is determined and

fixed by the scheduling heuristic. We first define a graph for the set of wireless nodes and

then apply the scheduling heuristic to that graph. We define the set of potential links,

(i, j)’s, as feasible if the SNR at node j satisfies

γij =
aijPmax
σ2

≥ γ1, (5.6)

or equivalently, dij ≤ λ
4πσ

√
Pmax
γ1

. Since M1 < M2 < ... < MQ, based on (5.4), for a fixed

target BER, γ1 < γ2 < ... < γQ. Therefore, to find feasible links, it is enough to consider

γ1 only. Potential links of a wireless network build a collection of directed links for every

transmitter-receiver pair (i, j). In order to define a multicast scenario over these potential

links, we pick one or more random nodes as source nodes si and also pick nD nodes randomly

as destinations. Then we consider all the directed cycle-free paths from the source node(s)

to the destination nodes and define the superposition of those links as a directed graph.

Now we can apply scheduling heuristics to the directed graph and group transmissions into

realizations.

5.3.1 Scheduling with Physical Interference Model

As explained in Section 5.2.2, a transmission from node i to j is successful under the physical

interference model if γij ≥ γt,ij . Since transmission powers can be adjusted, we require a

criteria to determine transmission powers when constructing realizations. Minimizing the

transmission powers has been suggested in [6], [9]:

min
∑

i∈X Pi

subject to
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γq ≤ γij < γq+1, if q < Q, i, j ∈ V

γij ≥ γQ, if q = Q, i, j ∈ V

,

Pi ≤ Pmax, i ∈ V, (5.7)

where X is the set of active transmitters and the constellation sizes, the target BER and

hence the SINR thresholds and the link capacities are fixed and the variables are trans-

mission powers. The constraints of the optimization problem are considered as follows: if

the spectral efficiency of a link is log2Mq and q < Q, then its SINR (which is related to

the transmitter node’s transmit power) should satisfy the constraint: γq ≤ γij < γq+1 (for

q = Q, we have γij ≥ γQ). The solution of the optimization represents a potential realiza-

tion. To maximize the number of active transmitters, we incrementally build realizations,

starting from a single transmitter-receiver pair. For this link, we randomly assign a trans-

mitter constellation size (i.e. a spectral efficiency) and find the optimal transmission power

according to the optimization problem in (5.7). Only the constellation size of the first node

is picked randomly as there is no other interfering node to force a specific constellation size

to the first transmitter. If we pick the smallest constellation size, this would be a potentially

poor choice for both maximizing the throughput and minimizing the energy optimization

problem, it forces the link to settle for the lowest capacity, while it could probably transmit

at a higher level. If we start from the maximum constellation size, since there is no other

assigned transmitter in the realization, the link may end up having a very high capacity, but

later nodes are forced to have very low capacities due to the interferences. To add the second

transmitter-receiver pair, we pick a new link randomly and solve the optimization problem

of (5.7) for the two links. The SINR threshold for the first link (and its transmission rate)

remains the same. For the SINR threshold (or equivalently the transmission capacity) of

the second link, we start with the highest SINR (/transmission capacity) and check to see

if the optimization problem of (5.7) has a solution. If it does not, the two links can not be

active at the same time while their SINR constraints are satisfied. Therefore, we decrease

the SINR threshold to a lower level until either the optimization problem of (5.7) has a
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solution or we run out of choices in terms of SINR thresholds and therefore conclude that

the newly considered link can not be added to the realization. Additional links are added

to a realization until no further link can be added without violating the SINR constraints

of the already selected links. For every randomly picked transmitter-receiver pair, we also

check all other broadcast links from the chosen transmitter to its next hop nodes with the

same constellation size and add them to the realization if the optimization problem in (5.7)

remains feasible.

Note that the optimal transmission power levels of the scheduled links may change when

we add a new link to the set of already chosen links due to the additional interference. Once

a realization can not be extended further, we build the next realization with a new randomly

selected link. The process of building new realizations continues until every feasible link is

part of at least one realization.

5.3.2 Scheduling with Protocol Interference Model

We explained in Section 5.2.2 that for a system with MQAM, there is a transmission range

R(q) associated with each constellation size Mq and an interference range Ŕi for every active

transmitter i. Therefore, a transmission from node i to j with capacity log2Mq under the

protocol model is successful only if dij ≤ R(q) and for all other active transmitters in the

same realization (i.e. k ∈ X) dkj > Ŕk. Building realizations based on the protocol model

is less complex than that of the physical model because in this case, there is no need to go

through an iterative optimization problem. The add/drop decision is merely based on the

mentioned transmission and interference ranges.

To build a realization, we randomly pick the first transmitter-receiver pair (i, j) and

assign a random MQAM constellation size (i.e. spectral efficiency) to it. Then we check

if dij lies within the transmission ranges corresponding to the chosen constellation size. If

not, we step down to a constellation with the largest size that is smaller than the current

constellation. The reason is that its corresponding transmission range is larger than the

previous one and it may include dij . We repeat this step (if necessary) until the transmission
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range of the chosen constellation size covers dij . As discussed in Section 5.4, we construct

our DAG with potential links that satisfy the SNR threshold of γ1, therefore this step always

has a solution. The next step is fixing the transmission power. In order for link (i, j) to have

a transmission capacity equal to log2Mq, node i’s power needs to be within the following

range:

γqσ
2

aij
≤ Pi ≤ Pmax. (5.8)

We do not set Pi equal to the lowerbound because, as discussed in [28], the optimal solu-

tion with the protocol model may be unachievable and we need to find the achievable result

by performing a “feasibility test” to find the real supported rate/energy by the protocol

model in Section 5.4. In the next section, we will explain why setting the powers at their

lowerbound is not suitable when we check the achievable result with the protocol model.

For now, we assume that we set Pi =
γqσ2

aij
(1 + δ), for some δ > 0 and check to see if the

resulting Pi remains less than or equal to the maximum power. If the resulting Pi is higher

than Pmax, then we need to step down to a lower capacity level and try to schedule the link

with the lower capacity. If we are already considering the smallest constellation size and

the resulting Pi is higher than Pmax, then we drop the link from the realization. For every

randomly picked transmitter-receiver pair, the following two conditions should be satisfied

in order for the link to be added to a realization. If we can not find any constellation size

that satisfy these conditions we drop this particular link.

• Condition 1: A new transmitter should not interfere with already activated receivers

• Condition 2: The receiver should not be inside the interference range of other trans-

mitters.

We also check all other broadcast links from the chosen transmitter to its next hop nodes

with the same constellation size and add them to the realization if they satisfy Condition 2

and Condition 3 (presented below):

• Condition 3: The constellation size is the largest such that its transmission range still

covers the distance between transmitter and receiver
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In this way, additional links are added until no further link can be added. Once a

realization can not be extended any further, we build the next realization, starting with a

new randomly selected link. The process continues until every feasible link is part of at

least one realization.

5.4 Joint Scheduling and Network Coding Optimization Prob-

lem

Scheduling transmissions assuming the interference model is either the physical model or

the protocol model results in different sets of realizations for each model. We assume there

are a total of Mph realizations built based on the physical model and a total of Mpl re-

alizations based on the protocol model. We represent the m-th realization of each model

with Nph
m =

(
V ph
m , Ephm

)
and Npl

m =
(
V pl
m , E

pl
m

)
, where V and E represent the node and the

link sets of each realization, respectively. The capacity of each link at each realization is

determined by the spectral efficiency of the active constellation size at the transmitter of the

link. The set of all the realizations for the physical and the protocol models are shown by

Nph =
{
Nph

1 , ..., Nph
Mph

}
and Npl =

{
Npl

1 , ..., N
pl
Mpl

}
, respectively. We then formulate the

joint scheduling and network coding optimization problem to either maximize the through-

put or minimize the energy for each of these sets of realizations based on the formulation

presented in Section 3.3. According to [28], the result of the optimization problem based

on the protocol model may be unachievable due to the ignored interferences. Although

the optimization problem based on the protocol model results in a maximum throughput

or minimum energy, depending on the objective function, that result might not be realiz-

able when we activate the transmissions with their transmission powers. The transmission

powers are fixed when building the realizations. To compare the actual performance of the

physical and the protocol model, we need to find the actual feasible solution by the protocol

model through a “feasibility test” [28]. In order to do that, we calculate all the neglected

interferences at the receiving nodes of every activated link in every realization and make
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sure the SINR at the receivers are still larger than the γq of the constellation size assigned

to that transmission. Note that we previously set transmission powers at every transmitter

node at Pi =
γqσ2

aij
(1 + δ), which accounts for SNR only. If the SINR at a receiving node is

less than its associated γq, we need to lower the transmission capacity (stepping down to

γq−1 threshold), while keeping the same power level and re-check the SINR condition. In

this way, we adjust the link capacities of each realization based on the actual and existing

interferences in the environment. If in a realization there is a receiving node j that can

not satisfy the SINR condition with any of the γq thresholds considered for its transmitter

(node i), then we need to remove node j and link (i, j) from the considered realization. If

node i is not transmitting to any other node during the considered realization, then we need

to remove i from the realization (deactivate it). In this case, we need to re-calculate all the

SINR values in the realization because removing a transmitter decreases the interference

level. This re-calculation is done to re-check the capacity levels that are adjusted for the

feasible solution.

This discussion then also explains our choice of initial Pi’s. We set them equal to the

power level sufficient to satisfy the SNR ratio multiplied by (1 + δ). If we fix them to

be the exact lower bound in (5.8), then assuming that almost all of the realizations have

more than one transmitter node, when we calculate the interferences for the SINR values of

the achievable protocol model, we need to change almost all of the transmission capacities

because the power levels are marginal. This implies that the slightest amount of interference

causes the SINR values at receiving nodes to fall below their γq threshold. To prevent this,

we fix the powers at values higher than their corresponding lower bound.

In using the joint optimization problem of Section 3.3, we should note that since we use

MQAM signal constellations, the link capacities are discrete values and are equal to log2Mq

(in bits/second) for unit bandwidth, assuming that transmitter i transmits with constella-

tion size Mq in realization Nf
m. Also note that we formulate the optimization problem for

the expanded graph to preserve the broadcast property of the wireless transmissions.

We modified the optimization problem of Section 3.4 for energy minimization as follows.
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First we fix the multicast throughput based on a feasible throughput r that results from

solving the throughput maximization problem. To formulate an energy minimization prob-

lem, we assume that node i ∈ V f
m transmits with power P

(m)
i . These transmission powers

are fixed when we schedule the wireless transmissions using a scheduling method, which

is described in Section 5.3. The energy used by this node to transmit in the realization

Nf
m depends on the duration of time that this node is transmitting with power P

(m)
i . The

duration of time depends on both the time fraction that node i can transmit, τm, and is also

proportional to the ratio of the broadcast flow to the broadcast capacity of the particular

node and is thus equal to τmP
(m)
i

f
(m)
i

C
(m)
i

, where f
(m)
i and C

(m)
i are the broadcast flow and

the broadcast capacity of node i, respectively. The flow f
(m)
i is equal to flow f

(m)

(i,́i)
in the

expanded graph for broadcast nodes and equal to f
(m)
ij for nodes that only transmit on one

link. The capacity C
(m)
i is determined in Section 5.3 by the scheduling heuristic. If the

transmitting node is only active on one link (i, j) during realization Nf
m then C

(m)
i = C

(m)
ij .

As we explained in Section 5.3, we pick the same constellation size for broadcast links of a

transmitter. Overall, for all the realizations, the objective function for minimizing the en-

ergy becomes
M∑
m=1

∑
i∈V f,(T )

m

τmP
(m)
i

f
(m)
i

C
(m)
i

, where V
f,(T )
m denotes the set of active transmitters

in realization m. Note that the objective function also handles situations where the optimal

value of the total flow that originates from a certain node i during the m-th realization is

zero. However, the objective function now has become non-linear. To maintain the linearity

of the objective function, we use the iterative approach of Section 3.4. The iterative version

of the energy minimization problem for a given multicast rate r becomes:

min

M∑
m=1

τmP
l(m) (5.9)

subject to

M∑
m=1

τm = 1,

0 ≤ τm ≤ 1,
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0 ≤ f (m),l
i,j (d) ≤ f (m),l

i,j , ∀m ∈ {1, ...,M} ,∀(i, j) ∈ Eg, ∀d ∈ D,

0 ≤ f (m),l
i,j ≤ τmc(m)

ij I
Ef

m
((i, j)), ∀m ∈ {1, ...,M} ,∀(i, j) ∈ Eg,

M∑
m=1

(
∑

j:(i,j)∈Ef
m

f
(m),l
i,j (d)−

∑
j:(j,i)∈Ef

m

f
(m),l
j,i (d)) = σi, ∀i ∈ V g, ∀d ∈ D,

where σi = r if i = s, −r if i = d, or 0, otherwise. We also have,

P 1(m) =
∑

i:(i,j)∈Ef
m

P
(m)
i ,

P l(m) =
∑

i:(i,j)∈Ef
m

P
(m)
i

f
(m),l−1
i

C
(m),l−1
i

,

as part of the optimization problem. The variables f
(m),l−1
i and C

(m),l−1
i denote f

(m)
i and

C
(m)
i in iteration l − 1 respectively. In each iteration, the optimization problem (5.9) is

solved and the iterations will continue until convergence, i.e., until the solution does not

change in two successive iterations. As we explained in Section 4.2, network coding schemes

can be designed to achieve the maximum throughput or the minimum energy solution of the

above optimization problems. For more details, the reader is referred to [21], [22], and [23].

5.5 Simulation Results

As discussed, the interference range in the protocol model is a parameter introduced for

this model only and there is no similar parameter in the physical model so that we can

find appropriate values of the interference range based on that. The optimal interference

range is the one that results in the maximum achievable throughput. Before comparing

the overall performance of the physical model and the protocol model, we need to decide

which interference range is more suitable for the protocol model. To decide about the

interference range, we perform simulations for maximum throughput optimization problem

with various interference ranges and compare their results. The rest of our simulations are

based on the fixed interference range that we pick as the best choice. Later in this section, we

compare the results of maximizing the throughput when the interference model is either the

65



physical or the protocol model. We also determine the achievable result with the protocol

model. To compare the computational complexity of the physical model and the protocol

model (with achievable solution), we also consider the CPU times of building(/modifying)

the realizations based on either model. We also extend our simulations to the energy

minimization problem and compare the performances and the CPU times of the two models

for that problem. The absolute times that we present are dependent on the specifications

(CPU speed, and amount of RAM) of the computer that is used for simulations, but there

is no reason to believe that the ratio of the CPU times would change if a different computer

is used for simulations.

In order to simulate a wireless multicast network, we consider N nodes are randomly

placed in a two-dimensional rectangular field of size aλ × bλ, where λ is the communica-

tion wavelength and b = 3a.We also consider the three values 4, 6 and 8 for the average

density of the neighboring nodes (D) in our simulations. All the simulations are performed

for 100 random networks. The constellation sizes are assumed to be M = {2, 4, 16, 64},

corresponding to BPSK, 4QAM, 16QAM, and 64QAM modulations. The spectral efficien-

cies associated with these constellation sizes are 1, 2, 4, and 6, respectively. Assuming a

normalized bandwidth, these values are equal to link capacities as well (in bits/second).

Each node i has a maximum transmission power Pmax (Pi ≤ Pmax). In our simulations

we assumed Pmax = 500mW , δ = 0.1, σ2 = 1mW , and BER=10−4. The PC that is used

in these simulations has an Intel Core i7-2600 processor (3.40GHz) and 16 GB of RAM.

As explained in Section 5.3, we build a set of directed links from wireless nodes using the

set of potential links. We then pick a random node as a multicast source node s and also

pick nD random nodes as multicast destinations. We consider all the paths from the source

node to each destination node and define a directed graph based on the superposition of

those paths. The number of destinations in our simulations is 2. Now starting from this

DAG, we once build a set of realizations assuming the underlying interference model is the

physical model according to the procedure in Section 5.3.1, and also build another set of

realizations assuming the interference model is the protocol model (based on Section 5.3.2).
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Then the optimal solution (rate/energy) of each of the two sets are determined according

to the optimization problem discussed in Section 5.4. Furthermore, the solution for the

protocol model is modified to incorporate the interferences for an achievable solution.

5.5.1 Determining the Optimal Interference Range for the Protocol Model

Different values of the interference range can affect the optimal solution by the protocol

model. If the interference range is set too small, more transmitters are encouraged to

transmit at the same time while they increase the interferences at the receivers and result

in lowering the performance of the achievable solution. On the other hand, if the interference

range is very large, it prevents some of the nodes from transmitting at the same time, while

their receivers could potentially tolerate the accumulated interference of those nodes. In this

case also the performance is affected. Therefore, finding an interference range that results

in the best performance is a balancing act. Here, we fist examine the result of varying the

interference range for a network with N = 50 and N = 100 nodes and different densities

in flow maximization problems when the interference model is the protocol model. We also

re-calculate the link capacities to take interferences into account for an achievable solution.

We then repeat the optimization problem for the set of realizations with links of modified

capacities to get the “achievable protocol model” solution. For every transmitter node in

our simulations, we consider Ŕi = (1 + ∆)R(1) and set ∆ to {0, 0.25, 0.5, ..., 2}. Figure 5.4

shows the maximum throughput results for the protocol model and the achievable result

with the protocol model when N = 50 and D = {4, 6, 8}. The results show that when

∆ is in the range of [0.75, 1.25] the achievable maximum rate is at its maximum. Figure

5.2 shows the same result for N = 100. All of the figures suggest setting the interference

range as twice the value of R(1) is a good choice for the achievable protocol model because

the achievable throughput with protocol model is highest around this value. We keep this

assumption for the rest of our simulations.
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Figure 5.1: Comparing the maximum throughput optimization results for different inter-
ference ranges, N = 50, D = {4, 6, 8}.

Figure 5.2: Comparing the maximum throughput optimization results for different inter-
ference ranges, N = 100, D = {4, 6, 8}.

In the above simulations we fixed the value of δ = 0.1. We also explored how sensitive
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the result of the achievable protocol model is to this parameter. We compared the result

of maximizing the throughput for N = 50 and D = 6 for δ = 0.1 and for δ = 0.2. Higher δ

values fix the nodes’ transmission powers at higher levels. The result of this comparison is

shown in Figure 5.3, suggesting that the results are not very sensitive to δ. Furthermore, we

calculated the 95% confindence intervals for the protocol model and the achievable protocol

model results of different δs and they are overlapping, which confirms that the differences

are not statistically significant. In the rest of our simulations we assume δ = 0.1.

Figure 5.3: Comparing the effect of changing δ in maximum throughput optimization
problems, N = 50, D = 6.

5.5.2 Throughput Optimization with Protocol and Physical Models

Now that we fix the interference range of the protocol model as twice R(1), we compare the

performance and run-time complexities of the protocol model and the physical model. We

also consider the achievable results with the protocol model and compare it with that of

the physical model. We change the network size from 10 to 100 when the density of the

network D ranges from 4 via 6 to 8. The results of our simulations are average values of the

optimization results of 100 randomly generated networks. Figure 5.4 shows the average of
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the maximum throughput optimization results for the physical model, the protocol model,

and achievable results with the protocol model. The figure shows that the achievable result

follows the physical model result very closely for all network sizes and for different densities.

Also the average throughput decreases with an increase in the network size and the density.

For larger networks, this is due to the fact that the source and destinations are further apart,

consequently the path between the source and the destinations are longer and interferences

lower the throughput. For denser networks, again, a higher level of interference is the reason

for the drop in the throughput. Figure 5.5 shows the average number of the removed links

from the protocol model realizations when we adjust the link capacities for the achievable

solution. The figure shows that the number of removed links is larger in denser networks,

which is due to the higher interferences in those networks. The figure also shows that the

number of removed links is higher for larger networks, as there are typically more realizations

in larger networks and therefore there are more instances of calculating the SINR that result

in eliminating links. Figure 5.6 shows the average CPU times of building realizations when

the interference model is the protocol or the physical model and modifying the realizations

for the achievable protocol model plus the time it takes to solve the optimization problems

to maximize the flow based on each of the mentioned models. Overall, the denser the

network, the higher is the required CPU time. The reason is that it takes more time to

build realizations in denser networks due to more interference from the adjacent nodes and

also having more feasible links in those networks. That is because in denser networks, there

are more unsuccessful attempts to add links to realizations in both interference models. Also

due to the higher interferences, there are statistically more realizations in denser networks

to ensure each link is a member of at least one realizations, which also affects the time it

takes to solve the optimization problem for those networks. Second, the overall CPU times

of obtaining an optimal answer when the interference model is the physical model is much

larger (by up to about 30 times) than the achievable protocol model. The reason is that it

takes longer to generate a sufficient set of realizations when using the physical model. For

every realization, the scheduling method for the physical model has to solve an optimization
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problem to determine if every randomly selected link can or cannot be part of the considered

realization. Also, the slope of increasing the CPU time with the increase in the size of the

network for the achievable protocol model is much less than that of the physical model. The

reason is that although the CPU times are a function of the network size but the protocol

model is faster and a lot less complex than the physical model. According to Figure 5.4, the

optimal answers are very close, therefore we can conclude that using the achievable protocol

model is more efficient while still providing quite accurate results.

Figure 5.4: Comparing the maximum throughputs of the different interference models
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Figure 5.5: The average number of removed links from realizations based on the protocol
model

Figure 5.6: Comparing the CPU times when using different interference models
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5.5.3 Energy Optimization with Protocol and Physical Models

The energy minimization problems are always considered for fixed (/predetermined) multi-

cast rates. Therefore, we first consider a fixed multicast rate for the wireless network and

then minimize the energy that is required to deliver the fixed rate through the network.

Since we have to fix the rate before minimizing the energy, we are required to determine

a rate that is achievable with both interference models. For each multicast network that

we simulate, we first find the maximum achievable throughput with the protocol model

(shown with rapl), which on average is slightly lower than the rate when we use the physical

model. We then fix the rate to each of the {0.7, 0.8, 0.9} × rapl and minimize the transmis-

sion energy once assuming that the interference model is the physical model, and another

time assuming that it is the protocol model. Again since the protocol model alone does not

consider interferences, we need to re-adjust/modify the link capacities of the realizations

from the physical model and solve the energy minimization problem again for an achievable

solution. Our simulation results for networks with different densities and two destination

nodes (nD = 2) are as follows: Figure 5.7 compares the minimum energy required to deliver

rates r = {0.7, 0.8, 0.9} × rapl, when D = 6 for different interference models. As shown in

the figure, the minimum energy with the protocol interference model is the lowest energy

compared to the other two results and the achievable protocol model has the highest min-

imum energy. The minimum energy with the protocol model is lower because it neglects

interferences and thus it does not need to increase a transmitter’s power to compensate

for the interference. Also the achievable protocol model results in the highest minimum

energy. When we re-adjust the transmission capacities of transmitters to include the effect

of interference in the protocol model, the transmission capacities either stay the same or

decrease to a level that their corresponding γ can satisfy the SINR ratio at receiving nodes

of each transmitter. Therefore, supporting the same throughput with links that have lower

capacities results in an increase in overall energy, because according to the objective func-

tion that we consider for minimizing the energy (Relatoin 5.9), the required transmission

power is inversely proportional to the capacities. The difference between the results of the
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physical model and the achievable protocol model are statistically significant for all of the

network sizes and therefore it seems the achievable protocol model is not the best choice

for minimizing the transmission energy because it does not follow the result of the physical

model very closely. Figure 5.8 shows the result of the minimum energy optimization prob-

lem for different models and different densities. This figure shows that the minimum energy

required to deliver a fixed rate increases with density for all of the interference models, which

is due to the additional interferences of the neighbors in dense networks that require higher

transmission powers compared to less dense ones. It also shows that the protocol model

results in the lowest minimum energy which of course is not necessarily achievable. The

achievable protocol model results in higher minimum energy levels that is due to introducing

the neglected interferences in the solution. As a result, the capacity levels of the links tend

to become lower, which might affect the link rates and the overall throughput. Therefore,

a higher minimum energy is required to deliver that rate. The minimum required energy

when scheduling under the physical model is lower than the minimum required energy when

scheduling under the achievable protocol model for all network sizes and that difference be-

comes statistically significant for almost all networks beyond 40 nodes (for clarity, we did

not include the confidence intervals in the plot). As a result, it seems the achievable pro-

tocol model might not be a good fit for minimum energy problems. Figure 5.9 compares

the average CPU times of building realizations when the interference model is either the

protocol or the physical model and modifying the realizations for the achievable protocol

model. It also considers the time it take to solve the flow maximization problems based on

the physical and the achievable protocol model as well as the time to solve the energy mini-

mization problem. The figure shows that the CPU times of the solutions using the physical

model is 3 to 4 times that of the achievable protocol model. Also the curves seems to be

exponential with respect to the number of nodes in the networks, which is different from

the linear curves of CPU times of Figure 5.6. The most time-consuming procedure in both

curves for physical and protocol model (that causes their run-time to be a lot closer than

the comparison in Figure 5.6) is the iterative energy minimization optimization. The other
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properties such as higher CPU times for denser networks, are similar to Figure 5.6 and are

justified similarly. Overall, for energy minimization problems, simplifying the interference

model from the physical to the protocol model in hope of having a less complex problem

does not seem to be very promising as the performance of the achievable protocol model is

not very close to that of the physical model and its run-time complexity is also not very

low.

Figure 5.7: Comparing the minimum energy required to deliver a fixed rate for different
interference models , r = {0.7, 0.8, 0.9} × rapl, D = 6, nD = 2.
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Figure 5.8: Comparing the minimum energy required to deliver a fixed rate for different
interference models , r = 0.7× rapl, D = {4, 6, 8}, nD = 2.

Figure 5.9: Comparing the CPU times when using different interference models, r =
0.7× rapl, D = {4, 6, 8}, nD = 2.
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5.6 Conclusions

In this chapter, we compared the performance and run-time complexity of two well-known

interference models in wireless networks. We applied our comparison to networks that

use transceivers with MQAM modulation. We compared how scheduling based on the

physical or the protocol interference models affects the result of maximizing the throughput

or minimizing the energy in multicast networks. Also, since the protocol model does not

consider interferences in scheduling transmissions, we used a feasibility check to adjust

the transmission capacities of the transmitters in the protocol model so that they take

interferences into account. Then we examined the achievable result for the protocol model

after these adjustments, which we called the feasible protocol model. Furthermore, we

performed simulations in order to fix the interference range of the protocol model, which

is a parameter unique to the protocol model. Our results on maximizing the throughput

shows the result with the achievable protocol model is very close to the result with the

physical model, while its run-time complexity is significantly lower than that of the physical

model. It indicates that the achievable protocol model can be a good replacement for the

much more complex physical model when solving flow maximization problems. The energy

minimization results, however, show that the minimum energy based on the achievable

protocol model is not very close to that of the physical model. Its run-time complexity is

lower than that of the physical model, but less so than in the case of studying maximum

throughput problems. So based on our results, the physical model is a better choice when

studying energy minimization problems because the achievable protocol model does not

result in a very accurate solution while its complexity is also quite high.
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Chapter 6

Capacity-bundling Scheduling: An Improved MAC

Scheme for Joint Scheduling and Network Coding

in Wireless Networks

This chapter introduces a new scheduling heuristic for multiple access in wireless commu-

nication networks. This new heuristic is based on activating links with similar capacity

simultaneously and we apply them to our joint MAC scheduling and network coding opti-

mization problem. To formulate the problem, a physical layer interference model capable

of handling variable-power variable-rate scenarios is considered. Our simulations show that

the new scheduling heuristic, referred to as capacity-bundling, improves significantly over

the existing scheme which do not impose any constraint on the capacity of the links that

are simultaneously activated. We perform our simulations for multicast scenarios of net-

works that employ a set of embedded M-ary Quadrature Amplitude Modulation (MQAM)

signal constellations for transmission. The improvement resulting from the new scheduling

scheme is up to about 80% for the throughput, and about 55% for the energy consumption

in the scenarios simulated in our work. The network model in this chapter is the same

as the model presented in Section 3.1. The channel model is adopted from Section 5.2.1

and the interference model is the physical model (presented in Section 5.2.2). The joint

optimization problems for energy and throughput are solved based on Section 5.4.
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6.1 Capacity Bundling Scheduling

The joint optimization problems discussed in the previous section are formulated based on a

given set of realizations for the wireless network. As discussed previously, finding the optimal

solution to this scheduling problem is NP hard, therefore researchers fall back on heuristics.

There are works that attempt to formulate the capacity region of the networks, but the

optimal scheduling for such networks are only computable under certain considerations such

as having single-hop transmission [42]. We however are more interested in finding practical

scheduling methods for general networks. It is well-known that depending on the selected

set of realizations, the solution of the optimization problem would differ. In this work

we propose an improved heuristic to determine realizations that result in better network

coding performance (higher throughput or lower energy consumption). In the following,

we briefly mention basic scheduling, used in the existing literature, for the construction

of realizations. We then provide an example to motivate the capacity-bundling scheduling

heuristic proposed here. This is followed by the detailed description and evaluation of the

proposed scheduling heuristic.

6.1.1 Basic Scheduling for a Network with Variable-Rate, Variable-Power

Nodes

Based on [9], realizations are packed while avoiding interferences (using the protocol model)

and until each node in the network is assigned to be transmitter and receiver at least once

(except the source and destination nodes). The mentioned scheduling has been formulated

based on the protocol model and thus assumes nodes with fixed transmit power and links

with fixed capacities. Here we however use a modified version of it adapted to the physical

interference model. This is in fact the same scheduling heuristic that we used in Section

5.3.1 and we refer to it as “Basic Scheduling”. Preliminary assumptions about the network

and the modulation are also similar to the ones explained in Section 5.3.
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6.1.2 Capacity-bundling for a Network with Variable-Rate, Variable-Power

Nodes

The link capacities in our model are a function of both the transmission powers and the

constellation sizes. Furthermore, both the total capacity of a link Cij and the effective

capacity of a link during a specific timeshare, C
(m)
ij , depend on the scheduling timeshares and

link capacities, c
(m)
ij . Now assume that the link capacities of a network are equal to either c1

or c2 and c1 < c2. In the ideal case, if we can schedule links with the same capacity together,

then according to the capacity constraint of our joint optimization problem and the fact

that the summation of all the timeshares is equal to a working cycle, we expect that the time

share associated with realizations that have lower capacity links increase and the timeshares

of realizations containing higher capacity links decrease, while collectively offering a higher

common rate r to all destinations. As the working cycle is normalized, bundling the large

(small) capacities in the same realization causes their respective timeshares to have small

(large) values. On the other hand, if a link with very large capacity is scheduled with one

which has a small capacity, the resulting realization may be assigned a relatively large time

share. The flow on the higher capacity link may not be large enough during the realization

to fully utilize the link capacity (link flows are upperbounded by τmc
(m)
ij I

Ef
m

((i, j))).

Next we present an example that shows how capacity-bundling helps to improve the

throughput.

Example 5.1. Consider the wireless network shown in Figure 6.1. This network is the

wireless version of the butterfly network presented in [1]. The network has one multicast

source node S, and two multicast destination nodes d1 and d2. The capacity of links (S, t),

(t, w), and (t, d1) is equal to 2 packets per timeslot, while the other links have unit capacities.

Figure 6.2 shows a set of realizations from basic scheduling presented in [9], [10]. Maximizing

the throughput for this set results in: τ1 = τ2 = 1
4 , and τ3 = 1

2 , and the maximal rate using

basic scheduling is rB = 3
4 . Now if we add new realizations based on capacity-bundling,

shown in Figure 6.3, then solving the optimization problem for the set with 7 realizations
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results in

τ = {0.2810, 0.1398, 0.0730, 0, 0.0602, 0.3270, 0.1190} ,

and the maximal rate with capacity-bundling is rCB = 4
5 , which is higher than rB. This

second set of realizations is derived using a heuristic that bundles links with equal capacity in

the same realization, explained below. Optimizing over these additional realizations results

in MAC schedules which support higher throughputs. As the results reported later in this

paper show, this improvement increases with network size and can be quite substantial. �

Figure 6.1: Wireless butterfly network with different link capacities

Figure 6.2: A set of realizations using basic scheduling
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Figure 6.3: A set of additional realizations based on scheduling links with equal capacities

Therefore, we propose to derive additional realizations by scheduling links with equal

capacities in the same realization. Extending the basic scheduling heuristic discussed above,

to build realizations based on bundling similar capacity links, we start with links of the

highest capacity, and only pack together, in the same realization, links with the same

capacity that do not violate the SINR constraint of the already activated links. This process

continues until we cannot add another link without violating the SINR constraints of already

established links. We repeatedly generate realizations at this capacity level until all possible

links have been scheduled at least once. Then we continue with the next lower capacity level

in our system. All the preliminary steps (towards building a directed graph) along with

the assumptions regarding the node placement and BER, are the same for the two schemes.

The only difference between the additional realizations based on bundling links of equal

capacities and those of basic scheduling is in the optimization problem that determines
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the realizations. For realizations that only schedule links of equal capacity, all the SINR

thresholds are the same. To form the final set of realizations, we add these additional

realizations (such as the ones shown in Figure 6.3) to the ones derived from the basic

scheduling heuristic (such as the ones shown in Figure 6.2).

In the next part, we compare the results of maximizing the throughput and also minimiz-

ing the energy for a fixed rate using the two different scheduling heuristics: basic scheduling

and our proposed capacity-bundling scheduling.

6.2 Simulation Results

6.2.1 Throughput Maximization with and without Capacity-Bundling

The assumptions for the networks simulated in this chapter are the same as the one ex-

plained in Section 5.5. After building a DAG for every network, we use the basic scheduling

described in Section 6.1.1 and determine a set of realizations for this network. We then

add new realizations based on bundling links with equal capacities, as discussed in Section

6.1, to the set of realizations from basic scheduling and solve the throughput maximization

problem of Section 6.1 to obtain the maximum throughput for the realizations from basic

scheduling as well as the capacity-bundling realizations. The results are shown in Figures

6.4 and 6.5. Keeping the network density constant at 6 and varying the network size, one

can observe from Figure 6.4 that the throughput for capacity-bundling is always higher

than that of basic scheduling. The average throughput decreases with an increase in net-

work size since in larger networks, the source and destinations are further apart and more

links along the paths from the source to the destinations might act as bottlenecks for the

information flow. We also calculated the 95% confidence intervals for these results and the

difference between the two scheduling heuristics are statistically significant. As an example

the confidence intervals for D = 4 are shown in Figure 6.4.

We define the throughput improvement of the capacity-bundling, (CB), compared with
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basic scheduling, (B), as follows:

ηr(CB−B) =
rCB − rB

rB
. (6.1)

Figure 6.5 shows ηr(CB−B). The maximum throughput improvement for different network

densities is between about 50% to about 80% for the simulated networks. The improvement

generally increases with network size, which shows using realizations from capacity-bundling

is more advantageous in larger networks.

Figure 6.4: Comparing the average throughput of basic scheduling with that of capacity-
bundling, D = {4, 6, 8}, nD = 2
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Figure 6.5: The throughput improvement of capacity-bundling over basic scheduling,
D = {4, 6, 8}, nD = 2

Figure 6.4 also shows that the maximum throughput of both basic scheduling and

capacity-bundling decreases slightly with an increase in D which is due to the increased

level of interference in denser networks. On the other hand, Figure 6.5 shows that the

throughput improvement slightly increases with the density, which shows realizations from

capacity-bundling are more advantageous in denser networks. For example, for a network

density of 8 and larger networks, the improvement nearly reaches 80%.

We also investigated the number of active realizations (that have non-zero time fractions)

for maximum throughput solutions for basic scheduling and capacity-bundling solutions.

Figure 6.6, shows the average number of active realizations for D = 6. This figure shows

that the number of active realizations in a capacity-bundling set is larger than that of basic

scheduling. A large fraction of active realizations in the capacity-bundling set are those

additional realizations that bundle links of equal capacity. Furthermore, we also compared

the percentage of realizations that have links whose flows are less than their effective capacity

in basic scheduling and capacity bundling scheduling. Figure 6.7 shows that this percentage

is higher in basic scheduling. Capacity bundling results in network realizations that use the
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available link capacities more efficiently, ultimately resulting in higher overall throughputs

compared to basic scheduling as depicted in Figure 6.4. Consider the following parameter:

ζ =

M∑
m=1

∑
i∈V f

m

(
C

(m)
i − f (m)

i

)

Ma

M∑
m=1

∑
i∈V f

m

C
(m)
i

, (6.2)

whereMa represents the number of active realizations. Parameter ζ is a normalized measure

of how under-utilized the links in each scheduling scheme are. In Figure 6.8, we have plotted

the average value of ζ (averaged over all simulated networks per realization) for both basic

and capacity-bundling schedules. This figure shows that the under-utilized capacity in basic

scheduling is about 4 to 7 times higher than that of the capacity bundling scheduling and

that ζ increases with network size for the basic scheduling method.

Figure 6.6: Average number of active realizations in different scheduling methods, D = 6,
nD = 2
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Figure 6.7: Comparing the percentage of realizations with links that under-utilize their
capacity, D = {4, 6, 8}, nD = 2.

Figure 6.8: The average normalized under-utilized capacity for basic and capacity-
bundling scheduling methods, D = {4, 6, 8}, nD = 2.
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6.2.2 Energy Minimization with and without Capacity-Bundling

In minimum energy problems, we first consider a fixed multicast rate for the wireless network

and then minimize the energy that is required to deliver the fixed rate through the network.

Since we have to fix the rate before minimizing the energy, we are required to determine

a rate that is achievable. For each multicast network that we simulate, we first solve the

throughput maximization problem and use basic scheduling to schedule transmissions (the

result is rB, which on average is lower than rCB). We then fix the rate to {0.7, 0.8, 0.9}×rB

and minimize the transmission energy under both scheduling heuristics for these three rates.

Varying the Network Size

We explore minimizing energy for different network sizes with and without capacity-bundling.

Minimum required energy with basic scheduling and capacity-bundling are denoted by EB,

and ECB, respectively. Figure 6.9 compares the minimum required energy using the two

scheduling heuristics for different network sizes. Each group of three plots show the mini-

mum energy results for the three mentioned fixed rates. For each group, from top to bottom,

the plots belong to r = 0.9× rB, r = 0.8× rB, and r = 0.7× rB, respectively. The results

show that an energy-optimal solution derived with basic scheduling consumes significantly

more energy compared to the solution for the capacity-bundling scheduling. We also calcu-

lated the 95% confidence intervals of the results and the reported differences between the

two scheduling schemes are statistically significant. As an example, the confidence intervals

for r = 0.9 × rB are shown in Figure 6.9. Also the energy in both cases increase with the

number of network nodes, because as the network grows, the paths between the source and

destination nodes become longer.
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Figure 6.9: Comparing the minimum energy required to deliver a fixed rate using basic
and capacity-bundling scheduling methods, r = {0.7, 0.8, 0.9} × rB, D = 6, nD = 2.

Varying Neighboring Nodes Densities

Next, we focus on minimizing the energy for different node densities. In our simulations,

nD = 2 and D = {4, 6, 8}. We fix the rate at 0.7 × rB and then minimize the energy

as explained at the beginning of this section. Our results in Figure 6.10 show that the

minimum required energy to deliver a fixed rate increases with D, which may be due to the

additional interferences of the neighbors in dense networks that requires higher transmission

powers compared to less dense ones.
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Figure 6.10: Comparing the minimum energy required to deliver a fixed rate using basic
and capacity-bundling scheduling methods, r = 0.7× rB, D = {4, 6, 8}, nD = 2.

We also define ηε(CB−B) as the percentage of energy saving that results from switching

the scheduling heuristic from basic scheduling to capacity-bundling.

ηε(CB−B) =
EB − ECB
EB

. (6.3)

Our simulation results in Figure 6.11 show that ηε(CB−B) increases slightly with network

size and we can save up to about 55% in energy if we switch from basic scheduling to

capacity-bundling scheduling. We save energy when deriving realizations based on our

proposed heuristic because, as shown in Figure 6.6, there are more active realizations in

a capacity-bundling solution compared to basic scheduling. As a result, the transmissions

are spread among a larger number of realizations which decreases the interferences among

transmissions and hence lowers the required transmission power compared to the required

power when the realizations are based on basic scheduling.

90



Figure 6.11: The energy saving of capacity-bundling compared to basic scheduling, r =
0.7× rB, D = {4, 6, 8}, nD = 2.

6.3 Conclusions

In this chapter, we introduced a new scheduling heuristic for joint optimization of MAC

scheduling and network coding in wireless multicast networks. We proposed to schedule

links of equal capacity in the same realization, hence the term “capacity-bundling”. To

schedule transmissions with our proposed scheme, we used the physical interference model

developed for multi-rate, multi-power radios, described in Chapter 5. Our simulation results

show that scheduling based on capacity-bundling improves the result of both throughput

maximization and energy minimization problems compared to the corresponding results

from basic scheduling. The improvement is up to about 80% and 55% in the throughput

maximization and energy minimization problems, respectively. Throughput improvements

are more pronounced as the network size grows and networks get denser. Energy savings are

rather constant across network density and have a slightly increasing trend with network

size. Overall, we introduced link capacities as a new critical factor in selecting realizations.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Applying network coding to wireless networks brings new opportunities in terms of improv-

ing the throughput and minimizing the energy consumption as well as unique challenges

due to the broadcast nature of the wireless media. In this work, we focused on the problem

of joint scheduling and network coding in those networks. The main conclusions for the

studied problems are summarized below.

• We formulated the joint scheduling and network coding optimization problem for

wireless networks in a linear form with schedule-specific flows. Having flows whose

membership to different realizations are known in the optimal solution is necessary

for designing network codes. To preserve the broadcast property of the wireless trans-

missions, we also adapted a wireless broadcast model to correctly model those trans-

missions.

• We studied the requirements to adapt a network code that is designed for the wired

networks to the wireless networks. We showed that if the network code design method

is not able to accommodate unequal timeshares, the network might not achieve the

predicted performance by the optimization problem. We also explained wireless-aware

code constructions that preserve the broadcast property of the transmissions in these

networks.
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• We compared the performance and run-time complexity of two well-known inter-

ference models in wireless networks. We applied our comparison to networks that

use transceivers with MQAM modulation. We compared how scheduling based on

the physical or the protocol interference models affects the result of maximizing the

throughput or minimizing the energy in multicast networks. Also, since the proto-

col model does not consider interferences in scheduling transmissions, we used an

extension of the protocol model, called feasible protocol model, which adjusts the

transmission capacities of the transmitters in the protocol model so that they take

interferences into account. Based on our simulations we conclude that the achievable

protocol model can be used without loss of performance in throughput maximization

problems. It also has significantly lower run-time complexity than the physical model.

In energy minimization problems however, the physical model might be a better choice

because the performance of the achievable protocol model is significantly lower while

its complexity is also quite high.

• Finally, we studied an existing heuristic method of scheduling and introduced a

new one for wireless multicast networks. We proposed to schedule links based on

a “capacity-bundling” method which is scheduling links of equal capacity in the same

realization. In our work, we considered the physical interference model suited for

variable-power, variable-rate nodes. Our simulation results show that scheduling

based on capacity-bundling substantially improves the result of both throughput max-

imization and energy minimization problems compared to the corresponding results

from basic scheduling.

7.2 Future Work

The work described in the thesis provides a basis for a number of future research oppor-

tunities. Our first suggestion is to study the effect of increasing the number of destination

nodes when comparing the performance and run-time complexity of the physical and the
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protocol model. Our simulations are performed for networks with two destination nodes. It

would be interesting to see if the performance of the protocol model in comparison with the

physical model improves or degrades for higher numbers of destination nodes. The problem

can be studied for both maximizing the throughput and minimizing the energy. Regarding

the effect of increasing nD on run-time complexity, we expect that the CPU times increase

with an increase in the number of destination nodes. The reason is that the number of rela-

tions in (3.4) and (3.6) is a linear function of nD and that adds to the complexity of solving

the optimization problem for both models. It should be investigated however weather the

difference between the run-time complexities of the two models persists, increases, or de-

creases with an increase in the number of destination nodes for both energy and throughput

problems.

Similarly, we propose to study the performance of the “capacity-bundling” scheduling

compared to the “basic scheduling” when the number of destination nodes increases. Such

a study would help to determine whether the performance gains of the capacity-bundling

method persist, increase or decrease with an increase in the number of destination nodes.

Another future work is devising new heuristics for scheduling wireless transmission.

Since this problem is NP-hard and is not explored in much depth, we suggest focusing

on other criteria (besides interference and capacities) that may be used when heuristically

forming realizations. Related to this, one could explore ways to determine bounds on max-

imum throughput or minimum energy problems in polynomial time to be able to evaluate

how good a proposed heuristic is. Our final suggestion about the future work is studying

optimization problems and code designs for networks in which only some of the nodes are

assigned/able to perform network coding. If some of the nodes can perform network coding

and some can only forward messages, then the optimization problems presented in our work

can not be readily applied to them. These networks need a new formulation for optimizing

any performance measure of interest. The new formulation should integrate the “relay and

forward” property of the routing messages at nodes that are not able to code with the

“flow conservation constraints” that are written per destination nodes for the ones that are
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able to code. Such a formulation for throughput should result in an optimal answer that

is upperbounded by the min-cut max-flow throughput and lowerbounded by the routing

throughput. Proper considerations are also required for designing network codes for such

networks.
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Appendix A

Derivations for Chapter 3

A.1 Determining the Size of the Simulation Field Based on

the Average Number of Neighbor Nodes

Assume we have a network with N nodes. The nodes are randomly placed in a 2D rectan-

gular field. We assume the length (l) of the network is equal to αw. w is the width of the

field and we assume α is fixed (in our simulation α = 3).

l = αw

We want to determine the field size when we know the number of network nodes and also

we have fixed the average number of neighbor nodes. Each node has two radio ranges R1

and R2. Nodes inside R1 of a wireless node are connected to it, and the nodes outside R2

are not. Connectivity between R1 and R2 is distributed uniformly.

Now if we want to determine the probability of having a connection from node i towards

node j in a network with N nodes, we can define it as a Bernoulli distribution. ”Success”

is having a connection between the two nodes and ”Failure” is not having a connection.

This probability distribution function is a function of the distance between the two nodes
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as well. Therefore, we have a joint distribution for success and failure probabilities. The

distance between i and j is dij .

We can define these probabilities as follows:

Note that P (C) = P ((i, j) ∈ E) and P (D) = P ((i, j) /∈ E) and E is the set of network

edges.

p = P (C, dij) = P (C|dij ≤ R1)P (dij ≤ R1)

+P (C|R1 ≤ dij ≤ R2)P (R1 ≤ dij ≤ R2)

q = P (D, dij) = P (D|R1 ≤ dij ≤ R2)P (R1 ≤ dij ≤ R2)

+P (D|dij ≥ R2)P (dij ≥ R2)

in which:

P (C|dij ≤ R1) = 1

P (C|R1 ≤ dij ≤ R2) =
R2 − dij
R2 −R1

P (D|R1 ≤ dij ≤ R2) =
dij −R1

R2 −R1

P (D|dij ≥ R2) = 1

Also

P (dij ≤ R1) =
πR2

1

αL2

P (R1 ≤ dij ≤ R2) =
π
(
R2

2 −R2
1

)
αL2

P (dij ≥ R2) = 1− πR2
2

αL2
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For simplicity we replace dij with y. If we calculate P (C) from P (C, dij)

P (C) =

∫
P (C, y)dy

=

∫ R1

0

πR2
1

αL2
dy +

∫ R2

R1

π(R2 +R1)(R2 − y)

αL2
dy

=
πR3

1

αL2
+
π(R1 +R2)

αL2

(
R2

2 −
R2

2

2
−R1R2 +

R2
1

2

)

=
πR3

1

αL2
+
π(R1 +R2)(R2 −R1)2

2αL2

Now the probability of having n neighbors near node i (having n nodes that have

connection to node i, is a binomial distribution with p = P (C) and q = 1− P (C). Assume

the binomial random variable is z. The expected value of our binomial distribution is equal

to (N − 1)p, because if N is the total number of nodes in the network, a node can have a

maximum of (N − 1) neighbors.

It means:

E[z] = (N − 1)

(
πR3

1

αL2
+
π(R1 +R2)(R2 −R1)2

2αL2

)
now if we know the average number of neighbors that the network nodes should have, the

dimensions of the rectangular field are as follows:

Width =

√
(N − 1)π

αE[z]

(
R3

1 +
(R1 +R2)

2
(R2 −R1)2

)

Length = αL

In our simulation we showed the average number of neighboring nodes (i.e. E[z]) with D.
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