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Abstract 

 
The rapidly expanding technology of cellular communication and wireless 

communication, portable computers, and satellite services promises to make it possible 

for mobile users to have access to information anywhere and anytime. Users on a daily 

basis are using portable devices frequently. These types of devices can be classified 

primarily by their size, computational power, memory capacity, and power and battery 

lifetime. For example, Personal Digital Assistant devices (PDAs) are small portable 

computers run on AA batteries. They may be without disk and have more constrains in 

terms of memory capacity and computational power than other portable devices, which 

are called laptops, that have more computation power, memory, more storage capacity; 

however; their battery lifetime is shorter if we consider typical use of these devices.  

Finding approaches to reduce power consumption and to improve application 

performance is a vital and interesting problem to be investigated. Many approaches have 

been developed to address this problem. They range from hardware to software level 

approaches. Our work is at the application layer too, where an approach for adaptive 

mobile applications is developed. In this thesis, we propose a mobile code toolkit for 

adaptive mobile applications that runs on WindowsCE platform. With this toolkit we 

combine JVMs on both the proxy server and the mobile device as one virtual machine 

from the application point of view to dynamically split application objects between JVMs 

according to the mobile environment. 
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In the Name of Allâh, the Most Beneficent, the Most Merciful. 

(77)“ Does not man see that We have created him from Nutfah (mixed male and female 
discharge semen drops). Yet behold! He (stands forth) as an open opponent.(78) And he 
puts forth for Us a parable, and forgets his own creation. He says: "Who will give life to 
these bones when they have rotted away and became dust?"(79) Say: (O Muhammad AW) 
"He will give life to them Who created them for the first time! And He is the All-Knower 
of every creation!" (80) He, Who produces for you fire out of the green tree, when 
behold! You kindle therewith. (81) Is not He, Who created the heavens and the earth Able 
to create the like of them? Yes, indeed! He is the All-Knowing Supreme Creator. (82) 
Verily, His Command, when He intends a thing, is only that He says to it, "Be!" and it is! 
(83) So Glorified is He and Exalted above all that they associate with Him, and in Whose 
Hands is the dominion of all things, and to Him you shall be returned.”  

  
(Quran) Chapter 36, verses 77-83 
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1. Introduction 
 
 

 

The rapidly expanding technology of cellular communication and wireless 

communication, portable computers, and satellite services promises to make it possible 

for mobile users to have access to information anywhere and anytime. Users on a daily 

basis are using portable devices frequently. These types of devices can be classified 

primarily by their size, computational power, memory capacity, and power and battery 

lifetime. For example, Personal Digital Assistant devices (PDAs) are small portable 

computers run on AA batteries. They may be without disk and have more constrains in 

terms of memory capacity and computational power than other portable devices, which 

are called laptops, that have more computation power, memory, more storage capacity; 

however; their battery lifetime is shorter if we consider typical use of these devices.  

Regardless of the classification of portable devices, some portable devices are 

supported, and some will be, in the near future, supported with wireless connection to 

information networks such as the Internet and Intranets. 
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 The resulting computing environment is called mobile computing. Users of this 

environment are no longer required to maintain a fixed position in the network, and there 

is no restriction on their mobility. 

Already, there are a number of general-purpose (Horizontal) and domain specific 

(Vertical) applications of mobile wireless computing in use. Taxi dispatcher, mail 

tracking, point of sale are examples of Vertical applications, and Mail-enabled 

applications and information services are examples of Horizontal applications. 

 Users who are carrying personal portable devices will be able to send and receive 

emails from any location as well as be informed about specific predefined conditions 

irrespective of time and location. Mobile computing will result in a new approach of 

computing. 

 Due to battery restrictions, the mobile device will be quite often powered off. 

Short periods of activity are most likely to happen. Reading or sending email, querying 

remote databases, for example, will be quite often discontinued or separated by 

considerable amount of time where the device is disconnected. 

Since there is no restriction on the user mobility, the mobile device quite often 

will be used in different environments over short periods of time, where the user can 

cross between two different coverage areas of wireless communications. This process is 

called hand-offs. 
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Hand-offs are relatively straightforward in cellular voice communications due to 

the higher lose of information that can be tolerated; however, in data transfers, where the 

rate of data lose must be as low as possible, the hand-offs form a challenge. 

 

1.1 Mobile Computing Challenges 

 
Mobile computing poses new challenges. The major challenges can be 

categorized as following. 

1. Mobility Management and Scalability. 

2. Wireless Communication. 

3. Portability. 

 

1.1.1 Mobility Management and Scalability. 
 

On the fixed network, mobile users are able to establish a connection from 

different data ports at different locations. Wireless connection enables virtual unrestricted 

mobility and connectivity from any location within the area of radio coverage. Mobility is 

a new important component in system design. It affects to a certain extent the network 

level data management as well as the application level.  

Mobility of clients results in constantly changing topology of the system, calling 

for mobility of resources. Location management deals with mobile clients while 

configuration management refers to mobility of resources. In a mobile environment, the 
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location of the user can be considered as a variable whose value changes with every 

move from one location to another. Hence, location becomes a frequently changing piece 

of information.  

The fundamental trade-off in location management is between searching and 

updating. For example, a user A wants to establish the location of a user B. Should user A 

search the entire network or should user A search only predefined location? Or, should 

the user B inform ever body about its move from one location to another? 

Some work has been done on comparing different locating and addressing 

schemes. The problem itself is difficult since it involves several dimensions. Solutions 

that are optimal in terms of number of messages sent may show a poor performance in 

terms of latency. It is not clear how detailed the statistical profiles of users should be in 

order to provide a significant performance advantage. In general, mobility of hosts result 

in a new set of issues in distributed systems [1]. 

 The less informed the sender is, the more search cost is incurred. Hence mobility 

substantially affects data placement. Since mobile hosts have severe resource constraints 

in terms of limited battery life and limited size of non-volatile storage, the burden of 

computation and communication load can not be distributed equally among static and 

mobile hosts.  

The scale of the mobile environment goes far beyond any existing paradigms. 

Many predictions call for tens of millions of portable devices of varying classes that can 

move across a worldwide communication networks. 
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In location management, the total volume of transactions due to location updates 

may be higher by an order of magnitude than the capacity of the existing networks [2]. 

 Due to frequent changes that may involve wide-area moves of large number of 

machines, scale plays a critical role. Scale can have major consequences for limited 

bandwidth resources. The increasing number of users requires using smaller and smaller 

cells because of the limited frequency systems. This in turn will complicate the location 

management due to increasing number of hand-offs.  

 

1.1.2 Wireless Communication. 
 

Mobile computers require wireless network access, although sometimes they may 

physically attach to the network for a better or a cheaper connection when they remain 

stationary. Wireless communications is much more difficult to achieve than wired one 

because the surrounding environment interacts with the signal, blocking signal paths and 

introducing noise and echoes [3]. Wireless connections are of lower quality than wired 

ones because of these reasons.  

Lower bandwidths, higher error rates, and more frequent spurious disconnection 

are factors that make the wireless communications of less quality. These factors can in 

turn increase communication latency due to retransmission, retransmission timeout 

delays, error control protocol processing, and short disconnection.  

Wireless connection can be lost or degraded also by mobility. Users may step out 

of the coverage of network transceivers or enter areas of high interference. Unlike the 
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typical wired networks, the number of devices in a cell varies dynamically, and a large 

concentration of mobile users may overload network capacity as well. 

Today’s computer systems often depend on the network. They may stop to work 

during network failures. Network failure is of greater concern for mobile computing 

designs than the traditional one since wireless communication is very susceptible to 

disconnections.  

Either spending more resources on the network trying to prevent disconnections, 

or allocating more resources to enable systems to cope with disconnections more 

gracefully and work around them as much as possible is a primary solution.  

The more autonomous the mobile computer is, the better it can tolerate network 

disconnections. Some applications, for example, reduce communication by running 

entirely locally on the mobile computer rather than splitting the application and the user 

interface across the network.  

Mobile computing designs need to be more concerned about the bandwidth 

consumption and constraints than the fixed computers. Wireless communications deliver 

lower bandwidth than wired networks. Tables 1.1 and 1.2 show the bandwidth for various 

wireless and wired media. 
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Table 1.1: The delivered bandwidth of different wireless media 

 
Type Bandwidth 

Infrared 1 Mbps 

Radio communication 2 Mbps-10Mbps 

Telephony 

 (CDPD Cellular Digital Packet Data) 

 

4 to 19.2 Kbps 

 

Table 1.2: The delivered bandwidth of different wired media 

Type Bandwidth 

Ethernet. 10-100 Mbps 

FDDI 100 Mbps 

ATM  155 Mbps 

 

Network bandwidth is divided among the users sharing a cell. The deliverable 

bandwidth per user is a more useful measure of network capacity than raw measured 

bandwidth. Since this measure depends on the size of population, it is suggested that the 

bandwidth of wireless communications networks is measured by the bandwidth per cubic 

meter [4]. 

Mobile computing designs also strive to cope with a much greater variation in 

network bandwidth than the tradition one. Bandwidth can shift one to six orders of 
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magnitude between being plugged in versus using wireless access. Fluctuating traffic 

load seldom causes this much variation in available bandwidth in fixed networks.  

An application can approach this change in bandwidth in one of the following 

ways. 

1. It assumes high bandwidth connections and operates only while 

plugged in. 

2. It assumes low bandwidth connections and does not take advantage of 

existing higher bandwidth. 

3. It adapts to currently available resources, providing the user with a 

variable level of quality of service. 

In contrast to most stationary computers, which stay connected to a single 

network, mobile computers encounter more heterogeneous network connections. As they 

may leave one network, they switch to another. Even in different places, they may 

experience different qualities. For example, a meeting room may have better wireless 

connection than the hallway of a section in a building. Even when plugged in, they may 

still concurrently connect through wireless connections. They may need to switch from 

one network interface to another especially when moving from indoors to outdoors, for 

instance, when switching from cellular coverage in the city to satellite coverage in the 

country. This heterogeneity makes mobile networking more complex than traditional 

networking 
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1.1.3 Portability. 
 
 

Desktop computer are not expected to be carried around with their users. Their 

design allows them to reduce space, power, and cabling and heat dissipation. The design 

of mobile computers should strive for properties such as size, weight, durability and long 

battery life. Any specialized hardware to offload from the CPU tasks such as data 

compression or encryption should justify its consumption of power and in size and 

weight. 

Batteries are the largest single source of weight in a portable computer. While 

reducing battery weight is important, too small a battery can undermine portability, which 

may lead the user to charge more frequently. Minimizing power consumption can 

improve portability by reducing battery weight and prolonging the life of a battery.  

Power consumption is given by CV2F, where C is the capacitance of the wires, V 

is the voltage swing, and the F is the clock frequency, there are three ways to reduce the 

power consumption. First, by reducing capacitance of wires by greater VLSI integration 

and multi-chip module technology. Second, by reducing the voltage levels by redesigning 

chips to operate at lower voltages. Chips operate at five volts, but to save power, some 

manufactures develop chips that work at 2.5 to 3 volts. Third, by reducing the frequency. 

Clock frequency can be reduced, trading off computation speed against the power 

savings. PDA products have adopted this idea as well as other notebooks. For example, 

the Sharp PC 6785 can save power by dynamically shifting CPU speed from 25 MHz to 

10 MHz when it detects a shortage of power. 
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Power can be saved not only by design, but also by efficient use of operations. 

Power management software can power down some individual hardware components 

when they are in idle mode, for example, spinning down the internal disk or turning off 

screen lighting. Applications can conserve power by reducing computation, 

communication and memory. Since cellular telephone transmission typically requires 

about ten times as much power as reception, trading for more receiving can also save 

power.   

Table 1.3: Power consumption break down by system component [5]. 

System Component. Power Consumption Percentage Wise. 

Display edge-light  35% 

CPU/Memory 31% 

Hard Disk 10% 

Floppy 8% 

Display 5% 

Keyboard 1% 

 

 

In conclusion, mobile computing is characterized by the previous constraints and 

challenges. These constraints are not as product of current technology, but they are 

related naturally to mobility. Together, they complicate the design of mobile information 

systems and require rethinking traditional approaches to information access and 

application design. Mobility intensifies the tension between autonomy and 

interdependency that is characteristic of all distributed systems.  
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The relative resource shortage of mobile elements as well as their lower trust and 

robustness argue for reliance on static servers. The need to cope with unreliable and low-

performance networks, as well as the need to be sensitive to power consumption argues 

for self-reliance. Any feasible approach to mobile computing must strike a balance 

between these competing issues. This balance cannot be static as the environment of 

mobile computing changes; it must react and dynamically reassign the responsibility of 

client and server. In other words, the clients must be adaptive. 

1.1.4 Thesis Argument. 
 
 

Finding approaches to reduce power consumption and to improve application 

performance is a vital and interesting problem to be investigated. Many approaches have 

been developed to address this problem. They range from hardware to software level 

approaches as mentioned previously. 

 Previous work at the software level for mobile applications was to split statically, 

at design time, an application into a server and client, where the client executes at the 

mobile device and the server runs at a fixed host in the wired network. Splitting an 

application statically does not grantee the maximum quality of service to the users, 

especially in mobile computing environments due to the above-mentioned challenges. To 

improve quality of service to the users, at the fixed host, filtering mechanisms that work 

according to the current condition of mobile computing environment are deployed, which 

make mobile applications more adaptive.  
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 Our work is at the application layer too, where an approach for adaptive mobile 

applications is developed. In this thesis, we suggested a new approach based on Greedy 

Graph partition for adaptive mobile applications, in which an application’s objects will be 

split dynamically between the mobile device and fixed host according to the mobile 

device and fixed host’s available resources and wireless network state.  

This approach requires special infrastructure and tools rather than a specific 

application design. Mobile applications, especially ones that do intensive computation 

and communication, can be divided dynamically as a client and server between the wired 

network and the mobile device according to the mobile environment and to the 

availability of the resources on both the mobile device and the wired network. With this 

approach, more windows of adaptability to the mobile environment are possible. In 

addition, it allows the applications to have dynamic access to faster machines through 

faster servers. This will increase the performance of applications and reduce the power 

consumption on mobile devices since offloading computation to the wired network will 

reduce the CPU cycles and memory needed to achieve certain tasks at mobile devices.  

 

In this thesis, Java will be used as primary developing language for applications 

as well as for implementing our toolkit. Since Java produces a portable executable code, 

it allows implementation of distributed computing easily. However, Java Virtual 

Machines are in early stages of development, particularly those works for the 

WindowsCE platform. They need to be extended to export the mobile computing 
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environment variables, such as available bandwidth, battery lifetime and power available 

at the mobile host as well as performance parameters such as CPU utilization. These 

extensions require the use of native languages, such as C/C++.  

 

1.2 Contribution of Thesis  

 
The contribution of thesis can be summarized as following:  

•  Development of object mobility toolkit that dynamically and 

transparently movies objects from mobile devices to the proxy 

server. The toolkit is based on Java Serialization and Proxy 

Patterns, and works on a wide variety including PDAs running 

WindowsCE. 

•  Suggesting a modified Greedy Graph Partitioning algorithm to be 

used for Load Sharing purposes to share load between the mobile 

devices and the proxy server. 

•  Implemented an MP3 Player in Java 

•  Demonstrates feasibility of dynamic load balancing approach to 

overcome client device and the bandwidth limitations. 

•  Published early insights in Parallel Distributed Processing 

techniques and Applications (PDPTA’99) Conference, and in the 

Proceedings of the Eighteenth the International association of 
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Science and Technology for development (IASTED) International 

Conference on Applied Informatics (AI’2000) 

 

1.3 Thesis Outline 

 
This thesis contains 8 chapters including this chapter. Chapter 2, Background, is 

mainly about languages, tools and infrastructures for building, implementing, and 

supporting distributed computing applications as well as mobile applications in general. 

These tools will be briefly discussed and related to our work. As an example of these 

tools, we will discuss Java RMI, CORBA, Jini and Voyager. Chapter 3, Related Work, 

surveys the previous and current work in the field of mobile computing; particularly 

previous work that uses Proxy Servers as an infrastructure for supporting mobile 

applications. Chapter 4, Basic Idea and Preliminary Studies, explores our main idea. Results 

of a case study show the feasibility of our approach, dynamically splitting application 

functionality. These results were published in the Proceedings of PDPTA’99 conference. 

In Chapter 5, Dynamic Object Mobility Toolkit, we propose the basic structure of our toolkit, 

showing the main structure of necessary software components and describing their 

functionality. The focus of this chapter will be on the monitoring part and the process of 

moving objects between two JVMs. Chapter 6, Java MP3 Player, explores an MP3 decoder, 

written in Java. Technical information will also be provided about the decoding 

algorithm. The object graph and calling graph of the Java MP3 decoder will be presented 

as well. We show complexity and performance of the MP3 decoder on different platforms 
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including a WindowsCE device with a MIPS CPU, a laptop with a Pentium 133, and 

WindowsNT workstations with 300MHz Pentiums. In Chapter 7, Experiments and Results 

we introduce a modified version of the Greedy Graph Partitioning algorithm to group 

strongly related objects, and we show results of using our approach with the Java MP3 

player as an example. We run the algorithm with different parameters for the mobile 

environment and observe the results. We expect improvements in decoder performance as 

well as reducing power consumption for both laptop and WindowsCE devices. In Chapter 

8, Conclusion and Future Work, we draw our conclusion and show the feasibility of our 

approach, and we indicate possible extensions of this work as areas of future research. 
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2. Background 
 
 

2.1 Java Language and Virtual Machine 

 
Java is a language that is claimed to be simple, object-oriented, network oriented 

designed, interpreted, robust and secure, architecture uniform, portable, high-

performance, multithreaded and dynamic [6]. We agree with most previous 

characteristics of Java, but with the high-performance. We argue that Java to be high-

performance is completely depends on the platform as well as whether any type of 

optimization is being used or not. For example, a JVM, with JIT compiler enabled, runs 

on a Pentium III 500 MHz device much faster than a JVM, with no JIT at all, that runs on 

WindowsCE handheld device with a on MIPS 75MHz CPU. 

Java was designed as close to C++ as possible in order to make the language more 

comprehensible. Automatic garbage collection was added, thereby simplifying the task of 

Java programming but making the system more complicated. 

 A common source of complexity in many C/C++ applications is storage 

management, allocation and freeing memory. Having automatic garbage collection, the 
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Java language not only makes the programming task easier, but also it dramatically cuts 

down on the number of bugs in applications. One of the goals of Java is to enable the 

construction of software that can run stand-alone in small machines. The Java interpreter 

and standard libraries have a small footprint. A small size is important for use in 

embedded systems and so Java can be easily downloaded over the net.  

2.1.1 Object-Oriented 
 

Object-oriented design is very powerful because it facilitates the clean definition 

of interfaces and makes it possible to provide reusable software components [7]. Object 

oriented design is a technique that focuses design on the data and on the interfaces to it. 

Object-oriented design is also the mechanism for defining "plug and play" modules 

through interface definition mechanism.  

2.1.2 Network-Oriented 
 

Java has an extensive library of routines that work easily with TCP/IP protocols 

like HTTP and FTP. This makes creating network connections much easier than using 

C/C++ libraries. Java applications can open and access objects across the net through 

URLs with the same ease that programmers are used to when accessing a local file 

system. 
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2.1.3 Robust 
 

Java is intended for writing programs that must be reliable in a variety of ways. 

Java puts a lot of stress on early checking for possible problems, late dynamic runtime 

checking, and eliminating situations that are error prone [8].  

One of the advantages of a strongly typed language, like C++, is that it allows 

extensive compile-time checking so bugs can be found early. C++ inherits a number of 

ambiguities in compile-time checking from C, which namely are method/procedure 

declarations. 

 The linker understands the type system and repeats many of the type checks, 

which are done by the compiler to guard against version and mismatch problems. The 

single biggest difference between Java and C/C++ is that Java has a pointer model that 

eliminates the possibility of overwriting memory and corrupting data. Instead of pointer 

arithmetic, Java has true arrays. This allows subscript checking to be performed. In 

addition, it is not possible to turn an arbitrary integer into a pointer by casting [9].  

Very dynamic languages like Lisp, TCL and Smalltalk are often used for 

prototyping. One of the reasons for their success at this is that they are very robust. Java 

programmers can be relatively unconcern about memory issues because they do not have 

to worry about it being corrupted. Because there are no pointers in Java, programs cannot 

accidentally overwrite the end of a memory buffer. Java programs also cannot gain 

unauthorized access to memory, which could happen in C/C++. 
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Java forces programmers to make choices explicitly, because it has static typing, 

which the compiler enforces. Along with these choices comes a lot of assistance, for 

example, programmers can write method invocations and if something wrong happened, 

such as calling an undefined method or calling a method with incompatible arguments, 

they are informed about it at compile time. 

2.1.4 Security 
 

Java is intended for use in networked/distributed environments. Toward that end, 

a lot of emphasis has been placed on security. The authentication techniques are based on 

public-key encryption. There is a strong relationship between "robust" and "secure." For 

example, the changes to the semantics of pointers make it impossible for applications to 

copy access to data structures or to access private data in objects that they do not have 

access to. This closes the door on most activities of malicious code in Java since it does 

not allow memory pointer notion [10].  

2.1.5 Architecture Uniform 
 

Java was designed to support applications on networks. Networks are composed 

of a variety of systems with a variety of CPU and operating system architectures. To 

enable a Java application to execute anywhere on the network, the compiler generates an 

architecture-uniform object file format; the compiled code is executable on many 

processors, given the presence of the Java runtime system.  
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This is useful not only for networks but also for single system software 

distribution. With Java, the same version of the application runs on all platforms. The 

Java compiler achieves platform-independency by generating byte code instructions, 

which have nothing to do with particular computer architectures. They are designed to be 

both easy to interpret on any machine and easily translated into native machine code on 

the fly [11].  

2.1.6 Portability 
 

Unlike C and C++, there are no implementation-dependent aspects of the 

specification. The sizes of the primitive data types are specified, as is the behavior of 

arithmetic on them. For example, int always means a signed two’s complement 32 bit 

integer, and float always means a 32-bit IEEE 754 floating point number. Making these 

choices is feasible because basically all relevant CPUs share these characteristics.  

The libraries that are a part of the system define portable interfaces. For example, 

there is an abstract Window class and implementations of it for Unix, Windows NT/95, 

WindowsCE and the Macintosh OS.  

2.1.7 Interpreted Bytecode 
 

Java bytecode is translated on the fly to native machine instructions and not stored 

anywhere. As a part of the bytecode stream, more compile-time information is carried 

over and available at runtime reflecting the internal structure of compiled source code.  
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2.1.8 High Performance 
 

While the performance of interpreted bytecode is more than adequate for small 

computations, there are situations where higher performance is required. The bytecode 

can be translated at runtime into machine code for the particular CPU the application is 

running on. The bytecode format was designed with generating machine codes in mind, 

so the actual process of generating machine code is generally simple. Using Just-In-Time 

compiling technology, Java virtual machines can be speed up to ratio of 7 to 10 times 

faster [12].  

2.1.9 Multithreaded 
 

Multithreading is a way of building applications with multiple threads. Writing 

programs that deal with many things happening at once can be much more difficult than 

writing in the conventional single-threaded C/C++ style.  

Java has a sophisticated set of synchronization primitives that are based on the 

well-known used monitor and condition variable paradigm. By integrating these concepts 

into the language, they are much easier to use. Other benefits of multithreading are to 

improve interactive responsiveness and real-time behavior, which is limited by the 

underlying platform. Running on top of other systems like Unix, Windows, the 

Macintosh OS, WindowsNT or WindowsCE limits the real-time responsiveness to that of 

the underlying system. 
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2.1.10 Embedded Java Platforms 
 

Currently, embedded devices span a wide variety of consumer and business 

products, including devices such as smart mobile phones, pagers, PDAs, set-top boxes, 

process controllers, office printers, and network routers and switches. Embedded devices 

have dedicated functionality; they are designed exactly for a specific set of tasks. Since 

they are engineered for long life and high reliability, embedded devices include low-

speed microprocessors and may have a limited amount of memory [13].  

To meet performance and size requirements, embedded device manufacturers use 

a Real Time Operating System (RTOS) and custom development tools, compatible with 

devices’  memory limitations. There are several different RTOS vendors that exist, each 

with a specific operating environment and many with strongly integrated and specialized 

development tools. 

Early environments for embedded devices were developed in assembler. As these 

devices developed, some manufacturers shifted to higher-level languages like C and C++. 

 Embedded device manufacturers have turned to the Java programming language to 

answer their needs and for the advantages that Java provides as mentioned in Section 2.1 

There are JMVs that are available currently for Handheld PCs and other portable devices. 

Major software companies, namely Sun Microsystems and Microsoft, produce them. We 

use the product of Microsoft to build the applications and tools for Handheld PCs [14]. 

Their JVM supports the core functionality of Sun’s JDK 1.1x, which is an appropriate 

choice for our work. 
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2.2 Distributed Systems and Tools 

 
Distributed systems require that computations running in different address spaces, 

potentially on different hosts, be able to communicate. For a basic communication 

mechanism, many computer languages support sockets, which are flexible and sufficient 

for general communication. However, sockets require the client and server to engage in 

application level protocols to encode and decode messages for exchange, and the design 

of such protocols is not trivial and can be error prone. 

An alternative to sockets is Remote Procedure Call (RPC), which abstracts the 

communication interface to the level of a procedure call. Instead of working directly with 

sockets, the programmer has the feel of calling a local procedure, when in fact the 

arguments of the call are packaged up and shipped off to the remote target of the call. 

RPC systems encode arguments and return values using an external data representation, 

such as XDR [15].  

RPC, however, does not translate well into distributed object systems, where 

communication between program level objects residing in different address spaces is 

needed. In order to match the semantics of object invocation, distributed object systems 

require remote method invocation (RMI.) In such systems, a local surrogate (stub) object 

manages the invocation on a remote object.  The following sections will describe briefly 

some architectures and tools that support object-oriented distributed systems. 
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2.2.1 Common Object Request Broker Architecture (CORBA) 
 

As more industries are connected to the Internet and intranets, software 

development is becoming complex. The complexity of software development has 

produced a major revolution in systems development. Object-oriented computing is 

progressively becoming more typical. The other major revolution, which is occurring in 

the computer industry, is distributed computing.  

Every major new distributed computing technology has committed to the promise 

of interoperability between heterogeneous systems and applications. Although 

connectivity between most types of operating systems platforms is available, 

interoperability at the application level remains an issue. Main factors include the 

inherent difficulty of distributed application programming and the lack of standard 

interfaces between applications. 

 CORBA is the product of OMG [16], which defines a higher-level facility for 

distributed computing. It provides standards for distributed objects architectures. 

2.2.1.1 Distributed Objects 
 

A distributed object is a piece of code that can live anywhere in the network or 

Internet. It breaks the restrictions of classical objects. Distributed objects are packaged as 

independent pieces of code that can be accessed by clients in the same machine or 

machines across the network through local/remote method invocations. The language and 

compiler used to create the objects are totally transparent to the clients. Clients need not 
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know where the object resides or the operating system it executes on. Distributed objects 

can message each other transparently anywhere in the Internet. CORBA clients just need 

the interfaces the server object publishes. The interfaces serve as the binding contract 

between clients and servers. 

2.2.1.2 Components 
 

Components are stand-alone objects that can be plugged and played across 

networks, applications, languages, tools and operating systems. Distributed objects are by 

definition components because of the way they are packaged. The distributed objects 

infrastructure makes components more autonomous, self-managing and collaborative 

[17]. The main idea behind software component technology is to provide software users 

and developers the same levels of plug-and-play application interoperability that are 

available to consumers and manufacturers of electronic parts. 

2.2.1.3 Object Request Broker (ORB) 
 

An object request broker (ORB) is the central component of CORBA. It is the 

middleware that establishes client-server relationships between objects. Using an ORB 

the client can transparently invoke a method on a server object. The server object can be 

on the same machine or on a remote machine in the network. The ORB intercepts the call 

and is responsible for finding an object that can implement the request, pass the 

parameters, invoke the method and finally return the results computed to the server. The 

client need not know any details about the object like the location of the object, the 
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programming language in which it is implemented, the operating system under which it 

executes or the platform on which it exists. The client-server relationship is applicable for 

any particular application. Objects can act as either client or server depending on the 

instance; however, CORBA does not support the moving of objects from one host to 

another. The following are the features of CORBA ORB. 

 
•  Static and dynamic method invocation 

 
CORBA ORB supports both types of method invocations, static and 

dynamic. It is possible either to statically define method invocations at compile 

time or dynamically discover them at run time. Thus, it is possible to have either 

strong type checking at compile time or maximum flexibility associated with late 

binding.  

 
•  High-level language bindings 

 
With CORBA ORB invoking methods on server objects, the use of a high-

level language of choice (C, C++, Smalltalk) is possible. The client need not 

concern about the implementation details of the server objects as well. CORBA 

separates the interface of objects from their implementation, thus providing 

language-uniform data types that make it possible to call objects across language 

and operating system boundaries.  
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•  Self-describing system 
 

To provide facilities for dynamic invocation of methods CORBA provides 

an Interface Repository, which contains information describing the interfaces the 

server supports along with its parameters. The client uses this meta-data to invoke 

methods at run-time. The meta-data, information regarding classes of objects at 

compile time, is either generated automatically by a precompiled Interface 

Definition Language (IDL) [18] or by compilers that generate IDL directly from 

an OO language.  

•  Local/remote transparency 
 

An ORB can run standalone or can be interconnected to other ORBs in 

other environments. ORB can broker interobject calls within a single process, 

multiple processes running within the same machine or machines running across 

the networks. The client is transparent to all the low level details like transports, 

server locations, and object activation.  

•  Polymorphic messaging 
 

ORB can invoke a method call corresponding to a specific server object. 

Thus, more than one server object can have the same method name. This means 

that the same function call may have different effects depending on the object that 

receives it.  
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2.2.1.4 Limitations of CORBA 
 

Standard CORBA does not address the main inherent complexities of distributed 

computing such as Latency, Fault Tolerance and, Deadlock. CORBA does not allow 

objects to be passed by value. Current implementation of CORBA lack efficient support 

for bulk data transfer, it does not consider garbage collection, and it does not address the 

issue of memory leaks [19].  

2.2.1.5 Embedded CORBA 
 

As communications technologies are maturing, there is a rapidly growing need for 

embedded devices that can communicate to components running on remote computing 

platforms. The applicability of such devices is extremely wide, from the users who want 

devices that can serve as web browsers, email, or Internet chat clients to the telephone 

companies that need to manage their network devices; which justifies the need for Mobile 

Computing research.  

 
Embedded applications are often highly resource constrained and typically run on 

a less general purpose OS than Windows or Unix, for example, WindowsCE operating 

systems for PDAs. It is not the CORBA standard itself that would prohibit its use in an 

embedded environment. It makes few assumptions about underlying operating system 

functionality.  Although the architecture may be well suited for distributed computing 

even in the context of embedded devices, CORBA products face significant challenges in 
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the embedded environments. To be specific, the barriers to CORBA’s success in 

embedded environments include the following. 

•  CORBA implementations are not typically built upon micro-kernel 

architecture. This makes it difficult to modify the CORBA run-time down 

to its bare essentials, which is important for embedded systems 

development.  

•  CORBA implementations do not typically give developers low-level 

control over the management of system resources, e.g. heap allocation.  

•  CORBA implementations are not presently open enough to support 

developer-supplied extensions, such as adding new transport protocols and 

message passing formats. 

 

Because the programming language of choice directly influences many of these 

issues and their potential solutions, it is assumed that developers are using the CORBA 

C++ language mapping. Other language mappings could conceivably render some of 

these issues to be arguable, while potentially introducing new ones.  

Conventional CORBA implementations experience intricate binding of all 

CORBA features together such that developers are forced to include all features of the 

CORBA architecture to use any ORB features.  

More adequate alternative approach is to define the absolute core functionality 

that anyone who uses the ORB will require, and any other extra features layered on top of 
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this core. The ORB can then be customized with additional features and functionality 

through dynamically loadable modules on those OS’s that support such functionality. On 

those platforms that do not support dynamic loading, the ORB can be re-built with the 

desired features and functionality linked in.  

This is similar to many popular embedded Operation Systems that allow 

developers to rebuild the operating system kernel with selective functionality turned on or 

off. Again, this technology is hardly sophisticated, however it does demand a change of 

viewpoint for ORB implementers. To better meet the needs of embedded systems 

programmers, CORBA standard implementations need to be redesigned.  

2.2.2 Java Remote Method Invocation (RMI) 
 

Java Remote Method Invocation allows programmers to write distributed objects 

using Java. RMI provides a simple and direct model for distributed computing with Java 

objects. These objects can be new Java objects, or can be simple Java wrappers around an 

existing API. RMI extends the Java model; write once run anywhere, to be run 

everywhere as well.  

Because RMI is centered on Java, it brings the power of Java safety and 

portability to distributed computing. It connects to existing and legacy systems using the 

standard Java native method interface JNI. RMI can also connect to an existing relational 

database using the standard JDBC package [20]. The RMI/JNI and RMI/JDBC 

combinations let programmers use RMI to communicate with existing servers in non-

Java languages, and to expand usability of Java to those servers when necessary.  
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There are many advantages of using RMI. At the most basic level, RMI is Java’s 

remote procedure call (RPC) mechanism. It has several advantages over traditional RPC 

systems because it is part of Java’s object oriented approach [21]. Traditional RPC cannot 

provide functionality that is not available on all possible target platforms.  

2.2.3 Jini Technology 
 

Jini connection technology is a Sun Microsystems invention designed to allow 

distributed systems of components to exist on many different platforms. It lets software 

and hardware components become smoothly integrated into a network through the use of 

Java technology. Jini connection technology lets anyone connect any device to any 

network in a simple manner, providing mechanisms for software services or hardware 

devices to automatically join together into a group of Jini devices. The Jini services 

architecture is built upon the Java distributed computing platform architecture [22]. 

Devices in a Jini network are connected using Java Remote Method Invocation 

(RMI) explained in Section 2.2.2. This enables the Jini system to be secure and allows 

Java objects to move between Java Virtual Machines (VM) to implement the discovery 

protocol, join protocol, and the lookup service [23]. 

To form a Jini network of devices and services, a registration process occurs with 

a lookup service. When a device is connected to the network, it performs the discovery 

process trying to locate the Jini lookup service at which it uploads all of its interfaces for 

all its services, and joins the Jini network. The lookup service also has the responsibility 
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to behave as a control center to connected clients to a particular service. When that 

happens, the interface for the requested service is copied to the client. 

2.2.4 Voyager ORB 
 

Voyager is a tool that offers an object request broker, with many additional 

features. Voyager ORB consists of a universal communication architecture, which allows 

Voyager programs to be universal supporting client and server bi-directional 

communication with others such CORBA, RMI and other ORB architectures. The 

universal naming service in Voyager allows access to many commercially available 

naming services through a signal Application Program Interface (API). The universal 

directory is a directory that can be shared by all clients. For instance, an RMI server can 

bind an object into the universal directory using the native API for RMI registry, and a 

CORBA client can search the same object using the CORBA naming service API [24]. 

The universal messaging layer in Voyager ORB allows different types of 

messages such as synchronous, one-way, or future, to be sent to an object regardless of its 

location or object model.  In synchronous messaging, the method is blocked till the result 

comes back. However, in one-way messaging, the method is not blocked and the result is 

discarded. In future messaging, a result placeholder is returned so that the method will 

not be blocked, and the result will be probed and obtained later. 

Voyager makes efficient use of the power of Java interfaces to make accessing a 

remote object as simple as accessing a local object. It implements the proxy pattern [25] 

to associate the object with its proxy. If a method call is made to a proxy object, it is then 
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forwarded to the associated object. If the object is local, then the method is executed 

directly, resulting in performance improvement. Otherwise, if the object is at a remote 

site, the proxy object will forward the call, serializing parameters, the method is invoked 

at the remote object, and the result is serialized again and returned. This also happens to 

the exceptions when they are thrown. If a remote exception occurs, it is caught at the 

remote site and thrown locally. Proxy objects in Voyager are created dynamically if they 

do not exist. 

Voyager has Distributed Garbage Collection (DGC), which reclaims objects when 

there are no local or remote references to them. It uses the Delta Pinging algorithm that 

keeps the traffic required for garbage collection to a minimum [26]. 

Voyager allows the creation of remote objects. A remote instance of a class can 

be created and a proxy is obtained of that object. Classes can be dynamically loaded from 

one site to another using a build-in Hyper Text Transfer Protocol (HTTP), which allows 

any voyager program to serve classes without the need of an external web server. 

Voyager supports object mobility. It provides a set of APIs that ease this task and make it 

transparent to the programmer. With object mobility, Voyager supports also autonomous 

mobile agents. A programmer can develop mobile autonomous agents that move 

themselves between hosts and continue to execute upon arrival. 

Unfortunate, Voyager is supported on certain platforms, and thus we could not 

use it as toolkit for moving object between the WindowsCE devices and a proxy server. 

As a result, we had to develop our own toolkit. 
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2.3 Summary 

 
In this chapter a brief survey of the well-known distributed system tools and their 

advantages, was given. As we have seen, some distributed architectures and tools cannot 

work on embedded systems due to the limitation of the embedded systems. 

For the thesis, we developed a Java distributed system, similar to Voyager toolkit 

that works on the WindowsCE platforms in addition to traditional platforms such as 

Windows98/NT. The design and the implementation of this toolkit will be discussed in 

detail in Chapter 5. 
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3. Related Work 
 
 
 

3.1 Introduction. 

 
 

The lack of local resources and physical security argues for reliance on servers. 

However, the lack of reliable, cheap communication as well as the variable costs to 

access services argues for self-reliance on the part of mobile clients. The challenge for 

mobile computing is to strike an appropriate balance between these two competing 

concerns. This balance is not static one. As the circumstances of a mobile client change, 

it must react and repartition duties between client and server. In other words, it must be 

adaptive. Such adaptation may occur anywhere along a spectrum characterized by two 

extremes: either everything on the client or the server. 

The notion of moving processes or objects around to achieve better overall 

performance is a well-studied topic. Process or object migration has been used 

successfully for load balancing and improving resource utilization. Process migration 

suffers from a few drawbacks when implemented in full generality. For example, it is 
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difficult to deal with file descriptors when being migrated.  Such systems have generally 

been implemented to work on homogeneous networks of workstations. However, many 

languages and virtual machines have been developed and tools exist to overcome this 

limitation. Java and other scripting languages such TCL are developed to be used with 

virtual machines that can run tools that migrate objects and processes to other virtual 

machines. 

Mobility is the key to adaptation to the mobile environment. Only through 

watchfulness and prompt reactions can a mobile client offer acceptable services in spite 

of the problems that spell its existence. These include unpredictable variations in network 

quality, wide disparity in the availability of services, limitations of the resources at the 

mobile device imposed by weight and size constraints, concern for battery power 

consumption, lowered trust and robustness resulting from exposure and motion. 

3.2 Layers of Mobile Computing 

 
 

This section explores in brief the mobile computing layers. 
 

•  Applications: Often unaware of mobility, often communication intensive, 

application developers may be often reluctant to change their code to 

customize to mobile environments. Users like to use the same applications 

that they are used to in the backbone network 

•  Middleware: Designed to provide transparent computing abstraction to 

mobile users and applications, many portable devices have very rudimentary 
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middleware. Writing portable middleware is nontrivial given that there is not 

much standardization among portable platforms yet.  

•  Native OS: Vary significantly in terms of sophistication, not always friendly 

to network applications, limited programming capabilities, often non-standard 

development environments.  

•  Protocols: Typically a modified TCP/IP or custom network protocol stack 

needs to address issues of wireless channel error, mobility, location-

independent addressing, and heterogeneity in terms of available resources. 

•  Networks: Wireless networks from local area (Wavelan, RangeLan, 

NetWave, [27,28,29]) to metropolitan area (CDPD, Ardis, [30,31]) Most of 

these networks offer low-bandwidth and limited services, thereby making it 

hard to write highly adaptive applications or network software. Portable 

devices range from smart phones to notebooks, and vary significantly in terms 

of processing power, display, memory, disk size, battery power, connectivity, 

and programming support.  

Our focus in this chapter is on the first two of the mobile computing layers.  
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3.3 Adaptation to Mobile Data Access 

 
 

Mobile clients face many challenges. These challenges render adaptation as the 

key to mobile data access. There are two approaches to adaptation: application-aware, 

which I will explore in Odyssey; and application-transparent which I will explore in the 

Coda File System. Odyssey is considered a compromise solution for application-aware 

adaptation. It falls between two extremes. At one extreme, adaptation is entirely the 

responsibility of the applications. At the other extreme, application-transparent 

adaptation, the system has full responsibility for adaptation and the resource 

management. This approach is exemplified by Coda, which is suitable for legacy 

application because they can run unmodified. 

 

3.3.1 Application-Aware Adaptation for Mobility (Odyssey) 
 
 

 In Odyssey [32], a monitor is established to monitor resources such as 

CPU cycles; bandwidth and battery power, and to interact with each application to best 

exploit these resources. For example, when high bandwidth connectivity is lost due to a 

radio shadow, Odyssey detects the change and notifies the interested applications. Video 

application, for example, may respond by skipping frames, displaying fewer frames per 

minute, while a Web page client will display degraded versions of large images.  
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The Odyssey approach for adaptation is characterized as application-aware 

adaptation. The essence of this model is a collaboration effort between the system and the 

individual applications. The system monitors the resources levels, notifies applications of 

relevant changes, and enforces resource allocation decisions. Each application 

independently decides how best to adapt when notified.  

3.3.2 Coda 
 
 

Coda [33] is an application-transparent adaptive support system. Coda provides 

clients, particularly mobile ones, with highly available access to files. Coda presents a 

single, global namespace to clients organized in volumes, which are sub-trees of the 

namespace. Applications running on Coda clients use the standard UNIX file system 

interface. Desktop applications can continue to run on mobile clients without 

modification. The client cache manager, Venus, is solely responsible for coping with the 

consequences of mobility. Coda clients are in regular use over a wide range of networks 

such as 10 Mb/s Ethernet, 2 Mb/s radio, and 9600-baud modems. Coda deals with the 

best and worst possible network conditions, and it adapts to conditions between these end 

points. As a starting point in understanding how Venus adapts to varying network 

conditions, we first explore the best case: high quality, fast LANs. In such a situation, 

Venus is said to be strongly connected. When an application opens a file in Coda, Venus 

checks to see if the file is already cached. If it is not, Venus fetches the file from a server 

to its local disk cache. When a client caches a file from the servers, it also obtains a 
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callback – a promise to be told if another client updates the file. When a changed file is 

closed, a copy of the new file contents is sent back to the servers. The servers notify any 

clients, with callbacks, for any file that it has changed. This is known as a callback break. 

Experience shows that this approach to maintaining file cache coherence offers excellent 

scalability and performance.  

There is a broad range of conditions between strongly connected and 

disconnected operation. Coda users can operate clients over 2 Mb/s radio links, and over 

modems as slow as 9600 baud. As network bandwidth decreases, the importance of 

reordering or delaying network traffic to preserve the illusion of strong connectivity 

increases. To preserve the strongly connected illusion, Venus endeavors to satisfy most 

demand cache misses as soon as possible, and delays other traffic as necessary. These 

decisions are made at as high a level in the system as possible. How to reschedule 

network traffic is revisited as available network quality changes. Adaptive decisions are 

made in three key areas; cache coherence, reintegration, and demand cache fetches. 

3.4 Tools and Middleware for Adaptive Mobile Applications  

 
 

Mobile applications need to be capable of responding to time-varying wireless-

QoS and mobile-QoS conditions. Wireless transport and adaptation management systems 

should therefore be capable of transporting and manipulating content in response to 

changing mobile network quality of service conditions. Mobile signaling should be 

capable of establishing suitable network support for adaptive mobile services. Medium 
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access controllers must be capable of sharing the wireless link capacity among mobile 

devices supporting adaptive quality of service assurances when possible. In the following 

sub-sections, I will explore the major tools and middleware that support adaptive mobile 

applications.  

3.4.1 Communications Manager for Mobile Applications 
 

The goal of Comma [34] was to create architecture and an application 

programmer interface (API), for adaptive applications. The API provides a simple and 

powerful way for application developers to access the information required to easily 

incorporate adaptive behavior into their application. It provides easy-to-use methods to 

access this information, a wide variety of operators and ranges available to provide the 

application the information it needs when it needs it, a small library to link with to 

minimize the overhead placed on the client and to minimize the amount of data that needs 

to be transferred between the clients and the servers.  

In a future release, the communication could be changed to use XDR [35] and 

pack the transferred data more efficiently than is done currently. Comma is not a network 

management protocol, and it is not designed as a replacement for SNMP [36]. A Comma 

application could certainly provide the same functionality as an SNMP manager by 

polling each Comma server on a network for the required SNMP variables. However, this 

was not the motivation behind Comma.  
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3.4.2 Rover Toolkit 
 

The Rover toolkit [37] offers applications a distributed-object system based on the 

client-server architecture. Clients are Rover applications that typically run on mobile 

hosts, but could run on stationary hosts as well. Servers, which may be replicated, 

typically run on stationary hosts and hold the long-term state of the system. 

Communication between clients is limited to peer-to-peer interactions within a mobile 

host (using the local object cache for sharing) and mobile host-server interactions; there 

is no support for remote peer-to-peer or mobile host-mobile host interactions. The Rover 

toolkit provides mobile communication support based on two ideas: re-locatable dynamic 

objects (RDOs) and queued remote procedure call (QRPC). A re-locatable dynamic 

object is an object with a well-defined interface that can be dynamically loaded into a 

client computer from a server computer, or vice versa, to reduce client/server 

communication requirements. Queued remote procedure call is a communication 

mechanism that permits applications to continue to make non-blocking remote procedure 

calls even when a host is disconnected; requests and responses are exchanged upon 

network reconnection.  

The key task of the programmer when building a mobile-aware application with 

Rover is to define (RDOs) for the data types manipulated by the application, and for data 

transported between client and server. The programmer then divides the program into 

portions that run on the client and portions that run on the server; these parts 

communicate by means of QRPC. The programmer then defines methods that update 
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objects, including code for conflict detection and resolution. To use the Rover toolkit, a 

programmer links the modules that compose the client and server portions of an 

application with the Rover toolkit. The application actively cooperates with the runtime 

system to import objects onto the local machine, invoke well-defined methods on those 

objects, export logs of method invocations on those objects to servers, and reconcile the 

client’s copies of the objects with the servers. Earlier work on Rover introduced the Rover 

architecture, including both queued RPC and re-locatable dynamic objects. Some 

suggested enhancements to the toolkit extend the design and implementation of QRPC 

and RDOs with compressed and batched QRPCs. 

There are several steps involved in porting an existing application to Rover or 

creating a new Rover based application. Each step requires the application developer to 

make one of several implementation choices. While Rover does not provide any tools for 

building applications, it does provide a consistent framework. The first step is to split the 

application into components and identify which components should be present on each 

side of the network link. It is very important that application developers think carefully 

about how application functions should be divided between a client and a server. The 

division will be mostly static, as most of the file system components will remain on the 

server and most of the GUI components will remain on the client. However, those 

components that are dependent upon the computing environment (network or 

computational resources) or are infrequently used may be dynamically generated. For 

example, the search operation performed by a client could be dynamically customized to 
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the current link attributes: over a low latency link, more work could be done at the client 

and less at the server, and vice versa for a high latency link. Likewise, a client could pre-

fetch the main portion of an application’s help information but less frequently referenced 

portions could be loaded on demand. Once the application has been split into 

components, the next step is to appropriately encapsulate the application's state within 

objects that can be replicated and sent to multiple clients. Also, the application developer 

must decide which mechanisms to use for notifying users of the status of displayed data. 

3.4.3 Sumarta. 
 

Sumatra [38] is an extension of the Java programming environment that supports 

adaptive mobile programs. Platform independence was the primary basis for choosing 

Java as the base for Sumatra. In the design of Sumatra, the Java language was not altered. 

Sumatra can run all legal Java programs without modification. All added functionality 

was provided by extending the Java class library and by modifying the Java interpreter 

without affecting the virtual machine interface. Policy decisions concerning when, where 

and what to move are left to the application. The high degree of application control 

allows programmers to easily explore different policy alternatives for resource 

monitoring and for adapting to variations in resources. Sumatra has two additional 

programming abstractions besides Java abstractions: object groups and execution 

engines. An object group is a dynamically created group of objects. Objects can be added 

to or removed from object groups. All objects within an object group are treated as a unit 

for mobility related operations. This allows the programmer to customize the granularity 
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of movement and to amortize the cost of moving and tracking individual objects. This is 

particularly important in languages like Java because every data structure is an object and 

moving the state of one object at a time can be expensive. An execution engine is the 

abstraction of a location in a distributed environment. It corresponds to an interpreter 

executing on a host. Sumatra allows object groups to be moved between execution 

engines. An execution engine may also host active threads of control. Objects in an object 

group are automatically marshaled using type information stored in their class templates. 

When an object group is moved, all local references to objects in the group (stack 

references and references from other objects) are converted into proxy references, which 

record the new location of the object. Some objects, such as I/O objects, are tightly bound 

to local resources and cannot be moved. References to such objects are reset and must be 

reinitialized at the new site. The class template for an object (and the associated 

bytecode) can be downloaded into an execution engine on application request.  

Method invocations on proxy objects are translated into calls at the remote site. 

Type information stored in class templates is used to achieve RPC functionality without a 

stub compiler. Exceptions generated at the called site are forwarded to the caller.  

Sumatra provides a resource-monitoring interface, which can be used by 

applications to register monitoring requests and to determine current values of specific 

resources. When an application makes a monitoring request, Sumatra forwards the 

request to the local resource monitor. If the monitor does not support the requested 

operation, an exception is delivered to the application. 
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3.4.4 Mobiware. 
 

Mobiware [39] is based on a methodology of open programmability [40] for the 

introduction, control and management of new adaptive mobile services. It provides a set 

of open programmable CORBA interfaces and objects that abstract and represent network 

devices and resources, providing a toolkit for programmable signaling, adaptation 

management and wireless transport services.  

Mobiware provides a foundation for open programmable mobile networking that 

is suited toward managing the evolving service demands of adaptive mobile applications 

and dealing with the inherent complexity of delivering scalable audio, video, and real-

time services to mobile devices. 

 Built on an adaptive quality of service API, Mobiware consists of a set of 

controllers that interact with transport, network and medium-access controller distributed 

objects that maintain application-specific adaptive quality of service needs. This API is 

specifically designed to quantitatively address the wireless-QoS and mobile-QoS needs of 

adaptive mobile applications. Mobile applications use this API at the transport layer 

specifying a utility function that maps the range of observed quality to bandwidth. The 

observed quality index refers to the level of satisfaction perceived by an application at 

any moment. The adaptation policy captures the adaptive nature of mobile applications 

in terms of a set of adaptation policies fast, smooth, after handoff or never. These policies 

allow the application to control how it moves along its utility curve as resource 

availability varies.  
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A simple set of adaptation policies is used in Mobiware to capture how an 

application wishes to respond to instantaneous bandwidth availability. A mobile 

multimedia application’s range of perceptible quality is strongly related to how and when 

it responds to resource changes. Frequent variations between what may be considered 

optimal and minimum utility or even the frequent small change around an average 

application quality may be not appropriate to many applications. Mobile applications use 

this API to specify flow utility functions and adaptation policy. The adaptive-QOS API 

allows applications to associate temporal or event-based dimensions with their utility 

functions. 

 

3.5 Summary. 

 
From the previous work, we do note that the adaptation parameters being focused 

on are the network states and the mobile device computation power: bandwidth and the 

network latency and CPU cycles. The bandwidth and network latency were the main 

parameters upon which the adaptation would take place. In previous adaptation 

approaches, it is up to the application to the decide how to react to changes to the network 

state. The reaction could be filtering data, reducing the size of data, entirely changing the 

content of the data, or limiting the computation of specific tasks if necessary. This argues 

for exporting the network state as well as available resources of the mobile device to the 

mobile applications to be designed to be adaptive. 
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On the other hand, the automation of adaptation to the resources was not 

explored. There are a lot of similarities between our work and the work in Sumarta. Both 

Sumarta and our work use extended Java Virtual Machine for portability issues and the 

ease of use of the language especially for implementing object mobility toolkits. The 

main difference between our toolkit and Sumarta toolkit is that Sumarta entirely leaves 

the adaptation policy under the control of applications. The applications are fully 

responsible for moving objects between the mobile device and the proxy server or 

reducing the computation of tasks. In other words the reaction to changes in the 

environment is left to the application. However, to build a fully automated toolkit to 

automate the adaptation process at run time, application behavior must be known before 

hand. Capturing and modeling the application behavior, in our opinion, is a difficult 

problem to solve. 

In our work, adaptation to the change in the resources and environment is partially 

left to the toolkit. We try to automate some adaptation policies transparently to 

applications. For example, instead of reducing the computation power for a specific task, 

first we try to move and execute the task remotely at powerful machines in favor to 

reduce the CPU cycle at the mobile device, which in turn may result in reducing the 

power consumption at the mobile device too. If this adaptation policy costs more, then we 

signal the application to reduce the computation for the specific task. In other words, we 

try first to use available remote resources to achieve the same task; otherwise, as last 

resort, we let the application do the adaptation. 
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 Our goal is to provide a toolkit that would help the adaptation process and not 

fully automated. We try to make the adaptation process as transparent to applications as 

possible. In our design of the toolkit we consider extra parameters to network state 

parameters; namely the power consumption and relative CPU speed between the mobile 

device and the proxy server; however, we assume that applications are still be aware of 

these parameters as well. Thus our goal is to design a Java toolkit that combines two Java 

Virtual Machines as one virtual machine application point of view, and to automate the 

object load or distribution between the two Java Virtual Machines. The overall goal is to 

reduce the power consumption and to increase the performance of the Java application 

for PDAs. 
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4.  Basic Idea and Preliminary Studies 
 

4.1 Introduction 

 
 

Power management is one of the obstacles that make portable computer less 

useful. Battery power limits the utilization of portable computers to be used anytime and 

anywhere. Quit often, AC power connections are not available, and the portable device 

must work on battery power. However, battery life of existing ones and batteries that are 

expected to exist in the future will not be sufficient for many situations. The projection on 

progress in battery technology shows that only a 20% improvement in battery capacity 

will occur over the next decade [41]. Users either alter their behavior or limit their use of 

the portable device to preserve the battery life. If capacity of battery power cannot be 

improved, another alternative solution is to find ways to reduce power consumption over 

time, provided that these solutions do not have a great impact on the user.  

Many researchers have investigated this problem [42,43,44]. Solutions range from 

slowing down CPU clock rate [45] to intelligently managing screen and disk during idle 

periods or turning off some computer components that are not in use [45,46,47,48]. Some 
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of these solutions made their way into commercial use, which gives a real indication of 

the importance of power management.  

Wireless communication is becoming more common in portable devices. In the 

absence of a wired connection, a wireless connection allows to maintain network 

connectivity, allowing remote file access and sending and receiving emails as well as 

browsing the Internet. Hence, they open a new window of opportunity to overcome some 

of the portable device computation limitations. However, wireless communications is 

regarded as contributing to the power management problem since sending and receiving 

data consume a considerable amount of power. Nevertheless, it can also be used to save a 

significant amount of power, as demonstrated with a simple example in this chapter. 

 In portable devices, performing tasks for a user drains power. Some of these tasks 

must be performed locally due to the nature of the tasks, for example, graphic user 

interfaces and the information that is required to be displayed to the user. However, other 

tasks could be executed anywhere provided that they return results back to the portable 

device. Hence if the power cost model for sending tasks elsewhere and getting the results 

back is less than the cost model of performing the task locally, then remote execution 

could save a significant amount of power. In this chapter, we will explore this idea by 

supporting portable devices through a dedicated machine called proxy server. A proxy 

server is a fast machine, compared to mobile devices, which a mobile device can have 

access to or communicate with directly in fixed networks. Thus, executing tasks remotely 
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may also help decrease the response time and improve the performance of mobile 

applications. 

 

4.2 Background on Load Sharing in Distributed Systems 

 

In general, load sharing or balancing can be defined as a strategy in which every 

processor, in distributed systems, would have an equal load. However, some researchers 

distinguish between load balancing and load sharing as follows. Load balancing is 

defined as a strategy in which every processor having the same load is the targeted goal. 

Load sharing is defined as a strategy which attempts to have processors share the load. A 

load sharing strategy involves two policies. A transfer policy decides when a job must be 

transferred, which depends on the number of jobs that are waiting to be served in the 

local queue.  The location policy decides which host should the jobs transfer to. This is 

done either by randomly choosing a host or by analyzing workload information, which 

may be obtained either by probing a subset of hosts or by collecting the information 

periodically. If information is collected periodically, then the optimal period must be 

determined as well.  

Many load-sharing algorithms have been proposed, and they can vary from ones 

that do not use system state information- random algorithms - to ones that use global state 

information. Optimal Load Sharing Algorithms is an example for algorithms that use 

global state information [49]. 
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4.3 Mobile Computing and Load Sharing Algorithms 

 
 The main idea behind mobile computing is to enable the users to access a 

network or the Internet regardless of their location. Ideally users should get the same 

quality of service as if they were connected to the network using a wired connection. This 

is not possible since drawbacks of wireless connections such as instability in bandwidth 

and latency will play a major factor in degrading the quality of service. In addition to the 

wireless connection drawbacks, the limitation of the portable device in terms of 

computation power and memory capacity as well as power consumption will also affect 

the quality of service that the user obtains. Even though these limitations are being 

addressed by many technologies, it is most likely that performance difference between 

the wired and wireless connections remain [50]. [51] suggests that the computation, 

especially intensive ones, and communication should be done at the proxy side as much 

as possible for the reason that portable devices have very limited resources.   

By offloading computation and communication to a proxy server in the wired 

network, reductions in computation and power consumption on the portable device can 

be achieved. In order to conserve power, transmitting data must be kept at a minimum, 

since the power consumption for transmitting a message is often higher than receiving a 
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message of the same size in wireless devices. Optimizing applications so that they require 

fewer operations also reduces power.  

 

 

Figure 4.1: General Proxy Infrastructure 

 

Assumptions made regarding load sharing in distributed systems are no longer 

valid in wireless networks, where mobility introduces new challenge. For example, the 

location policy selects an appropriate host for the job to be transferred. In wireless 

systems, the only fixed host is the proxy server the portable device communicates with 

directly as indicated in Figure 4.1. Thus jobs can only migrate to this proxy server. 

Therefore, using any existing location policy between the proxy server and the fixed 

hosts, in case the proxy server decides to delegate jobs to other fixed host in the network, 

is not a concern for the portable device. In other words, the other fixed hosts in the 
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network are transparent to the portable device as long as the computation is performed 

and the results returned when needed.  

To probe and collect information, related to monitoring and load balancing 

decision, from the proxy server and the portable device, probing messages are needed. 

The overhead caused by probing messages is not negligible since the bandwidth in 

wireless networks is limited and the cost model for send and receiving data is not cheap 

in terms of power consumption at the portable device. 

 

4.4 Java and WindowsCE 

  

Load sharing algorithms depend on the homogeneity of the platforms in the 

network when transferring jobs from one host to another in a fixed network. This 

assumption is not valid when it comes to the variety of mobile computer platforms in 

practice today. It is, therefore, not possible to support the proxy server with all the 

platforms that possibly connect to it at any moment in time. Using Java Virtual Machine 

as the uniform platform will help solve this but with paying an overhead, which is not 

negligible especially for small portable devices such as handheld devices. 

 In our study, we used a handheld WindowsCE 2.0 device to measure the power 

consumption as well as the response time of Java applications. To build power-aware 

applications in Java we had to extend the Java Virtual Machine on the portable device to 

be able to trace power consumption. Using Java Native Interface, a subset of Advanced 
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Power Management APIs that are supported by WindowsCE is exported to extend the 

Java Virtual Machine [52].  

Since the Java Virtual Machine for WindowsCE is relatively immature, some 

problems had to be addressed and solved. One of them was that the values returned by 

the “System.currentTimeMillis()”  were rounded up to milliseconds that are divisible by 

1000. We fixed this bug by exporting the correct time in milliseconds through the Java 

Native Interface.  

De/serialization of objects is the key for storing objects state and moving objects 

between Java Virtual Machines. Proxy objects are needed to forward messages to the real 

objects, which may reside in remote Java Virtual Machines. Remote Method Invocation 

protocols are mainly responsible for de/marshaling methods’  parameters and return 

objects, when invoking methods on remote objects. 

 Unfortunately, the De/serialization functionality of objects in WindowsCE Java 

Virtual Machine is malfunctioning. Namely, the serialization algorithm was not using 

serialization version code as specified in the Object Serialization Specification [53]. 

To de/serialize objects, we had to fix this bug by forcing the algorithm to use our 

serialization version code.  

WindowsCE Java Virtual Machine by itself does not support object mobility. 

Utilities and packages need to be developed to support object mobility. For example, 

Voyager [54] has very extensive facilities to support object mobility for Java programs. 

Remote Method Invocation [55] helps to develop Java applications that can invoke 
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methods on remote objects. However, these utilities and packages are built to work on 

PCs rather than on PDAs, due to the PDA limitations. 

We developed a utility that can work on PDAs that supports object mobility. It 

allows moving objects dynamically and according to the state of the mobile device and 

the mobile computing environment. Chapter 5 discusses in detail the structure, 

framework, and API, of this tool.  

4.5 Experiments  

 

Since the main goal of using a proxy server is to save power and increase the 

response time for an application by migrating jobs, the same can be achieved using the 

notion of mobile code. Java has the ability to serialize objects at one host and to load and 

execute them at runtime at another host. We identified the important parameters based 

on which dynamically adaptive mobile applications and toolkits can take decisions as to 

which subset of an application’s objects must be migrated and executed at the proxy side 

according to a specific criteria. 

Some obvious parameters such as power consumption cost model, bandwidth, and 

relative CPU speeds.  To show that load sharing can have a major impact on the response 

time and power consumption, we studied CPU-intensive Java applications. We did 

choose to implement a float matrix multiplication algorithm of order O (N3) in Java as an 

example of CPU intensive computations that occur during coding and decoding 

multimedia files in MP3, JPEG and MPEG format. Multimedia support will have 
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potential relevance in future mobile applications. The same matrix multiplication 

algorithm was implemented and locally executed at the handheld device. Then, it was 

executed remotely at the proxy server and results returned back to the handheld device. 

We measured response time and power consumption in the handheld device and 

simulated the transmission and reception costs due to unavailability of the wireless 

connection card for the handheld device that we used, HP 620LX.  The response time 

measured when remote execution occurred includes the cost of sending the code as well. 

The battery of the handheld device that is used can provide (7.2 V*1.35 A) 9.72 

W. If we assume that the general power consumption of the handheld device is 5 W-hr, 

then the battery will last for 2 hours approximately. Table 4.1 shows receiving and 

transmitting power costs for a WaveLAN PCMCIA wireless card [56]. We assumed in 

our power consumption calculations these values. Table 4.2 shows the power 

consumption equations used in our case study, where the Ts is the transmitting time, Tr 

is the receiving time, and the Te is the execution time of a process in seconds. For 

example, if the available bandwidth is 19.2 Kbps, and the data being send is 1024 bytes, 

then the cost of sending the data is 0.00036166 W-hr. 

Table 4.1: Receiving and Transmission Costs of Wave LAN PCMSCA Card 

State Watts 

Receiving 1.52W 

Transmitting 3.1W 
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Table 4.2: Equations of Power Consumption Costs for Transmission, Receiving, and 
Computing  

Power consumed when Equation 

Transmitting 
3600

  3.1
Ts×  W-hr 

Receiving 
3600

  1.52
Tr×  W-hr 

CPU 
3600

  1.8
Te×  W-hr 

 

We also run another experiment that involves studying response time as well as power 

consumption of decoding a GIF image locally at the handheld device and remotely at the 

proxy server by sending the decoded result back to the handheld device as pix-map. The 

detail results are discussed  [57]. 

4.6 Results 

 

To show that sending Java objects to the proxy server can help improve mobile 

application performance, we varied bandwidth, proxy server CPU speed and data size 

being sent and received over the wireless connection and observed the response time as 

well as the power consumption on the mobile device. The data transfer may include the 

object code or not since it is possible that the object code already exists on the proxy 

server.  Results show that the available bandwidth is an important factor in determining 

whether an object should be migrated or not. We varied bandwidth between 1562.5 
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bits/sec and 200kbits/sec. For larger bandwidth, better application performance was 

achieved, and also less power was consumed on the portable device.   

The following graphs show the response time for multiplying two float matrices 

of size 10x10 and 400x400 as well as the power consumption when the object is executed 

locally and remotely, where object code size is 1.27 KB and  

•  RRT1C: response time when executing the matrix multiplication object at a 200Mhz 

Pentium proxy server and the data being sent includes the object code. 

•  RRT1NC: response time when executing the matrix multiplication object at a 200Mhz 

Pentium proxy server and the data being sent does not include the object code. 

•  RRT2C:  response time when executing the matrix multiplication object at a 300Mhz 

PentiumII proxy server and the data being send includes the object code. 

•  RRT2NC: response time when executing the matrix multiplication object at a 300Mhz 

PentiumII proxy server and the data being sent does not include the object code. 

•  LRT: local response time when matrix multiplication is executed on portable device. 

•  LPC: power consumption on the portable device when executing the matrix 

multiplication object on the portable device. 

•  RPC: power consumption on the portable device when executing the matrix 

multiplication object at the proxy server, which includes power consumption of 

sending and receiving data including object code.  
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•  RPNC:  power consumption on the portable device when executing the matrix 

multiplication object at the proxy server, which includes power consumption of 

sending and receiving data without object code. 
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Figure 4.2: Response time for matrix multiplication of size 10x10 locally and at the 
Proxy side. 
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Figure 4.3: Response time for matrix multiplication of size 400x400 locally and at the 
proxy side. 
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Figure 4.4: Power consumption for matrix multiplication of size 10x10 
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Figure 4.5: Power consumption for matrix multiplication of size 400x400 

 

4.7 Discussion 

 

Figure 4.2 and Figure 4.4 show the response time for matrix multiplication of size 

10x10 and 400x400 respectively.  We choose these sizes to represent small and large 

problem sizes. Both graphs show the importance of the available bandwidth in 

determining the tradeoffs between response time and the power consumption costs. 

Figure 4.2 indicates that for small problem sizes, to increase the response time, relatively 

high bandwidth is required (100000 bits/sec or more) for offloading to be beneficial. 

Figure 4.3 shows that for large problem sizes, offloading is beneficial at relatively low 

bandwidths (from 3000 bits/sec and more) to increase the response time.  
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Figures 4.4 and Figure 4.5 show the power cost for small and large problem sizes 

respectively. For small problem sizes, it needs again relatively high bandwidths (200000 

bits/sec or more) to start reducing the power consumption; however, for large problem 

sizes, the reduction in power consumption happens at relatively low bandwidths (starting 

from 3500 bits/sec).   

From previous figures, the tradeoffs depend on problem size, bandwidth, and the 

relative CPU power between the mobile device the proxy server, which is indirectly 

deduced from the problem sizes.  

For non-trivial problem sizes, the results show that interesting tradeoffs appear at 

low bandwidths, although the response time could be very high even when using the 

proxy server strategy. However, obtaining low response time as well as saving power for 

small problems requires relatively high bandwidths (200000 bits/sec or more), which 

seems feasible with the WaveLAN wireless technology and third generation cellular 

systems. Even at data rates that are achievable with today’s wireless technologies, 

offloading of computationally intensive components of an application appears promising. 

As a result we are motivated to continue explore and demonstrate via prototype prove 

that it is possible to increase the performance and/or reduce power consumption.  
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5. Dynamic Object Mobility Toolkit 
  
 
 

5.1 Introduction 

 

Programs that use mobility as a mechanism to adapt to resource changes have two 

main requirements that are not shared with other mobile programs. First, they need to 

monitor the level and quality of resources in their operating environment. Second, they 

need to be able to react to changes to resource availability. In this chapter, we describe 

the design and implementation of our object mobility toolkit, an extension of Java that 

supports resource aware mobile programs for PDAs.  

Mobile programs can move an active process or task from one site to another 

during execution. This flexibility has many potential advantages. For example, a program 

that searches distributed data repositories can improve its performance by migrating to 

the repositories and performing the search on-site instead of fetching all the data to its 

current location.  
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Applications running on mobile platforms can react to a change in network 

bandwidth by moving network intensive computations to a proxy host on the static 

network as indicated in Chapter 4. The primary advantage of mobility in these situations 

is that it can be used as a tool to adapt to variations in the operating environment. 

 Applications can use online information about their operating environment and 

knowledge of their own resource requirements to make judicious decisions about 

placement of computation and data. However, in our toolkit, we try to automate this 

process in two ways. First, by adapting to changes in the mobile environment by sharing 

the load between the PDA and the Proxy host. Second, we allow applications to use 

online information about the mobile environment to make judicious decision about the 

placement of the computation and data. If the first approach results in a satisfactory QoS 

to the user, then the second option need not be executed. 

 Many systems provide some form of support for program mobility. The simplest 

form of support is the ability to download code and execute it to completion at a single 

site.  Omniware [58], Safe-TCL [59], Java [60] are examples for such systems. Other 

systems like Avalon [61], NCL [62] REV [63] and Obliq [64] allow programs in 

execution to initiate computation on remote nodes and wait for their completion. The 

most sophisticated support is provided by systems like Agents [65].  
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5.2 Designing Mobile Applications 

 
Traditional applications consuming many resources do not run efficiently on 

mobile computers. An approach to solve this problem is to divide the application at 

design-time into two pieces, one in the mobile host and the other at the stationary 

computer. The piece consuming fewer resources would be running on the mobile host, 

and the other would be running on the stationary computer. Another approach is to divide 

an application at run-time to two pieces. As the resources and the environment change, 

the two components will be reconfigured accordingly. 

Two issues are important for realizing application adaptation. The first is that the 

operating system must support a mechanism of notifying applications of changes in the 

mobile environment. The second is to provide a systematic way to build adaptive 

applications embodied in frameworks and toolkits. 

5.3 Overview of Proxy Server 

 
The central concept of our framework is the proxy server host. A proxy server is 

an intermediate device that communicates with servers in the Internet using standard 

Internet protocols as shown in Figure 5.1. The mobile device and the proxy server may 

communicate through protocols suitable for wireless connections, such as I-TCP [66] or 

standard TCP. A typical proxy server can be used for the following: 
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Figure 5.1: Proxy Sever infrastructure 

 
 

•  A proxy server can work as a filter receiving data from the Internet and 

compress received data according to the need of the mobile device. For 

example, color video streams are converted from gray color to back-and-white 

color, the quality of audio streams can be altered from stereo to mono, or the 

replay sampling frequency can be reduced to minimize the size of data over 

the wireless connection. 

•  An application can use the resources of the proxy server to increase the 

performance and decrease the power consumption by deploying applications’  

selected objects on the proxy server. For example, offloading a heavy 

computation objects such as decoders to a proxy server reduces the CPU 

cycles on the mobile device as shown in the previous chapter 
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5.4 Dynamic Object Mobility Toolkit 

 
Distributed systems for mobile hosts are difficult to design due to the constraints 

of the environment. One approach to simplify the design and implementation of mobile 

computing applications is to provide a uniform programming language level of 

abstractions through which all mobility related events and actions are reported and 

performed. Functionality of applications is encapsulated within this high level abstraction 

and makes an application easily portable.  

To deal with theses issues, a mobile application must be designed using Object- 

Oriented Design, and run on homogenous platforms. A mobile application is developed 

by composing objects containing functionalities. We call the composition of objects the 

object graph. A mobile application can have two object graphs. One resides at the mobile 

device, and the other resides at the proxy server. These graphs change according to the 

mobile environment and the resources of both devices. An object in the object graph can 

be a filter, buffer or computation object. The Object graph will be reconfigured as needed 

whenever there is a change in the mobile environment. We built a framework using Java, 

which notifies objects about changes in the mobile environment and the configuration of 

the device. 
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5.4.1  Overview of the Toolkit 
 

The programming support we propose can be classified into:  

•  Support for information delivery to the application. 

•  Support to allow an application to react suitably. 

•  Dynamic Object Mobility.  

The toolkit has a set of APIs, which provide the required functionality for moving 

objects dynamically. The choice of the Java language was motivated by the properties of 

the language and the portability issues that Java platform offers. Figures 5.2 and 5.3 show 

the main structure of the distributed toolkit. There is not much difference between the 

structure of the toolkit at the mobile side and the proxy side, except that the migrating-

objects decision is taken at the proxy side since the decision process of the taking 

decision consumes CPU cycles, which would consume power as well.  The following is a 

brief description of the block diagram in Figure 5.2 and Figure 5.3. Figure 5.4 shows part 

of the class diagram that interests us more for our thesis. 

 

•  Mobile/Proxy Device State and Information: 

This unit is responsible of monitoring and delivering the state of the mobile or 

proxy device as events to the Object Server. Changes in the bandwidth or changes in the 

power status are examples of the events that this unit exports. 
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•  Code Storage: 

This unit works as storage of the validated classes files (bytecode) at the mobile 

device. At the request of the proxy device, the code will be transferred to the proxy. 

•  Object References and Profiling (Object graph): 

This unit contains the representation of the application’s objects along with the 

profiling information about these objects. These information will be send to the proxy 

sever to be analyzed and the proxy server will decide which object must be shipped to its 

side according to the mobile environment. 

•  Object Server 

This unit is considered the main core of the toolkit. It runs a thread that listens 

continuously to all the commands from a remote object sever. Commands can be related 

to moving objects or related to the remote invocation of a method on a remote objects. 

•  Remote Method Invocation Protocol 

This protocol is used to marshal and un-marshal a method’s parameters  

•  Dynamic Decision 

This unit is responsible for the analyzing of the profiling information of 

application’s objects. It resides only at the proxy server. Having decided which objects 

need to be executed at the proxy server, it will issue a command to the remote object 

server to download the objects. 
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•  De/Serialization State of Objects Protocol 

This contains the implementation of the serialization protocol if the JVM does not 

implement one.  

•  Communication Control Layer 

To simulate wireless links in terms of the low bandwidth, we chunk the data 

streams being sent through the communication layer into pre-determined sizes based on 

the empirical tests. We introduce a controllable amount of delay between data chunk to 

finally get a simulated slow like. This allows us control the throughput dynamically at 

run time. 
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Figure 5.2: Object Mobility Toolkit infrastructure at the Mobile Device. 
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Figure 5.3: Object Mobility Toolkit Infrastructure at the Proxy Server. 



                                

 75

DummyProxy
(from objectmobil ity)

ResultPlacer
(from objectmobil ity)

ObjectDatabase
(from objectmobil ity)

CommunicationLayer
(from shared)

RemoteServiceCommand
(from shared)

InvokeMethodThread
(from objectmobil ity)

rsc

NOREMOTEEXECEPTION
(from shared)

$noException

RObject
(from shared)

ProxyObject
(from shared)

proxyobject

RemoteThrownException
(from shared)

RemoteResult
(from shared)

ObjectB
(from shared)

RemoteMethod
(from shared)

ObjectA
(from shared)

Mobility
(from shared)

RemoteObjectService
(from objectmobil ity)

-$ros

dummyProxy

resultPlacer
podb

rdb

edb Lcdb

RcdbNodb

ros

cml

ros

ros

AssigneProxy
(from shared)

 

Figure 5.4: Part of Class diagram for Object mobility toolkit.  
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As mentioned earlier, a mobile computing application needs to be aware of 

resource availability and changes in the mobile environment. Thus special abstractions 

must be provided in order to deliver these changes to an application. We model all 

changes as events, which are delivered to objects. Interested objects in an application 

must define an event handler through which the events, such as change in the power state 

and bandwidth of link, can be handled. Since Java does not support pointer notion, using 

Java Reflection classes and Interfaces facilitates this. 

Both the state and computation of an application may be partitioned between the 

mobile device and the proxy server. The degree of partitioning ranges from just executing 

the user graphic interface to executing the entire application on the mobile device. We 

propose a Greedy Graph Partitioning algorithm [67] for load-sharing purposes [68] to be 

used with this toolkit for handheld PCs. The decision to move objects is made at run-time 

and depends on environment factors, mainly relative CPU speeds and link bandwidth. 

Chapter 7 describes the algorithm and results. The toolkit provides the following 

functionality: 

•  Migrate the object to a remote host. 

•  Fold the object back. 

•  Objects migrating decision are made dynamically and initiated by 

the proxy server  
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5.4.2 Design of the Toolkit 
 

The core design of toolkit is based on a simplified implementation of Proxy 

Object pattern, Object Remote Procedure Call and Object Mobility. Our goal is to have 

an extended Java Virtual Machine enabled with a toolkit that facilitates the mobility of 

objects between mobile host and proxy server in a dynamic manner, transparent to the 

application designers and users. This toolkit is designed to work on PDAs. Because of the 

PDA constraints mentioned earlier, the toolkit must have a small memory footprint. Other 

existing ORBs and object mobility toolkits do not support the handheld platforms or they 

have too big memory footprint, and that was the motivation behind developing our own 

toolkit. 

To start moving objects of an application between hosts, the notion of a remote 

reference is required. Java does not support a remote reference of objects automatically, 

but it supports the notion of interfaces, which is the key of the implantation of the proxy 

pattern [69].  

Interfaces are formal declarations of methods supported by implementation 

objects. Most distributed systems rely on a standard way for defining interfaces 

describing sets of services of an object. Object Interfaces are very similar to classes in 

object-oriented programming languages. Each interface consists of a set of service 

declarations. Each service is declared in a similar fashion as an object-oriented method; a 

named operation that may carry arguments, results, and exceptions. Arguments and 

results may consist of any arbitrary data, including control parameters, names or 
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references to other components. However, interfaces do not provide an implementation of 

an object. 

Serialization is the process of taking the member data of an object and 

representing it as a serial stream of bytes, usually for the purpose of storing the data in a 

file or database. Serialization, when combined with a socket connection can also be used 

to transmit the state of objects from one place to another. All of these language elements 

taken together open the way to distributed-object computing tools.  
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Figure 5.5: Proxy Objects with their associated Objects (Px is a proxy of the objectX) 
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5.4.3 Proxy Objects 
 

Hot swap techniques [69] are impossible to implement in Java since Java does not 

support pointers. To achieve a similar effect, every movable object of an application that 

will work on our toolkit needs to be associated with a proxy object that has the same 

interface as the movable object. Other objects will not reference real objects directly, but 

they reference them through their proxies, as Figure 5.5 illustrates, in which Object B 

references Proxy of Object A not Object A it self. 

 This will facilitate moving object without warring about changing references of 

other objects to it.  

 

Figure 5.6: Moving Object B from Mobile Device to the Proxy Server. 
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To create a new class or object with an identical interface of another object in 

Java, in other words a proxy object, there are special automatic tools provided to create 

the image of another class that appears like the original to clients using it. These tools use 

Java reflection to inspect a class and get all information required to build a proxy object. 

However, the proxy object does no real work by itself. Instead, a proxy object uses 

network communications or delegates the communication job to other objects to create 

and remotely control an instance of the real object it represents. In other words, the proxy 

object acts as a mediator between the caller and the real object. It is through proxies that 

all methods calls local or remote are made. 

 

Figure 5.6 demonstrates moving Object B in Figure 5.5 from mobile device to the 

proxy server. Moving Object B will not require moving Object A to the proxy server as 

well. However, at the proxy server, a proxy of the object A must be created to forward 

the calls to Object A at the mobile device. In fact, Java does offer APIs that control the 

serialization such that the proxy of Object A need not be created in this case, but 

deserialized only with small changes in the state of the proxy object to make it a 

consistent proxy object. 

 Figure 5.7, demonstrates moving Object A in Figure 5.5 to the proxy server. 

Moving object A does not require changing the reference of Object A in Object B since 

object B does reference the proxy object of A. Any calls from Object B to the Object A 

will be forwarded remotely through the proxy object of A at the mobile device. The 
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proxy object of A at the proxy device will allow other objects to reference the object A 

without effecting the flexibility of moving object A again to the mobile device. 

Every proxy object created in the toolkit is assigned a local and a remote 

reference counters. These counters are updated whenever proxy object referenced locally 

or remotely. These counters are used to determine when the proxy and its associated 

object be claimed by the garbage collector. 

Whenever a proxy object is not being reference remotely and locally, it will be 

finalized and garbage collected. If the associated object of this proxy is local, then 

associated object will be finalized and claimed again by the garbage collector as well. If 

the associated object is remote, then the proxy object will inform the remote object server 

to decrement the remote reference counter for the associated object at the remote site, 

which in turn could make the object claimed by the remote garbage collector if there is no 

more references locally or remotely to the associated object. 
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Figure 5.7: Moving Object A to the Proxy Server. 

 

The process of creating a proxy object can be automated by using Byte Code 

Engineering tools [70]. These tools can create proxies of objects on the fly and use the 

Java Class Loaders to bring the proxies into the Java Virtual Machines. Voyager uses the 

same approach to automate generating proxy objects whenever it needs.  

This proxy is relatively slow. In the toolkit we did not automate the process of 

generating proxy objects due to the limitation of the PDA that we work on but not due the 

limitation of the Java Virtual Machine. 
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5.4.4 Java RMI Protocol 
 

 

Figure 5.8: Main Structure of Remote Invocation Method Protocol. 

 

Figure 5.8 illustrates the basic structure of invoking a method locally and 

remotely from a proxy object.  When the toolkit is initialized at the mobile device and the 

proxy server, a socket connection is established during the initialization process of the 

toolkit.  The same connection is used to send commands between virtual machines that 

are running on both sides. For every local object that is created, a proxy object that holds 

the same interface as the object is created as well and assigned a unique number that 

represents the associated object. This unique number will identify the associated object as 

long as the associated object is alive, either local or remote. When an object is to be 

moved to the proxy server, the proxy as well as the object both will be serialized and 
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shipped to the remote server, where they are deserialized and enabled for use remotely. If 

an associated object of a proxy object is moved, the local copy of the associated object 

will be finalized locally. When an object referencing a proxy is being serialized, both will 

be serialized, but not the associated object of the proxy being referenced. 

 If a method is invoked on a proxy object, the proxy will know whether the 

associated object is local or remote. If the associated object is local, then the proxy will 

forward the call to the associated object through the reflection mechanism. If the 

associated object is a remote object, then the proxy object will send a request to the 

remote server asking for execution of the remote method on the specified object. Every 

remote execution method request is associated with a unique number that is used to keep 

track of the results and the exceptions that might happen when invoking a remote 

method. In this request, the object identification number, method identification and 

method parameters are sent. Upon receiving them at the remote server, the remote server 

will start searching for the right proxy object to have a reference to it. If the proxy object 

is found, then the server will ask the proxy to invoke method. Having invoked the 

method, results and exceptions are sent back to the local server which in turn will 

dispatch them to the right method through the unique trace number mentioned before. 

Every proxy object will be in waiting state while waiting for the exceptions or results to 

be back. We do not use the polling mechanism to check for the exceptions and results, 

but we do use Java monitors to consume less CPU cycles and to improve the performance 

of the toolkit. 
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It is important to note that serialization can be done on any data type imaginable, 

from a simple integer to a height-balanced tree. Serialization makes it possible to use 

remote objects and their methods just as one would use local objects, with almost no 

restrictions in the form or structure of the data types involved. 

5.4.5 Distributed Garbage Collection 
 

 Knowing and determining when objects are no longer in use is a problem in 

distributed computing toolkits. To deal with this, for simplicity, a reference counter based 

distributed garbage collection is used in our toolkit since Java does not explicitly free 

objects from remote memory or remote Java Virtual Machines. If an object that is not 

being referenced locally and remotely, then it should be finalized. This requires sending 

messages between the mobile device and the proxy server to keep the object reference 

counters updated. 

5.4.6 Transportation Layer 
 
For our experimental purposes, we build wrapper classes in Java for TCP/IP 

streams to control characteristic of the link. We introduce delay values to simulate the 

low throughputs between chunks of the data being sent.  
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6. Java MP3 decoder 
 

To demonstrate the feasibility of our idea, we implemented a resource intensive 

application, an MP3 player in Java. This chapter discusses this sample application, and 

we provide more details on the experiment and results in the next chapter, Chapter 7.    

 

6.1 Introduction 

  
Digital audio compression allows for efficient storage and transmission of audio 

data. There are various audio compression techniques, which offer different levels of 

complexity, compressed audio quality, and amount of data compression. 

This chapter surveys techniques used to compress digital audio signals. This 

chapter starts with a summary of the basic audio digitization process and ends with the 

description of a sophisticated audio digital compression called MPEG layer 3, through 

relatively simple digital audio compression called u-law and adaptive differential pulse 

code modulation. 
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6.2 Digital Audio Data 

The digital representation of audio data offers many advantages such as high 

noise resistance, stability and reproducibility. Also it allows the efficient implementation 

of many audio-processing functions such as mixing, filtering and equalization through 

digital computers.  The conversion from analog to digital signals begins by sampling the 

audio input in regular intervals and quantizing the sampled values into a discrete number 

of evenly spaced levels. The digital audio data consists of sequences of binary values 

representing the number of quantizer levels for the audio sample.  

 

Figure 6.1: Digital Audio Process 

 
The method of representing each sample with an independent code word is called 

pulse code modulation, PCM. According to Nyquist theory, a time-sampled signal can 



                                

 88

represent up to the half of the sampling rate [71]. Typical sampling rates range from 8 

KHz to 48 KHz. The 8 KHz rate covers a frequency range up to 4 KHz and provides 

adequate coverage for human voice. The 48 KHz rate covers a frequency range up to 24 

KHz and more than adequately covers the entire audible frequencies range, which for 

humans, typically, extends to 20 KHz. 

The number of quantizer levels is a power of 2 to make full use of a fixed number 

of bits per audio sample to represent the quantized values. With uniform quantizer step 

spacing, each additional bit has the potential of increasing the signal/noise ration by 

roughly 6 decibels (dB). The typical number of bits per sample used for digital audio 

ranges from 8 to 16 bits, which results in dB values ranging from 48 to 96 respectively. 

To put these values in perspective, 0 dB represents the weakest audible sound pressure 

level; 35 dB is the noise level inside a quite home. 125 dB is the loudest level before the 

discomfort starts [72]. 

Compared to most digital data types, data rates associated with uncompressed 

digital audio are substantial. The audio data on a compact disc with 2 channels of audio 

sampled at 44.1kHz with 16 bits per sample requires a data rate of about 1.4 Mbps.  

So there is a clear need for some form of compression to enable more efficient 

storage and transmission of this data. There are many forms of audio compression 

techniques, which differ in the trade-off between the encoder and the decoder complexity, 

the compressed audio quality and the amount of data compression.  In Section 6.3, low, 

medium, and high complexity techniques are presented.  
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6.3 Audio Compression Techniques 

6.3.1 u_law Audio Compression 
 

The u-law transformation is a basic audio compression technique. The 

transformation is essentially logarithmic in nature and allows the 8 bits per sample output 

codes to cover the dynamic range equivalent to 14 bits of linearly quantized values. This 

transformation offers a compression ratio of  (number of bits per source sample/8) to 1. 

Unlike linear quantization, the logarithmic step spacing represent low amplitude audio 

samples with grater accuracy than higher amplitude values. This makes the signal/noise 

ratio of the transformed output more uniform over the range of amplitudes of the input 

signal.  The u-law transformation is  
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The u-law transformation is commonly used in North America and Japan for 

ISDN 8 KHz sampled, voice grade, digital telephony service. 

6.3.2 Adaptive Differential Pulse Code Modulation (ADPCM). 
 

The ADPCM encoder takes advantage of the fact that neighboring audio samples 

are generally similar to each other. Instead of representing each audio sample 



                                

 90

independently as in PCM, the ADPCM encoder computes the difference between each 

audio sample and its predicted value and outputs the PCM value of the differential. 

 

Adaptive quantizer

Adaptive predictor

Adaptive 
dequantizer

Adaptive quantizer

Adaptive predictor Adaptive 
dequantizer

+

+

+

+

-

+

C[n]D[n]

Xp[n-
�
]

X[n]

Xp[n] Dq[n]

ADPCM encoder

C[n] Dq[n]
+

Xp[n- � ]

Xp[n]

ADPCM decoder

Adaptive quantizerAdaptive quantizer

Adaptive predictorAdaptive predictor

Adaptive 
dequantizer
Adaptive 

dequantizer

Adaptive quantizer

Adaptive predictorAdaptive predictor Adaptive 
dequantizer
Adaptive 

dequantizer

+

+

+

+

-

+

C[n]D[n]

Xp[n- � ]

X[n]

Xp[n] Dq[n]

ADPCM encoder

C[n] Dq[n]
+

Xp[n- � ]

Xp[n]

ADPCM decoder
 

Figure 6.2: ADPCM Decoder/Encode 

 

 ADPCM coder can adapt to the characteristics of the audio signals by changing 

the step size of either the predictor or the quantizer or by changing both. The method of 

computing the predicted value and the way the predictor or the quantizer adapt to the 

audio signal vary among different coding systems. Some ADPCM systems require the 

encoder to provide side information with differential PCM values. This side information 

can serve two purposes. First, in some ADPCM systems, the decoder needs the additional 

information either to determine the predictor or quantizer step size or both. Second, the 
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data can provide redundant contextual information to the decoder to enable recovery from 

errors in the bit stream or to allow random access entry into the coded bit stream.  

The ADPCM algorithm proposed by Interactive Multimedia Association offers a 

compression ratio of (number of bits per source sample)/4:1.  The simplicity of this 

encoder lies in the predictor. The predictor value of the audio sample is simply the 

decoded value of the immediate previous audio sample. Thus the predictor block in 

Figure 6.2 is merely a time delay element whose output is the input delay by one audio 

sample interval. Since this predictor is not adaptive, side information is not necessary for 

the construction of the predictor.  

6.3.3 MPEG/Audio Compression. 
 

The Motion Picture Experts Group audio compression algorithm is an 

International Organization for Standardization (ISO) standard for high fidelity audio 

compression. It is one part of a three-part compression standard. With the other two, 

Video and Systems, the complex standard addresses the compression of synchronized 

video and audio at a total bit rate of roughly 1.5 Mbps.  

Like u-law and ADPCM, the MPEG audio compression is lossy; however, the 

MPEG algorithm can achieve transparent, perceptually loss-less compression. The high 

performance of this compression algorithm is due to the exploitation of auditory masking. 

This masking is the perceptual weakness of the ear that occurs whenever the presence of 

a strong audio signal makes weaker audio signals imperceptible. This noise-masking 

phenomenon has been observed by a variety of scientists [73]. Empirical results in [73] 
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show that the ear has limited frequency selectivity that varies in sharpness from less than 

100Hz for the lowest audible frequencies to more than 4 kHz for the highest. Thus the 

audible spectrum can be divided into critical bands that reflect the resolving power of the 

ear as a function of the frequency. The following table lists the critical bandwidths. 

Table 6.1: Critical Band Boundaries 

Band Number Frequency (Hz)  Band Number Frequency (Hz) 

0 50 14 1970 

1 95 15 2340 

2 140 16 2720 

3 235 17 3280 

4 330 18 3840 

5 420 19 4690 

6 560 20 5440 

7 660 21 6375 

8 800 22 7690 

9 940 23 9375 

10 1125 24 11625 

11 1265 25 15375 

12 1500 26 20250 

13 1735   
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 Because of the ear’s limited frequency resolving power, the threshold for 

noise masking at any given frequency is solely dependent on the signal activity within a 

critical band of that frequency.  Figure 6.5 illustrates this property.  
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Figure 6.3:Audio noise masking 

 
For audio compression, this property can be capitalized by transforming the audio 

signal into the frequency domain, then dividing the resulting spectrum into sub-bands that 

approximate critical bands, and finally quantizing each sub-band according to the 

audibility of quantization noise within that band. For optimal compression, each band 

should be quantized with no more levels than necessary to make the quantization noise 

inaudible.   
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Figure 6.4: MPEG/ Audio Encode/Decoder 

 
In the MPEG encoder/decoder diagrams of Figure 6.4 [74,75], encoding closely 

parallels the process described above. The input audio stream passes through a filter bank 

that divides the input into multiple sub-bands. The input audio stream simultaneously 

passes through a psychoacoustic model that determines the signal-to-mask ratio of each 

sub-band. The bit or noise allocation block uses the signal to mask ratios to decide how to 

apportion the total number of code bits available for the quantization of the sub-band 

signals to minimize the audio samples and formats the data into a decodable bit stream. 

The decoder simply reverses the formatting and constructs the quantized sub-band values, 

and finally transforms the set of sub-band values into a time-domain audio signal. 
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The MPEG/audio standard has three distinct layers for compression. Layer I 

forms the most basic algorithm, and Layers II and III are enhancements that use some 

elements found in Layer I. Each successive layer improves the compression ratio, but it 

increases the complexity cost of encoder and decoder. 

The Layer I algorithm uses the basic filter bank found in all layers. This filter 

bank divides the audio signal into 32 constant-width frequency bands. The filters are 

relatively simple and provide good time resolution with reasonable frequency resolution 

relative to the perceptual properties of the human ear. The design is a compromise with 

three important concessions. First, the 32 constant width bands do not accurately reflect 

the ear’s critical bands [78]. Figure 6.5 illustrates this. 

 

Figure 6.5: MPEG/Audio Filter bandwidths vs. Critical bandwidths. 
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The bandwidth is too wide for the lower frequencies so the number of quantizer 

bits cannot be specifically tuned for the noise sensitivity within each critical band. The 

included critical band with the greatest noise sensitivity dictates the number of 

quantization bits required for the entire filter band. Second, the filter bank and its inverse 

are not loss-less transformations. Even without quantization, the inverse transformation 

would not perfectly recover the original input signal. Fortunately, the error introduced by 

the filter bands has a significant frequency overlap. A signal at single frequency can 

affect two adjacent filter bank outputs. 

The filter bank provides 32 frequency samples, one sample per band, for every 32 

input audio samples. The Layer I algorithm groups together 12 samples from each the 32 

bands. Each group of 12 samples receives a bit allocation and, if the bit allocation is not 

zero, a scale factor. Coding for stereo redundancy compression is slightly different. The 

bit allocation determines the number of bits used to represent each sample. The scale 

factor is a multiplier that sizes the samples to maximize the resolution of the quantizer. 

The Layer I encoder formats 32 groups of samples, 384 samples, into a frame. Besides 

the audio data, each frame contains a header, an optional cyclic redundancy code check 

word, and possible ancillary data. 

The Layer II algorithm is a simple enhancement of Layer I. It improves 

compression performance by coding data in larger groups. The Layer II encoder forms 

frames of 3 by 12 by 32, 1252 samples per audio channel. In contrast, Layer I codes data 

in single groups of 12 samples for each sub-band, while Layer II codes data in 3 groups 
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of 12 samples for each sub-band.  There is one bit allocation and up to three scale factors 

for each trio of 12 samples. The encoder encodes with a unique scale factor for each 

group of 12 samples only if necessary to avoid audible distortion. The Layer II algorithm 

also improves performance over Layer I by representing the bit allocation, the scale 

factor values, and the quantized samples with a more efficient code. 

Layer III algorithm is a much more refined approach [74,75]. Although it is based 

on the same filter bank found in Layer II, Layer III compensates for some filter bank 

deficiencies by processing the filter outputs with Modified Discrete Cosine Transform 

(MDCT) and I.  Figure 6.6 shows a block diagram of the process. 

 

 

Figure 6.6: MPEG/Audio Layer III Filter Bank Processing, Encoder Side 
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The MDCTs further subdivide the filter bank outputs in frequency to 

provide better spectral resolution. Because of the inevitable trade-off between time and 

frequency resolution, Layer III specifies two different MDCT block lengths: a long block 

of 36 samples or a short block of 12. The short block length improves the time resolution 

to cope with transients. A long block with a specialized long-to-short or short-to-long 

data window provides the transition mechanism from long to short block. Layer III has 

three blocking modes; two modes where the outputs of the 32 filter banks can all pass 

through MDCTs with the same block length and a mixed block mode where the 2 lower 

frequency bands use long blocks and the 30 upper bands use short blocks. 

Other major enhancements over Layer I and Layer II are listed as following. 

•  Alias reduction: Layer III specifies a method of processing the MDCT 

values to remove some redundancy caused by the overlapping bands of 

Layer II filter bank. 

 
•  Non-uniform quantization: The Layer III quantizer raises its input to the ¾ 

power before quantization to provide a more consistent signal to noise 

ratio over the range of quantizer values. The re-quantizer in the 

MPEG/audio decoder linearizes the values by raising its output to the 4/3 

powers.  
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•  Entropy coding of data values: Layer III uses Huffman codes to encode the 

quantized samples for better data compression [76]. 

 
•  Use of a bit reservoir: The design of the Layer III bit stream better fits the 

variable length nature of the compressed data. As with Layer II, Layer III 

processes the audio data in frames of 1152 samples. Unlike layer II, the 

coded data representing these samples does not necessary fit into a fixed-

length frame in the code bit stream. The encoder can donate bits to or 

borrow bits from the reservoir when appropriate. 

 
•  Noise allocation instead of bit allocation:  The bit allocation process used by 

Layer I and II only approximates the amount of noise caused by 

quantization to a given number of bits. The Layer III encoder uses a noise 

allocation iteration loop in which the quantizers are varied in an orderly 

way, and the resulting quantization noise is actually calculated and 

specifically allocated to each sub-band.  

MP3 is a very powerful and popular audio format on the Internet; however, 

the decoder demands a lot of CPU cycles. So it is a challenge to download and 

play MP3 files. 
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6.4 Java Implementation of an MP3 Decoder 

 
To obtain code portability, a Java version of an MP3 decoder was needed. We 

developed an MP3 decoder in Java and optimized it to work with our infrastructure and 

to demonstrate the concepts explored in this thesis. This MP3 decoder application 

requires a fast CPU to decode the coded sound due to the complexity of its 

encoder/decoder algorithm, which makes it an ideal candidate to demonstrate the need for 

fast static hosts, i.e. proxy servers, to support the mobile devices and PDAs that could run 

such type of CPU consuming applications. 

6.4.1 Class Diagram of The Java MP3 Player 
 

Figure 6.7 shows the class diagram of the Java MP3 player. Which highlights the 

architecture of the decoder basically. What is important for our thesis is to identify and 

represent the instances (objects) into an object graph. This object graph consists of nodes 

that represent instances of classes with CPU time consumed to achieve their 

functionality. Also, this graph consists of edges that represent the cost of method calls 

and the data volume being transferred between nodes. 

The CPU time and the edges cost can be deduced from the call graph that is 

provided by a toolkit called JProbe [77]. This toolkit is basically an instrumented JVM 

that monitors an application objects and the method calls between objects.  Figure 6.8 

shows the instances of the classes used to decode an MP3 song. Tables 6.2 and 6.3 
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contain profiling information regarding nodes and edges in the object graph of the MP3 

decoder, which is required as input to the load-sharing algorithm in Chapter 7. This 

profiling information is measured on a device that runs on 350 MHz Pentium. 
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Figure 6.7: Class Diagram for Java MP3 Decoder 
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Figure 6.8:  Object graph of the MP3 decoder. 
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Table 6.2: Objects sizes (in bytes) and the average CPU time in milliseconds for 
decoding 1 frame of an MP3 song on Pentium 350 MHz. 

 
Object Name Object 

Size 
Instances Code 

Size 
Calls/Frame Avg CPU 

Method 
Time 

Avg CPU 
time/class 

Avg CPU 
Time/instance 

Table43 28 1 107344 620 1.28169E-05 0.00794 0.00794 

Bit_Reserve 16666 1 1430 3355 0.000149 0.50058 0.50058 
SBI 223 6 2905 97 0.001191 0.11560 0.01926 

gr_info_s 376 4 5195 7184 3.46479E-05 0.24891 0.06222 

temporaire2 376 2 1409 1687 5.28169E-06 0.00891 0.00445 
temporaire 593 2 1819 52 0.008529 0.44351 0.22175 

Header 765 1 9245 11 0.000242 0.00267 0.00267 

III_side_info_t 959 1 2022 35 0.004775 0.16715 0.16715 
Ibitstream 1972 1 5301 449 0.000649 0.29177 0.29177 

huffcodetab 2526 35 45493 693 0.005722 3.96590 0.11331 
SynthesisFilter 4414 2 18724 4824 0.000185 0.89451 0.44725 

LayerIII_Decoder 25114 1 47146 160 0.00669 1.07052 1.07052 

 
 
 

Table 6.3: Objects sizes (in bytes) and the average CPU time in milliseconds for 
decoding 1 frame of an MP3 song on Pentium 133 MHz. 

Object Name Object 
Size 

Instances Code 
Size 

Calls/Frame Avg CPU 
Method 
Time 

Avg CPU 
Time/class 

Avg CPU 
Time/instance 

Table43 28 1 107344 620 6.16493E-05 0.03822 0.03822 

Bit_Reserve 16666 1 1430 3355 0.000717 2.40782 2.40782 

SBI 223 6 2905 97 0.005732 0.55606 0.09267 

gr_info_s 376 4 5195 7184 3.46479E-05 0.24891 0.06222 

temporaire2 376 2 1409 1687 2.54049E-05 0.04285 0.02142 

Temporaire 593 2 1819 52 0.041025 2.13332 1.06666 

Header 765 1 9245 11 0.000242 0.00267 0.00267 

III_side_info_t 959 1 2022 35 0.022972 0.80402 0.80402 

Ibitstream 1972 1 5301 449 0.000649 0.29177 0.29177 

Huffcodetab 2526 35 45493 693 0.027527 19.07631 0.54503 

SynthesisFilter 4414 2 18724 4824 0.000185 0.89451 0.44725 

LayerIII_Decoder 25114 1 47146 160 0.032182 5.14924 5.14924 
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Table 6.4: Objects sizes (in bytes) and the average CPU time in milliseconds for 
decoding 1 frame of an MP3 song on handheld device. 

 
Object Name Object 

Size 
Instances CodeSize Calls/Frame Avg CPU 

Method Time 
Avg  CPU 
time/class 

Avg CPU 
Time/instance 

Table43 28 1 107344 620 0.001486 0.92179 0.92179 
Bit_Reserve 16666 1 1430 3355 0.017307 58.0680 58.0681 

SBI 223 6 2905 97 0.138250 13.4103 2.23505 
gr_info_s 376 4 5195 7184 0.004019 28.8736 7.21840 

Temporaire2 376 2 1409 1687 0.000612 01.0336 0.51679 
Temporaire 593 2 1819 52 0.989387 51.4482 25.7241 

Header 765 1 9245 11 0.028170 0.30987 0.30987 
III_side_info_t 959 1 2022 35 0.554004 19.3902 19.3902 

Ibitstream 1972 1 5301 449 0.075379 33.8454 33.8454 
huffcodetab 2526 35 45493 693 0.663857 460.053 13.1443 

SynthesisFilter 4414 2 18724 4824 0.021509 103.7642 51.8821 
LayerIII_Decoder 25114 1 47146 160 0.776133 124.1814 124.1814 

 
 

Table 6.5: Edge weights of the object graph in Figure 6.8 of the MP3 decoder. 

Link number of 
calls/Frame 

Avg number of 
calls/instance/frame 

DataIN DataOut TotalDataIn TotalDataOut Total /instance 

1 97 16.2 44 44 711.3 711.3 2231 
2 7192 1798 42 42 75516 75516 240932 
3 429 214.5 50 46 10725 9867 31317 
4 48 24 42 42 1008 1008 3216 
5 10 10 43 42 430 420 1350 
6 692 19.8 52 48 1028.114 949.0285 2965.714 
7 144 72 42 40 3024 2880 9504 
8 587 587 43 43 25241 25241 79832 
9 1 1 580 0 580 0 630 
10 2768 79.09 42 44 3321.6 3479.771 10755.6 
11 1 1 0 417 0 417 467 
12 619 619 44 44 27236 27236 85422 
13 1 1 64 40 64 40 154 
14 14 14 40 44 560 616 1876 
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6.4.2 Efficiency experiment 
 

To measure the performance of the MP3 player, we executed it on two PC devices 

with Intel CPU architecture. The first is a workstation, which runs at 350 MHz and the 

second is a laptop, which runs at 133 MHz Pentium processors. The results were taken 

when the only application running on both devices was the Java MP3 player. We define 

efficiency of the decoder by it is ability to play the decoded sound in real time without 

resorting to buffering mechanisms. 

Figure 6.9 shows that the MP3 decoder requires relatively high CPU speed to start 

playing the decoded sound in real-time. In the graph, an efficient value of less than 100% 

indicates that the decoder cannot produce enough decoded sound to play it in real time; 

however, it is possible to use buffer mechanisms to buffer decoded sound before playing 

it, and the buffer size depends on the efficiency value. 
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Figure 6.9: The measured efficiency of MP3 decoder on two different CPU speeds. 
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Efficiency values greater than or equal to than 100% indicate that decoder can 

play decoded sound in real time; however, buffering is needed to not overwhelm the 

playing rate, and again the buffer size depends on the efficiency value. 

The MP3 decoder requires approximately 38 frames to decode stereo sound for 1 

second. The frame size is 417 bytes. The decoder produces sound with play rate of 44100 

for both channels per second, which we convert to mono and sample down the playing 

rate to 11025 per second so that it can be played on both laptop and PDAs devices we 

use. The required bytes to present a second of a mono channel with sampling rate of 

11025 and 16 bits to present a sample are 22025 bytes. 
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7. Experiments and Results 
 

Our solution is based on Greedy Graph Partitioning algorithm to be used for load 

sharing purposes, in which an object graph is partitioned into clusters of logically and 

strongly related objects. There are two types of clustering algorithms: sequence-based 

clustering techniques, which transform the object graph into a linear sequence of objects 

which are segmented from left to right into partitions, and partition-based clustering 

techniques which transform the object into clusters of objects. The partition-based 

techniques can be classified into two categories:  

•  Constructive algorithms build a partition from scratch. 

•  I terative algorithms starts with some initial partitioning and 

repeatedly try to improve this partitioning. 

Under sequence based clustering, the cluster graph is transformed into a linear 

sequence of objects, which is then sequentially assigned to pages. Under partition based 

clustering, the cluster graph is partitioned into object partitions that fit onto a single page. 

The goal is to minimize the total weight of those edges of the cluster graph that cross 

page boundaries. 
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The first technique, constructive partition-based, is of more interest for us since it 

meets our requirement for a partitioning algorithm. They produce better clustering quality 

with reasonable runtime compared to the iterative algorithms [79].  

The clustering problem is closely related to the graph-partitioning problem where 

some graph is to be partitioned into several disconnected (partitions). The object graph 

(OG) is constructed considering objects as vertices and the inter-object references as 

directed edges. Clustering algorithms partition the OG by assigning objects to equally 

sized pages. Instead of the OG, clustering algorithms often use a more specific graph as 

input that is derived from the OG and/or from information about the applications' access 

behavior. The derived graph is called the clustering graph (CG). The vertices and edges 

of the CG are labeled with weights. 

The set of edges of the CG may be a multi-set. However, in order to simplify the 

problem, we transform the CG into a simple graph, i.e., every edge occurs only once, by 

accumulating the weights of edges between the same start and terminal vertices. For a 

given partitioning of the CG, the total weight of all edges crossing partition borders (page 

borders) is the external costs of this partitioning. 

  The clustering problem is to find a partitioning of the CG such that the size of 

each partition, i.e., the total size of its objects, is less or equal the page size and the 

external costs are minimized.  
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It is far more expensive to dynamically gather information on the access behavior 

between objects since it requires monitoring applications objects, which has a none- 

negligible overhead especially in the slow and not optimized JVMs on PDAs. In the 

reminder sections we assume the weights of the edges and vertices weights of the object 

graph to be given either by dynamic or static access analysis. 

Our approach consists of two steps. The first step is based on the partitioning 

algorithm in which we divide the object graph of an application into partitions that would 

give the minimum weight of edges that cross the partitions boundaries. The second step 

determines whether moving one of these partitions to the proxy server would pay. 

7.1 The Greedy Graph Partitioning Heuristics (GGP) 

 
Because of the very good clustering results but poor runtime performance of 

known partition-based clustering algorithms, we have chosen a newly developed 

partitioning algorithm called Greedy Graph Partitioning Heuristics. The algorithm was 

first proposed in [79]. It is strongly related to the subset optimization problem for which 

greedy algorithms often find good solutions very efficiently. 

The input for the algorithm is an object graph, which consists of the weighted 

edges and vertices. The output of the graph is a list of partitions, which minimize external 

cost between the connected partitions. 
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7.2 Simple GGP Algorithm 

The GGP algorithm is based on a simple greedy heuristic that was developed for 

computing the minimum-weight spanning tree of a graph. First all partitions are inhabited 

by a single object, and all partitions are inserted into a PartList. For all objects O1, O2 

connected by some edge in the CG with weight Wo1, o2 a tuple (O1, O2, Wo1, o2) is inserted 

into the list EdgeList. All tuples of EdgeList are visited in the order of descending 

weights. Let (O1, O2, Wo1, o2) be the current tuple. Let P1, P2 be the partitions to which 

object O1 and O2 belong. If P1! = P2 and if the total size of all objects assigned to P1 and 

P2 is less than the page size, the two portions are joined. Otherwise, the edge is merely 

discarded and the partitions remain invariant. Figure 7.1 shows the GGP algorithm 

outline. 

Let E be the number of edges of the object graph, then the runtime complexity of 

the algorithm is O (E log E) since the dominating factor in the algorithm is the Sorting 

algorithm. The runtime complexity of the algorithm can be reduced to O(E) if the sorting 

algorithm is eliminated. To eliminate the sorting algorithm the edges list has to be sorted 

during the static analysis.  
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Figure 7.1: Outline of simple GGP Algorithm. 

 

•  INPUT:  The object graph; 

•  OUTPUT: A list of partitions; 

•  Let PageSize = Maximum number of object is a cluster; 

•  PartList: = Empty List; 

•  Assign each object in the object graph to a new partition and insert this partition into 

PartList. 

•  Let EdgeList be a list of tuples of the form (O1, O2, Wo1o2), where Wo1o2 is the total 

weight of all edges between O1 and O2. 

•  If (Dynamic analysis is used) then Sort Edge List by descending weights; 

•  Foreach (O1, O2, Wo1o2) in Edge List do 

•  Begin 

� Let P1, P2 be the partitions containing objects O1, O2; 

� If( P1   and   P2  are movable partitions ) then  

� Begin 

•  If (P1 != P2and the total size of all objects in P1 and P2 is less than the 

Page Size then 

•  Begin 

•  Move all objects from P2 and P1 

•  Remove P2 from Part List; 

•  End if; 

� End if; 

•  End foreach; 
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This algorithm is not optimal. During each iteration, the GGP algorithm takes the 

edge with maximum weight from the EdgeList and tries to join the partitions of the 

objects incident to that edge. However, this is not necessarily the best decision. The 

following example illustrates the weakness of the algorithm, and how it can be improved. 
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Figure 7.2: An example of Non-optimal GGP Clustering based on Page Size = 2. 
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With the assumption that objects sizes are uniform and maximum page capacity is 

2 objects, Figure 7.2 (a) shows the maximum external costs when no partitions are 

considered. Figure 7.2 (b) shows the external costs when the simple GGP algorithm is 

used. Figure 7.2 (c) shows the optimal case that a clustering algorithm should give with 

the object graph in Figure 7.2 (a) is as input.  

The improvement to the simple GGP algorithm is represented in the idea of 

bounded look-ahead. The bounded look-ahead is to detect situations where it is 

advantageous to reject the current edge, i.e., the edge with maximum weight, and to 

consider other edges first. A full description of the algorithm and quantitative analysis of 

the algorithm is described in [79]. Our object graph does not contain situations where the 

look-ahead feature added to the simple algorithm produces better results. Thus using the 

simple algorithm or using the new algorithm will result in the same partition.  

7.3 Experiment 

 
We run the simple GGP algorithm with the object graph representing object graph 

of the MP3 player. We change the following parameters to demonstrate their importance. 

The parameters are:  

•  Bandwidth 

•  Relative CPU speeds (Mobile CPU: Proxy CPU) 

•  Cluster Size or Page size of the simple GGP. 
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We varied the bandwidth, relative CPU speed, and cluster size.  To figure out 

which partitions are most beneficial to be moved, we assume that object weights are 

uniform. This is because at any time shipping object will happen once only; but calling 

the shipped objects from the mobile device over the wireless link could happen more than 

once. Thus our concern is more on the number of calls and the data volume being moved 

between mobile device and the proxy server rather than object sizes during execution of 

the application. However, partition weights, the sum of object weights in the partition, are 

still used to determine an estimate of the response time and the power consumption cost 

when that partition moved to the proxy. 

Fixing the bandwidth, the relative CPU speed, and varying page size N, where N 

is number of objects in object graph, we run the simple GGP algorithm to obtain a 

number of partitions each of which contains at most N objects. Which of these partitions 

is helpful in increasing performance or decreasing power consumption if shipped is 

determined through calculations and the user preference. These calculations include the 

partition weight, total CPU time consumed by this partition, and the total edges weight 

emerging from the partition.  We ship only one partition at a time. Selecting two 

partitions is not an appropriate choice since their objects are not strongly related to each 

other. Otherwise, since page size is being varied, those objects will eventually be 

combined together in one page if they are indeed strongly related. 
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 To simplify the calculation, first we represent the fixed resources, such as an 

Internet server, in object graph as dummy object with no CPU time and weight in the 

object graph. However, if there is an edge between the dummy object and any other 

object in the object graph, then the edge will represent traffic volume between the 

dummy object and the other objects. Since the dummy object has no CPU time and 

weight, the edge weight is the only factor that will be considered in the decision process. 

Any edge that has one of its end nodes as a dummy object can hold a positive or negative 

value, a positive value means that the dummy object is fixed at the mobile device and a 

negative value means that the dummy object is fixed at a remote site. Figure 7.3 shows 

this. 
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Figure 7.3: Representing fixed resources as dummy objects in object graph.  
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In the object graph in Figure 6.8, we substitute two objects with dummy objects: 

Ibitstream and Obuffer. Ibitstream represent the source of the coded audio, and Obuffer 

represents the decoded audio. Obuffer is always fixed at the mobile device. Second, 

since the input for the simple GGP algorithm requires an undirected graph, we add the 

directed edges between any two objects to represent the total traffic between objects. 

Since sending and receiving costs of Wireless cards are different, the sending cost is 

higher than the receiving cost; we use the weighted average, based on volume of data in 

end directions, in our calculations with an undirected graph.  

Our goal is to obtain accurate results; however, through the experiments, we 

noticed that there is a lot of overhead introduced by the object mobility toolkit discussed 

in Chapter 5. We compared the response time of invoking a method in a remote object 

once using our toolkit and using the Voyager toolkit. The method used in this comparison 

does not take parameters and does not return values; however, it does throw an exception. 

Voyager takes about 23 ms on average and our toolkit takes 110 ms on average to invoke 

the method remotely. There are two reasons for Voyager’s superior performance in this 

case. First, the communication protocol used in implementing RMI introduces fewer 

overheads for the same amount of data being sent. The second is that Voyager uses native 

interface as well as native processes for the object servers, which improves the 

performance of the toolkit; however, this prevents Voyager from being portable across 

platforms. 
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In our toolkit, we do not use native interface to process Java objects, but we use 

native interface to export power consumption events. The RMI protocol being used in our 

toolkit is object based. Any command being sent to Remote Object Server is a serialized 

Java object that holds information about the target object, the method and its parameters. 

The Remote Object Server de-serializes the command into Java Object and ultimately 

will invoke the method on the object. This simplifies the implementation of the toolkit; 

however, due to the serialization protocol overhead, the ratio of the overhead to data is 

high.  To put this in perspective, Table 7.1 shows the overhead associated with serializing 

objects, which argues for improvement of the RMI and/or serialization protocols 

specification such that it can be used more efficiently over wireless links. It is worth to 

notice that Object Size of a primitive type wrapper can be calculated as following: 

Object Size  = 60 + Primitive data size + wrapper full class name length. 

For example, to serialize a Long object, the required data size is 82 bytes. 

 

Table 7.1: The Ratio of Object Size to Java Primitive Types.  

Data Type Data size Object size when serialized 

Byte 1 75 

Short 2 77 

Integer 4 81 

Float 4 79 

Double 8 84 
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In the following graphs and tables, which are based on Table 6.2 to Table 6.5 and 

Figure 6.8, the following legends are used to indicate the various mathematical modes 

being used. 

•  PN (Partition Number) is an index that represents the group of objects 

•  NP (Number of Partitions) The number of partitions generated when running 

the simple GGP with a specific page size. 

•  EC (External Cost) is total weight of all edges that cross-generated partitions 

in bytes.  

•  TCPUT (Total CPU Time) is the total CPU time of all nodes of the object 

graph in mille-seconds. 

•  PW (Partition Weight) is a partition weight in bytes i.e. size of the object if 

serialized in bytes. 

•  LTRT (Local Total Response Time) is the response time when all objects are 

executed locally, equation (7.1). 

 
•  PCPUT (Partition CPU Time) is the CPU time that is consumed by the 

partition in milli-seconds. In other words it is the total CPU time of all objects 

in the partition. 

•  PEW (Partition Edges Weight) is total weight of edges that emerge from the 

partition in bytes not including negative edges. 
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•  PNEW (Partition Negative Edges Weight) is the total weight of negative 

edges that emerge from a partition in bytes.  

 
•  RTPR (NFD) (Response Time when Partition is at the Remote Site) is the 

total response time when a partition is moved remotely. It is a function of how 

many times the partition is being used remotely, NFD. The time is in mille-

seconds, equation (7.2).  

•  LTPC (Local Total Power Consumption) is the total power consumption of 

the entire object graph being executed locally. The measuring unit is 

watts/hour, equation (7.3). 

•  PCPR (NFD) (Power Consumption when a Partition is at the Remote site) is 

the power consumption at the mobile device when a partition is moved to the 

proxy and being executed NFD times, equation (7.4). 

•  RTIP (Response Time Improvement Percentage) is the percentages gained in 

response time if a specific partition was executed remotely, equation (7.5). 

•   PCIP (Power Consumption Improvement Percentage) is the percentage of the 

power consumption reduction in the mobile device, equation (7.6). 

•  PS (Partition Size) is the number of objects in a specific partition. 

•  BW (Bandwidth/Throughput) is the available through put for the partitions 

to move through in kilobytes. 

•  RCPUS (Relative CPU Speeds) is the relative CPU speed between the mobile 

device and the proxy server. 
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•  SNEWS (Summation of Negative Edges Weights in Systems) is the 

summation of the total negative weights in the entire system in bytes. 

•  NFD (Number of Frames Being decoded). 

•  Lefficiency (Local Efficiency) is the player efficiency when decoding locally.  

•  Refficiency (Remote Efficiency) is the player efficiency when decoding 

happens partially or entirely at the remote site. 
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We use the previous equations to calculate an estimated response time as well as 

the power consumption costs, where the value 2.35 is the average power consumption of 

sending and receiving data over a wireless link using Table 4.1 

Running the simple GGP algorithm with N objects of which M are static objects 

results in N-M possible clusters; however, we choose only some of these for discussion 

purposes.  

7.4 Results 

 
To explore the effect of the following parameters we varied them and observed 

the efficiency of the player. 

1. Bandwidth available.  

2. Relative CPU speeds (Mobile CPU: Proxy CPU). 

3. Cluster Size or Page size of the simple GGP. 

To observer the importance of the first parameter, the bandwidth available, we 

choose certain low and high bandwidths. For PDA as a client, we selected low 

bandwidths; we did choose 19.2 Kb/sec to represent CDPD. For high bandwidths we did 

choose 1000 Kb/sec to represent the set of bandwidths that can be obtained from Wireless 

Ethernet cards.  

To observer the importance of the second parameter, the relative CPU speeds, we 

did fix the bandwidth to 1000 Kb/sec so that the bandwidth does not become a bottleneck 
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between the mobile device and the proxy device. The third parameter is varied from 1 to 

N-M while varying the other parameters. This is because of the nature of the simple GGP 

algorithm. The previous experiments are run for a PDA and a laptop as client devices. 

The PDA runs on a RSIC processor of 75 MHz and the laptop runs on a Pentium 

processor of 133 MHz. The proxy server runs on 350 MHz Pentium II.  

The performance of Java Applications depends primarily on the performance of 

the JVM. Since both laptop and the proxy server run relatively high performance JVMs 

using JIT compilers, the relative Java application performance on both CPUs is 

maintained. However, JVM on the PDA we use is very slow and does not support JIT 

compilers, the relative CPU speed degrade considerably.  We measured the relative CPU 

speed between the PDA, laptop and the proxy and found to be 1:116 and 1:4, 

respectively. Therefore, while varying bandwidth, the relative CPU speeds are fixed to 

1:2 and 1:116 for PDA as a client, and 1:4 for laptop as client. 

 In the following section, Local Efficiency and Remote Efficiency factors are 

based on decoding 38 MP3 coded audio frames, with the assumption that output is mono, 

with sampling rate of 11025, and 16 bits per sample. 



                                

 125

 

 
 

Table 7.2 An estimation of the Response Time and Power Consumption for PDA as 
Client with BW = 19.2kb/s and RCPUS = 2. 

BW 19.2Kb/s RCPUS 2      
CS NP  PN PS RTIP PCIP Lefficiency  Refficiency  
1 58 MIN 56 1 -51597.91 -63768.99 0.0249 4.821E-05 
  MAX 19 1 -53.35185 -65.343 2.4923 1.6252 
         
20 39 MIN 30 20 -14694.8 -18150.99 2.4923 0.0168 
  MAX 19 1 -53.35185 -65.34 2.4923 1.6252 
         
30 29 MIN 40 30 -9299.763 -11478.89 2.4923 0.0265 
  MAX 19 1 -53.35185 -65.34 2.4923 1.6252 
         
56 3 MAX 54 56 -116.7979 -117.54 2.4923 1.1496 
 
 

Table 7.3 An estimation of the Response Time and Power Consumption for PDA as 
Client with BW = 19.2kb/s and RCPUS = 116. 

 

BW 19.2Kb/s RCPUS 116      
CS NP  PN PS RTIP PCIP Lefficiency  Refficiency  
1 58 MIN 56 1 -51592.136 -63768.99 2.4923 0.0048 
  MAX 19 1 -52.450 -65.34 2.4923 1.6349 
         
20 39 MIN 30 20 -14678.134 -18150.99 2.4923 0.0169 
  MAX 19 1 -52.44947 -65.34 2.4923 1.6349 
         
30 29 MIN 40 30 -9277.01 -11478.89 2.4923 0.0266 
  MAX 19 1 -52.449 -65.34 2.4923 1.6349 
         
56 3 MAX 54 56 -76.715 -117.54 2.4923 1.4104 
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Table 7.4 An estimation of the Response Time and Power Consumption for PDA as 
Client with BW = 1000kb/s and RCPUS = 2. 

 

BW 1000Kb/s RCPUS 2      
CS NP  PN PS RTIP PCIP Lefficiency  Refficiency  
1 58 MIN 56 1 -1202.2133 -1562.5096 3.0422 0.2336 
  MAX 19 1 -0.1511 0.5803 3.0422 3.0376 
         
20 39 MIN 30 20 -324.1147 -408.2565 3.0422 0.7173 
  MAX 19 1 -0.151 0.5803 3.0422 3.0376 
         
30 29 MIN 40 30 -190.2272 -228.4218 3.0422 1.0482 
  MAX 19 1 -0.1511 0.5803 3.0422 3.0376 
         
56 3 MAX 54 56 46.0909 94.6216 3.0422 5.6432 

 

Table 7.5 An estimation of the Response Time and Power Consumption for PDA as 
Client with BW = 1000kb/s and RCPUS = 116. 

 

BW 1000Kb/s RCPUS 116      
CS NP  PN PS RTIP PCIP Lefficiency  Refficiency  
1 58 MIN 56 1 -1195.1591 -1562.5096 3.0422 0.2348 
  MAX 19 1 0.9503 0.5803 3.0422 3.0714 
         
20 39 MIN 30 20 -303.8007 -408.2565 3.0422 0.75340 
  MAX 19 1 0.9503 0.5803 3.0422 3.07143 
         
30 29 MIN 40 30 -162.448 -228.4218 3.0422 1.15917 
  MAX 19 1 0.95038 0.5803 3.0422 3.07143 
         
56 3 MAX 54 56 95.0166 94.6216 3.0422 61.0477 
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Table 7.6 An estimation of the Response Time and Power Consumption for Laptop as 
Client with BW = 19.2kb/s and RCPUS = 4. 

 

BW 19.2Kbit/s RCPUS 4      
CS NP  PN PS RTIP PCIP Lefficiency  Refficiency  
1 58 MIN 56 1 -242934.7352 -250704.429 11.7333 0.0048 
  MAX 19 1 -255.2646 -263.4238 11.7333 3.3026 
         
20 39 MIN 30 20 -69254.4757 -71469.3350 11.7333 0.0169 
  MAX 19 1 -255.2646 -263.4238 11.7333 3.3026 
         
30 29 MIN 40 30 -43884.0493 -45287.4589 11.7333 0.0266 
  MAX 19 1 -255.2646 -263.4238 11.7333 3.3026 
         
56 3 MAX 54 56 -731.9275 -755.1185 11.7333 1.4103 
 
 

Table 7.7 An estimation of the Response Time and Power Consumption for PDA as 
Client with BW = 1000kb/s and RCPUS = 4. 

 

BW 1000Kb/s RCPUS 4      
CS NP  PN PS RTIP PCIP Lefficiency  Refficiency  
1 58 MIN 56 1 -31278.9412 -39487.9175 78.7069 0.2508 
  MAX 19 1 -31.4053 -39.6075 78.7069 59.8962 
         
20 39 MIN 30 20 -8892.3819 -11225.4662 78.7069 0.8752 
  MAX 19 1 -31.4053 -39.6075 78.7069 59.8962 
         
30 29 MIN 40 30 -5614.8727 -7087.4938 78.7069 1.3772 
  MAX 19 1 -31.4053 -39.6074 78.7069 59.8962 
         
56 3 MAX 54 56 -28.9268 -34.7293 78.7069 61.0478 
 



                                

 128

From previous tables, available bandwidth is an important factor. Tables 7.2 and 

7.3 show that if the bandwidth is the bottleneck in the system, no matter what the relative 

CPU speed is, neither reduction in power consumption nor increases in MP3 player 

performance can happen. However, if the bandwidth is not the bottleneck, then the 

relative CPU speed becomes decisive factor in increasing the performance and the 

decreasing power consumption at the mobile device. Tables 7.4 and 7.5 show that it is 

possible to save power and increase performance of the MP3 player if the entire decoder 

will be executed remotely and the PDA only works as sound player. However, increasing 

performance of the MP3 player it does not mean that the MP3 player becomes an 

efficient player unless the efficiency factor is 100% or more. 

The decrease in the power consumption happens when the available bandwidth is 

high. This is because the lower the bandwidth is; the longer it takes to transmit data, 

which in turn, cause more power consumption. Table 7.4 and Table 7.5 show that with 

high bandwidths, regardless of the relative CPU speed, there is a considerable gain in 

power consumption. 

The computation power of the mobile device is an important factor as well. Table 

7.6 and Table 7.7 show that local efficiency of the player is always higher than remote 

efficiency even though the available bandwidth in Table 7.7 is sufficient to handle the 

decoded sound and the computational power is quit high at the proxy server. This argues 

for the use of multi-set of multi proxies’  infrastructure to support multi mobile users 

rather than one proxy server infrastructure [80]. 
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Results show that it is not always beneficial to start shipping code to gain 

performance and/or decrease power consumption. Tables 7.4 and 7.5 show that there is a 

considerable decrease in power consumption as well as an increase in the performance of 

the MP3 player; however, Tables 7.6 and 7.7 show that it is not worth shipping the MP3 

decoder remotely due to high degradation in both the power consumption and the 

performance.   

Previously mentioned parameters are important in determining which of 

application objects should be offloaded to the proxy server. The GPP determines which 

objects of an object graph should be clustered together; but it does not determine which 

objects should be moved. The previous equations help in deciding which of the objects 

should be offloaded to the proxy server if offloading is beneficial. 

Generally, the previous tables indicate that for the PDA case, it is worth 

offloading the entire decoder to the proxy server if there is high bandwidth and the 

relative CPU speed is high as well.  

In Table 7.5, partition number 56 that holds the complete decoder is the only 

cluster that allows the increase in performance of the MP3 decoder and decrease in the 

power consumption. This is because none of the other clusters give better results with the 

same environment conditions. The output of the GGP algorithm depends completely on 

the topology of the object graph. In the MP3 object graph, the amount of the traffic 

between the objects is very high. This is because of the nature of the MP3 decoder not to 

mention the centralized topology of the MP3 decoder, which favors shipping the entire 
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decoder rather shipping a part of the decoder. If the graph topology as well as the amount 

of the traffic between objects changes, it might be possible to increase performance and 

reduce the power consumption by partially shipping objects of the object graph rather 

than the entire object graph. 

We used voyager with the MP3 player to offload certain clusters from laptop to 

the proxy server, measure the efficiency of the player, and compare them with the 

estimated values in Table 7.7. The player decodes 38 frames (approximately one second 

to play) and converts the stereo output to mono of sampling rate 11025 MHz with 16 bits 

per sample. Table 7.8 shows the chosen clusters and the partition numbers, the local 

efficiency, and the remote efficiency when the certain clusters of objects are moved 

remotely to the proxy server.  

Table 7.8: Efficiency of the MP3 player when certain clusters are shipped remotely for 
execution. 

 
BW 1000Kbit/sec 

Cluster size PN Local Efficiency % Remote Efficiency % 

1 19 76.24 61.89 

30 40 76.24 2.35 

56 54 76.24 65.40 
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The measured values in Table 7.8 shows that there is no much difference between 

them and the estimated values in Table 7.7. Thus, the equations 7.1 to 7.6 can be used to 

have an estimation of the cost model of offloading application objects remotely.  
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8. Conclusion and Future Work 
 

In this chapter we summarize the thesis and introduce possible improvements and 

future work on the adaptive mobile toolkit. 

8.1 Conclusions 

Finding approaches to reduce power consumption and to improve application 

performance is a vital and interesting problem to be investigated. On many levels, 

approaches have been developed to address the problem of reducing power consumption 

and increasing the response time. They range from hardware to software level approaches 

as mentioned previously. 

 One of the approaches is to divide a mobile application statically at design time 

into a server and client model, where the client executes at the mobile device and the 

server runs at a fixed host in the wired network. Splitting an application statically does 

not guarantee the maximum quality of service to the users, especially in mobile 

computing environments due to the mobile computing environment challenges and the 

highly dynamic fluctuation of available resources.  
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To improve quality of service to the users, at the fixed host, filtering mechanisms 

that work according to the current condition of the mobile computing environment are 

deployed, which make mobile applications more adaptive. However, in our thesis work 

we suggested a new approach based on Greedy Graph partition for adaptive mobile 

applications, in which an application’s objects will be split dynamically between the 

mobile device and fixed host according to the mobile device and fixed host’s available 

resources and wireless network state.  

This approach requires special infrastructure and tools rather than a specific 

application design. Two issues are important for realizing application adaptation. The 

first is that the operating system must support a mechanism of notifying applications of 

changes in the mobile environment. The second is to provide a systematic way to build 

adaptive applications embodied in frameworks and toolkits. Thus we designed and 

developed a mobile object toolkit that run on WindowsCE platform that run JVM. With 

this toolkit we combine JVMs on both the proxy server and the mobile device as one 

virtual machine from the application point of view to dynamically split applications 

object between JVMs. 

Mobile applications, especially ones that do intensive computation and 

communication, can be divided dynamically as a client and server between the wired 

network and the mobile device according to the mobile environment and to the 

availability of the resources on both the mobile device and the wired network. With our 

approach, we allow more windows of adaptability to the mobile environment. In addition, 
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it allows the applications to have dynamic access to faster machines through faster 

servers. This will increase the performance of applications and reduce the power 

consumption on mobile devices since offloading computation to the wired network will 

reduce the CPU cycles and memory required to achieve certain tasks at mobile devices.  

Although Java as is our primary developing language for applications as well as 

for implementing our toolkit, Java Virtual Machines are in early stages of development, 

particularly those for the WindowsCE platform. They need to be extended to export the 

mobile computing environment variables, such as available bandwidth, battery lifetime 

and power available at the mobile host as well as performance parameters such as CPU 

utilization. These extensions require the use of native interfaces, which if not 

standardized, will prevent the mobile adaptive application from being portable.  

We suggested a modified Greedy Graph Partitioning algorithm to group objects 

for Load Sharing purposes. As proof of concept, we implemented an MP3 Player in Java. 

We measured the CPU time and data volume traffic of its object graph that was obtained 

by special toolkits based on instrumented Java Virtual Machines. 

To demonstrate the feasibility of the dynamic load balancing approach, we use the 

MP3 player object graph as input to the Greedy Graph Partition to obtain clusters that 

contain strongly related objects. Through calculation models which are based on the 

available bandwidth and the relative CPU speeds to estimate power consumption costs 

and performance costs metrics, we determine which of the clusters should be moved to 

improve one or both of the metrics. The results showed that it is possible to 
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simultaneously optimize both metrics by dynamically shipping the entire MP3 decoder to 

the proxy server.   

8.2 Future Work 

 
We highly suggest the improvement of the mobile object toolkit to help facilitate 

the implementation of the adaptive mobile application for PDAs in particular. The main 

improvement on this toolkit would be improving the implementation of the RMI 

protocol, which is based on serialized object commands between the object servers on 

both Java Virtual Machines. Currently, we manually write proxy objects; however, we 

suggest developing tools to automate this process and integrate it with the toolkit. 

Determining the clustering level of object graph of an application with more 

robust algorithm is another avenue of the future research. Currently we run the algorithm 

with all possible clustering sizes. Other possible ways could use an estimate to level of 

clustering. Ultimately, we require an algorithm that would react to the rapid changes of 

the environment, and we need to investigate how to reduce the impact of rapid change in 

the environment.  

The MP3 player we implemented does not react to the changes in bandwidth. We 

fixed the output playing rate and the sampling size.  Further study is required to show 

how application adaptation policies affect and interact with the automated adaptation by 

our toolkit.  
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