

A MOBILE CODE TOOLKIT FOR ADAPTIVE
MOBILE APPLICATIONS

By

Salim H. Omar

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirement for the degree of

Master of Computer Science

Ottawa-Carleton Institute of Computer Science
(OCICS)

Carleton University
Ottawa, Ontario

April 2000

©Copyright

2000, Salim H. Omar

The undersigned recommend to the Faculty of Graduate Studies and Research
Acceptance of the thesis

A MOBILE CODE TOOLKIT FOR ADAPTIVE MOBILE APPLICATIONS

Submitted by Salim H. Omar,
Higher Vocational Inst. For Computer Tech.,

High Diploma, 1993
In partial fulfillment of the requirement for
The degree of Master of Computer Science

Dr. Thomas Kunz, Thesis Supervisor

Director of School of Computer Science

Carleton University
April 19, 2000

Abstract

The rapidly expanding technology of cellular communication and wireless

communication, portable computers, and satellite services promises to make it possible

for mobile users to have access to information anywhere and anytime. Users on a daily

basis are using portable devices frequently. These types of devices can be classified

primarily by their size, computational power, memory capacity, and power and battery

lifetime. For example, Personal Digital Assistant devices (PDAs) are small portable

computers run on AA batteries. They may be without disk and have more constrains in

terms of memory capacity and computational power than other portable devices, which

are called laptops, that have more computation power, memory, more storage capacity;

however; their battery lifetime is shorter if we consider typical use of these devices.

Finding approaches to reduce power consumption and to improve application

performance is a vital and interesting problem to be investigated. Many approaches have

been developed to address this problem. They range from hardware to software level

approaches. Our work is at the application layer too, where an approach for adaptive

mobile applications is developed. In this thesis, we propose a mobile code toolkit for

adaptive mobile applications that runs on WindowsCE platform. With this toolkit we

combine JVMs on both the proxy server and the mobile device as one virtual machine

from the application point of view to dynamically split application objects between JVMs

according to the mobile environment.

Acknowledgments

I take this opportunity to express my sincere thanks to Dr. Thomas Kunz for being

an excellent supervisor and mentor. All the meetings with him on this work were very

effective and focused, without which this thesis could not have been completed.

I would like as well to thank the School of Computer Science and Carleton

University for giving me the opportunity to work and providing me with financial support

I express my gratitude to my parents for their patient and support to achieve my

goals in life. I thank several of my friends and well wishers, whose presence made my

life at school very pleasant and interesting.

Last, but certainly not least, I wish to dedicate this thesis as a tribute the memories

of my grandfather who always had a very positive and rational approach towards life and

left unforgettable memories to the rest of the family.

Salim H Omar.
Ottawa, Canada.

In the Name of Allâh, the Most Beneficent, the Most Merciful.

(77)“ Does not man see that We have created him from Nutfah (mixed male and female
discharge semen drops). Yet behold! He (stands forth) as an open opponent.(78) And he
puts forth for Us a parable, and forgets his own creation. He says: "Who will give life to
these bones when they have rotted away and became dust?"(79) Say: (O Muhammad AW)
"He will give life to them Who created them for the first time! And He is the All-Knower
of every creation!" (80) He, Who produces for you fire out of the green tree, when
behold! You kindle therewith. (81) Is not He, Who created the heavens and the earth Able
to create the like of them? Yes, indeed! He is the All-Knowing Supreme Creator. (82)
Verily, His Command, when He intends a thing, is only that He says to it, "Be!" and it is!
(83) So Glorified is He and Exalted above all that they associate with Him, and in Whose
Hands is the dominion of all things, and to Him you shall be returned.”

(Quran) Chapter 36, verses 77-83

1. INTRODUCTION ...1

1.1 MOBILE COMPUTING CHALLENGES ...3
1.1.1 Mobility Management and Scalability...3
1.1.2 Wireless Communication. ...5
1.1.3 Portability. ...9
1.1.4 Thesis Argument...11

1.2 CONTRIBUTION OF THESIS...13
1.3 THESIS OUTLINE ...14

2. BACKGROUND..16

2.1 JAVA LANGUAGE AND VIRTUAL MACHINE ..16
2.1.1 Object-Oriented ...17
2.1.2 Network-Oriented...17
2.1.3 Robust ..18
2.1.4 Security..19
2.1.5 Architecture Uniform...19
2.1.6 Portability..20
2.1.7 Interpreted Bytecode..20
2.1.8 High Performance..21
2.1.9 Multithreaded...21
2.1.10 Embedded Java Platforms..22

2.2 DISTRIBUTED SYSTEMS AND TOOLS...23
2.2.1 Common Object Request Broker Architecture (CORBA).........................24

2.2.1.1 Distributed Objects...24
2.2.1.2 Components ...25
2.2.1.3 Object Request Broker (ORB) ..25
2.2.1.4 Limitations of CORBA...28
2.2.1.5 Embedded CORBA ..28

2.2.2 Java Remote Method Invocation (RMI) ..30
2.2.3 Jini Technology..31
2.2.4 Voyager ORB...32

2.3 SUMMARY ..34

3. RELATED WORK..35

3.1 INTRODUCTION. ..35
3.2 LAYERS OF MOBILE COMPUTING...36
3.3 ADAPTATION TO MOBILE DATA ACCESS..38

3.3.1 Application-Aware Adaptation for Mobility (Odyssey)............................38
3.3.2 Coda ..39

3.4 TOOLS AND MIDDLEWARE FOR ADAPTIVE MOBILE APPLICATIONS...................40
3.4.1 Communications Manager for Mobile Applications................................41

3.4.2 Rover Toolkit..42
3.4.3 Sumarta..44
3.4.4 Mobiware...46

3.5 SUMMARY. ...47

4. BASIC IDEA AND PRELIMINARY STUDIES ..50

4.1 INTRODUCTION ...50
4.2 BACKGROUND ON LOAD SHARING IN DISTRIBUTED SYSTEMS...........................52
4.3 MOBILE COMPUTING AND LOAD SHARING ALGORITHMS53
4.4 JAVA AND WINDOWSCE ...55
4.5 EXPERIMENTS...57
4.6 RESULTS...59
4.7 DISCUSSION..63

5. DYNAMIC OBJECT MOBILITY TOOLKIT...65

5.1 INTRODUCTION ...65
5.2 DESIGNING MOBILE APPLICATIONS...67
5.3 OVERVIEW OF PROXY SERVER...67
5.4 DYNAMIC OBJECT MOBILITY TOOLKIT ..69

5.4.1 Overview of the Toolkit ..70
5.4.2 Design of the Toolkit ..77
5.4.3 Proxy Objects...79
5.4.4 Java RMI Protocol ...83
5.4.5 Distributed Garbage Collection..85
5.4.6 Transportation Layer ...85

6. JAVA MP3 DECODER...86

6.1 INTRODUCTION ...86
6.2 DIGITAL AUDIO DATA...87
6.3 AUDIO COMPRESSION TECHNIQUES...89

6.3.1 u_law Audio Compression..89
6.3.2 Adaptive Differential Pulse Code Modulation (ADPCM)........................89
6.3.3 MPEG/Audio Compression...91

6.4 JAVA IMPLEMENTATION OF AN MP3 DECODER..100
6.4.1 Class Diagram of The Java MP3 Player ...100
6.4.2 Efficiency experiment ...106

7. EXPERIMENTS AND RESULTS ..108

7.1 THE GREEDY GRAPH PARTITIONING HEURISTICS (GGP)110
7.2 SIMPLE GGP ALGORITHM ...111
7.3 EXPERIMENT...114
7.4 RESULTS...123

8. CONCLUSION AND FUTURE WORK ..132

8.1 CONCLUSIONS...132
8.2 FUTURE WORK ...135

List of Tables

TABLE 1.1: THE DELIVERED BANDWIDTH OF DIFFERENT WIRELESS MEDIA.. 7

TABLE 1.2: THE DELIVERED BANDWIDTH OF DIFFERENT WIRED MEDIA .. 7

TABLE 1.3: POWER CONSUMPTION BREAK DOWN BY SYSTEM COMPONENT 10

TABLE 4.1: RECEIVING AND TRANSMISSION COSTS OF WAVE LAN PCMSCA CARD................................. 58

TABLE 4.2: EQUATIONS OF POWER CONSUMPTION COSTS FOR TRANSMISSION, RECEIVING, AND COMPUTING59

TABLE 6.1: CRITICAL BAND BOUNDARIES.. 92

TABLE 6.2: OBJECTS SIZES (IN BYTES) AND THE AVERAGE CPU TIME IN MILLISECONDS FOR DECODING 1

FRAME OF AN MP3 SONG ON PENTIUM 350 MHZ. .. 104

TABLE 6.3: OBJECTS SIZES (IN BYTES) AND THE AVERAGE CPU TIME IN MILLISECONDS FOR DECODING 1

FRAME OF AN MP3 SONG ON PENTIUM 133 MHZ. .. 104

TABLE 6.4: OBJECTS SIZES (IN BYTES) AND THE AVERAGE CPU TIME IN MILLISECONDS FOR DECODING 1

FRAME OF AN MP3 SONG ON HANDHELD DEVICE. .. 105

TABLE 6.5: EDGE WEIGHTS OF THE OBJECT GRAPH IN FIGURE 6.8 OF THE MP3 DECODER. 105

TABLE 7.1: THE RATIO OF OBJECT SIZE TO JAVA PRIMITIVE TYPES. .. 118

TABLE 7.2 AN ESTIMATION OF THE RESPONSE TIME AND POWER CONSUMPTION FOR PDA AS CLIENT WITH

BW = 19.2KB/S AND RCPUS = 2.. 125

TABLE 7.3 AN ESTIMATION OF THE RESPONSE TIME AND POWER CONSUMPTION FOR PDA AS CLIENT WITH

BW = 19.2KB/S AND RCPUS = 116. ... 125

TABLE 7.4 AN ESTIMATION OF THE RESPONSE TIME AND POWER CONSUMPTION FOR PDA AS CLIENT WITH

BW = 1000KB/S AND RCPUS = 2... 126

TABLE 7.5 AN ESTIMATION OF THE RESPONSE TIME AND POWER CONSUMPTION FOR PDA AS CLIENT WITH

BW = 1000KB/S AND RCPUS = 116. .. 126

TABLE 7.6 AN ESTIMATION OF THE RESPONSE TIME AND POWER CONSUMPTION FOR LAPTOP AS CLIENT

WITH BW = 19.2KB/S AND RCPUS = 4. .. 127

TABLE 7.7 AN ESTIMATION OF THE RESPONSE TIME AND POWER CONSUMPTION FOR PDA AS CLIENT WITH

BW = 1000KB/S AND RCPUS = 4... 127

TABLE 7.8: EFFICIENCY OF THE MP3 PLAYER WHEN CERTAIN CLUSTERS ARE SHIPPED REMOTELY FOR

EXECUTION. ... 130

List of Figures

FIGURE 4.1: GENERAL PROXY INFRASTRUCTURE.. 54

FIGURE 4.2: RESPONSE TIME FOR MATRIX MULTIPLICATION OF SIZE 10X10 LOCALLY AND AT THE PROXY

SIDE... 61

FIGURE 4.3: RESPONSE TIME FOR MATRIX MULTIPLICATION OF SIZE 400X400 LOCALLY AND AT THE PROXY

SIDE... 62

FIGURE 4.4: POWER CONSUMPTION FOR MATRIX MULTIPLICATION OF SIZE 10X10...................................... 62

FIGURE 4.5: POWER CONSUMPTION FOR MATRIX MULTIPLICATION OF SIZE 400X400 63

FIGURE 5.1: PROXY SEVER INFRASTRUCTURE... 68

FIGURE 5.2: OBJECT MOBILITY TOOLKIT INFRASTRUCTURE AT THE MOBILE DEVICE. 73

FIGURE 5.3: OBJECT MOBILITY TOOLKIT INFRASTRUCTURE AT THE PROXY SERVER. 74

FIGURE 5.4: PART OF CLASS DIAGRAM FOR OBJECT MOBILITY TOOLKIT... 75

FIGURE 5.5: PROXY OBJECTS WITH THEIR ASSOCIATED OBJECTS (PX IS A PROXY OF THE OBJECTX)............. 78

FIGURE 5.6: MOVING OBJECT B FROM MOBILE DEVICE TO THE PROXY SERVER. 79

FIGURE 5.7: MOVING OBJECT A TO THE PROXY SERVER. .. 82

FIGURE 5.8: MAIN STRUCTURE OF REMOTE INVOCATION METHOD PROTOCOL. ... 83

FIGURE 6.1: DIGITAL AUDIO PROCESS.. 87

FIGURE 6.2: ADPCM DECODER/ENCODE... 90

FIGURE 6.3:AUDIO NOISE MASKING.. 93

FIGURE 6.4: MPEG/ AUDIO ENCODE/DECODER.. 94

FIGURE 6.5: MPEG/AUDIO FILTER BANDWIDTHS VS. CRITICAL BANDWIDTHS. .. 95

FIGURE 6.6: MPEG/AUDIO LAYER III FILTER BANK PROCESSING, ENCODER SIDE 97

FIGURE 6.7: CLASS DIAGRAM FOR JAVA MP3 DECODER... 102

FIGURE 6.8: OBJECT GRAPH OF THE MP3 DECODER.. 103

FIGURE 6.9: THE MEASURED EFFICIENCY OF MP3 DECODER ON TWO DIFFERENT CPU SPEEDS. 106

FIGURE 7.1: OUTLINE OF SIMPLE GGP ALGORITHM. ... 112

FIGURE 7.2: AN EXAMPLE OF NON-OPTIMAL GGP CLUSTERING BASED ON PAGE SIZE = 2........................ 113

FIGURE 7.3: REPRESENTING FIXED RESOURCES AS DUMMY OBJECTS IN OBJECT GRAPH. 116

 1

1. Introduction

The rapidly expanding technology of cellular communication and wireless

communication, portable computers, and satellite services promises to make it possible

for mobile users to have access to information anywhere and anytime. Users on a daily

basis are using portable devices frequently. These types of devices can be classified

primarily by their size, computational power, memory capacity, and power and battery

lifetime. For example, Personal Digital Assistant devices (PDAs) are small portable

computers run on AA batteries. They may be without disk and have more constrains in

terms of memory capacity and computational power than other portable devices, which

are called laptops, that have more computation power, memory, more storage capacity;

however; their battery lifetime is shorter if we consider typical use of these devices.

Regardless of the classification of portable devices, some portable devices are

supported, and some will be, in the near future, supported with wireless connection to

information networks such as the Internet and Intranets.

 2

 The resulting computing environment is called mobile computing. Users of this

environment are no longer required to maintain a fixed position in the network, and there

is no restriction on their mobility.

Already, there are a number of general-purpose (Horizontal) and domain specific

(Vertical) applications of mobile wireless computing in use. Taxi dispatcher, mail

tracking, point of sale are examples of Vertical applications, and Mail-enabled

applications and information services are examples of Horizontal applications.

 Users who are carrying personal portable devices will be able to send and receive

emails from any location as well as be informed about specific predefined conditions

irrespective of time and location. Mobile computing will result in a new approach of

computing.

 Due to battery restrictions, the mobile device will be quite often powered off.

Short periods of activity are most likely to happen. Reading or sending email, querying

remote databases, for example, will be quite often discontinued or separated by

considerable amount of time where the device is disconnected.

Since there is no restriction on the user mobility, the mobile device quite often

will be used in different environments over short periods of time, where the user can

cross between two different coverage areas of wireless communications. This process is

called hand-offs.

 3

Hand-offs are relatively straightforward in cellular voice communications due to

the higher lose of information that can be tolerated; however, in data transfers, where the

rate of data lose must be as low as possible, the hand-offs form a challenge.

1.1 Mobile Computing Challenges

Mobile computing poses new challenges. The major challenges can be

categorized as following.

1. Mobility Management and Scalability.

2. Wireless Communication.

3. Portability.

1.1.1 Mobility Management and Scalability.

On the fixed network, mobile users are able to establish a connection from

different data ports at different locations. Wireless connection enables virtual unrestricted

mobility and connectivity from any location within the area of radio coverage. Mobility is

a new important component in system design. It affects to a certain extent the network

level data management as well as the application level.

Mobility of clients results in constantly changing topology of the system, calling

for mobility of resources. Location management deals with mobile clients while

configuration management refers to mobility of resources. In a mobile environment, the

 4

location of the user can be considered as a variable whose value changes with every

move from one location to another. Hence, location becomes a frequently changing piece

of information.

The fundamental trade-off in location management is between searching and

updating. For example, a user A wants to establish the location of a user B. Should user A

search the entire network or should user A search only predefined location? Or, should

the user B inform ever body about its move from one location to another?

Some work has been done on comparing different locating and addressing

schemes. The problem itself is difficult since it involves several dimensions. Solutions

that are optimal in terms of number of messages sent may show a poor performance in

terms of latency. It is not clear how detailed the statistical profiles of users should be in

order to provide a significant performance advantage. In general, mobility of hosts result

in a new set of issues in distributed systems [1].

 The less informed the sender is, the more search cost is incurred. Hence mobility

substantially affects data placement. Since mobile hosts have severe resource constraints

in terms of limited battery life and limited size of non-volatile storage, the burden of

computation and communication load can not be distributed equally among static and

mobile hosts.

The scale of the mobile environment goes far beyond any existing paradigms.

Many predictions call for tens of millions of portable devices of varying classes that can

move across a worldwide communication networks.

 5

In location management, the total volume of transactions due to location updates

may be higher by an order of magnitude than the capacity of the existing networks [2].

 Due to frequent changes that may involve wide-area moves of large number of

machines, scale plays a critical role. Scale can have major consequences for limited

bandwidth resources. The increasing number of users requires using smaller and smaller

cells because of the limited frequency systems. This in turn will complicate the location

management due to increasing number of hand-offs.

1.1.2 Wireless Communication.

Mobile computers require wireless network access, although sometimes they may

physically attach to the network for a better or a cheaper connection when they remain

stationary. Wireless communications is much more difficult to achieve than wired one

because the surrounding environment interacts with the signal, blocking signal paths and

introducing noise and echoes [3]. Wireless connections are of lower quality than wired

ones because of these reasons.

Lower bandwidths, higher error rates, and more frequent spurious disconnection

are factors that make the wireless communications of less quality. These factors can in

turn increase communication latency due to retransmission, retransmission timeout

delays, error control protocol processing, and short disconnection.

Wireless connection can be lost or degraded also by mobility. Users may step out

of the coverage of network transceivers or enter areas of high interference. Unlike the

 6

typical wired networks, the number of devices in a cell varies dynamically, and a large

concentration of mobile users may overload network capacity as well.

Today’s computer systems often depend on the network. They may stop to work

during network failures. Network failure is of greater concern for mobile computing

designs than the traditional one since wireless communication is very susceptible to

disconnections.

Either spending more resources on the network trying to prevent disconnections,

or allocating more resources to enable systems to cope with disconnections more

gracefully and work around them as much as possible is a primary solution.

The more autonomous the mobile computer is, the better it can tolerate network

disconnections. Some applications, for example, reduce communication by running

entirely locally on the mobile computer rather than splitting the application and the user

interface across the network.

Mobile computing designs need to be more concerned about the bandwidth

consumption and constraints than the fixed computers. Wireless communications deliver

lower bandwidth than wired networks. Tables 1.1 and 1.2 show the bandwidth for various

wireless and wired media.

 7

Table 1.1: The delivered bandwidth of different wireless media

Type Bandwidth

Infrared 1 Mbps

Radio communication 2 Mbps-10Mbps

Telephony

 (CDPD Cellular Digital Packet Data)

4 to 19.2 Kbps

Table 1.2: The delivered bandwidth of different wired media

Type Bandwidth

Ethernet. 10-100 Mbps

FDDI 100 Mbps

ATM 155 Mbps

Network bandwidth is divided among the users sharing a cell. The deliverable

bandwidth per user is a more useful measure of network capacity than raw measured

bandwidth. Since this measure depends on the size of population, it is suggested that the

bandwidth of wireless communications networks is measured by the bandwidth per cubic

meter [4].

Mobile computing designs also strive to cope with a much greater variation in

network bandwidth than the tradition one. Bandwidth can shift one to six orders of

 8

magnitude between being plugged in versus using wireless access. Fluctuating traffic

load seldom causes this much variation in available bandwidth in fixed networks.

An application can approach this change in bandwidth in one of the following

ways.

1. It assumes high bandwidth connections and operates only while

plugged in.

2. It assumes low bandwidth connections and does not take advantage of

existing higher bandwidth.

3. It adapts to currently available resources, providing the user with a

variable level of quality of service.

In contrast to most stationary computers, which stay connected to a single

network, mobile computers encounter more heterogeneous network connections. As they

may leave one network, they switch to another. Even in different places, they may

experience different qualities. For example, a meeting room may have better wireless

connection than the hallway of a section in a building. Even when plugged in, they may

still concurrently connect through wireless connections. They may need to switch from

one network interface to another especially when moving from indoors to outdoors, for

instance, when switching from cellular coverage in the city to satellite coverage in the

country. This heterogeneity makes mobile networking more complex than traditional

networking

 9

1.1.3 Portability.

Desktop computer are not expected to be carried around with their users. Their

design allows them to reduce space, power, and cabling and heat dissipation. The design

of mobile computers should strive for properties such as size, weight, durability and long

battery life. Any specialized hardware to offload from the CPU tasks such as data

compression or encryption should justify its consumption of power and in size and

weight.

Batteries are the largest single source of weight in a portable computer. While

reducing battery weight is important, too small a battery can undermine portability, which

may lead the user to charge more frequently. Minimizing power consumption can

improve portability by reducing battery weight and prolonging the life of a battery.

Power consumption is given by CV2F, where C is the capacitance of the wires, V

is the voltage swing, and the F is the clock frequency, there are three ways to reduce the

power consumption. First, by reducing capacitance of wires by greater VLSI integration

and multi-chip module technology. Second, by reducing the voltage levels by redesigning

chips to operate at lower voltages. Chips operate at five volts, but to save power, some

manufactures develop chips that work at 2.5 to 3 volts. Third, by reducing the frequency.

Clock frequency can be reduced, trading off computation speed against the power

savings. PDA products have adopted this idea as well as other notebooks. For example,

the Sharp PC 6785 can save power by dynamically shifting CPU speed from 25 MHz to

10 MHz when it detects a shortage of power.

 10

Power can be saved not only by design, but also by efficient use of operations.

Power management software can power down some individual hardware components

when they are in idle mode, for example, spinning down the internal disk or turning off

screen lighting. Applications can conserve power by reducing computation,

communication and memory. Since cellular telephone transmission typically requires

about ten times as much power as reception, trading for more receiving can also save

power.

Table 1.3: Power consumption break down by system component [5].

System Component. Power Consumption Percentage Wise.

Display edge-light 35%

CPU/Memory 31%

Hard Disk 10%

Floppy 8%

Display 5%

Keyboard 1%

In conclusion, mobile computing is characterized by the previous constraints and

challenges. These constraints are not as product of current technology, but they are

related naturally to mobility. Together, they complicate the design of mobile information

systems and require rethinking traditional approaches to information access and

application design. Mobility intensifies the tension between autonomy and

interdependency that is characteristic of all distributed systems.

 11

The relative resource shortage of mobile elements as well as their lower trust and

robustness argue for reliance on static servers. The need to cope with unreliable and low-

performance networks, as well as the need to be sensitive to power consumption argues

for self-reliance. Any feasible approach to mobile computing must strike a balance

between these competing issues. This balance cannot be static as the environment of

mobile computing changes; it must react and dynamically reassign the responsibility of

client and server. In other words, the clients must be adaptive.

1.1.4 Thesis Argument.

Finding approaches to reduce power consumption and to improve application

performance is a vital and interesting problem to be investigated. Many approaches have

been developed to address this problem. They range from hardware to software level

approaches as mentioned previously.

 Previous work at the software level for mobile applications was to split statically,

at design time, an application into a server and client, where the client executes at the

mobile device and the server runs at a fixed host in the wired network. Splitting an

application statically does not grantee the maximum quality of service to the users,

especially in mobile computing environments due to the above-mentioned challenges. To

improve quality of service to the users, at the fixed host, filtering mechanisms that work

according to the current condition of mobile computing environment are deployed, which

make mobile applications more adaptive.

 12

 Our work is at the application layer too, where an approach for adaptive mobile

applications is developed. In this thesis, we suggested a new approach based on Greedy

Graph partition for adaptive mobile applications, in which an application’s objects will be

split dynamically between the mobile device and fixed host according to the mobile

device and fixed host’s available resources and wireless network state.

This approach requires special infrastructure and tools rather than a specific

application design. Mobile applications, especially ones that do intensive computation

and communication, can be divided dynamically as a client and server between the wired

network and the mobile device according to the mobile environment and to the

availability of the resources on both the mobile device and the wired network. With this

approach, more windows of adaptability to the mobile environment are possible. In

addition, it allows the applications to have dynamic access to faster machines through

faster servers. This will increase the performance of applications and reduce the power

consumption on mobile devices since offloading computation to the wired network will

reduce the CPU cycles and memory needed to achieve certain tasks at mobile devices.

In this thesis, Java will be used as primary developing language for applications

as well as for implementing our toolkit. Since Java produces a portable executable code,

it allows implementation of distributed computing easily. However, Java Virtual

Machines are in early stages of development, particularly those works for the

WindowsCE platform. They need to be extended to export the mobile computing

 13

environment variables, such as available bandwidth, battery lifetime and power available

at the mobile host as well as performance parameters such as CPU utilization. These

extensions require the use of native languages, such as C/C++.

1.2 Contribution of Thesis

The contribution of thesis can be summarized as following:

• Development of object mobility toolkit that dynamically and

transparently movies objects from mobile devices to the proxy

server. The toolkit is based on Java Serialization and Proxy

Patterns, and works on a wide variety including PDAs running

WindowsCE.

• Suggesting a modified Greedy Graph Partitioning algorithm to be

used for Load Sharing purposes to share load between the mobile

devices and the proxy server.

• Implemented an MP3 Player in Java

• Demonstrates feasibility of dynamic load balancing approach to

overcome client device and the bandwidth limitations.

• Published early insights in Parallel Distributed Processing

techniques and Applications (PDPTA’99) Conference, and in the

Proceedings of the Eighteenth the International association of

 14

Science and Technology for development (IASTED) International

Conference on Applied Informatics (AI’2000)

1.3 Thesis Outline

This thesis contains 8 chapters including this chapter. Chapter 2, Background, is

mainly about languages, tools and infrastructures for building, implementing, and

supporting distributed computing applications as well as mobile applications in general.

These tools will be briefly discussed and related to our work. As an example of these

tools, we will discuss Java RMI, CORBA, Jini and Voyager. Chapter 3, Related Work,

surveys the previous and current work in the field of mobile computing; particularly

previous work that uses Proxy Servers as an infrastructure for supporting mobile

applications. Chapter 4, Basic Idea and Preliminary Studies, explores our main idea. Results

of a case study show the feasibility of our approach, dynamically splitting application

functionality. These results were published in the Proceedings of PDPTA’99 conference.

In Chapter 5, Dynamic Object Mobility Toolkit, we propose the basic structure of our toolkit,

showing the main structure of necessary software components and describing their

functionality. The focus of this chapter will be on the monitoring part and the process of

moving objects between two JVMs. Chapter 6, Java MP3 Player, explores an MP3 decoder,

written in Java. Technical information will also be provided about the decoding

algorithm. The object graph and calling graph of the Java MP3 decoder will be presented

as well. We show complexity and performance of the MP3 decoder on different platforms

 15

including a WindowsCE device with a MIPS CPU, a laptop with a Pentium 133, and

WindowsNT workstations with 300MHz Pentiums. In Chapter 7, Experiments and Results

we introduce a modified version of the Greedy Graph Partitioning algorithm to group

strongly related objects, and we show results of using our approach with the Java MP3

player as an example. We run the algorithm with different parameters for the mobile

environment and observe the results. We expect improvements in decoder performance as

well as reducing power consumption for both laptop and WindowsCE devices. In Chapter

8, Conclusion and Future Work, we draw our conclusion and show the feasibility of our

approach, and we indicate possible extensions of this work as areas of future research.

 16

2. Background

2.1 Java Language and Virtual Machine

Java is a language that is claimed to be simple, object-oriented, network oriented

designed, interpreted, robust and secure, architecture uniform, portable, high-

performance, multithreaded and dynamic [6]. We agree with most previous

characteristics of Java, but with the high-performance. We argue that Java to be high-

performance is completely depends on the platform as well as whether any type of

optimization is being used or not. For example, a JVM, with JIT compiler enabled, runs

on a Pentium III 500 MHz device much faster than a JVM, with no JIT at all, that runs on

WindowsCE handheld device with a on MIPS 75MHz CPU.

Java was designed as close to C++ as possible in order to make the language more

comprehensible. Automatic garbage collection was added, thereby simplifying the task of

Java programming but making the system more complicated.

 A common source of complexity in many C/C++ applications is storage

management, allocation and freeing memory. Having automatic garbage collection, the

 17

Java language not only makes the programming task easier, but also it dramatically cuts

down on the number of bugs in applications. One of the goals of Java is to enable the

construction of software that can run stand-alone in small machines. The Java interpreter

and standard libraries have a small footprint. A small size is important for use in

embedded systems and so Java can be easily downloaded over the net.

2.1.1 Object-Oriented

Object-oriented design is very powerful because it facilitates the clean definition

of interfaces and makes it possible to provide reusable software components [7]. Object

oriented design is a technique that focuses design on the data and on the interfaces to it.

Object-oriented design is also the mechanism for defining "plug and play" modules

through interface definition mechanism.

2.1.2 Network-Oriented

Java has an extensive library of routines that work easily with TCP/IP protocols

like HTTP and FTP. This makes creating network connections much easier than using

C/C++ libraries. Java applications can open and access objects across the net through

URLs with the same ease that programmers are used to when accessing a local file

system.

 18

2.1.3 Robust

Java is intended for writing programs that must be reliable in a variety of ways.

Java puts a lot of stress on early checking for possible problems, late dynamic runtime

checking, and eliminating situations that are error prone [8].

One of the advantages of a strongly typed language, like C++, is that it allows

extensive compile-time checking so bugs can be found early. C++ inherits a number of

ambiguities in compile-time checking from C, which namely are method/procedure

declarations.

 The linker understands the type system and repeats many of the type checks,

which are done by the compiler to guard against version and mismatch problems. The

single biggest difference between Java and C/C++ is that Java has a pointer model that

eliminates the possibility of overwriting memory and corrupting data. Instead of pointer

arithmetic, Java has true arrays. This allows subscript checking to be performed. In

addition, it is not possible to turn an arbitrary integer into a pointer by casting [9].

Very dynamic languages like Lisp, TCL and Smalltalk are often used for

prototyping. One of the reasons for their success at this is that they are very robust. Java

programmers can be relatively unconcern about memory issues because they do not have

to worry about it being corrupted. Because there are no pointers in Java, programs cannot

accidentally overwrite the end of a memory buffer. Java programs also cannot gain

unauthorized access to memory, which could happen in C/C++.

 19

Java forces programmers to make choices explicitly, because it has static typing,

which the compiler enforces. Along with these choices comes a lot of assistance, for

example, programmers can write method invocations and if something wrong happened,

such as calling an undefined method or calling a method with incompatible arguments,

they are informed about it at compile time.

2.1.4 Security

Java is intended for use in networked/distributed environments. Toward that end,

a lot of emphasis has been placed on security. The authentication techniques are based on

public-key encryption. There is a strong relationship between "robust" and "secure." For

example, the changes to the semantics of pointers make it impossible for applications to

copy access to data structures or to access private data in objects that they do not have

access to. This closes the door on most activities of malicious code in Java since it does

not allow memory pointer notion [10].

2.1.5 Architecture Uniform

Java was designed to support applications on networks. Networks are composed

of a variety of systems with a variety of CPU and operating system architectures. To

enable a Java application to execute anywhere on the network, the compiler generates an

architecture-uniform object file format; the compiled code is executable on many

processors, given the presence of the Java runtime system.

 20

This is useful not only for networks but also for single system software

distribution. With Java, the same version of the application runs on all platforms. The

Java compiler achieves platform-independency by generating byte code instructions,

which have nothing to do with particular computer architectures. They are designed to be

both easy to interpret on any machine and easily translated into native machine code on

the fly [11].

2.1.6 Portability

Unlike C and C++, there are no implementation-dependent aspects of the

specification. The sizes of the primitive data types are specified, as is the behavior of

arithmetic on them. For example, int always means a signed two’s complement 32 bit

integer, and float always means a 32-bit IEEE 754 floating point number. Making these

choices is feasible because basically all relevant CPUs share these characteristics.

The libraries that are a part of the system define portable interfaces. For example,

there is an abstract Window class and implementations of it for Unix, Windows NT/95,

WindowsCE and the Macintosh OS.

2.1.7 Interpreted Bytecode

Java bytecode is translated on the fly to native machine instructions and not stored

anywhere. As a part of the bytecode stream, more compile-time information is carried

over and available at runtime reflecting the internal structure of compiled source code.

 21

2.1.8 High Performance

While the performance of interpreted bytecode is more than adequate for small

computations, there are situations where higher performance is required. The bytecode

can be translated at runtime into machine code for the particular CPU the application is

running on. The bytecode format was designed with generating machine codes in mind,

so the actual process of generating machine code is generally simple. Using Just-In-Time

compiling technology, Java virtual machines can be speed up to ratio of 7 to 10 times

faster [12].

2.1.9 Multithreaded

Multithreading is a way of building applications with multiple threads. Writing

programs that deal with many things happening at once can be much more difficult than

writing in the conventional single-threaded C/C++ style.

Java has a sophisticated set of synchronization primitives that are based on the

well-known used monitor and condition variable paradigm. By integrating these concepts

into the language, they are much easier to use. Other benefits of multithreading are to

improve interactive responsiveness and real-time behavior, which is limited by the

underlying platform. Running on top of other systems like Unix, Windows, the

Macintosh OS, WindowsNT or WindowsCE limits the real-time responsiveness to that of

the underlying system.

 22

2.1.10 Embedded Java Platforms

Currently, embedded devices span a wide variety of consumer and business

products, including devices such as smart mobile phones, pagers, PDAs, set-top boxes,

process controllers, office printers, and network routers and switches. Embedded devices

have dedicated functionality; they are designed exactly for a specific set of tasks. Since

they are engineered for long life and high reliability, embedded devices include low-

speed microprocessors and may have a limited amount of memory [13].

To meet performance and size requirements, embedded device manufacturers use

a Real Time Operating System (RTOS) and custom development tools, compatible with

devices’ memory limitations. There are several different RTOS vendors that exist, each

with a specific operating environment and many with strongly integrated and specialized

development tools.

Early environments for embedded devices were developed in assembler. As these

devices developed, some manufacturers shifted to higher-level languages like C and C++.

 Embedded device manufacturers have turned to the Java programming language to

answer their needs and for the advantages that Java provides as mentioned in Section 2.1

There are JMVs that are available currently for Handheld PCs and other portable devices.

Major software companies, namely Sun Microsystems and Microsoft, produce them. We

use the product of Microsoft to build the applications and tools for Handheld PCs [14].

Their JVM supports the core functionality of Sun’s JDK 1.1x, which is an appropriate

choice for our work.

 23

2.2 Distributed Systems and Tools

Distributed systems require that computations running in different address spaces,

potentially on different hosts, be able to communicate. For a basic communication

mechanism, many computer languages support sockets, which are flexible and sufficient

for general communication. However, sockets require the client and server to engage in

application level protocols to encode and decode messages for exchange, and the design

of such protocols is not trivial and can be error prone.

An alternative to sockets is Remote Procedure Call (RPC), which abstracts the

communication interface to the level of a procedure call. Instead of working directly with

sockets, the programmer has the feel of calling a local procedure, when in fact the

arguments of the call are packaged up and shipped off to the remote target of the call.

RPC systems encode arguments and return values using an external data representation,

such as XDR [15].

RPC, however, does not translate well into distributed object systems, where

communication between program level objects residing in different address spaces is

needed. In order to match the semantics of object invocation, distributed object systems

require remote method invocation (RMI.) In such systems, a local surrogate (stub) object

manages the invocation on a remote object. The following sections will describe briefly

some architectures and tools that support object-oriented distributed systems.

 24

2.2.1 Common Object Request Broker Architecture (CORBA)

As more industries are connected to the Internet and intranets, software

development is becoming complex. The complexity of software development has

produced a major revolution in systems development. Object-oriented computing is

progressively becoming more typical. The other major revolution, which is occurring in

the computer industry, is distributed computing.

Every major new distributed computing technology has committed to the promise

of interoperability between heterogeneous systems and applications. Although

connectivity between most types of operating systems platforms is available,

interoperability at the application level remains an issue. Main factors include the

inherent difficulty of distributed application programming and the lack of standard

interfaces between applications.

 CORBA is the product of OMG [16], which defines a higher-level facility for

distributed computing. It provides standards for distributed objects architectures.

2.2.1.1 Distributed Objects

A distributed object is a piece of code that can live anywhere in the network or

Internet. It breaks the restrictions of classical objects. Distributed objects are packaged as

independent pieces of code that can be accessed by clients in the same machine or

machines across the network through local/remote method invocations. The language and

compiler used to create the objects are totally transparent to the clients. Clients need not

 25

know where the object resides or the operating system it executes on. Distributed objects

can message each other transparently anywhere in the Internet. CORBA clients just need

the interfaces the server object publishes. The interfaces serve as the binding contract

between clients and servers.

2.2.1.2 Components

Components are stand-alone objects that can be plugged and played across

networks, applications, languages, tools and operating systems. Distributed objects are by

definition components because of the way they are packaged. The distributed objects

infrastructure makes components more autonomous, self-managing and collaborative

[17]. The main idea behind software component technology is to provide software users

and developers the same levels of plug-and-play application interoperability that are

available to consumers and manufacturers of electronic parts.

2.2.1.3 Object Request Broker (ORB)

An object request broker (ORB) is the central component of CORBA. It is the

middleware that establishes client-server relationships between objects. Using an ORB

the client can transparently invoke a method on a server object. The server object can be

on the same machine or on a remote machine in the network. The ORB intercepts the call

and is responsible for finding an object that can implement the request, pass the

parameters, invoke the method and finally return the results computed to the server. The

client need not know any details about the object like the location of the object, the

 26

programming language in which it is implemented, the operating system under which it

executes or the platform on which it exists. The client-server relationship is applicable for

any particular application. Objects can act as either client or server depending on the

instance; however, CORBA does not support the moving of objects from one host to

another. The following are the features of CORBA ORB.

• Static and dynamic method invocation

CORBA ORB supports both types of method invocations, static and

dynamic. It is possible either to statically define method invocations at compile

time or dynamically discover them at run time. Thus, it is possible to have either

strong type checking at compile time or maximum flexibility associated with late

binding.

• High-level language bindings

With CORBA ORB invoking methods on server objects, the use of a high-

level language of choice (C, C++, Smalltalk) is possible. The client need not

concern about the implementation details of the server objects as well. CORBA

separates the interface of objects from their implementation, thus providing

language-uniform data types that make it possible to call objects across language

and operating system boundaries.

 27

• Self-describing system

To provide facilities for dynamic invocation of methods CORBA provides

an Interface Repository, which contains information describing the interfaces the

server supports along with its parameters. The client uses this meta-data to invoke

methods at run-time. The meta-data, information regarding classes of objects at

compile time, is either generated automatically by a precompiled Interface

Definition Language (IDL) [18] or by compilers that generate IDL directly from

an OO language.

• Local/remote transparency

An ORB can run standalone or can be interconnected to other ORBs in

other environments. ORB can broker interobject calls within a single process,

multiple processes running within the same machine or machines running across

the networks. The client is transparent to all the low level details like transports,

server locations, and object activation.

• Polymorphic messaging

ORB can invoke a method call corresponding to a specific server object.

Thus, more than one server object can have the same method name. This means

that the same function call may have different effects depending on the object that

receives it.

 28

2.2.1.4 Limitations of CORBA

Standard CORBA does not address the main inherent complexities of distributed

computing such as Latency, Fault Tolerance and, Deadlock. CORBA does not allow

objects to be passed by value. Current implementation of CORBA lack efficient support

for bulk data transfer, it does not consider garbage collection, and it does not address the

issue of memory leaks [19].

2.2.1.5 Embedded CORBA

As communications technologies are maturing, there is a rapidly growing need for

embedded devices that can communicate to components running on remote computing

platforms. The applicability of such devices is extremely wide, from the users who want

devices that can serve as web browsers, email, or Internet chat clients to the telephone

companies that need to manage their network devices; which justifies the need for Mobile

Computing research.

Embedded applications are often highly resource constrained and typically run on

a less general purpose OS than Windows or Unix, for example, WindowsCE operating

systems for PDAs. It is not the CORBA standard itself that would prohibit its use in an

embedded environment. It makes few assumptions about underlying operating system

functionality. Although the architecture may be well suited for distributed computing

even in the context of embedded devices, CORBA products face significant challenges in

 29

the embedded environments. To be specific, the barriers to CORBA’s success in

embedded environments include the following.

• CORBA implementations are not typically built upon micro-kernel

architecture. This makes it difficult to modify the CORBA run-time down

to its bare essentials, which is important for embedded systems

development.

• CORBA implementations do not typically give developers low-level

control over the management of system resources, e.g. heap allocation.

• CORBA implementations are not presently open enough to support

developer-supplied extensions, such as adding new transport protocols and

message passing formats.

Because the programming language of choice directly influences many of these

issues and their potential solutions, it is assumed that developers are using the CORBA

C++ language mapping. Other language mappings could conceivably render some of

these issues to be arguable, while potentially introducing new ones.

Conventional CORBA implementations experience intricate binding of all

CORBA features together such that developers are forced to include all features of the

CORBA architecture to use any ORB features.

More adequate alternative approach is to define the absolute core functionality

that anyone who uses the ORB will require, and any other extra features layered on top of

 30

this core. The ORB can then be customized with additional features and functionality

through dynamically loadable modules on those OS’s that support such functionality. On

those platforms that do not support dynamic loading, the ORB can be re-built with the

desired features and functionality linked in.

This is similar to many popular embedded Operation Systems that allow

developers to rebuild the operating system kernel with selective functionality turned on or

off. Again, this technology is hardly sophisticated, however it does demand a change of

viewpoint for ORB implementers. To better meet the needs of embedded systems

programmers, CORBA standard implementations need to be redesigned.

2.2.2 Java Remote Method Invocation (RMI)

Java Remote Method Invocation allows programmers to write distributed objects

using Java. RMI provides a simple and direct model for distributed computing with Java

objects. These objects can be new Java objects, or can be simple Java wrappers around an

existing API. RMI extends the Java model; write once run anywhere, to be run

everywhere as well.

Because RMI is centered on Java, it brings the power of Java safety and

portability to distributed computing. It connects to existing and legacy systems using the

standard Java native method interface JNI. RMI can also connect to an existing relational

database using the standard JDBC package [20]. The RMI/JNI and RMI/JDBC

combinations let programmers use RMI to communicate with existing servers in non-

Java languages, and to expand usability of Java to those servers when necessary.

 31

There are many advantages of using RMI. At the most basic level, RMI is Java’s

remote procedure call (RPC) mechanism. It has several advantages over traditional RPC

systems because it is part of Java’s object oriented approach [21]. Traditional RPC cannot

provide functionality that is not available on all possible target platforms.

2.2.3 Jini Technology

Jini connection technology is a Sun Microsystems invention designed to allow

distributed systems of components to exist on many different platforms. It lets software

and hardware components become smoothly integrated into a network through the use of

Java technology. Jini connection technology lets anyone connect any device to any

network in a simple manner, providing mechanisms for software services or hardware

devices to automatically join together into a group of Jini devices. The Jini services

architecture is built upon the Java distributed computing platform architecture [22].

Devices in a Jini network are connected using Java Remote Method Invocation

(RMI) explained in Section 2.2.2. This enables the Jini system to be secure and allows

Java objects to move between Java Virtual Machines (VM) to implement the discovery

protocol, join protocol, and the lookup service [23].

To form a Jini network of devices and services, a registration process occurs with

a lookup service. When a device is connected to the network, it performs the discovery

process trying to locate the Jini lookup service at which it uploads all of its interfaces for

all its services, and joins the Jini network. The lookup service also has the responsibility

 32

to behave as a control center to connected clients to a particular service. When that

happens, the interface for the requested service is copied to the client.

2.2.4 Voyager ORB

Voyager is a tool that offers an object request broker, with many additional

features. Voyager ORB consists of a universal communication architecture, which allows

Voyager programs to be universal supporting client and server bi-directional

communication with others such CORBA, RMI and other ORB architectures. The

universal naming service in Voyager allows access to many commercially available

naming services through a signal Application Program Interface (API). The universal

directory is a directory that can be shared by all clients. For instance, an RMI server can

bind an object into the universal directory using the native API for RMI registry, and a

CORBA client can search the same object using the CORBA naming service API [24].

The universal messaging layer in Voyager ORB allows different types of

messages such as synchronous, one-way, or future, to be sent to an object regardless of its

location or object model. In synchronous messaging, the method is blocked till the result

comes back. However, in one-way messaging, the method is not blocked and the result is

discarded. In future messaging, a result placeholder is returned so that the method will

not be blocked, and the result will be probed and obtained later.

Voyager makes efficient use of the power of Java interfaces to make accessing a

remote object as simple as accessing a local object. It implements the proxy pattern [25]

to associate the object with its proxy. If a method call is made to a proxy object, it is then

 33

forwarded to the associated object. If the object is local, then the method is executed

directly, resulting in performance improvement. Otherwise, if the object is at a remote

site, the proxy object will forward the call, serializing parameters, the method is invoked

at the remote object, and the result is serialized again and returned. This also happens to

the exceptions when they are thrown. If a remote exception occurs, it is caught at the

remote site and thrown locally. Proxy objects in Voyager are created dynamically if they

do not exist.

Voyager has Distributed Garbage Collection (DGC), which reclaims objects when

there are no local or remote references to them. It uses the Delta Pinging algorithm that

keeps the traffic required for garbage collection to a minimum [26].

Voyager allows the creation of remote objects. A remote instance of a class can

be created and a proxy is obtained of that object. Classes can be dynamically loaded from

one site to another using a build-in Hyper Text Transfer Protocol (HTTP), which allows

any voyager program to serve classes without the need of an external web server.

Voyager supports object mobility. It provides a set of APIs that ease this task and make it

transparent to the programmer. With object mobility, Voyager supports also autonomous

mobile agents. A programmer can develop mobile autonomous agents that move

themselves between hosts and continue to execute upon arrival.

Unfortunate, Voyager is supported on certain platforms, and thus we could not

use it as toolkit for moving object between the WindowsCE devices and a proxy server.

As a result, we had to develop our own toolkit.

 34

2.3 Summary

In this chapter a brief survey of the well-known distributed system tools and their

advantages, was given. As we have seen, some distributed architectures and tools cannot

work on embedded systems due to the limitation of the embedded systems.

For the thesis, we developed a Java distributed system, similar to Voyager toolkit

that works on the WindowsCE platforms in addition to traditional platforms such as

Windows98/NT. The design and the implementation of this toolkit will be discussed in

detail in Chapter 5.

 35

3. Related Work

3.1 Introduction.

The lack of local resources and physical security argues for reliance on servers.

However, the lack of reliable, cheap communication as well as the variable costs to

access services argues for self-reliance on the part of mobile clients. The challenge for

mobile computing is to strike an appropriate balance between these two competing

concerns. This balance is not static one. As the circumstances of a mobile client change,

it must react and repartition duties between client and server. In other words, it must be

adaptive. Such adaptation may occur anywhere along a spectrum characterized by two

extremes: either everything on the client or the server.

The notion of moving processes or objects around to achieve better overall

performance is a well-studied topic. Process or object migration has been used

successfully for load balancing and improving resource utilization. Process migration

suffers from a few drawbacks when implemented in full generality. For example, it is

 36

difficult to deal with file descriptors when being migrated. Such systems have generally

been implemented to work on homogeneous networks of workstations. However, many

languages and virtual machines have been developed and tools exist to overcome this

limitation. Java and other scripting languages such TCL are developed to be used with

virtual machines that can run tools that migrate objects and processes to other virtual

machines.

Mobility is the key to adaptation to the mobile environment. Only through

watchfulness and prompt reactions can a mobile client offer acceptable services in spite

of the problems that spell its existence. These include unpredictable variations in network

quality, wide disparity in the availability of services, limitations of the resources at the

mobile device imposed by weight and size constraints, concern for battery power

consumption, lowered trust and robustness resulting from exposure and motion.

3.2 Layers of Mobile Computing

This section explores in brief the mobile computing layers.

• Applications: Often unaware of mobility, often communication intensive,

application developers may be often reluctant to change their code to

customize to mobile environments. Users like to use the same applications

that they are used to in the backbone network

• Middleware: Designed to provide transparent computing abstraction to

mobile users and applications, many portable devices have very rudimentary

 37

middleware. Writing portable middleware is nontrivial given that there is not

much standardization among portable platforms yet.

• Native OS: Vary significantly in terms of sophistication, not always friendly

to network applications, limited programming capabilities, often non-standard

development environments.

• Protocols: Typically a modified TCP/IP or custom network protocol stack

needs to address issues of wireless channel error, mobility, location-

independent addressing, and heterogeneity in terms of available resources.

• Networks: Wireless networks from local area (Wavelan, RangeLan,

NetWave, [27,28,29]) to metropolitan area (CDPD, Ardis, [30,31]) Most of

these networks offer low-bandwidth and limited services, thereby making it

hard to write highly adaptive applications or network software. Portable

devices range from smart phones to notebooks, and vary significantly in terms

of processing power, display, memory, disk size, battery power, connectivity,

and programming support.

Our focus in this chapter is on the first two of the mobile computing layers.

 38

3.3 Adaptation to Mobile Data Access

Mobile clients face many challenges. These challenges render adaptation as the

key to mobile data access. There are two approaches to adaptation: application-aware,

which I will explore in Odyssey; and application-transparent which I will explore in the

Coda File System. Odyssey is considered a compromise solution for application-aware

adaptation. It falls between two extremes. At one extreme, adaptation is entirely the

responsibility of the applications. At the other extreme, application-transparent

adaptation, the system has full responsibility for adaptation and the resource

management. This approach is exemplified by Coda, which is suitable for legacy

application because they can run unmodified.

3.3.1 Application-Aware Adaptation for Mobility (Odyssey)

 In Odyssey [32], a monitor is established to monitor resources such as

CPU cycles; bandwidth and battery power, and to interact with each application to best

exploit these resources. For example, when high bandwidth connectivity is lost due to a

radio shadow, Odyssey detects the change and notifies the interested applications. Video

application, for example, may respond by skipping frames, displaying fewer frames per

minute, while a Web page client will display degraded versions of large images.

 39

The Odyssey approach for adaptation is characterized as application-aware

adaptation. The essence of this model is a collaboration effort between the system and the

individual applications. The system monitors the resources levels, notifies applications of

relevant changes, and enforces resource allocation decisions. Each application

independently decides how best to adapt when notified.

3.3.2 Coda

Coda [33] is an application-transparent adaptive support system. Coda provides

clients, particularly mobile ones, with highly available access to files. Coda presents a

single, global namespace to clients organized in volumes, which are sub-trees of the

namespace. Applications running on Coda clients use the standard UNIX file system

interface. Desktop applications can continue to run on mobile clients without

modification. The client cache manager, Venus, is solely responsible for coping with the

consequences of mobility. Coda clients are in regular use over a wide range of networks

such as 10 Mb/s Ethernet, 2 Mb/s radio, and 9600-baud modems. Coda deals with the

best and worst possible network conditions, and it adapts to conditions between these end

points. As a starting point in understanding how Venus adapts to varying network

conditions, we first explore the best case: high quality, fast LANs. In such a situation,

Venus is said to be strongly connected. When an application opens a file in Coda, Venus

checks to see if the file is already cached. If it is not, Venus fetches the file from a server

to its local disk cache. When a client caches a file from the servers, it also obtains a

 40

callback – a promise to be told if another client updates the file. When a changed file is

closed, a copy of the new file contents is sent back to the servers. The servers notify any

clients, with callbacks, for any file that it has changed. This is known as a callback break.

Experience shows that this approach to maintaining file cache coherence offers excellent

scalability and performance.

There is a broad range of conditions between strongly connected and

disconnected operation. Coda users can operate clients over 2 Mb/s radio links, and over

modems as slow as 9600 baud. As network bandwidth decreases, the importance of

reordering or delaying network traffic to preserve the illusion of strong connectivity

increases. To preserve the strongly connected illusion, Venus endeavors to satisfy most

demand cache misses as soon as possible, and delays other traffic as necessary. These

decisions are made at as high a level in the system as possible. How to reschedule

network traffic is revisited as available network quality changes. Adaptive decisions are

made in three key areas; cache coherence, reintegration, and demand cache fetches.

3.4 Tools and Middleware for Adaptive Mobile Applications

Mobile applications need to be capable of responding to time-varying wireless-

QoS and mobile-QoS conditions. Wireless transport and adaptation management systems

should therefore be capable of transporting and manipulating content in response to

changing mobile network quality of service conditions. Mobile signaling should be

capable of establishing suitable network support for adaptive mobile services. Medium

 41

access controllers must be capable of sharing the wireless link capacity among mobile

devices supporting adaptive quality of service assurances when possible. In the following

sub-sections, I will explore the major tools and middleware that support adaptive mobile

applications.

3.4.1 Communications Manager for Mobile Applications

The goal of Comma [34] was to create architecture and an application

programmer interface (API), for adaptive applications. The API provides a simple and

powerful way for application developers to access the information required to easily

incorporate adaptive behavior into their application. It provides easy-to-use methods to

access this information, a wide variety of operators and ranges available to provide the

application the information it needs when it needs it, a small library to link with to

minimize the overhead placed on the client and to minimize the amount of data that needs

to be transferred between the clients and the servers.

In a future release, the communication could be changed to use XDR [35] and

pack the transferred data more efficiently than is done currently. Comma is not a network

management protocol, and it is not designed as a replacement for SNMP [36]. A Comma

application could certainly provide the same functionality as an SNMP manager by

polling each Comma server on a network for the required SNMP variables. However, this

was not the motivation behind Comma.

 42

3.4.2 Rover Toolkit

The Rover toolkit [37] offers applications a distributed-object system based on the

client-server architecture. Clients are Rover applications that typically run on mobile

hosts, but could run on stationary hosts as well. Servers, which may be replicated,

typically run on stationary hosts and hold the long-term state of the system.

Communication between clients is limited to peer-to-peer interactions within a mobile

host (using the local object cache for sharing) and mobile host-server interactions; there

is no support for remote peer-to-peer or mobile host-mobile host interactions. The Rover

toolkit provides mobile communication support based on two ideas: re-locatable dynamic

objects (RDOs) and queued remote procedure call (QRPC). A re-locatable dynamic

object is an object with a well-defined interface that can be dynamically loaded into a

client computer from a server computer, or vice versa, to reduce client/server

communication requirements. Queued remote procedure call is a communication

mechanism that permits applications to continue to make non-blocking remote procedure

calls even when a host is disconnected; requests and responses are exchanged upon

network reconnection.

The key task of the programmer when building a mobile-aware application with

Rover is to define (RDOs) for the data types manipulated by the application, and for data

transported between client and server. The programmer then divides the program into

portions that run on the client and portions that run on the server; these parts

communicate by means of QRPC. The programmer then defines methods that update

 43

objects, including code for conflict detection and resolution. To use the Rover toolkit, a

programmer links the modules that compose the client and server portions of an

application with the Rover toolkit. The application actively cooperates with the runtime

system to import objects onto the local machine, invoke well-defined methods on those

objects, export logs of method invocations on those objects to servers, and reconcile the

client’s copies of the objects with the servers. Earlier work on Rover introduced the Rover

architecture, including both queued RPC and re-locatable dynamic objects. Some

suggested enhancements to the toolkit extend the design and implementation of QRPC

and RDOs with compressed and batched QRPCs.

There are several steps involved in porting an existing application to Rover or

creating a new Rover based application. Each step requires the application developer to

make one of several implementation choices. While Rover does not provide any tools for

building applications, it does provide a consistent framework. The first step is to split the

application into components and identify which components should be present on each

side of the network link. It is very important that application developers think carefully

about how application functions should be divided between a client and a server. The

division will be mostly static, as most of the file system components will remain on the

server and most of the GUI components will remain on the client. However, those

components that are dependent upon the computing environment (network or

computational resources) or are infrequently used may be dynamically generated. For

example, the search operation performed by a client could be dynamically customized to

 44

the current link attributes: over a low latency link, more work could be done at the client

and less at the server, and vice versa for a high latency link. Likewise, a client could pre-

fetch the main portion of an application’s help information but less frequently referenced

portions could be loaded on demand. Once the application has been split into

components, the next step is to appropriately encapsulate the application's state within

objects that can be replicated and sent to multiple clients. Also, the application developer

must decide which mechanisms to use for notifying users of the status of displayed data.

3.4.3 Sumarta.

Sumatra [38] is an extension of the Java programming environment that supports

adaptive mobile programs. Platform independence was the primary basis for choosing

Java as the base for Sumatra. In the design of Sumatra, the Java language was not altered.

Sumatra can run all legal Java programs without modification. All added functionality

was provided by extending the Java class library and by modifying the Java interpreter

without affecting the virtual machine interface. Policy decisions concerning when, where

and what to move are left to the application. The high degree of application control

allows programmers to easily explore different policy alternatives for resource

monitoring and for adapting to variations in resources. Sumatra has two additional

programming abstractions besides Java abstractions: object groups and execution

engines. An object group is a dynamically created group of objects. Objects can be added

to or removed from object groups. All objects within an object group are treated as a unit

for mobility related operations. This allows the programmer to customize the granularity

 45

of movement and to amortize the cost of moving and tracking individual objects. This is

particularly important in languages like Java because every data structure is an object and

moving the state of one object at a time can be expensive. An execution engine is the

abstraction of a location in a distributed environment. It corresponds to an interpreter

executing on a host. Sumatra allows object groups to be moved between execution

engines. An execution engine may also host active threads of control. Objects in an object

group are automatically marshaled using type information stored in their class templates.

When an object group is moved, all local references to objects in the group (stack

references and references from other objects) are converted into proxy references, which

record the new location of the object. Some objects, such as I/O objects, are tightly bound

to local resources and cannot be moved. References to such objects are reset and must be

reinitialized at the new site. The class template for an object (and the associated

bytecode) can be downloaded into an execution engine on application request.

Method invocations on proxy objects are translated into calls at the remote site.

Type information stored in class templates is used to achieve RPC functionality without a

stub compiler. Exceptions generated at the called site are forwarded to the caller.

Sumatra provides a resource-monitoring interface, which can be used by

applications to register monitoring requests and to determine current values of specific

resources. When an application makes a monitoring request, Sumatra forwards the

request to the local resource monitor. If the monitor does not support the requested

operation, an exception is delivered to the application.

 46

3.4.4 Mobiware.

Mobiware [39] is based on a methodology of open programmability [40] for the

introduction, control and management of new adaptive mobile services. It provides a set

of open programmable CORBA interfaces and objects that abstract and represent network

devices and resources, providing a toolkit for programmable signaling, adaptation

management and wireless transport services.

Mobiware provides a foundation for open programmable mobile networking that

is suited toward managing the evolving service demands of adaptive mobile applications

and dealing with the inherent complexity of delivering scalable audio, video, and real-

time services to mobile devices.

 Built on an adaptive quality of service API, Mobiware consists of a set of

controllers that interact with transport, network and medium-access controller distributed

objects that maintain application-specific adaptive quality of service needs. This API is

specifically designed to quantitatively address the wireless-QoS and mobile-QoS needs of

adaptive mobile applications. Mobile applications use this API at the transport layer

specifying a utility function that maps the range of observed quality to bandwidth. The

observed quality index refers to the level of satisfaction perceived by an application at

any moment. The adaptation policy captures the adaptive nature of mobile applications

in terms of a set of adaptation policies fast, smooth, after handoff or never. These policies

allow the application to control how it moves along its utility curve as resource

availability varies.

 47

A simple set of adaptation policies is used in Mobiware to capture how an

application wishes to respond to instantaneous bandwidth availability. A mobile

multimedia application’s range of perceptible quality is strongly related to how and when

it responds to resource changes. Frequent variations between what may be considered

optimal and minimum utility or even the frequent small change around an average

application quality may be not appropriate to many applications. Mobile applications use

this API to specify flow utility functions and adaptation policy. The adaptive-QOS API

allows applications to associate temporal or event-based dimensions with their utility

functions.

3.5 Summary.

From the previous work, we do note that the adaptation parameters being focused

on are the network states and the mobile device computation power: bandwidth and the

network latency and CPU cycles. The bandwidth and network latency were the main

parameters upon which the adaptation would take place. In previous adaptation

approaches, it is up to the application to the decide how to react to changes to the network

state. The reaction could be filtering data, reducing the size of data, entirely changing the

content of the data, or limiting the computation of specific tasks if necessary. This argues

for exporting the network state as well as available resources of the mobile device to the

mobile applications to be designed to be adaptive.

 48

On the other hand, the automation of adaptation to the resources was not

explored. There are a lot of similarities between our work and the work in Sumarta. Both

Sumarta and our work use extended Java Virtual Machine for portability issues and the

ease of use of the language especially for implementing object mobility toolkits. The

main difference between our toolkit and Sumarta toolkit is that Sumarta entirely leaves

the adaptation policy under the control of applications. The applications are fully

responsible for moving objects between the mobile device and the proxy server or

reducing the computation of tasks. In other words the reaction to changes in the

environment is left to the application. However, to build a fully automated toolkit to

automate the adaptation process at run time, application behavior must be known before

hand. Capturing and modeling the application behavior, in our opinion, is a difficult

problem to solve.

In our work, adaptation to the change in the resources and environment is partially

left to the toolkit. We try to automate some adaptation policies transparently to

applications. For example, instead of reducing the computation power for a specific task,

first we try to move and execute the task remotely at powerful machines in favor to

reduce the CPU cycle at the mobile device, which in turn may result in reducing the

power consumption at the mobile device too. If this adaptation policy costs more, then we

signal the application to reduce the computation for the specific task. In other words, we

try first to use available remote resources to achieve the same task; otherwise, as last

resort, we let the application do the adaptation.

 49

 Our goal is to provide a toolkit that would help the adaptation process and not

fully automated. We try to make the adaptation process as transparent to applications as

possible. In our design of the toolkit we consider extra parameters to network state

parameters; namely the power consumption and relative CPU speed between the mobile

device and the proxy server; however, we assume that applications are still be aware of

these parameters as well. Thus our goal is to design a Java toolkit that combines two Java

Virtual Machines as one virtual machine application point of view, and to automate the

object load or distribution between the two Java Virtual Machines. The overall goal is to

reduce the power consumption and to increase the performance of the Java application

for PDAs.

 50

4. Basic Idea and Preliminary Studies

4.1 Introduction

Power management is one of the obstacles that make portable computer less

useful. Battery power limits the utilization of portable computers to be used anytime and

anywhere. Quit often, AC power connections are not available, and the portable device

must work on battery power. However, battery life of existing ones and batteries that are

expected to exist in the future will not be sufficient for many situations. The projection on

progress in battery technology shows that only a 20% improvement in battery capacity

will occur over the next decade [41]. Users either alter their behavior or limit their use of

the portable device to preserve the battery life. If capacity of battery power cannot be

improved, another alternative solution is to find ways to reduce power consumption over

time, provided that these solutions do not have a great impact on the user.

Many researchers have investigated this problem [42,43,44]. Solutions range from

slowing down CPU clock rate [45] to intelligently managing screen and disk during idle

periods or turning off some computer components that are not in use [45,46,47,48]. Some

 51

of these solutions made their way into commercial use, which gives a real indication of

the importance of power management.

Wireless communication is becoming more common in portable devices. In the

absence of a wired connection, a wireless connection allows to maintain network

connectivity, allowing remote file access and sending and receiving emails as well as

browsing the Internet. Hence, they open a new window of opportunity to overcome some

of the portable device computation limitations. However, wireless communications is

regarded as contributing to the power management problem since sending and receiving

data consume a considerable amount of power. Nevertheless, it can also be used to save a

significant amount of power, as demonstrated with a simple example in this chapter.

 In portable devices, performing tasks for a user drains power. Some of these tasks

must be performed locally due to the nature of the tasks, for example, graphic user

interfaces and the information that is required to be displayed to the user. However, other

tasks could be executed anywhere provided that they return results back to the portable

device. Hence if the power cost model for sending tasks elsewhere and getting the results

back is less than the cost model of performing the task locally, then remote execution

could save a significant amount of power. In this chapter, we will explore this idea by

supporting portable devices through a dedicated machine called proxy server. A proxy

server is a fast machine, compared to mobile devices, which a mobile device can have

access to or communicate with directly in fixed networks. Thus, executing tasks remotely

 52

may also help decrease the response time and improve the performance of mobile

applications.

4.2 Background on Load Sharing in Distributed Systems

In general, load sharing or balancing can be defined as a strategy in which every

processor, in distributed systems, would have an equal load. However, some researchers

distinguish between load balancing and load sharing as follows. Load balancing is

defined as a strategy in which every processor having the same load is the targeted goal.

Load sharing is defined as a strategy which attempts to have processors share the load. A

load sharing strategy involves two policies. A transfer policy decides when a job must be

transferred, which depends on the number of jobs that are waiting to be served in the

local queue. The location policy decides which host should the jobs transfer to. This is

done either by randomly choosing a host or by analyzing workload information, which

may be obtained either by probing a subset of hosts or by collecting the information

periodically. If information is collected periodically, then the optimal period must be

determined as well.

Many load-sharing algorithms have been proposed, and they can vary from ones

that do not use system state information- random algorithms - to ones that use global state

information. Optimal Load Sharing Algorithms is an example for algorithms that use

global state information [49].

 53

4.3 Mobile Computing and Load Sharing Algorithms

 The main idea behind mobile computing is to enable the users to access a

network or the Internet regardless of their location. Ideally users should get the same

quality of service as if they were connected to the network using a wired connection. This

is not possible since drawbacks of wireless connections such as instability in bandwidth

and latency will play a major factor in degrading the quality of service. In addition to the

wireless connection drawbacks, the limitation of the portable device in terms of

computation power and memory capacity as well as power consumption will also affect

the quality of service that the user obtains. Even though these limitations are being

addressed by many technologies, it is most likely that performance difference between

the wired and wireless connections remain [50]. [51] suggests that the computation,

especially intensive ones, and communication should be done at the proxy side as much

as possible for the reason that portable devices have very limited resources.

By offloading computation and communication to a proxy server in the wired

network, reductions in computation and power consumption on the portable device can

be achieved. In order to conserve power, transmitting data must be kept at a minimum,

since the power consumption for transmitting a message is often higher than receiving a

 54

message of the same size in wireless devices. Optimizing applications so that they require

fewer operations also reduces power.

Figure 4.1: General Proxy Infrastructure

Assumptions made regarding load sharing in distributed systems are no longer

valid in wireless networks, where mobility introduces new challenge. For example, the

location policy selects an appropriate host for the job to be transferred. In wireless

systems, the only fixed host is the proxy server the portable device communicates with

directly as indicated in Figure 4.1. Thus jobs can only migrate to this proxy server.

Therefore, using any existing location policy between the proxy server and the fixed

hosts, in case the proxy server decides to delegate jobs to other fixed host in the network,

is not a concern for the portable device. In other words, the other fixed hosts in the

 55

network are transparent to the portable device as long as the computation is performed

and the results returned when needed.

To probe and collect information, related to monitoring and load balancing

decision, from the proxy server and the portable device, probing messages are needed.

The overhead caused by probing messages is not negligible since the bandwidth in

wireless networks is limited and the cost model for send and receiving data is not cheap

in terms of power consumption at the portable device.

4.4 Java and WindowsCE

Load sharing algorithms depend on the homogeneity of the platforms in the

network when transferring jobs from one host to another in a fixed network. This

assumption is not valid when it comes to the variety of mobile computer platforms in

practice today. It is, therefore, not possible to support the proxy server with all the

platforms that possibly connect to it at any moment in time. Using Java Virtual Machine

as the uniform platform will help solve this but with paying an overhead, which is not

negligible especially for small portable devices such as handheld devices.

 In our study, we used a handheld WindowsCE 2.0 device to measure the power

consumption as well as the response time of Java applications. To build power-aware

applications in Java we had to extend the Java Virtual Machine on the portable device to

be able to trace power consumption. Using Java Native Interface, a subset of Advanced

 56

Power Management APIs that are supported by WindowsCE is exported to extend the

Java Virtual Machine [52].

Since the Java Virtual Machine for WindowsCE is relatively immature, some

problems had to be addressed and solved. One of them was that the values returned by

the “System.currentTimeMillis()” were rounded up to milliseconds that are divisible by

1000. We fixed this bug by exporting the correct time in milliseconds through the Java

Native Interface.

De/serialization of objects is the key for storing objects state and moving objects

between Java Virtual Machines. Proxy objects are needed to forward messages to the real

objects, which may reside in remote Java Virtual Machines. Remote Method Invocation

protocols are mainly responsible for de/marshaling methods’ parameters and return

objects, when invoking methods on remote objects.

 Unfortunately, the De/serialization functionality of objects in WindowsCE Java

Virtual Machine is malfunctioning. Namely, the serialization algorithm was not using

serialization version code as specified in the Object Serialization Specification [53].

To de/serialize objects, we had to fix this bug by forcing the algorithm to use our

serialization version code.

WindowsCE Java Virtual Machine by itself does not support object mobility.

Utilities and packages need to be developed to support object mobility. For example,

Voyager [54] has very extensive facilities to support object mobility for Java programs.

Remote Method Invocation [55] helps to develop Java applications that can invoke

 57

methods on remote objects. However, these utilities and packages are built to work on

PCs rather than on PDAs, due to the PDA limitations.

We developed a utility that can work on PDAs that supports object mobility. It

allows moving objects dynamically and according to the state of the mobile device and

the mobile computing environment. Chapter 5 discusses in detail the structure,

framework, and API, of this tool.

4.5 Experiments

Since the main goal of using a proxy server is to save power and increase the

response time for an application by migrating jobs, the same can be achieved using the

notion of mobile code. Java has the ability to serialize objects at one host and to load and

execute them at runtime at another host. We identified the important parameters based

on which dynamically adaptive mobile applications and toolkits can take decisions as to

which subset of an application’s objects must be migrated and executed at the proxy side

according to a specific criteria.

Some obvious parameters such as power consumption cost model, bandwidth, and

relative CPU speeds. To show that load sharing can have a major impact on the response

time and power consumption, we studied CPU-intensive Java applications. We did

choose to implement a float matrix multiplication algorithm of order O (N3) in Java as an

example of CPU intensive computations that occur during coding and decoding

multimedia files in MP3, JPEG and MPEG format. Multimedia support will have

 58

potential relevance in future mobile applications. The same matrix multiplication

algorithm was implemented and locally executed at the handheld device. Then, it was

executed remotely at the proxy server and results returned back to the handheld device.

We measured response time and power consumption in the handheld device and

simulated the transmission and reception costs due to unavailability of the wireless

connection card for the handheld device that we used, HP 620LX. The response time

measured when remote execution occurred includes the cost of sending the code as well.

The battery of the handheld device that is used can provide (7.2 V*1.35 A) 9.72

W. If we assume that the general power consumption of the handheld device is 5 W-hr,

then the battery will last for 2 hours approximately. Table 4.1 shows receiving and

transmitting power costs for a WaveLAN PCMCIA wireless card [56]. We assumed in

our power consumption calculations these values. Table 4.2 shows the power

consumption equations used in our case study, where the Ts is the transmitting time, Tr

is the receiving time, and the Te is the execution time of a process in seconds. For

example, if the available bandwidth is 19.2 Kbps, and the data being send is 1024 bytes,

then the cost of sending the data is 0.00036166 W-hr.

Table 4.1: Receiving and Transmission Costs of Wave LAN PCMSCA Card

State Watts

Receiving 1.52W

Transmitting 3.1W

 59

Table 4.2: Equations of Power Consumption Costs for Transmission, Receiving, and
Computing

Power consumed when Equation

Transmitting
3600

 3.1
Ts× W-hr

Receiving
3600

 1.52
Tr× W-hr

CPU
3600

 1.8
Te× W-hr

We also run another experiment that involves studying response time as well as power

consumption of decoding a GIF image locally at the handheld device and remotely at the

proxy server by sending the decoded result back to the handheld device as pix-map. The

detail results are discussed [57].

4.6 Results

To show that sending Java objects to the proxy server can help improve mobile

application performance, we varied bandwidth, proxy server CPU speed and data size

being sent and received over the wireless connection and observed the response time as

well as the power consumption on the mobile device. The data transfer may include the

object code or not since it is possible that the object code already exists on the proxy

server. Results show that the available bandwidth is an important factor in determining

whether an object should be migrated or not. We varied bandwidth between 1562.5

 60

bits/sec and 200kbits/sec. For larger bandwidth, better application performance was

achieved, and also less power was consumed on the portable device.

The following graphs show the response time for multiplying two float matrices

of size 10x10 and 400x400 as well as the power consumption when the object is executed

locally and remotely, where object code size is 1.27 KB and

• RRT1C: response time when executing the matrix multiplication object at a 200Mhz

Pentium proxy server and the data being sent includes the object code.

• RRT1NC: response time when executing the matrix multiplication object at a 200Mhz

Pentium proxy server and the data being sent does not include the object code.

• RRT2C: response time when executing the matrix multiplication object at a 300Mhz

PentiumII proxy server and the data being send includes the object code.

• RRT2NC: response time when executing the matrix multiplication object at a 300Mhz

PentiumII proxy server and the data being sent does not include the object code.

• LRT: local response time when matrix multiplication is executed on portable device.

• LPC: power consumption on the portable device when executing the matrix

multiplication object on the portable device.

• RPC: power consumption on the portable device when executing the matrix

multiplication object at the proxy server, which includes power consumption of

sending and receiving data including object code.

 61

• RPNC: power consumption on the portable device when executing the matrix

multiplication object at the proxy server, which includes power consumption of

sending and receiving data without object code.

0

2

4

6

8

10

12

14

1562.5 3125 6250 12500 25000 50000 100000 200000

Bandwidth bits/sec

RRT1C

RTT1NC

RRT2C

RTT2NC

LRT

Figure 4.2: Response time for matrix multiplication of size 10x10 locally and at the
Proxy side.

 62

0

2000

4000

6000

8000

10000

12000

1562.5 3125 6250 12500 25000 50000 100000 200000

Bandwidth bits/sec

RRT1C

RTT1NC

RRT2C

RTT2NC

LRT

Figure 4.3: Response time for matrix multiplication of size 400x400 locally and at the
proxy side.

0

0.002

0.004

0.006

0.008

0.01

0.012

1562.5 3125 6250 12500 25000 50000 100000 200000

Bandwidth available

LPC

RPC

RPNC

Figure 4.4: Power consumption for matrix multiplication of size 10x10

 63

0

1

2

3

4

5

6

7

8

1562.5 3125 6250 12500 25000 50000 100000 200000

Bandwidth bits/sec

LPC

RPC

Figure 4.5: Power consumption for matrix multiplication of size 400x400

4.7 Discussion

Figure 4.2 and Figure 4.4 show the response time for matrix multiplication of size

10x10 and 400x400 respectively. We choose these sizes to represent small and large

problem sizes. Both graphs show the importance of the available bandwidth in

determining the tradeoffs between response time and the power consumption costs.

Figure 4.2 indicates that for small problem sizes, to increase the response time, relatively

high bandwidth is required (100000 bits/sec or more) for offloading to be beneficial.

Figure 4.3 shows that for large problem sizes, offloading is beneficial at relatively low

bandwidths (from 3000 bits/sec and more) to increase the response time.

 64

Figures 4.4 and Figure 4.5 show the power cost for small and large problem sizes

respectively. For small problem sizes, it needs again relatively high bandwidths (200000

bits/sec or more) to start reducing the power consumption; however, for large problem

sizes, the reduction in power consumption happens at relatively low bandwidths (starting

from 3500 bits/sec).

From previous figures, the tradeoffs depend on problem size, bandwidth, and the

relative CPU power between the mobile device the proxy server, which is indirectly

deduced from the problem sizes.

For non-trivial problem sizes, the results show that interesting tradeoffs appear at

low bandwidths, although the response time could be very high even when using the

proxy server strategy. However, obtaining low response time as well as saving power for

small problems requires relatively high bandwidths (200000 bits/sec or more), which

seems feasible with the WaveLAN wireless technology and third generation cellular

systems. Even at data rates that are achievable with today’s wireless technologies,

offloading of computationally intensive components of an application appears promising.

As a result we are motivated to continue explore and demonstrate via prototype prove

that it is possible to increase the performance and/or reduce power consumption.

 65

5. Dynamic Object Mobility Toolkit

5.1 Introduction

Programs that use mobility as a mechanism to adapt to resource changes have two

main requirements that are not shared with other mobile programs. First, they need to

monitor the level and quality of resources in their operating environment. Second, they

need to be able to react to changes to resource availability. In this chapter, we describe

the design and implementation of our object mobility toolkit, an extension of Java that

supports resource aware mobile programs for PDAs.

Mobile programs can move an active process or task from one site to another

during execution. This flexibility has many potential advantages. For example, a program

that searches distributed data repositories can improve its performance by migrating to

the repositories and performing the search on-site instead of fetching all the data to its

current location.

 66

Applications running on mobile platforms can react to a change in network

bandwidth by moving network intensive computations to a proxy host on the static

network as indicated in Chapter 4. The primary advantage of mobility in these situations

is that it can be used as a tool to adapt to variations in the operating environment.

 Applications can use online information about their operating environment and

knowledge of their own resource requirements to make judicious decisions about

placement of computation and data. However, in our toolkit, we try to automate this

process in two ways. First, by adapting to changes in the mobile environment by sharing

the load between the PDA and the Proxy host. Second, we allow applications to use

online information about the mobile environment to make judicious decision about the

placement of the computation and data. If the first approach results in a satisfactory QoS

to the user, then the second option need not be executed.

 Many systems provide some form of support for program mobility. The simplest

form of support is the ability to download code and execute it to completion at a single

site. Omniware [58], Safe-TCL [59], Java [60] are examples for such systems. Other

systems like Avalon [61], NCL [62] REV [63] and Obliq [64] allow programs in

execution to initiate computation on remote nodes and wait for their completion. The

most sophisticated support is provided by systems like Agents [65].

 67

5.2 Designing Mobile Applications

Traditional applications consuming many resources do not run efficiently on

mobile computers. An approach to solve this problem is to divide the application at

design-time into two pieces, one in the mobile host and the other at the stationary

computer. The piece consuming fewer resources would be running on the mobile host,

and the other would be running on the stationary computer. Another approach is to divide

an application at run-time to two pieces. As the resources and the environment change,

the two components will be reconfigured accordingly.

Two issues are important for realizing application adaptation. The first is that the

operating system must support a mechanism of notifying applications of changes in the

mobile environment. The second is to provide a systematic way to build adaptive

applications embodied in frameworks and toolkits.

5.3 Overview of Proxy Server

The central concept of our framework is the proxy server host. A proxy server is

an intermediate device that communicates with servers in the Internet using standard

Internet protocols as shown in Figure 5.1. The mobile device and the proxy server may

communicate through protocols suitable for wireless connections, such as I-TCP [66] or

standard TCP. A typical proxy server can be used for the following:

 68

Figure 5.1: Proxy Sever infrastructure

• A proxy server can work as a filter receiving data from the Internet and

compress received data according to the need of the mobile device. For

example, color video streams are converted from gray color to back-and-white

color, the quality of audio streams can be altered from stereo to mono, or the

replay sampling frequency can be reduced to minimize the size of data over

the wireless connection.

• An application can use the resources of the proxy server to increase the

performance and decrease the power consumption by deploying applications’

selected objects on the proxy server. For example, offloading a heavy

computation objects such as decoders to a proxy server reduces the CPU

cycles on the mobile device as shown in the previous chapter

 69

5.4 Dynamic Object Mobility Toolkit

Distributed systems for mobile hosts are difficult to design due to the constraints

of the environment. One approach to simplify the design and implementation of mobile

computing applications is to provide a uniform programming language level of

abstractions through which all mobility related events and actions are reported and

performed. Functionality of applications is encapsulated within this high level abstraction

and makes an application easily portable.

To deal with theses issues, a mobile application must be designed using Object-

Oriented Design, and run on homogenous platforms. A mobile application is developed

by composing objects containing functionalities. We call the composition of objects the

object graph. A mobile application can have two object graphs. One resides at the mobile

device, and the other resides at the proxy server. These graphs change according to the

mobile environment and the resources of both devices. An object in the object graph can

be a filter, buffer or computation object. The Object graph will be reconfigured as needed

whenever there is a change in the mobile environment. We built a framework using Java,

which notifies objects about changes in the mobile environment and the configuration of

the device.

 70

5.4.1 Overview of the Toolkit

The programming support we propose can be classified into:

• Support for information delivery to the application.

• Support to allow an application to react suitably.

• Dynamic Object Mobility.

The toolkit has a set of APIs, which provide the required functionality for moving

objects dynamically. The choice of the Java language was motivated by the properties of

the language and the portability issues that Java platform offers. Figures 5.2 and 5.3 show

the main structure of the distributed toolkit. There is not much difference between the

structure of the toolkit at the mobile side and the proxy side, except that the migrating-

objects decision is taken at the proxy side since the decision process of the taking

decision consumes CPU cycles, which would consume power as well. The following is a

brief description of the block diagram in Figure 5.2 and Figure 5.3. Figure 5.4 shows part

of the class diagram that interests us more for our thesis.

• Mobile/Proxy Device State and Information:

This unit is responsible of monitoring and delivering the state of the mobile or

proxy device as events to the Object Server. Changes in the bandwidth or changes in the

power status are examples of the events that this unit exports.

 71

• Code Storage:

This unit works as storage of the validated classes files (bytecode) at the mobile

device. At the request of the proxy device, the code will be transferred to the proxy.

• Object References and Profiling (Object graph):

This unit contains the representation of the application’s objects along with the

profiling information about these objects. These information will be send to the proxy

sever to be analyzed and the proxy server will decide which object must be shipped to its

side according to the mobile environment.

• Object Server

This unit is considered the main core of the toolkit. It runs a thread that listens

continuously to all the commands from a remote object sever. Commands can be related

to moving objects or related to the remote invocation of a method on a remote objects.

• Remote Method Invocation Protocol

This protocol is used to marshal and un-marshal a method’s parameters

• Dynamic Decision

This unit is responsible for the analyzing of the profiling information of

application’s objects. It resides only at the proxy server. Having decided which objects

need to be executed at the proxy server, it will issue a command to the remote object

server to download the objects.

 72

• De/Serialization State of Objects Protocol

This contains the implementation of the serialization protocol if the JVM does not

implement one.

• Communication Control Layer

To simulate wireless links in terms of the low bandwidth, we chunk the data

streams being sent through the communication layer into pre-determined sizes based on

the empirical tests. We introduce a controllable amount of delay between data chunk to

finally get a simulated slow like. This allows us control the throughput dynamically at

run time.

 73

O
bject R

eferences and Profiling
(O

bject graph)

Loaded Application
O

bjects
Loaded Application

O
bjects

O
perating System

Code Storage

Java Virtual M
achine

M
obile D

evice State and
Inform

ation

R
em

ote M
ethod

Invocation
Protocol

Internet Protocols

O
bject Server

Communication Layer Control

D
e/Serializing

State of O
bjects

Protocol

O
bject R

eferences and Profiling
(O

bject graph)

Loaded Application
O

bjects
Loaded Application

O
bjects

O
perating System

Code Storage
Code Storage

Java Virtual M
achine

M
obile D

evice State and
Inform

ation

R
em

ote M
ethod

Invocation
Protocol

R
em

ote M
ethod

Invocation
Protocol

Internet Protocols

O
bject Server

Communication Layer Control

D
e/Serializing

State of O
bjects

Protocol

Figure 5.2: Object Mobility Toolkit infrastructure at the Mobile Device.

 74

O
bject R

eferences and Profiling
(O

bject graph)

Loaded A
pplication

O
bjects

Loaded A
pplication

O
bjects

O
perating System

Java V
irtual M

achine

Proxy D
evice State and

Inform
ation

R
em

ote M
ethod

Invocation
Protocol

D
e/Serializing

State of O
bjects

Protocol

Internet Protocols

O
bject Server

Communication Layer Control

D
ynam

ic D
ecision

O
bject R

eferences and Profiling
(O

bject graph)

Loaded A
pplication

O
bjects

Loaded A
pplication

O
bjects

O
perating System

Java V
irtual M

achine

Proxy D
evice State and

Inform
ation

R
em

ote M
ethod

Invocation
Protocol

R
em

ote M
ethod

Invocation
Protocol

D
e/Serializing

State of O
bjects

Protocol

Internet Protocols

O
bject Server

Communication Layer Control

D
ynam

ic D
ecision

Figure 5.3: Object Mobility Toolkit Infrastructure at the Proxy Server.

 75

DummyProxy
(from objectmobil ity)

ResultPlacer
(from objectmobil ity)

ObjectDatabase
(from objectmobil ity)

CommunicationLayer
(from shared)

RemoteServiceCommand
(from shared)

InvokeMethodThread
(from objectmobil ity)

rsc

NOREMOTEEXECEPTION
(from shared)

$noException

RObject
(from shared)

ProxyObject
(from shared)

proxyobject

RemoteThrownException
(from shared)

RemoteResult
(from shared)

ObjectB
(from shared)

RemoteMethod
(from shared)

ObjectA
(from shared)

Mobility
(from shared)

RemoteObjectService
(from objectmobil ity)

-$ros

dummyProxy

resultPlacer
podb

rdb

edb Lcdb

RcdbNodb

ros

cml

ros

ros

AssigneProxy
(from shared)

Figure 5.4: Part of Class diagram for Object mobility toolkit.

 76

As mentioned earlier, a mobile computing application needs to be aware of

resource availability and changes in the mobile environment. Thus special abstractions

must be provided in order to deliver these changes to an application. We model all

changes as events, which are delivered to objects. Interested objects in an application

must define an event handler through which the events, such as change in the power state

and bandwidth of link, can be handled. Since Java does not support pointer notion, using

Java Reflection classes and Interfaces facilitates this.

Both the state and computation of an application may be partitioned between the

mobile device and the proxy server. The degree of partitioning ranges from just executing

the user graphic interface to executing the entire application on the mobile device. We

propose a Greedy Graph Partitioning algorithm [67] for load-sharing purposes [68] to be

used with this toolkit for handheld PCs. The decision to move objects is made at run-time

and depends on environment factors, mainly relative CPU speeds and link bandwidth.

Chapter 7 describes the algorithm and results. The toolkit provides the following

functionality:

• Migrate the object to a remote host.

• Fold the object back.

• Objects migrating decision are made dynamically and initiated by

the proxy server

 77

5.4.2 Design of the Toolkit

The core design of toolkit is based on a simplified implementation of Proxy

Object pattern, Object Remote Procedure Call and Object Mobility. Our goal is to have

an extended Java Virtual Machine enabled with a toolkit that facilitates the mobility of

objects between mobile host and proxy server in a dynamic manner, transparent to the

application designers and users. This toolkit is designed to work on PDAs. Because of the

PDA constraints mentioned earlier, the toolkit must have a small memory footprint. Other

existing ORBs and object mobility toolkits do not support the handheld platforms or they

have too big memory footprint, and that was the motivation behind developing our own

toolkit.

To start moving objects of an application between hosts, the notion of a remote

reference is required. Java does not support a remote reference of objects automatically,

but it supports the notion of interfaces, which is the key of the implantation of the proxy

pattern [69].

Interfaces are formal declarations of methods supported by implementation

objects. Most distributed systems rely on a standard way for defining interfaces

describing sets of services of an object. Object Interfaces are very similar to classes in

object-oriented programming languages. Each interface consists of a set of service

declarations. Each service is declared in a similar fashion as an object-oriented method; a

named operation that may carry arguments, results, and exceptions. Arguments and

results may consist of any arbitrary data, including control parameters, names or

 78

references to other components. However, interfaces do not provide an implementation of

an object.

Serialization is the process of taking the member data of an object and

representing it as a serial stream of bytes, usually for the purpose of storing the data in a

file or database. Serialization, when combined with a socket connection can also be used

to transmit the state of objects from one place to another. All of these language elements

taken together open the way to distributed-object computing tools.

PBPA

A B

PBPA

A B

PBPA

A B

Figure 5.5: Proxy Objects with their associated Objects (Px is a proxy of the objectX)

 79

5.4.3 Proxy Objects

Hot swap techniques [69] are impossible to implement in Java since Java does not

support pointers. To achieve a similar effect, every movable object of an application that

will work on our toolkit needs to be associated with a proxy object that has the same

interface as the movable object. Other objects will not reference real objects directly, but

they reference them through their proxies, as Figure 5.5 illustrates, in which Object B

references Proxy of Object A not Object A it self.

 This will facilitate moving object without warring about changing references of

other objects to it.

Figure 5.6: Moving Object B from Mobile Device to the Proxy Server.

PA

A

PB
PB

B

PA

Mobile Device Proxy server

PAPA

A

PB
PB

B

PB

B

PAPA

Mobile Device Proxy server

 80

To create a new class or object with an identical interface of another object in

Java, in other words a proxy object, there are special automatic tools provided to create

the image of another class that appears like the original to clients using it. These tools use

Java reflection to inspect a class and get all information required to build a proxy object.

However, the proxy object does no real work by itself. Instead, a proxy object uses

network communications or delegates the communication job to other objects to create

and remotely control an instance of the real object it represents. In other words, the proxy

object acts as a mediator between the caller and the real object. It is through proxies that

all methods calls local or remote are made.

Figure 5.6 demonstrates moving Object B in Figure 5.5 from mobile device to the

proxy server. Moving Object B will not require moving Object A to the proxy server as

well. However, at the proxy server, a proxy of the object A must be created to forward

the calls to Object A at the mobile device. In fact, Java does offer APIs that control the

serialization such that the proxy of Object A need not be created in this case, but

deserialized only with small changes in the state of the proxy object to make it a

consistent proxy object.

 Figure 5.7, demonstrates moving Object A in Figure 5.5 to the proxy server.

Moving object A does not require changing the reference of Object A in Object B since

object B does reference the proxy object of A. Any calls from Object B to the Object A

will be forwarded remotely through the proxy object of A at the mobile device. The

 81

proxy object of A at the proxy device will allow other objects to reference the object A

without effecting the flexibility of moving object A again to the mobile device.

Every proxy object created in the toolkit is assigned a local and a remote

reference counters. These counters are updated whenever proxy object referenced locally

or remotely. These counters are used to determine when the proxy and its associated

object be claimed by the garbage collector.

Whenever a proxy object is not being reference remotely and locally, it will be

finalized and garbage collected. If the associated object of this proxy is local, then

associated object will be finalized and claimed again by the garbage collector as well. If

the associated object is remote, then the proxy object will inform the remote object server

to decrement the remote reference counter for the associated object at the remote site,

which in turn could make the object claimed by the remote garbage collector if there is no

more references locally or remotely to the associated object.

 82

Figure 5.7: Moving Object A to the Proxy Server.

The process of creating a proxy object can be automated by using Byte Code

Engineering tools [70]. These tools can create proxies of objects on the fly and use the

Java Class Loaders to bring the proxies into the Java Virtual Machines. Voyager uses the

same approach to automate generating proxy objects whenever it needs.

This proxy is relatively slow. In the toolkit we did not automate the process of

generating proxy objects due to the limitation of the PDA that we work on but not due the

limitation of the Java Virtual Machine.

PB

B

Mobile Device Proxy server

PA

A

PA

 83

5.4.4 Java RMI Protocol

Figure 5.8: Main Structure of Remote Invocation Method Protocol.

Figure 5.8 illustrates the basic structure of invoking a method locally and

remotely from a proxy object. When the toolkit is initialized at the mobile device and the

proxy server, a socket connection is established during the initialization process of the

toolkit. The same connection is used to send commands between virtual machines that

are running on both sides. For every local object that is created, a proxy object that holds

the same interface as the object is created as well and assigned a unique number that

represents the associated object. This unique number will identify the associated object as

long as the associated object is alive, either local or remote. When an object is to be

moved to the proxy server, the proxy as well as the object both will be serialized and

 84

shipped to the remote server, where they are deserialized and enabled for use remotely. If

an associated object of a proxy object is moved, the local copy of the associated object

will be finalized locally. When an object referencing a proxy is being serialized, both will

be serialized, but not the associated object of the proxy being referenced.

 If a method is invoked on a proxy object, the proxy will know whether the

associated object is local or remote. If the associated object is local, then the proxy will

forward the call to the associated object through the reflection mechanism. If the

associated object is a remote object, then the proxy object will send a request to the

remote server asking for execution of the remote method on the specified object. Every

remote execution method request is associated with a unique number that is used to keep

track of the results and the exceptions that might happen when invoking a remote

method. In this request, the object identification number, method identification and

method parameters are sent. Upon receiving them at the remote server, the remote server

will start searching for the right proxy object to have a reference to it. If the proxy object

is found, then the server will ask the proxy to invoke method. Having invoked the

method, results and exceptions are sent back to the local server which in turn will

dispatch them to the right method through the unique trace number mentioned before.

Every proxy object will be in waiting state while waiting for the exceptions or results to

be back. We do not use the polling mechanism to check for the exceptions and results,

but we do use Java monitors to consume less CPU cycles and to improve the performance

of the toolkit.

 85

It is important to note that serialization can be done on any data type imaginable,

from a simple integer to a height-balanced tree. Serialization makes it possible to use

remote objects and their methods just as one would use local objects, with almost no

restrictions in the form or structure of the data types involved.

5.4.5 Distributed Garbage Collection

 Knowing and determining when objects are no longer in use is a problem in

distributed computing toolkits. To deal with this, for simplicity, a reference counter based

distributed garbage collection is used in our toolkit since Java does not explicitly free

objects from remote memory or remote Java Virtual Machines. If an object that is not

being referenced locally and remotely, then it should be finalized. This requires sending

messages between the mobile device and the proxy server to keep the object reference

counters updated.

5.4.6 Transportation Layer

For our experimental purposes, we build wrapper classes in Java for TCP/IP

streams to control characteristic of the link. We introduce delay values to simulate the

low throughputs between chunks of the data being sent.

 86

6. Java MP3 decoder

To demonstrate the feasibility of our idea, we implemented a resource intensive

application, an MP3 player in Java. This chapter discusses this sample application, and

we provide more details on the experiment and results in the next chapter, Chapter 7.

6.1 Introduction

Digital audio compression allows for efficient storage and transmission of audio

data. There are various audio compression techniques, which offer different levels of

complexity, compressed audio quality, and amount of data compression.

This chapter surveys techniques used to compress digital audio signals. This

chapter starts with a summary of the basic audio digitization process and ends with the

description of a sophisticated audio digital compression called MPEG layer 3, through

relatively simple digital audio compression called u-law and adaptive differential pulse

code modulation.

 87

6.2 Digital Audio Data

The digital representation of audio data offers many advantages such as high

noise resistance, stability and reproducibility. Also it allows the efficient implementation

of many audio-processing functions such as mixing, filtering and equalization through

digital computers. The conversion from analog to digital signals begins by sampling the

audio input in regular intervals and quantizing the sampled values into a discrete number

of evenly spaced levels. The digital audio data consists of sequences of binary values

representing the number of quantizer levels for the audio sample.

Figure 6.1: Digital Audio Process

The method of representing each sample with an independent code word is called

pulse code modulation, PCM. According to Nyquist theory, a time-sampled signal can

 88

represent up to the half of the sampling rate [71]. Typical sampling rates range from 8

KHz to 48 KHz. The 8 KHz rate covers a frequency range up to 4 KHz and provides

adequate coverage for human voice. The 48 KHz rate covers a frequency range up to 24

KHz and more than adequately covers the entire audible frequencies range, which for

humans, typically, extends to 20 KHz.

The number of quantizer levels is a power of 2 to make full use of a fixed number

of bits per audio sample to represent the quantized values. With uniform quantizer step

spacing, each additional bit has the potential of increasing the signal/noise ration by

roughly 6 decibels (dB). The typical number of bits per sample used for digital audio

ranges from 8 to 16 bits, which results in dB values ranging from 48 to 96 respectively.

To put these values in perspective, 0 dB represents the weakest audible sound pressure

level; 35 dB is the noise level inside a quite home. 125 dB is the loudest level before the

discomfort starts [72].

Compared to most digital data types, data rates associated with uncompressed

digital audio are substantial. The audio data on a compact disc with 2 channels of audio

sampled at 44.1kHz with 16 bits per sample requires a data rate of about 1.4 Mbps.

So there is a clear need for some form of compression to enable more efficient

storage and transmission of this data. There are many forms of audio compression

techniques, which differ in the trade-off between the encoder and the decoder complexity,

the compressed audio quality and the amount of data compression. In Section 6.3, low,

medium, and high complexity techniques are presented.

 89

6.3 Audio Compression Techniques

6.3.1 u_law Audio Compression

The u-law transformation is a basic audio compression technique. The

transformation is essentially logarithmic in nature and allows the 8 bits per sample output

codes to cover the dynamic range equivalent to 14 bits of linearly quantized values. This

transformation offers a compression ratio of (number of bits per source sample/8) to 1.

Unlike linear quantization, the logarithmic step spacing represent low amplitude audio

samples with grater accuracy than higher amplitude values. This makes the signal/noise

ratio of the transformed output more uniform over the range of amplitudes of the input

signal. The u-law transformation is












î






<+
+

−

≥+
+

−
=

0 for x |)|1ln(*
)1ln(

127
127

0 x |)|1ln(*
)1ln(

127
255

x

forx

y

µ
µ

µ
µ

The u-law transformation is commonly used in North America and Japan for

ISDN 8 KHz sampled, voice grade, digital telephony service.

6.3.2 Adaptive Differential Pulse Code Modulation (ADPCM).

The ADPCM encoder takes advantage of the fact that neighboring audio samples

are generally similar to each other. Instead of representing each audio sample

 90

independently as in PCM, the ADPCM encoder computes the difference between each

audio sample and its predicted value and outputs the PCM value of the differential.

Adaptive quantizer

Adaptive predictor

Adaptive
dequantizer

Adaptive quantizer

Adaptive predictor Adaptive
dequantizer

+

+

+

+

-

+

C[n]D[n]

Xp[n-
�
]

X[n]

Xp[n] Dq[n]

ADPCM encoder

C[n] Dq[n]
+

Xp[n- �]

Xp[n]

ADPCM decoder

Adaptive quantizerAdaptive quantizer

Adaptive predictorAdaptive predictor

Adaptive
dequantizer
Adaptive

dequantizer

Adaptive quantizer

Adaptive predictorAdaptive predictor Adaptive
dequantizer
Adaptive

dequantizer

+

+

+

+

-

+

C[n]D[n]

Xp[n- �]

X[n]

Xp[n] Dq[n]

ADPCM encoder

C[n] Dq[n]
+

Xp[n- �]

Xp[n]

ADPCM decoder

Figure 6.2: ADPCM Decoder/Encode

 ADPCM coder can adapt to the characteristics of the audio signals by changing

the step size of either the predictor or the quantizer or by changing both. The method of

computing the predicted value and the way the predictor or the quantizer adapt to the

audio signal vary among different coding systems. Some ADPCM systems require the

encoder to provide side information with differential PCM values. This side information

can serve two purposes. First, in some ADPCM systems, the decoder needs the additional

information either to determine the predictor or quantizer step size or both. Second, the

 91

data can provide redundant contextual information to the decoder to enable recovery from

errors in the bit stream or to allow random access entry into the coded bit stream.

The ADPCM algorithm proposed by Interactive Multimedia Association offers a

compression ratio of (number of bits per source sample)/4:1. The simplicity of this

encoder lies in the predictor. The predictor value of the audio sample is simply the

decoded value of the immediate previous audio sample. Thus the predictor block in

Figure 6.2 is merely a time delay element whose output is the input delay by one audio

sample interval. Since this predictor is not adaptive, side information is not necessary for

the construction of the predictor.

6.3.3 MPEG/Audio Compression.

The Motion Picture Experts Group audio compression algorithm is an

International Organization for Standardization (ISO) standard for high fidelity audio

compression. It is one part of a three-part compression standard. With the other two,

Video and Systems, the complex standard addresses the compression of synchronized

video and audio at a total bit rate of roughly 1.5 Mbps.

Like u-law and ADPCM, the MPEG audio compression is lossy; however, the

MPEG algorithm can achieve transparent, perceptually loss-less compression. The high

performance of this compression algorithm is due to the exploitation of auditory masking.

This masking is the perceptual weakness of the ear that occurs whenever the presence of

a strong audio signal makes weaker audio signals imperceptible. This noise-masking

phenomenon has been observed by a variety of scientists [73]. Empirical results in [73]

 92

show that the ear has limited frequency selectivity that varies in sharpness from less than

100Hz for the lowest audible frequencies to more than 4 kHz for the highest. Thus the

audible spectrum can be divided into critical bands that reflect the resolving power of the

ear as a function of the frequency. The following table lists the critical bandwidths.

Table 6.1: Critical Band Boundaries

Band Number Frequency (Hz) Band Number Frequency (Hz)

0 50 14 1970

1 95 15 2340

2 140 16 2720

3 235 17 3280

4 330 18 3840

5 420 19 4690

6 560 20 5440

7 660 21 6375

8 800 22 7690

9 940 23 9375

10 1125 24 11625

11 1265 25 15375

12 1500 26 20250

13 1735

 93

 Because of the ear’s limited frequency resolving power, the threshold for

noise masking at any given frequency is solely dependent on the signal activity within a

critical band of that frequency. Figure 6.5 illustrates this property.

A
m

p
lit

ud
e

Frequency

Strong Tonal Signal

Region where weaker
signals are masked

A
m

p
lit

ud
e

Frequency

Strong Tonal Signal

Region where weaker
signals are masked

A
m

p
lit

ud
e

Frequency

Strong Tonal Signal

Region where weaker
signals are masked

Figure 6.3:Audio noise masking

For audio compression, this property can be capitalized by transforming the audio

signal into the frequency domain, then dividing the resulting spectrum into sub-bands that

approximate critical bands, and finally quantizing each sub-band according to the

audibility of quantization noise within that band. For optimal compression, each band

should be quantized with no more levels than necessary to make the quantization noise

inaudible.

 94

Figure 6.4: MPEG/ Audio Encode/Decoder

In the MPEG encoder/decoder diagrams of Figure 6.4 [74,75], encoding closely

parallels the process described above. The input audio stream passes through a filter bank

that divides the input into multiple sub-bands. The input audio stream simultaneously

passes through a psychoacoustic model that determines the signal-to-mask ratio of each

sub-band. The bit or noise allocation block uses the signal to mask ratios to decide how to

apportion the total number of code bits available for the quantization of the sub-band

signals to minimize the audio samples and formats the data into a decodable bit stream.

The decoder simply reverses the formatting and constructs the quantized sub-band values,

and finally transforms the set of sub-band values into a time-domain audio signal.

 95

The MPEG/audio standard has three distinct layers for compression. Layer I

forms the most basic algorithm, and Layers II and III are enhancements that use some

elements found in Layer I. Each successive layer improves the compression ratio, but it

increases the complexity cost of encoder and decoder.

The Layer I algorithm uses the basic filter bank found in all layers. This filter

bank divides the audio signal into 32 constant-width frequency bands. The filters are

relatively simple and provide good time resolution with reasonable frequency resolution

relative to the perceptual properties of the human ear. The design is a compromise with

three important concessions. First, the 32 constant width bands do not accurately reflect

the ear’s critical bands [78]. Figure 6.5 illustrates this.

Figure 6.5: MPEG/Audio Filter bandwidths vs. Critical bandwidths.

 96

The bandwidth is too wide for the lower frequencies so the number of quantizer

bits cannot be specifically tuned for the noise sensitivity within each critical band. The

included critical band with the greatest noise sensitivity dictates the number of

quantization bits required for the entire filter band. Second, the filter bank and its inverse

are not loss-less transformations. Even without quantization, the inverse transformation

would not perfectly recover the original input signal. Fortunately, the error introduced by

the filter bands has a significant frequency overlap. A signal at single frequency can

affect two adjacent filter bank outputs.

The filter bank provides 32 frequency samples, one sample per band, for every 32

input audio samples. The Layer I algorithm groups together 12 samples from each the 32

bands. Each group of 12 samples receives a bit allocation and, if the bit allocation is not

zero, a scale factor. Coding for stereo redundancy compression is slightly different. The

bit allocation determines the number of bits used to represent each sample. The scale

factor is a multiplier that sizes the samples to maximize the resolution of the quantizer.

The Layer I encoder formats 32 groups of samples, 384 samples, into a frame. Besides

the audio data, each frame contains a header, an optional cyclic redundancy code check

word, and possible ancillary data.

The Layer II algorithm is a simple enhancement of Layer I. It improves

compression performance by coding data in larger groups. The Layer II encoder forms

frames of 3 by 12 by 32, 1252 samples per audio channel. In contrast, Layer I codes data

in single groups of 12 samples for each sub-band, while Layer II codes data in 3 groups

 97

of 12 samples for each sub-band. There is one bit allocation and up to three scale factors

for each trio of 12 samples. The encoder encodes with a unique scale factor for each

group of 12 samples only if necessary to avoid audible distortion. The Layer II algorithm

also improves performance over Layer I by representing the bit allocation, the scale

factor values, and the quantized samples with a more efficient code.

Layer III algorithm is a much more refined approach [74,75]. Although it is based

on the same filter bank found in Layer II, Layer III compensates for some filter bank

deficiencies by processing the filter outputs with Modified Discrete Cosine Transform

(MDCT) and I. Figure 6.6 shows a block diagram of the process.

Figure 6.6: MPEG/Audio Layer III Filter Bank Processing, Encoder Side

 98

The MDCTs further subdivide the filter bank outputs in frequency to

provide better spectral resolution. Because of the inevitable trade-off between time and

frequency resolution, Layer III specifies two different MDCT block lengths: a long block

of 36 samples or a short block of 12. The short block length improves the time resolution

to cope with transients. A long block with a specialized long-to-short or short-to-long

data window provides the transition mechanism from long to short block. Layer III has

three blocking modes; two modes where the outputs of the 32 filter banks can all pass

through MDCTs with the same block length and a mixed block mode where the 2 lower

frequency bands use long blocks and the 30 upper bands use short blocks.

Other major enhancements over Layer I and Layer II are listed as following.

• Alias reduction: Layer III specifies a method of processing the MDCT

values to remove some redundancy caused by the overlapping bands of

Layer II filter bank.

• Non-uniform quantization: The Layer III quantizer raises its input to the ¾

power before quantization to provide a more consistent signal to noise

ratio over the range of quantizer values. The re-quantizer in the

MPEG/audio decoder linearizes the values by raising its output to the 4/3

powers.

 99

• Entropy coding of data values: Layer III uses Huffman codes to encode the

quantized samples for better data compression [76].

• Use of a bit reservoir: The design of the Layer III bit stream better fits the

variable length nature of the compressed data. As with Layer II, Layer III

processes the audio data in frames of 1152 samples. Unlike layer II, the

coded data representing these samples does not necessary fit into a fixed-

length frame in the code bit stream. The encoder can donate bits to or

borrow bits from the reservoir when appropriate.

• Noise allocation instead of bit allocation: The bit allocation process used by

Layer I and II only approximates the amount of noise caused by

quantization to a given number of bits. The Layer III encoder uses a noise

allocation iteration loop in which the quantizers are varied in an orderly

way, and the resulting quantization noise is actually calculated and

specifically allocated to each sub-band.

MP3 is a very powerful and popular audio format on the Internet; however,

the decoder demands a lot of CPU cycles. So it is a challenge to download and

play MP3 files.

 100

6.4 Java Implementation of an MP3 Decoder

To obtain code portability, a Java version of an MP3 decoder was needed. We

developed an MP3 decoder in Java and optimized it to work with our infrastructure and

to demonstrate the concepts explored in this thesis. This MP3 decoder application

requires a fast CPU to decode the coded sound due to the complexity of its

encoder/decoder algorithm, which makes it an ideal candidate to demonstrate the need for

fast static hosts, i.e. proxy servers, to support the mobile devices and PDAs that could run

such type of CPU consuming applications.

6.4.1 Class Diagram of The Java MP3 Player

Figure 6.7 shows the class diagram of the Java MP3 player. Which highlights the

architecture of the decoder basically. What is important for our thesis is to identify and

represent the instances (objects) into an object graph. This object graph consists of nodes

that represent instances of classes with CPU time consumed to achieve their

functionality. Also, this graph consists of edges that represent the cost of method calls

and the data volume being transferred between nodes.

The CPU time and the edges cost can be deduced from the call graph that is

provided by a toolkit called JProbe [77]. This toolkit is basically an instrumented JVM

that monitors an application objects and the method calls between objects. Figure 6.8

shows the instances of the classes used to decode an MP3 song. Tables 6.2 and 6.3

 101

contain profiling information regarding nodes and edges in the object graph of the MP3

decoder, which is required as input to the load-sharing algorithm in Chapter 7. This

profiling information is measured on a device that runs on 350 MHz Pentium.

 102

RiffFile

SubbandLayer2Stereo

SubbandLayer2

SubbandLayer2Inten sitySter eo

SubbandLayer1StereoSubbandLayer1

SubbandLayer1IntensityStereo

gr_info_s

temporaire

-gr[]

Table43 huffcodetab -$ht[]
Bit_Reserve

SynthesisFilter

Obuffer

MPEG_Args

Ibitstream
-stream

Header

-MPEGheader

Subband

javalayer

-filter1

-filter2

-buffer

-mpeg_args

-ibitstream

-header

-asubband[]

WaveFile

FileObuffer

-outWave

LayerIII_Decoder

-filter1

-filter2

-buffer

-table43

-_huffcodetab

-br

-stream

-header

-l3decoder

temporaire2

-III_scalefac_t[]
-scalefac[]

III_side_info_t-si

-ch[]

Figure 6.7: Class Diagram for Java MP3 Decoder

 103

Figure 6.8: Object graph of the MP3 decoder.

 104

Table 6.2: Objects sizes (in bytes) and the average CPU time in milliseconds for
decoding 1 frame of an MP3 song on Pentium 350 MHz.

Object Name Object

Size
Instances Code

Size
Calls/Frame Avg CPU

Method
Time

Avg CPU
time/class

Avg CPU
Time/instance

Table43 28 1 107344 620 1.28169E-05 0.00794 0.00794

Bit_Reserve 16666 1 1430 3355 0.000149 0.50058 0.50058
SBI 223 6 2905 97 0.001191 0.11560 0.01926

gr_info_s 376 4 5195 7184 3.46479E-05 0.24891 0.06222

temporaire2 376 2 1409 1687 5.28169E-06 0.00891 0.00445
temporaire 593 2 1819 52 0.008529 0.44351 0.22175

Header 765 1 9245 11 0.000242 0.00267 0.00267

III_side_info_t 959 1 2022 35 0.004775 0.16715 0.16715
Ibitstream 1972 1 5301 449 0.000649 0.29177 0.29177

huffcodetab 2526 35 45493 693 0.005722 3.96590 0.11331
SynthesisFilter 4414 2 18724 4824 0.000185 0.89451 0.44725

LayerIII_Decoder 25114 1 47146 160 0.00669 1.07052 1.07052

Table 6.3: Objects sizes (in bytes) and the average CPU time in milliseconds for
decoding 1 frame of an MP3 song on Pentium 133 MHz.

Object Name Object
Size

Instances Code
Size

Calls/Frame Avg CPU
Method
Time

Avg CPU
Time/class

Avg CPU
Time/instance

Table43 28 1 107344 620 6.16493E-05 0.03822 0.03822

Bit_Reserve 16666 1 1430 3355 0.000717 2.40782 2.40782

SBI 223 6 2905 97 0.005732 0.55606 0.09267

gr_info_s 376 4 5195 7184 3.46479E-05 0.24891 0.06222

temporaire2 376 2 1409 1687 2.54049E-05 0.04285 0.02142

Temporaire 593 2 1819 52 0.041025 2.13332 1.06666

Header 765 1 9245 11 0.000242 0.00267 0.00267

III_side_info_t 959 1 2022 35 0.022972 0.80402 0.80402

Ibitstream 1972 1 5301 449 0.000649 0.29177 0.29177

Huffcodetab 2526 35 45493 693 0.027527 19.07631 0.54503

SynthesisFilter 4414 2 18724 4824 0.000185 0.89451 0.44725

LayerIII_Decoder 25114 1 47146 160 0.032182 5.14924 5.14924

 105

Table 6.4: Objects sizes (in bytes) and the average CPU time in milliseconds for
decoding 1 frame of an MP3 song on handheld device.

Object Name Object

Size
Instances CodeSize Calls/Frame Avg CPU

Method Time
Avg CPU
time/class

Avg CPU
Time/instance

Table43 28 1 107344 620 0.001486 0.92179 0.92179
Bit_Reserve 16666 1 1430 3355 0.017307 58.0680 58.0681

SBI 223 6 2905 97 0.138250 13.4103 2.23505
gr_info_s 376 4 5195 7184 0.004019 28.8736 7.21840

Temporaire2 376 2 1409 1687 0.000612 01.0336 0.51679
Temporaire 593 2 1819 52 0.989387 51.4482 25.7241

Header 765 1 9245 11 0.028170 0.30987 0.30987
III_side_info_t 959 1 2022 35 0.554004 19.3902 19.3902

Ibitstream 1972 1 5301 449 0.075379 33.8454 33.8454
huffcodetab 2526 35 45493 693 0.663857 460.053 13.1443

SynthesisFilter 4414 2 18724 4824 0.021509 103.7642 51.8821
LayerIII_Decoder 25114 1 47146 160 0.776133 124.1814 124.1814

Table 6.5: Edge weights of the object graph in Figure 6.8 of the MP3 decoder.

Link number of
calls/Frame

Avg number of
calls/instance/frame

DataIN DataOut TotalDataIn TotalDataOut Total /instance

1 97 16.2 44 44 711.3 711.3 2231
2 7192 1798 42 42 75516 75516 240932
3 429 214.5 50 46 10725 9867 31317
4 48 24 42 42 1008 1008 3216
5 10 10 43 42 430 420 1350
6 692 19.8 52 48 1028.114 949.0285 2965.714
7 144 72 42 40 3024 2880 9504
8 587 587 43 43 25241 25241 79832
9 1 1 580 0 580 0 630
10 2768 79.09 42 44 3321.6 3479.771 10755.6
11 1 1 0 417 0 417 467
12 619 619 44 44 27236 27236 85422
13 1 1 64 40 64 40 154
14 14 14 40 44 560 616 1876

 106

6.4.2 Efficiency experiment

To measure the performance of the MP3 player, we executed it on two PC devices

with Intel CPU architecture. The first is a workstation, which runs at 350 MHz and the

second is a laptop, which runs at 133 MHz Pentium processors. The results were taken

when the only application running on both devices was the Java MP3 player. We define

efficiency of the decoder by it is ability to play the decoded sound in real time without

resorting to buffering mechanisms.

Figure 6.9 shows that the MP3 decoder requires relatively high CPU speed to start

playing the decoded sound in real-time. In the graph, an efficient value of less than 100%

indicates that the decoder cannot produce enough decoded sound to play it in real time;

however, it is possible to use buffer mechanisms to buffer decoded sound before playing

it, and the buffer size depends on the efficiency value.

MP3 decoder efficiecny

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

1

54
7

10
93

16
39

21
85

27
31

32
77

38
23

43
69

49
15

54
61

60
07

65
53

70
99

76
45

81
91

87
37

92
83

98
29

Frame number

E
ff

ic
ie

n
cy

 %

350 MHZ

133 MHZ

Figure 6.9: The measured efficiency of MP3 decoder on two different CPU speeds.

 107

Efficiency values greater than or equal to than 100% indicate that decoder can

play decoded sound in real time; however, buffering is needed to not overwhelm the

playing rate, and again the buffer size depends on the efficiency value.

The MP3 decoder requires approximately 38 frames to decode stereo sound for 1

second. The frame size is 417 bytes. The decoder produces sound with play rate of 44100

for both channels per second, which we convert to mono and sample down the playing

rate to 11025 per second so that it can be played on both laptop and PDAs devices we

use. The required bytes to present a second of a mono channel with sampling rate of

11025 and 16 bits to present a sample are 22025 bytes.

 108

7. Experiments and Results

Our solution is based on Greedy Graph Partitioning algorithm to be used for load

sharing purposes, in which an object graph is partitioned into clusters of logically and

strongly related objects. There are two types of clustering algorithms: sequence-based

clustering techniques, which transform the object graph into a linear sequence of objects

which are segmented from left to right into partitions, and partition-based clustering

techniques which transform the object into clusters of objects. The partition-based

techniques can be classified into two categories:

• Constructive algorithms build a partition from scratch.

• I terative algorithms starts with some initial partitioning and

repeatedly try to improve this partitioning.

Under sequence based clustering, the cluster graph is transformed into a linear

sequence of objects, which is then sequentially assigned to pages. Under partition based

clustering, the cluster graph is partitioned into object partitions that fit onto a single page.

The goal is to minimize the total weight of those edges of the cluster graph that cross

page boundaries.

 109

The first technique, constructive partition-based, is of more interest for us since it

meets our requirement for a partitioning algorithm. They produce better clustering quality

with reasonable runtime compared to the iterative algorithms [79].

The clustering problem is closely related to the graph-partitioning problem where

some graph is to be partitioned into several disconnected (partitions). The object graph

(OG) is constructed considering objects as vertices and the inter-object references as

directed edges. Clustering algorithms partition the OG by assigning objects to equally

sized pages. Instead of the OG, clustering algorithms often use a more specific graph as

input that is derived from the OG and/or from information about the applications' access

behavior. The derived graph is called the clustering graph (CG). The vertices and edges

of the CG are labeled with weights.

The set of edges of the CG may be a multi-set. However, in order to simplify the

problem, we transform the CG into a simple graph, i.e., every edge occurs only once, by

accumulating the weights of edges between the same start and terminal vertices. For a

given partitioning of the CG, the total weight of all edges crossing partition borders (page

borders) is the external costs of this partitioning.

 The clustering problem is to find a partitioning of the CG such that the size of

each partition, i.e., the total size of its objects, is less or equal the page size and the

external costs are minimized.

 110

It is far more expensive to dynamically gather information on the access behavior

between objects since it requires monitoring applications objects, which has a none-

negligible overhead especially in the slow and not optimized JVMs on PDAs. In the

reminder sections we assume the weights of the edges and vertices weights of the object

graph to be given either by dynamic or static access analysis.

Our approach consists of two steps. The first step is based on the partitioning

algorithm in which we divide the object graph of an application into partitions that would

give the minimum weight of edges that cross the partitions boundaries. The second step

determines whether moving one of these partitions to the proxy server would pay.

7.1 The Greedy Graph Partitioning Heuristics (GGP)

Because of the very good clustering results but poor runtime performance of

known partition-based clustering algorithms, we have chosen a newly developed

partitioning algorithm called Greedy Graph Partitioning Heuristics. The algorithm was

first proposed in [79]. It is strongly related to the subset optimization problem for which

greedy algorithms often find good solutions very efficiently.

The input for the algorithm is an object graph, which consists of the weighted

edges and vertices. The output of the graph is a list of partitions, which minimize external

cost between the connected partitions.

 111

7.2 Simple GGP Algorithm

The GGP algorithm is based on a simple greedy heuristic that was developed for

computing the minimum-weight spanning tree of a graph. First all partitions are inhabited

by a single object, and all partitions are inserted into a PartList. For all objects O1, O2

connected by some edge in the CG with weight Wo1, o2 a tuple (O1, O2, Wo1, o2) is inserted

into the list EdgeList. All tuples of EdgeList are visited in the order of descending

weights. Let (O1, O2, Wo1, o2) be the current tuple. Let P1, P2 be the partitions to which

object O1 and O2 belong. If P1! = P2 and if the total size of all objects assigned to P1 and

P2 is less than the page size, the two portions are joined. Otherwise, the edge is merely

discarded and the partitions remain invariant. Figure 7.1 shows the GGP algorithm

outline.

Let E be the number of edges of the object graph, then the runtime complexity of

the algorithm is O (E log E) since the dominating factor in the algorithm is the Sorting

algorithm. The runtime complexity of the algorithm can be reduced to O(E) if the sorting

algorithm is eliminated. To eliminate the sorting algorithm the edges list has to be sorted

during the static analysis.

 112

Figure 7.1: Outline of simple GGP Algorithm.

• INPUT: The object graph;

• OUTPUT: A list of partitions;

• Let PageSize = Maximum number of object is a cluster;

• PartList: = Empty List;

• Assign each object in the object graph to a new partition and insert this partition into

PartList.

• Let EdgeList be a list of tuples of the form (O1, O2, Wo1o2), where Wo1o2 is the total

weight of all edges between O1 and O2.

• If (Dynamic analysis is used) then Sort Edge List by descending weights;

• Foreach (O1, O2, Wo1o2) in Edge List do

• Begin

� Let P1, P2 be the partitions containing objects O1, O2;

� If(P1 and P2 are movable partitions) then

� Begin

• If (P1 != P2and the total size of all objects in P1 and P2 is less than the

Page Size then

• Begin

• Move all objects from P2 and P1

• Remove P2 from Part List;

• End if;

� End if;

• End foreach;

 113

This algorithm is not optimal. During each iteration, the GGP algorithm takes the

edge with maximum weight from the EdgeList and tries to join the partitions of the

objects incident to that edge. However, this is not necessarily the best decision. The

following example illustrates the weakness of the algorithm, and how it can be improved.

O � O	 O
 O�� �
��

(a) EC = ���

O � O� O� O�� ����

(b) EC = ���
O � O� O� O ! !"�#

(c) EC = $�%

O & O' O(O)* *+�,

(a) EC = -�.

O / O0 O1 O23 34�5O 6 O7 O8 O9: :;�<

(a) EC = =�>

O ? O@ OA OBC CD�E

(b) EC = F�G

O H OI OJ OKL LM�N

(b) EC = O�P
O Q OR OS OTU UV�WO X OY OZ O[\ \]�^

(c) EC = _�`

Figure 7.2: An example of Non-optimal GGP Clustering based on Page Size = 2.

 114

With the assumption that objects sizes are uniform and maximum page capacity is

2 objects, Figure 7.2 (a) shows the maximum external costs when no partitions are

considered. Figure 7.2 (b) shows the external costs when the simple GGP algorithm is

used. Figure 7.2 (c) shows the optimal case that a clustering algorithm should give with

the object graph in Figure 7.2 (a) is as input.

The improvement to the simple GGP algorithm is represented in the idea of

bounded look-ahead. The bounded look-ahead is to detect situations where it is

advantageous to reject the current edge, i.e., the edge with maximum weight, and to

consider other edges first. A full description of the algorithm and quantitative analysis of

the algorithm is described in [79]. Our object graph does not contain situations where the

look-ahead feature added to the simple algorithm produces better results. Thus using the

simple algorithm or using the new algorithm will result in the same partition.

7.3 Experiment

We run the simple GGP algorithm with the object graph representing object graph

of the MP3 player. We change the following parameters to demonstrate their importance.

The parameters are:

• Bandwidth

• Relative CPU speeds (Mobile CPU: Proxy CPU)

• Cluster Size or Page size of the simple GGP.

 115

We varied the bandwidth, relative CPU speed, and cluster size. To figure out

which partitions are most beneficial to be moved, we assume that object weights are

uniform. This is because at any time shipping object will happen once only; but calling

the shipped objects from the mobile device over the wireless link could happen more than

once. Thus our concern is more on the number of calls and the data volume being moved

between mobile device and the proxy server rather than object sizes during execution of

the application. However, partition weights, the sum of object weights in the partition, are

still used to determine an estimate of the response time and the power consumption cost

when that partition moved to the proxy.

Fixing the bandwidth, the relative CPU speed, and varying page size N, where N

is number of objects in object graph, we run the simple GGP algorithm to obtain a

number of partitions each of which contains at most N objects. Which of these partitions

is helpful in increasing performance or decreasing power consumption if shipped is

determined through calculations and the user preference. These calculations include the

partition weight, total CPU time consumed by this partition, and the total edges weight

emerging from the partition. We ship only one partition at a time. Selecting two

partitions is not an appropriate choice since their objects are not strongly related to each

other. Otherwise, since page size is being varied, those objects will eventually be

combined together in one page if they are indeed strongly related.

 116

 To simplify the calculation, first we represent the fixed resources, such as an

Internet server, in object graph as dummy object with no CPU time and weight in the

object graph. However, if there is an edge between the dummy object and any other

object in the object graph, then the edge will represent traffic volume between the

dummy object and the other objects. Since the dummy object has no CPU time and

weight, the edge weight is the only factor that will be considered in the decision process.

Any edge that has one of its end nodes as a dummy object can hold a positive or negative

value, a positive value means that the dummy object is fixed at the mobile device and a

negative value means that the dummy object is fixed at a remote site. Figure 7.3 shows

this.

Wireless link

a b b

- c d d

Fixed Objects

Movable Object

Wireless link

e f f

- g h h

Fixed Objects

Movable Object

Figure 7.3: Representing fixed resources as dummy objects in object graph.

 117

In the object graph in Figure 6.8, we substitute two objects with dummy objects:

Ibitstream and Obuffer. Ibitstream represent the source of the coded audio, and Obuffer

represents the decoded audio. Obuffer is always fixed at the mobile device. Second,

since the input for the simple GGP algorithm requires an undirected graph, we add the

directed edges between any two objects to represent the total traffic between objects.

Since sending and receiving costs of Wireless cards are different, the sending cost is

higher than the receiving cost; we use the weighted average, based on volume of data in

end directions, in our calculations with an undirected graph.

Our goal is to obtain accurate results; however, through the experiments, we

noticed that there is a lot of overhead introduced by the object mobility toolkit discussed

in Chapter 5. We compared the response time of invoking a method in a remote object

once using our toolkit and using the Voyager toolkit. The method used in this comparison

does not take parameters and does not return values; however, it does throw an exception.

Voyager takes about 23 ms on average and our toolkit takes 110 ms on average to invoke

the method remotely. There are two reasons for Voyager’s superior performance in this

case. First, the communication protocol used in implementing RMI introduces fewer

overheads for the same amount of data being sent. The second is that Voyager uses native

interface as well as native processes for the object servers, which improves the

performance of the toolkit; however, this prevents Voyager from being portable across

platforms.

 118

In our toolkit, we do not use native interface to process Java objects, but we use

native interface to export power consumption events. The RMI protocol being used in our

toolkit is object based. Any command being sent to Remote Object Server is a serialized

Java object that holds information about the target object, the method and its parameters.

The Remote Object Server de-serializes the command into Java Object and ultimately

will invoke the method on the object. This simplifies the implementation of the toolkit;

however, due to the serialization protocol overhead, the ratio of the overhead to data is

high. To put this in perspective, Table 7.1 shows the overhead associated with serializing

objects, which argues for improvement of the RMI and/or serialization protocols

specification such that it can be used more efficiently over wireless links. It is worth to

notice that Object Size of a primitive type wrapper can be calculated as following:

Object Size = 60 + Primitive data size + wrapper full class name length.

For example, to serialize a Long object, the required data size is 82 bytes.

Table 7.1: The Ratio of Object Size to Java Primitive Types.

Data Type Data size Object size when serialized

Byte 1 75

Short 2 77

Integer 4 81

Float 4 79

Double 8 84

 119

In the following graphs and tables, which are based on Table 6.2 to Table 6.5 and

Figure 6.8, the following legends are used to indicate the various mathematical modes

being used.

• PN (Partition Number) is an index that represents the group of objects

• NP (Number of Partitions) The number of partitions generated when running

the simple GGP with a specific page size.

• EC (External Cost) is total weight of all edges that cross-generated partitions

in bytes.

• TCPUT (Total CPU Time) is the total CPU time of all nodes of the object

graph in mille-seconds.

• PW (Partition Weight) is a partition weight in bytes i.e. size of the object if

serialized in bytes.

• LTRT (Local Total Response Time) is the response time when all objects are

executed locally, equation (7.1).

• PCPUT (Partition CPU Time) is the CPU time that is consumed by the

partition in milli-seconds. In other words it is the total CPU time of all objects

in the partition.

• PEW (Partition Edges Weight) is total weight of edges that emerge from the

partition in bytes not including negative edges.

 120

• PNEW (Partition Negative Edges Weight) is the total weight of negative

edges that emerge from a partition in bytes.

• RTPR (NFD) (Response Time when Partition is at the Remote Site) is the

total response time when a partition is moved remotely. It is a function of how

many times the partition is being used remotely, NFD. The time is in mille-

seconds, equation (7.2).

• LTPC (Local Total Power Consumption) is the total power consumption of

the entire object graph being executed locally. The measuring unit is

watts/hour, equation (7.3).

• PCPR (NFD) (Power Consumption when a Partition is at the Remote site) is

the power consumption at the mobile device when a partition is moved to the

proxy and being executed NFD times, equation (7.4).

• RTIP (Response Time Improvement Percentage) is the percentages gained in

response time if a specific partition was executed remotely, equation (7.5).

• PCIP (Power Consumption Improvement Percentage) is the percentage of the

power consumption reduction in the mobile device, equation (7.6).

• PS (Partition Size) is the number of objects in a specific partition.

• BW (Bandwidth/Throughput) is the available through put for the partitions

to move through in kilobytes.

• RCPUS (Relative CPU Speeds) is the relative CPU speed between the mobile

device and the proxy server.

 121

• SNEWS (Summation of Negative Edges Weights in Systems) is the

summation of the total negative weights in the entire system in bytes.

• NFD (Number of Frames Being decoded).

• Lefficiency (Local Efficiency) is the player efficiency when decoding locally.

• Refficiency (Remote Efficiency) is the player efficiency when decoding

happens partially or entirely at the remote site.

 122






+=

BW

SNEWS
TCPTLTRT

|8*|

Equation (7.1)

()












 ×+
















 ++××

+










+−×=

BW

PW

BW

PNEWSNEWSPEW
NDF

RCPUS

PCPUT
PCPUTTCPTNDFNDFRTPR

88*)|(|8

)(

Equation (7.2)

























××+



























×=

3600
1000

||

35.2
3600

10008.1
BW

SNEWS
TCPT

LTPC

Equation (7.3)

































×
××

×
+






















××
×+

+










××
×

×

×+
−

××=

36001000

8

36001000

8)|(|

36001000

8

35.2
36001000

8.1)(

BW

PW

BW

PNEWSNEWS

PW

PEW
NDF

PCPUTTCPT
NDFNDFPCPR

Equation (7.4)

NDFLTRT

NDFRTPRNDFLTRT
RTIP

×

−×
=

)(
%

Equation (7.5)

NDF LTPC

PCPR(NDF)NDFLTPC
PCIP

×
−×= %

Equation (7.6)

 123

We use the previous equations to calculate an estimated response time as well as

the power consumption costs, where the value 2.35 is the average power consumption of

sending and receiving data over a wireless link using Table 4.1

Running the simple GGP algorithm with N objects of which M are static objects

results in N-M possible clusters; however, we choose only some of these for discussion

purposes.

7.4 Results

To explore the effect of the following parameters we varied them and observed

the efficiency of the player.

1. Bandwidth available.

2. Relative CPU speeds (Mobile CPU: Proxy CPU).

3. Cluster Size or Page size of the simple GGP.

To observer the importance of the first parameter, the bandwidth available, we

choose certain low and high bandwidths. For PDA as a client, we selected low

bandwidths; we did choose 19.2 Kb/sec to represent CDPD. For high bandwidths we did

choose 1000 Kb/sec to represent the set of bandwidths that can be obtained from Wireless

Ethernet cards.

To observer the importance of the second parameter, the relative CPU speeds, we

did fix the bandwidth to 1000 Kb/sec so that the bandwidth does not become a bottleneck

 124

between the mobile device and the proxy device. The third parameter is varied from 1 to

N-M while varying the other parameters. This is because of the nature of the simple GGP

algorithm. The previous experiments are run for a PDA and a laptop as client devices.

The PDA runs on a RSIC processor of 75 MHz and the laptop runs on a Pentium

processor of 133 MHz. The proxy server runs on 350 MHz Pentium II.

The performance of Java Applications depends primarily on the performance of

the JVM. Since both laptop and the proxy server run relatively high performance JVMs

using JIT compilers, the relative Java application performance on both CPUs is

maintained. However, JVM on the PDA we use is very slow and does not support JIT

compilers, the relative CPU speed degrade considerably. We measured the relative CPU

speed between the PDA, laptop and the proxy and found to be 1:116 and 1:4,

respectively. Therefore, while varying bandwidth, the relative CPU speeds are fixed to

1:2 and 1:116 for PDA as a client, and 1:4 for laptop as client.

 In the following section, Local Efficiency and Remote Efficiency factors are

based on decoding 38 MP3 coded audio frames, with the assumption that output is mono,

with sampling rate of 11025, and 16 bits per sample.

 125

Table 7.2 An estimation of the Response Time and Power Consumption for PDA as
Client with BW = 19.2kb/s and RCPUS = 2.

BW 19.2Kb/s RCPUS 2
CS NP PN PS RTIP PCIP Lefficiency Refficiency
1 58 MIN 56 1 -51597.91 -63768.99 0.0249 4.821E-05
 MAX 19 1 -53.35185 -65.343 2.4923 1.6252

20 39 MIN 30 20 -14694.8 -18150.99 2.4923 0.0168
 MAX 19 1 -53.35185 -65.34 2.4923 1.6252

30 29 MIN 40 30 -9299.763 -11478.89 2.4923 0.0265
 MAX 19 1 -53.35185 -65.34 2.4923 1.6252

56 3 MAX 54 56 -116.7979 -117.54 2.4923 1.1496

Table 7.3 An estimation of the Response Time and Power Consumption for PDA as
Client with BW = 19.2kb/s and RCPUS = 116.

BW 19.2Kb/s RCPUS 116
CS NP PN PS RTIP PCIP Lefficiency Refficiency
1 58 MIN 56 1 -51592.136 -63768.99 2.4923 0.0048
 MAX 19 1 -52.450 -65.34 2.4923 1.6349

20 39 MIN 30 20 -14678.134 -18150.99 2.4923 0.0169
 MAX 19 1 -52.44947 -65.34 2.4923 1.6349

30 29 MIN 40 30 -9277.01 -11478.89 2.4923 0.0266
 MAX 19 1 -52.449 -65.34 2.4923 1.6349

56 3 MAX 54 56 -76.715 -117.54 2.4923 1.4104

 126

Table 7.4 An estimation of the Response Time and Power Consumption for PDA as
Client with BW = 1000kb/s and RCPUS = 2.

BW 1000Kb/s RCPUS 2
CS NP PN PS RTIP PCIP Lefficiency Refficiency
1 58 MIN 56 1 -1202.2133 -1562.5096 3.0422 0.2336
 MAX 19 1 -0.1511 0.5803 3.0422 3.0376

20 39 MIN 30 20 -324.1147 -408.2565 3.0422 0.7173
 MAX 19 1 -0.151 0.5803 3.0422 3.0376

30 29 MIN 40 30 -190.2272 -228.4218 3.0422 1.0482
 MAX 19 1 -0.1511 0.5803 3.0422 3.0376

56 3 MAX 54 56 46.0909 94.6216 3.0422 5.6432

Table 7.5 An estimation of the Response Time and Power Consumption for PDA as
Client with BW = 1000kb/s and RCPUS = 116.

BW 1000Kb/s RCPUS 116
CS NP PN PS RTIP PCIP Lefficiency Refficiency
1 58 MIN 56 1 -1195.1591 -1562.5096 3.0422 0.2348
 MAX 19 1 0.9503 0.5803 3.0422 3.0714

20 39 MIN 30 20 -303.8007 -408.2565 3.0422 0.75340
 MAX 19 1 0.9503 0.5803 3.0422 3.07143

30 29 MIN 40 30 -162.448 -228.4218 3.0422 1.15917
 MAX 19 1 0.95038 0.5803 3.0422 3.07143

56 3 MAX 54 56 95.0166 94.6216 3.0422 61.0477

 127

Table 7.6 An estimation of the Response Time and Power Consumption for Laptop as
Client with BW = 19.2kb/s and RCPUS = 4.

BW 19.2Kbit/s RCPUS 4
CS NP PN PS RTIP PCIP Lefficiency Refficiency
1 58 MIN 56 1 -242934.7352 -250704.429 11.7333 0.0048
 MAX 19 1 -255.2646 -263.4238 11.7333 3.3026

20 39 MIN 30 20 -69254.4757 -71469.3350 11.7333 0.0169
 MAX 19 1 -255.2646 -263.4238 11.7333 3.3026

30 29 MIN 40 30 -43884.0493 -45287.4589 11.7333 0.0266
 MAX 19 1 -255.2646 -263.4238 11.7333 3.3026

56 3 MAX 54 56 -731.9275 -755.1185 11.7333 1.4103

Table 7.7 An estimation of the Response Time and Power Consumption for PDA as
Client with BW = 1000kb/s and RCPUS = 4.

BW 1000Kb/s RCPUS 4
CS NP PN PS RTIP PCIP Lefficiency Refficiency
1 58 MIN 56 1 -31278.9412 -39487.9175 78.7069 0.2508
 MAX 19 1 -31.4053 -39.6075 78.7069 59.8962

20 39 MIN 30 20 -8892.3819 -11225.4662 78.7069 0.8752
 MAX 19 1 -31.4053 -39.6075 78.7069 59.8962

30 29 MIN 40 30 -5614.8727 -7087.4938 78.7069 1.3772
 MAX 19 1 -31.4053 -39.6074 78.7069 59.8962

56 3 MAX 54 56 -28.9268 -34.7293 78.7069 61.0478

 128

From previous tables, available bandwidth is an important factor. Tables 7.2 and

7.3 show that if the bandwidth is the bottleneck in the system, no matter what the relative

CPU speed is, neither reduction in power consumption nor increases in MP3 player

performance can happen. However, if the bandwidth is not the bottleneck, then the

relative CPU speed becomes decisive factor in increasing the performance and the

decreasing power consumption at the mobile device. Tables 7.4 and 7.5 show that it is

possible to save power and increase performance of the MP3 player if the entire decoder

will be executed remotely and the PDA only works as sound player. However, increasing

performance of the MP3 player it does not mean that the MP3 player becomes an

efficient player unless the efficiency factor is 100% or more.

The decrease in the power consumption happens when the available bandwidth is

high. This is because the lower the bandwidth is; the longer it takes to transmit data,

which in turn, cause more power consumption. Table 7.4 and Table 7.5 show that with

high bandwidths, regardless of the relative CPU speed, there is a considerable gain in

power consumption.

The computation power of the mobile device is an important factor as well. Table

7.6 and Table 7.7 show that local efficiency of the player is always higher than remote

efficiency even though the available bandwidth in Table 7.7 is sufficient to handle the

decoded sound and the computational power is quit high at the proxy server. This argues

for the use of multi-set of multi proxies’ infrastructure to support multi mobile users

rather than one proxy server infrastructure [80].

 129

Results show that it is not always beneficial to start shipping code to gain

performance and/or decrease power consumption. Tables 7.4 and 7.5 show that there is a

considerable decrease in power consumption as well as an increase in the performance of

the MP3 player; however, Tables 7.6 and 7.7 show that it is not worth shipping the MP3

decoder remotely due to high degradation in both the power consumption and the

performance.

Previously mentioned parameters are important in determining which of

application objects should be offloaded to the proxy server. The GPP determines which

objects of an object graph should be clustered together; but it does not determine which

objects should be moved. The previous equations help in deciding which of the objects

should be offloaded to the proxy server if offloading is beneficial.

Generally, the previous tables indicate that for the PDA case, it is worth

offloading the entire decoder to the proxy server if there is high bandwidth and the

relative CPU speed is high as well.

In Table 7.5, partition number 56 that holds the complete decoder is the only

cluster that allows the increase in performance of the MP3 decoder and decrease in the

power consumption. This is because none of the other clusters give better results with the

same environment conditions. The output of the GGP algorithm depends completely on

the topology of the object graph. In the MP3 object graph, the amount of the traffic

between the objects is very high. This is because of the nature of the MP3 decoder not to

mention the centralized topology of the MP3 decoder, which favors shipping the entire

 130

decoder rather shipping a part of the decoder. If the graph topology as well as the amount

of the traffic between objects changes, it might be possible to increase performance and

reduce the power consumption by partially shipping objects of the object graph rather

than the entire object graph.

We used voyager with the MP3 player to offload certain clusters from laptop to

the proxy server, measure the efficiency of the player, and compare them with the

estimated values in Table 7.7. The player decodes 38 frames (approximately one second

to play) and converts the stereo output to mono of sampling rate 11025 MHz with 16 bits

per sample. Table 7.8 shows the chosen clusters and the partition numbers, the local

efficiency, and the remote efficiency when the certain clusters of objects are moved

remotely to the proxy server.

Table 7.8: Efficiency of the MP3 player when certain clusters are shipped remotely for
execution.

BW 1000Kbit/sec

Cluster size PN Local Efficiency % Remote Efficiency %

1 19 76.24 61.89

30 40 76.24 2.35

56 54 76.24 65.40

 131

The measured values in Table 7.8 shows that there is no much difference between

them and the estimated values in Table 7.7. Thus, the equations 7.1 to 7.6 can be used to

have an estimation of the cost model of offloading application objects remotely.

 132

8. Conclusion and Future Work

In this chapter we summarize the thesis and introduce possible improvements and

future work on the adaptive mobile toolkit.

8.1 Conclusions

Finding approaches to reduce power consumption and to improve application

performance is a vital and interesting problem to be investigated. On many levels,

approaches have been developed to address the problem of reducing power consumption

and increasing the response time. They range from hardware to software level approaches

as mentioned previously.

 One of the approaches is to divide a mobile application statically at design time

into a server and client model, where the client executes at the mobile device and the

server runs at a fixed host in the wired network. Splitting an application statically does

not guarantee the maximum quality of service to the users, especially in mobile

computing environments due to the mobile computing environment challenges and the

highly dynamic fluctuation of available resources.

 133

To improve quality of service to the users, at the fixed host, filtering mechanisms

that work according to the current condition of the mobile computing environment are

deployed, which make mobile applications more adaptive. However, in our thesis work

we suggested a new approach based on Greedy Graph partition for adaptive mobile

applications, in which an application’s objects will be split dynamically between the

mobile device and fixed host according to the mobile device and fixed host’s available

resources and wireless network state.

This approach requires special infrastructure and tools rather than a specific

application design. Two issues are important for realizing application adaptation. The

first is that the operating system must support a mechanism of notifying applications of

changes in the mobile environment. The second is to provide a systematic way to build

adaptive applications embodied in frameworks and toolkits. Thus we designed and

developed a mobile object toolkit that run on WindowsCE platform that run JVM. With

this toolkit we combine JVMs on both the proxy server and the mobile device as one

virtual machine from the application point of view to dynamically split applications

object between JVMs.

Mobile applications, especially ones that do intensive computation and

communication, can be divided dynamically as a client and server between the wired

network and the mobile device according to the mobile environment and to the

availability of the resources on both the mobile device and the wired network. With our

approach, we allow more windows of adaptability to the mobile environment. In addition,

 134

it allows the applications to have dynamic access to faster machines through faster

servers. This will increase the performance of applications and reduce the power

consumption on mobile devices since offloading computation to the wired network will

reduce the CPU cycles and memory required to achieve certain tasks at mobile devices.

Although Java as is our primary developing language for applications as well as

for implementing our toolkit, Java Virtual Machines are in early stages of development,

particularly those for the WindowsCE platform. They need to be extended to export the

mobile computing environment variables, such as available bandwidth, battery lifetime

and power available at the mobile host as well as performance parameters such as CPU

utilization. These extensions require the use of native interfaces, which if not

standardized, will prevent the mobile adaptive application from being portable.

We suggested a modified Greedy Graph Partitioning algorithm to group objects

for Load Sharing purposes. As proof of concept, we implemented an MP3 Player in Java.

We measured the CPU time and data volume traffic of its object graph that was obtained

by special toolkits based on instrumented Java Virtual Machines.

To demonstrate the feasibility of the dynamic load balancing approach, we use the

MP3 player object graph as input to the Greedy Graph Partition to obtain clusters that

contain strongly related objects. Through calculation models which are based on the

available bandwidth and the relative CPU speeds to estimate power consumption costs

and performance costs metrics, we determine which of the clusters should be moved to

improve one or both of the metrics. The results showed that it is possible to

 135

simultaneously optimize both metrics by dynamically shipping the entire MP3 decoder to

the proxy server.

8.2 Future Work

We highly suggest the improvement of the mobile object toolkit to help facilitate

the implementation of the adaptive mobile application for PDAs in particular. The main

improvement on this toolkit would be improving the implementation of the RMI

protocol, which is based on serialized object commands between the object servers on

both Java Virtual Machines. Currently, we manually write proxy objects; however, we

suggest developing tools to automate this process and integrate it with the toolkit.

Determining the clustering level of object graph of an application with more

robust algorithm is another avenue of the future research. Currently we run the algorithm

with all possible clustering sizes. Other possible ways could use an estimate to level of

clustering. Ultimately, we require an algorithm that would react to the rapid changes of

the environment, and we need to investigate how to reduce the impact of rapid change in

the environment.

The MP3 player we implemented does not react to the changes in bandwidth. We

fixed the output playing rate and the sampling size. Further study is required to show

how application adaptation policies affect and interact with the automated adaptation by

our toolkit.

 136

References

[1] T. Imielinkski and B. R. Bardinate, Data Management for Mobile Computing,
 SIGMOD Record, 22(1): 34-39, March 1993.

[2] Meier-Hellstern, K.S, Alonson, E. and Oniel, D., The use of SS7 and GSM to support
 high-density personal communications, In proceedings of the Third Winlab
 Workshop on the third generation of wireless information networks.

[3] J. Ioannisdis, D. Duchamp, and G. Magurier Jr. IP-based Protocols for Mobile
 Internetworking, In the Proceedings of SIGCOMM’91 Symposium, pages 253-245,
 Sept 1991.

[4] M. Weiser, Some Computer Science Issues in Ubiquitous Computing,
 Communications of ACM 36(7): 75-84, July 1993.

[5] G. Forman and J. Zahorjan, The Challenges of Mobile Computing, Computer, April
 1994.

[6] C. Horstman and G. Cornell, Core Java 1.1, Volume 1, Sun
 Microsystems Press, A Prentice Hall title.

[7] J. Baugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented Modeling
 and Design. ISBN: 0136298419. Publisher. Prentice Hall.

[8] The Java(tm) Language Environment: A White paper,
 http://ftp.unican.es/manuales/java/white-paper/java-whitepaper-6.html

[9] J. Gosling, B. Joy, G. Steele, The Java Language Specification,
 http://java.sun.com/docs/books/jls/html/5.doc.html#20232

[10] Security Code Guidelines, http://java.sun.com/security/seccodeguide.html#gcg

[11] C. Mangione , Just In Time for Java vs. C++,
 http://www.ncworldmag.com/ncworld/ncw-01-1998/ncw-01-jperf.html

 137

[12] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,
 Hideaki Komatsu, and T. Nakatani, Overview of the IBM Java Just-In-Time
 Compile, IBM Systems Journals, Java Performance Issue, Vol. 39, No. 1, 2000.

[13] S. Kalyanaraman, Jini Overview,
 http://www.cse.ucsc.edu/~shankari/jiniwriteup/ucscjini.html

[14] WindowsCE Microsoft home page, http://www.microsoft.com/WindowsCE/

[15] L. Peterson, B. Davie, Computer Networks: A Systems Approach, Morgan
 Kaufmann, 1996, (ISBN 1-55860-368-9)

[16] Object Management Group, http://www.omg.org.

[17] Object and Components, http://a-sync.com/chapter1.htm

[18] J.Inscore, Java IDL,
 http://www.uni-koblenz.de/~admin/Doku/Java /Tutorial/idl/intro/intro.html

[19] The Common Object Request Broker: Architecture and Specification, Revision 2.2,
 February 1998, http://www.ti5.tu-harburg.de/Manual/OMG/CORBA/1

[20] JDBC APIs, http://java.sun.com/products/jdk/1.2/docs/guide/jdbc/index.html.

[21] Java Remote Method Invocation: Distributed Computing fort Java,
 http://cermics.enpc.fr/doc/java/rmi.html

[22] W. Edwards, X. Parc, Core Jini, Published June 1999 by Prentice Hall PTR (ECS
 Professional)

[23] K. Arnold, Addison-Wesley, Hardcover, The Jini Specification, Published June 1999
 ISBN 0201616343

[24] Voyager Mobile Code toolkit, http://www.objectspace.com/products/vgrorb.asp

[25] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison Wesley
 Professional Computing Series, ISBN 0-201-63361-2.

[26] Distributed Component Object Model Protocol,
 http://www.microsoft.com/oledev/olemkt/oledcom/dcomspec.txt

 138

[27] WaveRider NCL Series, http://www.ttiwireless.com/products/ncl/ncl.html

[28] Wrireless Lans, http://www.proxim.com/products/rl2/index.shtml

[29] Nortel Networks Wireless products,
 http://www.nortelnetworks.com/products/wireless

[30] The CDPD System,
 http://www.lucent.com/wirelessnet/products/networks/cdpd_howworks.html

[31] American Mobile’s ARDIS Network,
 http://www.ardis.com/communication/fr_ardisnet.html

[32] B. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn,, K. Walker, Agile
 Application-Aware Adaptation for Mobility, Proceedings of the 16th ACM
 Symposium on Operating System Principles, October 1997, St. Malo, France

[33] M. Satyanarayanan, Mobile Information Access
 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/coda//Web/docdir/ieeepcs95.pdf

[34] P. Ward, J Black, T. Kunz, M. Nidd, M. Lioy, B. Elphick, and M. Ostrowski,
 Comma, A Communication Manager for Mobile Applications In Wireless 98. TR
 Labs, TRIO, IEEE Canada July 1998.

[35] XDR: External Data Representation Standard, RFC1832.

[36] J. Case, M. Fedor, M. Schoffstal,, J. Davin, A Simple Network Management
 Protocol: SNMP, May 1990, RFC1157

[37] A. Joseph and M. Kaashoek , Building Reliable Mobile-Aware Applications using
 the Rover Toolkit, M.I.T.Laboratory for Computer Science Cambridge, MA 02139,
 U.S.A.

[38] L. Ranganathan, A. Acharya, S. Sharma and J.Saltz, Network-aware Mobile
 Programs, Department of Computer Science University of Maryland College Park,
 MD 20740

[39] O. Angin, A.T Campbell., M.E Kounavis, and R Liao., The Mobiware Toolkit:
 Programmable Support for Adaptive Mobile Netwokin, IEEE Personal
 Communications Magazine, Special Issue on Adapting to Network and Client
 Variability, invited paper, August 1998,

 139

[40] A. Lazar, Programming Telecommunication Networks, IEEE Network, October
 1997.

[41] S. Sheng, A. Chandrakasan, R. Brodersen, A Portable Multimedia Terminal, IEEE
 Comunications Magazine, Dec. 1992.

[42] H. Balakrishanan, S. Seshan, E. Amir, and, R. Katz. Improving TCP/IP performance
 over wireless network, In Proceedings of the First ACM International Conference on
 Mobile Computing and Networking (MOBICOM), Nov. 1995.

[43] R. Kravets, K. Calvert, and K. Schwan, Payoff adaptation of communication for
 distributed interactive applications, Journal of High Speed Networking, Special
 Issue on Multimedia Communications, 1998.

[44] B. Narendran, J. Sienicki, S. Yajnik, and P. Agrawal. Evaluation of an adaptive
 power and error control algorithm for wireless system, In Proceedings of the IEEE
 International Conference on Communications (ICC’97), 1997.

[45] F. Douglis, P. Krishan, and B. Bershad, Adaptive disk spin down policies for mobile
 computers, In Proceedings of the Second USENIX Symposium on Mobile and
 Location Independent Computing, April 1995.

[46] I. Chlamatc, C. Petrioli, and J. Redi, Energy conservation in access protocols for
 mobile computing and communication, Microprocessors and Microsystems Journal,
 1998.

[47] F. Douglis, P. Krishna, and B. Marsh, Thwarting the power hungry disk, In
 Proceedings of the 1994 Winter USENIX Conference, Jan. 1994.

[48] K. Govil, E. Vhan, and H. Wasserman, Comparing algorithms for dynamic speed-
 setting of a low-power CPU, In Proceedings of the First ACM International
 Conference on Mobile Computing and Networking (MOBICOM), 1995.

[49] M. Othman and S. Hailes, Power Conservation Strategy for Mobile Computers
 Using Load Sharing, Mobile Computing and Communication Review, Vol.2, No. 1,
 Pages 44-51.

[50] T. Waston, Application Design for Wireless Computing, Proceedings of the IEEE
 Workshop on Mobile Computing, Dec. 1994.

[51] B. Badrinath, A. Acharya, T. Imielinski, Impact of Mobile Computing, Operating

 140

 Systems Review, Vol.27, No.2 , April 1993.

[52] Intel Corporation, Microsoft Corporation, and Toshiba Corporation., Advanced
 Configuration and Power Interface Specification V1.2, July 1998.
 www.intel.com/IAL.powermgm.

[53] Object Serialization,
 http://java.sun.com/products/jdk/1.1/docs/guide/serialization/index.html

[54] ObjectSpace,Inc.:http://www.objectspace.com/developers/voyager

[55] Revolutionary RMI: Dynamic class loading and behavior objects,
 http://www.javaworld.com/javaworld/jw-12-1998/jw-12-enterprise.html

[56] R. Kravets and P. Krishnan, Power Management Techniques for Mobile
 Communication, MOBICOM 98, P 157-168

[57] S. Omar and T. Kunz, Reducing power consumption and increasing application
 performance for PDAs through mobile code, in Proceedings of the 1999
 International Conference on Parallel and Distributed Processing Techniques and
 Applications, Vol. II, Las Vegas, Nevada, USA, pp. 1005-1011, June 1999.

[58] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Efficient and Language
 Independent Mobile Programs, In Proceedings of the SIGPLAN'96 Conference on
 Programming Language Design and Implementation, pages 127--36, May 1996.

[59] N. Borenstein, Email With a Mind of its Own: The Safe-TCL Language for Enabled
 Mail, In Proceedings of IFIP Working Group 6.5 International Conference, pages
 389-402, Jun 1994.

[60] J. Gosling and H. McGilton, The Java Language Environment, 1995,
 http://osm-www.informatik.uni-hamburg.de/osm-www/resources/local
 Documents.html

[61] S. Clamen, L. Leibengood, S. Nettles, and J. Wing, Reliable Distributed Computing
 with Avalon/Common Lisp, In Proceedings of the International Conference on
 Computer Languages, pages 169--79, 1990.

[62] J. Falcone., A Programmable Interface Language for Heterogeneous Systems, ACM
 Transactions on Computer Systems, 5(4): 330--51, Nov. 1987.

 141

[63] J. Stamos and D. Gifford, Implementing Remote Evaluation, IEEE Transactions on
 Software Engineering, 16(7):710--722, July 1990.

[64] L. Cardelli, A Language With Distributed Scope, In Proceedings of the 22nd ACM
 Symposium on Principles of Programming Languages, Jan. 1995.

[65] R. Gray, D. kotz, S. Nog, D. Rus, G. Cybenko, Mobile agent for Mobile Computing,
 Department of Computer Science, Dartmouth College, Tech. Report, PCS-TR96-
 285.

[66] A. Bakre, and B. Badrinath, I-TCPL Indirect TCP for Mobile Hosts, In the
 Proceedings of the 15th International Conference on Distributed Computing
 Systems.

[67] C. Walshaw, M. Cross, and M. Everett. Parallel Dynamic Graph Partitioning for
 Adaptive Unstructured Meshes. J. Par. Dist. Comput., 47(2):102-108, 1997.

[68] Y.T Wang, R.I.J Morris, Load Sharing in Distributed Systems, IEEE Transactions
 on Computers, IEEE Workgroup, Vol. C-34. No. 3 March 1985.

[69] Proxy Pattern, http://www.media.mit.edu/~tpminka/patterns/Proxy.html.

[70] M. Dahm, Byte Code Engineering, in Proceedings of JIT’99.

[71] A. Oppenheim and R. Schafer, Discrete Time Signals Processing, (Englewood, NJ:
 Prentice-Hall, 1989: 80-87.

[72] K. Pohlman, Principles of Digital Audio (Indianapolis, IN: Howard W. Sams and
 Co., 1989).

[73] J. Tobias, Foundation of Modern Auditory Theory (New York and London:
 Academic Press, 1970): 159-202.

[74] K. Brandenburg and J. D. Johnston, Second Generation Perceptual Audio Coding:
 The Hybrid Coder, Preprint 2937, 88th Audio Engineering Society Convention,
 Montreaux (1990).

[75] K. Brandenburg, J. Herre, J. D. Johnston, Y. Mahieux, and E. Schreder, ASPEC:
 Adaptive Spectral Perceptual Entropy Coding of High Quality Music Signals,
 Preprint 3011, 90th Audio Engineering Society Convention, Paris (1991).

 142

[76] D. Huffman, A method for the construction of Minimum Redundancy Codes
 Proceedings of the IRE, vol. 40, 1962: 1098-1101.

[77] Java profiling toolkit: JProbe, http://services.klgroup.com

[78] Wiese and G. Stoll, Bit rate Reduction of High Quality Audio Signals by Modeling
 the Ear’s Masking Thresholds, Preprint 2970,89th Audio Engineering Society
 Convention, Los Angeles (1990).

[79] C. Gerlhof, A. Kemper, C. Kilger, and G. Moerkotte, Clustering in Object base,
 Technical report 6.92, Fakulat fur Informatik, University Karlsruhe, D-7500
 Karlsruhe, Jun 1992.

[80] W., Jianwen , A Proxy server infrastructure for adaptive mobile applications, 1967-
 Ottawa. 1999, Thesis (M.C.S.) - Carleton University, 1999. CALL NUMBER:
 M.C.S. 1999.W35

