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Abstract

This thesis presents an effective routing solution for the backbone of hierarchical

Mobile Ad hoc Networks (MANETs). Our solution leverages the storage and re-

trieval mechanisms of a Distributed Hash Table (DHT) to make routing information

available in a decentralized fashion, while supporting different forms of node and

network mobility scenarios effectively. We do so by splitting a flat network into

clusters, each having a gateway who participates in a DHT overlay. These gate-

ways interconnect the clusters in a backbone network. Two routing approaches

for the backbone are explored: flooding, which we use as a base approach, and

our solution, which is DHT-based. We compare the performance of our solution

against the flooding approach via experimentation in a simulator. Our results show

that our DHT-based solution, even in the presence of mobility, achieved above 90%

success rates and maintained very low and constant round trip times, which was

not the case with the flooding approach. The advantage of our proposed approach

increases as the number of clusters increases, demonstrating the superior scalability

of our proposed approach.
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Chapter 1

Introduction

Mobile Ad hoc Networks (MANETs) are increasingly gaining popularity and find-

ing applications in a range of areas, including emergency response networks, intel-

ligent transportation systems, outdoor enterprises, small businesses etc. [2, 3, 4].

One important characteristic is that they are self-organizing and self-configuring

wireless multi-hop networks which do not rely on any existing infrastructure to

exist; as nodes are by themselves, servers and clients [5, 6]. Each node must act as a

router to forward traffic unrelated to its own use.

Equipping each device to continuously maintain the information required to

properly route traffic is the primary challenge in building a MANET. Each device

runs a routing protocol which controls how nodes decide which way to route

packets between computing devices in a mobile ad-hoc network. Efficient routing

mechanisms in MANETs are a subject of long and deep research and numerous

algorithms have been researched in the past, which have become the foundation

for MANET routing. Initially, two popular approaches were the pro-active or table-

driven routing and the reactive or on-demand routing. The scalability of both

1



approaches is limited owing to their inherent characteristics. These protocols have

scalability difficulties when the networks have many nodes and/or span a large

geographical area.

Hierarchical architectures are utilized to advance the network scalability in these

systems [5, 7]. Large networks of flat topologies are divided into clusters, each

having hosts and one or multiple gateways who connect the clusters through a

backbone network. Hierarchical architectures have gained broad attention and this

approach is also adopted in this thesis.

1.1 Motivation and Research Problem

The number of users in MANET applications may vary from just a handful to

hundreds of thousands of people and more [8]. As MANETs and mobile devices

become increasingly popular and the ensuing networks grow larger, more research

effort focuses on devising protocols for route establishment and maintenance in

these networks. In a flat network of several interconnected mobile devices, and

spanning a large geographical area, for instance, the network will typically incur

increasing overheads for route maintenance and establishment and other network

functions. In Optimized Link State Routing (OLSR) for example [9], the Multi-Point

Relay (MPR) algorithm was designed to solve the problem of flooding control

messages efficiently in the network. Yet when the network size begins to grow,

the number of MPRs in the network, which are also nodes, increases. The control

message traffic handled by MPRs grows approximately with the square of the

number of nodes in the network. Yet MPRs can only handle so much network

traffic efficiently since their capabilities are no different from other nodes in the
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network. Scalability in such networks becomes an issue as bandwidth will be

heavily impacted, with a large portion of messages for route maintenance and

establishment being lost due to congestion [10, 11].

The scalability limitation is true for almost any MANET routing protocol pro-

posed for flat networks. Many routing protocols for ad-hoc networks are either

proactive (table-driven) or reactive (on-demand) [12, 13]. Proactive routing proto-

cols like OLSR or Destination-Sequenced Distance Vector (DSDV) originate from

the traditional distance vector and link state protocols. They continuously maintain

routes to all destinations in a network, whereas reactive (on-demand) protocols like

Ad hoc On-Demand Distance Vector (AODV) or Dynamic Source Routing (DSR)

will only seek out routes to a destination when necessary. Both routing protocol

approaches scale poorly [12, 13]. This is true because of the inherent character-

istics of these protocols [14]: on the one hand, the on-demand routing protocols

are limited by their route discovery techniques because of the extensive use of

flooding. Hop-by-hop flooding usually has a huge negative impact on network

performance and often leads to large delays in route discovery [15, 3]. On the other

hand, proactive routing protocols have these routes readily available, but it comes

at a cost of constant route discovery throughout the lifetime of the network. It is

evident therefore that both protocols have scalability issues, which get even worse

in the case that nodes are mobile and links become generally unpredictable [15, 3].

A hierarchical routing architecture, when carefully planned, shows its advan-

tage of simplifying routing tables considerably and lowering the amount of routing

information exchanged [16, 4], thus increasing search efficiency and increasing scal-

ability. This is best exemplified by the global Internet, which employs a hierarchical

architecture and routing structure. The Internet is divided into routing domains. A

3



routing domain typically contains a collection of co-located networks connected

by routers (who are nodes) and linked in a common routing domain called the

backbone [4].

In this thesis, hierarchical routing is adopted to tackle the problem of incurring

increasing overheads for route maintenance and establishment and other network

functions in large MANETs. The following concerns are also taken into considera-

tion in this thesis:

• In the context of this thesis, nodes do not necessarily belong to a single network

throughout their lifetime. As nodes are mobile, they may change their cluster

membership, clusters may merge or split. So, a more general hierarchical

routing architecture that supports various mobility scenarios is desirous.

• In order for hosts within a cluster to route packets destined for hosts in

external clusters or domains, there is the need for a protocol or scheme which

will be the standard for such applications. OLSR supports a HNA message

scheme which is primarily for external access, standardized in Request For

Comments (RFC) 3626 [17]. This scheme is relevant for the design this thesis

implements.

• Since routing will now be intra-cluster wise and globally (inter-cluster), the

gateway nodes will require a different mechanism for packet delivery between

clusters, and in an efficient fashion as well. The gateways are interconnected

through a backbone. A simple, robust but costly routing solution is to flood

all messages through this backbone. The backbone network is of concern as it

carries the bulk of the user data and control traffic. Thus, there is the possibility

of it becoming a performance bottleneck. To avoid incurring increasing and
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costly overhead, a more efficient routing scheme will be required.

1.2 Context

In the context of this thesis, our hierarchical Mobile Ad hoc Network (MANET)

architecture finds application in such environments like a military environment. In

a military context for example, there exist platoons which move in groups and each

platoon typically consists of soldiers and probably, a dedicated vehicle (armoured

tank/truck). These platoons are MANETs which are then considered as clusters in

our study. In such a setting, the number of or size of a cluster is typically not known

a-priori. Clusters are typically given and may depend on the number of soldiers or

the number of clusters desired in such applications. Furthermore, the members of

the different platoons will need to communicate with each other. Communication

in such environments is usually coordinated in a more efficient manner than just a

flat MANET architecture. Typically, a hierarchical approach is adopted to localize

control traffic within the various clusters and improve routing scalability in the

backbone. Each platoon has a dedicated gateway (this can be the armored vehicle),

and, through the gateways, the various platoons are interconnected in a backbone

network. The gateways are more powerful devices equipped with capabilities

which will enable them effectively support communication between members of

their local cluster and the different clusters.

As such, we make the following assumptions as a consequence of these consid-

erations:

• The number of clusters or the number of nodes per cluster is not a design

parameter or constraint. The clusters are given as it would in a military
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context. Furthermore, we assume even distribution of the nodes per cluster.

• Gateway selection and cluster formation procedures are not trivial in general.

In this thesis, there are no special algorithms for gateway selection or cluster

formation as we assume the cluster structure is determined by the application

domain. Gateways are selected well in advance from nodes which have the

capacity to become gateways, while other cluster members might associate

with different gateways as they switch cluster membership.

• Energy constraints are likely, given that we are dealing with mobile devices.

However, we assume that this is not a problem for our gateways given the

context of this thesis work. For example, vehicles have considerable energy

resources that we can draw on to perform networking tasks.

• Typically, scalability as it applies to a MANET, corresponds to the ability of

the MANET to handle an increasing number of nodes. In this thesis, we adopt

a hierarchical network structure and keep the number of nodes constant while

varying the number of clusters formed. The more clusters are formed, the

more gateways will participate in routing messages in the backbone. Thus,

scalability as it applies to our work, corresponds to the capability of the

backbone network to handle a growing amount of clusters.

1.3 Contributions

We designed a suitable hierarchical routing solution for large-scale MANETs and

evaluated it through simulations in Omnet++ [18]. The proposed solution proposes

to use a DHT as implemented in structured Peer-to-Peer (P2P) overlays to manage
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mobility and to efficiently support inter-cluster routing. Omnet++ already provides

us with implementations of flat MANET routing protocols such as OLSR, and

various P2P protocols employing a DHT such as Chord. We extended these as

follows:

• OLSR’s HNA optional functionality for external access was implemented

as per RFC 3626 [17]. This feature allows gateways to inject external route

information to their local OLSR MANET, announcing their reachability to

other networks.

• We also designed gateway nodes which will support different routing proto-

cols or instances of the same routing protocol on two separate interfaces.

• A flooding protocol was implemented to investigate the effect of flooding

when deployed in a backbone network and was used as a base case for our

analysis.

• Finally, a DHT application was implemented to leverage the storage and

retrieval mechanism of a DHT to achieve a more efficient routing operation in

the backbone.

The extensive simulation results show that our proposed improved inter-cluster

routing scheme reduces traffic (and therefore congestion) in the backbone, improves

application/routing performance, and successfully manages node mobility.

1.3.1 Publications

The work that has been done for this thesis has also lead to two peer-reviewed

publications:
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• [19] Ngozi Silas, Thomas Kunz, and Babak Esfandiari. Evaluating chord

over a hierarchical manet. In Information Technology, Electronics and Mobile

Communication Conference (IEMCON), 2017 8th IEEE Annual, pages 608–617.

IEEE, 2017.

A second publication has been submitted and accepted to a journal :

• Thomas Kunz, Babak Esfandiari, Ngozi Silas and Frank Ockenfeld (2018).

P2P Overlay Performance in Large-Scale MANETs. In International Journal of

Communications, Network and System Sciences

.

1.4 Chapter Overview

The rest of this thesis document is structured as follows: Chapter 2 presents the state

of the art on routing in MANET environments. Chapter 3 introduces the reader to

the author’s work. It explains the design of the routing mechanism and provides

other related information. Chapter 4 discusses the Omnet++ [18] simulation envi-

ronment used in this work and some of its features. The implementation details

and the various modules developed for this work are also presented. Chapter 5

discusses the simulation setups and the results that were obtained. We evaluate the

effectiveness of our design from the results we obtain. In Chapter 6 we draw some

conclusions about this work and also discuss possible future work in this area.
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Chapter 2

Background and State of the Art

This chapter provides an overview of the State of the Art in the field of Mobile

Ad-hoc Networking. The main aspects and problems in MANETs are described,

including a detailed look at existing routing algorithms.

A

B

C

D

E

F

G

H

Figure 2.1: Example of a MANET

RFC 2501 [20] specifies MANETs and Figure 2.1 is an example of such. MANETs

can operate in isolation or interact with external domains or the Internet. The option

to connect to other networks is an option offered on some level since this is very

likely to be a requirement in many situations. Nodes that participate in a MANET
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are generally equipped with wireless capabilities, consisting of a transmitter and a

receiver. Each MANET node must perform routing functions to forward a packet to

a final destination. Some other MANET features analyzed in RFC 2501 and related

to this work include:

• Limited bandwidth: The high bit-error rate, noise, fading and other forms of

interference in wireless links bring about transmission limitations. A route

from a source to a destination in a MANET can consist of multiple physical

hops, and will likely accumulate more noise. In addition, many data packets

may be lost as a result of collisions when the network topology changes.

• Dynamic topologies: Due to the mobility of the MANET nodes, the network

topology changes randomly, frequently and rapidly at any time. In addition,

links between nodes can become bi-directional and unidirectional links, which

results in an unstable network topology.

2.1 Challenges of Multi-hop Forwarding

MANETS are multi-hop wireless networks. In such networks, intermediate nodes

along the source to destination route receive and forward packets through wireless

links [21, 14]. Wireless multi-hop networks have several advantages. Compared

to networks with unique wireless links, wireless multi-hop networks can extend

network coverage and improve connectivity. In addition, they allow higher data

speeds, resulting in higher performance and more efficient use of wireless media

[3, 14]. Multi-hop wireless networks allow operators to avoid extended cable

deployment and can be implemented in a profitable way. In the case of multi-

hop dense networks, whether covering large geographical areas or having a large
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number of nodes, several routes could be available to increase the strength of the

network [15, 22].

However, as there are advantages to multi-hop wireless networks, there are

challenges associated with them as well. Many ad hoc protocols either use network

wide broadcasts for route discovery and maintenance or a variation of flooding.

Topology information is usually disseminated by flooding as well. As routing fol-

lows a per-hop fashion, link availability is a strong requirement for these operations

especially when nodes become mobile and links become unpredictable. In some

cases, intermediate nodes might become performance bottle necks depending on

the extent of traffic they handle. In particular, standard ad hoc routing protocols

attempt to minimize the number of relay nodes in the route, OLSR for example,

which has the inherent challenge that a node serving as a relay node for transmis-

sions from multiple neighboring nodes can become a performance bottleneck when

the network becomes dense [15, 3].

2.2 Routing in Flat MANETs

A

B

C

D

E

F

G

H

Figure 2.2: Example of Routing in a MANET
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In a MANET one of the central problems is routing. If the routing of packets

fails, that is the equivalent of failure of the MANET even if the nodes in the MANET

continue to function. For example, in Figure 2.2, hosts A and H are the source and

destination hosts respectively, while hosts C, D, and F are intermediate hosts. At

each of these intermediate hosts, the next hop is selected based on the entries in

their routing tables. If any of these links suddenly become unavailable (because

a host moved away, powers down, etc.) and there is no alternative link to do

forwarding, then the packet to be forwarded will be dropped. In a flat MANET,

no node or address hierarchy exists and all nodes perform equivalent routing

roles within the network, operating according to the same routing protocol. The

category of protocols traditionally designed for these kinds of environments is

further subdivided into reactive and proactive routing protocols. However, more

recently, additional categories like hybrid approaches (using some elements of

reactive and proactive systems) and hierarchical techniques, have been introduced.

The following subsections introduces these routing approaches.

2.2.1 Flooding

Network-wide broadcast is an essential feature for ad hoc networks. The simplest

broadcast service is flooding. Flooding is a simple routing technique in computer

networks where a source node sends packets through every outgoing link to other

nodes in the network. It is a way to distribute routing information updates quickly

to every node in a large network. Its advantages are its simplicity and reachability.

However, for a single broadcast, flooding generates abundant retransmissions

which results in bandwidth and battery power waste. Also, nodes who are close to

each other are likely to retransmit at the same time. As a result, flooding quickly
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leads to message collisions and channel contention, a phenomenon known as the

broadcast storm problem [23].

The broadcast problem has been extensively studied for multi-hop networks.

Optimal solutions to compute a Minimum Connected Domination Set (MCDS) [24]

were obtained for the case when each node knows the topology of the entire network

(centralized broadcast). In particular, several solutions like [25] have been presented

in which the broadcast time and complexity is investigated in detail. These solutions

are deterministic and guarantee a bounded delay on message delivery, but the

requirement that each node must know the entire network topology is a strong

condition, impractical to maintain in mobile ad hoc environments. Several broadcast

protocols that do not require knowledge of the entire network topology have been

proposed. In a counter-based scheme [23], a node does not retransmit if it overhears

the same message from its neighbors for more than a prefixed number of times and

in a distance-based scheme [23], a node discards its retransmission if it overhears

a neighbor within a distance threshold retransmitting the same message. Other

protocols, such as the Source Based Algorithm [26], Dominant Pruning [27], Multi-

point Relaying [28], Ad Hoc Broadcast Protocol [29], or Lightweight and Efficient

Network-Wide Broadcast Protocol [30] utilize 2-hop neighbor knowledge to reduce

the number of transmissions. A good classification and comparison of most of the

proposed protocols is presented in [31]. Two-hop neighbor knowledge is achievable

via periodic hello messages; each hello messages contains the node’s identifier (IP

address) and the list of known neighbors. After a node receives a hello messages

from all its neighbors, it has two-hop topology information centered at itself. A

common drawback of the above Neighbor Knowledge methods, which use local

information to determine whether to rebroadcast, is their performance in mobile
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environments. Outdated 2-hop neighbor knowledge corrupts the determination of

next-hop rebroadcasting nodes [31], leading to poor broadcast performance.

There also exist more efficient approaches to brute force flooding such as directed

flooding [32, 33] and opportunistic flooding [34]. The directed flooding protocol

[32, 33] extends the basic flooding approach but optimizes the way packets are

diffused in a network. There exists a Generator node, Intermediate nodes and a

Sink node. In the basic principle, every node has a geographical location which is

known by every other node. The generator node uses a virtual aperture to forward a

packet and includes its geographical location. Intermediate nodes will only forward

packets based on specific rules: if they are within the generator node’s aperture and

have enough energy to rebroadcast the packet. This way, only selected nodes in the

network get to forward a packet. Opportunistic Flooding on the other hand, has a

design tailored for low-duty-cycle networks (mainly sensor networks where nodes

stay dormant to conserve energy) with unreliable wireless links and predetermined

working schedules. With an energy-optimal tree structure, probabilistic forwarding

decisions are made at each sender based on the delay distribution of next-hop

receivers. Only opportunistically early packets are forwarded via links outside the

tree to reduce the flooding delay and redundancy in transmission. In general, these

protocols focus more on energy management as they are more applicable in wireless

sensor networks. In our research, we do not focus on energy management related

issues given the context of our work.

Overall, considering a hierarchical network paradigm, flooding approaches

may be more suited for networks with fewer clusters, which will not typically

experience a lot of redundant broadcasts in the backbone network. As the number

of clusters increases, the number of gateways will also increase and this will lead to
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the broadcast storm problem [23] which worsens the performance. Using a more

efficient broadcast protocol may improve the backbone performance in the presence

of only a few clusters, but will soon run into the inherent capacity limits of the

backbone.

2.2.2 Reactive Protocols

The on-demand routing protocols suggested for MANETs, such as the DSR pro-

tocol [35, 12, 13], AODV routing protocol [35, 12, 13], etc., basically make use of

broadcast-based methods for route discovery. They differ in their routing packet

formats, data structures maintained by each node, various optimizations applied in

route discovery and in their approach for maintaining routes. In a broadcast-based

method, when an originator node wants to send data packets to a target node, and it

does not have a valid route to this target node, it broadcasts a route request packet to

its neighbors. These neighbors forward the route request packet to their neighbors

and this process continues until either the target node or an intermediate node with

a valid route to the target node is located. Each node receiving a particular route

request packet broadcasts it only once to its neighbors, and it discards the subse-

quent receptions of the same route request packet, to minimize routing overhead.

Duplicate receptions are detected using sequence numbers associated with route

request packets. This method of route discovery floods the entire network with the

route request packets thus this method of route discovery is also called Flooding

Method and does not scale in large MANETS.

The shortcoming of this method is that it floods the entire network with the route

requests even when the target node is just a few hops away from the originator

node. An improvement over the Flooding Method, as suggested in [21] to reduce the
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waste of bandwidth of a MANET is the Expanding Ring Method. In the Expanding

Ring Method, the originator node initially uses a Time To Live (TTL) field equal to

some (small) constant in the route request packet and initiates the route discovery

as before. This limits the initial propagation of the route requests messages to

a few hops. When no valid route is received by the originator node within a

certain timeout interval, it increments the TTL field of the route request packet

and re-initiates the route discovery process. This process is repeated till a valid

route is received by the originator node or up to a maximum number of retries.

Expanding Ring Method, although better than the Flooding Method in terms of

overall bandwidth utilization of a MANET, is still not a very efficient method, as it

still wastes a lot of bandwidth due to redundant link traversals. In fact, Expanding

Ring Method is sometimes more expensive than Flooding Method, e.g. when the

originator node and target node lie at opposite extremes of the network. This waste

of bandwidth in case of Flooding and Expanding Ring Method is because each

participating node normally receives route request packets from all its neighbors

and, except for the first one, all subsequent receptions are redundant. Thus although

these methods of route discovery are simple in operation, this simplicity comes at

the cost of wasting valuable bandwidth.

2.2.3 Proactive Protocols

In proactive routing [35, 22, 12, 3] each node builds and maintains routing infor-

mation to all other nodes in the network. The information is stored in tables in the

nodes and maintained by exchanging information with other nodes. In proactive

routing [35], a node can consult its own routing table to get a route from itself

towards any final destination. This is possible due to the fact that each routing
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agent maintains a full routing table to all network nodes. OLSR [36] is a well-known

example of a proactive routing protocol. Other examples include DSDV [37], Source

Tree Adaptive Routing (STAR) [38, 39], and Wireless Routing Protocol (WRP) [39].

Such approaches create a substantial amount of background maintenance traffic

to keep all the routing tables up-to-date in the presence of topology changes. Fur-

thermore, participating mobile nodes are required to maintain their routing table

entries even if they are not being used. Also, the routing tables in the nodes grow

as the network size increases. Besides these scalability issues, however, proactive

approaches have many desirable properties such as low latency route access and

Quality of Service (QoS) path support and monitoring. Proactive routing is most

suitable for applications which require a low message latency and which have a

high message throughput. However, in large scale MANETs, where there are a lot

of nodes and the ensuing control traffic continues to grow, scalability becomes an

issue [40, 19].

2.2.4 Hybrid Protocols

Proactive routing uses excess bandwidth to maintain routing information, while

reactive routing involves long route request delays. Reactive routing also ineffi-

ciently floods the entire network for route determination. The key idea behind

hybrid routing protocols is that they attempt to combine the best features of both

reactive and proactive protocols. Thus, they are both proactive and reactive in

nature. It was proposed to reduce the control overhead of proactive routing pro-

tocols and also decrease the latency caused by route discovery in reactive routing

protocols [15, 22, 12]. This is mostly achieved by pro-actively maintaining routes to

near-by nodes and determining routes to far away nodes using a route discovery
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strategy. Most hybrid protocols proposed to date are zone-based, which means

that the network is partitioned or seen as a number of zones by each node [41, 42].

Others group nodes into trees or clusters [15, 22, 12]. By attempting to minimize

the number of broadcasting nodes, hybrid routing protocols have the potential to

provide higher scalability than pure reactive or proactive protocols. In [41] they do

this by defining a structure (or some sort of a backbone), which allows the nodes

to work together in order to organize how routing is to be performed. By working

together, the best or the most suitable nodes can be used to perform route discovery.

For example, in Zone-Based Hierarchical Link State (ZHLS) [41, 42] only the nodes

which lead to the gateway nodes broadcast the inter-zone route discovery packets.

Collaboration between nodes can also help in maintaining routing information

much longer. For example, in SLURP [43], the nodes within each region (or zone)

work together to maintain location information about the nodes which are assigned

to that region (i.e. their home region). This may potentially eliminate the need for

flooding, since the nodes know exactly where to look for a destination every time.

Another novelty of hybrid routing protocols is that they attempt to eliminate single

point of failures and creating bottleneck nodes in the network. This is achieved

by allowing any number of nodes to perform routing or data forwarding if the

preferred path becomes unavailable [15, 12].

A shortcoming that hybrid routing protocols face is that a lot of storage/caching

of information and processing requirements are involved as compared to reactive

protocols. This, in turn, results in more memory and power consumption [12].
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2.3 Hierarchical Routing

A large variety of approaches for ad hoc clustering have been proposed, with

different approaches typically focusing on different performance metrics. Dynamic

routing is one of the important issues in MANETs. However, it has been shown that

a flat structure exclusively based on proactive or reactive routing schemes cannot

perform well in a large dynamic MANET [16, 4]. In other words, a flat MANET

structure faces scalability problems with increased network size, especially when

node mobility is also introduced. This is due to their inherent characteristics. The

communication overhead of link-based proactive routing protocols increases with

the square of the number of mobile nodes in a MANET. For a reactive routing

scheme, the Route REQuest (RREQ) (Route REQuest) flooding over the whole

network and the considerable route setup delay become intolerable in the presence

of both a large number of nodes and mobility [16].

One alternative to flat MANETs is clustering or hierarchical routing. The mo-

tivation for exploring hierarchical routing is that it increases scalability, routing

efficiency and reduces routing table entries considerably. Rather than assuming that

node movement is independent, hierarchical ad-hoc routing protocols group nodes

into clusters of nodes that follow the same movement pattern. These protocols are

based on the idea that members of a group tend to move together and therefore a

node will most likely remain within the same cluster. This allows a node to move

freely within its cluster and only inform other cluster members, abstracting node

movement within a cluster so that members of other clusters only need to know

how to communicate with one of its members. These groups may have some sort

of cluster leader, popularly known as gateways or cluster heads. Depending on
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the algorithm and the clustering technique, there might be gateways providing

connectivity with other clusters, and cluster heads who coordinate routing within

their clusters and with other clusters. Alternatively a single node plays both roles,

as joint cluster head/gateway, providing connectivity with other clusters through a

core/backbone network. Clusters can then be organized into a hierarchy.

In [44, 45, 40, 46] the authors present a review of current hierarchical routing

protocols and clustering approaches. The authors first provided fundamental

concepts about clustering. Then they classify the proposed clustering schemes into

six categories based on their main objectives, which are load balancing clustering,

Dominating-Set-based (DS-based) clustering, low maintenance clustering, mobility-

aware clustering, combined metrics-based clustering, and energy efficient clustering.

They also grouped the clustering cost terms into five categories: the required

explicit control message exchange, the ripple effect of re-clustering, the stationary

assumption, constant computation round, and communication complexity.

One of the earliest clustering protocols is the Linked Cluster Architecture (LCA)

[47], developed for packet radio networks. The LCA protocol organizes the nodes

into clusters according to the proximity of the nodes. Each cluster has a cluster head

and all nodes in a cluster are in the direct transmission range of the cluster head.

The choice of the cluster head is based on node identifiers, where the node with the

largest identifier in a given area becomes the cluster header. The gateways in the

overlapping region between clusters are used to connect clusters. LCA specifies

that there should only be one designated gateway to interconnect clusters at a given

time. A pair of nodes within transmission range of each other can also be used to

connect clusters if there are no nodes in the overlap region.

The authors of [48] have described the Cluster head Gateway Switch Routing
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(CGSR) protocol. In this protocol, packets are routed alternately between the cluster

leaders and the gateways. The authors define several extensions that can be added

to CGSR, such as priority token scheduling and gateway code programming, to

control access to the channel. In addition, they define a Least Cluster Change (LCC)

algorithm, designed to reduce the number of changes in the cluster leader, since

such changes can generate significant overhead.

The authors of [49, 50], take a different approach to clustering and present two

clustering algorithms. The first of these is the Distributed Clustering Algorithm

(DCA) intended for “quasi-static” networks in which nodes are slow moving, if

moving at all. The other algorithm is called the Distributed and Mobility-Adaptive

Clustering algorithm (DMAC), designed for higher mobility. Both algorithms

assign different weights to nodes with the assumption that each node is aware of

its respective weight. The weights are in turn used to determine the cluster leaders.

In the DMAC protocol, if two cluster leaders come into contact, the one with the

smaller weight must revoke its leader status.

Another approach is that taken by the Core Extraction Distributed Ad Hoc

Routing (CEDAR) algorithm [51], which builds a set of nodes (i.e., a core) to perform

route computation instead of creating a cluster topology. Using the local state

information, a minimum dominating set of the network is approximated to form

the core. CEDAR establishes QoS routes that satisfy bandwidth requirements

using the directionality of the core path. Link state and bandwidth availability is

exchanged to maintain important information for computing QoS routes.

Kleinrock was an early pioneer of hierarchical routing schemes for static net-

works. In [52], Kleinrock and Kamoun investigated a hierarchical routing scheme

with the goal of reducing routing table size. The authors of [53] also adopt a similar
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approach. The authors determined that the length of the routing table is a strict

function of the clustering structure. Clustering generally has the unwanted side-

effect of an increase in path length, and so the goal was to find an optimal clustering

scheme that optimizes path length. It was determined that the number of entries in

a node’s forwarding table is minimized when the number of level-i clusters in each

level -(i+1) cluster is e, and the number of levels in the clustering hierarchy equals

ln N. In this case, the forwarding table contains e ln N entries.

The Landmark Routing technique [54] is a distinct approach to building a

hierarchy as it is based on landmarks, as opposed to transmission ranges. A

landmark is a router whose location is known by its neighboring routers up to some

radius. All routers within that radius know how to reach the landmark. A hierarchy

of such landmarks is built by increasing the radius of some of the routers. Nodes

have hierarchical addresses based on the landmarks with which they are associated.

A source node routes to a destination by sending the packet to the lowest level

landmark with which both nodes are associated. As the packet approaches the

destination, the granularity of routing knowledge about that destination improves,

and so the packet can be accurately routed to the destination.

Advantages of hierarchical routing, alongside scalability, include the ability

to reduce routing table sizes, to shield nodes within a cluster from mobility in

other clusters and to use different routing protocols, with possibly different update

frequencies, in different clusters. Disadvantages include the difficulty in maintain-

ing the structure of clusters in the face of high mobility (which has a particularly

adverse effect if cluster heads change groups), the possible bottleneck presented

by gateway nodes (these nodes also suffer greater resource usage) and the use of

suboptimal paths. Examples of hierarchical routing protocols can be found in [40].
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In our research, scalability is a strong requirement and so, we try to limit routing

knowledge and avoid flooding in the backbone. Thus, we apply a hierarchical

approach. In the context we are working with, we do not use any special algorithm

for cluster formation nor do we worry about the way the clusters are formed.

Clusters are given, and they basically flow from the application/use of the MANET.

For example, different platoons of soldiers (in a military context) or different first

responder crews joining in as a group etc.. Furthermore, most hierarchical protocols

still employ flooding, albeit it within a limited scope. Our proposed solution

completely avoids the use of flooding by applying the idea of a structured P2P

approach, a Distributed Hash Table (DHT) which we introduce in Chapter 3. OLSR

is then used for routing at the network layer and does not worry about exchanging

any extra link-state information in order to support mobility.

Reactive Proactive Hybrid Hierarchical DHT-based
[12, 13, 35] [3, 12, 22, 35] [12, 15, 22] [44, 49, 52, 54]

Scalability to × × × � �
large MANETs

Routing Overhead high high medium medium low
Mobility Management flooding flooding partly- partly- DHT-unicast

approach flooding flooding advertisement
Route discovery flooding flooding partly- partly- DHT-unicast

approach flooding flooding look up
Cluster formation - - algorithm algorithm clusters

(not trivial) (not trivial) are given
Cluster head - - algorithm algorithm gateways

selection (not trivial) (not trivial) are given

Table 2.1: Comparing the different routing approaches in the context of Large-scale
MANETs
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2.4 Summary

Flooding is a very simple but costly solution for the backbone of a hierarchical

MANET. Considering a network split into multiple clusters with levels of hierarchy,

and in real time applications, for a single broadcast, flooding will generate abundant

retransmissions which results in bandwidth waste. As a result, flooding quickly

leads to message collisions and channel contention, a phenomenon known as the

broadcast storm problem as described above. We implemented a blind flooding

algorithm, which we used as a base case for our comparison. Here, the gateways to

the various clusters broadcast packets once in the backbone network as is the case

with every other flooding algorithm. The results show that broadcasting does result

in many collisions and poor overall network performance.

Table 2.1 presents a summary of the routing approaches discussed above. The

trade-offs between proactive and reactive routing strategies are quite complex.

Which approach is better depends on many factors, such as the size of the network,

the mobility, the data traffic and so on. Proactive routing protocols try to maintain

routes to all possible destinations. Regardless of whether or not they are needed,

routing information is constantly propagated and maintained. In contrast, reactive

routing protocols initiate route discovery on the demand of data traffic. Routes are

needed only to those desired destinations. This routing approach can reduce routing

overhead when a network is relatively static and the active traffic is light. However,

the source node has to wait until a route to the destination can be discovered,

increasing the response time. The hop-by-hop flooding used for route discovery

usually has a huge negative impact on network performance. The hybrid routing

approach can adjust its routing strategies according to a network’s characteristics
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and thus provides an attractive method for routing in MANETs. However, a

network’s characteristics, such as the mobility pattern and the traffic pattern, can

be expected to be dynamic. The related information is very difficult to obtain and

maintain. This complexity makes dynamically adjusting routing strategies hard to

implement and maintain. It is evident therefore that these protocols either have

scalability issues, which get worse in the case that nodes are mobile and links

become generally unpredictable or have complex implementations in the case of

the hybrid protocols.

We adopt a two-tiered hierarchical clustering approach where we split a flat

MANET into a number of clusters, each having a gateway which connect the

clusters in a backbone network. This way, the different clusters are able to run

an instance of the same routing protocol, or different routing protocols and hence,

reduce routing overhead, increase efficiency and scalability, and reduce routing

table entries overall as it is irrelevant for nodes to know the entire network topology.

Whereas other approaches deployed either a pure flooding based protocol or a

variation (AODV protocol for example) in the backbone, we used OLSR protocol

with a DHT. The default implementation of AODV routing protocol broadcasts

routing packets in the whole network when events such as route creation/discovery

or route breakages occur. In fact, the higher the number of nodes is, the higher the

number of control packets is. Moreover, the number of control packets increases

rapidly when the network topology changes under high mobility and different

mobility scenarios. As a result, the unavailability of links will result in packet

losses and high latency. OLSR on the other hand when used alone, will experience

difficulties because of the level of link state information it will have to exchange in

order to support mobility. These disadvantages can, to some extend, be reduced
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by limiting the flooding scope using a clustered or hierarchical routing approach.

But mobility management (tracking the location/membership of nodes within a

cluster) still requires broadcast-based solutions.

In our solution, the DHT handles the mobility aspect and inter-domain routing

information maintenance while OLSR supports network layer routing, both of

which are unicast. Our solution leverages the storage and retrieval mechanism

of a DHT to make routing information available and support different forms of

mobility like whole clusters merging and splitting and nodes switching their cluster

memberships multiple times. The gateways typically advertise reachability to all

the nodes in their cluster by storing key− value pairs in the DHT as such: (node ID,

gateway IP), thus, making routing information available in a decentralized fashion.

Using a DHT in the backbone has the following advantages:

• The DHT protocol, Chord, maintains the key− value pairs stored in the DHT.

As whole clusters merge and split, no special handling of network/clusters

merging and splitting is required.

• Routing in the DHT is unicast and will be based on individual node identifiers

generated by hashing IP addresses into keys. At the network layer of the

backbone, routing will also be unicast as we use a unicast routing protocol,

OLSR.

• When a node switches cluster/network membership, the new gateway will

simply advertise its reachability to this node in the DHT, overriding the

previous entry. Here, we mimic Mobile IP [55, 56] from the (fixed) Internet,

but replace the server-based infrastructure (the Home Agent who knows

where a node is) with a more dynamic P2P solution that fits the requirements
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of a MANET. In addition, finding the Home Agent requires that IP addresses

have a hierarchical structure (the Home Agent is in a node’s Home Network),

whereas the DHT does not care about the hierarchical IP address structure.
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Chapter 3

Design of our DHT-based Routing

Approach

Initially, the backbone network topology of data networks were relatively simple.

The operations were centralized, so the star topology was the most logical and, in

some cases, it was the only topology admitted by the technology [57]. With this

set-up, the network became vulnerable as the center of the star became a single

point of failure. With the transition to multiple client-server and P2P relationships,

the choice of the topology of the core network is not so clear.

The original purpose of the backbone network is to form an umbrella or parent

network which manages high capacity links, infrastructure and high traffic vol-

umes while providing connectivity to individual networks connected to it. The

connectivity may cover a local area within a building, vicinity or may have a global

outreach that spans vast geographical areas. Such large networks can have multiple

tiers of hierarchy between the backbone and the networks connected to it. Given

its position at the top of the network hierarchy, two requirements of the backbone
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topology are reliability and scalability.

In a MANET, nodes are often mobile and there can exist mobile subnetworks/-

MANETs which are interconnected through a backbone network/MANET [12, 22].

In flat MANETs, routing is challenging in the presence of mobility because links

become unpredictable as a result of the dynamic nature of these networks. This

becomes even more challenging in cases where there are mobile sub-MANETs

which are interconnected through a backbone network/MANET [7]. In such setups,

the routing scheme deployed in the backbone network must be able to maximize

the backbone bandwidth, enhancing throughput and reducing end-to-end delays

with respect to schemes without a backbone. It must do so without compromising

(in fact, possibly enhancing) scalability and fault tolerance. In designing a dynamic

system like ours which aims at supporting a variety of applications, maintaining

connectivity is a strong requirement. In this section we present our design which

is a hierarchical routing solution that provides an efficient routing scheme and

supports various mobility scenarios effectively.

3.1 Distributed Hash Tables

In our design, we are ultimately interested in a structure that will support a variety

of large-scale applications over MANETs. Such networks are formed by clusters of

nodes, representing a community of interest. Each cluster is a MANET which has a

cluster head that serves as a gateway to provide connectivity to external networks.

Distributed Hash Tables (DHTs) are a form of a distributed database that can

store and retrieve information associated with a key, in a network of peers/nodes

that can join and leave the network at any time. In this thesis, we leverage this
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distributed data sharing functionality to provide extra information with which each

gateway can carry out routing through the backbone efficiently. By leveraging this

functionality, different forms of mobility, including single hosts switching cluster

membership and whole clusters merging/splitting, can be managed. Section 3.2

describes our design in more detail. The DHT strategy is used as a lookup strategy

in structured P2P systems to specify the location of objects in peers, and it provides

all the needed services to look up objects in a decentralized P2P system [58]. The

DHT retains mapped information about nodes and peers in the form of key/value

pairs (k, v) so that data can be easily located in the overlay network. In DHTs, each

peer maintains a storage space to keep a hash table. Many structured P2P systems

like Chord [59], CAN [11], Pastry [60] and Tapestry [61] are based on a DHT. The

indexing of data facilitates its discovery and search by any peer.

For the DHT protocol, we use Chord, which is one of the well known distributed

overlay lookup protocols based on a DHT, that helps locate data/resources located

in different peers in an overlay network [62, 59]. Chord assigns an m-bit identifier

to nodes and keys. The terms node and key denote both the node and key them-

selves as well as their identifier, without ambiguity. The value of m should be

large enough to prevent collision by assigning the same identifier to other peers.

SecureHashAlgorithm1(SHA− 1) [63], a consistent hash function, is the base hash

function used by Chord to generate an identifier with m bits. Both the peer’s IP

address and the resource name is hashed to generate a key to determine the peer’s

identifier and the key identifier. Keys are assigned to peers using consistent hashing.

This entails that peers are organized around an identifier circle modulo 2m. Key k is

then assigned to the peer whose identifier is equal to that of k, if such a peer exists,

or to the first peer whose identifier follows k’s on the circle.
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Figure 3.1: Chord Ring Showing a Lookup Process, [1]

Two high level interfaces, PUT and GET, are used to either retrieve or store

information in the DHT [62, 59, 58]. The PUT message is used to store/index a

resource in the DHT and it has the signature PUT(k, v), where k is a key obtained by

executing SHA− 1 on a peer’s IP Address and v corresponds to the data/resource

to be stored. The GET is a query, used to retrieve a resource from or lookup a

resource in the DHT. It has the signature GET(k), where k is a key obtained in a

similar way as with the PUT signature. An example use of the DHT for storage

might proceed as follows: assume that the key-space is the set of 160-bit strings.

To index a resource v with name research in the DHT, SHA − 1 is executed on

research to generate a 160-bit key k, and a message put(k, v) is sent to any peer

participating in the DHT. The message is forwarded through intermediate peers in

the overlay network until it arrives at the single peer responsible for k as specified
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by the key-space partitioning. That peer then stores the key and the resource. In

order to execute efficient lookups, each peer keeps a table of m entries named finger

table. Fingers are other peers that are tracked by each peer. In the finger table of a

peer n, the identifier of the first peer (at ith entry) that comes after n is determined

by (n + 2i). The lookup operation is simple. When a GET(k) query is sent to a

peer, the peer first needs to inspect its own local storage to ensure that it carries

the desired data item. If it holds the desired data item, it simply sends the result to

the requester. Otherwise, it redirects the query to its nearest peer according to its

finger table [62, 59]. Subsequently, the nearest peer also redirects the GET(k) query

to the peer closest to it, and so on, until the query reaches the peer that carries the

result. The result follows the reverse path to reach the requester peer (the peer that

sent the query). With a system of N peers, the complexity of the search algorithm is

O(log N). Figure 3.1 represents a peer N30 that needs to lookup the key k56 stored

at the peer N70. As explained above, if there existed a peer N56, then it would be

responsible for k56. However, in this case, N70 is the first node whose identifier

follows k56’s on the Chord ring and so, it becomes responsible for k56. The query,

therefore, proceeds as such: N30 sends the GET(k56) query to peer N42 which does

not carry the key and finally N42 forwards the query to peer N70 which does carry

the key. N70 will reply with whatever the stored resource is.

3.2 Hierarchical Structure

In Chapter 2 we mentioned that clustering is a technique that partitions a network

into different groups or clusters, creating a logical hierarchy in the network. By parti-

tioning a network into different clusters, communication overheads for maintaining
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Figure 3.2: Two-Tiered Network Architecture

up-to-date routing information can be significantly reduced [16, 64, 4, 19].

Figure 3.2 is a representation of the hierarchical architecture we deploy. It is

a two-tier hierarchical architecture where we divide a flat MANET of N nodes

comprising h hosts and g gateways into c clusters. Each cluster is therefore a

MANET on its own and has a gateway node. In Figure 3.2, the clusters are the

circular areas having dotted lined borders and they form level one of the two-tier

hierarchy. These clusters are formed by :

• Allowing each cluster to communicate on a separate communication channel

such that no matter how close they might be with each other, they do not hear

each other.

• Physically separate the clusters from each other by assigning them unique

cluster spaces in the network area, and allow them to communicate locally
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over the same communication channel.

The gateway nodes are connected in a backbone MANET and connect their local

clusters to the rest of the network. With this architectural setup, each cluster is

basically a separate and independent routing domain, running its own intra-domain

routing protocol. Each cluster may be configured to run a separate routing protocol

(OLSR, AODV, OSPF, etc.) or each cluster may be configured to run an instance of

the same protocol. This is further explained in Section 3.3.

Similarly, the backbone, which is on its own a MANET, requires a routing

protocol to coordinate routing functions among the different clusters/MANETs

represented by the gateway nodes. In the Internet, BGP is the typical inter-domain

routing protocol which interconnects these networks [65, 66]. BGP works well with

managing autonomous systems which are fixed networks governed by a single

entity. It was designed to cope with the scale and operational challenges of the

Internet. Compared to the Internet, MANETs are considerably smaller yet have

highly dynamic environments. In MANETs, nodes are generally mobile and when

an ad-hoc network supports sub-networks, these sub-networks may be mobile as

well. As a result, a range of challenges like single networks splitting, multiple

networks merging, or nodes moving between networks may ensue. When this

becomes the case, either new inter-domain routing protocols are required, or the

dominant BGP needs to be modified [67, 68]. BGP has been rather effective in the

wired world [65, 66]. Modifying it to suit MANET environments results in poor

routing performance [67]. Instead of modifying BGP, an alternative approach is to

borrow the core design principles of BGP (enable opaque interoperation, effectively

coordinate inter-domain routing), and take a clean slate approach to enable inter-

domain routing in MANETs [65]. The routing aspect of our design is explained in
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Section 3.3.

3.3 Routing Approaches Explored

Routing in MANET environments is challenging because of the dynamic nature

of the network topology. In hierarchical MANETs specifically, routing becomes

even more complex because, coupled with the presence of mobility, there is more

than one level of hierarchy and destinations are distributed in multiple routing

domains which a source might want to reach. Thus, the routing approach deployed

for inter-domain routing must be capable of efficiently delivering packets between

the various routing domains.

In the Internet, the principle of BGP is to enable opaque interoperation, where

each domain has the administrative control over its intra-domain routing protocol

and inter-domain routing policy, which is not known (or opaque) to the other

domains [65, 66]. Similarly, the routing approach deployed in a hierarchical MANET

must be able to coordinate opaque interoperation between the various routing

domains.

3.3.1 Approaches to Inter-domain Routing in MANETS

Flooding: Flooding is a simple but inefficient and costly routing approach for the

backbone of a MANET[19]. A source node in the backbone network will broadcast

a message in the backbone once, and all other nodes, except the destination node,

will rebroadcast these messages once. Figure 3.3 represents a flooding network.

Here, GWA is the originator of the packet and GWH is the destination. All other

gateways in the network rebroadcast the packet once [19], and our results in Section
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Figure 3.3: An Example of Flooding

5.1.4 show that the outcome of such an approach is unfavorable performance-wise

and merely provides a best effort service [69]. In this work, we implemented a

flooding protocol which we use as a base case to measure the performance of our

solution.

Reactive Routing (AODV): Reactive protocols, as described in Section 2 and

[37, 35, 22, 12, 20, 13], broadcast routing packets in the whole network when events

such as route creation/discovery or route breakages occur. The routing packets

for route discovery are in two folds: route request packets (RREQ) and route reply

packets (RREP). Figure 3.4 represents a simple route discovery process with AODV

routing protocol. Here, GWA initiates the route discovery process and GWH is the

gateway to the sought destination. In such networks, the higher the number of

nodes is, the higher the number of control packets is. Moreover, the number of

control packets increases rapidly when the network topology changes under high

mobility and different mobility scenarios. As a result, the unavailability of links

will result in packet losses and high latency. When reactive protocols create a route,
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Figure 3.4: An Example of Routing with AODV Protocol

they broadcast many redundant control packets. Indeed, some control packets may

be sent in the opposite direction of the destination, thus they will not be used to

reach the destination. Bandwidth consumption due to these packets may be high

and will negatively impact the overall protocol performance.

DHT-Based Unicast Routing: Just like an intra-domain routing protocol, using

a unicast protocol like OLSR alone in the backbone will carry out routing functions

among the members of the backbone network which include supporting the ex-

change of messages and maintaining routing tables. This is not sufficient, since

both routing domains are independent of each other and will, therefore, need some

extra information to route messages between both domains. For example, when

a packet destined for an external domain shows up at a gateway, the gateway has

information about its local cluster and the backbone network in its routing table,

but requires information about the location of the destination in order to select the

right gateway to forward the message to.
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Each gateway GWX can participate in a DHT based P2P overlay and leverage

its storage and retrieval functionality to advertise reachability to a host XX in their

local cluster in the DHT by storing a key-value pair as such: (XX, GWX). Each

participating gateway can then retrieve information about a destination host XX by

issuing a query to the DHT: GET(XX) which returns GWX. Using a DHT within the

backbone has a number of advantages:

1. In the event that clusters merge/split, hosts switch cluster membership, the

DHT protocol will maintain the data (key-value pairs stored in the DHT).

2. Routing will be based on individual host IDs, and in the event that clusters

merge or split, no special handling of networking merging and splitting will

be required.

3. Host mobility (both intra and inter-cluster/MANET) can be supported effi-

ciently.

dhtGWA GWBA3A1 B3 B1

store(A1, GWA)

in DHT [2]

store(B1, GWB)

in DHT [2]

HNA message [1] HNA message [1]

Source MANET A

(OLSR Routing)

Destination MANET

B (OLSR Routing)

Backbone (OL-

SR/DHT)

Figure 3.5: Initial Routing Setup

As earlier mentioned, our approach is based on the use of a DHT together with

a MANET routing protocol to support routing in the network backbone, while

individual clusters may employ any MANET routing protocol of their choice, such
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as OLSR, ADOV, etc. In both our cluster and backbone MANETs, we use OLSR [36].

Routing of messages between nodes in any of these clusters is efficiently handled

by this intra-domain routing protocol. Routing between hosts in different clusters

is a more complex venture. For example, a host A1 in cluster A needs to route a

packet to a host B1 in cluster B, as shown in Figure 3.5. The source host A1 has the

address of the destination host B1 with which it creates the IP packet it wishes to

route. The challenge is that A1 does not know how to forward the packet to B1

because it discovers from its routing table that B1 is not a member of its cluster. For

such operations, where a host might need to reach a host in a different cluster, the

OLSR protocol supports an optional auxiliary functionality, ”Host and Network

Association (HNA) Message”, whereby a gateway announces its reachability of

other clusters to its local cluster members. The gateways in each cluster (here GWA

for cluster A and GWB for cluster B) will periodically broadcast HNA messages to

all hosts in its cluster to advertise reachability of hosts outside the cluster through

them (1). The content of an HNA message is a list of Network/Network-Mask

Addresses of all external network destinations (clusters/MANETs in our case) the

gateway can reach.

Following the default implementation of HNA messages [17], the gateways will

have to advertise a Network/Mask address pair for each network it is associated

with to its cluster members who will have to create an entry in their routing table

per Network/Mask address pair received in the HNA message. This will become

inefficient in the case where networks come and go, and gateways will have to

frequently update their local cluster of these changes and/or external networks

become numerous and gateways will have to advertise a long list of addresses (in

the order of 100s or 1000s) which will increase the size of the routing tables. In our
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design, gateways essentially advertise a global default route (0.0.0.0/0.0.0.0) to all

members of their cluster. Each host will then create an entry in its routing table as

such: Destination-[0.0.0.0], Next hop-[Gateway IP], Netmask-[0.0.0.0]. With this

entry, messages destined for external networks will be forwarded to the gateway.

HNA routes are added to the routing table based on hop count, and are dynam-

ically updated as the topology changes. That is to say that if there exist multiple

external access advertisements, then the smallest hop count is chosen. When a

packet destined for an external cluster shows up at a gateway node, the challenge

becomes how to forward the packet through the backbone to the destination host.

This is where the inter-cluster routing protocol comes to play.

All gateways will learn about all hosts in their cluster through OLSR, which will

populate a routing table with entries for each host in the cluster. The cluster heads

form a backbone MANET and join a P2P overlay based on a Distributed Hash Table

(DHT). Each gateway node GW advertises reachability to all hosts N in its cluster

within the backbone by storing the following key-value pair in the DHT: (k, GW)

(2). Key k is generated by hashing the IP address of the host to be advertised in the

DHT. Chord protocol provides the services to manage and maintain the DHT data

as whole clusters merge/split or hosts switch cluster membership, distributing all

key-value pairs among the peers (here the gateway nodes).

3.3.2 Routing in Static Scenarios

The more general/basic case of routing in our design, and similar with what

happens in the Internet, is the routing procedure in the static scenario where nodes

belong to a particular cluster for the entire lifetime of the network.

Figure 3.6 shows the actual routing of data packets in the general case. Once
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Figure 3.6: Packet Forwarding

A1 has a data packet to send out, it will consult its routing table which has been

populated by the intra-cluster routing protocol, OLSR, and determine that B1 is

not in its own cluster. Using the Host and Network Association (HNA) message

route initially created, it will, therefore, route the packet to its gateway GWA (3).

Once the gateway receives such packets, it executes SHA− 1 on the IP address of

B1 to generate key k, and queries the DHT using this key. This operation retrieves

the associated cluster head, GWB, for B1’s cluster (4). GWA now has a next-hop

address with which it forwards the message to GWB through the backbone (5). The

IPv4 Datagram to be forwarded already contains a source address and a destination

address. Thus, GWA will encapsulate the datagram such that the new datagram will

have source address GWA and destination address GWB, a process called Tunneling.

Once GWB receives the packet, it understands from the nature of the datagram

that it is a tunneled packet. It then decapsulates the datagram and forwards the

packet within its cluster based on the local instance of the intra-domain routing

protocol, here OLSR again (6). A good advantage to this is that a separate data

structure maintains all routing information which a gateway retrieves from the

DHT and reuses the same for subsequent routing operations. A potential downside
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of the proposed architecture is that the source cluster gateway needs to perform a

DHT retrieval before it can route the first packet to a new/unknown destination

address. But this is not substantially different from other on-demand routing

protocols widely used in MANETs, such as AODV or DSR, where routes to new

destinations are only discovered when the first data packet is destined to such a

host. However, these lookups are done with unicast routing in the P2P overlay,

rather than broadcasting/flooding the backbone. And unlike such protocols, any

topology changes in the backbone will be hidden from the gateways, reducing the

need to rediscover routes.

3.3.3 Routing in the Presence of Mobility

In addition to what happens in the static/general case of routing we described in

Section 3.3.2, we also include routing support for various mobility scenarios which

are likely to result in MANET environments. Such scenarios, like mobility within

the local cluster, whole clusters joining or leaving, clusters merging or splitting,

and hosts switching cluster membership or completely disappearing (can no longer

be reached) are possible instances of mobility. In this thesis, we study the effect of

mobility when hosts are mobile within their local cluster, whole clusters merge/split,

and hosts switch cluster membership. Hosts moving within their local cluster is

simply a variation of the static scenarios and so, the same basic routing principle

holds and works. The challenging mobility scenarios are when clusters merge/split

or a host changes cluster membership.

In Chapter 4, we discuss in detail the two approaches we explored in building

cluster architectures which are independent of each other: separating clusters

physically and allowing them to communicate over the same channel, or assigning
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different channels to individual clusters. Of the two, the only approach that works

for all the mobility scenarios we consider is to physically separate the clusters

from each other and allow them to communicate over the same communication

channel. This way, as whole clusters move among each other in the network and

happen to overlap, they do so both physically and logically, forming a single cluster.

When they move away from each other, they become individual/independent

clusters again. Thus, clusters merging and splitting is made possible because all

nodes communicate on the same channel and since they each run an instance of

the same routing protocol, OLSR, they will learn of each other by exchanging

OLSR hello messages. Similarly, hosts can switch cluster membership seamlessly

and still maintain the same IP address they initially had. The challenging part of

these scenarios is to support routing efficiently in the presence of these mobility

scenarios. In the basic routing case we described in Section 3.3.2, there was no need

to update the DHT with any information because the hosts each gateway advertises

belong to the same cluster as the gateway for the entire network lifetime. With

mobility, it becomes necessary for the gateways to update the DHT with recent

routing information regarding the hosts they can now reach or no longer reach. For

example, when two clusters (A and B) merge, the ensuing cluster will have two

gateways GWA and GWB who will now advertise reachability of all the new hosts

they can now reach in the DHT. Similarly, when the clusters split, the gateways will

have to delete entries they initially advertised in the DHT, for hosts they can no

longer reach. In the case of hosts switching cluster membership, a gateway GWX

to the cluster X which the host n arrived in will learn about the presence of n in

its cluster via the intra-domain routing protocol, OLSR, and will have to advertise

to the DHT that it can now reach host n. Similarly, the gateway GWY to cluster Y
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where host n came from will have to update the DHT that it can no longer reach

host n. These updates are a critical requirement to efficiently support routing in the

presence of mobility, following the routing design we adopt in the backbone.

When two clusters merge, there is the probability that some hosts are better

reached through either of the gateways as a function of the number of hops away.

The hosts, when they receive HNA messages from different gateways, will compute

the route which has the shortest hop count. On the other hand, since the backbone

handles most of the traffic for messages exchanged between different clusters, there

is the tendency of it becoming a performance bottleneck with high traffic loads

especially when messages have to travel multiple hops through the backbone before

getting to the destination gateway. In this work, we are particularly concerned about

efficient routing through the backbone to reduce the likelihood of the backbone

becoming a performance bottleneck. Thus, we focus more on optimizing routing

through the backbone. In the clusters, the intra-domain routing protocol, OLSR

here, will always select the shortest path to deliver packets to the destination host

although the selected gateway might not have the least number of hops to the

destination host. To optimize routing through the backbone, the value stored

against every key in the DHT which ought to be the IP address of a destination

gateway can be maximized to take more information.

Instead of one IP address, the IP addresses of both gateways can be serialized

as an encapsulated list and stored as the value v in the PUT message. This way, a

source gateway that retrieves this information, will use the hop count information in

its routing table to select the closest gateway. Overall, selecting the closest gateway

through the backbone does not translate to the shortest path to a destination host.

This approach serves to minimize the traffic through the backbone.
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Figures 3.7, 3.8, and 3.9 show the way the DHT is updated to support the

different mobility scenarios we study in this thesis. In each of these figures, hosts

A0, A1, A2 and gateway GWA are members of cluster A while hosts B0, B1, B2

and gateway GWB are members of cluster B. B2 is a host previously in cluster

B but moved to cluster A. The arrows represent DHT queries and responses

while the dotted lines are wireless connections. In order to provide a solution

that supports all our mobility scenarios, every gateway queries the DHT before

adding an entry to it. One query is distinguished from the other via different

code names: ADD ROUTE, DELETE ROUTE, LOCAL UPDATES. According

to each of these code names, a gateway GWX will handle the response to each query

differently. The three mobility cases together with the steps involved in updating

the DHT in each case are described below.

1. ADD ROUTE

One way to guarantee that the DHT is always up to date with the most

recent routing advertisements is that every gateway periodically advertises

reachability to the hosts they can reach as per their routing table entries.

However, this is an inefficient scheme with high redundancy because there

is a high possibility that gateways will frequently update information that

has not changed. Another downside to it is the redundant control overhead

that will be generated for all the redundant updates. In our scheme, we do

controlled updates, which is similar to what happens in reactive MANET

routing protocols [70, 71].

Initially, every gateway advertises reachability to all hosts in its cluster in the

DHT as explained in Section 3.6. Subsequently, in events like clusters merging

or hosts joining, the gateways will learn about these new hosts after their
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routing tables have been updated by the intra-domain routing protocol, OLSR.

The gateway then hashes the individual Internet Protocol (IP) addresses of

the new hosts and queries the DHT. This query will either be successful and

return a valid value, a NULL value, or completely fail. According to the result

of a query for a host B2, a gateway GWA will do the following:

(a) A valid value means that an entry for B2 already exists in the DHT. If

the value retrieved corresponds to the glsip address of GWA, this entry

need not be updated as such: Figure 3.9 - [5a]. Otherwise, GWA will

add its glsip address to the existing entry and update the DHT as such:

Figure 3.7 - [1].

(b) A NULL value means that no entry exists for B2 in the DHT. GWA will

then hash the IP address of B2 to generate key k and initiate a PUT

message to advertise its reachability to N in the DHT with the message:

PUT(k, GWA) as such: Figure 3.8 - [4].

(c) When a query fails for whatever reason (neither returns a valid value nor

a NULL value), GWA chooses a random back-off interval between 5-10

seconds and re-issues the query to the DHT.

2. DELETE ROUTE

When a host B2 leaves a cluster, or clusters split and move away, the gateway(s)

get to know that a host or hosts have left after their routing tables have been

recalculated and invalid routes are flushed by the routing protocol, OLSR in

this case. The gateways will hash the IP address of a host B2 to generate key k

and query the DHT, which will return the value currently stored against key k

as such: Figure 3.7 - [2], Figure 3.8 - [3] or Figure 3.9 - [6]. If the value retrieved

47



is a list of entries for which one of the entries corresponds to GWA’s IP address,

it removes its IP address from the list and updates the DHT as such: Figure 3.7

- [2]. Otherwise, for a single entry corresponding to its IP address, it removes

the entry, and updates the DHT with a NULL value as such: Figure 3.8 - [3].

As it is difficult to synchronize the DHT updates between GWA and GWB for

host B2, there is the possibility of a race condition between both gateways. For

example, in Figure 3.7, event [1] happens before event [2] and in Figure 3.8,

event [3] happens before [4]. These two scenarios are the best cases under

which DHT updates will always succeed. However, in Figure 3.8, if event [4]

happens before event [3], an invalid entry will be advertised for B2 in the DHT

and B2 will be out of reach unless the right entry is updated in the DHT. To

handle this, each gateway will choose a random time in 1-5 second intervals

and check with the DHT to make sure that its update was successful, as such:

Figure 3.9 [5], [6]. This solution does not guarantee that race conditions will be

handled (if they happen at all), but it will reduce their possibility/occurrence.

As our simulation results show, such race conditions do not occur frequently

enough to visibly impact the protocol performance.

3. LOCAL UPDATES

Each gateway maintains a separate data structure, TEMP ROUTING TABLE,

where it stores all the routing information for the different destinations
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XX, ..., YY, ..., ZZ it retrieved from the DHT as such:

destinationAddress = XX ; gateway = GWX ; validityTime

destinationAddress = YY ; gateway = GWY ; validityTime

destinationAddress = ZZ ; gateway = GWZ ; validityTime

In situations like hosts switching cluster membership, the routing information

becomes stale. To get the most recent route advertisements, one way is for the

gateway GWX responsible for a hosts XX, to inform all other gateways that it

can no longer reach XX, and probably provide information about XX’s new

location. Another way is for XX to leave instructions with a home agent in its

home cluster/MANET on how it can now be reached which is similar to what

happens in Mobile IP [55]. This brings about a whole lot of complexities and

location update message exchange. To avoid this complexity and still provide

similar services, the gateways query the DHT periodically at the expiry of

each entry’s validity time, to obtain the most recent route advertisements for

each destination XX, ..., YY, ..., ZZ stored in TEMP ROUTING TABLE. After

a successful query, the most recent route information is updated for each

destination and the validity time is incremented. When a host Y1 in cluster

Y who was initially sending messages to X1 in cluster X leaves cluster Y, the

gateway GWY will no longer send pings on the behalf of Y1. Therefore, the

route corresponding to destination X1 in TEMP ROUTING TABLE will no

longer be updated. However, if there exists multiple sources from cluster Y,

sending messages to destination X1, then the route will be updated and kept

fresh in TEMP ROUTING TABLE. In our study, we selected a 30 second inter-
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val for these periodic updates. We choose this interval after experimenting

and observing the average time it takes gateways to update the DHT with

recent route advertisements. We were also concerned with avoiding too much

traffic in the backbone, which may be redundant as hosts might not switch

cluster membership at all or too often throughout the network life time.

3.4 Node Design

PHYSICAL LAYER
wlan 0

PHYSICAL LAYER
wlan 1

LINK LAYER
IEEE 802.11

LINK LAYER
IEEE 802.11

NETWORK LAYER
OLSR1

NETWORK LAYER
OLSR2

TRANSPORT LAYER
TCP/UDP

APPLICATION LAYER
DHT Application

Figure 3.10: Gateway Node/Cluster Head Protocol Stack

In order to support inter-domain routing and intra-domain routing, the cluster

heads, which serve as gateways to their local clusters, are specially designed to

support two interfaces and run separate routing protocols or an instance of the same

routing protocol on the separate interfaces they support. At the physical layer, each

gateway node communicates with members of its local cluster on wlan 0, and with

the members of the backbone network over wlan 1. Both interfaces are physically

separated from each other using channel assignment. Each wlan receives/sends

packets from/to the next layer in the hierarchy, the link layer, which implements

two instances of IEEE 802.11 to coordinate the activities of the different routing
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domains. Similarly, the network layer supports two routing protocols which operate

independently. These routing protocols build their individual routing table data

structures separately and populate a single routing table with routing entries which

the gateway uses for routing over the different interfaces. At the network layer,

both routing protocols are separated from each other using input and output gates.

This way, the network layer is able to properly handle information concerning the

different routing domains efficiently.
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Chapter 4

Implementation of Algorithms

Section 4.1 gives a brief overview of the simulation environment we use in this

study, here Omnet++. As some of the important features and modules which we

need for our study were not available in the existing libraries Omnet++ uses, we had

to implement them. We wrote code for all our additional functionality in C++ which

is the implementation language for Omnet++. In Sections 4.2 to 4.5, we present all

the algorithms which we implemented towards this study and discuss them.

4.1 The Simulation Environment

Omnet++ [18, 72] is an open source C++-based discrete event simulator for modeling

communication networks and other distributed or parallel systems. It is available

on common platforms including Linux, Mac OS/X, and Windows, using the GCC

tool chain or the Microsoft Visual C++ compiler. Omnet++ represents a framework

approach. Instead of directly providing simulation components for computer

networks or other domains, it provides the basic machinery and tools to write such
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simulations. Specific application areas are supported by various simulation models

and frameworks such as the Mobility Framework or the INET Framework. These

models are developed independently of Omnet++ and follow their own release

cycles. Omnet++ 4.6 is the version of Omnet++ we used.

The INET Framework [18, 73] is an open-source model library for the Omnet++

simulation environment. It provides protocols, agents, and other models for re-

searchers working with communication networks, and is especially useful when

designing and validating new protocols, or exploring new or exotic scenarios. INET

contains models for the Internet stack (TCP, UDP, IPv4, IPv6, OSPF, BGP, etc.),

wired and wireless link layer protocols (Ethernet, PPP, IEEE 802.11, etc), support for

mobility, MANET routing protocols (OLSR, AODV, etc), several application models,

and many other protocols and components. INET benefits from the infrastructure

provided by Omnet++. Beyond making use of the services provided by the Omnet++

simulation kernel and library (component model, parameterization, result record-

ing, etc.), this also means that models may be developed, assembled, parameterized,

run, and their results evaluated from the comfort of the Omnet++ Simulation IDE,

or from the command line. The version of INET Framework we used is INET 2.0.

OverSim [74] is another open-source overlay and peer-to-peer network simula-

tion framework for the Omnet++ simulation environment we use in this study. It

contains several models for structured (e.g. Chord, Kademlia, Pastry) and unstruc-

tured (e.g. GIA) P2P systems and overlay protocols. The version of Oversim we

used is OverSim-20121206.
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GWA’s Routing Table
Destination Next-hop Hop-count Interface

A0 A0 1 wlan0
A1 A1 1 wlan0
A2 A2 1 wlan0

0.0.0.0 255.255.255.255 - wlan1

Table 4.1: GWX’s Routing Table

Algorithm 1: SIMPLE FLOODING PROTOCOL : f orwarding
Input: IP Packet

1 begin
2 if 〈IP packet ∈ Duplicate〉 then
3 drop IP Packet
4 else
5 Duplicate← 〈Duplicate ∪ IP Packet(creationTime, validityTime =

creationTime + holdTime)〉
6 route IP Packet

7 Duplicate \ expired IP Packets

4.2 Flooding-based Protocol

Flooding or network-wide broadcasting is the process in which one node sends

a packet to all other nodes in the network, or to every outgoing interface except

on which it arrived on. Many applications as well as various unicast routing

protocols such as DSR, AODV, and the likes use broadcasting or a derivation of it.

The principal use of flooding in these protocols is for Location Discovery and for

establishing routes. A straightforward approach for broadcasting is blind flooding,

where each node will rebroadcast any packet it receives on all its interfaces except

the one it came from. Blind flooding will generate many redundant transmissions,

which may cause what is called the broadcast storm problem [19] and waste wireless

resources.
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The flooding protocol we implemented works the same way as blind-flooding.

Only the gateways do flooding and so, they add a route to their routing table as such:

destAddress = 0.0.0.0, sourceAddress = 0.0.0.0, nextHop = 255.255.255.255, inter f ace =

backbone inter f ace. Table 4.1 shows the content of a gateway’s routing table after

the route has been added. When a gateway GWX receives a packet for the first

time on either its local interface destined for BY in cluster Y or on the backbone

interface, it keeps a duplicate copy of this packet in a duplicate set before forward-

ing the packet on the backbone interface according to Algorithm 1. The input to

Algorithm 1 is an IP Packet. Every packet is distinguished from the other by their

individual creation time which is in the order of microseconds. Thus they, with

high probability, are distinguishable. In addition, every entry in the duplicate cache

is assigned a validity time equal to creationTime + holdTime, after which it will

be discarded. This is important because the gateways handle a lot of packets per

second and it is redundant storing these packets for the entire network lifetime as

we only need them for short periods of time, in order to track duplicate copies of the

same packet. Moreover, the cache does not have infinite capacity. Depending on the

transmission delay experienced at the gateways, a delayed packet at GWX which

was previously processed by GWY might show up again at GWY after GWX finally

transmits it. If GWY has prematurely discarded information about this packet and

therefore fails to recognize it as a duplicate, it will broadcast it in the backbone as

a new packet and other gateways will do the same. Thus, the hold time has to be

chosen carefully. After tests we performed with a range of values, we chose 10

seconds for the hold time. Subsequently, for every packet GWX receives, it will

check with its duplicate packet cache and will not forward the same packet more

than once. The duplicate cache contains all the packets a gateway has processed
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once on the backbone interface. After forwarding a packet, GWX will always check

with the duplicate set to remove all packets that have expired.

4.3 Host and Network Association (HNA)

RFC 3626 describes the Optimized Link State Routing (OLSR) protocol for mobile

ad hoc networks [17, 36]. In this document, the functionality of OLSR is divided

into the core and auxiliary functionality respectively. The core specification is

always required for the protocol to operate; specifying the behavior of a node

participating in the MANET and running OLSR as routing protocol on its OLSR

interfaces. On the other hand, in addition to the core functionality, there will be

instances where additional functionality is desired. The auxiliary specification thus

provides additional functionality which may be applicable in specific scenarios.

An example auxiliary functionality is a situation where a node in the MANET has

multiple interfaces, some of which participate in other routing domains (Might be

non-OLSR interfaces or OLSR interfaces completely isolated from each other). This

kind of auxiliary functionality is called external access [17]. In order to provide

connectivity from the local OLSR MANET interface(s) to these external interfaces,

a node (usually a gateway or cluster head) SHOULD be able to inject external

route information to the local OLSR MANET. These external interfaces may be

point-to-point connections to other singular hosts or may be connections to separate

networks or the Internet. Omnet++ [18] uses the INET library [73] which already

has the core functionality for OLSR implemented. RFC 3626 [17] provides a step by

step approach towards implementing other functionalities. This section describes

the external access component of OLSR’s auxiliary functionality, called HNA (Host
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and Network Association) messages, and how we implement this functionality in

the Omnet++ simulator.

As stated in RFC 3626, a MANET can exist unregimented - isolated/independent

of other networks. However, in situations where MANETs coexist or may need

to contact other non MANET interfaces, the Internet for example, the option to

connect to other networks should be offered on some level since this is very likely

to be a requirement in many situations [17].

GWA external network A

external network B

external network C

A0

A1

A2

Ethernet link

wireles
s link

wireless link

Figure 4.1: A Gateway Node Associated with External Networks

A node associated with such non-MANET interfaces, mostly a gateway or clus-

ter head, in order to provide this capability of injecting external routing information

into an OLSR MANET, periodically issues a Host and Network Association (HNA)

message, containing sufficient information for the recipients to construct an appro-

priate routing table entry.

Figure 4.1 illustrates the most basic case of a typical external access scenario.

In the figure, the gateway, GWA, has an Ethernet link and wireless links on which

it has external access to A, B and C, and wishes to offer connectivity to hosts

A0, A1, and A2 in the MANET. GWA will, therefore, announce its reachability to ex-

ternal networks A, B and C to hosts A0, A1, and A2 by propagating HNA messages
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in the MANET. All nodes do not need to support the HNA functionality for HNA

messages to be flooded throughout the MANET. Using OLSR’s default forwarding

algorithm, these messages are propagated through the network. However, all nodes

MUST support HNA-message processing and route calculation for HNA routing to

work. For example, since routing in MANETs follows a per-hop fashion, if a node

within the MANET routes external traffic to an intermediate neighbor, who is the

next hop address based on HNA information, the intermediate neighbor acts as

a relay and must also have set up an HNA route for the traffic to be routed along

the path. Therefore, the neighbor, and other intermediate nodes in the path, must

support HNA functionality [17] for external traffic to ultimately reach the gateway.

4.3.1 HNA Message Format and Generation

Algorithm 2: HNA MESSAGE GENERATION

Input: Timer Expire
1 begin
2 generate HNA message
3 srcAddress = GW
4 destAddr = 255.255.255.255
5 inter f ace = cluster
6 message = (network→ 0.0.0.0; mask→ 0.0.0.0)

A HNA message is basically a list of Network address and Netmask pairs corre-

sponding to external domains reachable by a gateway/cluster head of a MANET.

This message content is sent as the data part of the OLSR packet with the ”Message

Type” field set to HNA MESSAGE or its integer value (’4’), the Time To Live (TTL)

field set to 255 and Validity time set accordingly to the value of HNA HOLD TIME

(3 x HNA INTERVAL), where HNA INTERVAL = 5 seconds as recommended in
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Network Address

Netmask

}
HNA
pair

Network Address

Netmask

}
HNA
pair

· · ·
· · ·

Figure 4.2: HNA Message Format
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0.0.0.0

0.0.0.0

}
HNA
pair

Figure 4.3: Optimized HNA Message

RFC 3626 [17]. However, this is not a fixed value and can be configured to whatever

desired value.

According to this scheme, if a node in a MANET has reachability to network

192.168.10.0/24, this node will announce the following information in a HNA mes-

sage: network address :: 192.168.10.0, netmask :: 255.255.255.0 and in the format

of Figure 4.2. This node will periodically generate a Host and Network Asso-

ciation (HNA) message, containing pairs of (network address, netmask) corre-

sponding to the connected hosts and/or networks. The periodic value for this

transmission is every HNA INTERVAL (5 seconds) [17]. A host within a MANET

which has no associated hosts or networks SHOULD NOT generate HNA mes-

sages. Such hosts will only participate in the default forwarding exercise as per

the OLSR core functionality [17]. As described in Section 3, we optimize the HNA

message size and also reduce the routing table size by limiting the number of

59



announced networks to a singe default route as represented in Figure 4.3. Algo-

rithm 2 shows how we implement HNA generation. It takes two inputs : ’Timer

Expire’ which triggers a HNA generation and parameters c, H, GW which denote

currentnode, Host, GateWay. We assume that the current node is the gateway. Once

its HNA timer expires, it generates and propagates a HNA message in its local

MANET as such: network address : 0.0.0.0, netmask : 0.0.0.0 .

4.3.2 HNA Message Processing

Algorithm 3: HNA ROUTING TABLE COMPUTATION

Input: HNA Message 〈network, mask, gateway〉
1 begin
2 if 〈network ∈ routing table〉 then
3 if 〈HNA Message→ gateway hopCount〉 < 〈routing table→

gateway hopCount〉 then
4 routing table = routing table \ 〈routing table→ gateway〉
5 routing table = routing table ∪ 〈HNA Message→ gateway〉
6 else
7 routing table = routing table ∪ 〈network, mask, gateway〉

We implemented HNA processing functionality as per RFC 3626, which provides

a standard step-by-step approach [17]. Each node maintains an association base for

all the HNA routes it receives. In scenarios where a MANET might have multiple

gateways, there will be multiple HNA sources. A host will, therefore, maintain a

copy of all the HNA messages it received from the different sources in its association

base. Since each node receives an HNA message every HNA interval, it will check

with its association base to update or create a new entry for each HNA message

according to RFC 3626 [17]. After a Host has processed an HNA message, it then

creates a routing table entry as explained in Section 4.3.3.
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4.3.3 HNA Route Calculation

Algorithm 3 shows how we implement HNA route calculation as per RFC 3626 [17].

It takes three inputs: ’OLSR Message’ which specifies the type of message received

(HNA message), ’routing table’ with which it makes its comparison before com-

puting a route, and parameters c, H, GW which denote currentnode, Host, GateWay.

We assume that the current node ’c’ is a host. For every entry a host maintains in

its association base, it selects the best route as a function of the number of hops it

takes to reach the originator of the HNA message, here the gateway. This process is

repeated every time a host processes an HNA message. Thus, in a scenario where a

host receives HNA messages from multiple sources, it will always select the best

route (i.e., to the closest gateway). This is particularly useful in cases where nodes

become mobile and routes are not fixed.

4.4 DHT Application

Algorithm 4: NETWORK LAYER: MESSAGE HANDLER(DHT Requests)
Input: Routing Table Update 〈routeAdded, getDestination, routeDeleted〉

1 begin
2 if 〈message = [ routeAdded || routeDeleted || getDestination ]〉 then
3 DHT Noti f ication

In this section, we detail the implementation related to our DHT application.

As earlier stated, Oversim [74] is one of Omnet++’s [18] libraries which includes

several structured and unstructured P2P (peer-to-peer) protocols, including Chord

[62, 59], which our DHT uses.

Our DHT carries out two major operations: route advertisement, denoted as
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Algorithm 5: DHT APPLICATION : DHT Noti f ication
Input: notifications 〈route, getDestination, routeAdded, routeDeleted〉

1 begin
2 if 〈noti f ication == routeAdded〉 then
3 if 〈〈route.inter f ace == local〉&&〈route 3 localCache〉〉 then
4 local cache = local cache ∪ route
5 DHT queries[DHT GET(route.destAddress)]
6 else
7 if 〈route 3 gatewayCache〉 then
8 gatewayCache cache = gatewayCache cache ∪ route

9 if 〈noti f ication == routeDeleted〉 then
10 if 〈〈route.inter f ace == local〉&&〈route 3 localCache〉〉 then
11 DHT queries[DHT GET(route.destAddress)]

12 if 〈noti f ication == getDestination〉 then
13 if 〈route.inter f ace == local〉 then
14 DHT queries[DHT GET(route.destAddress)]

addRoute, and route deletion, denoted as deleteRoute. Other operations which are

updates to the DHT and checks with the DHT are variations of these two operations

and are discussed below.

Algorithm 4 implements a message handling service which handles the message

exchange between the DHT application and the routing layer. The OLSR proto-

col in INET [73] implements a notification service ’Routing Table Update’ and by

subscribing to this service, our message handler gets to know when new routes

are added to a gateway’s routing table. Other notifications which Algorithm 4

handles are to signal route delete and route request operations to the DHT. When

the local instance of the OLSR protocol adds a route for destination host ’XX’ to

gateway GWX’s routing table, Algorithm 4 notifies the DHT by calling Algorithm 5.

The inputs to Algorithm 5 are getDestination, routeAdded, and routeDeleted noti-
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fications. Algorithm 5 understands from the type of the notification that this is a

routeAdded operation. A cache, dhtCache, is used to track all the entries registered

in the DHT. Before registering an entry in the DHT with Algorithm 6, Algorithm 5

checks with the dhtCache for an existing entry and creates a new one where none

exists. GWX only advertises hosts in its local cluster in the DHT while other nodes,

which are the gateways belonging to the backbone, are maintained in a separate

cache, gateway Cache. As routes to all destinations which GWX can reach are main-

tained in a single routing table, Algorithm 5 differentiates between the hosts and the

gateways with the interfaces from which these routes are added to GWX’s routing

table, for example (wlan0, wlan1). The inputs to Algorithm 6 specify the kind of

DHT query (a PUT or a GET) and the gateway’s IP Address. It then issues a GET(k)

query to the DHT by hashing the IP address of the destination node in the message

it receives to generate key k, using SHA1 hashing algorithm. Oversim already has

SHA1 implemented.

Algorithm 6: DHT APPLICATION : DHT queries
Input: DHT query 〈GET(IP Address); PUT(IP Address); GW IP Address〉

1 begin
2 if 〈query == DHT GET〉 then
3 k← SHA1(IP Address)
4 send GET(k)
5 attach control in f ormation
6 else
7 k← SHA1(IP Address)
8 list← serialize(GW IP Address)
9 v← list

10 send PUT(k, v)
11 attach control in f ormation

Algorithm 7 returns the response to all the queries made to the DHT. Its inputs
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Algorithm 7: DHT APPLICATION : DHT query responces
Input: DHT query responses 〈GET response(data); PUT response(data); GW IP Address〉

1 begin
2 if 〈response == GET response〉 then
3 if 〈response == FAILED〉 then
4 choose backo f f interval in range(1− 5)
5 attach control in f ormation + reschedule GET(k)

6 if 〈response == NULL then
7 if 〈GET.kind == ADD ROUTE〉 then
8 attach control in f ormation + call Algorithm 6

9 if 〈GET.kind == ROUTE REQUEST〉 then
10 choose backo f f interval in range(1− 5)
11 attach control in f ormation + reschedule GET(k)

12 if 〈response == SUCCESS〉 then
13 if 〈GET.kind == DELETE〉&&〈value = GW IP Address〉 then
14 value← NULL
15 attach control in f ormation +

DHT queries[DHT PUT(data.destAddress, value)]

16 if 〈GET.kind == ADD ROUTE〉 then
17 value← GW IP Address
18 attach control in f ormation +

DHT queries[DHT PUT(data.destAddress, value)]

19 if 〈GET.kind == ROUTE REQUEST〉 then
20 listO f (Dest GW IP)← 〈data→ v〉
21 attach control in f ormation + pass down routing in f ormation

22 if 〈response == PUT response〉&&〈response == Failed〉 then
23 choose backo f f interval in range(1− 5)
24 attach control in f ormation + reschedule PUT(k)
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are the ’DHT query responses’ which specify the kind of DHT response and the

gateway’s IP Address. Sufficient control information is attached with every query

which is then used to distinguish between different responses. For an addRoute, the

possibilities are that GET(k) was successful and returned a valid or a NULL value,

or it completely failed. For a failed response, the query is reissued after a back-off

interval which is a normal distribution N(rand(5), 2). A NULL response signifies

that no entry existed in the DHT against key k. In this case, a value corresponding

to the IP Address of GWX is then stored against key k by issuing a PUT(k, GWX)

message with Algorithm 6. A response with a valid value (for example GWY)

indicates that a value existed in the DHT against key k. This usually happens

when a host that was previously in cluster Y switches to cluster X. In such a case,

GWX will include its IP Address as one of the values stored against key k, and

update the DHT by issuing a PUT(k, [GWX, GWY]) message with Algorithm 6. The

PUT(k, [GWX, GWY]) operation can either be successful or completely fail. If the

PUT failed, the query, PUT(k, [GWX, GWY]), is reissued with Algorithm 6 after the

same back-off interval used above.

Algorithm 8: DHT APPLICATION : Best gateway calculation
Input: Receive routing information

〈control in f ormation, listO f (Dest GW IP), GW IP Address〉
Output: best route to be passed down to the network layer for routing

1 begin
2 bu f f er ← listO f (Dest GW IP)
3 for 〈i = 0; i = size o f bu f f er; 〉 do
4 select the best gateway from the list
5 create IP datagram [Dest GW IP, control information]

6 Stote routing in f ormation[IP datagram]

When GWX has to deliver XX’s packet to destination YY, GWX does not find a
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Algorithm 9: NETWORK LAYER : Store routing in f ormation
Input: receive notification from application Layer 〈destHost, destGateway〉

1 begin
2 for 〈i = begin; i 6= end; 〉 do
3 if 〈[destHost, destGateway] ∈ temp routing table〉 then
4 update temp routing table
5 else
6 temp routing table = temp routing tabl ∪

[destHost, destGateway, validityTime = 30sec]

7 if 〈validityTime == expired〉 then
8 DHT queries[DHT GET(destHost)]

route to YY in its routing table. Through the message handler, Algorithm 4, it sends

a notification message, ’getDestination’, to the DHT which receives notifications

from the routing layer through Algorithm 5. Algorithm 5 understands from the

message type, ’getDestination’, that this is a route request from the DHT. Through

Algorithm 6, a GET(k) query is issued to the DHT by executing SHA1 on YY to

generate key k. Algorithm 7 receives the response to this query which could be

successful - returning a NULL or a valid value or completely fail. For a failed

response, the same procedure as described above is followed. Otherwise, a NULL

will indicate that no entry is currently stored against key k in the DHT. This never

happened in the course of our study but an explanation for this is that a host, XX,

initially in cluster X, switched to cluster Y and its previous gateway, GWX, removed

the value it originally advertised against key k from the DHT before GWY was

able to advertise its reachability to host Y. In such a case, the packet destined for

XX is dropped and the DHT is again queried when there is a route request for

destination XX. For a successful response, Algorithm 8 is called which sends a

message containing the route retrieved from the DHT to Algorithm 9 at the routing
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layer. Algorithm 8 takes two inputs: the value retrieved from the DHT along side

some control information and the gateway’s IP Address. In the case that the value

retrieved from the DHT contains multiple gateways to host YY, Algorithm 8 selects

the best route based on the number of hops it takes to reach each gateway through

the backbone. It obtains the number of hops from the gateway’s routing table.

Algorithm 9 takes one input: the routing information retrieved from the DHT. It

caches every new route it receives and replaces already existing ones with the

most resent routing information received as such : source, destination, gateway.

These routes can then be reused for subsequent routing to the same destination.

Each route has a validity time after which the gateway will issue a query through

Algorithm 4 to the DHT.

Algorithm 10: NETWORK LAYER : Routing table di f f operation
Input: Routing Table 〈Routes〉 . the gateway’s current routing table
Input: diff data Structure 〈entries〉 . the gateway’s previous routing table

1 begin
2 for 〈i = entries.begin; i 6= entries.end; 〉 do
3 for 〈i = Routes.begin; i 6= Routes.end; 〉 do
4 if 〈entry[i] 3 Routes〉 then
5 GET.kind← routeDeleted
6 DHT queries[DHT GET(entry[i])]
7 entries = entries \ entry[i]

8 for 〈i = Routes.begin; i 6= Routes.end; 〉 do
9 for 〈i = entries.begin; i 6= entries.end; 〉 do

10 if 〈Routes[i] 3 entries〉 then
11 entries = entries ∪ Routes[i]

In the event that host YY moves from cluster Y to Z, while GWZ advertises

its reachability to YY in the DHT by following the addRoute operation procedure

described above, GWY will have to remove the value it stored against YY in the
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DHT as it can no longer reach YY. For this reason, we implemented Algorithm 10.

Algorithm 10 takes two inputs: the most resent routing table entries and the previ-

ous copy stored in the diff data structure. It maintains an older version of a gateway,

’GWX’s’ routing table and carries out a diff operation with the newer version. In the

event that a host or hosts formerly in GWX’s local cluster are no longer reachable,

this will be reflected in GWX’s routing table after the local instance of OLSR updates

its routing table. This operation thus yields the hosts who have left the cluster.

The process then notifies the DHT via Algorithm 4 with a routeDelete message.

Algorithm 5 receives this message and through Algorithm 6, a GET(k) query is

issued to the DHT for each host that can no longer be reached. Algorithm 7 receives

the response to each query and processes it the same way others were processed in

the description above.

On the other hand, GWX will no longer be able to deliver host XX’s messages

to host YY with the previous destination gateway address it retrieved from the

DHT, here GWY. For this reason, each gateway implements an internal timer

which is triggered every 30 seconds. When triggered, a getDestination notification

is sent to the DHT via Algorithm 4. This way, the gateways are able to get the

most recent route advertisements from the DHT. Before querying the DHT, GWX

checks for irrelevant routes and removes them. For example, if host XX in cluster

X was previously sending messages to host YY in cluster Y, and moves away to

cluster Z, GWX, before querying the DHT for a route update for YY, will check

with its routing table that it can still reach XX otherwise, it will not issue the query.

Subsequently, the DHT will not be queried for destinations that messages are no

longer routed to. Algorithm 5 receives this notification and understands that this

is a getDestination operation. It then sends a GET(k) query to the DHT for the
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particular route requested through Algorithm 6. Algorithm 7 receives the responses

which are treated in the same way as other GET responses discussed above.

4.5 IP Packet Tunneling

GWA GWBA3A1 B3 B1

Data Packet, Routed

by OLSR [1]

Send Send Data Packet

to GWB via OLSR [4]

retrieve B1 from DHT [2]

Data Packet, Routed

by OLSR [5]

Source MANET A

(OLSR Routing)

Destination MANET

B (OLSR Routing)

Backbone (OL-

SR/DHT)

encapsulate

Data

packet [3]

(a) gatewayTunneling

(b) Tunnelled Packet

Figure 4.4: IP Packet Tunneling

In IP networks, encapsulation is suggested as a means to alter the normal IP
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routing for datagrams, by delivering them to an intermediate destination that would

otherwise not be selected based on the (network part of the) IP Destination Address

field in the original IP header [75]. At this intermediate destination node, the IP

packet is decapsulated, yielding the original IP datagram, and delivered to the

destination as per the original Destination Address field. This process is frequently

referred to as ”tunneling” the datagram, and the encapsulator and decapsulator are

the ”endpoints” of the tunnel [75].

In the most general tunneling case we have : source⇒ encapsulator ⇒ decapsulator ⇒

destination; with the source, encapsulator, decapsulator, and destination being host

A1, nodes GWA, GWB, and host B1 respectively as illustrated in Figure 4.4a. GWA

is considered the ”entry point” of the tunnel, and GWB is considered the ”exit point”

of the tunnel.

In Figure 4.4, after A1 routes a packet destined for B1 to GWA using the HNA

route [1], and GWA retrieves GWB’s address from the DHT [2], it does not immedi-

ately route A1’s packet to B1. This is because GWA is not the original destination of

this packet and will normally drop the packet since it can not identify the destina-

tion based on the (network part of the) IP Destination Address field in the original

IP header. GWA will, therefore, encapsulate the packet [3] by creating a new IP

packet with source address : GWA and destination address : GWB, while the origi-

nal packet, including header, assumes the payload of the new packet as illustrated

in Figure 4.4b. It then sets the kind of the IP packet to ’tunnelled packet’. This

way, GWB, upon receiving this packet [4], will understand that this is a tunneled

packet, decapsulate the packet, and route the original IP packet to B1 using the local

instance of OLSR [5].
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Chapter 5

Simulations and Results

The performance of the routing protocol deployed over the backbone network is

evaluated in this chapter via experiments which were conducted on various network

architectures. Data collected from these experiments are also discussed here. The

experiments clearly demonstrate how the routing operation is carried out in all

the scenarios presented. Each experiment has been designed to demonstrate the

different aspects under which the protocol is likely to portray different behaviors.

The routing solution proposed in this thesis leverages the storage and retrieval

mechanisms of Chord DHT as described in Section 3 to achieve a more efficient

routing in the backbone network. The performance of this approach is then com-

pared with a flooding-based approach which forms a baseline for the performance

measure. The study is carried out on two MANET scenarios: one without mobil-

ity (stationary scenario) and the other with mobility included. For the stationary

scenario, seven experimental setups are used to investigate the performance of

the network. The configurations follow each other in an order of increased cluster

number and reduced cluster size, keeping the total number of nodes constant. The

71



metrics which are of interest are to capture both the efficiency and effectiveness of

the protocols. More specifically, we measured the ping success rate (successful pings

sent for which responses were received, as a percentage of total attempted pings),

the ping Round Trip Time (RTT), and the network traffic (in packets) generated by

the DHT protocol.

5.1 Static Scenarios

We define one static scenario for each of the network architectures considered in this

study. This scenario is a simple one where all nodes are uniformly distributed in

their different cluster areas, and remain members of the same cluster for the entire

network lifetime.

5.1.1 Traffic Generated and Evaluation Metrics

Ping is a widely used tool for collecting metrics to measure the performance of a

network [76, 20, 77]. A sender A generates and sends an Internet Control Message

Protocol (ICMP) echo request packet, destined for an end system/host B. At the

sending end, the sender starts a timer prior to sending the ping packet. B, upon

receiving an ICMP echo request packet, simply reverses the ICMP header and sends

an ICMP echo response or reply to A. At A, the timer is halted, and the elapsed

time is recorded [76]. In the path from A to B, there are a few possibilities. The best

case is that the packet traverses the path from source to destination and from the

destination back to source successfully. Other cases that are possible include loss of

a packet due to a congested network, no path exists from the source to destination

or destination back to the source, or some firewall exists and drops ICMP packets in
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the end-to-end path from the source to the destination [76, 20]. If ping packets are

successful, it is an indication that an end-to-end path existed between source and

destination, the network protocol can deliver packets, the target host is connected

to the network and is in a working condition to respond to the ping packet [76].

Furthermore, successful ping packets reveal a wealth of information which can

then be used to measure network protocol performance. A stream of ping packets

generated and injected into the network allows the tracking and calculation of

the minimum, average, maximum and variance of the elapsed time between echo

request sent and echo reply received [76, 20, 78]. A careful interpretation of the

response times and their variance can provide an indication of the degree of traffic,

or the load being experienced in the network [76]. When the network begins to

handle more and more traffic, this will result in increased delay and increased

variance, due to the interaction of the intermediate node buffers with the traffic

flows along the path elements as load increases. When a relaying node’s buffer

overflows, it is forced to discard packets. Under such conditions, increased ping

loss is observed. In addition to indications of network load, high delay and loss

within a sequence of ping packets may be a sign of routing instability (routes are

unavailable, etc.). The metrics used, and their definitions are as follows:

1. Ping Success Rate (PSR): The ratio of the ping echo responses received to those

generated by the sources. This metric can only be measured after a sender

receives a response to an ICMP echo request. Until the sender receives an

ICMP response packet, it is hard to know the status of a transmitted ICMP

echo request packet. If a response is not received, the fate of the packet is not

exactly predictable.
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2. Ping Round Trip Time (PRTT): This includes all possible delays caused by

buffering during route discovery, queuing at the interface queue, retransmis-

sion delays at the Medium Access Control (MAC) layer, and propagation and

forwarding times in the path between the query and the response. The ping

application is implemented in such a way that it includes per host information

about the minimum, maximum, mean, variance, and standard deviation of

the round-trip time for the total number of ping responses received [79, 78, 77].

One advantage of measuring latency this way is that it reduces the need for

clock synchronization: both timestamps are recorded on the same node, with

reference to the same local clock.

3. Routing overhead: The average of the total OLSR traffic (HELLO, Topology

Control (TC), Host and Network Association (HNA) messages) sent by nodes

in the local clusters, and the average of the OLSR and DHT maintenance traffic

sent by the gateway nodes in the backbone.

The first two metrics are the most important for best-effort traffic. The third is

an interesting measure because it provides information about what fraction of the

network resources is lost to network maintenance traffic and validates that hierar-

chical clustering in large-scale MANETs reduces routing overheads and increases

performance. Considering the DHT maintenance traffic, we do not investigate

occurrences like node churn which will generally bring about a lot of overhead

depending on the churn frequency. The gateways basically retrieve information

from the DHT once, and reuse the same for subsequent routing operations. Thus,

the DHT maintenance traffic will largely comprises of ”keep-alive messages” which

is not a significant issue. Furthermore, other DHT protocols like OneHopOver-

74



lay4Manets use a cross-layered approach, and no separate DHT maintenance is

usually required.

In addition to the metrics discussed above, it is important to consider the net-

working context in which a protocol’s performance is measured. The network

size (which is a measure of the number of nodes in the network), or the network

architecture, is an essential parameter that should be varied. In varying the network

size, an approach could be to start out with an initial number of nodes and then

increase the number of nodes linearly. In varying the network architecture, an

approach could be to start out with a flat network of N nodes and build hierarchi-

cal architectures of clusters, increasing the number of clusters while keeping the

number of nodes constant [80]. With either of these variations, the chosen metrics

- PRTT, success rate, protocol efficiency, etc., are then measured for each network

architecture or network size. In this thesis, the study will be carried out using the

network architecture variation, where the total number of nodes is kept constant

and different hierarchical architectures (clusters of varying number and sizes) are

created [80].

5.1.2 Simulation Setup

A simulation study was carried out with 40 nodes comprising 30 hosts and 10

gateway nodes in a 4000M x 4000M network area. Initially, all 40 nodes participate

in a flat network where all nodes are hosts who participate to support routing in

the network and 30 of the 40 nodes exchange ping messages with each other. The

40 hosts are then divided into 2, 4, 5, 6, 8 and 10 clusters having 2, 4, 5, 6, 8 and

10 gateways. The clusters are MANETs and the gateways are part of a backbone

MANET through which they inter-connect all the clusters. To make this possible,
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Parameter Value
Mobility Model Stationary
Network area 4000 M * 4000 M

Network architecture flat and hierarchical
Network structure 1, 2, 4, 5, 6, 8 & 10 clusters

Network protocol (cluster-wise) OLSR
Network protocol (backbone) OLSR/Chord, Flooding

Traffic Type ICMP (Ping) traffic
No of nodes 40 (10 gateways, 30 hosts)

No of Ping sources 30 hosts
All hosts in the flat network configuration

Local-Cluster Ping sources and 30% of the hosts in the 2, 4, 5, 6, 8 & 10
cluster network configurations.

Ping rate N(0.3,0.01), ∼ 100 pings/sec
Number of simulations 10 runs per architecture

Randomness per simulation Seeded
Node positions per cluster Random

Simulation time 900 seconds
Time allowed for stabilization 210 seconds

Measurement time 690 seconds
Ping packet size 64, 128, 256 & 512 bytes

Interface queue management type drop tail
Interface queue capacity 100 packets
Metrics under measure Ping Round Trip Time, Ping Success Rate,

Network traffic (in packets)
MAC protocol IEEE 802.11g

Transmission range 1000 M, 800 M, 600 M, 500 M, & 300 M
in the 1, 2, 4, 5, 6, 8 & 10 cluster configurations

Transmission rate 11 Mbps
Number of radios per node 1 per host, 2 per active gateway

Table 5.1: Simulation Parameters for the Static Scenarios

the gateways have a special design and are equipped with two radios with which

they can communicate over two separate interfaces: the cluster they belong to, and

the backbone network. The hosts, on the other hand, have a more basic design

which allows them to have one radio for communication within the cluster they

belong to. The resulting network is a two-tier hierarchical network structure, with
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the gateways serving to provide connectivity between members of their cluster

and external networks. In the 2, 4, 5, 6, and 8 cluster configurations, 8, 6, 5, 4, and

2 gateways respectively, do not participate in the backbone network but exist to

support routing in the clusters they belong to. Thus, they behave like hosts but do

not send nor receive any ping messages. In the flat network configuration, which

can also be called a one cluster configuration, all hosts are uniformly distributed in

the network area and they assume this position throughout the entire simulation

duration. In the other cluster configurations, each cluster is assigned a unique area

in the network area and the member nodes are also uniformly distributed within

their cluster space. Similarly, nodes in their individual clusters assume the same

initial position for the entire simulation duration. Table 5.1 summarizes all the

parameters used in the simulations.

5.1.3 Simulation Tool

Omnet++ is the simulation environment we chose for our study as presented in

Section 4.1. To evaluate the performance of the DHT-based unicast solution in

comparison with the flooding solution, simulations were run for 900 simulated

seconds. The first 210 seconds was allowed for the routing tables of each node to

be populated and for the gateway nodes to build the overlay network and reach

stability. We arrived at this figure after observing from several experiments, the

approximate time it took for the network to attain stability. Measurements and

event recording then set in for the remaining 690 seconds. Each of these network

architectural setups were then simulated for ten simulation runs and with different

randomly generated seeds. As a result, node locations and the distribution of ping

messages vary in each run. The results reported here are the averages over the 10
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repetitions.

5.1.4 Simulation Results and Analysis

In this section, the DHT-based unicast solution and the flooding-based solution

are compared using the metrics discussed in Section 5.1.1, and for different cluster

architectures. In this study, we are particularly interested in the performance of

the network protocol deployed in the backbone. Results of the Ping Success Rate

and the Ping Round Trip Time of the DHT-based unicast solution and the flooding

solution are presented and analyzed for each of the cluster architectures, and the

intra-cluster routing protocol performance is presented and analyzed as well. For

the intra-cluster routing protocol, we focus more on the impact of the hierarchical

clustering architectures on the routing overhead. Graphs for each metric and all

architectural setups are then plotted and the margin of error displayed on all graphs

represents 95% confidence intervals.

5.1.4.1 Ping Success Rate

The study was carried out on 4 different ping packet sizes and in increasing order:

64 bytes, 128 bytes, 256 bytes, and 512 bytes. In Figures 5.1a, 5.1b, 5.1c and 5.1d the

red line represents the Ping Success Rate and in Figures 5.3a, 5.3b, 5.3c and 5.3d,

the orange line represents the total packets sent at the MAC layer of each gateway,

considering the flooding solution. The graphs in the figures mentioned above all

have similar trends, as the number of clusters increases for each ping packet size.

However, as the ping packet size increases, the ping success rates deteriorate more

and more while the total number of MAC layer packets also deteriorates but not as

much as the former. The analysis of the two graphical representations show that
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(a) Ping Packets of Size 64 Bytes
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(b) Ping Packets of Size 128 Bytes
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(c) Ping Packets of Size 256 Bytes
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(d) Ping Packets of Size 512 Bytes

Figure 5.1: Ping Success Rate for the Static Scenarios

the number of successful pings for which responses were received, deteriorates as

we increase the number of clusters and deteriorates even more as we increase the

ping packet size. In the flat network configuration, all the nodes belong to the same

cluster and ping each other while all the gateways behave like hosts to support

routing in the network. Thus, there is no backbone traffic in this architecture. As

we increase the number of clusters to 2, 4, 5, 6, 8 and 10 respectively, the backbone

handles more and more traffic because of the redundant rebroadcasts of each packet
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(b) Ping Packet Size 128 bytes
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(c) Ping Packet Size 256 bytes
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(d) Ping Packet Size 512 bytes

Figure 5.2: Collisions and Dropped Packets at the MAC Layer for the Static Scenarios

(F) = Flooding approach (D) = DHT-based approach

broadcast in the backbone. This happens because, an architecture of ‘N’ clusters

will have ‘N’ gateway nodes, and for each packet broadcast in the backbone, ‘N-1’

copies of the same packet will be generated because each gateway will rebroadcast

the same packet once. As each node in the network generates ping traffic at a rate

which is uniformly distributed, there will be steady broadcasts in the backbone by
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(d) Ping Packet Size 512 Bytes

Figure 5.3: Total and Sent Packets at the MAC Layer for the Static Scenarios

each gateway node and the remaining gateways who rebroadcast these packets.

This makes packet collision in the backbone inevitable. Broadcast packets are

treated differently than unicast packets in the MAC layer. Under the IEEE MAC

802.11 Distributed Coordination Function (DCF) [81], broadcast transmissions are

implemented so that the broadcast packets are sent to the neighbors as soon as the

radio channel is sensed to be free (carrier sensing). However, no collision detection
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is used to guarantee successful receipt of the packets at the destination nodes. Every

gateway ought to listen for the channel status for a DCF interframe space (DIFS)

interval. If the channel happens to be busy during this interval, the gateway defers

its transmission. In flooding, multiple gateways contend for the wireless medium.

As such, when they sense the channel busy and defer their access, they will also

virtually simultaneously find that the channel is released and then try to seize

the channel. DCF specifies a random backoff, which forces a gateway to defer its

access to the channel for an extra period [81]. However, with multiple gateways

transmitting over the same medium and at the same time for the most part, there

is a high probability that multiple gateways will select the same minimal random

backoff and attempt transmission at the same time. As a result, collisions occur and

every gateway hears this collision. This effect does not occur only once but multiple

times in the simulation duration, resulting in frequent collisions and high packet

losses. The red line in Figures 5.2a, 5.2b, 5.2c and 5.2d show the rate of collision as

the number of clusters increases for each ping packet size and across the different

ping packet sizes. Although the line trend is the same for the different ping packet

sizes, the number of collisions per cluster architecture decreases as we increase

the ping packet size. An explanation for this is that it takes more time to transmit

larger ping packets and so packets which arrive during a transmission will be

queued. With the rate of packet arrival superseding the rate of packet transmission,

the queue will get full faster, and packets who arrive to meet a full queue will be

dropped. More and more packets are dropped as the ping packet size increases

and as a result, only packets who make it into the queue will have a transmission

attempt. A fraction of these packets is again lost to collisions. The major challenge

with the dropped packets and the collisions is that these packets are lost entirely
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and cannot be re-transmitted. This explains the drop in the number of collisions per

cluster architecture as the ping packet size increases. Overall, the sum of dropped

packets and the collisions at the MAC layer of each gateway provides an indication

of the total number of lost packets. The difference between the total lost packets

and the total packets at the MAC layer of each gateway node gives the number

of packets which were successfully transmitted. Of the successfully transmitted

packets, there is no guarantee that all these packets make it to the destination host

or that the source host received a response from the destination host. The reason is

that there might be other factors in the path from the source to the destination and

back to the source - for example, route unavailability at intermediate relaying nodes

or at the destination host that could result in packet loss in the path. Overall, as the

number of clusters increased for each ping packet size and across the different ping

packet sizes, the frequent rebroadcasts generated more and more overhead which

utilized most of the backbone channel resources and as a result, fewer ping packet

exchanges were successful.

In Figures 5.1a, 5.1b, 5.1c and 5.1d, the blue line represents the ping success

rate for the DHT-based unicast solution and the dashed blue line in Figures 5.3a,

5.3b, 5.3c and 5.3d represent the total number of packets sent at the MAC layer of

each gateway node as the number of clusters are increased for each ping packet

size and across the different ping packet sizes. The graphical representations show

that the protocol adopted in the DHT-based unicast solution outperformed the

flooding protocol in terms of efficiency. This is true because the way packets were

delivered to their destination via the backbone eliminated the ripple effect caused

by the redundant rebroadcasting of packets in the backbone. Here, a gateway

node ‘A’ retrieves routing information from the DHT as per the design discussed in
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Chapter 3, which includes the IP address of the gateway node ‘B’ responsible for

the cluster where the destination host is located. Using the routing table maintained

by the backbone routing protocol OLSR, A then forwards the packet to ‘B’ who then

delivers the packet to the destination host in its cluster using the cluster-wise routing

protocol. In this case, when packets arrive at the gateway and must be queued,

most of the queue is occupied by data packets which wait for their transmission.

Although the gateways handle other packets like the OLSR control traffic and the

DHT maintenance traffic, the OLSR control traffic here are the HELLO messages

only, which are transmitted periodically every 2 seconds. The least of the DHT

maintenance traffic has a periodic frequency of 5 seconds. “HELLO messages” are

the only OLSR traffic in the backbone because ours is a fully connected backbone

and there are no MPRs to send Topology Control (TC) messages as all gateways

are within reach of each other. There are also no HNA messages because the

gateways do not announce reachability to the backbone members. As the periodic

frequency of these packets is far lower than that of the data packets, most of the

queue capacity is occupied by the ping packets. This goes further to explain the low

rate of dropped packets shown by the dashed blue line in Figures 5.2a, 5.2b, 5.2c

and 5.2d respectively. A few packet drops in the order of tens were experienced

as the ping packet sizes increased, for the same reason discussed in the flooding

solution, and there were a few collisions as well. Overall, the protocol efficiently

delivered over 95% of the packets to their destinations which remained constant for

all architectures and ping packet sizes. It is also worth pointing out that with our

proposed solution, the ping performance is the same whether pings are within a

cluster or across the global network. This is clearly not the case for the flooding-

based backbone.
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5.1.4.2 Ping Round Trip Time

As mentioned in Section 5.1.1, the ping round trip time is the interval between

the ping echo request and the response. Statistics collected from this metric can

also reveal the load experienced by the network. The study was carried out on 4

different ping packet sizes as was with the previously discussed results, and for the

same architectures.
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(c) Ping Packet Size 256 Bytes
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Figure 5.4: Ping Round Trip Time for the Static Scenarios
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The red line in Figures 5.4a, 5.4b, 5.4c and 5.4d represents the ping round trip

time for the flooding solution and the blue line represents the ping round trip time

for the DHT-based solution. Comparing both results, both solutions have similar

values for the one- and two-cluster architectures but begin to vary significantly

beginning with the four-cluster architecture. The one-cluster architecture is the

baseline for the remaining architectures and is expected to produce similar results.

The two-cluster architecture involves only two gateways, so the flooding solution

will behave like a unicast solution since every “broadcast” packet in the backbone

will be directed to just one gateway node who happens to be the gateway to the

destination host. In this case, there will be no redundant broadcasts, and this is true

for all ping packet sizes. However, as we increase the number of clusters to four and

above, the round-trip time in the flooding solution begins to increase, and it gets

worse as we increase the ping packet size. One factor that has a major impact on this

is the flooding of packets in the backbone which increased more and more, as more

gateways were added to the backbone network. As explained in Section 5.1.4.1, as

more gateways are added to the backbone network, the gateway nodes will have to

queue more redundant packets than actual ping packets, especially when the rate

of packet arrival exceeds the rate of packet transmission. Since packets are handled

in a FIFO fashion, cases where the front of the queue is occupied by redundant

packets will be dominant, and it will take a longer time to transmit a ping packet

which most of the time will be at the back of the queue. This time equals the sum

of the total wait time in the queue and the total transmission time. Since there is

a response for each ping packet, the same sequence of events will replay in the

response path, which increases the ping round-trip time even more. As the ping

packet size increases, the round-trip time increases even more. As the bandwidth
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available to each gateway is a fixed value, the gateways now take a longer time

to transmit larger ping packets, which is an added delay to the already discussed

delay. This accounts for the overall increase in the ping round trip times for all the

cluster architectures and across all ping packet sizes.

The DHT-based solution, however, does not face the same ordeal. In the same

figures, the blue line clearly shows that with the DHT-based solution, the ping

packets typically have lower round-trip times and remain somewhat constant

across all cluster architectures. For every packet a gateway GWX is routing for the

first time to an external destination, GWX queries the DHT to obtain the routing

information required to route that packet. In this period, the first few packets for

which routing information is not available are queued and are forwarded once

the gateway successfully retrieves routing information from the DHT. Although

there is some delay incurred by this route discovery process, it is in the order

of milliseconds, and since the nodes remain at the same position for the entire

simulation duration, the routing information retrieved is cached and reused for

successive packet forwarding in the same direction. In the backbone, which is

of more concern as it can become a bottleneck with heavy network loads, the

gateway nodes are within reach of each other, and so packets will typically be

delivered in one hop. As discussed in Section 5.1.4.1, the DHT solution introduces

new routing overheads, which are the DHT maintenance messages and the OLSR

control messages, but these control messages have fixed intervals of 5 seconds and 2

seconds respectively. This is much less frequent than the ping frequency, which has

an average interval of 0.3 seconds. The HELLO messages are flooded in a multicast

fashion and are never forwarded, while the DHT control messages are unicast

packets. The control overhead increases as the number of gateway nodes increases
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but does not congest the backbone to the same extent as the flooding solution. When

the ping packet size increased, the gateways took longer times to transmit packets

and packets arriving during a transmission were queued. However, queued packets

did not spend as much time in the queue as was the case for flooding, and packets

were not queued most of the time. Overall, the ping round trip time in the DHT-

based solution remained at about 2.5 ms for all the cluster architectures and across

all the ping packet sizes. Again the performance of inter-cluster pings, using the

DHT-based solution, is very comparable to the performance of local (intra-cluster)

pings, which clearly is not the case for a flooding-based backbone.

5.1.4.3 Routing Overhead
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Figure 5.5: OLSR HELLO, TC and HNA Messages

The routing overhead as described in Section 5.1.1 counts the average number

of maintenance messages the protocol incurs in carrying out topology maintenance

and routing. As it is known that hierarchical network architectures are widely
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deployed to reduce routing overheads and increase scalability in ultimately large-

scale MANETs [16, 7], we are interested in this metric because it gives an insight

into the extent to which clustering reduces the overall routing overheads when

compared to a flat MANET architecture. In Figure 5.5, the blue line represents the

total number of HELLO messages, the green line represents the total number of TC

messages, the orange line represents the total number of HNA messages and the red

line is the sum of all the above-mentioned messages. In the flat network, there are no

active gateways and so all nodes exchange HELLO messages every 2 seconds and

MPRs propagate TC messages every 5 seconds. MPRs are an optimization strategy

in OLSR to reduce the number of nodes who flood topology control information

in the network. The topology control messages are rebroadcast by other MPRs

once to ensure that all other nodes receive updated topology information. In the

flat network, there are many MPRs because nodes are not within reach of each

other. This accounts for the high number of TC messages flooded in the MANET

as seen in Figure 5.5. As the number of clusters increase, the nodes are limited to

smaller areas and more nodes are within reach of each other. The number of MPRs,

therefore, begins to reduce more and more and completely vanishes in the ten-

cluster architecture. The number of TC messages was about 130,000 messages in the

one cluster architecture but reduced significantly to about 20,000 messages in the 2

cluster architecture and continued to reduce as the number of clusters increased. As

the number of clusters increased, a new routing overhead was introduced, “HNA

message”, which gateways use to inform their local cluster of their reachability

to external clusters. The HNA messages are propagated every 5 seconds and

forwarded only via the MPRs in the network. This slightly increases the number

of control messages but with fewer nodes per cluster as the number of clusters
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increases, the total number of HNA messages reduced similarly to the number

of TC messages. The HELLO message interval does not change at all through

the simulation time because every node sends these messages every 2 seconds

and these messages are never forwarded. Since the number of nodes remains

constant for all scenarios, the number of HELLO messages remains unchanged.

Overall, with the total number of HELLO messages remaining constant, the total

number of TC and HNA messages reduced across the cluster architectures, the

total OLSR control messages reduced significantly between the one and two cluster

architectures; from over 150,000 in the one cluster architecture to about 40,000 in the

two cluster architecture and reduced more for the remaining cluster architectures

to about 38000, 35000, 30000, 25000 and 25000 respectively. As a result, for the

intra-cluster statistics, the ping packet delivery ratio increased from about 80% in

the one-cluster architecture to about 95% in the two-cluster architecture and 100%

for the 4, 5, 6, 8 and 10 cluster architectures respectively. Similarly, the ping round

trip time reduced from about 14 ms to about 1.5 ms which remained constant for

the remaining cluster architectures. This was because with more clusters, there

were fewer hosts per cluster which were now closer in proximity and only one hop

away from each other in most cases. This clearly shows that large-scale MANETs

benefit from hierarchical architectures in the sense that overall routing overhead is

reduced and routing performance increases.

5.2 Mobility Scenarios

To conduct meaningful mobility-wise performance analysis of the routing algo-

rithms deployed in MANETs, it is essential that the mobility models reflect realistic
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mobility behavior. Popular mobility models for MANETs are the Random Way-

Point (RWP) Mobility model and Reference Point Group Mobility (RPGM) model

[82, 83, 84]. In this thesis, we are particularly interested in nodes moving among

themselves in their local clusters as well as whole clusters moving in the network.

For our study, mobility models like RWP will not be sufficient to model the move-

ment of people among themselves in their groups/teams as well as groups/teams

moving as a whole [82]. In the RWP model, the nodes move along a zigzag path

consisting of straight legs from one waypoint to the next [84, 82]. The model is

insufficient to capture some realistic scenarios like group mobility for example. A

better model, which more accurately captures the actual movement of people in a

group and provides a better insight into the order of node movement expected from

MANET scenarios, is the RPGM [82, 83]. In RPGM, each group has a ’logical center’

whose movement defines the behavior of the whole cluster/MANET, including

location, speed, direction, acceleration, etc. Therefore, the trajectory of the group

is determined by providing a path to the center. In general, the nodes are evenly

distributed in the geographic scope of a group. Each one is assigned a reference

point that follows the movement of the group and nodes are placed at random near

the reference point according to a specified maximum distance from the reference

point. The reference point scheme allows independent random movement behavior

for each node, in addition to the group movement [85, 83].

We study three mobility scenarios under which we evaluate the performance of

our design. These scenarios are discussed as follows:

Intra-Cluster Mobility: First, we investigate the effect of mobility when all

nodes are mobile within their clusters alone. This mobility scenario is a variation of

what happens in the static scenarios, the difference being that the nodes now move
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within their cluster area. It then forms the baseline for the other mobility scenarios

which we study.

Nodes Switching Clusters: In this mobility scenario, some selected hosts switch

their cluster membership. Here, we have some hosts configured to start and stop

moving at certain times, in a certain direction - a distance of its current position to the

location of the intended cluster, to join that cluster. Since all clusters communicate

with the same channel and interface locally, a host will easily join a different cluster

by exchanging HELLO messages with the nodes in the cluster it joined.

Whole Clusters Merging and Splitting: Just as with the nodes, whole clusters

will also be mobile. The clusters will generally move in relation to the group mo-

bility model we use and the nodes in the clusters will move in relation with their

individual group centers, here the gateways [83]. Since all clusters communicate lo-

cally over the same communication channel, when two cluster come into proximity

with each other, they overlap physically and logically to form one cluster.

Parameter Value
Mobility Model Reference Point Group Mobility (RPGM)

Network structure 4 clusters
No. of nodes per cluster 10 nodes (4 active gateways, 30 hosts,

and 6 inactive gateways)
Max. distance to reference node 500 m

Minimum speed 5 m/s
Maximum speed 20 m/s

Packet Size 64 bytes
Traffic generated ICMP (ping)

Number of ping sources 30 hosts
Simulation time 3600 Seconds

Network Stabilization time 210 Seconds
Measurement time 3390 Seconds

Table 5.2: Simulation Parameters for the Mobility Scenarios
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5.2.1 Traffic Generated and Evaluation Metrics

The traffic and the evaluation metrics used in the mobility scenarios are the same

presented in Section 5.1.1. Table 5.2 presents the parameters specific to the mobility

scenarios while the rest of the parameters are summarized in Table 5.1.

We collected performance statistics for the same metrics we measured in the

static scenarios. Just like the static scenarios, the DHT maintenance traffic does not

include the traffic introduced by node churn as we did not consider this effect. By

introducing mobility, the gateways retrieve information from the DHT periodically

in order to obtain the most resent route advertisements in the DHT. Thus, the DHT

maintenance traffic will largely comprises of the frequent look-up messages and

the DHT ”keep-alive” messages. This traffic will be obviously higher than the

traffic in the static scenarios but not as much as to bring about any significant issue.

This traffic is captured in the total number of packets at the MAC layer as seen in

Figure 5.7. Again, DHT protocols like OneHopOverlay4Manets, use a cross-layered

approach and no separate DHT maintenance is usually required.

For the mobility model where hosts switch cluster membership, we focus more

on collecting performance statistics for the mobile hosts X0...XX who switched

their cluster membership and the hosts Y0...YY who pinged hosts X0...XX for the

entire network lifetime. This way, we are able to determine the reachability of hosts

X0...XX throughout the network lifetime. Successful pings will reveal the following:

1. A host XX who was initially a member of cluster X was reachable by a host

YY while it switched between clusters X, Y, Z.

2. Gateways GWX, GWY, GWZ discovered the arrival and departure of hosts

X0...XX, and the DHT was adequately updated.
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3. Gateways GWX, GWY, GWZ were able to route X0...XX’s packets to destination

hosts Y0...YY in clusters X, Y, Z for the period when hosts X0...XX resided in

their cluster.

5.2.2 Simulation Setup

To carry out our study based on the mobility scenarios described above, we use

the four-cluster configuration. It comprises of 40 nodes in total: 4 participating

gateways, 6 non-participating gateways which serve to support routing in the

various cluster where they belong, and 30 hosts, each belonging to one of the four

clusters. The four-cluster configuration is selected because, with this setup, it will

be feasible to investigate the possibility of two clusters merging while the other

clusters remain the same, or three clusters merging while the other remains the

same, and when two or three clusters who merged, now split. It will also be feasible

to instantiate the possibility of more than one host switching between clusters. For

all the mobility scenarios, we used a ping packet size of 64 bytes while varying the

average mobility speeds in increasing order from 0 to 20 ms−1 at intervals of 5. The

mobility speed for each node in each of the variations is a random variable N(m,

d) with a mean ’m’ of 0, 5, 10, 15, 20 and standard deviation ’d’ of 0, 2, 3, 4 and 5

respectively. We selected the 64-byte ping packet size for our analysis because, as

we saw in the static scenarios, the trend was the same for all ping packet sizes as

they all presented the same qualitative result. Therefore, it did not really matter as

to which ping packet size we used.

With the help of the Bonn Motion tool, which is a mobility scenario generation

and analysis tool [86], we generated mobility traces based on RPGM which we used

directly in Omnet++ for our simulations. This catered for the scenarios where nodes
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were mobile within their individual clusters as well as for scenarios where clusters

are moving among themselves. The mobility traces for hosts switching cluster

membership were handcrafted. We allowed 210 seconds for network stabilization

as was the case in the static scenarios, and the statistics were collected over the

remaining 3390 seconds.

5.2.3 Simulation Results and Analysis

In this section, the flooding and DHT-based routing approaches are compared using

the metrics discussed in Section 5.1.1, and for the different mobility scenarios, start-

ing with the intra-cluster mobility to nodes switching clusters and finally clusters

merging/splitting. The intra-cluster routing protocol performance is presented and

analyzed as well. As with the static scenarios, we are particularly interested in

the performance of the network protocol deployed in the backbone network. For

the intra-cluster routing case, we measure the impact of mobility on the metrics

measured, in comparison with the static scenarios discussed in Section 5, and we

use this as a base case for the other mobility scenarios. Graphs for each metric and

all mobility scenarios are then plotted and the margin of error displayed on all

graphs represents 95% confidence intervals.

5.2.3.1 Ping Success Rate

In Figure 5.6 and Figure 5.7, the following abbreviations : F− and D−, that appear in

the legends, are used to denote the Flooding approach and the DHT-based approach

respectively. Figure 5.6 shows the Ping Success Rates when nodes were mobile

within their clusters, hosts switched cluster membership and clusters merged/split.

The circles represent the intra-cluster ping successes and the squares in Figures
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Figure 5.6: Ping Success Rates for the Mobility Scenarios

5.6a and 5.6c represent the inter-cluster ping successes. In Figure 5.6b, the squares

represent the ping success rate when the mobile host was the ping destination

and the triangles represent the ping success rates when the mobile host was the

ping source. In Figure 5.6b the number of clusters which each host switched to in

the entire network lifetime, is varied from 0 to 4 in intervals of 1. Five (5) nodes

switched their cluster membership but at different times from each other with no

96



0 5 10 15 20
1

1.5

2

2.5

3

·106

Speed [m/s]

N
um

be
r

of
Pa

ck
et

s

D-Sent D-MAC Total
F-Sent F-MAC Total

(a) When nodes move within their clusters

0 5 10 15 20

0

2

4

6

·105

Speed [m/s]

N
um

be
r

of
Pa

ck
et

s

D-Collision overlay msgs
F-Collision

(b) When nodes move within their clusters

0 5 10 15 20

1

1.5

2

2.5

3

·106

Speed [m/s]

N
um

be
r

of
Pa

ck
et

s

D-Sent D-MAC Total
F-Sent F-MAC Total

(c) When clusters merge and split

0 5 10 15 20

0

2

4

6

·105

Speed [m/s]

N
um

be
r

of
Pa

ck
et

s

D-Collision overlay msgs
F-Collision

(d) When clusters merge and split

Figure 5.7: MAC Statistics for the Mobility Scenarios

particular order or interval. However, each node spent about 600 seconds in the first

four clusters and 990 seconds in the fifth cluster. In order to determine that a host

was reachable whenever it switched between clusters, the time a node XX spent

in cluster Y had to be large enough to both exceed the delay until a gateway GWY

advertises reachability to XX in the DHT, and allow for statistics to be collected to

proof that it is reachable. For both protocols, it took about 10 seconds for a node
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to transit from cluster XX to cluster YY, a total of 40 seconds. In the DHT-based

solution, it took an average of about 30 seconds more until a source gateway GWX

received a local update for a destination host XX as described in Section 3.3.3. In

both protocols, Ping packets were lost for the 10 seconds when a host was in transit

between clusters and the delay until the intra-domain routing protocol updated the

gateways routing table. In the DHT-based solution, ping packets were lost for an

extra ≈ 30 seconds more. At 0 ms−1, the network is a static network and the results

are the same as discussed in the static scenarios.

For both approaches, the presence of mobility brought about frequent link

breakages which resulted in packet losses and as a result, declining ping success

rates. In the DHT-based approach, when hosts began to switch between clusters

and when clusters merged/split, success rates suffered because of the delay until

the gateways discovered the new hosts they could now reach before advertising

their reachability to these new hosts in the DHT. Similarly, the previous gateways

needed to discover the hosts they could no longer reach and hence, update the DHT

accordingly. As a result, the ping packets sent within this discovery/update period

were unsuccessful. However, the time taken for a gateway GWX to discover that

a host XX left or arrived in its cluster, is unrelated to our design. This delay is a

function of the intra-domain routing protocol, which maintains individual node

routing tables. When hosts began to switch between multiple clusters, the same set

of events replayed for each switch, which contributed to the declining ping success

rates. Figure 5.6b also shows that the success rate when the mobile node was the

ping source and when it was the ping destination, are similar. This was because

the average delay until a host XX’s current gateway GWX advertises reachability to

XX in the DHT, and the average delay until the source gateway GWY retrieves the
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latest route advertisement for host XX from the DHT, converge.

In the Flooding solution, in addition to the link breaks, which became more

frequent as mobility increases, the performance deteriorated for the intra-clusters

mobility model and when clusters merged/split because of the frequent collisions in

the backbone as seen in Figure 5.7b and 5.7d. As a result, fewer packet transmissions

were successful. However, when hosts switched between clusters, the results

obtained were similar to nodes who stayed in their cluster for the entire simulation

duration. This was true because only a few ping packets were lost in the delay until

the intra-domain routing protocol updated the routing tables of the new destination

gateways. Thus, the new gateways just pick up packets destined for the new node

from the backbone after it learns about this node.

We can, therefore, conclude that our design supports routing efficiently under

different forms of mobility and outperforms the flooding approach. The only case

where we experienced decreasing ping success rates, from about 100% to about

92%, was the case where hosts switched between four different clusters and could

only be discovered after a delay which was partly related to our design and the

intra-domain routing protocol. However, this is not entirely different from what

happens in other routing protocols that support mobility. When nodes move, they

have to be rediscovered in order to be reached. Thus, messages exchanged within

this rediscovery phase will be lost.

5.2.3.2 Ping Round Trip Time

Figure 5.8 shows the Ping Round Trip Time for all the mobility scenarios we study.

The triangles represent the intra-cluster RTT for both the flooding and the DHT-

Based approaches. The outcome shows that pings delivered within the clusters
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Figure 5.8: Ping Round Trip Time for the Mobility Scenarios

experienced low RTT because the nodes were within reach of each other most of

the time and did not require the intervention of their gateways, except in cases

where the gateways were MPR’s or an intermediate relaying node. The squares

and the circles respectively represent the RTT for the flooding and the DHT-based

(F) = Flooding approach (D) = DHT-based approach

approaches when pings were directed externally. Just as seen in the static scenarios,
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in general, the RTTs in the flooding approach were higher than in the DHT-based

approach. This was because the medium was most of the time used to re-broadcast

redundant packets, which introduced queuing delays at the gateways. In the DHT-

based solution, packets were only queued for the initial route discovery phase of our

protocol and packets were delivered with a unicast protocol in single hops through

the backbone for most cases. When hosts were mobile within their clusters and

when clusters merged/split as seen in Figures 5.8a and 5.8c, the round trip times

were similar for all the mobility speeds and the confidence intervals show that the

results overlap. In both routing approaches, this was true because measurements

were only recorded for successful pings. Ping packets were dropped as a result of

route unavailability and some others were temporarily routed to wrong destinations,

particularly in the case where clusters split. Hence, there was no queuing of packets

in any of these cases which would normally impact the RTT. This was also true for

the model where hosts switched between different clusters. Here, although the data

points were not as close as they were in the other two scenarios, the confidence

intervals overlapped and hence do not exhibit any statistically significant difference.

Overall, the RTT in the DHT-based approach was very comparable to the intra-

cluster RTT and was consistently and significantly lower than that of the flooding

approach.

5.2.3.3 Routing Overhead

Finally, we measure the routing overhead incurred under mobility by the different

protocols we deployed in the backbone. Figure 5.7 shows the MAC statistics we

collected from both routing approaches. In the event that more and more nodes or

whole networks join, the backbone will handle more and more traffic (user data
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packets and routing packets) and might become a performance bottleneck [19]. This

metric will, therefore, reveal the extent of load experienced at the MAC layer of

each gateway as a function of number of packets successfully transmitted and the

total number of packets handled by the MAC layer. The total number of packets

handled by the MAC layer is the sum of the number of successfully transmitted

packets, the number of packets dropped by the queue and the number of collisions

that occurred at the MAC layer. Overall, for both routing approaches, the statistics

collected in the intra-cluster mobility model and when clusters merged/split, are

closely comparable to each other. In the flooding approach, in addition to frequent

link unavailability, the total number of collisions also increased as the mobility

speed increased, which contributed to the decrease in the number of packets suc-

cessfully transmitted by the MAC layer. In the flooding approach, the number

of transmitted packets is represented by the no-fill squares in Figures 5.7a and

5.7c. The difference between the total number of packets handled by the MAC

layer and the total number of successfully transmitted packets is the number of

collisions which occurred at the MAC layer and is represented by the no-fill squares

in Figures 5.7b and 5.7d. In the DHT-based approach, however, the MAC layer

successfully transmitted almost all the packets it handled, and this is represented

by the solid squares and rectangles in Figures 5.7a and 5.7c, which appear to be

closely comparable. The circles in Figures 5.7b and 5.7d also show that the number

of collisions at the MAC layer was almost zero. In the DHT-based approach, the

only significant difference between the static and the mobility scenarios, however, is

that the number of overlay maintenance packets increased as a result of the constant

updates between the gateways and the DHT to support mobility. It is normal for

these updates to occur and is not different from what happens in other routing
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protocols that support mobility.

In conclusion, although the total number of packets handled at the MAC layer

increased in the DHT-based approach with cluster mobility, it is still a lot lower

than the traffic we recorded in the flooding based approach. For all scenarios and

mobility speeds, the backone traffic in the backbone exceeds the backbone traffic in

the DHT-Based solution by a factor of between two and three.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, our goal is to provide a scalable and efficient routing solution in the

backbone of hierarchical MANETs. As different forms and/or levels of mobility are

expected in such networks, and considering that such networks have the tendency

of growing both in the number of participants and/or covering large areas, a lot

of concerns and constraints like link availability, scalability, resilience, among all

others, ensue. While others proposed modifications to existing MANET routing

protocols like Hierarchical OLSR (HOLSR), optimized AODV, hybrid protocols, etc.

in order to support routing in larger MANETs, much focus was given to one or a few

of the challenges which ensue in such networks. More so, some others only carried

out research in the context of specific network scenarios, overlooking some other

key issues that ensue in more general network scenarios. These approaches do not

provide solutions that effectively handle the general context that we are interested

in, ’providing a scalable routing solution for ultimately large scale MANETs which
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will support a variety of applications.’

In Chapter 3 we presented our solution, discussed in detail the context in

which we are interested in providing a routing solution for MANETs, and explored

various network conditions which our implementations would be subjected to. This

includes different network architectures and mobility scenarios we aim at exploring

as they support a variety of applications deployable in MANETs. In Chapter 4,

we went into more details in discussing how we implemented our design and

presented all the algorithms we implemented towards this study.

We carried out experiments on the two routing approaches we studied against

the different network architectures and mobility scenarios, and presented our results

and analysis in Chapter 5. As we expected, the flooding approach performed poorly

under the different network conditions we considered when compared with our

solution. Our solution, which leverages the storage and retrieval capabilities of a

DHT, provides a scalable and efficient routing scheme for the different architectures

and mobility scenarios we studied. In both the static scenario and when nodes

were mobile, our solution incurred at most half of the total routing traffic the

flooding approach incurred in the backbone network. Whereas the increased routing

overhead negatively impacted the ping success rates in the flooding approach, as

we varied the network architectures, success rates remained stable above 90% in our

solution. The round trip times for messages delivered to destinations in different

clusters were comparable to those for messages delivered locally within the clusters,

which was not the case with the flooding approach.

We conclude that our DHT-based solution provides efficient routing supportive

in both the static case and when mobility is involved, performing significantly

better than the flooding approach.
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6.2 Recommendations and Future Work

As future work, our DHT-based solution could be tested with much larger MANETs,

i.e., increasing the total number of nodes N and splitting them into different number

of clusters while maintaining the total number of nodes N in the network, to

evaluate its effectiveness under the group mobility model we used in our study and

other mobility models as well.

In this thesis, OLSR and a DHT application were deployed in the backbone in

order to provide intra-domain routing. With OLSR, routes were readily available

as per its proactive nature. One other protocol which could be explored is AODV.

Therefore, future work could replace OLSR in the backbone with AODV to evaluate

its effect in the presence of different mobility scenarios and for the different network

architectures we used.

Another item for future work is to replace the location discovery that the DHT

provides with one that mimics AODV protocol: broadcast a RREQ message through

the backbone and have the gateway that contains the requested node respond. That

will then build the route through the backbone and resolve the location of a node at

the same time. In other words, using AODV’s broadcasts for mobility management.

The backbone topology we explored in this study was a fully connected one

where all the participating gateways were all within reach of each other. A more

interesting scenario might be to design a multi-hop backbone network of gateways

representing the different clusters they belong to, and particularly study the impact

of mobility on our solution in such a scenario.

In our implementation, gateways schedule DHT queries every 30 seconds to

obtain up-to-date route advertised from the DHT. As future work, the implementa-
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tion could be modified such that ICMP Route Error messages will be returned to

a source gateway GWX from a destination gateway GWY for messages directed at

a host YY who is no longer a member of a destination cluster Y, or when ever an

outdated DHT entry for a node Y is used, which will then trigger a route update

from the DHT for destination Y.

With respect to the context of this thesis, clusters are given and so is the size of

the clusters. We only considered evenly distributed clusters with equal number of

nodes. It will be interesting also to study the performance of the network when the

clusters are skewed. The interest here will be centered more on the ability of some

of the gateway nodes to handle more traffic than the others.

We compared our DHT-based solution to blind flooding, which was easiest

to implement. Also, as we scale up the number of clusters, overhead will grow

similarly for all broadcasting-based solutions. There exist other flooding techniques

like directed flooding which we discussed in the literature survey. As future work,

any of these flooding approaches can then be used as a base case to evaluate the

performance of our solution.

Finally, our DHT solution is designed to work with any routing and DHT proto-

col. We only experimented with OLSR and Chord, but it would be very interesting

to see how the performance of this solution changes when used with DHTs that are

particularly well suited for MANETs such as OneHopOverlay4MANETs. The use

of a hierarchical network where the routing protocol and the DHT work together in

a cross-layer fashion also seems apt for this task, especially for larger networks.
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