

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

Subscription Aggregation for Scalability and Efficiency
in XPath/XML-Based Publish/Subscribe Systems

Abdulbaset Gaddah, Thomas Kunz

Department of Systems and Computer Engineering
Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, Canada K1S 5B6

{agaddah, tkunz}@sce.carleton.ca

Ross Kouhi

Bell Laboratories, Service Infrastructure Research,
Alcatel-Lucent Canada Ltd., 600 March Road,

Ottawa Ontario Canada K2K 2E6

ross.kouhi@alcatel-lucent.com

Introduction
Content-based publish/subscribe systems provide a new communication paradigm to

deliver relevant messages to various participants according to their expressed interests. In

these systems, messages from senders (sources) are routed to receivers (ultimate

destinations) based on their content, rather than a fixed destination address. Receivers

describe their interests in receiving a particular category of messages by registering

subscriptions, which are predicates on message content, in the system. When senders

generate and inject messages in the network, the network routers (brokers) evaluate these

messages against the registered subscriptions and route matched messages to their

receivers. Content-based subscriptions provide receivers with a high degree of control

over the type of information they wish to receive and hence limit the amount of network

traffic. The challenging task of matching messages with many subscriptions is left to the

network infrastructure, which is typically an overly network of distributed application-

level routers.

Content-based routing has traditionally been used in the context of simple subscription

languages, such as simple comparison predicates on attribute values, and the message is a

simple dictionary data structure with name and value pair entries. As XML (eXtensible

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

Markup Language) [1] is widely used as a main standard format for interchanging a

variety of data, there is increasing demands for XML-based pub/sub systems. Due to the

flexible structure of XML documents, subscription specifications should be expressed by

more expressive query languages such as XPath [2] or XQuery [3]. The recent use of

XPath-based subscriptions to efficiently disseminate XML documents has increased the

complexity of content-based routing. In this regard, we are interested in XML-based

routing, where senders generate XML documents that are routed to interested receivers

through application-level XML routers. Event receivers express their interest through

XPath expressions.

A major key concern for content distribution networks is their scalability. As the number

of XML documents and XPath-based subscriptions increases in the system, matching

documents to subscriptions at line speed becomes a challenging problem [4, 5, 6]. Hence,

there is an urgent need for optimization techniques to meet the performance challenges of

routing XML documents. Typically, researchers propose to aggregate the subscriptions in

either a loss-less [7] or lossy [8] form to reduce the filtering burden on the XML routers.

These proposals represent the joint set of subscriptions (which are often a subset of XPath

expressions) in a more compact data structure. As new subscribers join the system (or

alternatively existing subscribers add new subscriptions), or existing subscribers leave or

cancel existing subscriptions, these data structures need to be updated in some or all

intermediate XML routers. These updates can be fairly complex, to ensure that previously

aggregated subscriptions are now properly matching the new set of subscriptions.

This work will focus on a specific application domain for XML routing: disseminating

sensor data. The input XML documents will describe sensor readings, similar to the work

under development by the Open Geospatial Consortium [9, 10]. Most sensor readings

will be encoded in relatively simple XML documents. Similarly, the XPath subscriptions

will be, in general, linear expressions. We will research the most appropriate aggregation

strategies for such a scenario, and explore the overheads in incrementally updating the

necessary data structures in XML routers as

• New subscriptions are added.

• Existing subscriptions are removed

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

• The routing topology changes

XML documents and XPath queries
XML is a markup language that provides a widely adopted standard way of representing

data in a flexible format. It allows us to define our own markup language and encodes the

data of our documents in a more precise manner that can be easily processed. Typically,

an XML document can be seen as a rooted, ordered, and labeled tree, where each node

represents an element or a value and the edges correspond to (direct) element/subelement

or element/value relationships. Each XML document has a single root node. There is a

unique path from the root node to each element node in the document, which is referred

to as node path. The depth of a node path is basically the number of nodes along that

path. The maximal depth of all node paths is the XML document depth. For simplicity,

this work focuses on the dissemination of XML documents which are small in depth.

XPath is one of the popular query languages that are proposed for XML data processing.

The XPath path query can be viewed as sequences of location steps, where each node in

the sequence is an element tag or a string value, and query nodes are related by either

parent-child axes, indicated by a single line (/), or ancestor-descendant axes, indicated by

a double line(//). In general, a simple path query of length l has the form “a1n1a2n2 . . .

alnl”, where each ni is an element name or a wildcard symbol (∗), and each ai is either (/)

or (//). For example, “/A// ∗ /D” is a simple path query with length 3 that matches the

following node paths: “/A/B/D”, “/A/B/C/D”, or “/A/C/D”. In this work, we consider

simple liner path queries expressed by the above defined relations.

Existing XML Filtering Approaches and Challenges
We reviewed a number of existing approaches that focus on the scenario of XML data

dissemination. XPath queries are pre-processed to create a routing table and a stream of

XML documents are matched against the routing table entries for routing. There are

basically two distinct approaches that address the problem of filtering and routing XML

data: Automaton- and index-based approaches. In this section, we briefly describe the

most popular filtering techniques that are based on these two approaches.

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

Automata-based Approaches: The state-of-the-art in XML data filtering includes Finite

State Automaton-based (FSA) approaches such as XFilter [11], YFilter [12], DFA [13],

AFilter [14], XScan [15], and XQRL [16]. In these approaches, some form of Finite State

Machine (FSM) is adopted to represent XPath queries where path nodes of the queries are

mapped to machine states. Each data node visited during parsing an incoming XML

document triggers a state transition in the underlying FSM representation of the queries.

A query is considered to match an input XML document when its final state is reached.

The active states of the machine usually correspond to the prefix matches identified in the

data. In fact, with a deep structure of XML documents, the number of active states can be

exponentially large [12, 13, 17, 18]. As stated in [13], using an eager Deterministic Finite

Automata (DFA) for a simple linear query may result in O(num_ancestor_axes ×

query_depth × alphabet_size × num_*_wildcards/num_ancestor_axes) active states. With

multiple path queries, an eager DFA may have O(2num_path_queries) active states. A lazy

DFA is adopted to address the state explosion problem. Although the lazy DFA can

sometimes be much smaller than the eager DFA, it is shown to be very memory

intensive. The exponential state explosion can be clearly seen in XFilter as it builds a

single FSM for each XPath query. This limits the scalability of XFilter to a small-scale

filtering of XML data. In most approaches, the commonality among existing queries is

not considered to avoid redundant processing of the queries. YFilter combines the input

XPath queries into a single non-deterministic finite automata (NFA) structure to reduce

the number of machine states. A run-time stack structure is used to maintain the active

and previously visited states. However, since during runtime each NFA state can be

visited (and inserted into run-time stack) several times, as indicated in [12], deep

documents can practically cause an exponential explosion in the number of active, run-

time states. AFilter consists of two data structures called AxisView (captures and clusters

all axes of the registered queries in the form of a directed graph) and StackBranch

(represent the current XML data branch). StackBranch is a compact stack-based structure

that is used to traverse the AxisView structure to identify if there are any matches in the

current data branch when trigger events occurred. Each time a start tag is encountered in

the data stream, a stack object is created and pushed into its corresponding stack. The

StackBranch structure still needs to store an exponential number of objects for deep

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

documents, which may increase the memory requirement. A hybrid XML filtering engine

[36], a combined structure of DFA and AFilter, introduced to filter simple and complex

queries separately. Simpler XPath queries, ones without wildcards (*) or descendents (//),

are stored in a combined DFA while AFilter structure is used to store more complex path

queries. The hybrid structure supports subscription insertion/deletion in an incremental

process. A single DFA and index-based structures are built in parallel to hold simple and

complex queries respectively. Whenever a new subscription query is received as part of

insertion request, it has first to be parsed to identify if it is a simple or complex query. If

the query is a simple one, it is simply add to the DFA structure by traversing DFA until

either the final state is reached, or no edge is found for some location step in the query.

In the later case, the remaining location steps of this query are added to the DFA. If it is a

complex query, then the indexed structure is checked to determine the accepting (final)

state of the new query. If it is present, the structure nodes will be traversed to add new

labels of the location paths of the query in reverse order. The query is successfully added

to the structure when the root node is reached. If an element is not found during any step

in the process, a new node must be created and added to the structure to represent that

element. The process of query deletion is performed in the similar way. Before the adding

and deleting operations, queries are stored in temporary buffer until they are successfully

committed. It is not clear the reason behind using two different structures to deal with

simple and complex queries separately. Although DFA structure can provide an efficient

mean to process XPath queries, it is expected to perform poorly with a large number of

XPath queries, because the structure size grows exponentially with size of the workload.

Index-based Approaches: Various index-based approaches were proposed to match path

queries against XML documents. This includes, but is not limited to, XTrie [19],

PathStack/TwigStack [20], FiST [21], Index-Filter [22], and PathM [23]. In general,

index-based techniques combine path queries into a prefix tree and generate an element

position index for the incoming XML data. Then, the prefix tree is computed based on

the index for the matched queries. XTrie is an index structure that offers an efficient way

of filtering XML documents based on XPath queries. It represents XPath queries as

strings and indexes them into a trie-based data structure, called XTrie, which leverages

prefix commonalities in filters. XTrie supports several features that make it attractive for

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

content-based XML routing. First, it provides an effective filtering engine for matching a

large number of complex, tree-structured XPath queries (as opposed to simple, single-

path queries) against XML data. Second, XTrie supports both ordered and unordered

matching of XML documents. Third, by using indexing technique in a trie-based

structure along with a sophisticated matching algorithm, XTrie can efficiently minimize

the number of unnecessary index probes and avoid redundant matching, thereby speeding

up the filtering process. PathStack/TwigStack introduced two families of index-based

path/twig join algorithms as primitives for matching path queries against an XML

document efficiently. Here, twig queries are typically a subset of XPath expressions that

include parent/child, ancestor/descendent axes, and node predicates. The proposed

algorithms are generalizations of the binary structural join algorithms introduced in [20,

23, 24] to match path and twig queries. Their technique mainly depends on the use of a

chain of linked stacks to compactly represent partial results to query paths, which are

then stitched together to obtain matches for the twig pattern. The core contribution of the

PathStack/TwigStack algorithms is that no large intermediate results are generated for

complex path or twig queries, thereby eliminating the need for an optimization step that

was needed when composing partial results from the algorithms in [23, 24]. In particular,

the TwigStack algorithm showed to be I/O and CPU efficient for a large set of query twig

patterns. FiST (Filtering by Sequencing Twigs) converts twig queries expressed in XPath

and XML documents into sequences. These sequences are organized into a dynamic

index-based data structure for efficient filtering. Instead of matching individual linear

paths and then performing post-processing to identify matching twig queries, FiST

exploits holistic matching of twig queries with incoming XML documents. The matching

is holistic since the twig query is matched as whole rather than matching individual linear

paths from root-to-leaf. FiST supports holistic matching by transforming twig queries and

incoming documents into Prufer [21] sequences with inherently support for ordered query

matching. Unlike XTries, since these sequences represent each filter query holistically,

each query pattern is filtered independently without leveraging any prefix sharing. Index-

Filter is a novel technique to answer multiple path queries by using indexes to build

structural information over the tags in the XML document. By taking advantage of this

additional information, Index-Filter is able to avoid processing large portions of the input

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

document that are guaranteed not to be part of any match. It also generalizes the

PathStack algorithm, and takes advantage of a prefix tree representation of the set of path

queries to share computation during multiple query evaluation. PathM uses a compact

data structure to encode pattern matches rather than recording them explicitly as several

XPath streaming algorithms [26, 27] do when both predicates and descendant axes are

present in the path queries, and the XML data is recursive (i.e. data in which tags are

repeated along a root-to-leaf path). Explicitly storing pattern matches by enumeration can

be expensive in terms of memory size. PathM also uses a polynomial time streaming

algorithm to evaluate a large set of XPath queries over streaming XML data. The

algorithm searches for satisfying matches by probing the compact data structure in a lazy

manner without enumerating all the pattern matches.

Key Optimization Techniques
Recently, XPath-based subscriptions are used to express the interest of consumers in

receiving certain XML data. In large-scale content-based systems, matching a large

volume of such subscriptions against XML documents at line speed becomes a

challenging issue. Several optimization techniques are proposed to meet the performance

challenges of content-based filtering and routing. Two key optimizations are considered

to reduce the matching burden on the XML routers. The first optimization, which has

gained much attention, uses indexing techniques ([5, 12, 13, 19, 21, 22, 29, 30, 31]) to

perform selective matching with only a compact subset of potentially matching

subscriptions. The second optimization uses aggregation techniques to convert an initial

set of subscriptions into a compact and generalized subset of subscriptions to minimize

the matching overhead [4, 6, 7, 8, 33, 34, 35]. This section reviews the most popular

optimization techniques that were found in the literature.

Bloom Filter [5] introduced a novel technique for XML data filtering. A Bloom filter is

basically a bit-vector of length m used to efficiently represent XML path queries of one

user. Initially, all the vector bits are set to 0. Then, a number k of independent hash

functions are selected to map the user queries into its Bloom filter. This results in setting

some vector bits to 1’s. To determine the existence of a match, the bits of a user Bloom

filter are checked using the same hash functions. If any of them is set to 0, this will imply

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

a matching failure. In contrast, if all of them are set to 1, this suggests that a match is

found (with some probability of a false positive, i.e., the Bloom filter mistakenly

indicates a match while it is not). It is shown in [28] that the probability of a false

positive is negligible and acceptable by most applications. Figure 1 shows an example of

a Bloom filter with 4 hash functions.

Figure 1: A simple Bloom filter with 4 hash functions [5]

In general, the routing table consists of many Bloom filters that are representations of the

XML path queries. During the parsing process of each incoming XML document, a set of

candidate paths is generated. Each candidate path is mapped to a bit-vector by the same

hash functions to be evaluated against the routing table entities. If the existence of a

candidate path is observed in a user’s Bloom filter, the related XML data is forwarded to

the user. It is obvious that the number of candidate paths increases exponentially with the

depth and the hierarchal structure of an XML document. Thus, it becomes the bottleneck

of the system. To improve the filtering performance, a new data structure, Prefix Filters,

is introduced to decrease the number of candidate paths. Figure 2 provides an example of

prefix filters. . For each path query string, there are different query prefixes. For example,

query string "/A//B/*" has respectively length 2 and 3 prefixes "/A//B" and "/A//B/*".

Prefix filter Li is a Bloom filter representing length i prefixes of all users’ queries. During

parsing an XML document, each new created candidate path of length l will be matched

against prefix filter Ll. If it does not match the prefix filter, none of all users’ queries will

match it. The system will discard this candidate path.

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

Figure 2: An example of prefix filters [5]

The idea of a Counting Bloom Filters is used to avoid any conflict in the bit vector that

may occur due to deleting an XML path query. A single counter is assigned to each bit in

the Bloom filter to track the number of hashed items related to that bit. Whenever an item

is inserted to or removed from the Bloom filter, the counters related to the k hash values

are increased or decreased, respectively. As a counter value changes from zero to one or

from one to zero, correspondingly the related bit in the Bloom filter is set to 1 or 0.

It is worth mentioning that Bloom filter is an incremental process, i.e., path queries can

easily be added to or deleted from the routing table. This is considered as a key benefit of

the Bloom filter-based approach. The authors have only focused on transforming path

queries to a compact representation to store large number of queries in an efficient

manner. They have not considered the similarity among user queries, which could lead to

redundant transformation process and increase the building time and size of routing table.

The performance of the Bloom filter can be significantly affected when the depth of the

input XML documents is large. This is mainly due to the large number of generated

candidate paths.

The authors of [29] proposed a general approach to index a large number of subscriptions

to quickly discover and maintain covering relationship. Their indexing technique is

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

dynamic, in which subscriptions can be added to and removed from the database. The key

benefit of detecting covering relationship among subscriptions is to significantly reduce

routing table size and avoid unnecessary proliferation of subscriptions throughout the

system. Whenever a new subscription S arrives, the index is used to discover if there is a

current subscription covering S. If this is the case, subscription S will not be forwarded.

The index only examines a small fraction of subscriptions stored in the database to

identify covering subscriptions. When the subscription S is deleted, some subscriptions

previously covered by S may no longer be covered by any other subscription. Hence,

such subscriptions need to be identified and routed to other routers. To facilitate this task,

a data structure, called relation graph, is used to maintain already discovered covering

relationship among subscriptions. The proposed solution is basically structured in two

layers. The relation graph represents the upper layer, which stores the already discovered

covering relationship among subscriptions. The actual index represents the lower layer,

which is used to discover new covering relationship during the subscription or

unsubscription process. Figure 3 shows an example of a relation graph containing 5

subscriptions numbered according to their arrival order.

Figure 3: An example of a relation graph [29]

The relation graph is not easy to maintain due to its covering redundancy. For example, if

a new added subscription S is covered by all existing subscriptions, then edges need to be

built from each existing subscription into S. This can be an expensive process, especially

if S is purged immediately. The cost of adding new subscriptions increases proportionally

with the number of coverings. Similarly, deleting a subscription S that covers other

subscriptions requires rebuilding the edges of the covered subscriptions. As a result,

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

Subscription insertion and deletion is not performed in an incremental manner.

The work by [32] proposed a novel approach to optimize the performance of an XML

router by reducing the overhead of subscription matching. Their approach, which is

called piggyback optimization, enables a downstream router to leverage the subscription

matching work performed by upstream routers to reduce its own filtering overhead. This

kind of collaboration is achieved by piggybacking some additional useful information in

the form of header annotations in the XML documents being routed to downstream

routers. When an XML document arrives, an XML router first pre-processes the header

annotations to optimize subsequent processing of the XML document. The annotated

information helps in making any immediate routing decisions, or reducing the effective

number of subscriptions that need to be matched. Figure 4 shows the aggregated

subscriptions in (a), the XML document in (b), and the routing tables in (c). In Figure

4(c), Ri is used to denote a router, Ti to denote the routing table, Ai, j to denote annotated

information, and D to denote the XML document.

Figure 4: XPath subscriptions, XML document, and routing tables [32]

During the matching process in an upstream router, some useful information is acquired

about an XML document and how the matched subscriptions are related to it. Such

knowledge is classified into positive and negative information (annotations). Positive

annotations correspond to the information related to either (1) subscriptions in the routing

table that matched the XML document or (2) data patterns observed in the document.

Negative annotations correspond to the information related to either (1) subscriptions in

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

the routing table that did not match the XML document or (2) data patterns that did not

occur in the document. The annotations are created in two steps, referred to as the offline

and online steps. The former is performed only once as part of the routing protocol to set

up the routing tables in the routers. To generate more effective annotations, some useful

information related to the subscriptions in the downstream routers is exploited. More

precisely, a downstream router transmits such information to each of its upstream routers

when it advertises its aggregated subscriptions. The upstream routers will locally store

this information and use them to generate annotations in the online step for the

documents that are routed to the downstream routers. The later step is achieved by an

upstream router each time it requires to route a document to some downstream routers.

With a large population of subscriptions and XML documents, the computation overhead

incurred by the upstream router to build annotations can offset any performance gains of

its downstream routers. Also, the performance of downstream routers can be degraded as

they are required to transmit additional information to the upstream routers and process

incoming annotations. It should be noted that larger annotations can add additional

overhead in terms of parsing and transmitting them. Redundant annotation can be created

for similar subscriptions stored in the routing table. The probability of false positives can

arise which are acceptable and do not compromise correctness. Although subscriptions

can be incrementally added and deleted, the updating process may affect the accuracy of

the information that is piggybacked on the incoming XML documents. This is because

there is a strong relation between the subscriptions and the piggybacked information.

XRoute [4, 7, 33] proposed a content-based routing protocol for XML-based data

dissemination systems. To optimize network traffic and bandwidth, the XRoute protocol

ensures perfect routing (i.e., an XML document is delivered only to those consumers that

have submitted a matching subscription). Moreover, it takes full advantage of

subscription aggregation to minimize the size of the routing tables and the processing

time at the XML routers. Subscriptions aggregation is a key technique to support a large

number of subscriptions. Subscriptions can be dynamically registered and cancelled

without affecting the routing accuracy. The XRoute protocol implements two forms of

subscription aggregation. If subscription S1 and S2 arrive through the same interface to a

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

node (as the case in N3 shown in Figure 5), it is said that S2 is represented by S1 at that

interface. Here, it is assumed that S1 covers S2 (i.e., any event matching S2 also matches

S1). In contrast, if both subscriptions arrive through different interfaces to a node (as the

case in N1 shown in Figure 5), it is said that S2 is substituted by S1. The aggregation

mechanism is derived from the following observation: when an event e is received by

node N3, it is only necessary to examine e against S1 due to the covering property. Thus,

subscription S2 becomes redundant and should not be propagated upstream from N1 to

N3. Instead, S2 can be aggregated with S1 and only S1 is forwarded to upstream node N3.

Figure 5: A sample content-based pub/sub network [4, 7, 33]

Each subscription entry, in the routing table, maintains some information about all the

registrations of subscription S that is received by node N. Such information represents

N’s view of its neighbors whom they are interested in subscription S. Also, the

subscription entry includes additional information required to implement the aggregation

mechanism. This information is used to build the aggregation relations between

subscription S and the other subscriptions in the routing table. Establishing the

aggregation relations is an expensive process as it requires modifying all existing

relations. The authors have not clarified how their aggregation mechanisms deal with

subscription cancellation. However, we suspect that cancellation process is not performed

in an incremental way due to the required update in the covering relations and substitute

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

pointers. The substitution mechanism adds some complexity to the routing protocol as it

is expected to guarantee perfect routing and consistent system state during subscription

cancellation. Redundant subscriptions are eliminated during the building of the covering

relations. It is claimed that the matching accuracy is free of false positives or negatives.

The authors of [6] presented their experience in using an advertisement-based technique

for optimizing data dissemination in a content-based system. In general, advertisements

are announcements to the information that a data producer will generate in the future.

They are used to limit the propagation of subscriptions only to the producers who

advertise what the consumers are interested in. In their approach, the advertisements are

generated by using XML Document Type Definition (DTD) information to define the

legal building blocks (root to the leave) of related XML documents. Along with the

advertisement-based subscription routing, optimization techniques, such as covering and

merging, are proposed to identify the covering relations among XPath queries and to

merge similar XPath quires. They mainly aim to reduce the routing table size stored at

each router and speed up the routing process.

Figure 6: Subscription tree [6]

A data structure, called subscription tree shown in Figure 6, is exploited to capture the

covering relations among registered subscriptions. The basic concept of covering is

described as the following: when an incoming subscription is covered by a current

subscription in the routing table, this subscription will not be routed to the neighboring

brokers. In contrast, when the new subscription covers current subscriptions, before it is

routed, the router needs to unsubscribe all the current subscriptions (the covered ones).

This results in eliminating redundant subscriptions in the routing tables. Subscriptions are

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

stored in the subscription tree according to their covering relationships. Each node in the

tree represents a single subscription that covers all subscriptions in its sub-tree. Although

a subscription node can have only one parent in the tree, it may be covered by several

subscriptions. To achieve this, a set of super pointers is used by each node to indicate the

covering relations with subscription nodes outside its sub-tree. In the absence of covering

relations among a set of subscriptions, subscription merging can be used to build a more

compact routing table. In the subscription tree, siblings of the same parent node are better

candidates to be merged. As indicated in Figure 6, node /a/b/a, /a/b/b, and /a/b/d can be

merged into a new subscription node /a/b/*, which is the union of the three original

expressions. As shown in Figure 6, When two nodes, /b/d and /b/e, are merged to /b/*,

their children become the new node’s children.

In the advertisement-based technique, as the publisher needs to update its advertisements

frequently, the network traffic as well as the overhead of matching the generated

advertisements at each router can be drastically increased. This may hamper the gain of

reducing subscription broadcasting among the routers and add to the already large

subscription matching costs. In a large subscription tree, identifying the covering

relationships among subscriptions can be costly due to sequential search. Some

techniques, like subscriptions indexing [5, 12, 21], should be supported to facilitate the

discovering process. It is clear that the proposed covering and merging techniques

support only subscription insertion, but not cancellation. As the covered and merged

subscriptions are removed permanently during the discovery process, the owner of these

subscriptions cannot receive any event if the coverer/merger subscription is removed.

The authors of [34] introduced a new data structure, called RoXSum, to aggregate the

structural information of multiple XML documents in an efficient way that allows the

subscription matching process to be applied directly on the aggregated content, instead of

the original documents. The advantages of content aggregation and batch processing are

combined to decrease communication costs and increase the performance of the message

routing process. The idea of summarizing XML data is derived from the observation that

elements within XML documents share structure and labels. RoXSum composes of two

essential parts: a hierarchical data structure called RoXSum tree, and a set of document

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

identifiers called RoXSum extents. Each node in the RoXSum tree maps all structurally

equivalent nodes from the document. For the purpose of message routing, a document

identifier can be associated with only the RoXSum tree nodes that correspond to the leaf

nodes of that document. Hence, after discovering the RoXSum tree nodes that satisfy a

path query, it becomes straightforward to determine the documents that satisfy the query

as well. The set of identifiers that correspond to a RoXSum tree node is the RoXSum

extent of that node. Figure 7 presents an example RoXSum tree. The top of the figure

shows a set of XML documents with identifiers D1, D2, D3 and D4, while the bottom

part illustrates the corresponding RoXSum tree. For example, the query /bib/book/last on

the documents shown in Figure 7 arrives. There is only one path in the RoXSum tree that

matches this query. All documents within the extent of the RoXSum tree node last satisfy

the query (i.e. documents with identifier D1 and D2).

Figure 7: An example of RoXSum data structure [34]

New RoXSum trees are formed whenever a stream of XML documents is accepted by a

router. RoxSum trees are built during the parsing process of the incoming XML stream.

Each XML document is parsed in-order and either new index nodes or document

identifiers are added to the RoxSum tree. Finally, the registered subscriptions are

matched against the generated RoxSum trees, one RoxSum tree at a time.

The proposed aggregation technique assumes that XML routers will receive the published

documents in streams (batches). This assumption is not supported by many applications,

therefore; the use of this technique is limited to a certain category of applications. The

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

total size of a RoXSum tree is proportional to the sum of the number of nodes in each

document. Hence, large XML documents can dramatically affect the routing performance

as they result in large RoXSum trees. The incoming streams of XML documents are

processed independently. Accordingly, it is clear that the composition and decomposition

algorithms for RoXSum are performed in an incremental process. However, this process

has to be repeated at each router in the network for the same stream of XML documents.

This may place a high burden on the XML routers and hence degrade their performance.

The authors of [31] proposed a new sequencing-based method, called branch sequencing,

which converts an XML twig query into a branch sequence. In their work, the

subscription queries are represented using a subset of XPath language called twig

patterns. These are basically XPath expressions that include only parent/child,

ancestor/descendent axes, and node predicates. The twig patterns are transformed into

sequences and the matching process is performed using certain properties of the

sequences. The proposed sequencing technique supports holistic matching of twig

patterns with each input document as well as ordered twig patterns matching. Holistic

means that a twig pattern is matched as a whole without breaking it into root-to-leaf

paths. The subscription queries are parsed using an XPath parser and are converted into

branch sequences, which are saved in a sequence store. After parsing the input XML

documents, they go through a matching engine that matches them against the standing

queries in the sequence store. The document nodes which satisfy a subscription query are

saved in the buffer corresponding to the matched subscription. Afterward a separate

predicate check is performed to identify those nodes that satisfy the predicates stored

along with the query. Such nodes will be sent to the corresponding consumers. The

proposed sequencing technique is slightly different from the one introduced by FiST [21]

as it can retrieve the matched nodes in a single parse of the input document. In contrast,

FiST has to parse the document twice, indexing the document nodes in the first parse.

To construct the branch sequence for a twig pattern, each node in the twig pattern has

given a preorder number during the parsing process. When a leaf node is observed, the

nodes from the closest branch node to this leaf node are output and this branch, excluding

the branch point. A branch node is a node with two or more children. When the last leaf

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

node of the twig pattern is encountered, the nodes from the root of the pattern to the leaf

node are output. This reflects the name of the proposed technique as the nodes are output

branch by branch. As the twig patterns may include the ancestor-descendent axis,

additional information is required about the relation between nodes. Information such as

sequence number, relation, position, and label is stored along with the nodes to ensure

that a particular branch node occurring in two or more positions in the sequence is

matched to the same document node. The twig pattern will be eventually transformed to a

sequence of tuples (also refereed to as nodes), which consist of a number of fields. Figure

8 shows a sample twig pattern and its corresponding sequence.

Figure 8: Sequencing a twig pattern [31]

An indexing mechanism for the twig pattern sequence nodes is used during the matching

process. The sequence nodes are stored in a data structure, called sequenceStore, which

can be considered as a two dimensional matrix where each row represents a sequence.

For example, the sequenceStore[i, j] corresponds to the jth tuple in the branch sequence

of the ith twig pattern. A hash-based index, called sequenceIndex, is used to index the

twig pattern sequence nodes during the matching process. Here, the hash values of the

sequence index are basically the different node labels. For example, the sequenceIndex[

L] contains the node tuples, which have node label ‘L’.

The proposed sequencing technique is not scalable for very large number of queries as it

is expected to be memory intensive. The converting process for twig patterns results in

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

generating large number of tuples that need to be stored and evaluated with the incoming

documents. This may increase the overhead on the routers and hence slow down the

routing process. Dealing with redundant sequence tuples has not been addressed to

reduce memory requirement and processing time. Incremental updating and cancellation

of twig patterns is supported as they are transformed independently. The authors have not

discussed the probability of the false positive that may occur due to the transformation

process. However, it was stated in [21] that filtering using sequencing alone can lead to

false positives.

ApproXFilter [35] proposed an approximative filtering algorithm, called ApproXFilter,

for approximate filtering in a content-based routing system. Two complementary versions

of the ApproXFilter algorithm are introduced for efficient filtering of large number of

subscriptions: a time and a space optimized versions. Five steps are involved to match an

ApproXFilter subscription query against an XML document. The first step is to transform

all ApproXFilter subscription queries into their normalized form (i.e., Boolean

disjunctions combined by conjunctions). The second step is to extend all subscription

queries using the allowed predefined transformations such as deleting, inserting, and

renaming parts of the queries using synonyms. The third step is to build a subscription

match graph, called DAG (Directed Acyclic Graph), which represents all extended

subscription queries. Every term (values and structures) in the extended query is

interpreted as a graph vertex. Figure 9 shows an example Match DAG along with two

extended query trees. The fourth step is to sequentially parse each incoming XML

document and to concurrently traverse the Match DAG in depth-first order. Every

difference to the original query is scored with additional costs. For each visited node in

the Match DAG, the corresponding costs are calculated. The concept of costs can be seen

as a similarity measurement between the documents and the matched subscriptions. A

cost of zero corresponds to highest quality, which means exact matching. The higher the

cost, the lower the quality. The fifth step is to notify the consumer about the matched

document if the accumulated costs are less than a predefined threshold.

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

Figure 9: Concept of Match DAG and original query tree [35]

Two versions of algorithms are used to optimize time and space consumptions. Compact

data structures along with a set of hashes are used to represent the extended query graph.

Redundant node entries are not allowed in the proposed structures. As a result, each hash

key is set only once into the graph and in the exact position for representing the original

query structure. All costs are encoded only once. In the time-optimized version, the time

required to evaluate a document is O(n) while the space required is O(n
2
). In the space-

optimized version, the required filter time is O(n
2
) while the space required is O(n). Here,

n reflects the number of vertices in the Match DAG.

The number of vertices in the DAG could grow considerably with a large population of

subscriptions and terms (values, structures, and synonyms). Therefore, we expect that the

Match DAG increases the overhead of the matching process as each input document has

to be matched against a large number of vertices. We believe that the DAG in its current

form does not support subscription cancellation since several subscriptions may share the

same vertices in the match graph. In fact, after the updating process the DAG may no

longer reflect the previously transformed subscriptions, thereby generating inappropriate

matching results. Thus, rebuilding the DAG may become a necessary task to avoid this

problem.

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

The work by [8] introduced a systematic study of subscription aggregation in which

subscription specifications are expressed via a much more expressive model of tree

patterns (subset of XPath expressions). In this study, a tree-pattern aggregation algorithm

is proposed to aggregate an input set of tree patterns into a smaller set of generalized tree

patterns in order to reduce their storage space requirements and to speed up the matching

process. This algorithm depends on the use of document-distribution statistics to compute

a precise set of aggregated tree patterns within a given space constraint and to minimize

the probability of false positives (due to aggregation) during the filtering process. In order

to aggregate an input set of tree patterns, the aggregation algorithm, presented in Figure

9, iteratively prunes the tree patterns by replacing a small subset of tree patterns with a

more concise aggregate pattern, until a given space budget are met. During each iteration,

a small set of candidate aggregate patterns are created and than the most promising

candidate pattern is chosen (the one maximizing the gain in space while minimizing the

loss in precision). The least upper bound (LUB) algorithm is proposed to compute the

most precise aggregation tree pattern for a set of tree patterns. A containment algorithm

also proposed to ensure the containment relationships between the original set of tree

patterns and the aggregated tree pattern.

Figure 10: Tree pattern aggregation algorithm [8]

The problem domain addressed in the proposed technique focuses on transforming an

input set of tree patterns into a smaller set. However, the aggregated technique does not

reduce the number of the pattern entities in the routing table, which need to be evaluated

against each input document. Furthermore, the issue of space constraint is addressed by

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

iteratively pruning the input set of tree patterns until the space requirement is met. It is

not clear why the authors have not considered removing redundant tree patterns instead.

To meet the objective of the proposed technique, three heavy, complementary processes

need to be applied iteratively for each input set of tree patterns. These are aggregating

(pruning) tree patterns, computing the most precise aggregate, and identifying the

containment relationship of the output set. We thus suspect that with a large number of

input patterns, the computation overhead incurred by these processes can substantially

offset any performance gains of the proposed technique. Both subscription insertion and

cancellation are performed in an incremental process; however, subscription cancellation

in some cases may affect the benefit of the aggregation technique. If we consider the case

when subscriptions do not stay long in the system after been registered, the overhead of

the aggregation process would become very significant.

Concluding Remarks
This section summarizes the previous discussion on filtering and aggregating XPath-

based subscriptions with an emphasis on lessons learned from investigating the proposed

solutions. In particular, we highlight to which extent these techniques are effective and

scalable when matching and updating a large number of XPath queries. For efficient data

dissemination, more expressive subscription languages, such as XPath, have recently

been used to express the consumers’ interests. This has led to a marked increase in the

complexity of content-based routing. As a result, much attention has been given to the

performance challenges of routing XML data in the context of simple XPath-based

queries.

Generally speaking, two optimization techniques are expected to provide a solid base for

improving the performance and scalability of content-based routing: subscription

indexing and aggregation. The former technique performs selective matching with only a

compact subset of potentially matching subscriptions, while the latter transforms an

original set of subscriptions into a compact and generalized subset of subscriptions to

minimize the matching overhead. Table 1 present a simple comparison for the reviewed

work with respect to: subscription insertions, subscription deletion, redundancy, matching

accuracy, and scalability.

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

Project
Subscription

Insertion

Subscription

Deletion
Redundancy Accuracy Scalability

B
lo

o
m

F
il

te
r

[5
]

Is performed in an
incremental way

Is performed in an
incremental way

Redundant
transformation and
matching of path
queries

Negligible
probability of false
positives due to the
hashing process

Is not an issue. It
can filter millions
of path queries.

R
el

a
ti

o
n

a
l

G
ra

p
h

 [
2
9

] Is performed in a
none incremental
manner due to the
redundancy of
covering relations

Is performed in a
none incremental
manner due to the
redundancy of
covering relations

Redundant covering
relations among
subscriptions that
should be updated
frequently

Probability of false
negatives due to
removing coverer
subscriptions

Is scalable as it
avoids unnecessary
proliferation of
subscriptions in the
system

P
ig

g
y

b
a

ck

[3
2

]

Is performed in an
incremental way

Is performed in an
incremental way

Redundant
annotation can be
created for similar
subscriptions stored
in the routing table

Possibility of false
positives due to the
cancellation of
subscriptions

Is scalable since the
piggybacked data
can reduce the
matching overhead
and network traffic

X
R

o
u

te
 [

4
] Is not incremental

process as it needs
to update covering
relations and
substitution links

Is not explained;
however, we think
it is not incremental
as well for the same
reason

Redundant
subscriptions are
identified during
the building of the
covering relations

Is claimed that the
routing accuracy is
free of false
positives and
negatives

Is limited as it is an
expensive task to
modify all existing
relations in order to
establish a new one

S
u

b
sc

ri
p

ti
o

n

T
re

e
[6

]

Is not incremental
process since the
subscription tree
needs to be partially
rebuilt

Is not supported as
it can affect the
state of existing
consumers

Redundant
subscriptions are
discarded during
the covering and
merging process

High probability of
false negatives if
coverer/merger
subscriptions are
cancelled

The sequential
search for covering
and merging
relations limits the
scalability

R
o

X
S

u
m

T
re

e
[3

4
]

Is performed in an
incremental way as
the XML data is
aggregated and not
the subscriptions

Is performed in an
incremental way for
the same reason

Redundant creation
of the RoXSum tree
at each router and
redundant queries
in the routing table

Low probability of
false positives due
to the use of extent
identifiers in the
RoXSum tree

Is limited to small
number of queries
and documents due
to iterative creation
of the RoXSum tree

S
eq

u
en

ci
n

g

[3
1

]

Is performed in an
incremental way as
the twig patterns
are transformed
independently

Is performed in an
incremental way for
the same reason

Redundant
sequence tuples are
visible in the
database

Probability of false
positives due to
filtering by
subsequence
matching alone

Is limited as it is a
memory intensive
due to generating a
large number of
tuples

A
p

p
ro

X
F

il
te

r

[3
5

]

Is performed in an
incremental way

Is not supported as
many subscriptions
may share similar
vertices in the
Match DAG

Redundant
transformation of
similar queries into
the Match DAG

Low probability of
false negatives may
occur due to the
normalization of
subscriptions

Is the focus of the
proposed Match
DAG which shows
its effectiveness in
a limited test-bed

T
re

e

P
a

tt
er

n
 [

8
] Is performed in an

incremental way
Is performed in an
incremental way

Redundant nodes
are defined and
discarded from the
generated patterns

Low probability of
false positives due
to aggregation

Is limited due to the
heavy computation
of the aggregation
processes

Table 1: Comparison of aggregation techniques

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

From the reviewed work, we believe that Bloom filter is the most promising technique

for improving the performance of content-based routing in the context of XML data and

XPath-based subscriptions. This is due to its flexibility and scalability for filtering and

matching a large number of path queries with a negligible probability of false positives.

In addition, subscription insertion and deletion can be efficiently performed in an

incremental manner. However, some aspects are missing that may further improve the

performance of Bloom filter. The first aspect is to eliminate the existing redundancy

among the routing table entries in the Bloom filter. This can result in minimizing the

routing table and increasing the speed of the matching process. The second aspect is to

avoid any redundant or unnecessary proliferation of subscriptions among the neighboring

routers. This results in reducing the propagation overhead and the size of routing tables.

We of course should keep in mind the performance and scalability of the chosen solutions

when we approach these objectives.

References
1. World Wide Web Consortium W3C 2004a, Extensible Markup Language (XML) 1.0.,

August 2004, Available from http://www.w3.org/XML/.

2. World Wide Web Consortium, XML Path Language (XPath) Version 1.0., W3C
recommendation November 1999, Available from http://www.w3.org/TR/xpath.

3. World Wide Web Consortium 2004b, XML query language (XQuery) Version 1.0.,
W3C working draft October 2004, Available from http://www.w3.org/TR/xquery.

4. Chand, R. and Felber, P. 2004. XNET: A Reliable Content-Based Publish/Subscribe
System. In Proceedings of the 23rd IEEE international Symposium on Reliable

Distributed Systems (October 18 - 20, 2004). SRDS. IEEE Computer Society,
Washington, DC, 264-273.

5. Gong, X., Qian, W., Yan, Y., and Zhou, A. 2005. Bloom Filter-Based XML Packets
Filtering for Millions of Path Queries. In Proceedings of the 21st international

Conference on Data Engineering (April 05 - 08, 2005). ICDE. IEEE Computer
Society, Washington, DC, 890-901.

6. Guoli Li Shuang Hou Jacobsen, H.-A., XML Routing in Data Dissemination
Networks, In Proceedings of the 23rd IEEE International Conference on Data

Engineering, (April 2007), 1400-1404.

7. Chand, R. and Felber, P. A. 2003. A Scalable Protocol for Content-Based Routing in
Overlay Networks. In Proceedings of the Second IEEE international Symposium on

Network Computing and Applications (April 16 - 18, 2003). NCA. IEEE Computer
Society, Washington, DC, 123.

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

8. Chee-Yong Chan, Wenfei Fan , Pascal Felber, Minos Garofalakis, Rajeev Rastogi.
2002. Tree Pattern Aggregation for Scalable XML Data Dissemination. In
Proceedings of the 28th VLDB Conference, (Hong Kong, China 2002), 826-837.

9. SensorML homepage, http://vast.uah.edu/SensorML/home.html

10. Transducer Markup Language homepage, http://www.transducerml.org/index.htm

11. Altinel, M., Franklin, M. J., Efficient Filtering of XML Documents for Selective
Dissemination of Information. Proceedings of the 26th VLDB Conference, Cairo,
Egypt, 2000.

12. Diao et al., Path Sharing and Predicate Evaluation for High-Performance XML
Filtering, ACM Transactions on Database Systems, Vol. 28, No. 4, December 2003,
Pages 467–516.

13. Green, T., Gupta, A., Miklau, G., Onizuka, M., and Suciu, D. 2004. Processing XML
streams with deterministic automata and stream indexes. ACM Transactions

Database Systems. 29, 4 (Dec. 2004), 752-788.

14. Candan, K. S., Hsiung, W-P., Chen, S., Tatemura, J., Agrawal, D. AFilter: Adaptable
XML filtering with Prefix-Caching and Suffix-Clustering, Proceedings of the 32nd
VLDB Conference, 2006.

15. Ives, Z., Halevy, A. Y., and Weld, D. S. 2002. An XML query engine for network-
bound data. The VLDB Journal 11, 4 (Dec. 2002), 380-402.

16. Florescu, D., Hillery, C., Kossmann, D., Lucas, P., Riccardi, F., Westmann, T.,
Carey, M. J., Sundararajan, A., and Agrawal, G. 2003. The BEA/XQRL streaming
XQuery processor. In Proceedings of the 29th international Conference on Very

Large Data Bases - Volume 29 (Berlin, Germany, September 09 - 12, 2003). J. C.
Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer,
Eds. Very Large Data Bases(Vldb) Series. VLDB Endowment, 997-1008.

17. Bar-Yossef, Z., Fontoura, M., and Josifovski, V. 2005. Buffering in query evaluation
over XML streams. In Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems (Baltimore, Maryland, June
13 - 15, 2005). PODS '05. ACM, New York, NY, 216-227.

18. Bar-Yossef, Z., Fontoura, M., and Josifovski, V. 2007. On the memory requirements
of XPath evaluation over XML streams. J. Comput. Syst. Sci. 73, 3 (May. 2007), 391-
441.

19. Chan, C., Felber, P., Garofalakis, M., and Rastogi, R. 2002. Efficient filtering of
XML documents with XPath expressions. The VLDB Journal 11, 4 (Dec. 2002), 354-
379.

20. Bruno, N., Koudas, N., and Srivastava, D. 2002. Holistic twig joins: optimal XML
pattern matching. In Proceedings of the 2002 ACM SIGMOD international

Conference on Management of Data (Madison, Wisconsin, June 03 - 06, 2002).
SIGMOD '02. ACM, New York, NY, 310-321.

21. Kwon, J., Rao, P., Moon, B., and Lee, S. 2005. FiST: scalable XML document
filtering by sequencing twig patterns. In Proceedings of the 31st international

Conference on Very Large Data Bases (Trondheim, Norway, August 30 - September
02, 2005). Very Large Data Bases. VLDB Endowment, 217-228.

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

22. Nicolas Bruno, Luis Gravano, Nick Koudas, Divesh Srivastava 2003. Navigation- vs.
Index-Based XML Multi-Query Processing. In proceedings of the 19th International

Conference on Data Engineering (ICDE'03), 139.

23. Chen, Y., Davidson, S. B., and Zheng, Y. 2006. An Efficient XPath Query Processor
for XML Streams. In Proceedings of the 22nd international Conference on Data

Engineering (April 03 - 07, 2006). ICDE. IEEE Computer Society, Washington, DC,
79.

24. S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu.
Structural joins: A primitive for efficient XML query pattern matching. In
Proceedings of the 2002 International Conference on Data Engineering, 2002.

25. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. M. Lohman. On supporting
containment queries in relational database management systems. In Proceedings of
the 2001 ACM SIGMOD International Conference on Management of Data, 2001.

26. Koch, C., Scherzinger, S., Schweikardt, N., and Stegmaier, B. 2004. Schema-based
scheduling of event processors and buffer minimization for queries on structured data
streams. In Proceedings of the Thirtieth international Conference on Very Large Data

Bases - Volume 30 (Toronto, Canada, August 31 - September 03, 2004). M. A.
Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B.
Schiefer, Eds. VLDB Endowment, 228-239.

27. Peng, F. and Chawathe, S. S. 2003. XPath queries on streaming data. In Proceedings

of the 2003 ACM SIGMOD international Conference on Management of Data (San
Diego, California, June 09 - 12, 2003). SIGMOD '03. ACM, New York, NY, 431-
442.

28. Bloom, B. H. 1970. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM 13, 7 (Jul. 1970), 422-426.

29. Zhenhui Shen, Srikanta Tirthapura, and Srinivas Aluru. 2005. Indexing for
subscription covering in publish-subscribe systems. In Proceedings of IEEE

International Conference on Data Engineering. (ICDE'05), 32-43.

30. Aneesh Raj and P Sreenivasa Kumar. 2007. Branch Sequencing Based XML Message
Broker Architecture. N Proceedings of the IEEE 23rd International Conference on

Data Engineering (Istanbul, Turkey, April 16-20, 2007). ICDE 2007, 656-665.

31. Hou, S. and Jacobsen, H. 2006. Predicate-based Filtering of XPath Expressions. In
Proceedings of the 22nd international Conference on Data Engineering (April 03 -
07, 2006). ICDE. IEEE Computer Society, Washington, DC, 53.

32. Chan, C. Y. and Ni, Y. 2007. Efficient xml data dissemination with piggybacking. In
Proceedings of the 2007 ACM SIGMOD international Conference on Management of

Data (Beijing, China, June 11 - 14, 2007). SIGMOD '07. ACM, New York, NY, 737-
748.

33. Raphael Chand, Pascal Felber, "Scalable Distribution of XML Content with XNet,"
IEEE Transactions on Parallel and Distributed Systems, 19, 4 (April 2008), 447-461.

34. Zografoula Vagena, Mirella Moura Moro, Vassilis J. Tsotras. 2007. RoXSum:
Leveraging Data Aggregation and Batch Processing for XML Routing. ICDE (April
2007), 1466-1470.

Carleton University, Systems and Computer Engineering, Technical Report SCE-08-04, April 2008

35. Hinze, A., Michel, Y., and Schlieder, T. 2006. Approximative filtering of XML
documents in a publish/subscribe system. In Proceedings of the 29th Australasian

Computer Science Conference - Volume 48 (Hobart, Australia, January 16 - 19,
2006). V. Estivill-Castro and G. Dobbie, Eds. ACM International Conference
Proceeding Series, vol. 171. Australian Computer Society, Darlinghurst, Australia,
177-185.

36. Boone P. 2007. A Hybrid XML Filtering Engine for Publish/Subscribe Content-
Based Routing. Carleton University, Ottawa, January 2007.

