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Abstract

With the convergence of two technological developments, wireless communication and
portable information appliances, a new paradigm of computing called mobile computing
is becoming a reality. However, due to the intrinsic constraints of mobility such as small,
slow, battery-powered portable devices, and variable low-bandwidth communication
links, the design and deployment of non-trivial mobile applications are complicated. How
to cope with these constraints is a hot research area as well as a demand of the PDA
market, especially with the advent of the PalmPilot. One promising technique to address
this problem is mobile code. Code mobility can make mobile applications adapt to the
context changes and hence improve its performance on mobile devices with the aid of a

proxy server.

In this thesis, we present our experiences from porting an existing mobile code toolkit
for Windows CE (DMOT) to a new kind of emerging resource-constrained portable
device, Palm Illc. The new version of DOMT for this environment is called KMOT:
KVM-based Mobile Object Toolkit. KMOT is designed as a platform for mobile code
applications on WinCE and PalmOS. Its performance has been evaluated by several
benchmarks, and hence we can conclude that, under certain conditions, mobile code is a
feasible artifact to overcome the constraints in mobile computing, even for resource-

constrained portable devices, and KMOT is a useful toolkit to realize the code mobility.
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Chapter 1 Introduction 1

Chapter 1

Introduction

With the convergence of two technological developments, wireless communication
facilities and portable information appliances, a new paradigm of computing called
mobile computing is made a reality. Mobile computing is distinguished from classical,
fixed-connection computing by the characteristics of many resource constraints such as
small, slow, battery-powered portable devices, and variable low-bandwidth
communication links. These constraints are not artifacts of current technology, but are
intrinsic to mobility. They complicate the design of mobile information systems and
require rethinking traditional approaches to information access and application design. In
order to overcome these challenges, various computing paradigms and techniques are
proposed and investigated. In this chapter, we will introduce some basic concepts and

issues pertaining to mobile computing and define the goal of the thesis.

1.1 Wireless Data Networking
Wireless networking technologies allow the users carrying portable computers to access
the capabilities of the global network at anytime without regard to their location or

mobility. These technologies are highly application-oriented. Circuit and packet switched
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communications are the two networking alternatives. Each one of them is provided
through a variety of technology offerings.
1.1.1 Wireless Network for Circuit-Switched Data
Cellular networks [39] and cordless telephony [39] are two main current systems utilizing
circuit switching technology. Although voice was the first major application for these
systems, they have evolved to provide data circuits through the wireless infrastructure.
Cellular networks such as GSM [34], TDMA, and CDMA [10] are suitable for wide-area
mobility which features slow and unreliable wireless data transmission, whereas cordless
systems, for instance CT2 [39], or DECT [7] can be applied to local-area mobility such as
conference rooms, university campuses, etc. with relatively high-speed data transmission.
Circuit switching technology is optimized for isochronous data traffic transmission and
hence, suitable for applications with a large amount of data to be transferred smoothly.
1.1.2 Wireless Network for Packet-Switched Data
Circuit-switched data is a somewhat selfish way of using limited resources. On the
contrary, a wireless packet-switched data service is designed for sharing both radio
resources and network resources. There are mainly two alternatives: mobile data network
[43] and wireless local area networks (WLANS) [39]. They both employ packet switching
technology and are ideal for asynchronous data traffic transmission, which is the
characteristic of applications with short, bursty data transmission patterns like in web
surfing.

Mobile data network can be generally characterized as providing high mobility, wide
ranging communication to the users. The typical systems are ARDIS [43], CDPD [21],

and the emerging GPRS [43]. These technologies provide economical means for the
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realization of mobile computing. However, due to physical layer constraints, these
systems suffer from low-speed data transmission, typically on the order of 9600 b/s. In
order to overcome this barrier, the combination of GPRS and EDGE (enhanced data rates
for global evolution) promises to improve the utilization of the radio network and provide
the potential for a whole range of mobile multimedia services in such fields as Internet
and Intranet.

Wireless local-area networks (WLANs) can be viewed as providing low-mobility
high-speed data communications within a confined region, e.g., a campus or large
building. Although WLANSs have been evolving for a few years, the success of efforts to
standardize them is very limited. The market is active with various products whose data
rate range from hundreds of kb/s to more than 10 MB/s depending on link technologies.
Roughly speaking, these technologies can be divided into two categories: using radio
frequency or using infrared. Radio frequency technology recently witnessed a new
advance called Bluetooth. There are two overall network architectures for designing of
WLANS. One is a centrally coordinated and controlled network in which base stations
exercise overall control over channel access. The other type is the self organizing and
distributed controlled network where all mobile devices have the same function and
networks are formed ad-hoc by communication exchanges among mobile devices.
Typical WLAN systems are Motorola’s Altair, NCR’s WaveLLAN, Proxim’s RangeLLAN,

WinDATA'’s Freeport, and Cabletron’s Freelink.
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1.2 Architecture of General Mobile Environment

The wireless architecture partially inherits the cellular concept, adopting fixed backbone
networks extended with a number of mobile hosts (MH). The fixed backbone connects
fixed hosts called Mobile Support Stations (MSS), or Base Stations (BS). The radio
coverage area of an individual base station is called a cell which could be a real cell as in
cellular communication networks or a wireless local area network. Figure 1.1 displays the

architecture of a wireless network [22].
e

@ Fixed Host

! MSS

Fixed Network
Mbps to Gbps

Fixed Host

Fixed Host Fixed Host

Figure 1.1 Architecture of a Wireless Network

Wireless networking allows the roaming mobile hosts to communicate with other units,
mobile or fixed, only through the base station of the cell in which it resides. As a mobile
host moves, it may cross the boundary of its current cell and enter a new cell covered by
a different base station. This process is called handoff, which can transfer a call in
progress on a radio channel automatically to a new radio channel without interruption to
the call. However, management of the handoff process in data transmission is non-trivial

due to the limited tolerance to information loss.
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1.3 Personal Digital Assistants

Since the invention of computers, their capability, size and form factor experienced
dramatic changes from mainframe to desktop to palmtop, accompanied by increasing
performance and decreasing cost. Personal digital assistants (PDAs) are one of the great
successes along these lines. A PDA is effectively a handheld PC, capable of handling all
the normal tasks of its leather-bound ancestors—address book, notepad, appointments
diary, phone list as well as other applications such as spreadsheet, word processor,
database, financial management software, clock, calculator and games. With equipment
for wireless connectivity, PDAs have achieved another giant leap in their capacity since it
is no longer necessary for them to connect to the PC or laptop through cables and cradles.
Synchronization can be achieved through an infrared port or new radio technologies such
as Bluetooth. This capacity can be also extended to communicate with WLANSs, inducing
an affordable reality to many powerful applications represented by PalmPilot in the
mobile application market.

PalmPilot enables mobile users to manage their critical personal and business
information on their desktop and remotely. They obtained market leadership with their
distinguished features including shirt-pocket size, an elegant graphical user interface, and
an innovative desktop docking cradle which facilitates two-way synchronization between
the PC and the PDA. With the launch of the Palm VII devices, which have the capability
of wirelessly accessing the Internet, great interest in mobile computing in the context of
PalmPilot has arisen in both the industrial and the academic community. Currently,
several well-known projects such as TACOMA [24] and Grasshopper [18] have been

migrated or are in the process of being migrated to the PalmPilot platform.
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1.4 The Challenges of Mobile Computing

Wireless networking technologies, together with portable devices set up the fundamental
structure to mobile computing, but also pose new challenges. The principal challenges
faced by a mobile application stem from three essential properties of mobile computing.

® Wireless Communication

The common property of wireless technologies we discussed above is that the signal or
data has to go through an air space with various barriers, which may interact with the
signal, block the signal path and introduce noise and echoes. These factors may result in
weak connectivity characterized by lower bandwidths or high bandwidth variability,
higher error rates, and more frequent spurious disconnections. As a consequence, the
quality and performance of wireless connections is much worse than that of wired
connections due to the techniques adopted to overcome these difficulties such as
retransmissions and error control protocols.

® Portability

In addition to the weight and limited input systems, portable devices, especially like the
PalmPilot, still have many other constraints: low power, hightened risk of data loss, small
user-interfaces, and limited on-board storage. For example, the Palms V weights 115g at
a size of 115mm x 77mm x 10mm and at the same time is equipped with a 160x160 pixel
backlit screen. These limitations are inherent properties of portable devices, and add a
new dimension to the design of applications for mobile devices.

® Mobility

Mobility is a unique feature in mobile computing. This advantage introduces other

challenges: the whole configuration of the system, including fixed and mobile hosts,
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changes dynamically. Assigning a fixed topology is no longer valid in mobile computing.
Location management adds extra cost to locate mobile elements when computing is in
progress. Connectivity becomes highly variant in performance and reliability, the number
of devices in a network cell changes with time, and so do both the load at the base station
and bandwidth availability.

These challenges require mobile application designers to rethink the traditional design
approach to reflect the new constraints. For example, mobile applications should
minimize dependence upon data obtained over such limited, unreliable connections and
data stored in limited, unreliable resources on a mobile host. Finding approaches to
overcome these challenges and to improve application performance is a vital and
interesting problem. The techniques proposed range from system level to application
level.

Data hoarding [23] and lazy write-back are simple system-level support for
disconnected operation. The principle of this technique is that when a network
disconnection is anticipated, data items and computation are moved to the mobile client
to allow its autonomous operation during disconnection. Upon reconnection, updates
performed at the mobile hosts are reintegrated with updates performed at other sites.
Update reintegration is usually performed by re-executing the log at the fixed host. Data
hoarding indicates that the more autonomous a mobile client, the better it can tolerate
network disconnection. A critical issue in this technique is how to anticipate the future
needs of the mobile unit for data. One approach is to allow users to explicitly specify
which data items to hoard. Another approach is to use information about the past history

of data access to predict the future needs for data. Another technique to hide both round-
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trip latency and short disconnection is operating asynchronously. In asynchronous
operation a client sends multiple requests before asking for any acknowledgment. These
techniques have the potential to mask some network failures. Low bandwidth can be
increased effectively by certain software techniques. For example, filtering and
compressing the data stream between a client application on a portable device and a
server executing on a stationary host sometimes almost double the throughput [2, 13, 25,
55]. This filtering and compression are generally realized at the system-level by
employing a “split-TCP” approach based on the client-proxy-server model which will be
discussed later, and hence is transparent to the application-layer protocol (such as HTTP).
However, this technique also suffers from an important flaw. The mobile client has to
recover the transformed data stream by consuming some resources. For example
uncompressing the data stream will consume CPU cycles and battery power, which will
degrade the performance and undermine portability—users may have to recharge
frequently. Another set of system-level techniques provides an end-to-end approach,
where “Wireless Logical Link Control (WLLC) [51] “ is designed to deal with the
specificities of the wireless link. WLLC resides directly below IP with the aim at
reducing the error rates on the wireless link. It has been shown [14] that the interaction of
those mechanisms in the link layer (here, WLLC) and the transport layer (here, TCP)
becomes beneficial if the error rate of the network exceeds a given threshold. The
advantage of the end-to-end approach is that it does not imply any change in semantics of
any of the protocols in the TCP/IP protocol suite. However, it must be also recognized
that the use of error correction in the link layer will introduce variable delays, which will

be observable by the application. High bandwidth variability can be approached at the
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application level by adapting to the currently available resources, providing the users
with a variable level of quality of service.

Power consumption is another main concern in mobile computing since the battery
size and weight have to be limited to some small range for easy portability. There are
several important approaches from hardware to software to save power [17]. (1) Battery
size can be reduced by greater levels of VLSI integration and multichip module
technology. (2) Voltage can be reduced by redesigning chips to operate at lower voltages.
(3) Clock frequency can be reduced by trading off computational speed for power saving.
Other power-saving methods come from management software which can power down
individual components when they are idle, for example, spinning down the internal disk
or turning off screen lighting, even leading the computer into a doze mode in which clock
speed is reduced and no user computation is active. Doze mode will return to normal
operation upon receipt of a message.

Coping with limited storage is not a new problem in mobile computing. Solutions
include compressing file systems, accessing remote storage over the network, sharing
code libraries, and compressing virtual memory pages [16]. However, due to network
disconnections, these network-dependent technologies are less appropriate for mobile
computers. A novel approach to reducing program code size is to interpret script
languages, instead of executing compiled object code, which are typically many times the
size of the source code. The typical examples are General Magic’s Telescript and Apple
Technology Group’s Dylan and NewtonScript. An equally important goal of such
language is to enhance portability by supporting a common programming model across

different platforms.
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Although these techniques attack some inherent challenges of mobile computing, they
do not address the problem of deploying a non-trivial application on the resource-
constrained mobile devices. Here, non-trivial applications refer to those which have a lot
of CPU-bound work as well as require a large address space to execute. These
applications are typically power consuming, such as a MP3 player. In order to achieve
this goal, offloading computationally intensive application components from portable
devices to more powerful servers in the access network is a promising approach. This
kind of computation migration results in an adaptive application whose efficiency has

been demonstrated in [1, 25, 30].

1.5 The Adaptive Approach

In mobile computing, adaptation means mobile applications need to take advantage of the
changing availability of resources in the mobile environment to adjust their behavior, so
as to maintain the semantics of the application for the user, and at same time achieving
better overall performance. Due to the different nature between the wired and wireless
network, an adaptive application is usually built based on a new kind of computing
paradigm known as Client-Proxy-Server model to keep the application server in the
access network unchanged.

1.5.1 The Paradigms of Mobile Computing

The Client-Proxy-Server Model is considered commonplace in today’s heterogenous
network environments. This model is generated by adding another component to the
traditional Client-Server Model. It takes the form of an intermediary placed between two

communicating end-points such as a client and server. The purpose of the intermediary is
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to improve the quality of the network as perceived by the client along some dimension
which is constrained and blur the boundary of functionality between client and server.
Hence, this architecture somewhat alleviates the impact of the limited bandwidth and the
poor reliability of the wireless link. The typical functionality at the proxy includes
support for messaging and queuing for communication between the mobile client and the
proxy, moving some responsibilities from the client to the proxy. The proxy can also
cache data to minimize long round trips on the network and thus reduce application
response time.

However, this model also has an important drawback, the communication between a
mobile host and a correspondent host in the access network is no longer “direct contact”,
since they are interacting through a “relay” (i.e. the proxy host). This invalidates the end-
to-end semantics of a transport protocol, and may jeopardize some application layer
protocols like ftp or rlogin, which assume end-to-end reliability from TCP. In addition to
this, security is another problem to proxies, unless authoring mechanisms are introduced.
1.5.2 DOMT: Our Motivation and Approach
Adaptation has different targets ranging from those attempting to alleviate the effects of
congestion and weakly connected operations to User Interface Management System
which attempt to adapt to the display capabilities through battery management systems
within the operating system. Adaptation can be realized in different components of the
systems with different technologies. The rise of middleware has generated interest in
providing a generic adaptation architecture and mobile code techniques provide a feasible
approach to make it a reality. DOMT [30] is a mobile code toolkit implemented as a

middleware based on Java technology for WinCE to reflect the confluence of these two
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technologies. It adopts the application-aware strategy to handle the mobile characteristics
of the environment, and employs the mobile code technique to support the design of
adaptive applications. The fundamental mechanisms provided by this toolkit are dynamic
object migration and remote method invocation. The key task of the programmer in
building such applications with DOMT is to define movable objects. The toolkit runtime
system can dynamically divide the program into portions that run on the mobile client
and portions that run on the proxy server according to the current environment
parameters. The two parts communicate by means of remote method invocations.

DOMT is a promising approach to support the building of adaptive applications.
However it does not run on the resource-constrained portable devices like PalmPilot. We
noticed that this phenomenon also happens in many projects like Coda, Odyssey, Rover
and BARWAN which are designed for supporting adaptive applications on various
mobile platforms, including PDAs. Only very few studies [24] focused on building
applications on PalmPilot and identify the benefits and tradeoffs involved. As a
consequence, a wider acceptance of adaptive application based on code mobility is
presently hampered by the fact that the soundness of the abstractions and mechanisms
proposed is not verified by quantitative evaluations and experimental evidence. Hence,
our motivation is twofold. First, we build a mobile code toolkit called KMOT (KVM-
based Mobile Object Toolkit) for these portable devices. Second, based on this toolkit,
we try to evaluate the efficiency of code mobility of an application between a resource-
constrained portable device and its powerful proxy servers. Our approach is to extend
DOMT to PalmPilot devices with KVM as a porting platform. KVM is a scaled-down

version of Java Virtual Machine for resource-constrained portable devices. However, due
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to the limitations of the KVM technology, some fundamental functions and mechanisms
used by DOMT are not provided, and the architecture adopted by DOMT cannot be
reused directly under the scarce memory of PalmPilot device. Therefore, KMOT is far

from a simple compile-and-run portability exercise.

1.6 Contributions of the Thesis

The contributions of the thesis can be summarized as follows:

® Extending DOMT to PalmPilot platform as KMOT, in which the mechanism to
support object migration, construction of distributed object graph and remote method
invocation are provided. This mechanism is based on Java Serialization and Class
Reflection which are not present in KVM.

® The architecture of DOMT is adjusted for KMOT. A new implementation method,
1.e., Distributed Recursive Method, for Nested Method Invocation is realized which
can simplify this kind of method invocation on resource-constrained mobile devices.

® A performance evaluation of dynamic object migration between resource-constrained
portable devices and the proxy server is presented.

® Early insights “KMOT: A Mobile Code Toolkit for Resource-constrained Portable
Devices” are published in Proceedings of the Symposium on Software Mobility and

Adaptive Behavior, pp 89-97, York, United Kingdom, March 2001.
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1.7 Thesis Road Map

There are 7 chapters including this one in the thesis. They are organized as follows. In
Chapter 2 we survey technologies to support adaptive application design. One promising
technique is mobile code, which can make mobile applications adapt to the context
changes dynamically and hence improve the application performance on mobile devices
with the aid of a proxy server. In Chapter 3, we give a brief overview of the DOMT
Toolkit’s abstractions, architecture, and its fundamental functionality. DOMT is our
starting point to realize KMOT. Chapter 4 outlines the design and implementation of
KMOT including its fundamental support and its architecture as well as its limitations.
Chapter 5 provides an evaluation of KMOT. Experimental setup and results are
presented. Chapter 6 discusses the related work including some well-known mobile-
aware adaptive systems such as Coda, Odyssey and Rover as well as other mobile code
systems. Finally, Chapter 7 draws our conclusion and raises some problems for future
work. Appendix A describes our further research on the strategies of scheduling objects
between the mobile client and its proxy server so as to improve the application

performance.
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Chapter 2

Background

2.1 Introduction

Due to the well-known characteristics of mobile computing, we need the applications to
adapt to the changing constraints of the resources available in the environment in a quick
manner. In order to achieve this goal, one of the approaches requires that the computation
and communication between the client and its proxy server can be traded off in the
progress of computing. By moving computational components from the mobile device to
its powerful server, or vice versa, the communication cost such as the bandwidth
requirement, and the battery drain can be reduced dramatically. A component in an
object-oriented program can be a group of objects to accomplish some task. Component
movement can be done in an offline or online manner, depending on the application
properties. The offline approach requires the application designer to figure out the
program components to reside at different sites prior to their execution. This approach
will naturally result in a distributed object computing system. CORBA [48], DCOM [6]
and Java RMI [54] are typical object-based distributed systems to realize this approach.
The online approach is more flexible than its offline counterpart since it can ship the

components during the program execution, and hence can adapt to the mobile
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environment more gracefully. The effect of this approach is well-exemplified in mobile
code techniques.
In this chapter, we discuss some background knowledge to realize adaptive

application in the mobile environment.

2.2 Distributed Systems

Performing a computation on top of networked computers is called a distributed
computation, since they are not physically resident in the same host and have autonomy.
This distribution enjoys many advantages such as collaboration through connectivity and
networking, performance improvement through parallel processing and extensibility
through dynamic configuration and reconfiguration. During the last decade, object
technology gained wide acceptance, favoring its characteristics of abstract data typing,
inheritance and polymorphism. The composition of these two techniques created a new
research area called Distributed Object Computing (DOC) [15] based on a client-server
architecture. These techniques made life easier for platform developers and application
developers. In this subsection, we first discuss the common characteristics of object-
based distributed system and then look at some concrete systems including the Common
Object Request Broker Architecture (CORBA) defined by Object Management Group
(OMQ), and Java based solutions such as JavaRMI. Finally, we briefly introduce the
Open Group’s Distributed Computing Environment (DCE) model[38], which is deemed a

competitor to CORBA.
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2.2.1 Distributed Objects

An object-oriented program consists of a collection of interacting objects which are
entities encapsulating data and methods to process them. Objects communicate with each
other by sending and receiving messages. Each object has an identifier in the underlying
object system; for example, the value of a Java object reference is an object identifier or
OID. A class describes a potentially infinite set of similar objects and can be used as
types for defining parameters and results in signatures. Multiple inheritance allows a
class to make use of the code of several other classes. Java does not provide multiple
inheritance. But it does allow classes to implement several interfaces as well as inheriting
from one class. In Java, an interface is an abstract definition of the signatures of a set of
methods. The method executed is chosen according to the class of the recipient of the
message. This is called dynamic binding.

Objects in distributed systems are called distributed objects, which have some unique
features. First, the distribution of objects in different address spaces or physical sites will
result in remote method invocations (RMI), provided that the class implementation is
available. Second, an object may be accessed concurrently by more than one remote or
local objects, and hence the possibility of conflicting accesses must be addressed.
However, the fact that the data of an object is accessed only by its own methods allows
objects to provide methods for protecting themselves against incorrect accesses. For
example, they may use synchronization primitives such as condition variables to protect
access to instance variables. The difficulty of the first problem is that RMI should be
transparent. That is, an object should be able to send a message to another object and to

receive a reply without being aware of whether the receiver is local or remote. This
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transparency may be achieved by providing a local proxy for each remote object that can
be invoked by a local object. The role of a proxy is to behave like a local object towards
the message sender, but instead of executing the message, it forwards the message to the
remote object. The remote object performs the message and replies without being aware
that its reply is sent back to a sender on a remote site. A remote object has a ‘skeleton’
object whose class has the server stub procedures as its methods. The classes for the
proxy and the skeleton used in RMI are generated automatically by an interface compiler
like the client and server stub procedures in RPC [5].

Distributed object systems may adopt the client-server architecture. In this
architecture, objects are managed by servers and their clients invoke their methods
through proxies. Objects can be replicated in order to obtain the usual benefits of fault
tolerance and enhanced performance. The Clouds system and Shapiro’s Larchant system
[46] use distributed shared memory to replicate objects at the point of use, whereas the
Emerald [32] system experimented with object migration with a view to enhancing the
performance and availability of objects.

2.2.2 CORBA

The CORBA specification defines an abstract object model similar to the one described
in the previous subsection. It includes an IDL (interface definition language) to provide
facilities to define interfaces, types, attributes and method signatures. Each remote object
has an IDL interface specifying the methods that may be requested by clients. An IDL
interface compiler generates client stubs in the language of the client and IDL skeletons
in the language of the server. The CORBA architecture is designed to support an Object

Request Broker (ORB) that enables clients to invoke methods in remote objects that have
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been implemented in a variety of languages. These invocations are realized by the
cooperation between the client stubs and server skeletons for marshaling, transmitting,
and unmarshaling the parameters and the results, and hence the language-neutral property
is achieved. A server in CORBA is a process that is executing the implementation of one
or more remote objects. These objects are allowed to become clients of other remote
objects, thus enabling clients to perform invocations that cause chains of related actions
on distributed objects. The Object Adapter deals with everything that a client needs at run
time in order to invoke a method in a remote object such as the registering object
implementation in an implementation repository, activating an object implementation in a
server process whenever a client needs it, and registering the servers currently offering
activated objects and accessing them as needed by clients. CORBA extensions are also
enriched to provide transactions or some form of concurrency control and recovery. It
also provides some form of object replication, which facilitates the effectiveness of
interactive programs.

CORBA does not state anything about the semantics of remote objects or how they
are implemented because it was designed to provide services based on existing software.
Client software can be designed with caches, but the design of a cache is difficult when
the semantics of server objects are unspecified. CORBA objects are generally fairly
large-grain objects due to the considerable performance overhead for RMI, and therefore,
object migration and object to be passed by value are not supported by CORBA. On the
other hand, the language-neutral nature limits the kinds of data to be transmitted to the
basic data types that can be represented in all the target languages. Furthermore, in

object-oriented terms, no polymorphism is allowed—the transmitted object’s type (or its
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reference type) cannot be a subtype of the type expected by the skeleton. This requires
that the receiving process know exactly what the sending process places on the wire.

Although CORBA provides distributed applications on heterogeneous systems, its
current technology is not designed for use in a mobile computing environment. First, its
specification, including Inter-ORB protocol (IIOP) does not indicate whereabouts to
address the mobility of the clients or the servers. Second, its implementations are not
typically built upon micro-kernel architecture. This makes it difficult to modify the
CORBA runtime down to its bare essentials, which is important for embedded system
development. Finally, its implementations do not give developers low-level control over
the management of system resources like heap allocation. All these limitations prevent
CORBA from deploying on mobile devices to support adaptive applications.

To better meet the need of adaptive applications and the mobile system programmers,
CORBA specifications and implementations need to be redesigned.
2.2.3 JavaRMI
Although on the surface, the RMI system is just another RPC mechanism, much like
CORBA, it represents a very different design philosophy, one that results in a system that
differs not just in detail but in the very set of assumptions made about the distributed
systems in which it operates. These differences lead to differences in the programming
model, capabilities, and way the mechanisms interact with the code that implements and
builds the distributed systems.

As we described above, CORBA was built on assumptions of heterogeneity. These
mechanisms assume that the distributed system contains machines that might be different,

running different operating systems. However, the Java RMI system is built on an
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entirely different set of assumptions. Heterogeneity is not the major problem since the
client and the server are both Java classes running in the Java virtual machine, which
makes the network a homogeneous collection of machines. With this single-
implementation language assumption, the RMI system does not need a language-neutral
IDL and any Java object is allowed to pass as a parameter or return value in a remote call.
Remote objects pass by reference, in effect, by passing a copy of the object’s stub code.
Non-remote objects are passed by value, creating a copy of the object in the destination.
The objects that pass are real objects, not just the data that makes up an object’s state.
Unlike CORBA, this distinction realizes the polymorphism, which means the skeleton
can receive a subtype of the type it expects, and hence it is not necessary for the receiving
process know exactly what the sending process places on the wire in advance. This
property provides flexibility to design of more powerful applications. RMI uses a variant
of the Java Object Serialization protocol to marshal and reconstruct objects. Unlike
CORBA whose stub code is linked ahead of time into the client, Java stubs for remote
objects originates with the object and are loaded at runtime when needed. This approach
allows programmer using the system to build a variety of “smart” proxies. Such smart
proxies can cache certain values in the stub, avoiding the need to make remote calls in
certain cases, or can be extended with more logic to move its associated remote object to
the point of use, enhancing the performance. This is a desired property to realize adaptive
applications.

2.2.4 DCE

DCE, short for Distributed Computing Environment, is a technology that is a bit older

than CORBA, but more stable and scalable. Not only does it offer the basic RPC
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mechanisms and IDL stub compilers needed to create distributed applications, but it also
offers security and authentication through Kerberos (an area that still exhibits weakness
in CORBA). Unlike CORBA, it is not a ground-up redesign of the principles of
distributed computing, but is rather a tightly integrated package of existing technologies.
The DCE architecture is a layered model that integrates a set of fundamental technologies
bottom up from the most basic supplier of services (e.g., the operating system) to the
highest level consumers of services (e.g., applications). To applications, DCE appears as
a single logical system, which can be organized into two broad categories of services: the
DCE Secure Core and DCE Data Sharing Services. The DCE Secure Core services give
software developers the tools such as multithreading, RPC to create end-user applications
and system software products for distributed computing. DCE Data Sharing services
facilitate better use of shared information and require no programming by the end-user.
The main component is the DFS distributed file system, which is a high-performance,
scaleable, secure method for sharing remote files. DFS appears to the user as a local file
system, providing access to files from anywhere in the network for any user, with the
same file name used by all (i.e., uniform file access).

Although DCE can provide similar functions to the CORBA, the fundamental
difference between them is that DCE was designed to support procedural programming,

while CORBA was designed to support object-oriented programming.

2.3 Mobile Code System

We are concerned with the techniques to support adaptive applications. The distributed

systems like CORBA or JavaRMI achieve this goal by balancing the workload among
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machines in the systems statically prior to execution. They focus on static distributed
objects rather than dynamic mobile objects. Therefore, this approach does not ensure the
degree of flexibility, customizability, and reconfigurability needed to cope with the
challenge of adaptive applications. A different promising approach is to exploit the
notion of mobile code. Code mobility can be defined informally as the capability to
dynamically change the bindings between code fragments and the location where they are
executed [9]. The ability to relocate code is a powerful concept since it implies that
computation migration becomes a reality. Computation migration provides us with the
opportunity to trade off the cost between the communication and computation, and hence
allows adaptive applications to react to the changes of the mobile environment
dynamically and gracefully.

2.3.1 Execution Model

The execution model for code mobility, well defined by Gian Pietro Picco [9], can be
abstracted into several components. The first is the Computational Environment (CE)
which resides upon the network operating system. The purpose of the CE is to provide
applications with the capability to dynamically relocate their components on different
hosts. The components may be executing units (EU) or resources. Executing units
represent the computational elements of the model and may be modeled as the
composition of a code segment and a state. Single-threaded processes or individual
threads of a multithreaded process are typical examples of EU. Resources are passive
entities representing data, such as a file in a file system, an object shared by threads in a
multithreaded object-oriented language, or an operating system variable. The code

segment provides the static description for the behavior of a computation, and a state can
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be decomposed into a data space and an execution state. The data space is the set of
references to resources that can be accessed by the EU. The execution state stores private
data that cannot be shared, as well as control information related to the EU state, such as
the call stack and the instruction pointer.

This model gives us a basis to identify the various mobile code mechanisms and
classify the existing mobile code systems.
2.3.2 Mobile Code Mechanisms
In conventional systems, each EU is bound to a single CE for its entire lifetime.
Moreover, the binding between the EU and its code segment is generally static. Even in
environments that support dynamic linking, the code linked belongs to the local CE.
However, in mobile code systems, the code segment, the execution state, and the data
space of an EU can be relocated to a different CE. These components can be moved
independently. There exist two forms of mobility, characterized by the EU constituents
that can be migrated. Strong mobility is the ability of a mobile code system to allow EUs
to move their code and execution state to a different CE. Weak mobility is the ability of a
mobile code system to allow code transfer across different CEs; code may be
accompanied by some initialization data, but no migration of execution state is involved.

Strong mobility is supported by two mechanisms: migration and remote cloning. The

migration mechanism suspends an EU, transmits it to the destination CE, and then
resume it. This mechanism can be either proactive or reactive, depending on whether the
migration is determined autonomously by the migrating EU or not. The remote cloning
mechanism creates a copy of an EU at a remote CE, but the original EU is not detached

from its current CE. As in migration, remote cloning can be either proactive or reactive.
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Mechanisms supporting weak mobility provide the capability to transfer code across
CEs and either link it dynamically to a running EU or use it as the code segment for a
new EU. This mechanism can be either synchronous or asynchronous, depending on
whether the EU requesting the transfer suspends or not until the code is executed.

In both strong and weak mobile code systems, upon migration of an EU to a new CE,
its data space, i.e. the set of bindings to resources accessible by the EU, must be
rearranged. Two classes of strategies are possible: replication strategies and sharing
strategies. Replication strategies can be further divided in static replication strategy and
dynamic replication strategies. In static replication strategy, some resources such as
system variables can be statically replicated in all CEs. The original bindings to such
resource are deleted and new default bindings are established with the local instances on
the destination CE. Dynamic replication strategies allow copies of the bound resources to
be established dynamically in the destination CE, the original bindings are deleted, and
new bindings are established with the copied resources. Sharing strategy implies that the
original binding is kept and therefore inter-CE references to remote resources must be
generated. Mobile code system may exploit different strategies for different resources,
depending on their properties.

2.3.3 Mobile Code Paradigms

Carzaniga, Picco, and Vigna [9] decomposed distributed applications into several
components and classified the interactions between the components to provide a
description of mobile code design paradigms. These paradigms are categorized into
Client/Server (CS), Remote Evaluation (REV), Code on Demand (COD), and Mobile

Agent (MA) paradigms. The components used here consist of resource components such
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as code and data, computation components such as thread of execution. The interactions
indicate the event and information passing between two or more components. In these
paradigms, distribution execution can be modeled as primitives operating in one of the
above mobile code scenarios.

The CS paradigm is well-known and wildly used. In this paradigm, the computation
components as well as their resources such as code and some data are kept fixed at the
client and server sites respectively. The client computation component requests the
execution of a service with an interaction with the server’s corresponding part. This
interaction may ship some data as input parameters, and as a response, the server
performs the requested service and produces some sort of result that will be delivered
back to the client with an additional interaction. This is the usual RPC style of
programming.

The REV paradigm can be viewed as an extension of the CS paradigm by not only
shipping the data but also shipping the code to the remote server for executing. Although
they are very similar in nature, the additional shipping of code will pose more
requirements on the runtime system of procedural languages, which are always used in
CS programming.

The COD paradigm is an inversion of REV. Instead of sending code and data to the
remote server for execution, the client requests code and data from the server, and
executes it locally. An example of this form of code mobility is the applet service in Java
programming language.

Finally, MA is the most dynamic and autonomous of the above paradigms. Unlike CS,

REV, and COD, whose code and data component can be transferred from one site to
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another, but computation component remains fixed to their original sites, MA can move
not only its resource components, but also its entire computation component along with
its state.

The mobile code paradigms define a number of abstractions for representing the
bindings among components, locations, and code, and their dynamic reconfiguration.
Unlike the traditional computing paradigms, these bindings are dynamic in nature. This
property suggests that these abstractions are effective in the design of adaptive mobile
applications, which require a mechanism to react to the changes of the mobile
environment. Mobile code paradigms can achieve this goal by providing component
mobility. By changing their location, components may change dynamically the quality of
interaction, reducing interaction costs. But it is not clear when and how these paradigms
should be used in mobile computing. Obviously, CS paradigm as we mentioned in the
previous chapter, is directed at traditional fixed connection computing. Mobile Agent can
migrate, at times of its own choosing, from machine to machine in a heterogeneous
network, and therefore have the potential to provide a convenient, efficient and robust
paradigm for mobile applications, especially for disconnected operations. However, due
to its autonomous operations, agents always have a wealth of features, thus becoming
very heavyweight. They, hence, are usually not amenable to the resource-constrained
portable devices in mobile computing. We can use the REV paradigm to cause the
execution of code on a remote site to save the battery and CPU cycles of the local site. In
addition, the COD paradigm enables computational components to retrieve code from
other remote components. The union of these two paradigms provides a flexible way to

extend dynamically their behavior and the types of interaction they support, and hence is
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a good candidate to realize our mobile code toolkit. Unlike mobile agent, the unit of
mobile code can be an object or a group of objects decided by the adaptive mechanism in
response to current environmental changes. This fine-granularity mobility is beneficial to
the resource-constrained portable devices involved in mobile computing, and considered
in our toolkit design also.

2.3.4 Java Language: A Case Study

Mobility has a strong impact on programming language features such as its data size and
type system, the scope of an identifier, the name resolution as well as its linking
mechanism [11]. In this subsection, we analyze Java [50] from these perspectives to
demonstrate that Java has triggered most of the attention and meet the expectations for
code mobility.

In many other languages, such as C, C++. The data type formats and sizes may depend
on the language implementation for some specific computer architecture to obtain
optimal performance. Java data type formats and sizes are clearly specified. For instance,
the Java compiler translates Java source programs into an intermediate, platform
independent language, called Java Byte Code, which is a common format to the Java
virtual machine on all architectures. This feature is important to achieve mobility.

The language type system is generally categorized into typeless system and typeful
system. In typeless language, all data belong to an untyped universe and can be
interpreted as values of different types when manipulated by different operators. This
flexibility is desired by code mobility, but counterbalanced by the impossibility of
protecting data against erroneous manipulations. The typeful system has an extreme case

that is the strong type system, in which the language definition ensures that the absence
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of type errors can be guaranteed for a program statically. This restriction prohibits code
mobility with the reason that code can be downloaded from a remote site and linked
dynamically to a running program, and type correctness of the program cannot be verified
statically. Therefore, these two extreme cases always compromise with each other. Java
language reflects this by weakening the type system through complementing compile-
time type checking with several type checks performed at runtime. For instance, during
the translation of Java source into bytecodes, static type checking is accomplished. Java
Byte Code can be dynamically loaded into and executed by the Java Virtual Machine.
Type checking is performed at the runtime to ensure that this dynamically loaded and
linked code obeys the language type rule.

The scope of an identifier is the range of instructions over which the identifier is
known. Static scoping means that the scope of a variable name is determined by the
lexical structure of the program such as function scope, class scope, and file scope.
However, in dynamical scoping, the scope of a name can be modified at run time by the
programmer such as how function calls are nested. For example, we have a segment of

Java code:

public class Scope
{
static int x = 1;
public static void print ()
{
System.out.println("x = "+x);
}
public static void main(String[] args)
{
boolean x = true;
print () ;
}

}

Under static scooping the x written in print is the lexically closest declaration of x, which

is an int. Hence the output of this segment is x=/. However, under dynamic scooping,
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since print has no local declaration of x, print’s caller is examined. Since main calls print,
and it has a declaration of x as boolean, that declaration is used, and output under this
condition is x = frue. Compared with static scoping, dynamic scoping makes type
checking and variable access harder and more costly due to its dynamic nature. However,
it is closely related to the virtual function concept used in C++, which implements
polymorphism, an essential feature of an object-oriented programming language to
support code mobility. Java adopts static scoping and realizes the polymorphism, which
make it amenable to mobility.

Name resolution rules determine which computational entity is bound to each
identifier in any point of a given program. It is critical in mobile code language. During
the execution of a mobile code application, the names that appear in the code may be
bound to entities that may be located on remote computational environments. Name
resolution can either be performed automatically by the runtime support or hooks in the
language runtime support can be provided to allow programmers to define their own
name resolution rules. Java does not offer particular features to perform automatic name
resolution for remote resources. In Java, name resolution for a local resource is
performed statically and remote resources have to be accessed explicitly. For example, a
Java program can download and link code from the network but the name resolution of
dynamically downloaded classes has to be explicitly programmed. A Java programmer
must be aware of the location of the classes and write his own class loader that resolves
the names of the classes to be downloaded from the network.

Dynamic linking defers the code linkage to the program till the runtime. This code

may reside on the local site or somewhere on the remote side. Remote code dynamic
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linking allows programmers to implement a mobile code application based on the COD
paradigm. Java exploits remote code dynamic linking extensively to enable the
implementation of scalable and dynamically configurable applications. The loading and
linking of the different classes that compose a Java application are performed at runtime
by the class loader, which is part of the Java virtual machine.

Capturing and restoring the application states is another feature, which supports code
mobility. Currently, Java provides a serialization mechanism, which allows the capture
and restoration of object’s states, and therefore the migration of objects between
machines is supported in Java.

Although Java provides the above mechanisms to support code mobility, it still has
some deficiencies. Java does not provide any mechanism for capturing and restoring a
thread state. The consequence is that most of the mobile code systems implemented on
top of Java only provide weak mobility. However, this limitation can be overcome by

extending Java virtual machine.

2.4 Thread and Process Migration

The technologies most closely resembling the work on strong mobility is the thread and
process migration in Operating Systems. Process migration [48] is the transfer of a
sufficient amount of the state of a process from one machine to another for the process to
execute on the target machine. Unlike mobile agents, the interest in this concept is from
the research on load balancing in distributed systems. Hence, process migration has a
different implementation from the mobile agent although they have to show almost the

same issues. In general, process migration is usually implemented at a low level, making
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no assumptions about the application structure, or even about the programming language.
The machine architecture and environment are assumed to be very similar, if not
identical, at the two ends of the migration. Ideally, the migration policy and mechanism
are only realized in the Operating System and the processes are migrated passively by the
Operating System, and transparent to other reference processes as well. However, in
reality, it is hard to achieve this goal due to the inherent complexity such as the process
structure, process interactions. Therefore, process migration is always under some
restriction. For example, to be migratable, a process should not perform I/O on non-NFS
files, spawn subprocesses, utilize their pid or any other location-specific information and
exploit pipes and sockets. In addition to these restrictions, compiler and the language
runtime system are sometime enriched to provide support for process migration.

Moving a thread really amounts to moving a thread state. The thread state is
essentially composed of a data component representing the values of local variables in
the activation records on the call stack and a code dependent component consisting of a
thread’s executable code and pointers into this code. Form this perspective, thread
migration is similar to the process migration, and the modification of the operating
system and compiler can be also used to attack this problem.

Mobile agents generally adopt mobile code languages, which are usually interpretive
languages. The interpreters (virtual machine) are always the computational environments
to support the execution of the mobile agent program. The time and destination for
migration are determined autonomously by the mobile agent, different from the migration
of processes, which are scheduled by the operating system. The mobility of an agent is

usually reduced to a single instruction like the Telescript [53] go instruction, and Obliq
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[8] hop instruction. These instructions are realized in the corresponding interpreters to
capture the current state of the agent and transmit this state to the destination machine,
and the interpreters remain fixed. On the other hand, unlike process migration, the
location-specific operations in mobile agent are also handled by the agent with the aid of
the interpreters. Therefore, the interpreter is always called agency to support the agent
mobility. From this perspective, the mobile agent is implemented at a higher level
without resorting to special support from the underlying operating system. Compared to
the process migration mechanisms, the agent mobility mechanism is easy to extend to the
heterogeneous platforms since it adds an extra layer, i.e., the agency, above the operating
systems, whereas the computational environments for the process migration are operating
systems. Hence, process or thread migration is far more difficult than agent migration.

For further information about progress migration, please refer to [57].

2.5 Summary

In this chapter, we surveyed the fundamental technologies to realize adaptive applications
in mobile computing. An adaptive application is established on the client-proxy-server
model and distributed in nature. Its computational loads can be divided into two parts
prior to its execution, and reside on both mobile hosts and its proxy server. This is a static
manner for mobile applications to adapt to its slow CPU speed. CORBA, RMI and DCE
are good examples to realize this approach. However, they all have limitations with
regards to deployment on the resource-constrained portable devices. On the other hand,
the mobile environment is a dynamic environment in terms of battery power, wireless

bandwidth and other factors. Although the static adaptation can deal with the factors like
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slow CPU speed of mobile devices, it can not handle the dynamic changes of battery
power and wireless bandwidth. Mobile code is a promising technique to implement a
dynamic adaptive application by shipping code during the execution of the program. We
outlined this technique in this chapter, including its execution model, mobility
mechanism, and the computing paradigm. Based on the characteristics of these
paradigms, we prefer the combination of REV and COD as our paradigm to design our
mobile code toolkit. A mobile code language has many distinct features compared to the
traditional procedure languages. These features, as we summarized in this chapter, are
centered on the code mobility. Java is a good example language to implement a mobile
code system. We analyzed this language and pointed out its advantage and deficiency to
support code mobility. We also choose it as our primary developing language due to its
popularity and portability. Finally, we gave a brief introduction of thread and process
migration, and then compared them to mobile agents. Due to the different implementation
layer, thread and process migration has a different mobility model from the mobile code
system, and hence it is not a mainstream in the research on mobile code.

Our mobile code toolkit is targeted toward resource-constrained portable devices, and
the union of REV and COD is our paradigm to realize adaptive applications. We use Java
to implement this toolkit. The function and architecture of this toolkit are partially
borrowed from DOMT, a mobile code toolkit for Handheld PC with WinCE, which will

be discussed in the next chapter.
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Chapter 3

DOMT Overview

A mobile application is a composition of objects encapsulating functionality, consisting
of two disjoint sets of objects, one residing at the portable device, and the other residing
at the proxy server. These sets should change dynamically for performance improvement
according to the mobile environment. DOMT is a dynamic object migration toolkit
developed at Carleton University whose goal is to realize this functionality by extending
Java Virtual Machine with a middleware that facilitates the mobility of objects between
portable hosts and proxy servers in a dynamic manner, transparent to the application
developers and users. On the other hand, to enhance the flexibility, DOMT also provides
a set of mobile-aware application programming interfaces, which allow a mobile-aware
application to ship its objects explicitly. Hence, DOMT offers applications a dynamic
distributed object system based on a client/server architecture. Clients are DOMT
applications that typically run on mobile hosts, but could run on stationary hosts as well.
Servers typically run on stationary hosts and hold the long-term state of the system for
making dynamic object migration decisions. DOMT consists of a class library linked into
all applications and runtime objects on client and server machines. DOMT applications
actively cooperate with the runtime system to import objects into the local machine or

export objects to the remote machine, and invoke well-defined methods on those objects
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regardless of their locations. The key task of the programmer in building an application
with DOMT is to define dynamic movable objects (DMO), the runtime system can divide
implicitly these objects into portions that run on the client and portions that run on the
server. The two parts communicate by means of remote method invocation (RMI).

This chapter briefly describes DOMT from two aspects based on its fundamental
support for dynamic object migration. First, I describe the structure of the toolkit, and
then discuss the functionality of the toolkit in managing object migration and remote

method invocation. For further insight into the DOMT Toolkit, see [37].

3.1 DOMT Architecture

DOMT consists of a class library linked into all applications and runtime modules for
client and server machines. Currently, it can run on desktop computers with Windows NT
and Handheld PCs with Windows CE. DOMT adopts a symmetric architecture between
the portable side and proxy side, running the same program on both sides. Its runtime
module is structured as three protocol layers and consists of four components. At the top
is the application, linked with the DOMT library. Below the application is the Proxy
Layer and encompassing the code storage. Finally, the object server is the Reference
Layer for the system sitting between the Proxy Layer and Transport Layer. Their

relationships are depicted in Figure 3.1.
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Figure 3.1 DOMT architecture

The function of each component is discussed below.
3.1.1 Library
Each DOMT application is linked with the DOMT library. This library defines the
DOMT application programming interface and manages communication between the
client application and the DOMT runtime system. DOMT applications are typically
structured in an event driven manner to allow the DOMT library to handle messages from
the DOMT runtime system as they arrive. The typical reaction is to ship objects between
client and server. However, this structure is not strictly necessary.
3.1.2 Proxy Layer
The Proxy Layer consists of proxy objects for some specific application and code storage.
The function of this layer is to provide applications with transparent access to objects
locally or remotely.
® Proxy Object: Each dynamically movable object of an application needs to be

associated with a proxy object that has the same interface. Other objects will not

reference application objects directly, but they reference them through their proxies.
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Hence, the proxy object acts as a mediator between the caller and the real object
realizing transparent remote or local method invocation. In Figure 3.2, Object Px is
the proxy object of Object x. The real Object B accesses real Object A through its
Proxy Object P4. This will facilitate moving objects without worrying about

changing reference of other objects to it.
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Figure 3.2 Proxy Objects with their associated Objects

There are two scenarios regarding object migration, calling object migration and called
object migration. In Figure 3.2 Object B is the calling object and Object A is the called
object. Figure 3.3(a) demonstrates moving the calling object, Object B from the portable
device to the proxy server. Moving a calling object does not require moving its relevant

called objects. At the proxy server, however, the proxies of the relevant called objects
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(a) calling object migration (b) called object migration
Figure 3.3 DOMT Object Migration
must be created to forward the calls from the calling object to the corresponding real
called objects residing at the portable device. In our scenario, moving Object B will not

require moving Object A. At the proxy server, only a proxy of Object A, P, must be
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created to forward the calls to Object A at the portable device. A new proxy of B will be
instantiated at the proxy server to allow local objects there to reference Object B. The
other scenario, moving a called object has a slight difference from moving a calling
object in that it is moved to the remote side without creating any other proxy objects to
forward remote method invocations. In Figure 3.3(b), migrating A does not require
changing the reference to A and B since B references only the proxy of A. Any calls from
B to A will be forwarded remotely through the proxy to the portable device. The proxy of
A at the proxy server again allows other objects to reference A without affecting the
flexibility of moving A again to the portable device. These descriptions reveal that the
cost of moving a calling object is higher than moving a called object since calling objects
have high couplings with their relevant objects.

Services in Proxy Layer are available at its SAP (Service Access Point) called
invokeMethod which is defined in some class to receive the method invocation
parameters of some real object such as method name and its corresponding arguments.
Proxy Layer is responsible for sending this data to the remote site by encapsulating it into
a unit datagram and forwarding this datagram to the underlying Reference Layer through
its SAP. On the other hand, invokeMethod can also be used to receive the message sent
from its underlying layer.
® Code Storage: The code storage contains the validated classes files (bytecode) at the

portable device. It is managed by DOMT runtime system. At the request of the proxy
device, the code will be transferred to the proxy. On the other hand, imported class
files from the remote server also reside in the code storage. The code storage is the

static part of DOMT system and can survive between application sessions.
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3.1.3 Reference Layer

The semantics of object migration and remote method invocation are realized in the

Reference Layer. The Reference Layer combines JVMs on both the proxy server and the

portable device as one virtual machine from the application point of view. The

components to accomplish this function are Object References and Profiling and Object

Server.

® Object References and Profiling (Object Graph): This component contains the
representation of the application’s objects along with profiling information about
these objects. This information will be sent to the proxy server to be analyzed and the
proxy server will decide which objects must be shipped to its side according to the
execution environment. In DOMT, this information is collected a priori and provided
to the toolkit.

® Object Server: Object Server is the main core of the toolkit. Its functionality can be
divided into two parts. One is the sender which can be called by its upper Proxy
Layer and receives the upper layer requests. When the sender receives a request, it
will forward it to its underlying Transport Layer by accessing its SAP. The sender
acts as the SAP for Reference Layer. However, it does not receive any message from
the Transport Layer. The message from the Transport Layer is received by the
receiver in the Reference Layer. Hence, the receiver interacts with the SAP in the
underlying Transport Layer directly. It runs a thread that listens continuously to all
the commands from a remote object server. Commands can be related to moving

objects or related to the remote invocation of a method on a remote object.
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3.1.4 Transport Layer
The Transport Layer is at the bottom of DOMT architecture. Its function includes
marshaling and unmarshing method’s parameters and simulating wireless links in terms
of low bandwidth. In DOMT, marshaling and unmarshaling are realized by the
serialization mechanism provided by JVM. Simulating wireless link, in DOMT, is to
chunk the data streams being sent through the Transport Layer into pre-determined sizes
based on empirical tests. DOMT introduces a controllable amount of delay between data
chunks, which allows us to control the throughput dynamically at run time for testing
purposes. The following equation is used in DOMT to determine the simulated
throughput. Changing both the delay and the chunk size changes the throughput.

Throughput(Kb/s)= (10(ms)x838(Kb/s)*Chunksize(bytes))/(Delay(ms)*1024(bytes))

The SAP in this layer is typically the ObjectlnputStream and ObjectOutputStream
provided by JVM.

This three-layer architecture is realized on both the mobile client and its proxy server.
Hence one instance of the toolkit executes on both sides. We refer to this architecture as

symmetric architecture.

3.2 RMI Protocol

When the toolkit is initialized at the portable device and the proxy server, a socket
connection is established in the Transport Layer during the initialization process of the
toolkit. The same connection is used to send commands between virtual machines that are
running on both sides. For every local object that is created, a proxy object that holds the

same interface as the object is created as well and assigned a unique number that
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represents the associated object. This unique number will identify the associated object as
long as the associated object is alive, either local or remote. When an object is to be
moved to the proxy server, the proxy as well as the object both will be serialized and
shipped to the remote server, where they are de-serialized and enabled for use remotely.
If an associated object of a proxy object is moved, the local copy of the associated object
will be finalized locally. When an object referencing a proxy is being serialized, both will
be serialized, but not the associated object of the proxy being referenced.

When a method is invoked on a proxy object, the proxy will know whether the
associated object is local or remote. Hence, it decides Local Method Invocation (LMI) or
Remote Method Invocation (RMI). In DOMT, every proxy object and its associated
object have a unique entrance point. If a method invocation occurs through this proxy, its
entrance point will receive the corresponding method name and its parameters and check
whether it is LMI or RML If the associated object is local, this entrance point will
communicate with its counterpart in the local associated object and forward the call to the

associated object through its entrance point. The entrance point of the real object will

ObjectA ObjectB Proxy ObjectB

method invocation

forward

1 reflection & invocation.
result return

<

< result return

Figure 3.4 DOMT LMI Operation
invoke the corresponding method based on the reflection mechanism. Figure 3.4 shows
the LMI scenario. In this scenario, Object A invokes a method in Object B. Object A and

Object B coreside at the same physical site.
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If the associated object is a remote object, then the proxy object will send a request to
the remote server asking for execution of the remote method on the specific object. Every
remote execution method request is associated with a unique number that is used to keep
track of the results and the exceptions that might happen when invoking a remote
method. In this request, the object identification number, method identification and
method parameters are sent. Upon receiving them at the remote server, the remote server
will start searching for the corresponding proxy object. If the proxy object is found, then
the server will ask the proxy to invoke the method. Having invoked the method, results
and exceptions are sent back to the local server, which in turn will dispatch them to the
right method through the unique trace number mentioned before. Every proxy object will

be in a waiting state until the exceptions or results are returned.
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Figure 3.5 DOMT RMI Operation
Figure 3.5 shows the RMI scenario. In this scenario, Object A invokes a method in

Object B. Object A and Object B reside at different physical sites.
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3.3 Distributed Garbage Collection

Determining when objects are no longer in use is a problem in distributed computing
toolkits. In a naive approach, Java’s garbage collector can reclaim objects, however,
consider Figure 3.2, where object A and a proxy to A exist on the proxy server. Since no
other references to these objects exist locally, the local garbage collector will reclaim
these objects, even though object B on the portable device still has a remote reference to
object A. To deal with this, every object created in DOMT is assigned a local and remote
reference counter. DOMT creates references to each local object and manages them via
these reference counters to avoid the premature finalization of objects. These counters are
updated whenever a proxy object is referenced locally or remotely. This requires sending
messages between the portable device and the proxy server to keep the object reference
counters updated. If the associated object of this proxy is local, then the associated object
will be finalized and claimed again by the garbage collector as well. If the associated
object is remote, then the proxy object will inform the remote object server to decrement
the remote reference counter for the associated object at the remote site, which in turn
garbage collects the object if there are no further references locally or remotely to the

associated object.

3.4 Discussion

DOMT is an adaptation approach for portable devices to reduce power consumption and
to improve application performance, in which a part of an application will be
encapsulated in a mobile component and potentially shipped for execution to proxy

servers, according to the portable device and fixed host’s available resource and wireless
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network state. The platform for which DOMT is designed is Handheld PC with WinCE
as its operating system. It adopts Java to hide the irregular architectures of underlying
system and hardware to improve its portability. With this toolkit one can combine JVMs
on both the proxy server and the portable device into one virtual machine from the
application perspective. Experimental results show that it is possible to simultaneously
improve application performance and reduce power consumption by migrating some
CPU bound objects to the proxy server in the case of a slow portable device and
sufficient wireless bandwidth.

Although DOMT is a promising approach to support adaptive application on portable
devices, there are still some problems to be addressed, especially when considering its
use on resource-constrained portable devices like PalmPilot, which provide a more
limited JVM than Handheld PCs. We classify the problems into two categories: one is
those which are inherent to DOMT itself, while the other are those related to its
portability to the resource-constrained portable devices. One of the problems in the first
category is the automation of the dynamic application partitioning process. DOMT results
indicate which parameters are important, based on a predefined object graph, which is
obtained by tracing a few executions with JProbe [56] or other profilers. It lacks a
monitor, however, to detect the changes in the live application environment as well as the
applications themselves, to obtain these parameters on the fly for constructing an object
graph with minimal overhead and making partitioning decisions to achieve high
performance. These changes may result from user movements (moving into an area of
substantially different network connectivity), the actions of other users (as more users

start offloading code to a shared proxy server, the relative CPU difference will change),
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the link state change, such as the forthcoming disconnection of wireless links which limit
the capacity of the link from one time to another, or other factors. Intuitively, one would
expect the runtime system to rebalance the application accordingly. However, shipping
objects at runtime is not cheap. Therefore, we need to explore how to balance the
resulting overhead with the anticipated performance gains and power reduction, in
particular in execution environments that change rapidly. One possibility is to allow the
mobile user to select preferences that prioritize the movable objects.

PalmPilot as we described, is a new resource-constrained portable device, which is
anticipated to dominate the palm-size segment of the PDA market. Although DOMT
simplifies the design of code mobility mechanism to fit PDAs compared to other systems,
it does not execute on the PalmPilot. Problems in extending DOMT to PalmPilot stem
from two aspects. First, the symmetric architecture of DOMT is not appropriate for
PalmPilot since the design assumes that the mobile client and its proxy server have
almost equivalent computational power and memory storage. Second, DOMT is based
upon the powerful JVM, whereas PalmPilot is only equipped with KVM, a compact,
portable Java Virtual Machine intended for small, resource-constrained devices. The
fundamental mechanisms of object serialization and class reflection are not provided in
this scaled-down version of a virtual machine.

All in all, these two categories of problems motivated us to redesign a new version of
a mobile code toolkit for PalmPilot as well as WinCE based on the framework of DOMT.
The new toolkit will be KVM-based, adding some new modules to deal with the
problems in the first category, redesigning the architecture and providing the necessary

fundamental support such as object serialization and class reflection to attack the
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problems in the second category. The new toolkit is called KMOT, short for KVM-based

Mobile Object Toolkit.
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Chapter 4

Design and Implementation of KMOT

4.1 Introduction

KMOT is a PalmPilot oriented mobile code toolkit, which provides palm application
developers with a set of tools to isolate applications from the limitations of mobile
environments. KMOT provides the same functions as DOMT, such as object migration
and remote method invocation to support adaptive application, and realizes a uniform
distributed object system based on a client/server architecture. Since our research on
KMOT borrows from early work on DOMT, features of DMOT are also mentioned from

time to time to illustrate the rationale behind our design.

4.2 Fundamental Support

In order to realize code mobility in KMOT, some supporting mechanisms must be
provided. In this subsection, we will discuss the implementation of object serialization,
distributed object graph and the construction of proxy objects.
4.2.1 Object Serialization

Object serialization is the act of writing a data object in a serial, byte-at-a-time manner

to files or communication channels [12], and thus is fundamental to object migration
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between a mobile host and its proxy server. However, object serialization always incurs
large runtime overhead and degrades the overall performance of RMI (Remote Method
Invocation). Many publications [29, 40] addressed this problem with or without native
code. For KVM, due to the lack of JNI (Java Native Interface) support, we prefer
methods without any native code and design a separate module for this purpose. Our
approach is to adopt the externalization protocol described in [40], asking the movable
object to serialize itself. In order to achieve this successfully, a serialization protocol
must be set up. This includes three steps:

(1) Defining the serializable interface which contains only two methods for writing
objects and reading objects.

(2) Serializing the system core and application classes. Application classes can be
serialized by implementing the serializable interface directly. System classes that
come with the KVM are integrated in the executable, and can not implement this
serializable interface directly. Hence they can be serialized by wrapping them in a
thin class designed to provide the methods of the serializable interface. On the other
hand, each application and thin wrapper class should contain a default constructor.
This default constructor will be used to construct a movable object in a remote site.

(3) Defining our own ObjectOutputstream and ObjectlnputStream classes. Since we
have no reflection mechanism, these two classes can not detect the class structure of
the object to be moved on the fly, they will require the serializable object to take
part in this process.

In order to maintain the transparency to the application, we define various conversion

functions to use in object migration. The consistency of the Java type system is ensured
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by defining a new root object with serializable interface. It must be inherited by any

movable object. The following example demonstrates our serialization protocol:

Serializable Interface : Root Object Class:
public interface K_Serializable { public class K_Object extends Object implements K_Serializable {
public void writeObject(ObjectOutputStream out); public void writeObject(ObjectOutputStream out);
public void readObject(ObjectInputStream in); public void readObject(ObjectInputStream in);
} }
L System Class:
Application Class:
public class Str extends K_Object implements K_Serializable {
public class App extends K_Object implements K_Serializable { String str;
int i; public Str() { str = null}
Strs public Str(String s) {
public App() {} str='s;
public App(int i) { }
this.i =1i; s=new Str(“abc”); public void writeObject(K_ObjectOutputStream out)
out.writeUTF(str);
public void writeObject(K_ObjectOutputStream out) { }
out.writeInt(i); public void readObject(K_ObjectInputStream in) {
out.writeObject(s); str = in.readUTF();

} }
public void readObject(K_ObjectInputStream in) { }

i = in.readInt();

s= (Str)in.readObject()

In this example, we give the definition of the serializable interface, the root object class, a
system class which is a class wrapping a String object as well as an application class. We
try to serialize an App object to the remote site. K_ObjectOutputStream and
K_ObjectInputStream classes define the serialization and deserialization process in our
toolkit. When an App object anApp (new App(10)) is serialized, a method
writeObject(anApp) defined in K_ObjectOutputStream is invoked, it writes the class
name of the serialized object followed by the fields we chose to write, in the order we

chose to write them. Based on the class definition, the primitive type can be written into

the stream directly, whereas the object type is written into the stream recursively.

App 1 Str “abc”

Figure 4.1 KMOT Stream Format
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Figure 4.1 illustrates the stream format. When the receiver deserializes the stream, it first
reads the class name, App and creates an object based on this name. This is the function
of the default constructor. The subsequent fields are read in successively. If the field is
object type, the read procedure is recursively, corresponding to its writing counterpart.

In KMOT, object migration is done in what we call a briefcase, an instance of a class
containing a folder and a label. The folder contents can be arbitrary data or code whose
type is indicated by the label. This simple method not only allows us to serialize
everything but also provides us with the flexibility to compensate some deficiency in
DOMT, which will be discussed next.

4.2.2 Distributed Object Graph

The object graph is a run-time structure of an object-oriented program, its nodes
represent the objects and edges indicate their reference relationships. In DOMT, the
object graph is constructed offline and provided to the toolkit. When the object graph is
partitioned for migration, some objects will be shipped to the proxy side. Hence, a
centralized object graph residing on a mobile host becomes a decentralized one residing
on both the mobile host and its proxy server, which is called a distributed object graph.
The program execution on this distributed object graph should be consistent with its
execution on the centralized object graph and improve its performance, compared to the
centralized counterpart. Unfortunately, DOMT will result in more remote method
invocations when it moves two related partitions successively and one references the
other, since the underlying serialization process in JVM does not remember their
relationships as soon as the first one is restored in the remote side. The following is an

example to demonstrate this process.
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Figure 4.2: Objects Migration : @ real object (O proxy object

In Figure 4.2, the object graph of an application consists of three objects A, B and C.
Their relationships are indicated in Figure 4.2 (1). A invokes a method in C, denoted by
C.f( ), while inside C.f( ), some statement invokes a method in B, denoted by B.g ().
When C moves to the Proxy, it will bring B’s proxy object with it to the Proxy since it is
a calling object. When A invokes C.f( ), this invocation will be forwarded to C through
its proxy object on the Mobile. Based on the same principle, C invokes B.g( ) through B’s
proxy object in Proxy. When B.g( ) is finished, the result will be returned following the
same path but in the reverse direction (Figure 4.2(2)). At this point, everything is fine.
Moving an object in DOMT resorts to writeObject defined in the ObjectOutputStream
class in JDK, and accordingly, receiving the movable object in the remote side resorts to
readObject defined in the ObjectInputStream class. We define the time during these pair
of invocation as a migration session. In another scenario, we move C and B during the
same migration session, and the distributed object graph is shown in Figure 4.2(3), A
invokes C.f( ) through its proxy object in Mobile, while it invokes B.g( ) locally. In the
same migration sessions, the relationships between the relevant movable objects are kept
in the Java serialization process. The problem occurs when C and B move to the Proxy in

separate migration session. The serialization process in JVM does not remember the
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relationship between C and B. Therefore, when B moves to the Proxy after C has been

moved in a prior session, its relation with C will be lost (Figure 4.3(1))

C C
:\Q B. .\Q o
Py - 9 AQJB o
Mobile Proxy Mobile Proxy
(1) Stateless Migration (2) Stateful Migration

Figure 4.3 Migration Categories
If C wants to reference B at the Proxy, it has to invoke B’s proxy object at the Proxy
instead of B directly. B’s proxy object at Proxy will forward this reference back to the
Mobile to invoke B there, but unfortunately, B is on the Proxy, so B’s proxy object at
Mobile will forward back this request to the Proxy again, B is referenced and the result
will follow the same route to return to C. We call this kind of migration stateless
migration. In stateless migration, the relationships between the relevant objects are not
kept in the serialization process but can be recovered through their proxy objects.
However this recovery is extremely inefficient. For example, in our previous scenario,
when C invokes B.g( ), it needs four additional remote method invocations compared to
moving them in the same migration session. This performance degradation resulted from
stateless migration is called performance anomaly. Such a performance anomaly does not
suggest moving relevant partitions successively. Intuitively, relevant partitions should co-
reside on the same site. DOMT attempts to address this problem by registering proxy
objects in some object cache when they move to the local site from a remote site. The
object cache provides stable storage for local copies of proxy objects. These proxy
objects will be retrieved when their associated real objects arrive. However, this approach

does not solve the problem completely. For example, when C moves
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Figure 4.4 Snapshots for Object Cache

to Proxy, the snapshot of its object cache is shown in Figure 4.4 (1). Suppose in the next
migration session, B arrives, DOMT will search its proxy object in the object cache, and
can not find it. Then B will register in the object cache again (Figure 4.4(2)). This
solution fails because DOMT does not process the referenced proxy like Py in our
example. Although this problem can be solved in DOMT by reflecting C to obtain its
referenced proxy object, it is infeasible for KMOT to do so since we have no reflection
mechanism.

In design of KMOT, what we want is a kind of stateful migration which can keep
these relationships in the serialization process even when the object migration happens in
different migration session (Figure 4.3 (2)). In our scenario, when C moves to the Proxy,
it, together with its associate proxy object Pg, will register in the object cache (Figure 4.4
(3)), as soon as B arrives, it can easily find its proxy object there. We can realize this
mechanism by properly design the serialization protocol and proxy objects.

In order to recover the relationship between movable objects in different migration
session, we will follow two steps. First, we assign a unique number to each real object as
its ID and register every proxy object as well as its associated real object in the local
object cache when they are created. Due to the recursive creation, the proxy objects
referenced by the associated object are created and registered in the object cache too.

Finally, the partial object graph is set up in this object cache. This object graph is useful
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when some objects that once moved to the remote side move back. Second, when an
object moves to the remote side, we introduce some extra logic into the serialization
process to overcome the constraint of object serialization in DOMT, and hence to avoid
the performance anomaly. Since the proxy object and its associated real object have
different semantics, we distinguish them when we serialize them to the remote site. In the
remote site, the serialized object will be deserialized and its type is checked to see
whether it is a proxy object or a real object. If it is a proxy object, the deserialization
process will search the object cache by using its associated object’s ID to see if this proxy
object has been registered. If the proxy object is not registered, the proxy object will be
constructed, its fields are read in from the input stream, and then it is registered in the
object cache. Otherwise, it will be retrieved from the object cache, and the following real
object can find its correspondent proxy object, and the distributed object graph is
constructed. Hence, the relationships between the calling object and called object are
recovered in separate migration sessions. In our case, this is shown in Figure 4.4 (4). If it
is a real object, the standard procedure is followed.

The distributed Object Graph is a very important concept in the design of KMOT. It
allows us to realize the stateful migration which is fundamental to establish dynamic
object migration. Another benefit from realizing stateful migration is the construction of
a partial object graph in the object cache. The object graph can provide us with
partitioning information to make scheduling strategies for shipping an object from the
portable devices to their proxy, or vice visa. We will discuss this problem in designing

the Monitor for KMOT.
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4.2.3 Proxy Objects and Class Reflection

The semantics of proxy objects in KMOT is the same as those in DOMT, acting as a
mediator between the calling object and the called object to handle object mobility and
method invocations. DOMT relies on class reflection provided in JVM to realize the
remote method invocation. Class reflection supports introspection about the classes and
objects in the current JVM. Due to the limitations of KVM, this mechanism is not
provided. Hence, we have to rethink the design of proxy objects. As we described in
Chapter 3, when a method invocation occurs in a proxy object (Figure 4.5 (1)), its entry
point method will be invoked to check whether this invocation is RMI or LML If it is
RMLI, the entry point method will forward this invocation to the remote site directly.
Otherwise, it will forward it to its real object. The real object entry point method receives

this invocation and reflects the corresponding method to be invoked. The advantage of

method1

proxy object real ob'egﬂ:
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G s—

method 1nferface
RMI real object

(1) DOMT Method Invocation  (2) KMOT: Method Invocation

Figure 4.5 Method Invocation

this solution is that the proxy object does not need to know the exact information of its
associated object, even information about the associated object’s class. Hence, the proxy
object constructed in DOMT is very general, independent of any specific object class. All
work is done in its associated object. However, in KMOT we can not use this approach.
Actually, the generality of the proxy object in DOMT is not necessary. A proxy object

can aim at a specific class, which means that any number of instances of this class can
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share the same proxy object. Therefore, this kind of proxy object can contain the class
information of its associated object. This idea is very useful to compensate for the
deficiency of KVM. If we reflect a class file in advance and put the reflection information
into a proxy object, which is created later, then the lack of reflection mechanism can be
overcome. As soon as the proxy object receives some parameters such as method name
and its arguments, it will know immediately which segment of code should be executed
based on this information, since every method interface is hard-coded in the proxy object.
Here, method interface means a method in the proxy object, which has the same signature
but with different content from the corresponding method in the real object. The
semantics of the content in the method interface are to invoke the corresponding method
in the real object or to forward the invocation to a remote site. This procedure is
described in Figure 4.5 (2).

Based on the principle described, we simulate class reflection in KMOT by defining
an abstract ProxyObject class inherited by every proxy object. This abstract class
contains an abstract method, which provides a unified interface for various remote
method invocations, whereas the concrete implementation resides in the proxy objects.
Since the proxy object knows the structure of its associated object, this implementation
can handle all method invocations on this object. Following is the Java-like pseudo-code
in our simulation (please refer to the previous example in page 50):

® Abstract ProxyObject Class

public abstract class ProxyObject extends Obj implements Serializable

public abstract Obj exec(boolean returnFlag, // true, if the method has a return value
String methodName, // indicates the method name to be
/finvoked
Obj parameters, /I the parameters of this method
boolean parametersPrimitiveFlags // the parameter’s type,
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/lprimitive or class
} throws Throwable

® An Proxy Class of App

public class App extends ProxyObject implements Serializable

{
public String method1(...) {...}

public Obj exec(boolean returnFlag,
String methodName,
Obj parameters,
Boolean parametersPrimitiveFlags
) throws Throwable

if(methodName.equals(“method1))
{

String result = method 1 (parmeters);
return new Str(result);

}
}

Figure 4.5(2) depicts the remote method invocation in KMOT without class reflection
mechanism. For example when a remote method invocation occurs to
anApp.methodl(...)) KMOT analyzes this request to obtain the information about
returnFlag, methodName, parameters and parametersPrimitiveFlags, and packs it,
together with the called object name anApp to send to the remote side, where this

package is resolved, and the unified interface is called. The segment code like

ProxyObject obj = (ProxyObject)podb.getObject(anApp); //podb is the object cache.

ResultObj=0bj.exec(returnFlag,methodName,parameters, parametersPrimitiveFlags);

AnApp’s proxy object is retrieved from the object cache podb. In DOMT, the subsequent
procedure will need a reflection mechanism, whereas in KMOT, it is replaced by the
abstract method invocation obj.exec(...). The disadvantage of this approach is that extra
logic has to be introduced to the proxy object. However, it avoids the expensive class

reflection. We will evaluate these performance differences in Chapter 5.
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In DOMT, the proxy pattern can be seen as a remote proxy that provides a local
representative for a movable object in a different address space. When a movable object
needs to be created locally, its proxy object is created first, followed by itself. We define
this kind of binding between a proxy object and its associated real object as early
binding. However, movable objects are always expensive with respect to CPU or
memory. Hence, this creation is generally expensive as well. Thus, we should avoid early
binding to create all “expensive” objects at once when the program is initialized. The
proxy creates its associated object only when it is referenced. This kind of binding is
defined as late binding. Late binding is adopted in KMOT. In KMOT, the real object is
created on demand only when its method is invoked. Therefore, the proxy pattern in
KMOT can be seen as a composition of remote proxy and virtual proxy.

The construction of proxy objects can be online or offline. DOMT programmers
generate the proxy files manually, and hence it is an offline method. In order to ease the
burden of application developers, we realize a proxy compiler pcomp to generate the
proxy file automatically. Pcomp reads in a Java class file, reflects its information, and
outputs this information as well as other common information related to a proxy object to
a proxy file. This proxy file is compiled by javac to generate the proxy class file loaded
by the classloader of virtual machine, JVM or KVM. Since pcomp resorts to reflection
mechanism, it only runs on JVM. This compiler method is also an offline method. The
alternative online method can be realized in the classloader. An example is the Voyager

toolkit, which will be investigated in Chapter 6.
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4.3 KMOT Architecture

Our goal in designing KMOT is to have a thin, yet powerful client with functions
comparable to its proxy server. Like DOMT, KMOT also contains a library with the same
application programming interface and functionality. It is linked with KMOT
applications to provide basic services of the toolkit. DOMT adopts a symmetric
architecture with the implicit assumption that the mobile host and proxy host have
approximately the same computational power. The Object Server is the core component
in this architecture, which realizes the client and server function to accomplish the
management of object migration and remote method invocation at the same site. Hence,
the communication between the mobile client and the proxy server is through two

symmetric connections which are set up during the toolkit initialization (Figure 4.6 ).

client server
server client
Mobile Proxy

Figure 4.6 DOMT Communication Setup

Although this architecture simplifies the deployment of DOMT on various devices, it is

not suitable for the PalmPilot due to the following reasons, which are also our motivation

to redesign the structure of KMOT.

(1) We think that realizing a server on the PalmPilot is not advisable since the Palm does
not serve the outside world constantly. Also, implementation of a server in Palm will
require a lot of resources.

(2) PalmPilot can access network services via the third party software installed on its

desktop machine. The advantage of this access manner is that it is not necessary for
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the PalmPilot to have its own IP address, it can use the IP address of its desktop
machine through PPP protocol to access the network service. However, this access
manner is unidirectional, the outside world can not access the service installed on the
PalmPilot via some software on its desktop machine. Therefore, unless the PalmPilot
has its own IP address, and connects to the network directly, DOMT’s architecture is
not suitable for the PalmPilot.

(3) If the Proxy serves many mobile hosts, each mobile host should have its own client
part in the Proxy. Hence, scalability of the Proxy is a problem. Actually, this problem
has no impact on the PalmPilot. However, if we change or add some logic in the Proxy
to manage the multiple clients, the symmetric architecture will be broken.

4.3.1 Three Layer Structure

KMOT, other than the object migration, also needs the capability to accept the

requirement of remote method invocations. This requirement is a natural result of object

mobility and fulfilling this requirement will induce an equivalence of functionality
between the mobile client and its proxy server. Our design is based on this principle by
simplifying the DOMT client/server-server/client architecture to a client-server
architecture. Some symmetry in components, especially the Object Server, is broken up
to reduce the toolkit footprint on mobile devices (Figure 4.7). The equivalence of
functionality is addressed by distributed recursive method (DRM) on both sides, which

will be discussed in the later subsection. Borrowed from the framework of DOMT, the
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Figure 4.7 KMOT architecture OC: Object Cache
architecture of KMOT also consists of three layers: Proxy Layer, Reference Layer and
Transport Layer, and adds a new Monitor component.. The semantics of these three
layers is identical to those in DOMT. The Proxy Layer consists of proxy objects for some
specific application and code storage. The only difference is the content in proxy objects
which includes extra logic to compensate for the lack of class reflection as described
above. The semantics of object migration and remote method invocation are realized in
the Reference Layer as in DOMT. Unlike DOMT, the object graph is partially
constructed in the object cache dynamically. The object cache provides a stable storage
for locally created objects as well as imported objects from the remote site. Applications
do not usually directly interact with the object cache. It can be seen as a system resource
managed by KMOT itself. The contents in the object graph are shared by the Object
Server, the serialization protocol in the Transport Layer and the Monitor to ensure the
consistency of the semantics of the application execution. The Object Server is the main
core of the Reference Layer that mediates all interactions between mobile client

applications and the proxy server. Hence, it allows the Reference Layer to provide
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applications with a consistent communication interface. A client implicitly uses the
Object Server to import objects from a remote site, and caches them locally or exports
objects to the remote site. Remote method invocations are also managed by the Object
Server. In KMOT, the symmetric structure of the Object Server is broken. On the mobile
client side, the “rcv”’, which is the server in DOMT, is discarded, and the function of
“snd” is enriched by DRM (Distributed Recursive Method) to accomplish the nested
method invocations. In the Transport Layer, we omit the function to simulate wireless
links in terms of low bandwidth since this function can be realized by third party
software. The semantics of the Transport Layer are slightly different from the counterpart
in DOMT, where the Transport Layer is responsible for low-level communication
without any knowledge about the data semantics. In KMOT, some data semantics are
known by the Transport Layer to enable different processes, including object cache
access. These processes are described in more detail in the class reflection and object
serialization sections of this chapter.

4.3.2 Monitor

In order to enrich the functions of KMOT and hence enhance its flexibility, we add one
more component to the toolkit: the Monitor. Its function is to monitor the changes in the
mobile environment such as the bandwidth, the power status as well as the current object
graph. The state of changes can be delivered as events by the Monitor to the interested
application components. The Monitor is independent of the Proxy Layer and the
Reference Layer. It only resorts to the Transport Layer to communicate with its
counterpart on the other side. The communication between Monitors uses a different

connection from the Reference Layers. Hence object migration and remote method
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invocation can happen at the same time. The function or structure of the Monitors in both
sides is not symmetric. The decision to migrate objects in the background is made in the
proxy side since it consumes CPU cycles and other resources. The decision strategy is
discussed in section 4.5. The Monitor cooperates with the Object Server through the

object cache to support adaptive application.

4.4 Distributed Recursive Method

Methods in different objects can be invoked in a nested manner. Because of the object
mobility, the nested method invocation may happen on the mobile host and proxy host
alternatively. Here, it is worth noting that what we described includes a direct or indirect
recursive invocation as a special case of the nested ones. For example: two objects A and
B reside on the proxy host and the mobile host respectively (Figure 4.8). Suppose we
have the following execution:
AfIO{ & — B.£20 {
\ B.f2() < » | A. f3()
proxy server mobile client

Figure 4.8: Nested Method Invocation
In object A, f1() will invoke f2() in object B where f2() in object B invokes f3() in object
A. This sequence of invocations will result in heavy traffic between the mobile client and
the proxy server. Unfortunately, unless all relevant objects reside on the same site, this
phenomenon cannot be totally avoided. In order to relieve the burden of highly nested

invocations, we adopt a single thread method called distributed recursive method (DRM),

which is different from the methods used by DOMT that resort to the server service and
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multithread function. The idea of DRM is very simple since nested method calls are
inherently ordered. The only difference between DRM and other regular nested method
invocations is that the nested methods are distributed on different hosts. DRM simulates
the process of a function call in a single host but on two stacks, one for a mobile client
thread, and the other for a proxy server thread. Referring to the example above, suppose
a program P on the mobile side invokes the remote method A.f1(), it sends the request to
the proxy server and waits for the result. On the proxy side, A.f1() calls B.f2() on the
mobile side, and sends this request to the program P, then A.f1() waits for the result. On
the mobile side, P invokes B.f2() and transfers the control to it. When B.f2() invokes
A.f3(), it sends a request to A.f1() which is waiting for a result. A.f3() is invoked and
obtains control. This process can continue until a result is returned from a method. The
result will follow the reverse direction to the initial invocation. From this description, one
can see that if a method needs to invoke a remote method, it sends a request and waits for
the response. If the response is the result it needs, the method will continue or exit. If the
response is another request to execute a method, it will invoke that method immediately.
For the new method, it will repeat the same procedure. We abstract this mechanism into
the reference layer, and with the aid of the proxy object concept, DRM is transparent to
the applications.

DRM reduces the complexity of the control logic to execute the nested method
distributed on different machines. Otherwise, multithreaded execution should be
employed, as in DOMT, where every proxy object is implemented as a separate thread,
and ordering of certain events for executing distributed nested methods between these

threads is realized by synchronization primitives such as wait() and notify(). This
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approach likely will be erroneous or inefficient if implemented by novices in concurrent
programming. Another advantage of DRM is that it is very easy to extend DRM to any
number of machines, each being part of the nested invocations. However, since DRM use
a single thread for nested methods, the thread stack may overflow, especially in resource-

constrained portable devices.

4.5 Scheduling Strategy

The goal of object migration is to improve the overall performance of the application
program. Ideally, the entire object graph can be shipped to the remote fast proxy server.
However, due to the link state, the workload on the proxy server as well as other factors,
only a subset of this object graph may be shipped to the proxy server.

Partitioning an object graph for shipping can be static, partially dynamic or fully
dynamic. In static partitioning, the object configuration is determined at compile time and
cannot be changed. In partially dynamic partitioning, the location of an object is
determined dynamically during application initialization, but cannot change during the
application session. This kind of partition is sufficient for adapting to some static device
configuration such as terminal types. The most general concept is fully dynamic
partitioning, which allows objects to be moved at any time during the application session.
This is useful when bandwidth or other dynamic resource such as memory changes
radically, and the change is expected to last for some time. We adopt the fully dynamic
partitioning strategy and realize a simple algorithm to schedule objects for mobility in the
monitor on the proxy side. The objects scheduled to the remote site make up a partition of

the object graph.
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A good scheduling algorithm needs to consider many factors, which involve the
mobile environment parameters and application profiles. The mobile environment
parameters include the available Quality-of-Service (QoS) along the communication
paths, workload of the proxy host and power level in the mobile host. The application
profile may list the objects in the application, and a set of possible configurations for
them. Algorithm designers can choose and decide the information in the configurations
that will highly affect algorithm performance. In KMOT, we only consider the
application profile and a simple configuration. The application profile is an object graph,
which only includes the movable objects. The object graph is stored in the object cache.
The configuration information for each object is its local and remote reference counts,
coded in its proxy object, which indicate how many times this object is referenced locally
or remotely. In this sense, these concepts are different from those in distributed garbage
collection we discussed in the Chapter 3. Initially, the object graph is constructed on the
mobile site, with the object migration, this central object graph becomes a distributed
object graph residing on both the mobile and the proxy sides. Stateful migration ensures
that this process is feasible.

When a calling object is moved to the proxy server, some proxy objects referenced by
this object are also shipped. They are all stored in the object cache as a partial object
graph, which is the basis for our scheduling strategy. Hence, when a real object is moved,
its proxy object as well as its referenced proxy objects will exist at both sites. When some
proxy object is referenced for a remote method invocation at their original site, its local
reference count will increase by one and send a request to its remote counterpart;

otherwise the local count is kept intact. As soon as the remote proxy object receives this
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request, its remote reference count will increase by one. In our design, the monitor at the
proxy site traverses the object cache periodically to check if there is any proxy object
with a remote associated object and a local reference count exceeding a threshold value.
If there exist several ones, we assume that they will be referenced locally in the near
future. The monitor will select one of them randomly and send a request to the mobile
client to move this object to its local site. When the mobile client receives this request, it
will retrieve the object from its local object cache, and send it to the proxy server. When
the proxy server receives this object, it will reset this proxy object’s local and remote
count to zero. Based on the same principle, when this object is shipped to the proxy
server, some proxy objects referenced by this object are also moved, and we can repeat
the procedure. On the other hand, the monitor at the proxy site also checks the proxy
object’s remote count, which indicates the number of remote references of this object,
and schedules this object to the mobile site if its remote reference count exceeds some
threshold value. If there exist several ones, the monitor will select one of them randomly
to move to the mobile site with the assumption that it will be referenced remotely by the
mobile client in the near future. We call this strategy Random Greedy Strategy (RGS)
since only a random neighbor of an object is selected every time. Before giving the
formal description of the algorithm, we first give an example to demonstrate it. For
simplicity, we just consider the situation of the proxy object’s local count in the proxy

server. For the proxy object’s remote count, the principle is almost the same.
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Figure 4.9 RGS Scenario 1

Figure 4.9 (1) shows the initial state, the object graph contains five objects created locally

on the mobile side. In Figure 4.9 (2), C, which is a calling object, referencing B and E, is

moved to the Proxy. We then reference C in the Proxy side through its proxy object Pc in

the Mobile side, C references B in the Mobile side through its proxy object Py in the

Proxy side. B may reference A or E in the Mobile side and the result is returned

following the same path but in the reverse direction. After this invocation, from the point

of view of Proxy, the remote reference count of P¢ (C and Pc are bound together) and the

local reference count of Py should be increased by one. Suppose the local reference count

of Py exceeds the threshold value and this information is detected by the monitor in the
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Figure 4.10 RGS Scenario 2
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Proxy, then the monitor tries to move B to its local side (see Figure 4.10 (1)). Figure 4.10
(2) shows when the entire object graph is moved to the Proxy side. Naturally, every
object can move around between the mobile side and its proxy side based on our RGS
algorithm.

Now we give the formal description of Random Greedy Algorithm. The algorithm is
distributed in nature. The proxy object and monitors residing on both the mobile client
and the proxy server are involved in the algorithm. However, their functions are different,
and hence this distributed algorithm is not symmetric.

Proxy Object:

if (it is a local reference ) then
if (the associated object is remote) then

if (it is a remote reference) then
remote_count = remote_count + 1;

local_count = local_count + 1; endif
send RMI request to the remote site;
endif
endif
Monitor (Proxy) Monitor (Mobile)

for ( each proxy object in Object Graph) do
if(the associated object is at remote site) then
if( local_count > threshold ) then
send (objID) to mobile client for moving this object
receive(obj) from mobile client;
pObj = object_cache.getObject(objID);
pObj.local_count = 0;
pObj.remote_count = 0;
endif
else /* associated object is at local site */
if( remote_count>threshold) then
send (its associated object) to mobile client;
endif
endif
endfor

receive(objID) from proxy server;

pObj = object_cache.getObject(objID);
pObj.remote_count = 0;
pObj.local_count = 0;

send(pObj.associatedObj) to mobile client;
receive(an associated object) from mobile;

This algorithm is realized in Monitors that run concurrently with the Object Server. The
problem is how and when to execute this algorithm. There are two possibilities, one is

synchronous, denoted by SRGS, which means that invoking remote methods and
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migrating objects are executed synchronously. The other possibility is asynchronous,
denoted by ARGS, meaning that there is no synchronization point between the execution
of remote method invocations and object migration. In SRGS, the KMOT execution time
is divided into two parts, which occur alternatively (Figure 4.11). One is the remote
method invocation period (RMI period), the other is the object migration period (OM

period). This approach almost has no advantage in the design of KMOT since we need an

RMI period OM period RMI period OM period

Figure 4.11 KMOT execution time
extra protocol to have the proxy server and the mobile client reach a distributed
consensus, indicating that they both should enter RMI or OM period at the same time.
This may degrade the system performance and complicate the system design. Therefore,
in the design of KMOT we adopt ARGS, both Monitor and Object Server run
independently, which one executes is decided by KVM thread scheduling. Furthermore,
we require the Monitor sleep to one minute before every execution. However, it may
induce problems in the case that some movable objects are currently being migrated, and
a reference reaches the destination and at that time no proxy object has been created for
that movable object. We call this problem tracing problem. The following example

illustrates the scenario. D is on the way from the mobile client to the proxy server, but a
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Figure 4.12 Tracing Problem in ARGS
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reference to it reaches the proxy first. So far, there is no trivial solution to the tracing
problem in KMOT. However, if there exists a proxy object for the on-the-way movable
object, the execution is safe since the proxy object Pp in the Proxy can return the
reference to the counterpart in the Mobile, and Py in the Mobile forward this reference
again. Hence, there is a loop between these two Pps until D arrives at the Proxy.

We can prove that RGA will converge at the shipping of the entire object graph under
the condition that every object in the graph is a calling object. The proof is
straightforward since the object graph is connected and every calling object will take its
reference proxy objects, which are its direct neighbors, and this procedure is repeated
until no object is left.

Although RGA executes efficiently, the application performance is not guaranteed to
be improved and may be even worse than that without object migration because it only
considers the reference counts, does not take the features of objects as well as the mobile
environment parameter such as the capacity of wireless link into account. For example, in
Figure 1.10(2), at the Proxy, if the remote reference count of Pc exceeds the threshold,
the monitor will deliver C back to Mobile. This schedule degrades the overall
performance since the references to B and E from C will become remote invocations. In
order to exploit the advantage of object migration, an optimal decision strategy
considering all these factors comprehensively is desired. In this thesis appendix, we
investigate this problem in detail, set up a model and propose several algorithms to deal

with it.
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4. 6 Implementation

KMOT is a research platform to be designed for investigating the efficiency of adaptive
application by offloading workload from resource-constrained portable devices to a
powerful proxy machine. We have chosen a layered protocol to design it, and
implemented it according to object-oriented principles. Our intention is to use this
prototype as a testbed for a wide range of ideas to identify the efficiency of code mobility
on resource-constrained portable devices.

The client side of KMOT is implemented on a Handheld PC (Hitachi SH3) with
WinCE2.0 and a PalmlIIlc with PalmOS 3.5. For WinCE, the development environment is
IDE VIJ++, which generates the KMOT class files and downloads them into WinCE. For
PalmOS, we develop KMOT using the Java compiler with KVM1.0 API classes which
can be downloaded from Sun Micosystem’s web site. Our primary mode of operation is
to use these two platforms as mobile clients. However, we also use the Intel PII with
WinNT4.0 and Sun SparcStation 10 with Solaris as a platform to implement our toolKkit.

The KMOT server is implement on Intel PII running Linux and Sun SparcStation

running Solaris. It is developed under the JDK1.0 or above environment.

4.7 Programming Model

KMOT offers applications a distributed object system based on a client/server
architecture. Clients are KMOT applications that typically run on resource-constrained
portable devices, but could run on stationary hosts as well. Servers typically run on
stationary hosts and hold the long-term state of the system. KMOT supports adaptive

mobile application through its runtime library, which consists of a set of application



Chapter 4 Design and Implementation of KMOT 74

programming interfaces. Therefore, from the perspective of the programmers, there is
almost no difference between programming on DOMT and on KMOT. However, KMOT
has its own object serialization protocol, which requires the movable object to take part in
the serialization process. Moving objects is not totally transparent to the programmer. An
example for programming for a movable object is discussed in Subsection 4.2.1. The
movable object might be as simple as a thin wrapper object with its associated operations
or as complex as a module that encapsulates part of an application. Defining the movable
objects is the first step to programming on KMOT. There are several factors that
influence this decision. First is the coupling of an object with its direct reference objects.
Second is the computational load of the object. Objects with high coupling are not prone
to move, but high computational load will make it beneficial to migrate an object.
Unfortunately, these two factors usually conflict since high computational load usually
results in high coupling. Programmers should strike a balance to improve overall
application performance. The final factor is related to the mobile environment; for
example, if the bandwidth is high and the Proxy CPU is very fast compared to the Mobile
CPU. We may benefit from moving more objects, but not always. KMOT provides
programmers with an API moveObjectTo to move objects explicitly. When the object is
in the local site, this API will move it to the remote side. Otherwise, this API moves the
object to the local site. The second step is to generate proxy objects for the movable
objects. This step is slightly different from programming DOMT, in which every
movable object should have a proxy object. However in KMOT, if a movable object is
not referenced on its original site again after it moves away, it dose not need a proxy

object since the function of proxy objects is just to provide transparent access to the real
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objects. For example, in a MP3 Player running on a mobile device, if its decoder is
shipped to the remote proxy server, the player has to send the frame one by one to the
remote decoder for decoding. In this situation, a frame is a movable object, which will
not be referenced again in the player after it goes to the decoder. Therefore the frame
does not need a proxy object and is referenced directly in the decoder. Although this
strategy can improve performance, programmers have the responsibility to figure out this
kind of objects.

KMOT monitors can make migration decision and migrate objects in the background
for the users. This relieves the programmers from the burden of scheduling the moving of

objects.

4.8 An Execution Scenario

Figure 4.13 shows the data flow of a remote method invocation accompanying an object

migration between KMOT components. This scenario provides a comprehensive picture

L’ Application ‘

il

Prox; Proxy ]
y TrOoXy Monitor PrOXy R/Ionltor
[/ Q

[ Bric caSEOH Layeféﬁr"ice boc / } Reference @WVW [ pc Cﬁ

In/Q C13151ream Transport

Mobile

Figure 4.13 KMOT Execution Scenario
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of how KMOT works. An object migration request is initiated by the Monitor on the
proxy server, and sent to the mobile client through its Transport Layer (The bold line
shows this process, while the grey points indicate the moving objects). When the request
is received by the Monitor on the mobile client, the Monitor will retrieve the proxy object
from its object cache, encapsulate it in a briefcase object to the LayerServer in the
Reference Layer, and return this briefcase object to the proxy server through its Transport
Layer. The Transport Layer on the proxy server will de-serialize the briefcase object to
obtain the proxy object which contains its real object, and put it directly into its object
server (The dot line shows this process, and the white points indicate the moving objects).
As soon as a remote method invocation of the moved object occurs at the mobile client,
this request is encapsulated in a briefcase object and forwarded to the LayerService of the
Reference Layer. The LayerService is responsible for resolving the semantics of this
invocation and transfers the briefcase object to the proxy side through its Transport
Layer. The Transport Layer on the proxy server will first receive this request, and
deserialize it. The request is resolved in the Reference Layer’s LayerService, and invokes
the method of the specific object by simulating the class reflection procedure. The
response will be returned along the reverse direction. (The dashed line shows this
process, and the black points indicate the moving objects). Object migration and remote

method invocation can execute concurrently and asynchronously.

4.9 Limitations

Although KMOT provides support for designing adaptive applications on resource-

constrained portable devices, it is still in the infant phase. This is evident by some
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limitations that are not overcome yet. First, object serialization is not transparent to the
applications, which will require the support from the programmer to serialize each
movable object. Also, this serialization protocol is incompatible with the standard one,
and therefore prevents integration with a system adopting the standard serialization
protocol. So far only one-dimensional arrays can be transferred. Second, for a remote
method invocation, returning an array of objects is not available now. Third, for realizing
stateful migration, every movable class needs to have at least one non-default constructor
for creating a new object. Finally, Proxy Objects cannot be created on the fly, and a tool

is designed to create them offline automatically.
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Chapter 5

Evaluations and Results

The Earlier chapters on KMOT introduced its architecture and its fundamental
functionality to support adaptive applications. Although this architecture possesses the
features to fit the constraints of PalmPilot, the performance improvement will depend on
the relative cost of moving objects and exploiting the fast proxy processor.

This chapter will give evaluations to validate the benefits for mobile code deployed on
resource-constrained portable devices for adaptive purposes. Our approach is from two

aspects: functionality and performance.

5.1 Functionality

We compare KMOT with two other mobile code toolkits DOMT and Voyager (which
will be discussed in the next chapter) to obtain the functionality comparison. The rational
behind this choice is that DOMT is the ancestor of KMOT, and Voyager is a Java agent-
enhanced Object Request Broker (ORB), which represents a commercial product in the
market. The limitations to these toolkits are that DOMT can only run on Handheld PC or
more powerful computer. Voyager requires more resources to execute than DOMT, and
is therefore only executable on computers with sufficient resources like workstations,

desktops and notebooks. Both DOMT and Voyager are Java-based, depending on the
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underlying JVM supports. Unlike these toolkits, the design of KMOT originally focused
on the resource constraints and the cross-platform executions. Hence, KMOT can run on
a broad range of Java-enabled platforms from workstations to palm-size devices without
any modification. Due to its KVM-based property, it does not resort to some standard
technologies such as object serialization and class reflection adopted by DOMT and
Voyager to realize object migrations and remote method invocations. It has its own
serialization protocol and reflection simulation to achieve the same goal. Therefore,
KMOT is more autonomous than the other two. This autonomy naturally leads to its
platform-independent property.

Another advantage enjoyed by KMOT is its small footprint and its lightweight
execution on portable devices with constrained resource such PalmPilot. DOMT is
designed for WinCE and has a bigger footprint than KMOT. Voyager has the biggest
footprint among the three toolkits due to its flexibility and capacity.

Since DOMT and Voyager rely on the standard object serialization protocol, the
performance will degrade dramatically if multiple object subgraphs are migrated to the
remote sites in different migration sessions. This performance anomaly is overcome in
KMOT by its own serialization protocol.

Comparing DOMT and Voyager, the limitations of KMOT are mainly its limited
support for array migration and its application-aware migration as we described in the
previous chapter. These limitations do not result from our design or implementation, but
are intrinsic to the lack of class reflection in KVM. The functionality comparisons are

summarized in the following table.
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Table 5.1 Comparison between the three Toolkits
KMOT DOMT VOYAGER
Platform WorkStation, Desktop, Workstation, Desktop, Workstation, Desktop,

Notebook, Handheld, Palm

Notebook, Handheld

Notebook.

Object Migration Yes Yes Yes

RMI Yes Yes Yes

Performance No Yes N/A

Anomaly

Array Migration One Dimension Multiple Dimensions Multiple Dimensions
Application-aware Yes No No

Footprint 56K 224K 2620K

5.2 Performance

In order to evaluate the performance of KMOT under the mobile settings quantitatively,
we distinguish two kinds of factors, which impact the overall performance. The first is
related to the mobile environment, including platforms and wireless bandwidth. We
chose platforms from desktop to PalmPilot with different CPU capacities. We also adjust
the link bandwidth to various values to simulate a range of wireless environments. The
second relates to KMOT itself: its performance relies on its basic mechanism such as
object migration and remote method invocation as well as its scheduling strategy. Based
on these observations, we conducted experiments to test several benchmark algorithms
under various mobile environments.

5.2.1 Experimental Setup

The experiment system configuration (Figure 5.1) consists of two hosts connected via a
LAN with 10 Mbps bandwidth and two mobile devices. One of the hosts is a Sun Ultra-1
with 92 MB memory running as a KMOT proxy server. The other is a Pentium II PC

running Windows NT4.0 with 130 MB memory at 233 MHz. The function of this
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computer is twofold. One is to act as the KMOT mobile client. The other is to act as the
desktop for the mobile devices to access the proxy server. The mobile devices in our
experiment are either a Handheld PC (Hitachi SH3/16M) running WinCE 2.0 or a
Palmlllc with 8MB RAM running PalmOS 3.5. The Handheld PC and the PalmPilot
connect to the desktop computer via the serial cable and the Hotsync cradle respectively.
They access the proxy server via the software Mocha Win32 PPP [33] preinstalled on the
desktop computer. Mocha Win32 PPP permits configuring the baud rate of the serial link.

We use this function to fluctuate link speed to simulate the wireless connections.

Proxy
Server <

Palm
> Desktop

PalmPilot

WinCE

Figure 5.1 Experimental Testbed Configuration
5.2.2 Benchmarks
Ideally, we hope to find some non-trivial KVM-based applications as our benchmarks to
evaluate our toolkit. However, these applications are hard to find at this time, partially
because the release of KVM is fairly recent, and the limitations of KVM prevent non-
trivial applications from being deployed on it easily without extra support mechanisms.
This fact causes some difficulties to choose benchmarks for the experiments. An

application, which is suited as a benchmark should satisfy at least two conditions. First, it
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must run well on the KVM without resorting to other support. Second, it must reflect
some common properties of the applications on the KVM. Our benchmarks are two
popular algorithms in many applications: the binary search algorithm and the quick sort
algorithm. The performance of these two algorithms can properly give us some clues to
evaluate an application on KMOT due to their popularity. Another problem is the object
size, which, we think, is a relevant parameter of the experiments. Unfortunately, we have
no idea about what size objects are amenable to be migrated. We obtain some hints from
[32] in which object size is treated as a parameter of the dynamic partitioning of the
application between the mobile client and its proxy server. Based on their placement
decision, for wireless environments, the authors claimed that only very small objects less
than 2KB should be placed on the mobile clients for performance improvements.
Therefore, we limit our movable object size to less than or equal to 2KB, which indicates
that the level of the binary tree in the search algorithm is at most 6 and the number of the
elements in the array in the sort algorithm is around 200.

5.2.3 The Performance of Basic Mechanisms

Our basic mechanisms include object serialization protocol, class reflection and remote
method invocation. KMOT is based on these mechanisms. Therefore, their efficiency will
naturally have great impacts on KMOT overall performance. To quantify these impacts,
we try to minimize the effects of other factors such as network traffic, bandwidth, and
processor speeds. We configured the mobile client and its proxy server on the same
machine, i.e., the desktop computer in our experimental setup. In addition to our toolkit,

the other two toolkits, DOMT and Voyager, are employed for comparison purpose since
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they both exploit the standard serialization protocol and class reflection mechanism to
realize remote method invocation.

5.2.3.1 Object Serialization and Migration

In order to evaluate our serialization protocol, we decompose it into several phases. The
object is first serialized into a byte stream, and then we transfer this stream to a remote
side. Finally, the remote side de-serializes the stream and recovers the object. Hence, the
efficiency of the serialization and de-serialization as well as the size of the byte stream is
critical to our consideration. We first compare our stream size with those produced by the
other two toolkits and then the efficiency of serialization/de-serialization between our
protocol and the standard protocol are compared by serializing a binary tree object with
level from 1 to 10.

Table 5.2 Comparison between Serialization Protocols

Tree Level (sz) KMOT Serialization (B) Standard Serialization (B)
1 (32B) 49 107

3 (224B) 241 287

5 (1KB) 1009 1007

6 (2KB) 2033 1967

8 (8KB) 8177 7727

10 (32KB) 32753 30767

Table 5.2 demonstrates the stream sizes after serializing, which indicate that our
protocol is more efficient than the standard one under the condition that the serializable
objects are small enough. However, with the increasing object size, the efficiency of our
protocol is degraded gradually, compared to the standard one. For example, in level 10, to
serialize an object with size 32KB, there are about 6.5% efficiency losses in the stream

size compared to the standard protocol.
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To obtain insight into the performance of our serialization protocol, we measured the

Table 5.3 Tree Moving
Tree Level KMOT (ms) DOMT (ms) VOYAGER (ms)
1 (32B) 600 10 65
3 (224B) 800 15 95
5 (1KB) 2350 40 103
6 (2KB) 4550 70 110
8 (8KB) 16030 205 123
10 (32KB) 60690 613 300
Table 5.4 Array Moving
Array size KMOT (ms) DOMT (ms) VOYAGER (ms)
10 500 35 60
50 650 40 75
100 950 60 88
200 1400 70 100
400 2350 95 118

costs for moving different structures, binary trees with various levels, representing the
recursive structure, and arrays with various size, representing the flat aggregate type.
These structures are typical since other object types can be reduced to them. Table 5.3
and 5.4 display the time for moving trees and arrays respectively under the three toolKkits.
We can make several observations from these numbers.

KMOT has the lowest performance. This fact does not surprise us since our protocol
is realized outside of KVM, unlike the standard protocol, which resorts to the Java native
code techniques. However, the degree of the performance degradation is beyond what we
initially expected. For instance, to move a tree with level 10, the stream size produced by
our protocol is just 6.5% bigger than that produced by the standard one. However, the

overall performance for migrating the tree in KMOT is about 100 times slower than
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DOMT, and 200 times slower than Voyager. The same situation also happens when
moving the flat structure like an array. There are several reasons for the high overhead.
The first is the application-level implementation of our protocol, as we described above.
The second is the extra logic in our protocol for constructing the distributed object graph.
This logic is executed repeatedly as soon as an object is de-serialized, which is a time
consuming task, especially for the recursive or flat aggregate structures. Finally, unlike
the standard protocol, our protocol is not optimized for the object to be transferred.

Another observation is that our protocol is amenable to moving very small objects, say
the object size is less than or equal to 1KB. It is not only because of the stream size it
produced but also because of the overall performance of moving that object. For
example, the performance for moving a binary tree with level 5 is less than 60 times
slower than DOMT, and around 20 times slower than Voyager, which are much better
than moving the binary tree with 10 level as we discussed above. By comparing these two
tables, if the bandwidth is always available, sending a flat structure like array can obtain
more benefits than sending a recursive structure like a binary tree in KMOT. The reason
is that our serialization process is recursive, and hence, only one object is processed in an
invocation of writeObject( ) or readObject( ), whereas serializing and de-serializing an
array of objects bypass the extra logic to construct the distributed object graph and
process the elements in batch in one invocation of corresponding methods.

Finally, no matter what the type of the object structure, the performance of migrating
an object in DOMT surpasses that in Voyager only if the object size is less than 2KB.
This conclusion is not valid if the object size is bigger than 2KB in our scenarios. This

demonstrates that Voyager possibly optimizes its protocol to migrate big objects.
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5.2.3.2 Class Reflection

As we discussed in the previous chapter, class reflection is not provided in KVM.
However, this mechanism is mandatory in KMOT. We simulate it by adding some logic
to each movable object’s proxy object, and make this simulated mechanism our basic
support to design the toolkit. Since remote method invocation will reference this
mechanism in a local manner, we can only investigate the efficiency of local method
invocation to evaluate its performance. We inherit the methodology and experimental
setup of the previous subsection to do our experiments.

Table 5.5 Local Method Invocation (Searching)

Tree Level KMOT (ms) DOMT (ms) VOYAGER (ms)
1 (32B) 5 10 10
3 (224B) 30 50 75
5 (1KB) 175 200 330
6 (2KB) 340 335 425
8 (8KB) 1332 1171 1064
10 (32KB) 5648 4887 3835
Table 5.6 Local Method Invocation (Sorting)
Array size KMOT (ms) DOMT (ms) VOYAGER (ms)
10 20 50 28
50 100 115 106
100 195 215 203
200 395 430 400
400 781 800 800

The results displayed in Table 5.5 and 5.6 demonstrate the performance of our reflection
mechanism. Java reflection resorts to the native code support whereas our method is to
hardcode the real object information into its proxy object. Our advantage is to avoid the

actual reflection invocation but achieve the same function. However, the simulation is



Chapter 5 Evaluation and Results 87

realized at the application level. Therefore, there must exist a tradeoff. In our test
scenario, no matter what type of the object, if its size is less than 2KB, our mechanism
outplays the standard reflection adopted by DOMT and Voyager. Standard reflection
might optimize method invocation code and outplay our mechanism provided that the
method contains big objects as its parameters.

5.2.3.3 Remote Method Invocation

Finally, we consider the remote method invocation under the condition that there is no
bandwidth limitation, no network traffic and processor effects. In this situation, the
performance of remote method invocation can be viewed as the overall performance of
our basic mechanisms since it involves object serialization, class reflection, and local
method invocations. Table 5.7 and 5.8 show the performance results of the three toolKits.

Table 5.7 Remote Method Invocation (Searching)

Tree Level KMOT (ms) DOMT (ms) VOYAGER (ms)
1 (32B) 50 140 110

3 (224B) 95 140 130

5 (1KB) 330 170 200

6 (2KB) 521 210 320

8 (8KB) 1833 435 962

10 (32KB) 7331 1031 3725

Table 5.8 Remote Method Invocation (Sorting)

Array size KMOT (ms) DOMT (ms) VOYAGER (ms)
10 50 180 60
50 150 225 95
100 270 302 120
200 460 335 193
400 770 465 310
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Unlike the performance of object migration, KMOT does not always have the worst
performance among the three. For very small objects, the performance of KMOT is
slightly better than the other two. This fact is partially consistent with the local method
invocations. But for larger objects, the performance of KMOT degrades dramatically.
The reason for this phenomenon is partially from what we discussed in the local method
invocations. On the other hand, the low efficiency of our object serialization and an extra
dynamic binding cost in the simulation of class reflection also account for the additional
overhead in the remote method invocations.

Up to now, we can conclude from the experiments conducted that our basic
mechanisms are amenable to migrate small objects and invokes method remotely or
locally incurred by these objects. In the following section, we will investigate the impacts
of the mobile environment on our toolkit. These impacts include the platform types, and
the variation of the bandwidth.

5.2.4 KMOT in Mobile Environment

In this section, we conducted experiments to evaluate our toolkit under a mobile
environment characterized by different bandwidths and platform types. The experimental
results indicate that the bandwidths have a great impact on object migration, especially
for the big objects, and PalmPilot is more sensitive to the changes of bandwidths than
Handheld PC.

5.2.4.1 Bandwidth Effects

The purpose of our experiments is to measure the performance of the KMOT basic
functionalities under various bandwidths. We still adopt the binary search algorithm and

the quick sort algorithm as our benchmarks. We executed the proxy side on the Sun
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Ultra-1 station, and installed the mobile side of KMOT on Palmlllc as described above.
In this experiment, the bandwidth is an important factor. We investigate the performance
of object migration with various sizes and compare the performance of method

invocation between the local site and the
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Figure 5.2: KMOT Object Migration

remote site. Figure 5.2 shows the performance of object migration of these two
benchmarks. The unit of object size in the left figure is bytes, whereas, in the right figure,
we use the array size to indicate the object size. We measure the performance under link
baud rates from 9.6 Kbps to 56.7 Kbps. The results show that with the increment of
bandwidth, the migration performance improves regardless of the object structures, and
for a specific bandwidth, the time consumed to migrate an object is proportional to the
object size.

Figure 5.3 shows the performance of RMI in KMOT. The results show that we cannot
benefit from RMI unless proxy computation power or available bandwidth exceeds some
value specific to the application. The cost of RMI for searching is almost constant with

the increment of input size. This is because the proxy server is fast and the amount of
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data to be sent back is constant. On the contrary, sorting will return the entire array again,

and has worse performance than searching. Figure 5.3 also reveals another fact: with

increasing bandwidth, its impact on RMI will be reduced compared to the proxy server

speed.

5.2.4.2 Platform Effects

We vary the platforms to execute KMOT to understand the platform effects on our toolkit

performance. Our candidates are Handheld PC and Palmlllc, representative PDAs in the

market. In these experiments, we fix our bandwidth as 56.7 Kpbs and 19.2 Kpbs. The

benchmark we adopt here is only the binary search algorithm.

Table 5.9 Migration (56.7Kpbs)

Platform 1 (32B) 3(224B) 5 (1KB) 6 (2KB)
HPC (ms) 2000 3500 7000 12000
PalmlIIIc(ms) 1047 3520 13417 26523
Ratio (P/H) 0.5235 1.006 1.917 2.210
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Table 5.10 Migration (19.2Kpbs)

Platform 1 (32B) 3 (224B) 5 (1KB) 6 (2KB)
HPC (ms) 2000 4000 8300 14000
PalmlIIIc(ms) 4500 9960 34790 72990
Ratio (P/H) 2.25 2.49 4.191 5.213
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The results for moving binary trees under different bandwidths are summarized in
Tables 5.9 and 5.10 respectively. From the ratio of P/H, one can see that the performance
on the Handheld PC surpasses that on the Palmlllc under almost all the conditions except
the movable is extremely small. At high bandwidth, this ratio reaches 2.2, which means
the object migration between the Handheld PC and its proxy server (Sun Sparc) is 2.2
times faster than that between the Palmlllc and the same proxy server. At low bandwidth,
this ratio reaches 5.2. This fact illustrates that the Palm is more sensitive to the bandwidth
changes than the Handheld PC. In other words, with low-bandwidth networks, the gain
from using a Handheld PC becomes much larger. Another observation from these results
is that the bandwidth has greater adverse effects on moving bigger objects than moving
smaller ones, which is consistent with our intuitions.

Table 5.11 RMI ( 56.7 Kpbs)

Platform 1 (32B) 3(224B) 5 (1KB) 6 (2KB)
HPC(ms) 1000 1000 1000 1000
PalmlIIIc(ms) 1117 1140 1160 1167
Ratio (P/H) 1.117 1.14 1.16 1.167
Table 5.12 RMI (19.2 Kpbs)
Platform 1 (32B) 3(224B) 5 (1IKB) 6 (2KB)
HPC(ms) 1000 1000 1500 1500
PalmlIIIc(ms) 1820 1880 1950 1960
Ratio (P/H) 1.82 1.88 1.95 1.96
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The results of RMI under different bandwidths are shown in Table 5.11 and 5.12. The
performance ratio between these two platforms ranges from 1.117 to 1.167 under the
higher bandwidth (56.7 Kpbs), from 1.82 to 1.96 under the lower bandwidth (19.2 Kpbs).
The ratio increases with increasing object size, but this increment is not so noticeable as
that in the previous tables. This result demonstrates that if a RMI does not involve big
objects to be moved around, it is relatively insensitive to the bandwidth changes
compared to the object migration.

5.2.5 Performance of Scheduling Strategy

Another critical factor affecting the performance of KMOT is the strategy for migrating
the objects. The purpose of experiment in this subsection is to evaluate RGS adopted in
KMOT. The benchmark is a reduced version of an arbitrary application. KMOT creates

the partial object graph in its object database. The monitor schedules the objects to the
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remote proxy server according to RGS. Figure 5.4 shows the performance changes of
RMI with the increment of the number of objects to be moved. It reveals that the RMI

performance is not guaranteed to improve. This is not surprising since an inappropriate
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migration may incur extra remote method invocations and degrade the performance
dramatically. When coupling objects coreside on the same site, a related method
invocation will have minimal remote accesses. RGS can move all coupling objects to the
remote side to reduce the invocation costs. We refer to this kind of migration as complete
migration, otherwise, we call it a partial migration. The results in this experiment also
give us some hints that high coupling objects should be grouped together as a unit for
shipping. For remote method invocation, complete migration is preferred.

Overall, it is not always beneficial to ship code to a more powerful proxy server to
gain performance. The benefits depend on network characteristics, and relative CPU and

I/0 speed as well as the structure of application programs.
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Chapter 6

Related Work

The motivation to design KMOT is to support adaptive application on resource-
constrained portable devices. It achieves this goal by adopting the middleware
architecture and mobile code techniques to realize both object migration and remote
method invocation. KMOT realizes an application-aware adaptation strategy. This
strategy permits individual applications to determine how best to adapt, but preserves the
ability of the system to monitor resources and to enforce allocation decisions. We choose
this design strategy for adaptive applications with an attempt to achieve better overall
performance of our toolkit. Many other researchers adopt different strategies and follow
different implementation technologies to design their systems for the same purpose. In
this chapter, we will survey some recent efforts in this field to give an outline of the
background picture to our toolkit. We first examine the mobile-aware adaptation, and
then discuss several existing mobile code toolkits. We think this consideration is
reasonable in that mobile code toolkits do not lead to the automatic support for adaptive

applications if they have not an adaptive mechanism inside them.
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6.1 Mobile Aware Adaptation

The computation of clients and their proxies has to be adaptive in response to the changes
in the mobile environment [26]. This adaptation can be achieved in different components
of the systems with different strategies. The range is delimited by two extremes [44]. At
one extreme is Laissez-faire adaptation, which means adaptation is entirely the
responsibility of individual applications without any support from the operating system.
The other extreme, application-transparent adaptation, places the entire responsibility for
adaptation on the system. Between these two extremes lies a spectrum of application-
aware adaptation. This approach supports collaborative adaptation between the
applications and the underlying system.

6.1.1 Application-Transparent Adaptation

Many traditional client-server applications are based on the assumption that the
environment of the client does not change during the computing process. The approach of
application-transparent adaptation attempts to facilitate the migration of these
applications to the mobile world without any modification. The philosophy of this
approach is that any adverse effects of mobile environments can be hidden by some
additional components such as proxies, which are independent from the applications.
The typical projects adopting this strategy are Coda [45], Little Work [19] and
WebExpress [20]. In these projects, a local proxy runs on the mobile host and provides an
interface for regular server services to applications. For example, in the Coda system, a
file system proxy hides mobile issues from applications and emulates file server services
on the mobile computers. The file system proxy is implemented as a user-level process

called Venus whose function is to manage a file cache on the local disk on each client.



Chapter 6 Related Work 96

The applications interact with this proxy through the standard file system API as if they
work on the real file system. The proxy handles the requests from the applications by
managing the cache and mitigates the adverse effects of mobile environments.

WebExpress adopts a similar approach, in which two components, the Client Side
Intercept (CSI) and the Server Side Intercept (SSI) are inserted into the data path between
the Web client and the Web server to enable Web browsing applications to function over
wireless links without imposing any changes on browsers and servers.

The Mowgli project [28] also supports Web applications over wireless links. A
specialized HTTP agent and a specialized HTTP proxy are installed on the WWW client
and the WWW server respectively with the aim of reducing unnecessary message
exchange as well as the volume of data transmitted over the wireless link, and supporting
disconnected operations. With the agent-proxy approach, neither Web clients nor servers
need to be modified.

Compared to KMOT, these systems can be viewed as data migration systems with
adaptation strategies realized in its proxy process. In these systems, the movable object is
the data such as the server files in Coda and the Web pages in WebExpress and Mowgli.
Although data mobility can support adaptive application to some extend, it does not allow
for computation migration, as we suggest in KMOT. Hence, the cost of communication
and computation can not be traded off gracefully in these systems.

6.1.2 Application-Aware Adaptation
Although the application-transparent adaptation has as main advantage that the mobile
issues can be handled by the system without imposing any changes on the applications,

there are important situations where it is inadequate. For example, a movie player can not
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display the images in full-motion color if the bandwidth is below a certain value.
Application-transparent adaptation fails to handle this situation because the adaptation
mechanism has no knowledge of the data semantics and the application behavior.
However, if the application is capable of displaying the image in slow-scan black and
white, it could automatically do so when bandwidth falls below a critical threshold.
Application-aware adaptations can handle this situation by resorting to the cooperation
between the operating system and the application in various ways. The minimum system
support should include (a) notifying the application of any relevant environmental
changes and (b) providing a central point for resource management. Changes are modeled
as asynchronous events, which can be detected either within the kernel or at the user-
level. It is the application’s responsibility to react to these events. For example, in the
Odyssey system [36], the application negotiates and registers a window of tolerance with
the system for a particular resource. The resources in question may be generic, such as
network bandwidth, cache space, process cycles, or battery life. The system monitors the
resource levels and notifies the application as soon as that resource rises above or falls
below the limits in the tolerance window. The application will capture this notification
and adapt its behavior to these changes by changing fidelity, which is an application-
specific notion of the “goodness” of a computed result or data object. The adaptive
strategies are totally up to the applications. This approach provides a flexible fashion for
applications to react to the changes of the mobile environment. However, like Coda, the
adaptation in Odyssey is also data-oriented.

In addition to Odyssey, a number of similar approaches have also been discussed in

the literature. In the Prayer system [4], the application-aware adaptation is supported with
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the use of abstractions: QoS class and adaptation blocks. A QoS classes is defined by
specifying the upper and lower bounds for resources. An application divides its execution
into adaptation blocks. An adaptation block consists of a set of alternative sequences of
execution, each associated with a QoS class. Another approach is implemented by
Welling and Badrinath [52] under an event delivery framework. In this framework, a
notification subsystem, called event channel, delivers different events that are generated
by the environment monitor to applications based on delivery policies. The applications
are notified of the events to react to the environmental changes.

Unlike KMOT, most of these systems employ system-level adaptation. For instance,
Coda inherits many of the usage and design assumptions of Andrew File System (AFS),
and Odyssey extends UNIX with a small but powerful set of extensions for mobile
computing.

6.2 Mobile Code Toolkits

A mobile code toolkit is generally built upon one or more programming languages. These
languages usually have some unique features as we discussed in Chapter 2 to support
code mobility, and are enriched by some new APIs for the same purpose. The
implementation of these APIs may require the extension of the language’s interpreter or
virtual machine. If our reference to a mobile code language implies its underlying
execution engine such as the interpreter or virtual machine, both concepts, mobile code
language and mobile code toolkit are interchangeable.

Mobile code toolkit can be categorized in several ways. For example, we can
categorize them according to their forms of mobility, i.e., strong mobility or weak

mobility, or the programming languages they support. Some toolkits allow mobile code
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to be written in multiple languages; many allow mobile code to be written in only Java,
which is the most popular mobile code language; and others allow mobile code to be
written in some single language other than Java. For the comparison purpose with
KMOT, here we primarily analyze toolkits implemented on Java-enabled platforms.
However, other language supported mobile code toolkits are also mentioned briefly for
completeness.

6.2.1 Java-based Toolkit

Algets [31]. Aglets was one of the first Java-based mobile code toolkit, in which the Java
thread is its EU and the Java interpreter constitutes the CE. Algets dose not capture
agent’s thread state during migration, and hence only weak mobility is supported. Algets
adopts variants of the TACOMA model for migrating agents, where agent execution is
restarted from a known entry point after each migration. In particular, Algets uses an
event-driven model. When an agent wants to migrate, it calls the dispatch method. The
Aglets system calls the agent’s onDispatching method to perform application-specific
cleanup, kills the agent’s threads, serializes the agent’s code and object state, and sends
the code and object state to the new machine. On the new machine, the system calls the
agent’s onArrival method, which performs application-specific initialization, and then
calls the agent’s run method to restart agent execution. Aglets uses the proxies to act as
representatives for itself, and provides location transparency.

Sumatra [1]. Sumatra is an extension of the Java programming environment with the aim
at supporting the implementation of resource-aware mobile programs. Sumatra supports
strong mobility of Java threads. This mechanism is realized by extending the JVM with

the capabilities of deciding the time and destination for code mobility, shipping of stand-
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alone code and creating a copy of the execution thread at a remote site. It also defines
object groups as dynamically created object aggregates, the unit of mobility. The
advantage of this definition is to provide the programmer with the flexibility to control
the granularity of the unit of mobility. Sumatra has a resource-monitoring interface,
which can be used by applications to register monitoring requests and to determine
current values of specific resources. This control manner enables programmers to explore
different policy alternatives for adapting to mobile environments.

Voyager [36]. Voyager is a Java-based mobile code toolkit integrated with COBRA.
Hence, it is an Object Request Broker (ORB) in nature. Voyager allows Java
programmers to create remote objects as well as their proxy objects and provides a
convenient way to interact, somewhat transparently, with the objects through these proxy
objects. Voyager can move objects from host to host. When an object moves, it leaves
behind a forwarder object that redirects any messages to the new location. “Agent”
objects, unlike other objects, may move themselves autonomously by applying the
moveTo( ) method on themselves. Voyager moves the code and data of the agent, but not
thread state, to the new location and invokes the desired method there. Therefore,
Voyager supports weak mobility.

1Code. The design of nwCode [41] was inspired by identifying precisely the benefits
brought by mobile code in the design and implementation of distributed applications. It
places more emphasis on fine-grained code mobility rather than mobile agents. Hence, it
has small footprint and lightweight execution. From this perspective, it is much more
similar to our toolkit than what we discussed above. In puCode, the basic operations

enable creation and copy of thread objects on a remote pServer, and class relocation
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among pServers. A uServer is an abstraction of the run-time support and represents a
computational environment for mobile threads. Upon migration, thread objects retain
their data state and lose their execution state. Thus, uCode only supports weak mobility.
nCode supports code shipping and fetching of both code fragments and stand-alone code,
with both synchronous and asynchronous invocation, as well as deferred and immediate
execution of mobile code. In pCode, the unit of migration is the group, which is simply a
container for classes and objects. This abstraction is reminiscent of TACOMA briefcases
or, more closely, of the object-group abstraction found in Sumatra.

uCode is implemented in Java, and hence very amenable to Java-enabled PDA like
PalmPilot with its small footprint. However, it lacks the mechanism to support adaptive
mobile applications. It only supports distributed applications effectively such as active
networks and network management.

Besides these toolkits, another Java-based toolkit, Mole [49] is noticeable due to its
object migration strategy, which is described by a new concept called island. An island is
the transitive closure over all the objects referenced by the main agent object. It is
decided automatically upon the migration of the main agent object. This strategy is very
similar to our complete migration strategy in KMOT design.

6.2.2 Other Language-based Toolkit

In addition to Java, there are several other programming languages, which can be
extended to support code mobility. Mobile code toolkits based on these languages usually
have functionality similar to the Java-based toolkits. In this subsection, we overview

several of them sketchily to enrich our discussion.
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TACOMA. In TACOMA, the Tcl language is extended to include primitives that support
weak mobility. A piece of mobile code, which is called an agent, can be shipped among
sites supporting the TACOMA system. The shipment is done in an encapsulating
structure called briefcase, which contains a set of folders. The folder contents can be
arbitrary data or code. The briefcase is sent to the new machine, which starts up the
necessary computational environment and then calls a known entry point within the
agent’s code to resume agent execution. The type of agents can be system agent or
mobile agent. The system agents are preinstalled and not movable so as to provide
efficient system functionality such as compiling or interpreting mobile code. The mobile
agent, typically written by an application programmer, uses the system agent to move to a
remote host and install mobile code.

TACOMALite [27] is a scale-down version of TACOMA to extend to PDA
environments such as PalmPilot and Windows CE devices. This extension overcomes the
limitation of PDA memory and network management by encapsulating the limitation into
its API functions.

Obliq. Obliq is an interpreted, lexically scoped, interpreted language. An Obliq object is
a collection of named fields that contain methods, aliases and values. An object can be
created at a remote site, cloned onto a remote site, or migrated with a combination of
cloning and redirection. In Obliq, an agent is built upon these mobile objects and
executes in a separate thread, which can also request the execution of a procedure on a
remote execution engine. The code for such a procedure can be sent from the local site to
that destination engine. In this case, the original references to the local objects are

automatically translated into network references, allowing transparent access to the
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objects distributed on a computer network. The sending thread suspends until the
execution of that procedure terminates. Thus, Obliq supports weak mobility using a
mechanism for synchronous shipping of stand-alone code.

Telescript. Telescript is an object-oriented language, which is similar to both Java and
C++, and can be compiled into bytecodes for execution on a virtual machine. In
Telescript, each network site runs a server that maintains one or more virtual places,
which are the Telescript EUs. An incoming agent can enter the specific space under some
security restrictions. A Telescript agent migrates with the go instruction, which captures
the agent’s code, data and thread state. On its new machine, the agent continues
execution from the statement immediately after the go. Hence Telescript supports strong
mobility. Although it has some advantages in security, and efficiency for migrating
agents, Telescript has been withdrawn from the market, largely because it was
overwhelmed by the popularity of Java.

Rover. The Rover toolkit offers applications a distributed system based on the client-
server architecture. Clients are Rover applications that typically run on portable hosts and
hold the long-term state of the system. The Rover toolkit provides mobile communication
support based on two ideas: relocatable dynamic object (RDOs) and queued remote
procedure call (QRPC). A relocatable dynamic object is an object with a well-defined
interface that can be dynamically loaded into a client computer from a server computer,
or vice versa, to reduce client/server communication requirements. RDOs can be viewed
as simple agents. Queued remote procedure call is a communication mechanism that
permits applications to continue to make non-blocking remote procedure calls even when

a host is disconnected; requests and responses are exchanged upon network reconnection.
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From these perspectives, one can see that Rover is different from the mobile code toolkit
discussed previously. It places much emphasis on handling the wireless connections for
its application rather than on code mobility mechanism. Hence, the literature usually does

not classify it into mobile code category.
6.4 Summary

In this chapter, we summarized some related work to the KMOT design. Coda and
Odyssey are typical systems that realize the application-transparent and the application-
aware adaptation to handle the changing amount of the resources available in the
environment. The adaptation in these systems are data-oriented. They can not balance the
computational load between the mobile clients and their proxy servers.

The current and future potential of mobile code technologies is mainly directed at
implementing the mobile code paradigm MA. Although mobile agents can be used to
conserve bandwidth, support disconnected operation and balance the workload, it suffers
some drawbacks when applied in the portable devices with constrained resources. On the
other hand, designing a well-defined mobile agent is a non-trivial work for a novice at
programming, compared to developing a regular program. Other forms of mobile code
such as REV or COD can avoid these problems, but do not support dynamic adaptive
applications either. The mobile code toolkits we surveyed here verified this proposition
since none of them provided mechanisms to monitor and notify the changes of mobile
environment except Rover. Hence, these toolkits can not be applied to support adaptive
applications directly.

KMOT combines application-awara adaptation and mobile code techniques to realize

the object migration mechanism in the background as the fundamental functionality to



Chapter 6 Related Work 105

react dynamically to the mobile environmental changes. This feature distinguishes
KMOT from the toolkits we discussed here (Rover excluded).

From the perspective of design principles, Rover toolkit is close to ours. Although its
RDO concept has its counterpart, dynamic movable object, in KMOT, its QRPC gives it
an advantage over KMOT. QRPC can be viewed as an asynchronous invocation for
surviving disconnections, whereas the synchronous remote invocation can not make
KMOT survive the disconnection. This limitation restricts KMOT to mobile settings
where weak connectivity is the worst case. This situation also happens in pCode toolkit.

Java-based commercial systems like Voyager and Algets, always support weak
mobility since strong mobility requires modifications to the standard Java virtual
machine, which means that the toolkit could be used only with one specific virtual
machine, significantly reducing market acceptance. KMOT enjoys this platform-
independent feature by its middleware architecture. Another feature KMOT enjoys is its
small footprint and KVM-based execution environment. lCode has small footprint, but
whether it is KVM-based or not is not clear. TOCOMAL.ite is designed for PalmPilot, but
it based on Tcl, not Java. To our knowledge, KMOT pioneers the provision of support for
adaptive applications on Java-enabled mobile devices with constrained resource like

PalmPilot, SmartPhone, etc.
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Chapter 7

Conclusion and Future Work

Mobile computing allows the user with portable devices to access the network services at
any time without regard to location or mobility. However, due to the constrained
resources in portable devices, the design and deployment of non-trivial mobile
applications are complicated. How to cope with these constraints is a hot research area as
well as a demand of the PDA market, especially with the advent of the PalmPilot. One
promising technique to address this problem is mobile code. Code mobility can make
mobile applications adapt to the context changes and hence improve its performance on
mobile devices with the aid of a proxy server.

In this thesis, we presented our experiences from porting an existing mobile code
toolkit for Windows CE (DMOT) to a new kind of emerging resource-constrained
portable device, Palm Illc. The new version of DOMT for this environment is called
KMOT. In this chapter, we will summarize the work performed, present conclusions, and

provide some suggestions for future research.

7.1 Thesis Contributions

KMOT is designed as a platform for mobile code applications on WinCE and PalmOS.

Its framework was borrowed from earlier work on DOMT. However, due to the
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limitations of KVM, our work is far from a simple portability exercise, and hence many
issues have to be addressed. In particular, they are summarized as follows:

7.1.1 Object Serialization Protocol

The lack of object serialization in KVM prevents object migration in KMOT. In order to
overcome this difficulty, a serialization protocol is designed, which adopts an
externalization approach, asking the movable abject to serialize itself. In addition to this,
a serializable interface and a new root serializable object are also defined in the protocol.
Although this simple protocol allows any type of object to be moved, it imposes some
workload on the programmer.

7.1.2 Class Reflection

Class reflection provides applications with the feasibility to investigate the object
information on the fly. This mechanism is desirable in the design of KMOT. We simulate
it by hardcoding the object information into its proxy object and defining an abstract
ProxyObject class inherited by every proxy object to provide a unified interface for
various remote method invocations, whereas the concrete implementation resides in the
proxy objects. Our simulation avoids the cost of class reflection during the computing,
but introduces extra logic into the proxy object.

7.1.3 Distributed Object Graph

Performance anomaly in DOMT is intrinsic to the standard object serialization. We get
around this problem by proposing the concept of a distributed object graph. The
construction of the distributed object graph requires a stateful migration, which means the
relationship between objects that are delivered in different migration session must be kept

in the object serialization process. In order to achieve this goal, our serialization protocol
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is enriched to realize stateful migration, and the performance anomaly is eliminated in
KMOT.

7.1.4 Distributed Recursive Method

Our goal in designing KMOT is to have a thin yet powerful client with functions
comparable to its proxy server. DOMT adopts a symmetric architecture with the
assumption that the mobile host and proxy host have the same computational power.
Therefore, the DOMT architecture cannot be used directly by KMOT. We structure
KMOT into a three-layer architecture, and propose a distributed recursive method to
handle the nested method invocation. This method exploits the inherent order in the
nested method invocations, and can be simplified to a single thread implementation.
Using a single thread to realize the nested method invocation between the mobile client
and the proxy server can reduce the overhead from thread switching, and the cost of
thread synchronization.

7.1.5 Random Greedy Strategy

In order to react to the changes of the mobile environment, KMOT adopts a fully
dynamic partitioning strategy, called Random Greedy Strategy, to schedule the objects to
the remote proxy server. This strategy is designed based on the observation that an object
always references its direct neighbors in the object graph. If the real object referenced
does not reside at the local side, fetching it to local site may result in performance

improvements in the forthcoming invocations.
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7.2 Conclusions

Designing a mobile code toolkit for resource-constrained portable devices is not a trivial
task. The difficulties stem from the tension between the limited resources provided and
the plentiful functions required. KMOT is our effort to balance these two factors. In its
implementation, the most inconvenient feature, is the lack of class reflection, which is
required by object migration and remote method invocation. Nearly all the work involved
in designing the fundamental support is directed at addressing this problem, and results in
sub-elegant solutions such as the application-aware serialization protocol for object
migration and hardcode and extra logic in proxy objects for remote method invocation.
Actually, if class reflection were provided, all these mechanisms can be realized without
the awareness of the applications and proxy objects. This fact indicates that class
reflection is a powerful mechanism to design dynamic applications and we suggest Sun
Microsystems to add it in the future version.

In spite of these deficiencies, KMOT exploits the KVM resources with the
approaches discussed above to provide a proper set of functions to support adaptive
applications. The efficiency of these functions to a great extent determines the
applications set up above them. Hence, the evaluation of KMOT can allow us to not only
obtain some insight into the efficiency of KMOT itself but also to deduce the feasibility
of mobile code for adaptive applications. We conducted experiments for this purpose
which will also satisfy our motivation. Our conclusion is that KMOT is a fine-grained
mobile code toolkit to support small object migration and remote method invocations
efficiently. This is a direct consequence of its basic mechanisms, object serialization and

class reflection. In a mobile environment, CPU speed and bandwidth are important
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factors. The quantitative analysis indicates that RMI is not always beneficial unless proxy
computation power or available bandwidth exceed some application-specific value. It
also shows the bandwidth will have different effects on KMOT installed on different
platforms. For example, KMOT on Palmlllc is more sensitive to the fluctuation of the
link speed than on Handheld PC. So in an area with frequent changes of bandwidth,
deploying KMOT on Handheld PC will gain more benefit than on Palmlllc. Therefore,
the soundness of applying mobile code to design adaptive applications is not absolute. It
depends on the applications, the mobile environment as well as the platforms to execute
the applications. Due to these diverse factors, flexibility is an important feature for the
toolkit. The integration of object migration and remote method invocation in KMOT
reflects this consideration, and provides a powerful basis for building mobile

applications.

7.3 Future Work

A number of issues need to be addressed in the future work, some of which is currently
under way. These issues can be generally categorized into two classes, enhancing KMOT
functionalities and improving its performance.

Currently, the remote method invocation in KMOT is synchronous, which requires the
maintenance of the connection between the mobile client and its proxy server during the
invocation. Hence, KMOT can not survive a forthcoming disconnection. Disconnected
operation is a typical function of mobile computing and supported by many mobile-aware
systems such as Coda, Odyssey and Rover. In order for KMOT to adapt to a wide range
of mobile settings, this function is highly recommended to integrate. Data hoarding and

QRPC technologies in Rover can be referenced to realize this function.
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KMOT supports weak mobility because the stack of a Java thread is not accessible.
This limitation can be overcome by extending the Java virtual machine to support strong
mobility. A side effect of this extension is to realize some mechanisms at the virtual
machine level to monitor the changes of the mobile environments and notify the
applications. The function and efficiency of this mechanism is expected to surpass the
current monitor component. However, the extended virtual machine may be incompatible
with the standard one, and the deployment of KMOT will become a problem.

Another approach to improve the performance of KMOT is to design an efficient
strategy to schedule the objects to the remote site in order to improve the overall
performance. Currently, the problem in RGS is the ignorance of object features such as
its computational load and the relationship with other objects. This problem sometimes
degrades the KMOT performance dramatically. We are working on this problem and are
designing several new algorithms to overcome the above shortage. Some theoretical
results have been obtained and the resulting algorithms are being integrated with our
toolkit.

KMOT is implemented for PalmPilot in a simulation environment. Extending it to
other Java-enabled resource-constrained portable devices, for example SmartPhones, in
real wireless networks such as GSM or CDMA is another avenue of future research. This
research will permit us to evaluate KMOT under various conditions in addition to the
wireless bandwidth in our simulation, and allow KMOT to be deployed in practical

environments.
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In addition, there are several other points that need to be considered to improve KMOT
functionalities. Examples include creating proxy objects on the fly, supporting multi-

dimensional array migration, and optimizing the object serialization protocol.
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Appendix A

1. Introduction

Floating some computational objects between a resource constrained portable device and
its powerful proxy server to adapt to the changes of mobile environment so as to support
adaptive application is the goal of KMOT [1]. KMOT accomplishes this goal by
providing facilities to support object migration and remote method invocation. Object
migration in KMOT can be done in two fashions, application-transparent migration and
application-aware migration. Application-transparent migration is realized by the
cooperation between the monitors residing at both sides, and application-aware migration
is programmed by the application developers to move a specific object. However, no
matter what fashion is used, object migration will incur two types of costs: the cost of
execution of an object on a processor and the cost of inter-processor communication. In
order to reduce the cost of inter-processor communication, the set of highly related
objects should be moved into a single processor during the execution of those objects. To
reduce the computational cost of a program, objects should be assigned to the processor
on which they run faster. The two kinds of migrations can be incompatible. The problem,
to which we refer as the assignment problem, is how to split a program dynamically into
two parts, such that the collective costs due to inter-processor communication and to

computation is minimized.
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Harold Stone [6] once researched this problem at early time under a two-processor
distributed system described by Fuller and Siewiorek [7]. He abstracted the program into
a modified module interconnection graph, and proposed a static assignment algorithm
with the aid of network flow algorithms to assign program modules between two
processors. He concluded that the weight of a cutset of the modified graph equaled to the
cost of the corresponding module assignment. This fact indicates that his algorithm is
optimal. However, this algorithm can not be applied to our design in two aspects. First,
the constraints in mobile environment have no place in the algorithm. Second, the static
nature of the algorithm prevents the dynamic object migration required by KMOT. The
first problem can be partially addressed by the algorithms proposed by Rao et al [8]
whose efforts are to find the optimal assignment when there is a memory constraint on
one of the processors. Their algorithm, in most cases, can reduce the size of the problem
and thus make it feasible to find the memory constrained optimal assignment by
enumerating all possibilities. Although this algorithm can be extended to handle other
parameters of the mobile environment such as limited capacity of wireless link, it is also
static in nature. A dynamic assignment algorithm, which can be used in our case is
proposed by Bokhari [9] based on his assignment graphs. In this algorithm, he defined the
phase of modular program, and reduced these assignment graphs in size to obtain the
upper and lower bounds on the cost of the dynamic assignment. However, the difficulty
of applying this algorithm to our design is the lack of place for mobile environment
parameters.

All above efforts are inspired by the work of Harold Stone, and resorted to the

network flow algorithms. Roughly speaking, combining of the work from Rao, et al. and
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Bokhari can provide a feasible solution to attack the application-transparent migration in
KMOT since it can construct module graph dynamically and split it into two parts to be
allocated in the two processors for minimizing the collective costs, and at meantime, take
the mobile environmental parameters into account. However, this combinatorial
algorithm can not address the application-aware migration efficiently since an object
chosen by application users to move will break the network flow algorithms’ principle
that requires the location of each object is not decided prior to the execution of the
algorithm. DOMT [5] adopts an algorithm based on different a technique from the
previous ones, called Greedy Graph Partitioning Heuristic (GGP) [4], which is strongly
related to the subset optimization problem. This algorithm is static, not optimal, and has
the same complexity O(N°) with Stone’s algorithm in the worst case as well as the
drawbacks we mentioned before when applied in mobile computing. The only advantage
it enjoys is its simplicity. Another more straightforward algorithm RGS is adopted by
KMOT. Although this algorithm executes efficiently, the application performance is not
guaranteed to improve and may be even worse than that without object migration because
like GGP, it suffers from the all drawbacks. Therefore, in order to support both
application-transparent migration and application-aware migration as well as to exploit
the mobile environmental resources efficiently, a high performance algorithm considering
all these factors comprehensively is desired. In this appendix, we argue with particular
emphasis on partitioning of an object graph to achieve this goal in a mobile environment
that is characterized by its limited capacity of the wireless link. A partition is a group of
related objects and generated by some initiators, which are movable objects selected

explicitly by the application itself or implicitly by KMOT. Partitions float between the
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mobile client and the proxy server for performance reason. Our method is to reduce this
optimization problem to a variation of the 0/1 Knapsack Problem [2][3], in which the
restriction that the objects are independent is broken. We proposed several heuristic
algorithms based on graph search strategies to fulfill the various requirements of the
mobile applications. The algorithms are general enough to be applied to other
applications that use data hoarding techniques to access collections of data, including
filesystems such as CODA and FICUS. Our primary contribution is a set of theoretical
results that illustrate the potentiality to improve the application performance.

The rest of the paper is organized as follows. Section 2 defines the assignment problem
formally and transforms it into a variation of 0/1 Knapsack problem. The Adaptive
Algorithm and Non-Adaptive Algorithm for partitioning an object graph are described
and analyzed in Section 3. These two algorithms can be realized in central mode. A
distributed algorithm, which can be realized in every movable object itself is proposed
and analyzed in Section 4. Section 5 concludes the paper and raises some open questions

for future works.

2. The Formal Description of the Assignment Problem

Both application-transparent migration and application-aware migration require the
identification of an optimal partitioning of object graph, especially in the latter case, in
which we should decide which other objects will accompany the object chosen by the
application to move to the remote side for high overall performance. We consider these
problems in two ways. One is from a centralized view, in which a centralized controler is

needed to schedule each object. The other is from a decentralized view. We let an object
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decide by itself whether to move or not through coordinating with other objects. Our
algorithms proposed in this paper can proximate this optimization problem in these two

cases.

2.1 Model and Assumption

The mobile system in our scenario, denoted by (M, L, P) consist of two geographically
distributed devices M and P which are connected by a wireless link L. M represents a
mobile device characterized by its processor speed and bus bandwidth, denoted by M(¢,,,
@y,). The same with proxy device P, denoted by P(¢,, @,). We use bandwidth, error rate
and latency as parameters to characterize the current communication link L(5;, &, o)
between client and proxy. If the wireless network is extremely poor, there will be no
partition to be generated for performance consideration. With the improvement of
network performance, the size of movable partition should be increased as well. We

define the load of the wireless network as 6, [10]

+ + 1
T 38 " 3¢ 3p 2
where [ = bandwidth at time t

& : error rate at time t

P latency at time t

B €and p are nominal values describing the worst acceptable performance. When £=0,

&=¢€and p=p, we have 6,=1, which is the worst load that can be tolerated in the wireless
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network. If 6,<1, the wireless network is in a good condition. The nominal bandwidth J,
nominal error rate € and nominal latency p are set based on the estimated maximum
tolerance. They may be adjusted by application developers for different type of networks
or applications. 6 reflects the capacity of L.
We further define processor ratio
A = (oim
P »
as a measure of the relative power of the processors. We always assume that A < 1, which

means that the proxy processor is more powerful than the mobile processor. We give the

definition of bandwidth ratio as

We suppose here ¢ > I and 1< /. This definition and assumption is rational in that when
an inter-object communication happens in a single machine, this communication, the
messages or results must resort to the local bus, whereas if it happens between the two
machines, it must goes through the wireless link. Hence, the bandwidth of the local bus
and wireless link is critical to evaluate the efficiency of floating objects between
processors. However, if the bandwidth of mobile host is much higher than that of wireless
link, and much lower than that of proxy host, we can assume ¢ >> [ and 17 << 1.

A program is also abstract into object graph, in which the nodes represent the objects
with their information such as the size and the computational load, the weighted edges

indicate the cost of inter-object references when the objects are assigned to the mobile
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host. Obviously, this cost will be u times when one of the objects is moved to the proxy
host. The cost function used to compute the edge weights may vary depending on the
nature of the system. Initially, we choose to minimize the absolute running time of a
program.

Our algorithms are set up on this object graph. However, its dynamic construction is
beyond the scope of this appendix. It may resort to the support from Java virtual machine
if the application is a Java program, or from the runtime system of some language. Here,
we assume the dynamic object graph is always available for our analysis and design of

the algorithms.

2.2 Problem Definition and Transformation

Formally, for a given object graph G=(N,E), our goal is try to find a sub-graph G’ =(N’,
E’), N'cN, E’cE that maximizes the collective cost function f{G’) which is defined later.
G’ is constructed dynamically with the increment of the number of movable objects from
mobile device to its proxy server. Each node v in G’ has a computational load C(v), size
parameter S(v), and inter-object communication cost w with its neighborhood. Its edges
can be divided into two sets: S;(v)={(v,u) | ugG’(N’)}, Sx(v) = {(v, u) | ueG’(N’)},
ISI1+1S21=deg(v). Hence, accordingly, the relation cost w(v)={cost(v,u) | u € N(v) } has

two categories w;(v) ={cost(v,i) | i€ S;(v)} and wi(v) ={cost(v,j) | j€ S»(v)} (see Figure 1)
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g

Figure 1: a partition of G=(N,E) a) Before node v is moved b) After node v is moved

So the total cost of node v before migration is defined as (Figure 1a)

Is 1] ls 21

Cost \ =C()+Y w,(M+uY w,(v)

After node v has been moved to a remote proxy server, this value should be changed

(Figure 1b)

Is1l 521
Cost , = AC (v) + ,uZ w,(v) + 772 w(v) @3
i=1 j=1
and at mean time G’(N’) =G’(N’){v}. Like this manner, we pick up node one by one

from G=(N,E) to construct a subgraph G’ to satisfy:

f(G)=MAX Z‘vea,{Cost1 (v) — Cost,(v)}

Is 1l 52|

=MAXY, AU=DCO)+ A=Y w0 +@=mY w,m} @)

i=1
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Is1l 152l
We denote (1= 2)C(v)+(1— )Y w.(»)+(u—m)_w,(v)as B(v). However if we assume

i=1 j=I

M1 >> 1 and u >> n, then we can simplify B(v) as

Is1l Is 21

B(v)=(1-A)C) = u), w,()=Y) w,(v) )

Is1l Is2l
If we denote W1= Y w,(v)andW2 =Y wj(v) then

B(v)=(1-4)C(v)-—puWI1l-W2) (6)

Finally, we have the goal function:

f(G") = max imize Y C(v)B(v) Rl

subject to the constraints: Z Cv)S(v)<C(@,)

C(v)=1if ve G'(N’) otherwise C(v)=0;
from this transformation, one can see that the assignment problem is equivalent to a
typical 0/1 Knapsack problem. What we should notice here is that in the traditional
Knapsack problem, the objects are independent; picking up one does not affect the choice
of the others. This requirement which is reflected in our scenario is that B(v) is a constant
for any object v. However, B(v) in the assignment problem is not a constant again. It
depends on the subgraph G’, i.e., the value of WI-W2, which means moving an object
will have impact on the mobility of other objects. This complicates the situations.
Fortunately, we can enumerate the nodes in the graph to calculate the impact of the

migration of the initial object picked up by the user. This impact on each node can
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decide the node to move or not if we define some criteria to evaluate this impact. Hence,
the objects, which should accompany the initial object to move out, are definitely

decided. This discussion gives us some hints to design our algorithms.

3. Algorithms

In this section, we propose two approximate algorithms to solve this optimization
problem from a centralized view. We first give some basic definitions and then describe

the algorithms.

3.1 Basic Definition

3.1.1 Node Data Structure

When an object graph is provided, we hope to move processor-bound objects with small
size to the proxy side and not to move the object, which has high coupling with its fixed
local neighbors. Naturally, if some of its neighbors are moved, the possibility of moving
this object should also be changed. Every time, when we decide to move an object v we
only take its direct neighbors into account. The factors we consider include the
relationship with its neighbors and the computational load as well as its size. Hence, the
object graph in our situation is a weighted graph with node weight representing the
computational load, and edge weight indicating the cost of inter-object communication.
We try to construct the subgraph G’cG iteratively initiated by G’ containing only one
node, i.e., the initiator picked up by the application or assigned by the algorithms. We
classify the edges of a node v into two classes S/(v) and S2(v) as we described in the

previous section, and then, we design the structure of a node as the follows
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S Int
D float
Comp float

Movable: boolean

WI1: Int W2: Int

Figure 2: Structure of a Node in Object Graph
S : Object Size
Movable: a Boolean value assigned by partition algorithm to indicate if this node is
marked move or not.

Comp: Computational Load

WI1: definition is in the previous section
W2: definition is in the previous section
D: decision value typed float, we calculate D by using the following formula:
B (v
D(vy= 2 ®)
S (v)

Whether a node v is movable or not depends on the value D(v). But D(v) will depend on
each other, which means that when an object is moved, it will have impact on its
neighbor’s D(v). Due to this dynamic property, we can not resort to the traditional

algorithm based on the nonincreasing sequence of the Di(v) , i=1,...,n. Our approach is to
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provide some threshold value 7 to control the objects selected and not to overflow the

link capacity.

3.1.2 Threshold Value

Prior to the moving procedure, we can calculate D(v) for Vv €G’ based on B(v) = C(v)+

(I-)WI1. Then we have D = Z % . The initial threshold value 7is defined as
“CIG (NI
the average of D(v) for Vv €G’ .
T=D )

If D(v) 27 then v is moved. 7 can be non-adaptive or adaptive. Non-adaptive 7 means the
value is not changed during the computation. Adaptive 7 means the value is changed
based on its previous value and other known information during the computation.
However, static threshold can not reflect what have been done, but hopefully, it has high
efficiency. In our algorithms, we first consider the adaptive method, adjusting 7 to make
the algorithms adapt to the variant of picking node sequence. Our adaptive formula is:

|G (N')It — D (v)

T =
IG(N") = v (10

The basic idea behind this adaptive formula is that at each time, when a node has been
decided to move or not, its weight will deduct from },cD(v), and the average of the rest
is recalculated as a new 7. This adaptive threshold can not guarantee to select the optimal
candidates, but can discard those which are the worst. Second, we consider the non-

adaptive method with fixed threshold value as (9).
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3.2 Adaptive Algorithm(AA)

3.2.1 Informal Description

Now, we describe the first algorithm how to select the nodes for migrating. First, we
calculate D(v) for every node, here S2(v)=¢ W2=0, and then we calculate a threshold
value T. Second, we give the initiator v; or pick the node v; with biggest D(v/) which
indicates that this node is the most advantageous to be moved. We compare it with the
threshold, if D(v/) is below the threshold, the whole object graph should reside on the
mobile client, no partition is generated, otherwise we mark v; movable. If the link
capacity is big enough, the whole object graph should be moved to the proxy sides. After
we have processed v;, we start the diffusion procedure by processing all its direct
neighbors. We intend to mark some neighbors and make them move with v; to the remote
side and hence reduce the cost of remote invocations. This processing includes re-
calculating D(v), and the threshold again, comparing the D(v) with the new threshold and
marking it movable or not since at least one of its neighbor’s state is changed. When we
have processed all the neighbors of the initial node, we pick them one by one to
investigate theirs direct neighbors again, and the diffusion procedure is repeated until we
mark sufficient nodes whose total size exceeds the link capacity and no more nodes can
be moved.

3.2.2 Formal Description

We give a formal description of the algorithm in this subsection. Component
complexities are on the right side, some explanations are also provided following the

algorithm.
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Algorithm: (A, 1, 1 6t are system parameters known by algorithm)

WO R DD =

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39

40.
41.
42.
43.
44.

Input: OG, O, C (Object Graph, Object to be moved, Link Capacity)
Output mSet; /* movable set */
nQueue=new nQueue();
mSet={} /* movable set */
dSet={} /* dead set, non-movable */
compute D(v) , T as well as W1&W?2 for each node. O(E)
if(O is NULL) {
get the node v with maximal D(v), i.e D(v)=max{D(vi)} i=1,...,n
} else {v=0}
. nQueue.addTail({v})
while(t>0) {
u = nQueue.deleteHead();
if(D(u#)>1 and C-S(u)=0) {
for (each we N(u)) { O(deg(u))
if (wg mSet) {
Wiw)=W1l(w)-w(u,w);
W2(wW)=W2(w)+w(u,w);
}
}

mSet=mSet+u;
/* mark u in mSet;*/
move u to remote site.
C=C-S(v);
/* compute the threshold again */
T=(n*1-D(u))/(n-1);
n=n-1;
} else {
if (C-S(u) 20) {
nQueue.addTail(u);
} else {
dSet = dSet+u;
T = (n*1-D(u))/(n-1);
n=n-1;
}
if (nQueue.size()==1) break;
}
nQueue.addTail(N(u)); O(deg(u))
}

. Class nQueue {
Queue Que;
Public nQueue() {
Que = empty
}
void addTail(Set N(v)) {
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45. for(each ue N(v)) {

46. if(u ¢ mSetunQueueudSet)
47, Que.add(u);

48. }

49. }

50. Node deleteHead() {

51. return Que.del();

52. }

53.}

3.2.3 Explanation and Example
According to AA, the nodes will make contribution to v only if they are neighbors of v

and they are movable. The following picture (Figure 3) demonstrate this case:

V.OOOOOOOOOOO

TLOOOOO&OOOO*OOO

T \ﬂ‘
(Ousog®)
Figure 3: the Queue in AA

v is any node. Only movable nodes are green. Yellow nodes are neighbors of v and
arrows indicate the contributions made by green nodes. Each time, the node at the head of
the queue will be deleted and checked. The threshold value 7is initiated by the average of
D(u), u € G(N). This decision only occurs at the head of queue. If v is not movable, then
there are two cases: 1) the size of v exceeds the current remaining link capacity, v will be
deleted from nQueue to put into dead set (dSet) and will be never checked it again. In this
situation 7 will be recalculated. 2) D(v) < 7, v will move to the end of queue and add its
neighbors which are not already in the nQueue or mSet or dSet at the tail of the queue. 7
is not adjusted in this situation. Nodes in front of v in nQueue can continually make

contribution to the neighbors of v or v itself, and these neighbors naturally make
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contributions to v. Otherwise, v will be inserted into the movable node set (mSet) and its
direct neighbors will be added to the queue again. The procedure of processing nodes
(which are some node’s direct neighbors) and adding their direct neighbors in the queue
is called Diffusion Procedure. In principle, every movable node makes an effort to
contribute to the migration possibilities of its non-movable neighbors, as soon as it gets
sufficient contribution it will become movable and make contribution to its neighbors
again until all nodes have been investigated and no more nodes can be moved. The
algorithm will terminate when the current link capacity is used up or no more nodes to be
moved. Finally, there are two set, one is dSer which contains non-movable nodes, the

other is mSet, which contains movable nodes.

Example: we have following object graph

o
9
e

Figure 4: Example Object Graph
In this example, for simplicity we assume A=0.01, u=10°, 1=0.01, then B(v)=(1-4)C(v)+

(I-l)WI+(u-1)W2 =C(v)-10°(WI-W2).
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Table 1: Node Information
Node 1 Node 2 | Node 3 Node 4 | Node 5 Node 6 | Node7 | Node 8
Load 169 295 35 144 3 47 231 93
Size 2 8 4 5 1 2 10 4
D 69 35 5 26 -7 17 23 21
Table 2: Reference Cost: 10
Node 1 Node 2 | Node 3 Node 4 | Node 5 Node 6 | Node 7 | Node 8
Nodel | O 8 4 9 10
Node 2 0 6 1
Node 3 0 7 4
Node 4 0 5
Node 5 0
Node 6 0
Node 7 0
Node 8 0
Threshold Value
0= /3 B+€/36+p/3p=1/3(45%+150%+150%)=1.15
C(6)=16
7= D=~23.6
nQueue T mSet C
1. {1[69]} 23.6 {1} 16
2. {2[371,3[7],4[29.8],5[13]} 17.1 {1} 14
3. {3[7],4[29.8],5[13],7[23.2],6[23]} 14.1 {1,2} 6
4, {4,5,7,6,3,8[21]} 14.1 {1,2} 6
5. {5,7,6,3,8[23.5]} 11.8 {1,2,4} 1
6. {7,6,3,8} 16.5 {1,2,4,5} 0
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dSet = {7,6,3,8}

Due to movement of node 1, we have two partitions: non-movable partition {7,6,3,8} and
a movable partition{1,2,4,5}. Total object size is 16.

According to (2) and (3), we can calculate the benefit of this partition:

Benefit = B(v1)+B(v2)+B(v4)+B(v5) =138+296+148+13=605

3.2.4 Analysis of AA

In this section, we will give some properties of this algorithm and analyze its complexity.
Theorem 3.1: WweG(N), we have D(v) <D’(v) (D’(v) is the reevaluation of D(v) after
the diffusion procedure initiated by any movable node.)

Proof: Suppose the node u initiates the diffusion procedure. The D value of its direct
neighbors will increase, the other nodes will not change. Hence we have D’(v)2D(v),
e G(N).

Theorem 3.2: mSet construct a subgraph of G. If the algorithm is deterministic and link
capacity C2>C1, then mSet.; € mSet.,

Proof: Since we only deal with those nodes based on neighbor relationship, they must be
connected. So mSet constructs a subgraph of G. On the other hand, if we have
deterministic method to decide a node’s neighbors in step 14 and 37, then the algorithm is
deterministic. If the algorithm is deterministic, step 20 determines that mSet is
monotonic which means that if link capacity C2>C1, then mSet.; € mSet,;.

Theorem 3.3: AA is convergent

Proof: We will show that when the algorithm terminates, nQueue= @. Suppose there

exists nQueue={vl, v2,...,vk} when AA terminate, we can conclude that 7%, D(v)<7k
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1
and C-S(v) 20 YwenQueue. But in fact, % = ; 2venoueneD(v), due to Theorem 3.1 there

must be at least one element u € nQueue satisfying D(u)>7k, contradictory to our
assumption. So when the algorithm terminates, nQueue= @. Specially, if C2L,comS(v),
then AA will terminate with the result that all nodes are scheduled to the remote side.
Theorem 3.4: the complexity of AA is O(NE)

Proof: In the worst case },ccS(u)<C, there are at most n=IG(N)| nodes in the queue and
at least one node whose D = 7 will be deleted from the queue after n loops. Each loop
processes one node with complexity of O(deg(node)). So deletion of one node needs
2deg=0O(E) time. The next node will be deleted within next n-/ loops due to the
reevaluation of threshold Tt and Theorem 3.1. This process will continue. Total time is

O(NE). When the object graph is a complete graph, the complexity is O(n’).

3.3 Non-adaptive Algorithm(NA)

3.3.1 Description of the Algorithm

The Adaptive Algorithm can be seen as using breadth-first searching techniques since we
first process a node’s neighbors and then these neighbors’ neighbors. This algorithm is
efficient in our adaptive procedure since each node needs to be investigated many times
with different threshold value as long as the link capacity is sufficient. However, it
consumes a lot of time in this procedure, which may be not tolerable in some real
condition. In this subsection, we propose a non-adaptive algorithm based on depth-first

searching which is N times faster than AA, here N is number of objects in the object
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graph. First, we give the formal description of the algorithm, and then give an
explanation and analysis.

Algorithm:

begin (A, L, M are system parameters known by algorithm)

2 Input OG, O, C and 71 (global variables)

3. Output mSet;

4, mSet={}

5. compute D(v), T as well as W1&W?2 for each node. O(E)
6

7

8

=

if (Ois NULL) {
get the node v with maximal D(v), i.e D(v)=max{D(vi)} i=1,...,n
. lelse {v=0)
9. if(D(v)>t and C-S(v)=0){
10. mSet = mSet+v;

11. move v to remote site.
12. C=C-S(v);

13. f(v);

14. }else {

15. no nodes to be moved
16. }

17. end;

18. f(Node u) {

19.  for (each we N(u) ) { O(deg(u))
20. N(u) = N(u)-w;

21. if (w ¢ mSet) {

22, W1(w)=W1(w)-w(u,w);

23. W2(wW)=W2(w)+w(u,w);
24, BwW)=(1-A)C(w)+ (1-t)WI(w)+(u-n)W2(w) /* compute D(w);*/
25. D(w) = B(w)/S(w)

26. if(D(w)2>1 and C-S(w) 20) {
217. mSet = mSet+w;

28. move w to remote site.
29. C=C-S(w);

30. f(w);

31. } else {

32. cSet = cSet+w;

33. }

34, WEAE */

35.  }/* for */
36. }
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3.3.2 Explanation and Example
Explanation: the form of this algorithm looks simpler than AA. But due to its recursive
nature, it is hard to read. Our idea is that from any node v, which can be movable, we try
to figure out which other nodes should accompany this node v to go to a remote side. We
first check its neighbors one by one to see if any of them, say u# can be marked movable.
If successful, Node u will be marked movable and put u in mSet which is a global
variable, and from this new marked Node u, we do the same thing recursively. Otherwise,
we mark this node checked and put u in cSet which means that “I (node v) have made
contribution to Node u, but this contribution is not enough to make it mark movable”,
here contribution means the recalculation of W1 and W2. After all nodes in the
neighborhood of Node v are processed, Node v should go back to its parent node, say w
which means exiting the current function and entering the previous one. Here the trick is
that when you process the neighbor nodes, the nodes in mSet_cSet cannot be checked
because the nodes in mSet are movable, it is not necessary to check them again. The
problem is the nodes in cSet, which are marked checked. From the point of Node v when
tracing back from Node u, there are three events for a node say p € cSet(v)umSet.

1. p ecSet - mSet =p is not movable, and Node v can not make it movable again since
Node v has made contribution to it, if it can be movable, it should receive more
contribution from other nodes and made movable by someone else.

2. pecSetrmSet=p is movable. Node v cannot make p movable but someone else in the
later will make p movable, and from p the recursive function executes. Hence, for

Node v, it is not necessary to check p again.
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3. p emSet-cSet=p is movable, but not marked by node v. In this situation, just skip it.

So the nodes we need to check is N(v)- cSet(v)umSet

Example: we use the Table 2 in 4.2.3 to represent the relationships among the nodes

Table 3: Node Information
Nodel | Node2 | Node3 | Node4 | Node5 | Node6 | Node7 | Node 8

Load 169 295 35 144 3 47 231 93

Size 2 8 4 5 1 2 10 4

D 69 35 5 26 -7 17 23 21
Table 4: Procedure of NA

n N(v) cSet(v) mSet

1 2,345 1,2

2 1,7,6 7 1,2,6

6 2,3 3 1,2,6

1 2,3,4,5 1,2,6,3

3 6.1,8 1,2,6,3.8

8 34 1,2,6,3.8.4

4 1.8 1,2,6,3.8.4

1 2,345 5 1,2,6,3.8.4

Capacity C=37, 1=27.

Ouput mSet = {1,2,6,3,8,4}

3.3.3 Analysis of NA

Theorem 3.5: NA is loop-free

Proof: this property is obvious, since each movable node will not be checked again.

Loops will be broken by step 21 in NA. For example:
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p w
Figure 5: Loop free

Node v is movable, then it checks its neighbor u, u is movable then the control goes to its
neighbor w, w is movable too. It will check its neighbor node v. But node v has been
moved, control does not go to node v but return to v via u. Node v checks its neighbor w
and finds it has been moved, processing continues with a new neighbor node p.
Theorem 3.6: The complexity of NA is O(E)
Proof: For v € G(N), the processing of v is done as soon as N(v)-cSetumSet={}. Based
on this procedure, the complexity of the algorithm is O(E) for a given node since for each
recursive function for processing Node v the complexity is O(deg(v)). Totally there are n
nodes and hence n recursive functions. i.e., 2deg=0(E).
Theorem 3.7: The lower bound of the Non-Adaptive Algorithms is £X(E).
Proof: To decide which nodes should be move with the given initiator v requires every
node in the graph to be checked. However, the mobility of a node depends on its
relationship with its direct neighbors. Hence, checking a node u needs at least O(deg(u))
operations since checking one neighbor of node u is a constant effort. Totally, at least

(Jdeg(u)) = (E) operations are needed.

4. Distributed Algorithm

When we apply the algorithms described in the previous section to our toolkit, it needs a

central control logic, which has to suffer the risk of shutdown and loss of performance. In
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this subsection, we design a distributed protocol based on the principle of our algorithms
described to attack the assignment problem. Our idea is that we embed some control logic
in Proxy Objects, which can communicate with each other by message passing, and
decide locally whether its associated object moves or not based on these messages. We
should point out that our techniques described here are for general purposes beyond the
scope of mobile computing, and maybe not suitable for mobile device with constrained
resource. In SMP, these proxy objects can be separate processes or even separate threads
in a single process. In a large-scale distributed memory system, these proxy objects
together with their real objects can reside in physically distributed sites. When an object
in some site needs to move to other sites, some other objects related to this object in
different sites should also move in order to improve the performance. In this situation, a

distributed protocol for object migration is desired.

4.1 Basic Idea

Each object decides whether to move or not through communicating with its direct
neighbors. The decision is based on the relationship between D and the current threshold
T as well as the current link capacity C. 7 and C are dynamically adjusted based on the
current D(v) and object size. Because these two variables are inherently global, their
changes have to be atomic. Hence, our algorithm is set up around a distributed mutual
exclusion algorithm. We exploit Raymond’s algorithm [11] which is a token-based
scheme established on a tree structure for distributed mutual exclusion to design our

algorithm. The algorithm is divided in several stages:
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4.1.1 Token Generation

Obviously, there is only one token in the given object graph. The token generation can be
realized by leader election. The leader will hold the token. Due to the fact that the leader
election is equivalent to the spanning tree construction in an arbitrary graph, we can
obtain a spanning tree rooted at the leader. A well-known algorithm for election in
arbitrary network is Kingdom algorithm [12] proposed by Gallager, Humblet and Spira in
1984. In addition to this, there exist other algorithms [13, 14, 15, 16, 17] serving the same
purpose. The advantage of the former algorithm is that when a leader has been elected, a
spanning tree rooted at the leader is also constructed. In our algorithm, we do not pay
more attention on the token generation with the assumption that the token has been
generated and resides at the leader which is the root of a spanning tree of the given
arbitrary object graph.

4.1.2 Token Circulation

Some objects are candidates which require to move to the remote site. This migration
consumes the link capacity and adjusts the threshold value for others. Hence, these
candidates will require the token for exclusive execution. Only one candidate can receive
the token. The token circulates around the tree. We use the Raymond Algorithm for this
purpose. As soon as a candidate node receives a token, it will decide to be movable, dead
or keep its candidate status. When it decides to move, it will update the token with new 1
and C and broadcast this new information to its neighbors. These neighbors may change
state based on this message. If some neighbors become candidates, they will compete for
the token following Raymond Algorithm. The candidates are not guaranteed to be moved

after they obtain the token, they may be moved or dead, and may be checked many times
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with different threshold and capacity value. If a candidate node receives a token and
keeps its status, it will re-compete for the token again. The token will contain special
information and be changed during the computing.

4.1.3 Termination Detection

As soon as a node computes 7<0, it will broadcast termination message on the spanning
tree. If all nodes except the moved nodes receive this message, they will mark themselves

dead nodes.

4.2 Model and Assumptions

Our distributed algorithm is symmetric since every proxy object runs the same algorithm
concurrently. We design the algorithm under the assumption:

1) Complete network

2) Bidirectional links

3) No faults

4) Distinct IDs associated with the entities

4.3 The Algorithm

To implement the distributed algorithm, each node X must hold certain information.
4.3.1 Information Held by Each Node

1) All edges with weight incident with it, i.e., neighbors

2) Threshold value T, and system parameters A, i, 77

3) Data contained in the data structure of the node.

4) Destination of moving object
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5) Associated object

6) Information needed by Raymond Algorithm

4.3.2 Formal Description

In this subsection, we will describe the distributed algorithm for object migration based
on an arbitrary object graph. For simplicity, we do not provide details how to construct
the spanning tree. On the contrary, we assume that each node has the local orientation
and knows which neighbors are in the tree. The token is generated in the leader of the
tree. Raymond Algorithm is employed for circulating this token for mutual exclusion
since the adaptive threshold value and link capacity is only modified at one node. We
assume that the nodes hold the information needed by Raymond Algorithm whose details
are omitted in our algorithm. Readers can refer to his paper [16].

Every node in the graph will be in one of four states: Movable, Dead, Candidate and
Idle. There are two kinds of messages in the algorithm: the first are Raymond messages
which include the token message TOKEN = (C, 7, n, v) and the REQUEST message. The
second are migration messages which include the termination message TERMINATION,
the wakeup message WAKEUP and broadcast messages BROADCAST= (C, 1, v). The
definition of C, 7 is the same as in Section 3.1.2. Initially every node is in Idle state
except several initiators which are in Candidate state. Candidate nodes will compete for
the token. Other kinds of nodes do not compete for the token. Our algorithm includes
several stages:

Stagel: Node Initialization (for each node x. )
1) Construct spanning tree
2) Generat the TOKEN=(C, 7, n, leaderID) (in special leader node.)

3) Calculate its Locallist = N(X).
4) Termination detection is guaranteed in this stage.
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Stage2: Node Migration (for any node x)
Idle
(1) receiving(TOKEN) from node j
do Raymond algorithm after receiving TOKEN

(2) receiving BROADCAST=(C, 7, j) from node j
if(j € Locallist(x))
update W1/W?2 by using w(X,))
Locallist(x) = Locallist(x)-j

become(Candidate)

(3) receiving (TERMINATION) on the spanning tree
become(Dead)

(4) receiving (REQUEST) from neighbor j
do Raymond algorithm

(5) receiving (WAKEUP) from neighbor j
become(Candidate)

Candidate
broadcast WAKEUP to N(x) at first entry.
do Raymond algorithm for obtaining TOKEN

(1) receiving BROADCAST=(C, 1, j) from node j
if(j € Locallist(x))
update W1/W2 by using w(X,j)
Locallist(x) = Locallist(x)-j

(2) receiving (TOKEN) from node i or itself

do Raymond algorithm after receiving the TOKEN

resolve the TOKEN= (C, 1, n, v)
if( Sx) <0O)
if(D(x) 271)
C=C-S(x)
T = (n*t-D(u))/(n-1);
n=n-1;
construct a new TOKEN=(C, 1, n, v)
if(t<0)

broadcast TERMINATION on the spanning tree.

else

broadcast BORADCAST=(C, 1, v) to N(x)

become(MMovable)
else

145
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became(Candidate)
else
T = (n*1-D(u))/(n-1);
n=n-1;
if(t<0)
broadcast TERMINATION on the spanning tree
else
become(Dead)

(3) receiving an associate object from node j
reset W1/W2;
compute D
become(Idle)

(4) receiving (REQUEST) from neighbor j
do Raymond algorithm

(5) receiving(TERMINATION) from node |
termination processing

Movable:
move associated object to destination;
do Raymond algorithm to release the TOKEN

receiving(TOKEN) from node j
do Raymond algorithm after receiving TOKEN

receiving(BOARDCAST) from node
discard it

receiving(TERMINATION) from node j
termination processing

receiving (REQUEST) from neighbor j
do Raymond algorithm

receiving(WAKEUP) from node j
discard it

Dead
do Raymond algorithm to release the TOKEN
broadcast WAKEUP to N(x)

receiving(TOKEN) from node j
do Raymond algorithm after receiving TOKEN.

receiving(BOARDCAST) from node j
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discard it

receiving(TERMINATION) from node j
termination processing

receiving (REQUEST) from neighbor j
do Raymond algorithm

receiving(WAKEUP) from node j
discard it

Example: the following example demonstrates our algorithm(Figure 6)

E initiator

Figure 6: Distributed Example
Suppose, the spanning tree is constructed pictured by the bold lines, (1) is the leader with
initial token. (4) is the initial candidate requiring the token. When it receives the token, it
decide to move and broadcast to its neighbors (1) (6) (7) (9) . Next (9) receives the token

and decide to move. Following (6) gets the token and is dead.
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u initiator

Figure 7: Distributed Example

4.4 Algorithm Analysis

In stage 1, constructing a spanning tree in an arbitrary graph reqire O(NlogN+E)
messages. In stage 2, the average message complexity per critical section of Raymond
algorithm is O(logN) under light demand and reduced to approximately four under
saturated demand. In our algorithm, there are N’ critical sections because each node will
be check at most N times. So the total message complexity for critical section is
O(N’logN). Next we will consider the number of broadcast and wakeup message. The
broadcast message occurs only at the node changing from candidate state to movable
state. In the worst case, N nodes are movable, O(E) is the message complexity. The
wakeup message occurs at the first time a node enters candidate state, and has O(E)
complexity. Finally, the termination message is only on the spanning tree. Hence its
complexity is O(N). Totally, the message complexity of our algorithm is
O(NlogN+E)+O(N*logN)+O(2E)+O(N)=O(N*logN+E)=0(N*logN)).

Theorem 4.1: The Algorithm is convergent.

Proof: Since there exist candidates at the beginning, every idle node will wakeup and

compete for the token. Due to the property of Raymond algorithm, no starvation occurs.
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Every candidate node can finally get the token. Based on the same principle as AA, each
node will be either movable or dead. The algorithm is convergent, and the termination is

guaranteed.

5. Conclusion and Future Work

How to schedule objects from resource-constrained mobile device to its proxy server for
high performance is an interesting problem. This problem is effected by the current
mobile environment as well as the application itself. We abstract this problem into a
theoretical optimization problem based on the object graph. The factors we consider are
parameters related to mobile systems as well as application features such as object
workload, object size and object relationships. We hope to benefit from moving objects.
But when we consider that the capacity of the wireless link is limited, we transform this
optimization problem into a variation of 0/1 Knapsack problem, which is well-known NP
hard. In the traditional Knapsack problem, the objects are independent. However in our
situation, this restriction is relaxed which means that the objects have some relationship,
picking up one will affect others. To resolve this problem, an adaptive algorithm with
complexity O(NE) is proposed, and its convergence is proved. A non-adaptive algorithm
is also provided with complexity O(E), i.e, N times faster than the adaptive counterpart.
But the disadvantage of the non-adaptive method is its imprecision if the threshold value
is not chosen well. Too big a threshold will waste some link capacity whereas too small a
threshold will lose some valuable objects. Both algorithms are online in nature. We also
provide a simple distributed algorithm based on Raymond Algorithm for solving this

problem with message complexity O(N°logN).
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There are several problems unsolved in this research, which make up our future work.
First the relationship between the link capacity and the load of the wireless network &,
i.e., C(6¢) need to be decided. We also need a simulation to evaluate the performance of
these algorithms. We believe that the simulation may expose some statistical laws behind
this problem. Exploiting these laws to guide the design of the adaptive threshold value is
another challenge since the threshold value should guarantee both the convergence and
optimization of the algorithm. To our knowledge, there is no existing work exactly
satisfying our requirements, and hence our work can provide a baseline performance to
evaluate the future research in this aspect. Although there are a lot of remaining open

problems, we hope this work is useful in gaining some ideas on this problem.
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