
VISUALIZING THE EXECUTION
OF OBJECT-ORIENTED

CODE MOBILITY APPLICATIONS

by

Yi Wang

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements of the degree of

Master of Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario
CANADA, K1S 5B6

June, 2000

(c) Copyright 2000, Yi Wang
i

The undersigned recommend to the Faculty of Graduate Studies
and Research the acceptance of the thesis

VISUALIZING THE EXECUTION
OF OBJECT-ORIENTED

CODE MOBILITY APPLICATIONS

submitted by Yi Wang, M. Eng in partial fulfillment of the
requirements for the degree of Master of Engineering

Thesis supervisor

Chair, Department of Systems and Computer Engineering
ii

ABSTRACT

Code mobility has potential to provide more flexible and efficient solutions to some

traditional client/server applications, especially in a large scale, dynamic and heteroge-

neous network environment. However, object-oriented distributed applications employ-

ing code mobility are intrinsically complex and hard to understand. Event-based

visualization can be an invaluable tool for understanding the dynamic behavior of such

applications by providing graphical views of the program execution.

 In this thesis, interesting events that help understand the execution of object-oriented

code mobility applications are identified by carrying out a study of the mobile code tech-

nology. An innovative approach to visually present code mobility is proposed. An infor-

mation tracing and visualization infrastructure (CMVS) for understanding the execution

of object-oriented code mobility applications was developed. CMVS supports both on-line

monitoring and postmortem visualization. It facilitates view zooming and information

query to allow users to focus on a particular area of the view, and to get more detailed

information regarding a specific event. Challenging issues with respect to program visual-

ization are addressed, including program instrumentation, preservation of event causality,

scalability, and quick focus on particular concerns.
iii

ACKNOWLEDGEMENT

I would like to thank my supervisor, Professor T. Kunz, for his guidance, advice and

support. Working with him is intellectually stimulating and this thesis profited enormously

from discussions with him.

I would like to take this opportunity to thank all my friends who always give me

encouragement and support no matter where I am.

I want to express my gratitude to my parents, who have encouraged me to strive for

excellence and always supported me in pursuing my goals. They have given me also wise

advice and unconditional love.

This research work was supported by Natural Sciences and Engineering Research

Council (NSERC) and Bell Mobility Co.. I am also grateful to them for providing finan-

cial support to allow me to concentrate on my thesis.
iv

Table Of Contents

Chapter 1 Introduction

1.1 Research Motivation ... 1

1.1.1 Distributed Object-Oriented Applications with Code Mobility ..2

1.1.2 Complexity Of Distributed Object-Oriented Applications with Code Mobility4

1.1.3 Event-Based Program Visualization..5

1.2 Thesis Contributions ... 6

1.3 Thesis Organization .. 7

Chapter 2 Related Work

2.1 Automated Instrumentation and Monitoring System (AIMS).. 11

2.2 Pablo Performance Analysis Environment ... 14

2.3 XPVM... 18

2.4 ParaGraph .. 21

2.5 PVanim ... 24

2.6 Summary... 28

Chapter 3 Mobile Code Technology and an Agent-Enhanced ORB-Voyager
v

3.1 Mobile Code Technology ... 30

3.1.1 Mobile Code Paradigms ..31

3.1.2 Mobile Objects ..34

3.2 Java and An Agent-Enhanced ORB-Voyager .. 36

3.2.1 Java Architecture ...37

3.2.2 Code Mobility Supported by Voyager...39

Chapter 4 Visualizing the Execution of Object-Oriented Mobile Code

Applications

4.1 Process-Time Diagrams.. 42

4.2 Graphical Representations of Interesting Events.. 44

4.2.1 Object Creation and Disposal ..44

4.2.2 Code Mobility..45

4.3 Visualization Objectives .. 49

Chapter 5 Event Data Collection Subsystem of CMVS

5.1 Program Monitoring ... 53

5.1.1 Program Instrumentation ...54

5.1.2 Event Records..61

5.2 The Architecture of Event Data Collection Subsystem.. 63
vi

5.3 Design and Implementation Issues ... 68

5.4 Functionality ... 74

Chapter 6 Event Processing and Graphical Display Subsystem of CMVS

6.1 The Architecture of Event Processing and Graphical Display Subsystem........................... 76

6.2 On-line Event Reordering... 81

6.3 Facilities.. 83

6.4 Summary... 86

6.4.1 An Overview of CMVS...86

6.4.2 System Evaluation ...89

Chapter 7 Summary and Future Work

7.1 Summary... 95

7.2 Future Work.. 97

 References
vii

List of Figures

Fig. 3.1: Code on demand. 31

Fig. 3.2: Remote evaluation . 32

Fig. 3.3: Mobile agent. 32

Fig. 3.4: Service migration . 34

Fig. 3.5: Java virtual machine. 38

Fig. 4.1: Process-time diagram . 42

Fig. 4.2: Object creation/destruction . 45

Fig. 4.3: Code mobility depiction-approach 1 . 46

Fig. 4.4: Code mobility depiction-approach 2 . 47

Fig. 4.5: Code mobility depiction-approach 3 . 48

Fig. 5.1: The visualization process . 52

Fig. 5.2: Instrumentation by inheritance. 56

Fig. 5.3: Program instrumentation by applying wrapper pattern . 57

Fig. 5.4: Schematic overview of event records. 62

Fig. 5.5: Distributed event data collection . 64

Fig. 5.6: Centralized event data collection . 66

Fig. 5.7: Relationship of host, server and mobile objects. 69

Fig. 5.8: Services provided by the trace event collection subsystem . 75

Fig. 6.1: The architecture of the event processing and graphical display subsystem. 77

Fig. 6.2: Application structure . 80
viii

Fig. 6.3: Snapshot of CMVS graphical view and user interface . 83

Fig. 6.4: Snapshot of the process-time view query. 84

Fig. 6.5: Snapshot of the process-time view zooming . 85

Fig. 6.6: A skeleton application modified using class inheritance to enable visualization 90

Fig. 6.7: A skeleton application modified using wrapper pattern to enable visualization 92
ix

Introduction
Chapter 1 Introduction

1.1 Research Motivation

 Distributed computing refers to spreading out the processing and data over more than

one computer, usually over a network, to cooperatively solve a single large problem.

Numerous advantages, including a better cost/performance ratio, incremental scalability,

better availability and robust programming mode, have brought distributed computing into

the mainstream [1]. However, developing a distributed application is quite a challenge and

so is the understanding of its dynamic behavior. This is due to the fact that distributed

applications are intrinsically more complex and non-deterministic. Increasingly, event-

based visualizations are becoming useful and powerful tools for understanding the behav-

ior of distributed executions [2] [3] [4] [5] [6]. Such tools can assist in reconstructing and

analyzing information about program execution to help software developers debug, test,

maintain, and optimize their codes [7] [8]. This thesis discusses approaches and presents

toolkits to facilitate program understanding for one specific class of applications, distrib-

uted object-oriented applications with code mobility.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 1

Introduction
1.1.1 Distributed Object-Oriented Applications with Code

Mobility

Over the last decade, distributed computing has evolved significantly. With the grow-

ing merger of computers and communication networks, as well as the introduction of

object-oriented programming paradigm and new programming languages, several new

technologies have been developed for distributed object-oriented applications.

A promising one is the so-called distributed object technology and many frameworks

(generally referred to as Object Request Broker, or ORB) are currently available, such as

CORBA [9], RMI [10] and Voyager [11]. This technology integrates remote procedure

calls (RPC) with the object-oriented paradigm. It provides facilities to hide the

underlying communication mechanism and supports location transparency. In distributed

object computing, an object reference is created locally and bound to a server object. The

local program can then invoke a method on this local reference as if it were a regular

local object. The ORB transparently intercepts the method invocation and transmits the

method request and its arguments to the server object, where the work is actually

performed. The return value is then transmitted back to the local object.

Another innovative technology emerging recently is called mobile code. This

technology exploits the notion of code mobility, which can be defined informally as the

capability to dynamically change the bindings between code fragments and the location

where they are executed [12]. Unlike other distributed technology, in this paradigm, the
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 2

Introduction
code segment and the state of an execution unit (EU), which is the run-time view of a

program such as a process or an individual thread, are not bound to a single

computational environment (CE) for their entire lifetime, but rather they can move

independently from one to another over the network.

 Code mobility has potential to provide more flexible and efficient solutions to some

traditional client/server applications, especially in a large scale, dynamic and

heterogeneous network environment. The advantages expected from the introduction of

code mobility are particularly appealing for some specific distributed applications, such

as distributed information retrieval, remote device control and configuration, network

management and electronic commerce [13]. With a perspective to enable new ways of

building distributed applications and even of creating brand new applications, mobile

code technology has aroused increasing interest from both academy and industry. More

recently, several languages and frameworks have evolved to support code mobility, such

as Java from Sun Microsystems [14], Voyager from Object Space, Aglet from IBM [15],

Obliq from DEC [16], Telescript and Odyssey from General Magic [17] [18], Agent Tcl

from University of Dartmouth [19], Concordia from Mitsubishi [20], to name but a few.

However, distributed object-oriented applications with code mobility involve all the

complexity of distributed programs plus problems specific to object migration. This is

due to the fact that those programs integrate distributed object architecture with mobile

code technologies, and thus problems arise from both areas, each producing complexity.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 3

Introduction
1.1.2 Complexity Of Distributed Object-Oriented Applications

with Code Mobility

Distributed programs are by nature large and complex [21] [22]. Multiple processes or

threads residing in different locations interact with each in complex and possible unfore-

seen ways. Execution may be non-deterministic. Data collection is more difficult since

there are multiple streams of events and these events must be ordered and merged by some

means of ordering such as time stamp. Communication delays between processors may be

large, and may vary greatly. It is not possible to have a global clock or synchronized sys-

tem clocks running at the same rate and with sufficient resolution across the multiple pro-

cessors involved in the computation.

Further complexity is introduced by mobile objects that can be shared by processes

and moved to remote locations, execution flows that can migrate from site to site, and

instances that can be dynamically created and destroyed in various places.

The complex nature of distributed object-oriented applications with code mobility

makes it difficult to gain an understanding of those applications. It is evident that

software development and maintenance each relies on program understanding. In order to

cope with those complexities and take full advantage of the adopted technology, software

developers much be provided with tools that help understand the execution of their

programs as well as the collaboration and distribution of the objects.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 4

Introduction
1.1.3 Event-Based Program Visualization

Tools and modeling languages used to understand the static code structure are helpful

but they have no explicit way for expressing distribution of objects over the network. It is

believed that event-based visualization, the use of graphics and animation to visually

describe and analyze the program execution, is a promising candidate to help gain insight

into how a distributed object-oriented application with code mobility works. Event visual-

ization tools provide the user with a graphical view of the execution. This view presents

the occurrence of different types of events over time [23] [24]. An event is a conceptual

entity that causes a change in the state of the execution. Each event occurs at the instant at

which some predefined computation is completed. One supporting argument for choosing

graphics over text is that textual presentations of data describing the execution of distrib-

uted application are inherently sequential while graphics may convey far more meaning-

ful information than text. Another reason is that humans possess highly developed image

processing system, which allow us to track multiple complex visual patterns and to easily

spot anomalies in them.

However, a search of recent literature reveals that no visualization toolkits currently

available provide facility for understanding code mobility. With the increasing

application of code mobility in distributed network environment, it is very important to

have a means to visually describe and illustrate the cooperation, distribution and

migration of objects. Software developers can benefit from this during software
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 5

Introduction
development and maintenance. It also helps network administrators to monitor those

mobile objects if they allow them to float inside their network.

1.2 Thesis Contributions

Much of the research to date has focused on the visualization of parallel/distributed

programs, no work seems to have been done on code mobility. This thesis discusses

approaches and presents toolkits to facilitate understanding the behavior of distributed

object-oriented applications with code mobility. Two major issues are addressed: what

needs to be visualized and how do we visualize it. The thesis has accomplished the follow-

ing achievements:

1. By examining mobile code technology and distributed applications that exploit code

mobility, interesting events that need to be portrayed visually to help understand the

program execution are identified.

2. Several existing visualization systems for distributed/parallel applications are sur-

veyed. This survey gives an overview of the current research in the area of program

visualization and can help visualization tool developers in designing their own system.

3. Several approaches to depict those interesting events are analyzed. An innovative way

to present code mobility on a process-time diagram is proposed. This solution explic-

itly indicates the location change of the mobile objects without increasing display

space needed. It is inherently scalable and correctly reflects concurrency.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 6

Introduction
4. An infrastructure that provides tracing facilities and supports both on-line and post-

mortem visualization is designed and implemented. A solution to insert instrumenta-

tion with few modifications of source code is provided. An approach to uniquely

identify the mobile object is proposed. Time adjustment strategy is developed to help

preserve the causality of trace events.

5. A graphical display toolkit is developed to provide on-line and postmortem visualiza-

tion. This toolkit facilitates trace play control, view zooming, information query, cus-

tomization of the display order and space.

6. Challenging issues with respect to program visualization are addressed, including little

user intervention, minimal probe perturbation, on-line event reordering, scalability,

quickly focusing on particular concerns, and so on.

1.3 Thesis Organization

The thesis is organized as follows:

Chapter 2 reviews several existing visualization tools for parallel/distributed pro-

grams. The contributions of a particular system are discussed and a com-

parison to our work is given.

Chapter 3 examines mobile code technology in a greater detail in order to help

understand why a particular event is chosen for display. The thesis is
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 7

Introduction

ment.

gram

ent

S)

 and

essed,

en-

MVS.

vent

arch
based on programs using Object Space’s Voyager as target environ

A brief overview of Voyager is provided as well.

Chapter 4 discusses what entities, relationships and actions existing in the pro

might be visualized. A detailed explanation of how to graphically pres

them is also given.

Chapter 5 and Chapter 6 present the code mobility visualization system (CMV

that supports both on-line and postmortem visualization.

Chapter 5 introduces the event collection subsystem of CMVS. Its architecture

major components are described. Several design issues are addr

including program instrumentation, trace file format, unique object id

tifier and the preservation of causality.

Chapter 6 presents the event processing and graphical display subsystem of C

Its architecture and facilities are introduced. The issue of on-line e

reordering is discussed and a brief evaluation of CMVS is given.

Chapter 7 gives a summary of this work and recommends some future rese

directions.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 8

Related Work

]

 and

e code

 any
Chapter 2 Related Work

In this chapter, a number of visualization tools for distributed/parallel programs are

reviewed. Examples of other tools that perform parallel/distributed program visualization

are described in [25] [26] [27]. The most prevalent approach taken by these tools is to col-

lect data during program execution, then provide postmortem or on-line analysis and dis-

play the different aspects of the program behavior. Some tools do both steps in an

integrated manner, while others provide just one of these functions. The following tools

were investigated:

• AIMS - instrumentor, monitoring library, and analysis tools

• Pablo - monitoring library and analysis tools

• SvPablo - integrated instrumentor, monitoring library, and analysis tool

• XPVM - graphical console and monitor for PVM (Parallel Virtual Machine) [34

• Paragraph - graphical display system

• PVanim - monitoring library and animated visualization tool

• Polka - software animation and visualization tool

These tools are publicly available with source code. They are maintained

supported by their developers. For each tool listed above, we obtained the sourc

and compiled it. After the software was installed successfully, we went through
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 9

Related Work

tion

ould

other

own

l to

 also

tion is

pical
tutorials or examples available to get familiar with the tool. The goal of this evaluation is

to review the achievements that a particular tool has made to perceive how they will help

build up our own visualization. Therefore, we place our emphasis on the following

criteria, rather that carry out a side-by-side quantitative comparison.

• Functionality

• Usability

• Extensibility

For functionality, we focus on those facilities that are relevant to our visualiza

rather than give an overall discussion.

To be useful, we expect a tool with intuitive easy-to-use interface. The tool sh

have adequate and clear instruction on how to install and use it, in addition to

necessary documentation and support.

A tool is extensible if it provides facilities for users to add new displays of their

that can be viewed along with existing views. This capability is extremely usefu

support special-purpose displays for particular applications.

Although some other criteria such as portability, scalability, and robustness are

very important, we do not focus on them for two reasons. One is that such informa

unavailable for most of the toolkits. The other is that we did not develop a ty
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 10

Related Work

stru-

g the
application to examine those toolkits with respect to these criteria, since they are not as

relevant as functionality, usability and extensibility to our evaluation goal.

2.1 Automated Instrumentation and Monitoring

System (AIMS)

Functionality

AIMS [28] is a software toolkit for measurement and analysis of Fortran 77 and C

message-passing programs using the NX, PVM, or MPI communication libraries [29].

AIMS consists of three major components:

• A source code instrumentor

• A run time performance monitoring library

• A set of tools that process and display the performance data.

1) Source code instrumentation

AIMS is quite flexible in allowing the user to specify what constructs should be in

mented, and the instrumentation is done automatically without manually changin

URL http://science.nas.nasa.gov/Software/AIMS/

Version 3.7.2

Languages C, Fortran 77

Platforms IBM SP2, Sun, SGI, and HP work stations,

 SGI Power Challenge
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 11

Related Work

twork

view

on of

idual

, each

ented
source code. However, its instrumentation is rather limited with respect to the source lan-

guage, which must be standard Fortran 77 or ANSI C.

2) Trace file generation

After the instrumented source files are compiled and linked with the AIMS monitor

library, they can be run in the usual manner to produce trace files. AIMS generates sepa-

rate files for each process and then automatically collects and merges the per-process files

to create a single trace file. Two important files generated by the instrumentor, an applica-

tion database and an instrument-enabling profile, are used during run-time monitoring.

3) Trace file analysis

AIMS provides a set of software tools that process and display execution data.

• View Kernel (VK)

• Tally statistics generator

• Sysconfig

Tally and Sysconfig are used to display performance statistics and the ne

topology, respectively. VK provides graphical animations of the trace file. It has a

called OverView, which is similar to the process-time diagram, a visual presentati

the program execution in a two-dimensional display with time on one axis and indiv

entities (e.g. processes, threads, objects) on the other [51] [57]. In the OverView

process is represented by a horizontal bar, with different colors for different instrum
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 12

Related Work
subroutines and white space to indicate blocking due to a send or receive. Messages

between processes are represented by lines between bars. Both bars and message lines

can be clicked on for additional information, including source code click back to the line

that generated the event. The playback of the trace file can be controlled with VCR-like

controls that allow the user to return to the beginning of the current trace file, step

through it, or pause the animation. The time range of the time-line can be adjusted.

However, it does not appear to have any way to scroll backward or to zoom on this view.

Usability

AIMS documentation is well-written. The Users’ Guide gives step-by-step

instructions on how to instrument, run, and analyze a user’s application program; it also

clearly explains the various features and options for each of the AIMS components.

Installation instructions are included in the software distribution. The major

installation task consists of editing the top-level Makefile with system specific

definitions. Although instructions are given on how to do this with sample Makefiles for

different platforms, it is not a trivial effort to modify the Makefile. In addition, it is not

easy to instrument, compile and run the examples.

Extensibility

AIMS does not appear to provide support for users to seamlessly add new displays of

their own to the existing views, nor does it facilitate modifications of a particular

displays.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 13

Related Work
2.2 Pablo Performance Analysis Environment

Functionality

Pablo [30], developed at the University of Illinois, is the most complex toolkit

reviewed here. It is designed for constructing the performance analysis environment of

parallel programs, and therefore, most of its functionality is provided to help the user

address the problem of bottleneck identification, performance evaluation and tuning.

Pablo 5.0 consists of several separate components for instrumentation, event tracing

and performance data analysis.

• Trace library

• SvPablo (Source View Pablo)

• Analysis GUI

 Compoents

Item

TraceLibrary SvPablo Analysis GUI

Languages Language-inde-
pendent

ANSI C, HPF

Platforms MPICH on Convex
Exemplar, Intel
Paragon, Unix
work stations,

IBM SP

SGI running IRIX 6

Sun running Solaris

Built and tested on

Sun Solaris 2.5.1

Version

URL http://www-pablo.cs.uiuc.edu/Project/ResearchProjects.htm
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 14

Related Work
Pablo also provides facilities to convert trace files produced by other trace libraries,

such as PICL (Portable Instrumentation Communication Library) [31] and AIMS, to

SDDF (Self-Defining Data Format) [32], so that these trace files can be analyzed using

the Pablo analysis tools.

1) Source code instrumentation

Instrumentation can be done by manually inserting calls to TraceLibrary routines into

the application source code, or interactively by using SvPablo, a graphical interface for

instrumenting application source and browsing dynamic performance data. SvPablo only

supports interactive instrumentation of C, Fortran 77, and Fortran 90, and automatic

instrumentation of HPF programs.

The instrumentation library consists of a basic trace library with extensions for

procedure tracing, loop tracing, I/O tracing, as well as NX and MPI message-passing

tracing. The basic trace library supports counting, interval timing and event tracing,

among which the first two are only used to capture data for performance measurements

like the counting of a specific event or the time spent in particular code fragments.

2) Trace file generation

After compiling and linking with the TraceLibrary routines, the application executable

can be run in the usual manner. Each process outputs a trace file, which can be merged

later using an SDDF utility.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 15

Related Work
 What really justifies a mention of Pablo is its self-describing data format (SDDF)

used for the trace files. In addition, interoperation between the various Pablo components

is also based on it. SDDF is a trace description language that specifies both the structures

of data records and data record instances. Because SDDF does not define a fixed set of

event types, nor does it specify the size, data types or semantics of a particular event, new

event types relevant to specific applications or architecture can be added without

modifying the Pablo trace library.

3) Trace file analysis

SDDF trace files can be analyzed using the Pablo Analysis GUI. The Pablo Analysis

GUI supports so-called graphical programming models. The user can specify the desired

data transformations and presentations by graphically connecting analysis and data dis-

play modules and then selecting which trace data should be processed by each data analy-

sis module. The developers of the Pablo Analysis GUI claim that this design provides the

desired flexibility and extensibility. However, it introduces greater complexity in config-

uring the graphs. The Analysis GUI provides performance views using typical graphics

such as bar graphs, bubble charts, strip charts, kiviat diagrams and matrix displays. Most

of these displays represent statistical information such as processor utilization and mes-

sage traffic. Although these types of views and displays are helpful for performance eval-

uation and tuning, they are very limited to illustrate the semantics of a program in its

application domain, on which our visualization will focus.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 16

Related Work
The SvPablo GUI only allows the user to view performance summary statistics for

each instrumented routine and loop, such as number of calls made to the routine and the

cumulative time for the routine. Detailed statistical information about a routine can be

seen by clicking on it with the mouse buttons.

Usability

The Pablo documentation is thorough. However, it would be helpful to have an up-to-

date overview document that describes how the various components relate to one another

and how they can be used together.

Brief installation instructions are provided in the README file for each component.

The major installation task consists of editing the top-level Makefile with system-specific

definitions. All the components except the TraceLibrary require GNU Make 3.75. For

Analysis GUI, we had to edit some source code files. The Analysis GUI and SvPablo

include a tutorial in their distribution that leads the user through the steps needed to build

an analysis graph with a series of examples.

SvPablo is not very difficult to use. The Pablo Analysis GUI, on the other hand, has a

steep learning curve for learning how to construct the analysis graphs. It would be helpful

if this tool provided example graphs for a particular application area or programming

model to get the user started.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 17

Related Work
Extensibility

Pablo provides possibilities for the user to develop and add new data analysis modules

and theoretically, various types of view could be constructed using its graphical program-

ming model. However, adding application-specific displays to Pablo is definitely a time-

consuming task because it requires X-window System programming, which is rather com-

plex and has a steep learning curve. Furthermore, most of the display facilities provided

by Pablo are for presentation of performance data, and they are not very useful to build our

visualization.

2.3 XPVM

Functionality

XPVM [33] is an X-window based graphical console and monitor for PVM. It

provides a graphical interface to the PVM console commands and information, along

with several animated views to monitor the execution of PVM programs. XPVM is

written in C and Tcl/Tk [35]. It runs like another PVM task and has to execute on one of

the machines comprising the virtual machine.

URL http://www.netlib.org/pvm3/xpvm/

Version 1.2.5

Platforms Intel hypercubes

Sun, SGI, and HP work stations

SGI Challenge
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 18

Related Work
We restrict ourselves here only to the functionality of XPVM as a monitor.

1) Trace file generation

XPVM itself does not provide instrumentation functionality, nor does it provide a trace

library. All the views and functionality in XPVM are driven by information captured via

the PVM tracing facility. No annotation of the user program is necessary to use XPVM, as

the PVM distributions version 3.3.0 or higher include built-in instrumentation for tracing

user applications.

Any tasks spawned from XPVM automatically send back trace events. These trace

events can be used either for postmortem trace visualization or for on-line performance

monitoring. The trace files for XPVM are generated in self-defining data format, or

SDDF, as designed for representing trace events in the Pablo system. The XPVM group

argues the reason for choosing SDDF over the PICL (Portable Instrumentation

Communication Library) format is that PICL was not sufficiently flexible to represent all

the trace information generated by PVM.

2) Trace file analysis

XPVM provides several different views for monitoring program execution, among

which the Space-Time view provides a similar visualization to the process-time diagram.

The Space-Time view shows the status of individual tasks as they execute across all

hosts. Each task is represented by a horizontal bar along a common time axis, where the
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 19

Related Work
color of the bar indicates the state of the task, namely computing, overhead, and waiting.

Communication activity among tasks is shown using lines drawn between the task bars at

the corresponding message send and receive times.

The Space-Time view supports several nice facilities. It has a VCR-like trace play

control, which provides "Play", "Stop", "Pause" and "Single Step" buttons to control the

display. It also facilitates multiple views, Space-Time view queries and Space-Time view

zooming.

Usability

XPVM is well documented. The User’s Guide explains the various features available.

Each distribution of XPVM includes a README file that describes how to install that

version of the XPVM software and a general installation procedure is provided in the

User’s Guide. In general, the source distribution can be compiled on any Unix platform

which supports X-window and Tcl/Tk. In order to build XPVM, PVM 3.3.0 or later is

also needed. The major installation task consists of editing the top-level Makefile.aimk

with system specific definitions and of modifying the user’s .cshrc file to set up the

XPVM environment. The installation is easier than the two tools discussed above due to

fewer modifications needed for the Makefile. XPVM has an intuitive interface that is

easy to use.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 20

Related Work
Extensibility

XPVM is written using Tcl/Tk, allowing extensibility to include a variety of views.

Although modifying an existing display or adding an application-specific view will not

be an easy task and requires Tcl/Tk programming, at least the programmers can

concentrate on only those portions of the graphics programming that are relevant to their

application, taking advantage of all the other necessary facilities supported by XPVM. A

further consideration of the size and complexity of XPVM and Tcl/Tk will find that

XPVM is easier to be adapted than either AIMS or Pablo.

2.4 ParaGraph

Functionality

ParaGraph [36] is a graphical display system for visualizing the behavior and

performance of message-passing parallel programs. ParaGraph opted for a dynamic

animation approach to provide postmortem trace visualization. It is written in C and

based on the X-window system.

1) Trace file generation

URL http://www.netlib.org/paragraph/index.html

Version 6/8/94

Platforms Sun, IBM, SGI, HP and DEC work stations
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 21

Related Work
Similar to XPVM, ParaGraph only supports data analysis and graphical display. It

takes input data from execution trace files produced by PICL [31], a Portable Instrumenta-

tion Communication Library, which allows the user to produce trace data automatically.

This approach minimizes the need for explicit instrumentation by having the distributed

system automatically generate the annotation whenever possible. However, PICL only

provides instrumentation for those generic communication primitives that it supports.

Since ParaGraph relies on PICL only for its input data, it could work well with other data

sources in the same format.

2) Trace file analysis

ParaGraph provides a variety of views. Its Spacetime Diagram provides similar dis-

play and functionality to the OverView of AIMS.

In the Spacetime Diagram, the processor number is displayed on the vertical axis and

time on the horizontal, which scrolls as time proceeds. The processor status, namely

busy, doing overhead and idle, is indicated by horizontal lines. The line is blank if the

corresponding processor is idle; it will be solid in the other cases. Messages between

processors are depicted by slanted lines between the sending and receiving processor

status lines. Each message line is drawn when the called process starts to receive. The

communication lines are color-coded according to message size or message type. Like

AIMS, although the time range of the timeline can be adjusted, the current version does

not support scrolling backward or zooming.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 22

Related Work
ParaGraph has some nice features, including multiple views, trace file playback

control, and display motion control. The user can view as many of the displays as will fit

on the screen simultaneously, each giving a distinct perspective based on the same trace

data. The graphical animation can be interrupted for detailed study by use of the pause/

resume and single-step button. The speed with which the data are viewed can be slowed

down dynamically.

Usability

ParaGraph’s major documentation includes a README file and a User’s Guide.

Although the installation is not complex, it would be helpful, however, to include a brief

instruction on installation in either of these two files. When building ParaGraph, we had

to figure out the installation procedure and modify a top-level Makefile.

The User’s Guide explains the various features available. It also points out some

limitations of ParaGraph. According to the User’s Guide, the most fundamental restriction

in the parallel-programming model supported by ParaGraph is the assumption that there

is only one user process per processor. In addition, ParaGraph does not explicitly support

fully synchronous or full asynchronous communication. Currently, the inter-processor

communication model supported by ParaGraph is that the sending process never blocks,

but the receiving process will block if the message is not available when it attempts to

receive.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 23

Related Work
The interactive user interface of ParaGraph is easy to use and several sample trace

files come with the source code for demonstrating the functionality of ParaGraph.

Extensibility

Paragraph allows the users to add application-specific displays that can be selected

from a sub-menu and viewed along with the usual generic displays. ParaGraph has calls

at appropriate points to routines that provide initialization, data input, event handling and

drawing for application-specific displays. In addition, the tracemarks events of PICL can

be used to supply additional events for an application-specific display.

However, writing the necessary routines to support application-specific displays is

still a nontrivial task that requires a general knowledge of X-window System

programming. To help the users who may wish to develop application-specific displays,

several example routines are distributed along with the source code for ParaGraph.

2.5 PVanim

Functionality

The PVanim [37], developed by the GVU center of Georgia Institute of Technology,

is a toolkit for producing animated program visualizations of the executions of PVM

URL http://www.cc.gatech.edu/gvu/softviz/parviz/pvanim/pvanim.html

Version 1.1

Platforms Sun, IBM, SGI, HP and DEC work stations
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 24

Related Work
applications. A prominent feature of PVanim is its support for application-specific

visualization. Unlike performance visualization toolkits, PVanim focuses on

visualizations of the actual execution and correctness of a program. The major limitation

of the current version is that they do not work well for visualizing extremely long

program traces. However, it is not very clear from the available documentation what data

volume would be manageable.

PVanim has two main components: tracing library and Polka visualization library

1) Source code instrumentation and trace file generation

PVanim provides its own tracing library to create trace records rather than utilizing the

PVM tracing facility. The PVanim tracing library uses macro wrappers to add its tracing to

the PVM communication primitives for C or C++ programs. The user adds a header file

that redefines communications primitives to be PVanim stubs, which perform the tracing

first and then call the appropriate communication primitive. In addition to providing

instrumentation for generic communication primitives, the tracing library also supports

user-defined event tracing by providing a pvanim_print () routine that prepends the user-

written string with an event identifier, a process identifier and time stamps. The trace file

format is developed by GUV and used by all other components with visualization built on

Polka.

Two modifications are required for instrumenting the PVM programs. Modified

applications should be recompiled and linked with the PVanim tracing library. The trace
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 25

Related Work
file generated by the processes when the program is run will be converted to standard

PVanim trace file format by the PVanimSort command.

2) Trace file analysis

The PVanim visualization library, based on the using Polka animation toolkit [38]

[39], provides a set of views that show different perspectives of an application. Its Causal-

ity view is an adaptation of the process-time diagram.

In the Causality view, the Y-axis is labelled with process identifiers and the X-axis

labelled with Lamport logic clock value. When a message is sent, a circle representing

the message appears at the appropriate time coordinate. Varying circle radius is used to

denote message size and the color of the circle is to indicate the message type. During the

delivery of the message, an arrow grows from the coordinates of the message sender to

the receiver. Simultaneously, the circle moves along this path and then disappears. The

advantage of this approach is that it provides a sense of motion and change other than that

reflected by the temporal relationship. Different from XPVM, AIMS and ParaGraph,

PVanim does not use bar or trace line to depict the process status.

Despite the difference in the principles of building the display, PVanim is quite

similar to XPVM in functionality. The Polka Control Panel has VCR-like controls that

allow the user to control playback of a trace file. The control panel allows the user to

change the speed of the animation, step through it, or pause the animation. Graphical

objects in a PVanim view can be queried by clicking on them to obtain more information.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 26

Related Work
Furthermore, the user can scroll along the vertical and horizontal direction, as well as

zoom in or out. It would be convenient, however, if PvAnim provides a reset feature that

clears all displays and returns to the beginning of the current trace file, rather than having

to reload a trace to run it again.

Usability

The installation of PVanim is easy and includes two parts: the tracing library and the

display library. A brief installation guide can be found in the top level README file. The

PVanim tracing library includes documentation with its distribution that describes how to

install the library, what modification should be made for instrumentation and how to cor-

rectly compile the source code to produce the trace file.

The documentation of Polka includes a README file, Polka Animation Designer’s

Package, and a paper that explains clearly the methodology adopted by Polka to provide

an application specific visualization. The README file introduces briefly how to view

the trace file with Polka. The Designer’s Package gives a detailed description how to

develop a visualization of a user’s own design with Polka. The usage of Polka is self-

explanatory and easy to learn.

Extensibility

Polka is a software toolkit designed to facilitate application-specific animated

visualization. It provides the developers with an object-oriented design model by
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 27

Related Work

poly-

over,

s or

lass to

 95

of its

cing

 of

tems
supporting a set of primary classes that developers can instantiate, subclass and

manipulate to design their own visualization. Polka provides two critical features:

• It provides primitives for creating animations and visualizations

• It provides high-level graphical objects, such as lines, rectangles, circles,

gons, and text whose color, location and size can be changed

Therefore, it is very easy to change the color of the trace lines using Polka. More

it will not take much effort to add some symbols like triangles, diamonds, circle

rectangles since Polka provides a Polygon class, Circle class and Rectangle C

represent them.

Polka is implemented in C++ on top of UNIX with X11 system or on Windows

using MS Visual C++5.0. Although it requires some effort to learn the methodology

animation paradigm, it is much easier to learn than X-window programming.

In addition to the extensibility of Polka, as discussed above, the PVanim tra

library also facilitates user-defined event tracing.

2.6 Summary

Although existing visualization tools do not directly facilitate the understanding

code mobility and most of them are used for PVM or other distributed/parallel sys
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 28

Related Work
based on message-passing paradigm, the principles and mechanisms developed by them

can help build up our own visualization.

Among the tools that we reviewed, XPVM, ParaGraph and Polka provide their

equivalent process-time diagram, which can be adapted as our graphical representation of

the program behavior. The reason for choosing a process-time diagram is that it gives a

compact view of the event history and places more emphasis on temporal relationships.

Process-time diagrams will be explained in a greater detail in the following section.

The facilities provided by those tools, such as trace file playback control, information

query as well as view scrolling and zooming, can also be adopted to allow the user to

quickly focus on particular concerns or get more detailed information of a specific view.

SDDF, self-describing data format, developed by the Pablo group is very flexible to

represent trace information and can be used for our trace file as well. The instrumentation

approach used by ParaGraph and PVanim can inspire us to provide a way to instrument

the program with little source code modification. Although XPVM is tightly bound with

PVM, the mechanism used to drive the on-line analysis and display can be applied to our

visualization.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 29

Mobile Code Technology and an Agent-Enhanced ORB-Voyager
Chapter 3 Mobile Code Technology and an

Agent-Enhanced ORB-Voyager

Despite the widespread interest in mobile code technology and applications, this

research area is new and still immature. There are confusion and disagreement about some

concepts, abstractions, and terms in the domain of code mobility. This chapter gives a

brief review of mobile code technology and an introduction of our target environment,

Voyager. It serves two purposes: one is to clarify what a particular term means in the con-

text of this thesis; another is to help identify the characteristics of mobile code technology

so that we can understand what needs to be visualized.

3.1 Mobile Code Technology

Code Mobility is not a new concept. In the past, several mechanisms and facilities

have been designed and implemented in order to move code among the nodes of a net-

work, such as remote batch job submission [40] and file downloading. A more structured

approach that has been followed is the so-called process migration, the transfer of an

active process from the machine where it is running to a different one [41]. Migration

facilities, most of which support transparent process migration, are introduced at the oper-

ating system level to achieve load balancing.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 30

Mobile Code Technology and an Agent-Enhanced ORB-Voyager
More recently, an innovative technology called mobile code technology has been

developed to provide enhanced code mobility, fostered by a new generation of

programming languages, such as Java and telescript, and systems, often referred to as

mobile code systems (MCSs). In MCSs, mobile code does not bind statically to one host,

rather it can migrate to other hosts to provide services.

3.1.1 Mobile Code Paradigms

Existing MCSs supports code mobility in different ways. According to [42], the

approaches followed to build MCSs can be classified into three main design paradigms,

namely code on demand (COD), remote evaluation (REV), and mobile agent (MA). They

are depicted in Fig. 3.1, Fig. 3.2 and Fig. 3.3, respectively. These paradigms are character-

ized by the location of components before and after the execution of the service, by the

computational component which is responsible for execution of code, and by the location

where the computation actually takes place.

Fig. 3.1: Code on demand

Code Server

Component
Repository

NC

EU

CE

CE: Computational Environment EU: Execution Unit NC: Network component

Request
Code
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 31

Mobile Code Technology and an Agent-Enhanced ORB-Voyager
Code on Demand: As shown in Fig. 3.1, an execution unit, which is the run-time

view of a program such as a process or an individual thread, can fetch the code from a

remote node to be dynamically linked and eventually executed using the local resources.

A particular application of this paradigm is the use of Java applets in web browsers.

Fig. 3.2: Remote evaluation

Remote Evaluation: As shown in Fig. 3.2, the service code can be shipped to a

remote computational environment where it will be executed. This encompasses two

cases: either the EU in the destination node is created from scratch to run the incoming

code or a pre-existing EU links the incoming code dynamically and executes it.

Fig. 3.3: Mobile agent

NC

EU

CE NC

EU
CE

EU

CE: Computational Environment EU: Execution Unite NC: Network component

Code
Shipping

NC2 CENC1

EU

CE
NC3 CE

EUEU EU

EU

CE: Computational Environment EU: Execution Unite NC: Network component

Migrating

Migrating
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 32

Mobile Code Technology and an Agent-Enhanced ORB-Voyager

s with

her to

ed a
Mobile Agent: The term "agent" has many different meanings according to the

research domains where it is used. In the scope of this thesis, a mobile agent is basically

an execution unit (EU) that, while in execution at a given network node, is able to

migrate to a different node and resume its execution seamlessly there. The time and

destination for migration can be determined autonomously by the migrating agent itself

or by a different EU.

Among these paradigms, the REV and MA paradigms allow the execution of code on

a remote node, using the resources there. On the other hand, the COD paradigm enables

computational components to retrieve code from other remote components, providing a

flexible way to extend dynamically their behavior and the types of interaction they

support.

Code mobility affords new opportunities for the distribution of processing and control

in the network. There are several areas that may benefit from appropriate use of code

mobility:

• If a software component needs to exchange a large number of message

another component in a remote program, they can move closer to each ot

reduce network traffic and increase throughput.

• Migrating software components from their working nodes that have experienc

partial failure can improve the fault tolerance of the application system.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 33

Mobile Code Technology and an Agent-Enhanced ORB-Voyager

device

 to per-

 or

cution

t-ori-

tually

, such

 com-
• A server program can move service code to a consumer device so that the

can be served even after it is disconnected from the network.

• A software component can be delegated a task and sent to a remote device

form its operation. This can be used for network management applications.

• Code mobility can be used for on-line extension of application functionality

software upgrades [43].

• As shown in Fig. 3.4, server programs can move their services to a better exe

environment to balance the load or to avoid bottlenecks and long latency.

Fig. 3.4: Service migration

3.1.2 Mobile Objects

When we restrict our discussion about code mobility to the context of the objec

ented paradigm, “code” intuitively refers to classes or objects. Since objects are ac

the active entities, we will not place our attention on issues related to class mobility

as class downloading or shipping, but rather to mobile objects. Although there is no
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 34

Mobile Code Technology and an Agent-Enhanced ORB-Voyager

cation

tified

 pro-

sed on

t to

ly the

gular

ing its

oint

sta-
monly agreed definition of what is a mobile object, in the context of this thesis, a mobile

object has the following characteristics:

• It is a distributed object that not only has behavior and state but also has lo

and an unique identity

From the perspective of programmers, a mobile object can be uniquely iden

even after its migration. The location of a mobile object is not hidden from the

grammers, but rather applicants are location-aware and may take actions ba

such knowledge.

• It has the capability to move independently from one network componen

another during its lifetime.

The programmers can determine objects locations and may request explicit

migration of a object to a particular node

According to those characteristics that distinguish a mobile object from other re

objects, we can define a set of events that are of interest to the mobile object dur

life time, and that are helpful in understanding its dynamic behavior.

Creation: Analogous to the constructor of an object, creation is the starting p

of an object's life. It can be initiated either by a mobile object or a

tionary object.

Disposal: Analogous to the destruction of an object.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 35

Mobile Code Technology and an Agent-Enhanced ORB-Voyager
Arrival: Signals that the mobile object has successfully arrived at its new location.

Dispatch: Signals the mobile object to prepare for departure to a new location.

This event can be generated explicitly by the mobile object itself upon

requesting to move, or it can be triggered by another object that has ini-

tiated the migration.

There are some other likely interesting events, such as those related to interaction

with other objects. These events are not specific to code mobility and such events are

typically covered by previous visualization systems [44] [45]. As the goal of this thesis is

to provide a sensible visualization scheme for the purpose of understanding code

mobility, our efforts will not focus on these events, but rather on those associated with

creation, disposal, arrival and dispatch.

3.2 Java and An Agent-Enhanced ORB-Voyager

The thesis is based on programs using Voyager as target environment. The reason for

choosing Voyager is that it supports rich code mobility. Another reason is its popularity.

Voyager is an agent-enhanced ORB, which merges distributed object technology and

mobile code technology together. Therefore, in addition to those capabilities found in

most other ORBs, it provides a host of other features for supporting code mobility. Voy-

ager is 100% Java, and is designed to use the Java language object model [11]. In the rest
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 36

Mobile Code Technology and an Agent-Enhanced ORB-Voyager
of this chapter, we will give a brief introduction of the mechanisms and features that Java

and Voyager support for code mobility.

3.2.1 Java Architecture

Developed by Sun Microsystems, Java technology [14] has triggered most of the

attention and expectations on code mobility. We refer to Java as a technology, rather than

only as another programming language. Java architecture consists of four parts [46]:

1) The Java programming language

2) The Java class file

The Java class file contains byte codes, the machine language of the Java Virtual

Machine. It is very compact and can be transmitted over networks quickly

3) The Java application programming interface (Java API)

The Java API is a set of run-time libraries that provide a standard way to access the

system resources of a host computer.

4) The Java virtual machine (JVM)
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 37

Mobile Code Technology and an Agent-Enhanced ORB-Voyager
Fig. 3.5: Java virtual machine

As shown in Fig. 3.5, the JVM contains a class loader and an execution engine.

The class loader is responsible for loading class files that are actually needed by a

running program.

The JVM and Java API form the Java run-time system on which all Java programs

are compiled and executed. Java provides many features, but here we restrict our

discussion only to the Java mechanisms that supports code mobility.

The Java compiler translates Java source programs into an intermediate, platform

independent language called Java Byte Code. The byte code is interpreted by the JVM.

Java provides a programmable mechanism, the class loader, to retrieve and link

dynamically classes in a running JVM. The class loader is invoked by the JVM run-time

class
loader

bytecodes

execution

native method invocations

Host operating system

The Java Virtual Machine

program’s
class files

Java API’s
class files

engine
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 38

Mobile Code Technology and an Agent-Enhanced ORB-Voyager

 the

fore,

oach

eated
when the code currently in execution contains an unresolved class name. The class loader

actually retrieves the corresponding class, possibly from a remote host, and then loads the

class into the JVM. At this point, the corresponding code is executed. In addition, class

downloading and linking may be triggered explicitly by the application, independently of

the need to execute the class code. Therefore Java supports code mobility using

mechanisms for fetching code fragments. The code loaded is always executed from

scratch and has neither execution state nor bindings to resources at the remote host.

3.2.2 Code Mobility Supported by Voyager

Voyager takes a different strategy to facilitate code mobility. It provides a middleware

layer supporting code mobility for higher level layers. It extends Java by adding capabili-

ties to support REV paradigm. In Voyager, almost all serializable objects have the poten-

tial to move between different locations. Voyager implements mobility in the following

ways:

• Shipping an object to a remote location

An object can be moved explicitly to a new location by obtaining access to

Mobility facet and invoking the MoveTo () operation on that facet.

• Mobile agent

Voyager claims that it supports the notion of mobile agent. As mentioned be

there is no commonly agreed definition for this term. The mobile agent appr

in Voyager is different from the one we discussed earlier. An object can be tr
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 39

Mobile Code Technology and an Agent-Enhanced ORB-Voyager

arame-

this

e the

e any

emote

con-

o that
as an agent and moved explicitly to a new location by obtaining access to the

Agent facet and invoking the MoveTo () operation on it. In this way, the code of an

agent, including its non-transient parts, is shipped to the remote location to instan-

tiate a new thread, which means that the agent is re-executed from scratch after

migration, although it retains the value of its object attributes which are used to

provide initial state for its computation. This approach is similar to the first one

except that a mobile agent is an active thread of Java.

• Passed explicitly as parameter

An object can be serialized and passed to the remote virtual machine as a p

ter of remote invocations on a Voyager object. We would rather refer to

approach as passing an object by value. It is a form of class mobility, sinc

shipped code is actually used as data resource for a remote invocation lik

other data types.

• Remotely construct objects

Voyager enables an object to be constructed on different hosts through a r

invocation. Most other infrastructures do not allow objects to be remotely

structed. A proxy object reference is returned from the construction process s

the local process can use the newly constructed object right away.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 40

Visualizing the Execution of Object-Oriented Mobile Code Applications
Chapter 4 Visualizing the Execution of Object-

Oriented Mobile Code

Applications

As discussed in the previous chapters, when the execution of applications are of con-

cern, an event-based approach is typically employed. Events represent some activities that

cause changes in the state of the execution and are considered to occur at an instance in

time. They are defined according to a particular aspect in which a specific observer is

interested. This thesis focuses on the understanding of code mobility, consequently, those

aforementioned events of a mobile object in its lifecycle, namely creation, disposal, arrival

and dispatch, are our interesting events.

In this chapter, we attempt to address the question of how to visualize. In other words,

ideally, how those interesting events might be graphically presented. We first introduce an

adaptation of process-time diagram, which is adopted in the Poet visualization system [47]

[48] [49], then we explain, in more detail, how to apply a similar graphical representation

in our visualization.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 41

Visualizing the Execution of Object-Oriented Mobile Code Applications
4.1 Process-Time Diagrams

Fig. 4.1: Process-time diagram

The graphical representation of the behavior of programs can be carried out either by

animation or by process-time diagrams. McDowell and Helmbold once suggested that the

ideal debugging or monitoring tool for complex parallel programs should support both

animation and process-time displays [50].

Animation is good at capturing a sense of motion and change, and thus may provide

an intuitive feeling for the dynamic behavior of the program. However, temporal

relationships are difficult to analyze using animation, because the granularity of temporal

relationships shown in a single frame of animation is limited. An alternative to animation

is the process-time diagram [51] [57], which gives a compact view of the event history,

and places much more emphasis on the temporal relationships between entities.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 42

Visualizing the Execution of Object-Oriented Mobile Code Applications
As shown in Fig. 4.1, in the progress-time diagram, each entity, such as process, task,

thread, object and semaphore, is viewed as a sequence of atomic events and represented

by horizontal lines, called traces, with time progressing from left to right. Events

constitute the lowest level of observable behavior in a distributed execution, such as

sending/receiving a message, or the creation/termination of a process.

In reality, no global clock exists and events can only be ordered partially. The basic

relation between primitive events is the happened-before relation introduced by Lamport

[51]. The precedence relation (

 The visualization focuses on interactions between entities instead of the internal

activities of each entity. A symbol, such as an open/solid circle/square, represents

important events in each entity. Interactions, such as communication, between entities are

shown by arrows, which are drawn from the appropriate event in the sending entity to the

one in the receiving entity.

3) If a b and b c, then a c

2)

4) If a b and b a, then a and b are concurrent

 If a is an asynchronous send event and b the corresponding receive, then a

1) If a and b are two events in the same entity, and a comes before b, then a b

b

) is determined according to the following rules:
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 43

Visualizing the Execution of Object-Oriented Mobile Code Applications

tate of

he line

t for

nous

vokes

ation

n the
4.2 Graphical Representations of Interesting

Events

In our display, we use symbols to represent events.

• Solid squares represent object creation events.

• Open squares depict destruction events.

• Solid circles are applied to object-dispatch events.

• Solid diamonds represent object-arrival events.

The trace lines can be invisible or drawn as solid or dashed according to the s

the entities they represent. Before the creation of a entity and after its destruction, t

is invisible. During the entity's blocked period, the trace line will be dashed. Excep

these two cases, the trace line will be solid to depict an active entity.

Arrows that depict interactions between entities are vertical for synchro

interaction and sloping for asynchronous one.

4.2.1 Object Creation and Disposal

As shown in Fig. 4.2, an object is drawn as a trace line. Since the object that in

the creation will be suspended until the creation operation returns, object cre

involves two synchronized events from two different trace lines: a creating event o
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 44

Visualizing the Execution of Object-Oriented Mobile Code Applications
creator trace and an object-created event on the new trace line. Object destruction is a

unary event with no partner.

Fig. 4.2: Object creation/destruction

4.2.2 Code Mobility

A search of recent literature on program visualization reveals that no research explores

the area of code mobility, which means that no existing toolkits provide visualization

facilities for such information as when the object migrates to which node, when it is

deleted, and how it interacts with other objects. In this thesis, a solution to depict code

mobility in the process-time diagram is proposed.

Object Creation Object Destruction
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 45

Visualizing the Execution of Object-Oriented Mobile Code Applications
Fig. 4.3: Code mobility depiction-approach 1

There are some likely ways to represent an object move from node to node. A first

possibility, shown in Fig. 4.3, is to move the trace line when the corresponding object

migrates. This sort of naive display has some obvious problems. First, it dramatically

increases the display space needed. As a new trace line has to be drawn each time the

object moves, the vertical space needed is in proportion to the number of migrations. This

type of display also needs to adjust the layout when a new line is placed and it makes the

diagram rather cluttered even if we only attempt to depict a small number of objects.

Therefore, the notion of changing the position of the trace line in this type of display is

unpractical.

Since the object that invokes the migration of another will not be suspended after the

invocation in Voyager, the migration invocation is represented by a sloping line

hereafter.

Obj1

Obj2

Obj1

Obj2

Object Creation

Object Destruction

Object Departure

Object Arrival♦

♦

♦

Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 46

Visualizing the Execution of Object-Oriented Mobile Code Applications
Fig. 4.4: Code mobility depiction-approach 2

Another way, as shown in Fig. 4.4, is to take advantage of color. Color is an

important graphical attribute among others like size, shape, gray level, orientation, and

texture. It has the potential to communicate a great deal of information efficiently. One

potential drawback of using color is that it requires color monitor. However, computers

that only support monochrome are rarely used nowdays and they have problem anyways

in running other applicaitons that require color. In this approach, color is used to identify

different objects with mobility. In this display, the trace lines represent servers on

different or the same nodes that support mobile objects. Each mobile object is colored

differently. More precisely speaking, each path from the object creation to the object

destruction, following the migration message arrows and trace lines in the time direction

represents the life cycle of a mobile object and is depicted with one color. The advantage

of this approach is that the mobile object occupies the same vertical display space as

other objects without mobility. However, this simple solution can not serve very large

Node1

Node2

Node3

Object Creation

Object Destruction

Object Departure

Object Arrival♦

♦

♦

♦

Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 47

Visualizing the Execution of Object-Oriented Mobile Code Applications
numbers of objects because of limitations of the color dimension. Another problem is that

some potential for confusion exists when more than one mobile object appear on the

same trace line. In this type of display, the trace line represents mobile object servers that

can be considered as a cluster of mobile objects. If the behavior the cluster involves

visible concurrency, the actual precedence is likely distorted by placing concurrent events

as if one preceded the other.

Fig. 4.5: Code mobility depiction-approach 3

To resolve the problems inherent in those two types of display, we propose a third

one shown in Fig. 4.5. This solution meets the requirements that the display explicitly

indicates the mobility of the objects, minimizes the display space needed, is inherently

scalable, and could correctly reflect concurrency. In this display, the trace lines represent

objects. It also adopts color to encode information about object mobility. However, the

color used here is to depict the change of location, not to identify the object itself. In

other words, the trace line will consist of segments with different colors that depict

Obj1

Obj2

Object Creation

Object Destruction

Object Departure

Object Arrival♦

♦

♦

♦

Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 48

Visualizing the Execution of Object-Oriented Mobile Code Applications
different nodes where the mobile object locates. The color changes when the object

arrival event occurs. In this way, the mobile objects occupy the same display space as

those without mobility and the object migration is explicitly depicted without much cost.

Since the trace lines represent objects, this display has no extra problem in depicting

concurrency. Furthermore, we use colors to indicate the change of location, not

necessarily to identify the location; the number of objects that this display could serve

will not be restricted by the color dimension. In general, if the number of nodes that

mobile objects move to is no more than the types of color that the display supports, we

can also represent the nodes using color-coding. If this is not the case, we just change the

color of the segment on the trace line alternately to show the migration of the object. We

can also provide a facility to allow the user to get location information by clicking on the

individual line segment. Therefore, this type of display will not impose extra limits on the

number of objects it could depict.

4.3 Visualization Objectives

Based on the challenges that exist in developing and understanding distributed object-

oriented programs with code mobility, this section discusses the objectives that a frame-

work for the visualization of such programs may need to achieve. These objectives, actu-

ally, have for quite a while been recognized as some of the most important open problems

within all software visualization research.

1) Minimal visualization effort
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 49

Visualizing the Execution of Object-Oriented Mobile Code Applications

ppli-

n. It

isual-

 that

tool

 the

re of

ould

 pro-

stems.
The efforts on the software developer for visualizing an application should be min-

imal. This implies that the developer shouldn’t have to add much code to the a

cation for performing the visualization.

2) Visualization is desirable to be performed both on-line and postmortem.

3) Little user intervention

The visualization generating should require little or no programmer interventio

is suggested that a good visualization should "guide", which means that the v

ization leads to discover things still unknown, not "rationalize", which means

it illustrates things that people have already known [52]. If the visualization

can provide interesting and informative displays without detailed control by

user, it has the potential to guide the user.

4) Presentation of the "right" things

The visualization should not show all the low-level details that a user is unawa

and would have to work hard to understand. Rather, the visualization sh

present a high-level abstraction of the most important aspects of a program.

5) Scalability

The visualization should not be restricted to present only small, laboratory

grams and systems. Rather, the visualization must be applicable to large sy

[52].
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 50

Visualizing the Execution of Object-Oriented Mobile Code Applications
6) Minimal probe effect

Efforts should be made to minimize the perturbation incurred by the visualization

instrumentation as much as possible.

7) Quick focus on particular concerns

The visualization should provide users with some "rewinding" and navigation

functionality to allow users to focus on their particular concerns quickly. Detailed

information must be displayed when requested.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 51

Event Data Collection Subsystem of CMVS
Chapter 5 Event Data Collection Subsystem of

CMVS

As shown in Fig. 5.1, most visualization tools divide the visualization process into the

following steps:

1) Event data collection: Collect the interesting events from the application that is

visualized.

2) Event data processing and storage: The collected events are processed for visual-

ization and stored in a queue, or a log file.

3) Display: The visualization events are translated into graphical primitives (i.e.

shape, color, position, etc.) and displayed.

Fig. 5.1: The visualization process

Event
Collection

Event
Processing
& Storage

 Event
 Display

Interesting
Events

Application
under Visualization

Visualization
Events

Visualization
Display
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 52

Event Data Collection Subsystem of CMVS
We use these steps in the design and implementation of our tool, which is called

CMVS (Code Mobility Visualization System). Conceptually, CMVS consists of two

major components. One is for the event data collection and the other is for the event data

processing and graphical display. Event data collection and visualization depend deeply

on each other. Without proper data collection mechanism, no information exists to drive a

visualization. On the other hand, without visualization, understanding the data derived

can be tedious and complex.

In this chapter, the event data collection subsystem will be introduced. We first

present an approach to event collection, including program instrumentation. Then we

describe its architecture. Some design and implementation issues are also addressed. The

chapter ends with a description of its functionality.

5.1 Program Monitoring

There are two different mechanisms for collecting event data:

1) Sampling

In sampling, a monitor task running concurrently with the program periodically

observers the state of the program by accessing global data

2) Tracing
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 53

Event Data Collection Subsystem of CMVS

nerally,

ded.

ides

tion.

ore

 oper-

of this

ble for
In tracing, all occurrences of interesting events are stored for a certain interval of

time, typically for the duration of the application, and a sequence of event records,

which are encoded instance of the action and its attributes, is generated. Each

record typically includes the following:

• What action occurred (i.e. an event identifier)

• The time when the event occurred

• The location where the event occurred

• Any additional data that defines the event circumstances

These two approaches have their own advantages and disadvantages. Ge

sampling is less intrusive [53], but it is useful when only cumulative statistics is nee

Tracing potentially introduces more perturbation to the application. However, it prov

more detailed information and hence provides more support for visualiza

Consequently, this thesis solely focuses on tracing.

Event tracing relies on program instrumentation, which will be described in m

detail in the following section.

5.1.1 Program Instrumentation

Program instrumentation involves the placement of small pieces of code into the

ating system, the run-time system, or in the user's source program. The function

code, referred to as probes, is to report some value to the component responsi
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 54

Event Data Collection Subsystem of CMVS

-time

e first

e and

ave a

e with

ibrary

the

llow a
aggregating the event data. In most cases, operating system and run-time environment are

almost inaccessible in terms of code insertion. Besides, instrumentation at either of these

levels is most unlikely to provide information about abstract, high-level events in the

application program. In contrast, source code is easy to access and instrumentation at this

level provides a reliable information about events at different abstract levels. Therefore,

source program instrumentation is preferred over the other two and chosen for our system.

In order to gather the expected trace events we need to specify where in the source

code the appropriate events are generated, and in most cases, it is necessary to modify the

program, either by:

• Modifying source code to generate explicit calls to event log library routines

• Using wrapper class or method overriding to add tracing to the API of the run

system

These two approaches have their own advantages and disadvantages. Th

approach is straightforward and simple. But manual code insertion is error-pron

time consuming, especially when the source program is complicated and we h

number of events to trace. The second one is well-established and achievabl

relatively less source code modifications. It is adapted from the macro wrappers of l

primitives [31] [37] [54], which first perform the tracing operation and then call

desired routines. The disadvantage of this approach is that programmers have to fo
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 55

Event Data Collection Subsystem of CMVS
set of rules in their programming and get used to these wrapper classes or overridden

methods. In the rest of this section we will explain the approach applied in our system.

Fig. 5.2: Instrumentation by inheritance

Obviously, it is desirable to instrument the source code without or with minimal

source code modifications. With this goal in mind, we provide an interface IVisualizable

and a class Visualizable that implements the interface. Fig 5.2. depicts their relationship

with other application classes in UML notion. In this class diagram, interface IMobility is

provided by Voyager for object move notification. Interface IVisualizable extends this

interface with two other methods, creation() and destroy(), which generate object creation

and disposal events respectively. Interface IDrone and class Drone are provided by the

application program that is visualized. The instances of class Drone will move from one

 Drone
 n:int
+print:void

interface
 IMobility

+preDeparture:void
+postArrival:void
+postDeparture:void
+preArrival:void

interface
 IVisualizable

+creation:void
+destroy:void

 Visualizable
 identifier:String
 reporterName:String
 mySource:String
 myDestination:String
+preArrival:void
+postDeparture:void
+preDeparture:void
+postArrival:void
+creation:void
+destroy:void

interface
 IDrone

+print:void
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 56

Event Data Collection Subsystem of CMVS
node to another over the network. Class Visualizable implements all the methods that will

be called when an associated event happens. These methods generate corresponding trace

events and report them to a local component that is responsible for collecting the data. In

the user’s program, any mobile objects that want to be visualized must inherit from class

Visualizable. This approach provides a neat solution for both trace events generation and

reporting. It allows instrumentation with little source code modification and the

programmers do not need to know much detail about the event tracing.

Fig. 5.3: Program instrumentation by applying the wrapper pattern
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 57

Event Data Collection Subsystem of CMVS
Since Java does not allow multiple inheritance, this approach has a potential problem

when the mobile object class has to inherit from another class. Another limitation of Java

is that every method should be written within a class, which means that we can not

provide the user with a stand-alone method. The Adapter (Wrapper) pattern can be used

to solve these problems. As shown in Fig 5.3, a UML class diagram, we provide interface

IVisualAdaptee and class VisualAdaptee that implements the interface. This class defines

methods with the same implementation as those defined in class Visualizble. It serves as

an adaptee. Interface IVisual extends IMobility with one method: destroy(). The mobile

object has to implement the IVisual interface and compose an instance of VisualAdaptee

class. It acts as an adapter. A client invokes an operation on an adapter instance. In turn,

the adapter calls the adaptee’s corresponding operation that actually carries out the

request.

The program instrumentation schemes introduced above are currently applied in

CMVS by manually annotating the source code. Manual instrumentation is well

established and adopted in several other visualization tools. To further relieve the user

from the burden of modifying the source code, especially for rather large and complicated

applications, automatic instrumentation can be considered in the future. However, it is by

no means a easy job since we have to carefully analyze the program structure and class

hierarchy to determine where to annotate the program. Moreover, there is no generic way

to achieve this goal since automatic instrumentation will be source language dependent.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 58

Event Data Collection Subsystem of CMVS

ut to

 the

ation

and the
The approach that we use to instrument the program allows the user to select the class

for annotation. If a class has quite a lot of objects but we are interested in some of them,

we can consider to filter out those objects not of interest by setting a flag that indicates

wheter the object is to be visualized.

Voyager facilitates move notification, which is a delegation-base event-handling

model. If an object implements the IMobile interface, it will receive callbacks during the

move. The IMobile interface declared the following callback methods in the order of

being invoked:

• preDeparture(String source, String destination)

This method is invoked on the original object at the source when it is abo

move.

• preArrival()

preArrival() is executed on the copy of the object at the destination when

migrating object arrives at its destination, but not yet ready for operations.

• postArrival()

At the time when this method is invoked, the copy of the object at the destin

becomes the real object, the object at the source becomes the stale object,

move is deemed successful and cannot be aborted.

• postDeparture()
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 59

Event Data Collection Subsystem of CMVS

 inside

like C

 to an

is no

e all

articu-

 gar-

bage

ory.

final-

 Java

em-

e the

zer
This method is invoked on the original stale object at the source to signal that the

object has just been moved.

IVisualizable extends IMobile interface with two public methods:

• creation ()

creation () is used to generate an object creation event. It has to be placed

the constructor of the mobile object class or its superclass.

• destroy ()

destroy () method is intended to generate mobile object disposal events. Un

and C++ that require programmers to explicitly release the memory allocated

object, Java provides garbage-collection facility to do it automatically. There

way for programmers to explicitly free an object, all they can do is to releas

references to the object. Nevertheless, we have no way to know when any p

lar object will be garbage collected because we do not generally know how

bage collection will be performed inside a JVM. In some cases, the gar

collector will not run at all before the program exits if JVM does not lack mem

At first glance, it seems to be a solution to get destroy() invoked inside the

izer, which is defined as a regular Java instance method named finalize().

specifications make the promise about finalizers that before reclaiming the m

ory occupied by an object that has a finalizer, the garbage collector will invok

object’s finalizer first [14]. However, we still can not predict when the finali
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 60

Event Data Collection Subsystem of CMVS
will run or if it will ever run. We tried this approach and got a surprising picture.

Several disposal events belonging to the same mobile object were reported. The

reason is that in Voyager, a mobile object leaves its stale copy to be garbage col-

lected at the source after it successfully migrated. This kind of display is poten-

tially misleading because we can not guarantee that all the copies distributed in the

network nodes will be garbage collected during the interval of the visualization or

the duration of the program execution. Since we lack tracing facility from both

Java and Voyager run-time to know when an object will be freed or at least has no

references to it, we have to address this issue from the application layer. In this the-

sis, we are mainly interested in the mobility of an object. As a result, if an object

will not move anymore, from the perspective of visualization, we assume that this

object is finished. In this way, the programmers will be responsible for signalling

when a mobile object will stop moving through the network.

The other four methods are inherited from IMobility interface. Two of them are of

particular interest here: preDeparture (String source, String destination) and postArrival

(). They perfectly match the purpose for generating object dispatch and arrival events.

5.1.2 Event Records

An important part of the design of the event data collection subsystem is to create a set

of event records that gives a full description of the actions that are performed in the appli-

cation that is visualized. We have constructed four types of event records corresponding to
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 61

Event Data Collection Subsystem of CMVS

 that

s an
different types of events. The common characteristics of these event records are defined in

the superclass MobileObjectEvent. Fig. 5.4 depicts their structure in UML notion.

Fig. 5.4: Schematic overview of event records

Every MobileObjectEvent has four basic attributes:

• EventID: identifies the event type

• Timestamp: the time at which an event happens

• ObjectID: determines the identity of the object that the event belongs to

• HostName: the host where an event happens

In addition to these attributes, the CreationEvent has a CreatorOID attribute

identifies the object which instantiates a specific mobile object. The ArrivalEvent ha

MobileObjectEven

EventID

Timestamp

HostName

CreationEvent

 CreatorOID

DestroyEvent

ArrivalEvent

 Source CallerOID
Destination

 DepartureEvent

ObjectID
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 62

Event Data Collection Subsystem of CMVS
attribute to determine the source, i.e. where the object comes from. This kind of event is

generated when an object successfully migrates to another node. The DepartureEvent has

attributes for the CallerOID and Destination, i.e. where the object will go. The CallerOID

is used to identify the object that will initiate the migration. This attribute is not necessary

for the migration initiated by the migrating object itself.

This set of event records are created to meet our current visualization needs. It is by

no means complete, and can be extended in the future, based on new requirement.

Event Records will be saved into a trace file. There are several candidates for the

format of the trace file: SDDF designed for the Pablo project [32], PICL for the

ParaGraph system [31] or some kind of self-defined data format specific to our system.

SDDF is chosen over the others because it is sufficiently flexible to represent the trace

information. SDDF allows arbitrary data structuring without defining a fixed set of event

types, nor the size or data types of a particular event. Therefore, we can change the

contents of existing event records or add new event types with less code modification.

5.2 The Architecture of Event Data Collection

Subsystem

An important consideration in event data collection is whether the information

gathered is utilized on-line or in a postmortem fashion, in other words, whether the

derived data will be displayed as the program runs with some relative time delay or the
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 63

Event Data Collection Subsystem of CMVS
program produces a collection of trace event records which is post-processed at a later

time. Correspondingly, there are two different ways for event data collection:

1) Distributed event data collection

Fig. 5.5: Distributed event data collection

As shown in Fig. 5.5, one local event collector (LEC) resides on each host to which

mobile objects will migrate. The LEC has two components: the event generator (EG),

which collects event data generated by the objects on that host, and the communicator,

which is responsible for the local trace file transfer. There is one event processing center

NC

EPC

EC EP Visualizer

Voyager

LEC

EG

Communicator

Voyager

LEC

EG

Communicator

NC NC

Event Data

NC: Network Component EPC: Event Processing Center EC: Event Collector
EP: Event Processor LEC: Local Event Collector EG: Event Generator

Event Information database Collect Information Request

Mobile Object

Request
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 64

Event Data Collection Subsystem of CMVS
(EPC). It has two components related to event data collection and processing: the event

collector (EC) and the event processor (EP). The EC request the communicatior of the

LEC to send back the trace file it has collected. The EP is used for event data processing.

Another component, the visualizer, is for event data display. The EC, EP and Visualizer

are most likely distinct components for postmortem visualization.

During the program execution, interesting events emitted by probes are sent to the

LEC, where they are buffered and then stored into a file. After the application has

finished executing, the individual log files are collected automatically by the EPC, where

they are post-processed into a single file. In most cases, data processing is carried out on

these events to preserve the causality relationships. After such processing, the file is

ready for visualization.

2) Centralized event data collection

As shown in Fig. 5.6, there is one event processing center (EPC) typically located on

a host that provides visualization functionality. The EPC has four components, of which

the EC, EP and visualizer have similar functionality to those described in the distributed

event data collection case. The new component is the coordinatior, which is responsible

for coordinating the task of the EP and the Visualizer. This conceptual component is

needed in the case of on-line visualization. There is one local event collector (LEC)

residing on each host. It has two components, event generator (EG) and monitoring

controller (MC). The EG has similar responsibility to the one introduced in the last
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 65

Event Data Collection Subsystem of CMVS
section. The MC primarily facilitates event data transfer in an on-line fashion. It may also

provides some other facilities, such as event data buffering and timestamp adjustment.

When the application is running, the probes capture trace events of interest. They are

collected and partially processed by the LECs. These trace events are then fed to the EPC

where they are further processed and then either read by the visualization tool for on-line

display or stored in a trace file for postmortem analysis.

Fig. 5.6: Centralized event data collection

These two different event collection schemes both have advantages and

disadvantages. On one hand, distributed event data collection is simpler and more

NC

EPC

EC EP Visualizer

Voyager

LEC

NC

NC: Network Component EPC: Event Processing Center EC: Event Collector
EP: Event Processor LEC: Local Event Collector MC: Monitoring Controller

Event Information database

MC

Coordinator

Event Generator

Voyager

LEC

NC

MC

Event Generator

TraceEvent

Mobile Object

Event Processing and
Graphical Display
Subsystem

Event Collection
 Subsystem
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 66

Event Data Collection Subsystem of CMVS

stems

st be

tion/

n-line

g.

ll be

ume a
efficient. Moreover, extensive buffering of the recorded data is possible since analysis is

usually deferred until after the application has completed. As a result, it is potentially less

intrusive. But it only supports postmortem visualization. Another drawback of this

approach is that the EPC has to be coupled with the other LECs, which participate in the

tracing, because it has to ask them to send back individual trace file after all. On the other

hand, centralized event data collection potentially facilitates both on-line and postmortem

visualization. However, this scheme is more complicated to implement and it potentially

impedes the performance of network computing applications for two reasons. First, it

consumes extra network bandwidth. Second, if used for on-line visualization, the events

must be processed as soon as possible and extensive buffering would not be applicable.

Moreover, centralized architecture has potential problems with scalability. Despite its

complexity and potential performance drawbacks, we adopt this approach in our system

for the following reasons:

• Our system supports both on-line and postmortem visualization since such sy

have a wider usability. Some visualization activities, due to their nature, mu

performed on-line to be effective, such as environment monitoring and interac

steering. Some other activities also benefit from need the support for both o

and postmortem visualization, such as performance evaluation and debuggin

• Comparing the network bandwidth available with the amount of data that wi

generated by the tracing system, we believe that trace events will not cons

substantial network bandwidth and thus will not introduce undue overhead.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 67

Event Data Collection Subsystem of CMVS

 one,

 How-

ve to

ld not

liza-

uld be

Java

n in

e LEC

e latter

with C/

l EPC

n-line

y with
• Although the centralized architecture may not scale up as well as distributed

we can compensate this by providing more than one central event collectors.

ever, in order to support on-line visualization, all the events collected still ha

be sent to the node on which the visualizer resides on. Therefore, we wou

consider it as a problem of scalability but rather a trade-off for on-line visua

tion.

5.3 Design and Implementation Issues

In designing and implementing collection subsystem, several considerations sho

taken into accounts:

Programming Language

The fact that the application program will be targeted for Voyager, a 100%

distributed computing platform, requires that application programs will be writte

Java. It is straightforward that two components of the data collection subsystem, th

and the central EPC are also implemented in Java. However, C/C++ is chose for th

because Java is an interpreted language that runs substantially slower compared

C++. Consequently, it may cause a potential performance bottleneck if the centra

interacts with other reporters frequently, especially in some cases, such as o

visualization, when the EPC has to do data processing and displaying concurrentl

data receiving.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 68

Event Data Collection Subsystem of CMVS
Object Identifier

Obviously, a mobile object needs an identifier to get identified and located.

Moreover, this identifier should be globally unique during its lifetime. Basically, there

are two ways to assign an identifier, a lexical name or a serial number. A serial number is

more likely to be unique but it is less meaningful to the user. In contrast, a lexical name is

easier to be understood but it is hard to guarantee its uniqueness. A conjunction of the

name and a serial number can be an obvious solution.

Fig. 5.7: Relationship of host, server and mobile objects

As shown in Fig. 5.7, Voyager servers introduce a hierarchical structure. A given

computer in a network can host multiple Voyager servers; each Voyager server holds a

number of mobile objects. The fact that a host can contain more that one server requires

that servers have unique names within a host. It is relatively easy to ensure that server

Voyager
 Server

 Voyager Server
 Network Computer

Voyager
 Server

Network Computer Network Computer

 Application

Voyager
 Server

Voyager
 Server

Voyager
 Server Voyager

 Server

mobile
Objects
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 69

Event Data Collection Subsystem of CMVS

lution

y in a

 the

names are unique. One reason is that the number of servers within a host is relatively

small. Another reason is that a server generally has to bind with its name in Voyager’s

namespace, which disallows two objects bound with the same name. Therefore, a

Voyager server can be uniquely identified by its name combined by the domain name of

the host on which it resides. Typically, a domain name can be expressed as a URL. Then

we can use a fully qualified class name to distinguish different classes and an integer

number for distinguishing the instances of a given class. Generating identifiers in this

hierarchical way, an object could be identified by the conjunction of a URL, its server’s

name, its class name and an integer number. The server here refers to the application in

which an mobile object is originally created, while the URL refers to the host on which

this server runs.

A potential problem with this approach is that the resulting object identifier can be

very long. One solution is to allow the user to assign a nickname to a mobile object so

that an object can be identified by the URL, the server name and the nickname. In this

way, it is the user’s responsibility to guarantee that the nickname is unique. This so

gives the user a chance to name the object of interest in their own way, most likel

shorter form. If the nickname is not set, the object identifier will still be based on

longer default approach.

Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 70

Event Data Collection Subsystem of CMVS
Timestamp Creation

The timestamps that have been recorded with the program events are used to order the

events for visualization. The creation of timestamps is crucial to tracing. Lamport

provides algorithms for logical timestamps that require the piggybacking of time

information into messages sent in the distributed system. [51]. This approach is applied in

our system with timestamp adjustment.

In distributed network environments, it is most likely that there is no global clock. As

shown in Fig. 5.6, event data are collected from individual local event collectors (LEC),

which send events to the central event processing center (EPC) at their own speed. Poor

clock synchronization among different network computer may be one reason that leads to

event timestamps that do not accurately reflect the actual order of program execution.

Consequently, some events will appear to occur "back in time". We provide a timestamp

adjustment strategy to address this problem.

 After a LEC is created, it attempts to connect with the EPC and asks it to send back

its current local time. The LEC compares this time with its own local time (LEC_lt) and

produces a delta time. All future timestamps are produced as the difference of the current

time and this delta time. In this way, individual LECs adjust their local time with that of

the central EPC. The timestamp adjustment will be done periodically.

We also take into account the communication delays between the LECs and EPC

when calculating the delta time. The LEC gets its local time before and after it sends the
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 71

Event Data Collection Subsystem of CMVS
adjust time requirement to the EPC. The average of these two time values is taken as the

local time of LEC (LEC_lt).

Although the time adjustment strategy by no means can guarantee the causality of the

trace event, according to our experience, it is very effective and can be used with other

mechanisms to preserve the causality, such as the views of visualization toolkit

compensating for the out-of-time ordering and rearranging themselves to correctly reflect

new information. A drawback of this strategy is that it consumes extra network

bandwidth and processor time, and hence potentially imposes extra perturbation to the

applications. Therefore, we should select an appropriate adjustment frequency when

using it.

How to Locate the Local Event Collector Object

For security reasons, mobile objects are almost unable to open a network connection

when they get to a host other than their home where they are created. Therefore, our

system has to facilitate an interface between the mobile object and the alien host it moves

to. The local event collector (LEC) servers this purpose. Residing on each Voyager-

enabled host that participates in the tracing, it partially processes the trace events and

sends them to the remote event processing center via sockets. Since the mobile objects

move between hosts, how to locate the local LEC is a design consideration. Our solution

is to take advantage of Voyager’s naming service. Every LEC has a well known identical

name. After being created, it is bound with that name in its local namespace by invoking
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 72

Event Data Collection Subsystem of CMVS

osts

ution

into a

t intro-

ade-

re, we

ull or
NameSpace.bind (String name, Object object). The mobile object is able to know the

URL of its destination from the move notification. Therefore it can find a LEC, which

resides on a given host, soon after its arrival by invoking NameSpace.lookup (String

name). If there is no LEC object alive on that host, mobile objects will catch an exception

after invoking methods on the LEC. The mobile object may then decide to cancel the

request.

Tracing Facility

Tracing facility refers to the functionality provided by the data collection subsystem

for the trace event generation and transfer.

• Buffered tracing

As mentioned previously, on-line collection of trace events from individual h

may impose more intrusion on applications. Buffered tracing is a possible sol

to this problem because it allows a number of trace events to be combined

single message to be transferred. The disadvantage of this approach is that i

duces buffering delay, which is undesirable for on-line visualization. It is a tr

off between the probe perturbation and the display update speed. Therefo

should select an appropriate buffer size and flush the buffer either after it is f

a time-out occurs.

• Trace event structure
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 73

Event Data Collection Subsystem of CMVS

EPC)

erver/

oding

t lan-
Designed with flexibility and extensibility in mind, we will not hard-wire the con-

tents of trace events, but rather explicitly define each trace event record at run time

before its appearance in an event trace. This closely models the SDDF trace file

format by including trace descriptors in the event stream. These descriptors pre-

cisely define the contents of each trace record and specify the data types and

unpacking order of the trace information. Using this trace event structure, new

trace events can be added and trace record contents rearranged without modifying

our trace file generation code.

5.4 Functionality

As shown in Fig. 5.8, the information collection subsystem provides a number of

services to facilitate event collection:

• Communication service

The local event collector (LEC) and the central event processing center (

communicate with each other using TCP sockets. They operate in a typical s

client model.

• Encoding and decoding services

Since the LEC is implemented using Java, while the EPC uses C/C++, enc

and decoding services are provided to enable client and server in differen

guages the communicate with each other by using sockets.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 74

Event Data Collection Subsystem of CMVS

hould

ing to

 the
Fig. 5.8: Services provided by the trace event collection subsystem

• Description and interoperation service

As mentioned earlier, before sending a trace record to the EPC, the LEC s

send its descriptors first. The EPC interprets individual trace records accord

their descriptors.

• Time synchronization service

This service allows the LEC to adjust its time according to the local time of

EPC.

• Event monitor service and timestamp service

These services are used to generate timestamped trace events.

Distributed Info-Collector

Communication Service

 Information Processing Center

Encoding Service

Timestamp Service

Time-synchronization Service

Description Service

Event Monitoring Service

Listening Service

Decoding Service

Time-synchronization Service

Interpreting Service

Storage Service

Display Service

mobile objects
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 75

Event Processing and Graphical Display Subsystem of CMVS
Chapter 6 Event Processing and Graphical

Display Subsystem of CMVS

Once the events have been generated and collected, event processing and visualization

can be performed based on these events. This chapter introduces the design of the event

processing and graphical display subsystem. We first present its architecture. Then we dis-

cuss the issue of on-line event reordering and describe the facilities provided by this sub-

system. Finally, a summary of CMVS is given.

6.1 The Architecture of Event Processing and

Graphical Display Subsystem

The event processing and graphical display subsystem facilitates both on-line and

postmortem visualization. As shown in Fig. 6.1, it has three functional modules, the event

processor (EP), the visualizer and the coordinator. The first two are responsible for event

management and event visualization respectively. The last one is for coordinating their

activities. This section describes the functionality these modules provide and how they

interact with one another.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 76

Event Processing and Graphical Display Subsystem of CMVS
Fig. 6.1: The architecture of the event processing and graphical display subsystem

The Event Processor

The event processor (EP) is essentially an event server for its client, the visualizer. It

consists of several components for storing, retrieving, and handling the collected events.

According to whether the visualization runs on-line or postmortem, the EP performs dif-

ferent tasks.

On-line Mode: Basically, there are two tasks scheduled by the coordinator. One is

handled by the event store (ES), which reads the collected event data from the buffer of

the event collector and stores them into a trace file in SDDF format. The other is

performed by the event retriever (ER), the event dispatcher and the event handlers. The

Event Collector

E

ve
nt

 S
to

re

E
ve

nt
 R

et
ri

ev
er

E
ve

nt
 D

is
pa

tc
he

r

E
ve

nt
 H

an
dl

er
s

Trace File

Event Processor

Coordinator

Visualization
Manager

User Interface

Graphical Display

Visualizer

Event Processing Center user
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 77

Event Processing and Graphical Display Subsystem of CMVS
ER reads the events out of the trace file and feeds them to the event dispatcher, which

processes and dispatches them to different event handlers according to their event

identifiers. The individual event handlers retrieve the program information associated

with the events and push them to the visualization manager of the visualizer, where they

will be further processed and shown in the graphical display.

Postmortem Mode: In this mode, no event data will be saved into the trace file.

Only the latter task will be performed, i.e. read the events out of the trace file, process

them and feed them to the visualizer.

The Visualizer

The visualizer has three functional components, the user interface, the graphical dis-

play and the visualization manager. The first two can also be depicted as one module. We

separate them here to emphasize their different functions. The user interface provides the

user with a means to control the entire visualization, while the graphical display is used to

present the graphical representation of the events. The visualization manager is the core of

the visualizer. By interacting with both the user and the EP, the events that the user wishes

to be visualized can be input from the EP and passed on to the graphical display.

In order to translate the generated program events into a meaningful visualization of

the executing program, the visualization manager maintains two kinds of information, the

program state information and the visualization information. The program state

information is used to recreate the program state as the visualization executes. This kind
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 78

Event Processing and Graphical Display Subsystem of CMVS
of information is necessary to support information query and view zooming. It consists of

the structured information retrieved from the collected events, such as the object

identifier, the timestamps and other event specific items. The visualization information is

used to present the visualization of the executing program. It stores the information that is

required to maintain the state of the graphical elements. In our implementation, these two

kinds of information are stored in a linked list according to different object identifiers. In

addition to the above functionality, the visualization manager may also perform on-line

event reordering, which will be introduced in more detail in the next section. The model-

view-controller (MVC) pattern [55] is applied in the design of the visualizer, with the

information kept by the visualization manager as the model, the graphical display as the

view and the user interface as the controller.

The visualizer is written using the Tcl/Tk toolkit [35] with application extended C

commands. Tcl/Tk provides a programming environment for developing GUI

applications for the X-window system. It supports a set of rich built-in widgets, such as

lines, rectangles, circles, canvas, buttons, to name but a few, and provides convenient

facilities to identify a specific widget instance and change its attributes such as the

position, size, and color. It also facilitates view scrolling and a general-purpose binding

mechanism that can be used to create additional event handlers for widgets.

Another argument to justify the use of Tcl/Tk is its extensibility. Each application can

extend the core Tcl/Tk with additional commands written in C/C++ that are specific to
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 79

Event Processing and Graphical Display Subsystem of CMVS
that application. This is the major reason that Tcl/Tk is chosen for our system. In this

way, the application would be largely application specific C/C++ code and include a

small amount of Tcl script for configuration and the graphical interface. This capability is

extremely useful when we hope that the GUI can run more efficiently and when it is

impossible to provide the same functionality purely in Tcl script. Fig. 6.2 depicts a

general relationship between the Tcl interpreter and the rest of the application.

Fig. 6.2: Application structure

The Tcl library implements the interpreter and the core Tcl commands. Application

specific Tcl commands are implemented in C/C++ and registered as commands in the

interpreter. The interpreter calls these command procedures when the script uses the

application specific Tcl commands.

Application
Specific Tcl
Commands

Tcl Library

Application (CMVS)

Tcl Script Tcl

C/C++
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 80

Event Processing and Graphical Display Subsystem of CMVS
The Coordinator

After initialization, the Tcl/Tk interpreter will normally stay in an event loop waiting

for X-window events. If the application is idle, the coordinator will schedule some tasks

to execute alternatively according to the visualization mode and the schedule policy.

These tasks include the two tasks performed by the event processor and the task that is

handled by the visualization manager to update the view.

6.2 On-line Event Reordering

As mentioned in the previous chapter, the program events collected at the central event

collector (EC) may be not in order. Although the timestamp adjustment strategy can com-

pensate to some extent the poor clock synchronization among different hosts, it, used

alone, can not guarantee the causality of the events. In order to preserve the behavior of

the original program when presenting such information to the user, reordering has to be

performed so that the causal order of events exhibited by the executing program is pre-

served and enforced.

Basically, there are two forms of misordering. One is that the timestamps associated

with the events do not reflect the actual or causal order in which the application executes.

The other is that an happen-before event may be received later due to buffering,

transmission latency or some other delays. For the first form of misordering, a possible

solution is to increment the timestamp that is out-of-order by the minimum amount

necessary for the partial order to hold. For our system, due to the use of timestamp the
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 81

Event Processing and Graphical Display Subsystem of CMVS
adjustment strategy and the fact that object migration takes some time, this form of

misordering occurs rarely and at this moment we ignore this problem and assume that the

timestamp associated with an event correctly reflects the actual order of the program

execution.

For the second form of misordering, some existing systems (e.g. Paragraph [36],

AIMS [28]) rely on a sort by timestamp value to impose a total order on all events stored

in trace files. The on-line nature of our system precludes using such a solution, and

sorting by timestamp order does not entirely eliminate this problem [56]. A possible

solution is to examine each event collected, checking whether it complies with the pre-

specified ordering rule. If no rule is violated, it will be forwarded to display; otherwise, it

will be held back for a while until the rule is satisfied. In our system, this form of

misordering only appears occasionally. Moreover, an out-of-order event appears

immediately after the one which should have occurred after it. This greatly simplifies our

solution to address this issue. Before the visualization manager presents an event, it first

checks if this event is in order. If it appears back in time, it will be placed right before the

event whose timestamp is newer. Otherwise, it is displayed after the current last event.

How to diagnose and correct the misordering events with suitable efficiency is a

challenging issue in on-line visualization systems. Although our approach deals with a

relatively simpler situation, it effectively solves our problem and can be extended by

applying some ordering rules for more complicated situations.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 82

Event Processing and Graphical Display Subsystem of CMVS
6.3 Facilities

Fig. 6.3: Snapshot of CMVS graphical view and user interface
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 83

Event Processing and Graphical Display Subsystem of CMVS

also

, and

rrent
In line with the visualization objectives presented in the previous chapter, as shown in

Fig. 6.3, our visualization system provides the following facilities:

• Trace play control

In addition to "Play", "Fast Forward" and "Stop" buttons, the control panel

provides "Single Step", which allows a single trace event to be processed

"Rewind", which resets the visualization system to the beginning of the cu

trace file.

• Process-time view queries

Fig. 6.4: Snapshot of the process-time view query
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 84

Event Processing and Graphical Display Subsystem of CMVS

y dif-

ol the

ged

ke a
As shown in Fig.6.4, more detailed information regarding specific object states or

invocation can be extracted by clicking and holding on the view area with the

mouse button.

• Process-time view zooming

Fig. 6.5: Snapshot of the process-time view zooming

As shown in Fig. 6.5, the process-time view can be zoomed in or out to displa

ferent perspectives on the same trace data. This facility is provided to contr

level of time detail. If a particular area of the view is zoomed in, it will be enlar

horizontally to fill the entire process-time canvas area to allow the user to ta

closer look. Scrolling along the time direction is also supported.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 85

Event Processing and Graphical Display Subsystem of CMVS
6.4 Summary

In this section, we first summarize the work presented in this chapter and Chapter 5.

Then we give a rough evaluation of CMVS.

6.4.1 An Overview of CMVS

Code mobility visualization system (CMVS) is designed to help understand the object-

oriented code mobility applications. It collects event data during program execution, then

provides on-line or postmortem processing and displays them on a process-time diagram.

CMVS has two functional components: the event collection subsystem and the event pro-

cessing and graphical display subsystem.

The event collection subsystem employs a tracing mechanism to collect event data

and allows a program to be annotated with few source code modifications. A set of event

records are constructed to meet our current visualization needs. This subsystem adopts

the centralized event collection scheme to support both on-line and postmortem

visualization. It has two components: the central event collector, which is located on a

host that provides visualization functionality, and the local event collector, which resides

on each host to which mobile objects migrate. They operate in a typical client/server

mode, communicating via TCP/IP, and facilitate event generation and transfer. A mobile

object can be uniquely identified by the combination of a URL, the name of its server

(the application in which a mobile object is originally created), its class name and an
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 86

Event Processing and Graphical Display Subsystem of CMVS
integer number. A timestamp adjustment strategy is used to help preserve the events

causality.

The event processing and graphical display subsystem is responsible for data

processing and display. It consists of three functional modules: the event processor, the

visualizer and the coordinatior. The first two perform event management and event

display respectively. The last one coordinates their activities. The visualizer has three

components, the visualization manager, the graphical display and the user interface. The

visualization manager is the core of the visualizer. It maintains two kinds of information,

the program state information and the visualization information, to translate the generated

program events into a meaningful visualization of the executing program. This subsystem

provides several facilities that are very helpful in understanding the visually presented

program information, such as view zooming and query.

Since no existing visualization tools provide tracing facilities for code mobility, the

event collection subsystem, as well as the event processor of the event processing and

graphical display subsystem (EPGS) are designed and implemented from scratch.

The visualizer of the EPGS is adapted from XPVM. As described earlier, XPVM

supports on-line monitoring and postmortem visualization of PVM program execution. It

provides the space-time view, which is similar to the process-time diagram, and some

useful facilities, such as view zooming, information query and playback control of trace
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 87

Event Processing and Graphical Display Subsystem of CMVS

ode.

icture

. This

n or

the

iews

ever,

rele-

tua-

cripts

n the

 sup-

obil-

 on-

der to
files. Nevertheless, it takes more than trivial effort to adapt it to CMVS for the following

reasons:

• XPVM is a complex and huge piece of software with 35,000 lines of source c

It is by no means an easy job to understand the program and get a whole p

about it, especially when we lack the help of debugging tools and references

makes the adaptation very difficult due to the fact that software modificatio

maintenance greatly relies on program understanding.

• XPVM is a graphical console and monitor for PVM. It provides facilities for

PVM console commands and information. Moreover, it supports six other v

except the space-time view to monitor the execution of PVM programs. How

all the facilities for PVM and the views other than the space-time view are ir

vant to our visualization and will not be applied in CMVS. This makes our si

tion more complicated due to the fact that the pieces of C code and Tcl/Tk s

related to these facilities and views disperse in the program. It is quite ofte

case that even a little modification involves many parts of the code.

• XPVM does not meet all of our visualization needs. For example, it does not

port the visualization of the events collected from the object-oriented code m

ity programs, nor does it facilitate symbols in its space-time view or provide

line event reordering. This means that some facilities have to be added in or

support them.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 88

Event Processing and Graphical Display Subsystem of CMVS

s is

tility

control

VM,

ful for

ility of

eded

ort is

pre-

 based

uture
As a result, most parts of the XPVM source code are modified and new facilities are

added to support our visualization. XPVM’s mechanism used to drive the view

applied in CMVS and we reuse the layout of its graphical interface and some u

procedures, such as those for menu adding, frame resizing, scrolling and playback

of trace file.

CMVS provides similar facilities to some popular visualization tools, such as XP

Pvanim and ParaGraph. These tools are widely used and prove themselves use

application development. Therefore, there is no reason to doubt about the usab

CMVS and we intend to let more application developers use it in the future.

6.4.2 System Evaluation

This section gives a rough evaluation of CMVS in terms of how much work is ne

to make a program "visualizable", what is the perturbation effect and how much eff

required to actually visualize a given trace file. This evaluation is by no means com

hensive and the numbers given here are only an indication of the order of magnitude

on tracing one example. A more in-depth exploration of these issues will be left to f

work.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 89

Event Processing and Graphical Display Subsystem of CMVS
Work Needed to Enable Visualization

As described in Chapter 5, we reduce the work needed for program instrumentation

by applying class inheritance or aggregation, depending on whether a mobile object class

has its own superclass or not.

Fig. 6.6: A skeleton application modified using class inheritance to enable visualization

As shown in Fig. 5.2 and Fig. 6.6, if class inheritance is applicable, using CMVS

requires three minor modifications to the source code:

• The mobile object class Drone has to inherit from Class Visualizable.

class Drone extends Visualizable
{

 {

......

 Drone ()

 }

creation (...);

}

class MyApplication

(1)

{

Drone myDrone = new Drone(...);

......
myDrone.destroy();

......

(2)

(3)

}

......

public static void main ()
{

......
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 90

Event Processing and Graphical Display Subsystem of CMVS

to the

tion is

wing

roy()
• Creation () should be placed into the constructor of class Drone.

• Destroy () is invoked on a mobile object when will not move any more.

The total number of lines of code needed to be modified/added (NL) is equal to:

NL = NC * 2 + NO

NC: The number of classes whose instances will be visualized

NO: The number of mobile objects to be visualized

If the mobile object class, Drone, has its own superclass, SuperDrone, due

limitation of single inheritance from Java, the wrapper pattern using class aggrega

used to insert the instrumentation. As shown in Fig. 5.3 and Fig. 6.7, the follo

modifications will be required:

• The mobile object class Drone has to implement interface IVisual.

• It has to encompass a instance of class VisualAaptee, adaptee.

• It has to define the following methods: preDeparture(), postArrival() and dest

by invoking the corresponding methods of adaptee.

• ad_creation () should be placed into the constructor of class Drone.

• ad_destroy () is invoked on a mobile object when it will not move any more.

The total number of lines of code needed to be modified/added (NL) is equal to:

NL = NC * 6 + NO

NC: The number of classes whose instances will be visualized
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 91

Event Processing and Graphical Display Subsystem of CMVS
NO: The number of mobile objects to be visualized

Fig. 6.7: A skeleton application modified using wrapper pattern to enable visualization

The Perturbation Effect

As with many other instrumentation approaches, the instrumentation scheme used in

CMVS causes perturbations in the instrumented programs, which means a program slows

class Drone implements IVisual {

{

 Drone ()

 }

......
adaptee.ad_creation (...);

}

Drone myDrone = new Drone (...);

......

myDrone.destroy (...);

(3)

(7)

public static void main () {
class MyApplication {

VisualAdaptee adaptee = new VisualAdaptee (...)

preDeparture(...) {

 adaptee.ad_preDeparture (...);

postArrival(...) {
 adaptee.ad_postArrival (...);
}

destroy() {
 adaptee.ad_destroy (...);
}

}

......

......
}

}

(1)

(2)

(4)

(5)

(6)
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 92

Event Processing and Graphical Display Subsystem of CMVS

e are

trace
down by having the event instrumentation active. Generally, to quantify the perturbation

effect is difficult and requires a complex perturbation model. Here we give circumstantial

evidence by examining only one application, in which objects move between 3 Sun Ultra

workstations and generate 1000 events in total. Table 6.1 shows that the instrumented

version of the original program requires approximately 7.4% more time to execute. It is

acceptable compared with other tracing systems with a perturbation ranging from 5% to

10%.

As discussed earlier, there are some trade-offs between performance and other

benefits in the design of CMVS. Future work to address this issue can be attempted in the

following directions:

• Reduce the size of the event data structure

• Reduce the cost of event transmission and buffering

• Reduce the side-effect of timestamp adjustment mechanism

The Effort Required to Actually Visualize a Given Trace File

Like any other applications, CMVS consumes CPU time and space. Here w

interested in how much CPU time that CMVS will consume when it visualizes a

Table 6.1: Average execution time and overhead

Un-Instrumented Instrumented % change

1,280,912 milliseconds 1,287,026 milliseconds 7.4
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 93

Event Processing and Graphical Display Subsystem of CMVS
file. We only give a rough estimate, since processing different event types involves a

different amount of overhead.

As shown in Table 6.2, CMVS will take 5698 milliseconds to visualize a trace file

with 1000 events. In other words, the processing time per event is 5.698 milliseconds.

This means that CMVS can not handle more than 177 events a second. Moreover, this

inference is drawn under the assumption that the machine is dedicated to the visualization

and no other processing has to be done, which is unrealistic in some cases, such as on-

line visualization, when the events have to be received and processed as well. On the

other hand, 177 events/second means approximate 88 times of object migration per

second (an object moving once generates two events: departure and arrival). This

indicates that if the number of migrating objects in a rather big application exceeds a

given value, the visualization will become a bottleneck and can not be rendered at speeds

close to the actual program execution.

One possible solution to improve the capacity of the visualization is that we have

event reading and event display handled by separate threads. In this way, events can be

read from the trace file, partially processed and buffered into a queue while the

visualization manager is visualizing the previous events.

Table 6.2: Average time required to visualize a trace file

Events in the Trace File Visualization Time

 1000 5698 milliseconds
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 94

Summary and Future Work
Chapter 7 Summary and Future Work

7.1 Summary

It is evident that program development and maintenance are two of the most vital

activities that occur in computing. Each relies on, and can benefit from, an increased level

of program understanding. Distributed applications with code mobility involve all the

complexity of distributed programs, plus problems specific to object migration. They are

intrinsically complex and hard to understand. With the increasing interest in the applica-

tion of code mobility, it is important to provide software developers with a tool for under-

standing, debugging, testing and maintaining such applications. It is equally vital to

provide network administrators a way to monitor and manage the mobile objects if they

allow them to float in their networks. We believe that event-driven visualization can be

and will be an invaluable tool for understanding and monitoring the execution of object-

oriented applications with code mobility.

In this thesis, the interesting events that help us understand the execution of object-ori-

ented code mobility applications are identified by carrying out a study of the mobile code

technology. Several approaches to the graphical representation of those events are ana-

lyzed. An innovative way to visually describe and illustrate code mobility is present. This

approach explicitly indicates the location change of mobile objects without increasing
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 95

Summary and Future Work
complexity and display space. We surveyed several popular existing visualization systems

for distributed/parallel applications. This survey summarizes the contributions that a spe-

cific system has made and compares their capabilities in terms of functionality, usability

and extensibility. It gives an overview of the current research in the area of program visu-

alization and can help visualization tool developers in designing their own systems. Chal-

lenging issues related to program visualization, including preservation of causality,

scalability, and quick focus on particular concerns were addressed and solutions provided.

An information tracing and visualization infrastructure (CMVS) for understanding the

execution of object-oriented code mobility applications was developed. CMVS supports

both on-line monitoring and postmortem visualization. It minimizes the need for program

annotation by class inheritance or aggregation and provides a means for visualization with

little programmer intervention. It facilitates mechanisms that allow users to take a closer

look of a particular area of the view, and to get more detailed information regarding a spe-

cific event.

Although this infrastructure was developed to visualize programs written in Voyager,

its principles and structure can be applied to other event-driven visualization for object-

oriented code mobility applications. Only two aspects of its implementation that rely on

Voyager have to be modified in order to port CMVS to other platforms:

1) How to locate the reporter

2) How to trace arrival and dispatch events
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 96

Summary and Future Work

hroni-

 are

same

ld be

ique

ntial

hread

tion
However, since most frameworks that support object migration, such as aglet, provide

some kind of object arrival and dispatch notification, as well as facilities that allow mobile

objects to use some resources of the remote nodes, it will not be difficult to adapt CMVS

to those platforms.

7.2 Future Work

The work presented in this thesis is intended to improve the understanding of object-

oriented code mobility applications. It lays a valuable ground for future work that can take

two directions: enhancing CMVS and extending its capabilities. They can be attempted in

the following ways:

• Support other interesting events such as method invocation and thread sync

zation

In distributed object-oriented applications, interactions between objects

through method invocations. The objects involved may be located in the

address space or not. Method invocations that involve mobile objects cou

helpful for understanding their dynamic behavior. Multi-threading is a techn

that is used more and more frequently in distributed applications for its pote

performance improvement. It would be desirable to record events related to t

state and synchronization.

• Deal with the vast amount of information involved in understanding the execu

of complex applications
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 97

Summary and Future Work

. It

in this

issues,

cking

tions.

tems

back

.

sual-

vide
If more event types, such as method invocation or thread synchronization, are

intended to be visualized, efforts should be put on how to deal with a huge quantity

of trace data. Some means of event abstraction may be needed at different abstrac-

tion levels.

• Support multiple views

The visualization subsystem of CMVS currently only supports a single view

would benefit greatly from extensions allowing it to support multiple views.

• Keep exploring alternative solutions to some challenging issues addressed

thesis

As mentioned in the previous chapters, our approaches to some challenging

such as on-line event reordering or how to trace the dispatch event when la

support from the run-time system or language, are by no means the only solu

There are possible alternatives that can be considered to enhance them.

• Apply the result developed in this research to network and distributed sys

management, or performance tuning.

• Use CMVS for more complicated and real-world applications so that feed

from users can be used to add new functionality and capabilities to the system

• Conduct a more in-depth evaluation of CMVS to understand the additional vi

ization costs, to identify the factors that affect the performance, and to pro

solutions that compensate the perturbation effects.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 98

References

.

ter-

r-

om-

Par-

N:

f the

put-
 References

[1] George Coulouris, "Distributed Systems: Concepts & Design", Addison-Wesley

Publishing Company, 1994, ISBN: 0201624338.

[2] P. Bates, "Debugging Heterogeneous Distributed Systems Using Event-Based

Models of Behavior", SIGPLAN Notices 24, pp. 11-22, Jan. 1989.

[3] M. Friedell, M. LaPolla, et al., "Visualizing the Behavior of Massively Parallel

Programs", In Proceedings of Supercomputing ’91, pp. 472-480, Nov. 1991

[4] T. Lehr, et al., "Visualizing System Behavior", In Proceedings of the 1991 In

national Conference on Parallel Processing, pp. 117-123, Aug. 1991.

[5] Dror Zernik, Marc Snir, and Dalia Malki, "Using Visualization Tools to Unde

stand Concurrency", IEEE Software, 9(3), pp. 87-92, May 1992.

[6] Cherri M. Pancake, "Visualizing the Behavior of Parallel Programs", Superc

puter, pp. 31-37, Sep. 1990.

[7] Christoph W. Ueberhuber, and Gerald Thomas, "Visualization of Scientific

allel Programs", Springer-Verlag Publishing Company, 1994, ISB

0387577386.

[8] Wentong Cai, Wendy J. Milne and Stephen J. Turner, "Graphical Views o

Behavior of Parallel Programs", The Journal of Parallel and Distributed Com

ing 18, pp.223-230, 1993.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 99

References
[9] Object Management Group, "The Common Object Request Broker: Architecture

and Specification", CORBA/IIOP2.2, February 1998, available at:

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html

[10]Sun Microsystems Inc., "Java Remote Method Invocation Specification", avail-

able at:

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.html.

[11]ObjectSpace Company, "Voyager Core Technology 3.2 User Guide", available

at: http://www.objectspace.com/products/vgrorb.asp

[12]A. Fuggetta, G. Picco, and G. Vigna, "Understanding Code Mobility", IEEE

Transactions on Software Engineering, Vol. 24, No. 5, pp. 342-361, 1998.

[13]A. Carzaniga, G. Picco and G. Vigna, "Designing Distributed Applications with

Mobile Code Paradigms" In Proceedings of the 19th International Conference

on Software Engineering (ICSE’97), pp. 22-32, May 1997.

[14]Sun Microsystems Inc., "Java Language Specification", white paper available at:

http://java.sun.com/docs/white/index.html

[15]IBM Corporation, "IBM Aglets Software Development Kit", web page at:

http://www.trl.ibm.co.jp/aglets

[16]L. Cardelli, "Obliq: A Language with Distributed Scope", Technical Report,

Digital Equipment Corporation, Systems Research Center, May 1995

[17]General Magic Inc., "Telescript Language Reference", web page at:

http://www.genmagic.com/technolog/techwhitepaper.html
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 100

References

 for

hop

ut-

219,

is-

 May

ace

for

CS

ver-

pp.
[18]General Magic Inc., "Odyssey Information", web page at:

http://www.genmagic.com/technology/odyssey.html

[19]R. S. Gray, "Agent Tcl: A Transportable Agent System", In Proceedings of the

CIKM’95 Workshop on Intelligent Information Agents, 1995.

[20]David Wong, Noemi Paciorek and Tom Walsh, "Concordia: An Infrastructure

Collaborating Mobile Agents", In Proceedings of First International Works

on Mobile Agents 97 (MA'97), April 1997.

[21]Hector Garcia-Molina and Walter H. Kohler, "Debugging a Distributed Comp

ing System", IEEE Transactions on Software Engineering, 10(3):210-

March 1984.

[22]Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger, "Monitoring D

tributed Systems", ACM Transactions on Computer Systems, 5(2):121-150,

1987.

[23]A. D. Malony, D. H. Hammerslag, and D. J. Jablonowski, "Traceview: A Tr

Visualization Tool ", IEEE Software, 8(5):19-28, September 1991.

[24]D. Kranzlmuller, S. Grabner, and J. Volkert, "Event Graph Visualization

Debugging Large Applications", In Proceedings of SPDT’96: SIGMETRI

Symposium on Parallel and Distributed Tools, pp. 108-117, May 1996.

[25]E. Kraemer and J. T. Stasko, "The Visualization of Parallel Systems: An O

view", The Journal of Parallel and Distributed Computing, Vol. 18, No.6,

105-117, June 1993.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 101

References
[26]R. Hood, "The p2d2 Project: Building a Portable Distributed Debugger", In Pro-

ceedings of SPDT’96: SIGMETRICS Symposium on Parallel and Distributed

Tools, pp. 127-136, Philadelphia, Pennsylvania, May 1996.

[27]D. Socha, M. L. Bailey and D. Notkin, "Voyeur: Graphical Views of Parallel Pro-

grams", SIGPLAN Notices 24, 1 (Jan. 1989), pp. 206-215.

[28]J. Yan, S. Sarukhai and P. Mehra, "Performance Measurement, Visualization and

Modeling Parallel and Distributed Programs Using the AIMS toolkit", Software-

Practice and Experience 25:4 (April 1995), pp. 429-461.

[29]M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, "MPI: The

Complete Reference", MIT press, 1996.

[30]D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth and K. A. Shields, "Scalable Per-

formance Analysis: The Pablo Performance Analysis Environment", In Proceed-

ings of the Scalable Parallel Libraries Conference, IEEE Computer Society,

1993.

[31]G. A. Geist, M. T. Heath, B. W. Peyton. and P. H. Worley, "A Users Guide to

PICL, a Portable Instrumented Communication Library", Technical Report

ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge, TN, October

1990.

[32]Ruth A. Aydt, "The Pablo Self-Defining Data Format", Available at URL:

http://www-pablo.cs.uiuc.edu

[33]J. A. Kohl, G. A. Geist, et al., "XPVM 1.0 User’s Guide", Technical Report

ORNL/TM-12981, Computer Since and Mathematics Division, Oak Ridge

National Laboratory, Oak Ridge, TN, April 1995.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 102

References
[34]] G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang and R. Manchek, "PVM: Paral-

lel Virtual Machine-A User’s Guide and Tutorial for Networked Parallel Com-

puting ", The MIT Press, 1994.

[35]J. K. Ousterhout, "TCL: An Embeddable Command Language", 1990 Winter

USENIX Conference.

[36]M. T. Heath and J. A. Etheridge, "Visualization the Performance of Parallel Pro-

grams", Technical Report ORNL/TM-11813, Oak Ridge National Laboratory,

Oak Ridge, TN, May 1991.

[37]B. Topol, J. T. Stasko and V. Sunderam, "Pvanim: A Tool for Visualization in

Network Computing Environments", Concurrency: Practice and Experience,

Vol. 10 (14) , 1197-1222 (1998).

[38]John T. Stasko and Charles Patterson, "Understanding and Characterizing Soft-

ware Visualization Systems", In Proceedings of the 1992 IEEE Workshop on

Visual languages, pp. 3-10, September 1992.

[39]J. T. Stasko and E. Kraemer, "A Methodology for Building Application-Specific

Visualizations of Parallel Programs", The Journal of Parallel and Distributed

Computing, Vol. 18, pp.258-264, 1993.

[40]] J. K. Boggs, "IBM Remote Job Entry Facility: Generalize Subsystem Remote

Job Entry Facility", IBM Technical Disclosure Bulletin 752, IBM, Aug. 1973.

[41]M. Nuttall, "Survey of Systems Providing Process Migration", Tech. Rep. Doc

94/10, Dept. of Computing, Imperial College, May 1994.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 103

References

ies,

992

tion

g 1

pen-

m-
[42]A. Carzaniga, G. Picco, and A. Kershenbaum, "Designing Distributed Applica-

tions with Mobile Code Paradigms", In Proceedings of the 19th International

Conference on Software Engineering, pp. 22-32, May 1997.

[43]Gang Ao, "Software Hot-swapping Techniques for Upgrading Mission Critical

Applications on the Fly", Master Thesis, Department of Systems and Computer

Engineering, Carleton University, May 2000.

[44]W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides, "Visualizing the Behavior

of Object-Oriented Systems", In Proceedings of the ACM OOPSLA’93 Confer-

ence, pp. 326-337, Washington, D. C., October 1993.

[45]Michael F. Kleyn and Paul C. Gingrich, "GraphTrace-Understanding Object-Ori-

ented Systems Using Concurrently Animated Views", In Proceedings of the

ACM OOPSLA’88 Conference, pp191-205, San Diego, CA, Sept. 1988.

[46]B. Venners, "Inside the Java Virtual Machine", The McGraw-Hill Compan

Inc., 1998, ISBN: 0079132480.

[47]D. J. Taylor, "A Prototype Debugger for Hermes", In Proceedings of the 1

CAS Conference, Vol.1, pp.29-42, Nov. 1992.

[48]T. Kunz and J. P. Black, "Understanding the Behavior of Distributed Applica

Through Reverse Engineering", The Journal of Distrib. Syst. Engineerin

(1994), pp.345-353.

[49]T. Kunz, J. P. Black, D. J. Taylor and T. Basten, "Poet: Target-System Inde

dent Visualizations of Complex Distributed-Application Executions", The Co

puter Journal, Vol.40, No.8, pp.499-512, 1997.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 104

References
[50]C. E. McDowell and D. P. Helmbold, "Debugging Concurrent Programs", ACM

Comput. Surv. 21, 4 (Dec. 1989), pp. 593-622.

[51]L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System",

Comm. ACM21, 7 (July 1978), pp. 558-565.

[52]B. P. Miller, "What to Draw? When to Draw? An Essay on Parallel Program

Visualization", The Journal of Parallel and Distributed Computing, Vol.18, No.2,

pp.265-269, June 1993.

[53]Dvid M. Ogle, Karsten Schwan, and Richard Snodgrass, "The Dynamic Moni-

toring of Distributed and Parallel Systems", IEEE Transactions on Parallel and

Distributed Systems, 4(7):762-778, July 1993.

[54]Brad Topol, Vaidy Sunderam, and Anders Alund, "PGPVM Performance Visual-

ization Support for PVM", Technical Report CSTR-940801, Emory University,

Atlanta, GA, August 1994.

[55]Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, "Design Pat-

terns: Elements of Reusable Object-Oriented Software", Addison-Wesley Pub-

lishing Company, 1996, 0201633612.

[56]Adam Beguelin, Jack Dongarra, Al Geist, and Vaidy Sunderam, "Visualization

and Debugging in a Heterogeneous Environment", Computer, 26(6):88-95, June

1993.

[57]C. J. Fidge, " Logical time in Distributed Computing Systems", IEEE Computer,

14(8):258-33, August 1991.
Visualizing the Execution of Object-Oriented Code Mobility Applicaitons 105

	ABSTRACT
	ACKNOWLEDGEMENT
	Table Of Contents
	Chapter 1 Introduction
	Chapter 2 Related Work
	Chapter 3 Mobile Code Technology and an Agent-Enhanced ORB-Voyager
	Chapter 4 Visualizing the Execution of Object-Oriented Mobile Code Applications
	Chapter 5 Event Data Collection Subsystem of CMVS
	Chapter 6 Event Processing and Graphical Display Subsystem of CMVS
	Chapter 7 Summary and Future Work
	References

	List of Figures
	Chapter 1 Introduction
	1.1 Research Motivation
	1.1.1 Distributed Object-Oriented Applications with Code Mobility
	A promising one is the so-called distributed object technology and many frameworks (generally ref...
	Another innovative technology emerging recently is called mobile code. This technology exploits t...
	Code mobility has potential to provide more flexible and efficient solutions to some traditional ...
	However, distributed object-oriented applications with code mobility involve all the complexity o...

	1.1.2 Complexity Of Distributed Object-Oriented Applications with Code Mobility
	Further complexity is introduced by mobile objects that can be shared by processes and moved to r...
	The complex nature of distributed object-oriented applications with code mobility makes it diffic...

	1.1.3 Event-Based Program Visualization
	However, a search of recent literature reveals that no visualization toolkits currently available...

	1.2 Thesis Contributions
	1. By examining mobile code technology and distributed applications that exploit code mobility, i...
	2. Several existing visualization systems for distributed/parallel applications are surveyed. Thi...
	3. Several approaches to depict those interesting events are analyzed. An innovative way to prese...
	4. An infrastructure that provides tracing facilities and supports both on-line and postmortem vi...
	5. A graphical display toolkit is developed to provide on-line and postmortem visualization. This...
	6. Challenging issues with respect to program visualization are addressed, including little user ...

	1.3 Thesis Organization
	Chapter 2 reviews several existing visualization tools for parallel/distributed programs. The con...
	Chapter 3 examines mobile code technology in a greater detail in order to help understand why a p...
	Chapter 4 discusses what entities, relationships and actions existing in the program might be vis...
	Chapter 5 and Chapter 6 present the code mobility visualization system (CMVS) that supports both ...
	Chapter 5 introduces the event collection subsystem of CMVS. Its architecture and major component...
	Chapter 6 presents the event processing and graphical display subsystem of CMVS. Its architecture...
	Chapter 7 gives a summary of this work and recommends some future research directions.

	Chapter 2 Related Work
	These tools are publicly available with source code. They are maintained and supported by their d...
	For functionality, we focus on those facilities that are relevant to our visualization rather tha...
	To be useful, we expect a tool with intuitive easy-to-use interface. The tool should have adequat...
	A tool is extensible if it provides facilities for users to add new displays of their own that ca...
	Although some other criteria such as portability, scalability, and robustness are also very impor...
	2.1 Automated Instrumentation and Monitoring System (AIMS)
	Functionality
	AIMS [28] is a software toolkit for measurement and analysis of Fortran 77 and C message-passing ...
	AIMS consists of three major components:
	1) Source code instrumentation
	2) Trace file generation
	3) Trace file analysis

	Tally and Sysconfig are used to display performance statistics and the network topology, respecti...

	Usability
	AIMS documentation is well-written. The Users' Guide gives step-by-step instructions on how to in...
	Installation instructions are included in the software distribution. The major installation task ...

	Extensibility
	AIMS does not appear to provide support for users to seamlessly add new displays of their own to ...

	2.2 Pablo Performance Analysis Environment
	Functionality
	Pablo [30], developed at the University of Illinois, is the most complex toolkit reviewed here. I...
	Pablo 5.0 consists of several separate components for instrumentation, event tracing and performa...
	Pablo also provides facilities to convert trace files produced by other trace libraries, such as ...
	1) Source code instrumentation

	The instrumentation library consists of a basic trace library with extensions for procedure traci...
	2) Trace file generation

	What really justifies a mention of Pablo is its self-describing data format (SDDF) used for the t...
	3) Trace file analysis

	The SvPablo GUI only allows the user to view performance summary statistics for each instrumented...

	Usability
	Brief installation instructions are provided in the README file for each component. The major ins...
	SvPablo is not very difficult to use. The Pablo Analysis GUI, on the other hand, has a steep lear...

	Extensibility

	2.3 XPVM
	Functionality
	XPVM [33] is an X-window based graphical console and monitor for PVM. It provides a graphical int...
	We restrict ourselves here only to the functionality of XPVM as a monitor.
	1) Trace file generation

	Any tasks spawned from XPVM automatically send back trace events. These trace events can be used ...
	2) Trace file analysis

	The Space-Time view shows the status of individual tasks as they execute across all hosts. Each t...
	The Space-Time view supports several nice facilities. It has a VCR-like trace play control, which...

	Usability
	XPVM is well documented. The User's Guide explains the various features available. Each distribut...

	Extensibility
	XPVM is written using Tcl/Tk, allowing extensibility to include a variety of views. Although modi...

	2.4 ParaGraph
	Functionality
	ParaGraph [36] is a graphical display system for visualizing the behavior and performance of mess...
	1) Trace file generation
	2) Trace file analysis

	In the Spacetime Diagram, the processor number is displayed on the vertical axis and time on the ...
	ParaGraph has some nice features, including multiple views, trace file playback control, and disp...

	Usability
	ParaGraph's major documentation includes a README file and a User's Guide. Although the installat...
	The User's Guide explains the various features available. It also points out some limitations of ...
	The interactive user interface of ParaGraph is easy to use and several sample trace files come wi...

	Extensibility
	Paragraph allows the users to add application-specific displays that can be selected from a sub-m...
	However, writing the necessary routines to support application-specific displays is still a nontr...

	2.5 PVanim
	Functionality
	The PVanim [37], developed by the GVU center of Georgia Institute of Technology, is a toolkit for...
	PVanim has two main components: tracing library and Polka visualization library
	1) Source code instrumentation and trace file generation

	Two modifications are required for instrumenting the PVM programs. Modified applications should b...
	2) Trace file analysis

	In the Causality view, the Y-axis is labelled with process identifiers and the X-axis labelled wi...
	Despite the difference in the principles of building the display, PVanim is quite similar to XPVM...

	Usability
	The documentation of Polka includes a README file, Polka Animation Designer's Package, and a pape...

	Extensibility
	Polka is a software toolkit designed to facilitate application-specific animated visualization. I...
	Therefore, it is very easy to change the color of the trace lines using Polka. Moreover, it will ...
	Polka is implemented in C++ on top of UNIX with X11 system or on Windows 95 using MS Visual C++5....
	In addition to the extensibility of Polka, as discussed above, the PVanim tracing library also fa...

	2.6 Summary
	Among the tools that we reviewed, XPVM, ParaGraph and Polka provide their equivalent process-time...
	The facilities provided by those tools, such as trace file playback control, information query as...
	SDDF, self-describing data format, developed by the Pablo group is very flexible to represent tra...

	Chapter 3 Mobile Code Technology and an Agent-Enhanced ORB-Voyager
	3.1 Mobile Code Technology
	More recently, an innovative technology called mobile code technology has been developed to provi...
	3.1.1 Mobile Code Paradigms
	Fig. 3.1: Code on demand
	Code on Demand
	As shown in Fig. 3.1, an execution unit, which is the run-time view of a program such as a proces...
	Fig. 3.2: Remote evaluation

	Remote Evaluation
	As shown in Fig. 3.2, the service code can be shipped to a remote computational environment where...
	Fig. 3.3: Mobile agent

	Mobile Agent
	The term "agent" has many different meanings according to the research domains where it is used. ...
	Among these paradigms, the REV and MA paradigms allow the execution of code on a remote node, usi...
	Code mobility affords new opportunities for the distribution of processing and control in the net...
	Fig. 3.4: Service migration

	3.1.2 Mobile Objects
	According to those characteristics that distinguish a mobile object from other regular objects, w...
	Creation
	Disposal
	Arrival
	Dispatch
	There are some other likely interesting events, such as those related to interaction with other o...

	3.2 Java and An Agent-Enhanced ORB-Voyager
	3.2.1 Java Architecture
	1) The Java programming language
	2) The Java class file
	3) The Java application programming interface (Java API)
	4) The Java virtual machine (JVM)

	Fig. 3.5: Java virtual machine
	The JVM and Java API form the Java run-time system on which all Java programs are compiled and ex...
	The Java compiler translates Java source programs into an intermediate, platform independent lang...

	3.2.2 Code Mobility Supported by Voyager

	Chapter 4 Visualizing the Execution of Object- Oriented Mobile Code Applications
	4.1 Process-Time Diagrams
	Fig. 4.1: Process-time diagram
	Animation is good at capturing a sense of motion and change, and thus may provide an intuitive fe...
	As shown in Fig. 4.1, in the progress-time diagram, each entity, such as process, task, thread, o...
	In reality, no global clock exists and events can only be ordered partially. The basic relation b...
	The visualization focuses on interactions between entities instead of the internal activities of ...

	4.2 Graphical Representations of Interesting Events
	The trace lines can be invisible or drawn as solid or dashed according to the state of the entiti...
	Arrows that depict interactions between entities are vertical for synchronous interaction and slo...
	4.2.1 Object Creation and Disposal
	As shown in Fig. 4.2, an object is drawn as a trace line. Since the object that invokes the creat...
	Fig. 4.2: Object creation/destruction

	4.2.2 Code Mobility
	Fig. 4.3: Code mobility depiction-approach 1
	There are some likely ways to represent an object move from node to node. A first possibility, sh...
	Since the object that invokes the migration of another will not be suspended after the invocation...
	Fig. 4.4: Code mobility depiction-approach 2

	Another way, as shown in Fig. 4.4, is to take advantage of color. Color is an important graphical...
	Fig. 4.5: Code mobility depiction-approach 3

	To resolve the problems inherent in those two types of display, we propose a third one shown in F...

	4.3 Visualization Objectives
	1) Minimal visualization effort
	2) Visualization is desirable to be performed both on-line and postmortem.
	3) Little user intervention
	4) Presentation of the "right" things
	5) Scalability
	6) Minimal probe effect
	7) Quick focus on particular concerns

	Chapter 5 Event Data Collection Subsystem of CMVS
	1) Event data collection: Collect the interesting events from the application that is visualized.
	2) Event data processing and storage: The collected events are processed for visualization and st...
	3) Display: The visualization events are translated into graphical primitives (i.e. shape, color,...

	Fig. 5.1: The visualization process
	We use these steps in the design and implementation of our tool, which is called CMVS (Code Mobil...
	In this chapter, the event data collection subsystem will be introduced. We first present an appr...
	5.1 Program Monitoring
	1) Sampling
	2) Tracing

	These two approaches have their own advantages and disadvantages. Generally, sampling is less int...
	Event tracing relies on program instrumentation, which will be described in more detail in the fo...
	5.1.1 Program Instrumentation
	In order to gather the expected trace events we need to specify where in the source code the appr...
	These two approaches have their own advantages and disadvantages. The first approach is straightf...
	Fig. 5.2: Instrumentation by inheritance

	Obviously, it is desirable to instrument the source code without or with minimal source code modi...
	Fig. 5.3: Program instrumentation by applying the wrapper pattern

	Since Java does not allow multiple inheritance, this approach has a potential problem when the mo...
	The program instrumentation schemes introduced above are currently applied in CMVS by manually an...
	The approach that we use to instrument the program allows the user to select the class for annota...
	Voyager facilitates move notification, which is a delegation-base event-handling model. If an obj...
	IVisualizable extends IMobile interface with two public methods:
	The other four methods are inherited from IMobility interface. Two of them are of particular inte...

	5.1.2 Event Records
	MobileObjectEven t
	Fig. 5.4: Schematic overview of event records

	Every MobileObjectEvent has four basic attributes:
	In addition to these attributes, the CreationEvent has a CreatorOID attribute that identifies the...
	This set of event records are created to meet our current visualization needs. It is by no means ...
	Event Records will be saved into a trace file. There are several candidates for the format of the...

	5.2 The Architecture of Event Data Collection Subsystem
	An important consideration in event data collection is whether the information gathered is utiliz...
	1) Distributed event data collection
	Fig. 5.5: Distributed event data collection

	As shown in Fig. 5.5, one local event collector (LEC) resides on each host to which mobile object...
	During the program execution, interesting events emitted by probes are sent to the LEC, where the...
	2) Centralized event data collection

	As shown in Fig. 5.6, there is one event processing center (EPC) typically located on a host that...
	Fig. 5.6: Centralized event data collection

	These two different event collection schemes both have advantages and disadvantages. On one hand,...

	5.3 Design and Implementation Issues
	Programming Language
	The fact that the application program will be targeted for Voyager, a 100% Java distributed compu...

	Object Identifier
	Obviously, a mobile object needs an identifier to get identified and located. Moreover, this iden...
	Fig. 5.7: Relationship of host, server and mobile objects

	As shown in Fig. 5.7, Voyager servers introduce a hierarchical structure. A given computer in a n...
	A potential problem with this approach is that the resulting object identifier can be very long. ...

	Timestamp Creation
	The timestamps that have been recorded with the program events are used to order the events for v...
	In distributed network environments, it is most likely that there is no global clock. As shown in...
	After a LEC is created, it attempts to connect with the EPC and asks it to send back its current ...
	We also take into account the communication delays between the LECs and EPC when calculating the ...
	Although the time adjustment strategy by no means can guarantee the causality of the trace event,...

	How to Locate the Local Event Collector Object
	For security reasons, mobile objects are almost unable to open a network connection when they get...

	Tracing Facility
	Tracing facility refers to the functionality provided by the data collection subsystem for the tr...

	5.4 Functionality
	As shown in Fig. 5.8, the information collection subsystem provides a number of services to facil...
	Fig. 5.8: Services provided by the trace event collection subsystem

	Chapter 6 Event Processing and Graphical Display Subsystem of CMVS
	6.1 The Architecture of Event Processing and Graphical Display Subsystem
	Fig. 6.1: The architecture of the event processing and graphical display subsystem
	The Event Processor
	On-line Mode
	Basically, there are two tasks scheduled by the coordinator. One is handled by the event store (E...

	Postmortem Mode
	In this mode, no event data will be saved into the trace file. Only the latter task will be perfo...

	The Visualizer
	In order to translate the generated program events into a meaningful visualization of the executi...
	The visualizer is written using the Tcl/Tk toolkit [35] with application extended C commands. Tcl...
	Another argument to justify the use of Tcl/Tk is its extensibility. Each application can extend t...
	Fig. 6.2: Application structure

	The Tcl library implements the interpreter and the core Tcl commands. Application specific Tcl co...

	The Coordinator
	After initialization, the Tcl/Tk interpreter will normally stay in an event loop waiting for X-wi...

	6.2 On-line Event Reordering
	Basically, there are two forms of misordering. One is that the timestamps associated with the eve...
	For the second form of misordering, some existing systems (e.g. Paragraph [36], AIMS [28]) rely o...
	How to diagnose and correct the misordering events with suitable efficiency is a challenging issu...

	6.3 Facilities
	Fig. 6.3: Snapshot of CMVS graphical view and user interface
	In line with the visualization objectives presented in the previous chapter, as shown in Fig. 6.3...
	Fig. 6.4: Snapshot of the process-time view query
	Fig. 6.5: Snapshot of the process-time view zooming

	6.4 Summary
	6.4.1 An Overview of CMVS
	The event collection subsystem employs a tracing mechanism to collect event data and allows a pro...
	The event processing and graphical display subsystem is responsible for data processing and displ...
	Since no existing visualization tools provide tracing facilities for code mobility, the event col...
	The visualizer of the EPGS is adapted from XPVM. As described earlier, XPVM supports on-line moni...
	As a result, most parts of the XPVM source code are modified and new facilities are added to supp...
	CMVS provides similar facilities to some popular visualization tools, such as XPVM, Pvanim and Pa...

	6.4.2 System Evaluation
	Work Needed to Enable Visualization
	As described in Chapter 5, we reduce the work needed for program instrumentation by applying clas...
	Fig. 6.6: A skeleton application modified using class inheritance to enable visualization

	As shown in Fig. 5.2 and Fig. 6.6, if class inheritance is applicable, using CMVS requires three ...
	The total number of lines of code needed to be modified/added (NL) is equal to:
	NL = NC * 2 + NO

	NC: The number of classes whose instances will be visualized
	NO: The number of mobile objects to be visualized
	If the mobile object class, Drone, has its own superclass, SuperDrone, due to the limitation of s...
	The total number of lines of code needed to be modified/added (NL) is equal to:
	NL = NC * 6 + NO

	NC: The number of classes whose instances will be visualized
	NO: The number of mobile objects to be visualized
	Fig. 6.7: A skeleton application modified using wrapper pattern to enable visualization

	The Perturbation Effect
	As with many other instrumentation approaches, the instrumentation scheme used in CMVS causes per...
	Table 6.1: Average execution time and overhead
	As discussed earlier, there are some trade-offs between performance and other benefits in the des...

	The Effort Required to Actually Visualize a Given Trace File
	Like any other applications, CMVS consumes CPU time and space. Here we are interested in how much...
	Table 6.2: Average time required to visualize a trace file
	As shown in Table 6.2, CMVS will take 5698 milliseconds to visualize a trace file with 1000 event...
	One possible solution to improve the capacity of the visualization is that we have event reading ...

	Chapter 7 Summary and Future Work
	7.1 Summary
	Although this infrastructure was developed to visualize programs written in Voyager, its principl...
	1) How to locate the reporter
	2) How to trace arrival and dispatch events

	7.2 Future Work

	References
	[1] George Coulouris, "Distributed Systems: Concepts & Design", Addison-Wesley Publishing Company...
	[2] P. Bates, "Debugging Heterogeneous Distributed Systems Using Event-Based Models of Behavior",...
	[3] M. Friedell, M. LaPolla, et al., "Visualizing the Behavior of Massively Parallel Programs", I...
	[4] T. Lehr, et al., "Visualizing System Behavior", In Proceedings of the 1991 International Conf...
	[5] Dror Zernik, Marc Snir, and Dalia Malki, "Using Visualization Tools to Understand Concurrency...
	[6] Cherri M. Pancake, "Visualizing the Behavior of Parallel Programs", Supercomputer, pp. 31-37,...
	[7] Christoph W. Ueberhuber, and Gerald Thomas, "Visualization of Scientific Parallel Programs", ...
	[8] Wentong Cai, Wendy J. Milne and Stephen J. Turner, "Graphical Views of the Behavior of Parall...
	[9] Object Management Group, "The Common Object Request Broker: Architecture and Specification", ...
	[10] Sun Microsystems Inc., "Java Remote Method Invocation Specification", available at:
	[11] ObjectSpace Company, "Voyager Core Technology 3.2 User Guide", available at: http://www.obje...
	[12] A. Fuggetta, G. Picco, and G. Vigna, "Understanding Code Mobility", IEEE Transactions on Sof...
	[13] A. Carzaniga, G. Picco and G. Vigna, "Designing Distributed Applications with Mobile Code Pa...
	[14] Sun Microsystems Inc., "Java Language Specification", white paper available at: http://java....
	[15] IBM Corporation, "IBM Aglets Software Development Kit", web page at: http://www.trl.ibm.co.j...
	[16] L. Cardelli, "Obliq: A Language with Distributed Scope", Technical Report, Digital Equipment...
	[17] General Magic Inc., "Telescript Language Reference", web page at: http://www.genmagic.com/te...
	[18] General Magic Inc., "Odyssey Information", web page at: http://www.genmagic.com/technology/o...
	[19] R. S. Gray, "Agent Tcl: A Transportable Agent System", In Proceedings of the CIKM’95 Worksho...
	[20] David Wong, Noemi Paciorek and Tom Walsh, "Concordia: An Infrastructure for Collaborating Mo...
	[21] Hector Garcia-Molina and Walter H. Kohler, "Debugging a Distributed Computing System", IEEE ...
	[22] Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger, "Monitoring Distributed Systems", ...
	[23] A. D. Malony, D. H. Hammerslag, and D. J. Jablonowski, "Traceview: A Trace Visualization Too...
	[24] D. Kranzlmuller, S. Grabner, and J. Volkert, "Event Graph Visualization for Debugging Large ...
	[25] E. Kraemer and J. T. Stasko, "The Visualization of Parallel Systems: An Overview", The Journ...
	[26] R. Hood, "The p2d2 Project: Building a Portable Distributed Debugger", In Proceedings of SPD...
	[27] D. Socha, M. L. Bailey and D. Notkin, "Voyeur: Graphical Views of Parallel Programs", SIGPLA...
	[28] J. Yan, S. Sarukhai and P. Mehra, "Performance Measurement, Visualization and Modeling Paral...
	[29] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, "MPI: The Complete Reference...
	[30] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth and K. A. Shields, "Scalable Performance Analy...
	[31] G. A. Geist, M. T. Heath, B. W. Peyton. and P. H. Worley, "A Users Guide to PICL, a Portable...
	[32] Ruth A. Aydt, "The Pablo Self-Defining Data Format", Available at URL: http://www-pablo.cs.u...
	[33] J. A. Kohl, G. A. Geist, et al., "XPVM 1.0 User's Guide", Technical Report ORNL/TM-12981, Co...
	[34]] G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang and R. Manchek, "PVM: Parallel Virtual Mac...
	[35] J. K. Ousterhout, "TCL: An Embeddable Command Language", 1990 Winter USENIX Conference.
	[36] M. T. Heath and J. A. Etheridge, "Visualization the Performance of Parallel Programs", Techn...
	[37] B. Topol, J. T. Stasko and V. Sunderam, "Pvanim: A Tool for Visualization in Network Computi...
	[38] John T. Stasko and Charles Patterson, "Understanding and Characterizing Software Visualizati...
	[39] J. T. Stasko and E. Kraemer, "A Methodology for Building Application-Specific Visualizations...
	[40]] J. K. Boggs, "IBM Remote Job Entry Facility: Generalize Subsystem Remote Job Entry Facilit...
	[41] M. Nuttall, "Survey of Systems Providing Process Migration", Tech. Rep. Doc 94/10, Dept. of ...
	[42] A. Carzaniga, G. Picco, and A. Kershenbaum, "Designing Distributed Applications with Mobile ...
	[43] Gang Ao, "Software Hot-swapping Techniques for Upgrading Mission Critical Applications on th...
	[44] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides, "Visualizing the Behavior of Object-Orie...
	[45] Michael F. Kleyn and Paul C. Gingrich, "GraphTrace-Understanding Object-Oriented Systems Usi...
	[46] B. Venners, "Inside the Java Virtual Machine", The McGraw-Hill Companies, Inc., 1998, ISBN: ...
	[47] D. J. Taylor, "A Prototype Debugger for Hermes", In Proceedings of the 1992 CAS Conference, ...
	[48] T. Kunz and J. P. Black, "Understanding the Behavior of Distributed Application Through Reve...
	[49] T. Kunz, J. P. Black, D. J. Taylor and T. Basten, "Poet: Target-System Independent Visualiza...
	[50] C. E. McDowell and D. P. Helmbold, "Debugging Concurrent Programs", ACM Comput. Surv. 21, 4 ...
	[51] L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System", Comm. ACM21,...
	[52] B. P. Miller, "What to Draw? When to Draw? An Essay on Parallel Program Visualization", The ...
	[53] Dvid M. Ogle, Karsten Schwan, and Richard Snodgrass, "The Dynamic Monitoring of Distributed ...
	[54] Brad Topol, Vaidy Sunderam, and Anders Alund, "PGPVM Performance Visualization Support for P...
	[55] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, "Design Patterns: Elements of R...
	[56] Adam Beguelin, Jack Dongarra, Al Geist, and Vaidy Sunderam, "Visualization and Debugging in ...
	[57] C. J. Fidge, " Logical time in Distributed Computing Systems", IEEE Computer, 14(8):258-33, ...

