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Abstract

Network Function Virtualization (NFV) can lower the CAPEX and/or OPEX for

service providers and allow for quick deployment of services. The main challenge in

the use of Virtualized Network Functions (VNF) is the VNFs’ placement in the net-

work. This research provides mathematical models and heuristics for NF placement

for wired and wireless networks. We use Integer Linear and Non-Linear Programming

as a mathematical optimization program for NF placement. We start from a basic

model for a wired network and extend it gradually to develop a traffic-aware mathe-

matical model for NF placement in wireless multi-hop networks. For the first time,

we model the interference which is a major difference between a wired and wireless

network and included it in our optimization model. We identified the issue of scarcity

of BW in wireless multi-hop networks and its role in the average cost of placement

and acceptance rate of requests. The critical problem of mathematical models is

that they are NP-hard, and consequently not applicable to larger networks. While

there exist many efforts in designing a heuristic model that can provide solutions in

a timely manner, the primary focus with such heuristics was almost always whether

they provide near-optimal results. Consequently, the heuristics themselves become

quite non-trivial, and solving the placement problem for larger networks still takes

a significant amount of time. In our research, in contrast, we focus on designing a

simple and scalable heuristic. We propose a set of heuristics, which are gradually be-

coming more complex. We start from the random placement heuristic as the simplest

approach and at each step add a parameter such as choosing between shortest paths,

sort NFs based on their nodal resources, and replacing previously placed NFs to our

heuristic. We compare the performance of our heuristics with each other, related

heuristics, and our mathematical model. Our results demonstrate that the simple

approach of placing NFs along their shortest path can find near-optimal solutions

much faster than the other more complicated heuristics while keeping the ratio of

accepted requests close to the acceptance ratio of a NP-hard optimization model.
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Chapter 1

Introduction

1.1 Motivation

Network Function Virtualization (NFV), the practice of decoupling network hardware

and software to allow network services to run on commodity servers, is a transfor-

mational vision that attracts a lot of attention in the telecommunication industry.

The hope is that virtualization brings advantages such as enabling faster deployment

of new services with less risk, allowing iterative improvement of existing services,

broadening the developer ecosystem to include new entrants, and reducing network

cost structure through infrastructure sharing and automation [4]. NFV covers a wide

spectrum of Network Functions (NF) such as firewalls, Deep Packet Inspection (DPI),

Intrusion Detection System (IDS), Network Address Translation (NAT), and Wide

Area Network (WAN) accelerators. It also covers a variety of network nodes such

as broadband remote access server, data network gateways (S-GW/P-GW), Mobility

Management Entity (MME), Home Subscriber Server (HSS), and virtual IP Multime-

dia Subsystem (vIMS) for virtual Evolved Packet Core (vEPC). These are the critical

devices in mobile broadband and cellular networks [5].

By leveraging NFV and Software Defined Network (SDN), Virtual Network Func-

tions (VNF) can be installed, removed, or migrated dynamically to adapt to the dy-

namic network resource requirements due to changes in network topology or network

traffic load. In this context, the VNFs are commonly placed in a chain of a specific

order in the substrate network. The chained VNFs form a Service Graph (SG) and

process traffic flows to deliver end-to-end network services [6]. Two simple SG models

for mobile Internet upstream and downstream traffic is shown in Figure 1.1 [1]. As

more and more of the traffic includes video, in both SGs we have a Video Optimizer

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Example of two SGs [1]

(VO) that optimizes the video content from the internet for mobile networks and de-

vices. In the first SG, the Parental Control Service (PCS) prevents some users from

accessing specific content. The second SG uses Network Address Translation (NAT)

that maps the private IP address space dedicated to user equipment to a public IP

address and a set of security VNFs such as Firewall (FW), Intrusion Detection Service

(IDS), and Threat Mitigation Service (TMS) that protects the carrier network from

the outside.

The placement of NFs of an SG can be referred to as a Network Function Em-

bedding Problem (NFEP). NFEP can be explained as a way to map VNFs and the

links between them to the physical network so that the computing resources such as

CPU, memory, and network resources such as link bandwidths are efficiently utilized

and the service requirements are met [2]. NFEP can be optimized based on the char-

acteristics and available resources of the network. The placement of NFs can affect

the path traffic flows take and consequently, bandwidth usage in the network [7].

Figure 1.2 shows an example of an SG deployment problem. The upper graph is a

SG composed of two VNFs between a source node and a destination node, and the

bottom graph is a substrate network with six substrate nodes on which the SG can

be deployed.
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Figure 1.2: An Example of SG Deployment on Substrate Network [2]

There are several types of algorithms proposed to solve the NFEP. Previous stud-

ies are mostly focused on the placement of VNFs in wired networks, while the use

of NFV can bring comparable advantages to wireless networks. NFV introduces new

possibilities to wireless networks such as network virtualization, that for example,

subscribers can customize their exclusive access networks while using the shared in-

frastructure. The amount of literature on wireless network virtualization shows the

importance of NFV in wireless networks. However, there are only a few papers con-

sidering the problem of NFEP in wireless networks.

1.2 Thesis Contributions

Our first goal is to design a comprehensive NFEP model for multi-hop wireless net-

works. We identify the important characteristic of wireless networks, which is in-

terference, and include it in our model. To our knowledge, none of the proposed

methods for NFEP in wireless networks included the effect of interference in their

optimization model. It is assumed that the interference is being handled by using

orthogonal channels in the network. This assumption can be challenged from two

perspectives. First, the use of orthogonal channels is only possible when we have a

multi-radio multi-channel network which is not always the case in wireless networks.

Second, even in the multi-radio multi-channel networks, there is still a possibility of

interference and it is not possible to eliminate the effect of interference.

We use one of the comprehensive models provided for placing NFs in a wired

network as a basic model that provide an optimal placement for one request at a
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time. The basic model formulates the NFEP in wired networks as an optimization

problem that can be solved with Integer Linear Programming (ILP). In this method,

the objective is to minimize the mapping cost based on the resource requirements

of the NFs and available resources in the network. The cost of a mapping is based

on the costs of the consumed resources by the NFs in the physical network which

include:

• The cost of total units of CPU, memory, and storage used by NFs in physical

nodes.

• The cost of total units of bandwidth used by virtual links in the physical net-

work.

We improved the model in order to include the effect of interference, based on

the protocol model. Our results show that interference increases the BW usage and

consequently increases the placement cost and decreases the number of accepted re-

quests (i.e., SGs that can successfully be placed in a physical network shared by many

flows). We further expanded the ILP model for wireless networks in order to consider

the following parameters:

• A source and destination for each request.

• Traffic changing factor, which considers the effect of NFs on BW consumption.

The resulting optimization problem becomes non-linear, which raises complexity is-

sues. In studying the results, we observed, even in the case of the simpler linear

models, solving the optimization problem for small networks demands high computa-

tional resources and the execution times are high as well. It is been shown that ILP

models are NP-hard and not applicable to large scale networks [8].

In order to provide a simpler and time-efficient solution for the problem of em-

bedding VNFs that is applicable to larger networks we focused on the design of

heuristic algorithms. A number of heuristics have been proposed in the literature,

the main purpose of such heuristics is to provide results approximately as good as

the mathematical model. Consequently, the heuristics become time consuming and

not applicable to larger networks. In contrast, our goal is to provide a heuristic that

considers the parameters that contribute to improving results and avoid non-essential

complexities. We propose five heuristics that are gradually becoming more complex

and explore the effectiveness of each of the added parameters at each step.
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Our heuristics start from our simplest placement algorithm, random placement,

which places the NFs randomly. We then gradually add parameters that can poten-

tially improve the performance of our heuristic in terms of the number of accepted

requests, the average cost of placement, and the execution time. Our second heuristic,

the shortest path placement, considers the scarcity of BW and places the NFs along

the shortest path. The all shortest path heuristic, our third heuristic, searches for

all shortest paths and chooses one for placement in a way to increase the possibility

of accepting a request. The Fast and Cost-Efficient (FACE) heuristic is our fourth

heuristic. FACE heuristic chooses between all shortest paths and prioritizes place-

ment of the NFs that have higher nodal resource demand to increase the probability

of accepting a request. Last but not least, the joint heuristic considers the previously

placed NFs along with the current request in order to place the current SG.

In summary in this document, we provide a comprehensive mathematical model

and use it as a benchmark to compare with the performance of our heuristics. By

starting from the simplest approach of placing the NFs randomly and step by step

adding one parameter to our heuristic we identify the effectiveness of added param-

eters. We compare the performance of our heuristics with each other, our mathe-

matical model, and similar heuristics to show that a very simple heuristic can find

near-optimal solutions much faster than the other more complicated heuristics while

keeping the number of accepted requests close to the results achieved with an NP-hard

optimization model.

1.3 Publications

The list of our publications are as follows:

1. Z. Jahedi and T. Kunz, “Virtual network function embedding in multi-hop

wireless networks,” in Proceedings of the 15th International Joint Conference

on e-Business and Telecommunications, ICETE 2018 - Volume 1: DCNET,

ICE-B,OPTICS, SIGMAP and WINSYS, Porto, Portugal, July 26-28, 2018.,

pp. 199–207, 2018. [7]

2. Z. Jahedi and T. Kunz, “Optimal VNF placement: Addressing multiple min-

cost solutions,” in e-Business and Telecommunications, pp. 1–23, Springer In-

ternational Publishing, 2019 [9]
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3. Z. Jahedi and T. Kunz, “Fast and cost-efficient virtualized network function

placement algorithm in wireless multi-hop networks,” in Ad-Hoc, Mobile, and

Wireless Networks(L. A. Grieco, G. Boggia, G. Piro, Y. Jararweh, and C. Cam-

polo, eds.), pp. 23–36, Springer International Publishing, 2020. [10]

4. Z.Jahedi and T. Kunz, “The value of simple heuristics for virtualized network

function placement,”Future Internet, vol. 12, no. 10, 2020. [11]

Our first publication, titled ”Virtual network function embedding in multi-hop wire-

less networks” [7] includes the extended model described in Section 3.4 of Chap-

ter 3 and was presented in the 15th International Joint Conference on e-Business and

Telecommunications. Our paper also has been selected to be included in the CCIS Se-

ries book published by Springer [9]. Our mathematical joint model described in Chap-

ter 4, Section 4.5.1, was published in the CCIS series book published by Springer,

titled ”Optimal VNF placement: addressing multiple min-cost solutions” [9]. In this

paper [9], we introduce a joint optimization model that provides optimal placement

of both previous and current requests at once. In the joint optimization model, a new

request and previously placed requests will be placed in the network optimally. Our

joint all shortest path heuristic described in Section 4.5.2 of Chapter 4 uses this idea

in the design of our joint heuristic.

Our third publication describes the FACE heuristic mentioned in Chapter 4, Sec-

tion 4.4, and was presented in the 19th International Conference on Ad Hoc Net-

works and Wireless (AdHoc-Now 2020), titled ”Fast and cost-efficient virtualized

network function placement algorithm in wireless multi-hop networks” [10]. Our

forth publication, ”The value of simple heuristics for virtualized network function

placement” [11] describes four increasingly complex heuristics: random placement,

shortest path placement, all shortest path placement, FACE heuristic, and their per-

formance comparison that are described in Chapter 4. Our results in [11] demonstrate

that more complex placement heuristics not only do not improve the performance of

the algorithm in terms of the number of accepted placement requests, but also take

longer to solve, limiting their applicability to larger networks.
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1.4 Thesis Organization

The thesis document is organized as follows: Chapter 2 reviews the previously pro-

posed mathematical models, and covers a review of a wide range of heuristics previ-

ously proposed for placing VNFs in wired and wireless networks. The basic, extended,

and traffic-aware mathematical models that we design for NFEP in wireless multi-hop

networks are described in Chapter 3. Chapter 4 describes our proposed heuristics,

and Chapter 5 is dedicated to the results collected from deploying the mathematical

model proposed in Chapter 3 and heuristics proposed in Chapter 4 and its analysis.

Finally Chapter 6 is dedicate to our conclusion and plan for future works.



Chapter 2

A Review of NF Placement Models

A Service Chain (SC) is a chain of high-level services, where each service is composed

of NFs [12]. A chain of NFs with predefined parameters is referred to as a Service

Graph (SG). The placement of all NFs of an SG can be referred to as a Network

Function Embedding Problem (NFEP) [12]. There are several types of methods to

approach the problem of NF placement. This problem can be modeled by using

mathematical methods or by designing a heuristic algorithm. In this chapter, we

review mathematical models and heuristics formerly proposed for the NFEP in wired

and wireless networks. By reviewing the proposed methods we can identify the pa-

rameters that are important in the design of the optimization model for wired and

wireless networks that minimize the cost of used resources and maximize the number

of accepted requests. The considered parameters for a wired and wireless network

can differ due to differences in the network characteristics.

The exact mathematical models for solving the optimization problem can be differ-

ent forms of Linear Programming (LP), Non-Linear Programming (NLP), etc. These

methods are designed to achieve the best outcome in a mathematical model whose

requirements are represented by linear or non-linear relationships. The constraints

can be defined based on the limitations of the physical network and the NFs. The

objectives are defined to optimize one or multiple parameters. The proposed math-

ematical models can be categorized into two groups based on their target network,

which can be wired or wireless. For each category, we review mathematical meth-

ods and parameters considered in each model to be able to provide a comprehensive

mathematical model for NFEP in wireless multi-hop networks.

Although mathematical models can provide an optimal solution they are complex

and proven to be NP-hard [8]. They are not applicable to large networks and it is

8
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common to develop a heuristic algorithm. The heuristic algorithms are applicable to

larger networks and they are mainly designed to achieve results close to the mathe-

matical models with lower complexity and execution time. Following our review of

mathematical models, we provide a review of a wide range of heuristics proposed for

NFEP in wired and wireless networks. In our review we identify the potentially effec-

tive parameters that we will consider in the design of our own simple and time-efficient

heuristics.

2.1 Mathematical Models of NFEP

The amount of work on NFEP in wired and wireless networks is considerable. The

proposed optimizations can be categorized based on the parameters considered in

the constraints and objectives of the optimization model. The parameters can be

summarized in the following categories:

• Nodal resources: Including CPU, memory and storage.

• Bandwidth

• Delay: Including different kinds of delay such as propagation delay, transporta-

tion delay, etc.

• Energy Consumption: Including power consumption and the number of active

nodes.

• Deployment and maintenance of NFs: Including the number of instances used

to deploy services or the number of used licenses .

These parameters can be considered in the objective function or consider as a

constraint. Table 2.1 summarizes some of the proposed methods based on the factors

considered in their optimization model. The check mark means the related parameter

is included in the model and an x means that the parameter is not considered. Nodal

resources can be considered as a constraint, they usually are CPU, memory or the

storage of the physical nodes which must be considered in the process of placement.

Physical links’ available BW is another parameter which can be considered in the

constraints and the objective function. There is usually an effort in minimizing the

BW usage in the placement of NFs. As we can see in Table 2.1, most of the proposed
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Authors Method Nodal Resources BW Delay Energy Deployment Cost Objective

[12] ILP X X X 7 7 Minimizes the resources usage

[13] MILP X X X 7 7
Minimizes maximum link
and core utilization

[14] ILP 7 X 7 7 X
Minimizes the activation
and maintenance cost

[15] MILP X X 7 7 X
Minimizes activation
and maintenance cost

[16] ILP X 7 7 X 7
Minimizes the resource-
consumption and energy

[17] ILP X X X 7 X Minimizes the cost of NFEP

[18] LRP X X 7 7 X
Minimizes the installation
and deployment cost

[19] ILP X 7 X 7 X Minimizes network provider’s cost

[20] MINLP X 7 X 7 7
Minimizes the maximum
link’s BW to load ratio

[21] ILP X X 7 7 7 Minimizes the resource usage

[22] Knapsack Problem (MKP) 7 X 7 7 7 Maximize revenue

Table 2.1: Mathematical Models for NFEP.

methods consider BW in their optimization. Some flows are delay sensitive and have

a threshold for the maximum tolerable delay which can be defined as one of the

constraints.

2.1.1 Mathematical Models of NFEP in Wired Networks

Sahhaf et al. in [12] consider the available resources of the nodes, the available

bandwidth of the links and the requested QoS (Quality of Service) as constraints and

minimize the resource usage. This is one of the mathematical models proposed that

considers all of the nodal resources (CPU, memory, and storage) and links’ BW in its

model. In [13] the authors used Mixed Integer Linear Programming (MILP) to find

an optimal solution. The proposed optimization is based on maximizing the number

of services that can be supported in a switch. In this solution, the constraints are

based on the number of free cores, tolerable delay of flows and links’ bandwidth. The

objectives are minimizing maximum link utilization and maximum core utilization,

which leads to the distribution of load between available resources.

In the models where the users demand a service which should be deployed in the

cloud environment, the model aims at minimizing the cost for the service provider

or users. In these models, the main objective is to minimize the deployment and

maintenance cost. Deployment cost can be translated into minimizing the number

of instances used to deploy services or minimizing the number of licenses used. The

physical network limitations such as available nodal resources and physical links’
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available BW can also be considered in these models. In [14], the authors used Inte-

ger Linear Programming (ILP) in order to find an optimum solution for placing Deep

Packet Inspection (DPI) as a VNF in the network. In the proposed method, the ob-

jective function is to minimize the activation and maintenance cost of the virtual DPI

(vDPI) and the considered constraint is the network’s available bandwidth. In an-

other mathematical model, Leivadeasa et al. proposed a MILP formulation with the

nodal capacity and the bandwidth of the links as the constraints in [15]. It considers

minimizing activation, maintenance cost, and load balancing among the resources as

the objective function [15]. The model in [16] is based on an ILP which aims at min-

imizing the resource consumption and energy saving by turning off unused resources.

In [17], the objective is minimizing the cost of VNF placement. VNF placement cost

includes the cost of deploying VNF instances, using servers, and communication be-

tween servers. The constraints are defined based on the available resources of the

physical nodes and also the delay threshold. The considered delay is the delay in

delivering a service which consists of two components, the network communication

delay and the VNF processing delay on the servers.

Ghaznavi et al. in [18] divided time into slots where the placement can be changed

or modified in each slot. The static version of the proposed method generalizes

to the NP-Hard Location Routing Problem (LRP). The objective is to reduce the

cost of placing requested services at each time slot. The costs include the cost of

VNF installation, BW usage, the penalty if the location of already placed request

changed from one time slot to another, as well as the cost of migrating a set of

VNF instances from one time slot to another. The constraints are defined based on

the processing capacity of the physical nodes. The objective function of the model

proposed by Luizelli et al. [19] aims at minimizing the number of virtual network

function instances mapped on the infrastructure in order to minimize the network

provider’s cost. The constraints are processing capacity of the physical nodes and

delay, which consists of an end-to-end delay and packet processing delay. Last but

not least [20] considers the effect of each NF in changing the traffic volume which

makes its proposed mathematical model non-linear. It uses MINLP, where some of the

constraints and the objective function are non-linear. [20] Considers the effect of each

NF in changing the traffic volume. As a result of processing a stream of packets, VNFs

may change the bandwidth, some examples mentioned in the paper are: The Citrix

CloudBridge WAN optimizer which may compress traffic to 20 percent, a Stateless
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Transport Tunneling (STT) proxy adds 76 bytes to each processed packet due to

the encapsulation overhead, and a firewall will keep the traffic rates of allowed flows

unchanged and will reduce the rates of denied flows to zero. As the traffic changing

factor can affect the BW usage we will consider it in our proposed model in the next

chapter in order to have a comprehensive mathematical model.

In the next chapter, we describe how we used the mathematical model presented

in [12] as a basis for our optimization model. Similar to our objective, the model pre-

sented in [12] specifically focuses on minimizing the deployment cost of general VNFs.

Although some parameters in [12] are also considered in other reviewed models such

as [13, 15–18], their focus is mainly on minimizing delay, load balancing, minimizing

activation and maintenance cost, not minimizing the resource usage cost. Addition-

ally, the proposed model in [12] is not specific to the type of VNFs such as the model

presented in [14].

2.1.2 Mathematical Models of NFEP in Wireless Networks

The topic of NFV in wireless networks has received significant attention in the lit-

erature, where most of the focus is on wireless network virtualization. NFV intro-

duced new possibilities to wireless networks such as decoupling of functionality in

a networking environment by separating the role of the traditional Internet Service

Providers (ISPs) into two: infrastructure providers (InPs), who manage the physical

infrastructure, and Service Providers (SPs), who create virtual networks by aggre-

gating resources from multiple infrastructure providers and offer end-to-end network

services [23]. Specifically, network virtualization is a networking environment that

allows multiple service providers to dynamically compose multiple heterogeneous vir-

tual networks that coexist together in isolation from each other. Service providers

can deploy and manage customized end-to-end services on those virtual networks for

the end users by effectively sharing and utilizing underlying network resources leased

from multiple infrastructure providers [24].

The amount of literature on wireless network virtualization shows the importance

of NFV in wireless networks. However, there are only a few papers considering the

problem of NFEP in wireless networks. Similar to wired networks, NFEP can be

considered as an optimization problem that can be solved mathematically. The same

parameters can be considered in wireless networks. However, the differences between

wired and wireless networks must be considered. The main difference between wired
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and wireless networks is interference. Reviewing the works that have been done for

NFEP in wireless networks we see that none of the proposed methods in wireless

networks consider interference in their optimization model.

In [21] Riggio et al. discuss the virtual WiFi, where kernel-based virtual machines

are used as a virtual wireless LAN device. Riggio et al. provide an integer linear

programming model for placing VNFs in a hybrid wireless network where there are

forwarding nodes, some with processing capacity, and some are access points. The

objective of the model is to minimize the deployment cost of the NFs and considers

nodal resources such as memory, CPU, storage, and BW usage as the constraints. In

this paper, the optimization method is designed without considering the effect of in-

terference. Its authors assumed that Orthogonal Frequency Division Multiple Access

(OFDMA) is being used in order to handle the problem of interference. The principle

of OFDMA is to divide the available subcarriers into several mutually exclusive groups

(i.e., subbands) according to the subcarrier allocation strategies. Then each group of

subcarriers is assigned to one user for simultaneous transmission. The orthogonality

among subcarriers ensures that users are protected against interference [25]. How-

ever, the problem of interference cannot be solved completely by using OFDMA and

there is ongoing research to tackle the problem of interference in an OFDMA wireless

network such as [26], and [27].

In [22] Lv et al. consider the embedding of virtual wireless mesh gateways and the

virtual links between them. The problem of interference between wireless links in this

placement model has been solved by considering multi-radio multi-channel networks.

The authors assign orthogonal channels to neighboring links. It is stated that the

effect of zero-interference can be achieved at a lower physical distance by increasing

the channel separation between two links. For instance, a channel distance of two

(say Channels 1 and 3) is enough for both links to transmit without interference with

a physical distance of about 50 m. [22] focuses on the problem of channel assignment

to avoid assigning channels to the links that are in the interference range of each

other.

To our knowledge, none of the papers considering NFEP in wireless networks in-

cluded the effect of interference in their optimization model. In a wireless network,

using a link will affect the adjacent links’ available bandwidth and lowers their band-

width. We mentioned in our review of the mathematical models for NFs’ placement

in wireless networks that there are methods for reducing the effect of interference
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but none of them can eliminate its effect on bandwidth consumption. This unique

characteristic of wireless networks increases the bandwidth consumption. Scarcity

of bandwidth makes it necessary to consider the effect of interference in an NFs’

placement model.

2.2 NFV Placement Heuristics

Mathematical models can provide an optimal solution for the problem of NF place-

ment, However, they are complex and proven to be NP-hard [8]. The alternative is

to design a heuristic that can provide near-optimal solutions with less computational

demand. Although there is (potentially) some performance loss between the heuristic

algorithms and mathematical models, heuristic algorithms have an advantage in com-

putational complexity when solving large-scale network optimization problems [28].

There exists a wide range of heuristics proposed for VNF placement. The proposed

methods are designed based on one or more objectives. Here we review recently

proposed heuristics that provide novel methods for mapping SGs’ NFs to a physical

network. We divide the reviewed heuristics based on their objective and compare

them in terms of their objective, parameters they consider, and the performance of

the proposed heuristic in terms of the cost of placing NFs and number of accepted

requests. Our goal in the design of our heuristics is to provide algorithms with the

lowest complexity possible that can place (ideally) as many requests as the mathe-

matical model while reducing the resource consumption by SGs. The main parameters

considered in heuristics can be categorized as follows:

• Resource usage: Including the Nodal and BW resource usage and their cost.

• Delay: Can be expressed in terms of different kinds of delays such as processing

delay, propagation delay, end-to-end delay, etc.

• Load balancing: The avoidance of congestion, data overload, etc.

• Energy consumption: Translated to power consumption and the number of

active nodes.

• Deployment and maintenance cost: Including the number of instances used to

deploy services or the number of licenses used.
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Authors Method Resource Usage Delay Load Balancing Energy Deployment Cost Objective

[13] Combines a heuristic with mathematical model X X X 7 7
Minimizes the maximum link and CPU core
utilization and maximum delay of flows

[14] Works based on centrality matrix X X 7 X X Minimizes the number of activated nodes

[15]
Proposes 3 heuristic each place NFs
based on one the objectives

X 7 X X X
Minimizes the number of active nodes and
balance the load between physical nodes

[17] Works based on centrality X 7 7 X X Minimizes the overall cost of deployment

[18]
A combination of installation,
migrations, and reassignments is
applied to optimize the placement

X 7 7 X X
Minimizes the number of active nodes
to reduce Energy and deployment cost

[20]
Places VNFs increasing BW close
to destination and VNFs decreasing
BW close to source

X 7 X 7 7
Minimizes the maximum link load ratio
on the flow path

[21] Breaks the problem of placement into 3 parts X 7 7 7 7 Minimizes the resources usage

[29] Dynamic Programming X 7 7 7 X Minimizes the resources usage

[30] Optimizes placement of each NF X 7 7 7 7 Minimizes the resources usage

[31]
Reduces the search space and then
applies the mathematical model

X 7 7 7 7 Minimizes the resources usage

[32] Graph matching theory X 7 7 7 7 Minimizes the resources usage

[33]
Two phase algorithm that reuse
already deployed VNF or a adds a new VNF

7 X 7 7 X Minimizes end-to-end delay

[34] Stable Matching algorithm 7 X 7 7 7
Minimizes delay between user
and the deployed VNF

[35]
Breaks the problem of an SG placement
into placing each NF and its link

X X 7 X 7 Minimizes cost, delay, Energy

[36] Uses graph partitioning game X 7 X 7 7
Minimizes the nodal cost and balance
the load between physical nodes.

[37] Places each NF in nearest node X 7 7 X X Minimizes BW and number of active nodes

[38]
A sampling-based Markov
approximation (MA) approach

X 7 7 X 7
Minimizes both the BW consumption
and operational cost

[39]
Calculates the minimum number
of servers for placing all NFs

7 7 7 X X Minimizes number of active nodes

Table 2.2: Heuristic Algorithms for Placement of SGs.

Table 2.2 summarizes the reviewed proposed heuristics based on the considered

parameters. The checkmark means the related parameter is included in the heuristic

and an x mark means that the parameter is not considered.

2.2.1 Minimizing Resource Usage

The first set of heuristics focus on minimizing the resource usage, consisting of both

the use of nodal resources and BW usage. The proposed heuristic algorithm in [29]

breaks the placement into smaller parts and optimizes placement of each NF. The

objective of the proposed heuristic is to minimize the nodal resource consumption

by VNFs and the BW consumed due to mapping virtual links between VNFs to one

or more than one physical links. The authors use Dynamic Programming (DP) to

organize the problem into smaller interdependent sub-problems of placing each VNF

and the virtual link connected to it towards the next VNF. The solutions for the sub-

problems are then aggregated to compose the overall chain placement. The results

in [29] show the comparison of its method of dynamic programming with another

similar approach that is using the multi-stage method in order to break the complex

problem of service graph placement into simpler parts of placing each NF and the link
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connected to it. It is shown that both method’s execution times are similar since both

can find solutions in polynomial time. This heuristic only optimizes the placement

of each NF, not the whole SG, which lowers the execution time but decreases the

number of accepted requests. In the design of a heuristic algorithm it is important to

achieve near-optimal acceptance rate. The near-optimal acceptance rate shows that

although the heuristic algorithm solution is not optimal, it is assigning resources in

a way that accommodates almost the same number of requests as the mathematical

method and does not use resources wastefully.

The proposed heuristic in [21] is another example of a heuristic with the objective

to minimize nodal resources and BW consumption that breaks the complex problem

of NF placement into 3 simpler parts. First, it computes the list of physical node

candidates for each VNF. Second, it sorts the NFs based on the number of candidates

for placement in an increasing order i.e. VNFs with the smallest number of candidates

are put at the top of the list. In the last step, the heuristic computes the placement

cost of that VNF and its virtual link to the physical network and chooses the one with

the lowest cost. Prioritizing the placement of NFs with lower options for placement

and giving priority to the NFs that are harder to place can potentially improve the

acceptance ratio. We use this method in one of our heuristics and show its effect on

the number of accepted requests. While the proposed heuristic in [21] is designed for

placement of VNFs in a wireless network, the effect of interference is not considered

and instead, it is mentioned that a BW provisioning model must be used to indicate

the available BW. Another disadvantage of this method is that the algorithm does

not have a view of the whole SG in the process of placement. Instead, it focuses

on placement of each NF and the link connected to it. The authors in [30] break

the placement problem into placing NFs and connecting them. In the first step,

the proposed heuristic places the NFs based on their resource demand. This heuristic

gives priority to the NF with the highest demand and places it in the cheapest node

of the network. The value of each node is obtained from a formula that considers

the available resource capacity, the price for each resource unit, and the ability to

connect to other nodes. The placed NFs then connect through the available shortest

path. Although the proposed algorithm considers multiple factors in obtaining a node

for placement of NFs, it does not consider the whole chain of NFs in its placement

and may end up taking a path much longer than the shortest path from source to

destination.
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The proposed heuristic in [35] is one of the multi-objective algorithms whose main

goal is to minimize the Operational Expenditure (OPEX). OPEX includes nodal

and BW resource usage, penalties due to excessive propagation delay, and energy

consumption that is related to the time a physical node is active and consuming

power. The proposed heuristic in [35] breaks the problem of an SG placement into

sub-problems of placing each NF of an SG and the link connected to the NF. The

algorithm starts from the source node and considers all the nodes that are connected

to it, including itself, for placing the first NF and chooses the one with the lowest

cost. This process is repeated for all NFs of an SG and the links connected to them

until they are all placed in the network. The authors showed that breaking the whole

problem of placing a SG into sub-problems lowered the execution time in comparison

to their mathematical model. However the number of accepted requests is much lower

than the mathematical model specially as the number of VNFs per request increases.

The proposed heuristic in [31] can be combined with any mathematical model

to reduce the search space and consequently the execution time of the mathematical

model. The proposed heuristic focuses on reducing the BW consumption and narrows

the target search space of VNF placement by introducing a smaller accessible scope

to which the possible locations of VNFs are confined. The requests are categorized

based on their source and destination. Nodes with the lowest sum of distance from

source and destination are in the accessible scope of the request. The size of each

accessible scope for each set of requests is proportional to the total traffic volume of

those requests. It is shown that the size of the accessible scope will impact the time

efficiency and performance of the NF placement. Considering all nodes to be in the

accessible scope will not reduce the execution time but will provide the acceptance

ratio of the optimization model. On the other hand, a very small accessible scope will

decrease the execution time but also the acceptance ratio. This approach considers

the whole SG and its source and destination. In the design of one of our heuristics

we adopted this idea to narrow the search space. In our results, we compared the

performance of our proposed heuristics with the accessible scope heuristic proposed

in [31].

Following a completely different approach, [32] uses graph matching theory instead

of modeling the problem by some form of linear programming (LP). The proposed

heuristic in [32] considers links’ BW and nodes’ CPU, and works based on the simi-

larity of two graphs by using adjacency matrices of the graphs. The authors solved
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the problem of VNF placement and chaining by use of an eigen decomposition of

the adjacency matrices of the request and the hosting infrastructure graph. In this

method, the host network and the requests are being considered as two weighted

graphs, where the weight of each node in the physical network is its computational

capacity and the weight of each link is based on its BW. The weight of each node

and link in the SG is based on their requested resources. The goal here is to min-

imize the defined distance between the adjacency matrices of the two graphs. The

authors showed that the algorithm can scale to thousands of nodes and links and to

be insensitive to the number of requested NFs, and the connectivity in input graphs.

However, the proposed method’s performance has not been compared to the perfor-

mance of a mathematical model to show the differences in terms of the acceptance

ratio. Although the algorithm might be faster than the LP, the approximations used

in different stages of the method would certainly lower the acceptance ratio. It is

shown in [40] that the acceptance ratio of this method is lower than other similar

heuristics. In addition, only one cost has been considered for the nodal resources, as

in the graph matching theory we can only consider one weight for each node and one

weight for each link.

2.2.2 Minimizing Delay

Delay is another important objective in design of a heuristic for placement of VNFs.

For instance, virtualization in 5G will be very useful to resolve latency problems [41].

Some services such as ultra-Reliable Low-Latency Communication (uRLLC) services

require low latency access between the remote server and the clients while running

in a highly reliable environment to guarantee service continuity. The authors of [33]

propose a two stage heuristic. The first phase considers reusing VNFs already placed

in the cloud since hosting a new one incurs additional cost. The algorithm first checks

VNFs that are already placed in the network and have the same functionality. Next,

the algorithm selects only the VNFs with enough capacity. If there is no VNF with

the same type already activated in the network, the algorithm passes to the second

phase that consists of placing a new VNF instance in the hosts respecting capacity

constraints. The second phase of the placement algorithm selects nodes within the

shortest paths, tests all possibilities for placement, and chooses the one that satisfies

QoS metrics (i.e., minimum end-to-end latency) in the selected nodes.
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The proposed heuristic in [34] is another example of considering delay minimiza-

tion in the placement of VNFs and focuses on minimization of delay between the user

and the deployed VNF. The authors designed a heuristic based on the Stable Match-

ing (SM) algorithm to solve the problem of VNF placement. The stable matching

algorithm starts by creating two priority matrices for the two groups that we want

to match. These matrices are created based on the latency. The lower latency is

given more priority for both groups (the VNFs and the physical nodes). The match-

ing is done according to the priority matrix, where the VNF wants to connect to

the hosting device that is first on its priority list. The same case exists for physical

nodes as they want to connect to the VNF that is first on their priority list [34]. The

proposed algorithm then runs for all the VNFs and matches them to physical nodes

until a stable matching is achieved. In the next stage, the local search is used to

search locally for a solution with lower latency. The local search algorithm begins

by picking two connected pairs of physical nodes and VNFs and checks whether the

latency can be improved by changing the connections locally. The algorithm stops

when no further improvement is possible. This algorithm only considers one part of

the problem, which is the latency between the user and the first VNF. The provided

results shows that the use of the local search algorithm improved the latency of the

stable matching algorithm by less than one percent and is only adding complexity

and increasing the execution time. On the other hand, it is stated in the results that

the execution time of the proposed algorithm is less than the mathematical model

but its performance is not compared with other similar heuristics.

[13] seeks to minimize the maximum link and CPU core utilization and the max-

imum delay of flows in the network. The authors of [13] propose different heuristics

and compare their performance in terms of the maximum number of requests that can

be placed in a network. Between the proposed heuristics only one, named heuristic-A,

is not combined with a proposed mathematical model. Heuristic-A places requests

one by one along the shortest path between source and destination. The other heuris-

tics, heuristic-B, B+, B+COR, and C are all being combined with their mathematical

model to reduce their execution time. As the proposed mathematical model in [13]

aims at solving the placement problem for all flows at once, the flows are divided into

the groups in their proposed heuristics. These heuristics start from the first group and

solve the optimization problem for this group. Based on the solution, the problem is

updated again and being solved for the next group. Heuristic B randomly groups the
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requests, heuristic C is the same as B but also considers minimizing the number of

used cores in the network. Heuristic B+COR sorts nodes in ascending order based on

the number of flows passing through them. Less crowded nodes are selected first to

distribute the load away from bottleneck nodes. It is stated that B+COR can place

more requests in the network in comparison to other proposed heuristics. However,

the authors did not compare the execution time of the models and only considered

the maximum number of the flows that each heuristic can place in the same network.

As we will show later in our results, the more complex heuristics combined with a

mathematical model may bring better results in terms of the number of accepted

requests but suffer from high execution time and therefore are not applicable to large

scale networks.

2.2.3 Load Balancing

The main objective of the heuristic proposed in [20] is to minimize the maximum

link load ratio on the flow path. [20] provides an algorithm that considers the NF

placement, routing, and the traffic changing effect of NFs. The heuristic divides NFs

of an SG into two categories: the ones that increase the BW usage (calling them

expanding NFs) and the ones that decrease the BW usage (calling them the shrinking

NFs). The Least-First-Greatest-Last (LFGL) algorithm proposed by the authors

starts from the shrinking NFs and traverses the network from the flow source, and

iteratively calculates the path with Minimum Maximum link load ratio (Min-Max

path) to each node as in Dijkstra’s algorithm. For each of the Min-Max paths found

from the source node to the next node the LFGL places all of the shrinking VNFs

until there is no more resource availability on that node, then searches for the next

node with the Min-Max path. This process repeats until all shrinking VNFs are

placed. The last node of each found Min-Max path is called a junction node. The

same process applies to the VNFs that increase the BW usage but this time the

process starts from the destination node and continues until all expanding VNFs

are being placed. After the second stage finishes, the LFGL algorithm collects all

the junction nodes, each corresponding to a different path. The proposed LFGL

algorithm compares the maximum link load ratio of each path and selects a path

with the minimum maximum link load ratio. LFGL heuristic assumes that we have

a freedom to re-organize the NFs in the SG which is not realistic: the order of the

NFs can not be changed in most cases.
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The authors of [36] designed multiple multi-objective heuristics inspired by a graph

partitioning game which breaks an SG into its VNFs. The proposed placement al-

gorithm is broken into two stages. The main goal of each stage of the placement

algorithm is available nodal resource, BW usage, or delay. The initial placement of

every VNF of the SG can be random, based on the node that can host more types

of VNFs, or the node with maximum nodal resource. Then at each iteration of the

algorithm, a VNF is reallocated to a new node and the new cost is evaluated. The

selection of a VNF to be relocated at each iteration can be random, or the VNF

with highest nodal resource demand, or the VNF that depicts the highest latency

communication with the next VNF in the SG. The algorithm is terminated after a

maximum number of iterations is reached. The number of iterations can be tuned

to provide a trade-off between solution quality and computation time. It is shown in

the results that selecting the servers with the highest available capacity for the initial

allocation leads to a lower deployment cost and faster convergence of the algorithm in

comparison to the other parameters considered, such as latency [36]. Interestingly it is

shown by the results that in the second stage of the algorithm a random permutation

provides the best solution converging towards the optimal solution. However, even in

that case, the execution time for a 50 nodes network with 500 or fewer iterations is in

the order of 1000s of seconds, which is very high in comparison to the other reviewed

heuristics and our provided heuristics.

2.2.4 Minimizing Energy Consumption

Another parameter to be considered as an objective in the design of a placement

algorithm is the energy consumption. It can be minimized by using fewer nodes for

placement or reducing the time the nodes are active. The proposed heuristic in [37]

aims at minimizing the power consumption by taking a path with a minimum number

of hops to power up less number of nodes. The heuristic algorithm places NFs one by

one based on their order in the SG. The authors exploit the intuition of finding the

nearest server which supports the first NF in the chain of NFs for each flow. Then the

algorithm removes the VNF under consideration from the chain and finds the nearest

server that supports the next VNF of the chain and so on. The proposed heuristic is

fast and simple but only considers optimization for each NF, not the whole SG.
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Another example of a heuristic that considers power consumption is the one pro-

posed in [38]. The proposed heuristic in [38] uses a sampling-based Markov approxima-

tion (MA) approach to solve the NP-hard problem which requires a long convergence

time. Its authors provided a heuristic that is considering both the BW consumption

and operational cost, including the energy consumed by the activated physical nodes

in the network and the wear and tear cost. The wear and tear cost indicates the effect

of turning nodes into sleep/off mode and bringing them back to normal operation to

the lifetime of physical devices. The proposed algorithm begins with a random fea-

sible solution and iterates the process of transformation from the current solution

to another feasible solution until the steady-state distribution of the Markov chain

appears. To reduce the execution time, the solution space is reduced to a subset of

randomly chosen nodes that satisfy the resource demands of a request. It is been

stated that the problem can be solved in polynomial time but the execution time of

the algorithm is not being reported or compared with other proposed heuristics with

similar time complexity. Additionally, the subset of nodes could be chosen based on

more sophisticated parameters to reach a near-optimal solution faster.

2.2.5 Minimizing Deployment and Maintenance Cost

The optimization of the number of active nodes can help considerably in cutting

down the power consumption and deployment cost. The proposed heuristic by the

authors of [39] finds the minimum number of nodes that should be used to serve all

requests to reduce the OPEX. The authors assume that we have the information of

all requests prior to their arrival and calculate the minimum number of servers for

placing all NFs without considering the BW consumption. The algorithm starts from

the first request and attempts to place all of its NFs in one node. If that fails, it

adds another node that can host the NFs and so on to identify the minimum number

of servers for placing all of the requests. The next step is selecting the minimum

number of nodes for each request and placing the NFs in those servers. Finally, the

algorithm deals with the chaining of NFs of the requests by assigning VNFs on the

elected nodes and building a path between NFs of a request. The results gathered

in [39] only compare the heuristic with the ILP model for a small network with a

limited number of requests. They stated that, in a small network, the average cost

of placement of both methods is close. BW is not being considered as a constraint

and the only attempt to reduce BW consumption is to choose the shortest path to
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connect the servers containing the NFs of a request.

Three heuristics are being proposed in [15]. The first heuristic is a basic greedy

VNF placement heuristic, where a random node is selected at each iteration and

allocated as many VNFs of the SG as possible. The placed VNFs are then being

connected by using the Dijkstra algorithm. The goal of the second heuristic is to

minimize the number of servers that are used to place a SG. It iteratively checks the

available servers and selects the server with the maximum available capacity that will

allow the complete allocation of the SG in a single server. If this is not possible, it

will use the second server with the maximum available computational capacity and

so on. The third heuristic includes a load balancing policy during the placement of

the VNFs. This load balancing algorithm selects not only the node with the highest

available capacity but the node that also has a sufficient available bandwidth in its

adjacent links to facilitate load balancing on the upcoming path selection between

the VNFs of a SG.

The heuristic algorithm proposed in [14] works based on the centrality matrix and

aims at minimizing the number of nodes which are activated to be used for placement

of the VNFs. The centrality for each node in [14] is defined as the sum of the total size

of flows which have their shortest path going through that node. The authors assume

that the source and destination of all flows are known and determine the node that

has the most total traffic volume passing through. The main goal of the algorithm

is to activate fewer licenses of a certain type of NF. At each iteration, the algorithm

compares the cost of activating a new VNF in the node with the highest centrality

with the cost of the flow traversing through already placed VNFs and only activates

a new one if it decreases the placement cost.

[17] is another example of a heuristic that works based on centrality. In this

heuristic the server with the highest centrality is the potential node to host the VNF

instances. As a result, it assigns the flows to the VNFs without deviating from their

shortest path and without using additional network resources to lower the overall cost

of deployment [17].

In another example, [18] proposes a solution called Simple Lazy Facility Location

(SLFL) that optimizes the placement of VNF instances in response to on-demand

workload. Upon new demand arrival, a combination of installation, migrations,

and reassignments can be applied to optimize the placement. In each case, the cost

of migrating the already deployed VNF, installing the new VNF instance, or adding
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to the already deployed VNFs are being compared with each other and the one with

the lowest cost will be considered. Although it is mentioned that SLFL runs in poly-

nomial time, its execution time is not reported. The performance of the SLFL is

only being compared with an algorithm that places the NFs randomly and is not be-

ing compared with other similar heuristics that took the same approach or have the

same time complexity to indicate the better performance of the proposed algorithm

in terms of the number of accepted requests.

2.3 Summary

We reviewed a wide rage of mathematical models and show that the common approach

is to use different forms of linear or non-linear programming to provide an optimal

solution for embedding SGs. As can be seen from Table 2.1, common parameters to

be considered are nodal resources and links’ BW. In the design of our mathematical

model we follow [12], defining constraints and objective functions that consider differ-

ent types of nodal resources and links’ BW for a wired network. However, as we are

aiming to provide a mathematical model for wireless multi-hop networks, we define

our model based on wireless network characteristics. In our model we give priority

to minimizing the BW consumption as we are facing a scarcity of BW due to the

presence of interference. In order to model BW usage, unlike the other embedding

models provided for wireless networks, we consider all parameters that may affect

BW consumption. For the first time, we model the effect of interference and consider

it in both our constraints and the objective function. We consider the fact that each

SG request is a flow that has a source and a destination and an optimal placement

should consider these in order to minimize BW consumption. Another parameter that

can affect BW usage is the effect of NFs on changing traffic volume. As mentioned

in [20], there are NFs that can increase or decrease the traffic volume. We follow the

approach proposed in [20] and consider the effect of NFs on changing traffic volume

in our mathematical model’s BW constraint and objective function.

We reviewed heuristics, as they can be a faster and less resource-demanding al-

ternative to mathematical models. It can be seen from Table 2.2 that, similar to the

mathematical models, different objectives and parameters are considered. There are

a wide range of methods that can be used to reduce the complexity of the NF embed-

ding problem. In the design of a heuristic model for wireless networks, the scarcity of
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bandwidth should be considered and given priority. One of the widely used heuristic

methods, described in [21,30,35,37] breaks the problem of placing a SG into smaller

sub-problems, placing each NF of a SG individually. Although this approach can pro-

vide fast solutions, it only provides near-optimal results for each sub-problem. This

may not lead to a near-optimal solution for the whole SG. In order to minimize the

BW consumption it is important to consider the whole SG at once, as the union of

shortest paths between placed NFs may not result in a shortest path for the whole SG.

Maintaining a balance between reducing the execution time and increasing the accep-

tance ratio is another factor that should be considered. We can not oversimplify our

heuristic model and select nodes randomly without considering its impact on future

requests and expect to reach a high acceptance ratio. One of the interesting methods

we reviewed here is the one proposed in [31]. We will be using the idea behind their

heuristic in our design to reduce the search space to nodes that are along the short-

est paths between source and destination of a request. This reduction in the search

space will decrease the execution time and also keep optimal placement options. We

believe it would be beneficial to give placement priority to those NFs that have fewer

candidate nodes for placement as it is mentioned in [21] and will consider this factor

in our algorithm too. Our goal is to provide a simple, and low complexity, heuristic

that can provide near-optimal results as fast as possible. We start from the simplest

approach of placing NFs randomly and gradually add complexities to our heuristic

algorithm and observe the effect of each added parameter on our results. We compare

our heuristic algorithms against each other, our mathematical model and against [31]

to show the improvement that we bring by our model. Our results of comparing our

heuristics show that considering multiple parameters do not improve the performance

of the algorithm in terms of the ratio of accepted requests, they take longer to solve

and therefore are not applicable to larger networks. Interestingly, placing the NFs

along their shortest path is the only parameter that is necessary to be considered

and can find near-optimal solutions much faster than the other more complicated

heuristics while keeping the number of accepted requests close to the results achieved

with an NP-hard optimization model.



Chapter 3

Mathematical Models for NF Embedding

Problem

In this chapter we describe our overall system, assumptions, and optimization models

for placement of Virtual Network Functions (VNF). We start with describing our

system and the problem we are aiming to solve. In the next section we describe the

proposed model in [12] as a basic model for wired networks. Gradually we extend

the basic model and provide a comprehensive placement model for VNFs in wireless

multi-hop networks. To include the effect of interference in the BW consumption,

we use an interference model widely used in the literature called the protocol model

[42]. The final model also includes traffic related parameters. We use Integer Linear

Programming (ILP) to solve the placement problem for the basic model and Integer

Non-Linear Programming (INLP) to solve the placement problem for the traffic-aware

model.

3.1 System Overview

Prior to introducing our placement model, we briefly review the VNF chaining and

placement system and the interactions among the different components of the system.

We base our approach on the system proposed in [3] that uses a centralized SDN

controller. A centralized SDN controller allows viewing the network as a global entity

and provides programmable forwarding rules that reduce the complexity of service

chaining enforcement [3]. This system in the end places VNFs on the hypervisors and

installs the flow rules on the SDN switch to steer flows to VNFs. Figure 3.1 depicts

this approach. The admin specifies the SG request. The Service Layer Agreement

26
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(SLA) Manager translates the logical policies into machine-readable form to be further

processed by the Control Application. Monitoring the network and collecting the state

information such as switch connection information and link utilization are duties of

the Control Application. The Control Application manages the Orchestrator and

Flow Manager.

The Orchestrator runs the placement model/algorithm that determines the lo-

cation of VNFs. The topological information for the Orchestrator are provided by

the Topology Manager. The Flow Manager obtains the locations for VNF placement

from the Orchestrator and steers the traffic from the source to the destination. The

flow rules are then installed on the switches such that the flow traverse all VNFs of

its service chain (in the correct order).

Figure 3.1: Overall System [3]

3.2 Problem Definition and Assumptions

Our work is focused on the problem of VNF placement. In all of our proposed

mathematical models and heuristics, it is assumed that SG requests arrive one at a

time and are placed separately. Each SG request has a specific nodal resource demand
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for each VNF and a BW demand for all virtual links. If a VNF is mapped to a node

in the physical network it means the demanded nodal resources for that VNF are

provided by that physical node and the same applies to the links in the SG. If a link

of the SG is being mapped to one or more physical links, its BW demand is being

provided by the mapped physical links. Each request has a duration, once an accepted

request expires, it will be removed from the network and the associated used resources

will be released. The physical network is being considered as a connected graph of

nodes. The initial available nodal resources of each node, the initial available links’

BW, and the topology of the network are known (or discoverable by the Topology

Manager in Figure 3.1, for example). After placement of each SG, the available

resources are updated before we place the next arriving SG.

The objective of our mathematical models and heuristics is to minimize the map-

ping cost based on the requirements of the VNFs and available resources in the

network. The mapping cost is calculated based on the cost of consumed resources by

the SG in the physical network which includes [12]:

• The costs associated with consuming nodal resources such as CPU, memory,

and storage, used by VNFs in physical nodes.

• The cost associated with consuming bandwidth, used by virtual links that in-

terconnect the VNFs, in the physical network.

Furthermore, we assume that the costs per unit of nodal resources or BW are inde-

pendent of which link or node we use and are known.

3.3 Basic Model

The basic model is similar to the proposed model In [12], that formulated the NFEP

as an optimization problem which can be solved with Integer Linear Programming

(ILP). As service requests arrive over time, the embedding algorithm decides where

to place the NFs in the physical network subject to various constraints. Each request

has an associated duration. If the request is accepted, the required resources will be

assigned and when the request expires the used resources will be released. We are

using ILP as the optimization method. ILP consists of two parts, an objective function

and constraints. ILP will choose the mapping that satisfies all of the constraints and

minimizes/maximizes the objective function. In this section, we define the variables,
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constraints, and the objective function similar to the optimization method in [12]

and then introduce the extension of the model and the added constraint for multi-

hop wireless networks.

3.3.1 Input Parameters

• Sets

– Np, set of physical nodes where u is representing node u ∈ Np.

– Lp, set of physical links where Euv ∈ Lp is representing the physical link

connecting node u to v.

– Nf , set of NFs where i ∈ Nf represents NF i in flow f .

– Lf , set of virtual links between NFs of flow f , where eij ∈ Lf represents

the virtual link which connects NF i to j.

• Constants

– f , representing the current flow that consists of a set of requested NFs

with required resources.

– Cu, available processing units in physical node u.

– cf,i, requested processing units for NF i of flow f .

– wc, the cost of consuming each unit of processing resources.

– Mu, available memory units in physical node u.

– mf,i, requested memory units for NF i of flow f .

– wm, the cost of consuming each unit of memory.

– Su, available storage units in physical node u.

– sf,i, requested storage units for NF i of flow f .

– ws, the cost of consuming each unit of storage.

– BWEuv , available BW over the physical link between node u and v.

– bwf,eij , requested BW for the link that is connecting NF i to NF j in flow

f .

– wbw, the cost of consuming each unit of BW.



CHAPTER 3. MATHEMATICAL PLACEMENT MODELS 30

• Decision Variables

– xf,i,u, a binary variable where one means that function i from flow f is

placed in physical node u.

– Ff,eij ,Euv , a binary variable which is equal to one when the virtual link

between NFs i and j is mapped to one or more physical links and physical

link Euv is one of them. In the case of mapping a virtual link to multiple

physical links all the related variables must be set to one.

3.3.2 Objective Function

As mentioned before, the objective is to minimize the placement cost. The cost con-

sists of cost of resources that are used in the physical network, which include the cost

of nodal resources (processing, memory, and storage) and the cost of consuming links’

BW. The first part of the objective function in (1) considers the cost of consuming

nodal resources and the second part the cost of consuming BW. (2) is a more detailed

version of the objective function in (1), expressing the same objective function in

terms of the notation introduced earlier.

min
∑
u∈Np

∑
i∈Nf

cost(i, u) +
∑

Euv∈Lp

cost(f, Euv) (1)

min
∑
u∈Np

∑
i∈Nf

(wc ∗ cf,i + ws ∗ sf,i + wm ∗mf,i) ∗ xf,i,u+

∑
Euv∈Lp

∑
eij∈Lf

(wbw ∗ bwf,eij ∗ Ff,eij ,Euv) (2)

3.3.3 Constraints

Constraints are sets of equalities and inequalities which are defined based on the

conditions the optimization model must satisfy. Over-assignment of the physical

resources will be prevented by the constraints. The first three constraints ensure that

the summation of processing, memory and storage units of the placed NFs do not

exceed each node’s available resources.∑
i∈Nf

cf,ixf,i,u ≤ Cu, ∀u ∈ Np (3)
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i∈Nf

mf,ixf,i,u ≤Mu,∀u ∈ Np (4)

∑
i∈Nf

sf,ixf,i,u ≤ Su,∀u ∈ Np (5)

Constraint (6) prevents over-assignment of bandwidth in each physical link.∑
eij∈Lf

bwfFf,eij ,Euv ≤ BWEuv ,∀Euv ∈ Lp (6)

Each virtual link between the NFs can be mapped to one or more than one of the

physical links. In case a set of physical links connected to each other are chosen to

connect two NFs, Constraint (7) assures all the related physical links are chosen.∑
Euv∈Lp,u=src

Ff,eij ,Euv −
∑

Euv∈Lp,u=dst

Ff,eij ,Euv = xf,i,u − xf,j,u (7)

∀eij ∈ Lf , ∀u ∈ Np

Last but not least each NF should be placed in the physical network once.∑
u∈Np

xf,i,u = 1,∀i ∈ Nf (8)

3.4 Extended Model for Wireless Networks

The basic model is designed for wired networks. In order to extend the model to be

applicable to wireless networks, a couple of changes must be made in the constraints

and objective function. The BW usage of wireless links is different from wired ones. In

a wired network, it is sufficient to require that the summation of required bandwidth

for the mapped virtual links should not exceed the physical link’s bandwidth. In

multi-hop wireless networks, where nodes share access to a common shared channel,

using each link will affect the adjacent links’ available bandwidth. In order to consider

this effect, we have to model the interference between wireless links. We use the

interference model in [42] and [43] and redefine the constraint for wireless links.

The interference in wireless networks can be modeled based on either the protocol

or the physical model. Each of these models defines conditions for a successful trans-

mission in the wireless network [43]. In our optimization model, we used the protocol
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model. We assume that in case of a single wireless channel, duv expresses the distance

between nodes u and v, and all nodes have the same identical transmission range R.

With these assumptions, the transmission from node u to node v is successful if the

following two conditions are satisfied:

• duv ≤ R

• Any node k, such that dku, dkv ≤ R, is not transmitting.

These two conditions imply that transmission in the link between node u and v will

affect the BW usage of all the links whose transmitter is within transmission range

of the sender or the receiver. To formulate this as one of the constraints in the

optimization, an interference set has been defined for each link. It consists of all

the links that are connected to the nodes in the transmission range of the sender or

receiver.

intsetEuv = {Eu′v′|du′u ∨ dv′v ∨ dv′u ∨ du′v ≤ R},∀Euv ∈ Lp

Then for the bandwidth constraint, instead of Constraint (6), we have:∑
eij∈Lf

bwf,eij ∗ Ff,eij ,Euv+

∑
eij∈Lf

∑
Eu′v′∈intsetEuv

bwf,eij ∗ Ff,eij ,Eu′v′
≤ BWEuv (9)

Also the objective function changes to the following term:∑
u∈Np

∑
i∈Nf

(wc ∗ cf,i + ws ∗ sf,i + wm ∗mf,i) ∗ xf,i,u+

∑
Euv∈Lp

∑
eij∈Lf

wbw ∗ (bwf,eij +
∑

Eu′v′∈intsetEuv

bwf,eij) ∗ Ff,eij ,Euv (10)

3.5 Traffic-Aware Model

The NFs are traffic processing devices and with the help of NFV, we can place the

NFs in the path of traffic flows. Traffic patterns in the network can affect the optimum

placement of the NFs. If we do not place NFs carefully, many flows get re-routed to
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find nodes with enough capacity to host the required NFs, which will lead to excessive

BW usage.

3.5.1 Adding Source and Destination

The first step to expand the model to place functions based on traffic pattern is to

consider source and destination for each request. The added constraints will place

the NFs and find an optimum path from source to destination at the same time. The

model assumes that flows follow physical links until they hit the SG.

Added input parameters

The following parameters will be added to the model.

• Constants

– bwf , instead of a BW request for each virtual link bwf,eij we assume each

flow has a BW request which is the same for all of its virtual links.

– sf , the source of flow f .

– df , the destination of flow f .

• Decision Variables

– Xf,u, a binary variable where one means flow f traverses physical node u.

– Ff,Euv , a binary variable where one means flow f passes through the phys-

ical link from node u to v. Ff,Euv is related to Xf,u which will be described

in constraints.

Added Constraints

The following constraint, commonly referred to as flow-balance constraint, assures

each flow starts from its source node, ends at its destination node, and only follows one

path. To assure that the flow starts from the source and ends at the destination node

there must be one extra outgoing physical link from the source node and one extra

physical link toward the destination node. The number of outgoing and incoming

physical links must be the same for intermediate nodes.
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∑
v∈Np

Ff,Euv =
∑
v∈Np

Ff,Evu + l

l =


0 ∀u ∈ Np − {sf , df}

1 u = sf

−1 u = df

(11)

The next set of constraints assure that the nodes the flow traverses are consistent

with the physical links that were chosen for the path from source to destination.

∑
u′∈Np

Ff,Euu′
+

∑
v′∈Np

Ff,Ev′v
= Xf,u +Xf,v,∀Euv ∈ Lp (12)

The following constraint selects the source node based on the source specified in the

request.

Xf,sf = 1 (13)

Constraint (14) shows the relation between xf,i,u and Xf,u. It shows that a physical

node can be in the path of a SG placement but it may or may not contain a NF.

xf,i,u ≤ Xf,u,∀i ∈ Nf ,∀u ∈ Np (14)

The BW constraint will change to the following constraint:

bwfFf,Euv +
∑

Eu′v′∈intsetEuv

bwfFf,Eu′v′
≤ BWEuv (15)

The changed terms in the BW constraint are only Ff,Euv which was Feij ,Euv in Con-

straint (9). This is due to the fact that in this model we know which links have been

used for the path from source to destination, therefore, the same variable can be used

to calculate the used BW and there is no need to consider Feij ,Euv as an extra decision

variable.

3.5.2 Traffic Changing Factor

NFs may change the volume of processed traffic and may do it in different ways. As

we mentioned earlier in Chapter 2, the Citrix CloudBridge WAN optimizer [44], and

Stateless Transport Tunneling (STT) proxy [45] are examples of NFs that impact
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the traffic volume. Here we introduce the variables and constraints that should be

considered in the mathematical model to capture this aspect. The added parameters

and constraints change our linear model to a non-linear programming model.

Added Input Parameters

The following parameters must be added to the model in order to consider the traffic

changing factor alteri.

• alteri, traffic changing factor for NF i. The factor can be a positive or a negative

value. The positive value models NFs which increase the traffic rate and a

negative one models NFs which decrease the traffic rate.

• tf,u− , a real variable representing the traffic rate factor before node u.

• tf,u+ , a real variable representing the traffic rate factor after node u based on

the NFs that were placed in that node. If v is the next node in the path toward

destination node df we have: tf,u+ = tf,v−

• bwf,Euv , a positive real variable representing BW usage of flow f over the phys-

ical link Euv.

Added Constraints

Each NF will have the requested resources and a traffic changing factor alteri which

changes the traffic rate after the flow passes the NF i. The value of alteri shows the

percentage it increases or decreases the traffic rate. alteri can have a positive value

if a NF increases the traffic rate and between -1 and 0 if it decreases the traffic rate.

The BW after NF i is equal to the multiplication of BW before NF i and (1+alteri).

With considering the traffic changing factor, the BW demand of a virtual link depends

on the placement of the NFs and is equal to the multiplication of (1 + alteri) of all

placed NFs before that virtual link in the flow.

To calculate the BW demand for each virtual link we added two variables. We

assumed two physical nodes u and v are used consecutively for placing the NFs of

flow f . The tf,v− is the traffic rate factor before entering node v which will be defined

based on the traffic rate factor after the node u, tf,u+ . Constraints (16) and (17)
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shows the mathematical form of the traffic rate factor before and after each node.

tf,v− =
∑
u∈Np

Ff,Euvtf,u+ (16)

tf,v+ =
∑
u∈Np

(Ff,Euvtf,v−
∏
i∈Nf

(1 + xf,i,valteri)) (17)

Constraint (18) uses Constraint (16) and (17) to determine the BW usage of flow f

over each link in the physical network.

bwf,Euv = bwf tf,u+ (18)

These three newly added constraints will change the Constraint (15) for link’s BW

to the following inequality.

bwf,EuvFf,Euv +
∑

Eu′v′∈intsetEuv

bwf,Eu′v′
Ff,Eu′v′

≤ BWEuv (19)



Chapter 4

Placement Heuristics

The main focus of the reviewed heuristic models in Chapter 2 for embedding VNFs

into a physical network is on designing a heuristic that can achieve near-optimal

results. However, the main reason for avoiding mathematical optimization models

is their complexity and high execution time. Here we aim at exploring the level of

complexity that is required and benefits we can achieve with simple heuristics. Addi-

tionally we consider the characteristics of wireless networks in our design. Compared

to wired networks, multi-hop wireless networks such as MANETs, VANETs, or wire-

less sensor networks suffer from severe BW limitations. That is due to a number of

reasons: typical wireless technologies operate at lower transmission rates, compared

to wired technologies such as Ethernet, etc. Also, when multi-hop wireless networks

are built up from devices using a single radio, flows interfere with themselves (a node

that is a relay between source and destination can only either receive or transmit,

but not both at the same time). Finally, wireless technologies typically experience

significant interference (either from other flows or due to the above self-interference),

lowering the available BW for each link. We therefore emphasize on minimizing the

BW consumption while placing as many requests as possible.

In this chapter we study a sequence of five, increasingly complex, heuristics. Each

heuristic is designed to show the effect of the added parameter on the acceptance

rate, the average cost of the resources consumed by a SG, and the execution time of

the algorithm. We start from the simplest heuristic and in each heuristic consider

an additional parameter in the NFs’ placement. In all heuristics, it is assumed that

requests arrive one at a time and are placed separately. Each SG request has a spe-

cific source and destination, nodal resource demand for each NF, and a BW demand

for all virtual links. The physical network consists of nodes that have nodal resource

37
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and links that have available BW. We only consider a single nodal resource and its

consumption. The nodal resource could represent memory, storage, or CPU resources

of a physical node. The model is designed for a wireless multi-hop network and con-

siders the effect of interference in BW consumption. As we described in our extended

model in Chapter 3, we use an interference model widely used in the literature called

the protocol model [42] to include the effect of interference in the BW consumption.

4.1 Random Placement

The first heuristic is the simplest algorithm that can be used for embedding the

NFs of an SG into a physical network. The random placement heuristic can be

divided into two parts: placing the NFs and connecting the NFs. To place a NF, the

algorithm randomly chooses a node that has sufficient nodal resources. In this stage,

if there is no node with sufficient nodal resource for any of the NFs the request will

be rejected. If all NFs are placed successfully, the algorithm moves to the connecting

stage. The algorithm starts from the source and connects it to the node used for

placement of the first NF of the SG via Dijkstra algorithm. The Dijkstra algorithm

finds a shortest path in terms of the number of hops from source to destination. This

process of connecting nodes continues until the node that contains the last NF of the

SG connects to the destination. As the path from source to destination that passes all

the NFs based on their order is identified, the availability of the BW will be checked.

The BW consumption is based on the summation of the BW consumed by passing

each link and due to interference.

To describe this heuristic and the next ones better, consider the following example

of an SG placement that will be solved by all of the heuristics. Assume we have a

wireless multi-hop network with six nodes. Nodal resources of the nodes in the wireless

network are Cn = {12, 11, 7, 20, 14, 8} units, and the available BW of the links in the

physical network are all 20 units. The nodal resource demand of the SG of 3 NFs

is cf = {4, 1, 4} and the BW demand of the request is 2 units. The SG’s source is

node 1 and its destination is node 5. Figure 4.1 shows the topology of the physical

network and random placement of the SG. As can be seen, although all three NFs

could have been placed in the source node and the shortest path between source and

destination is only two hops, the length of the chosen path is six hops which consumes

significantly more BW.
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Figure 4.1: Random Placement Example

4.2 Shortest Path Placement

The presence of interference in wireless multi-hop networks causes a scarcity of BW.

In order to reduce BW consumption, our second heuristic first finds a shortest path

between source and destination of the SG request with the use of Dijkstra’s shortest

path algorithm. The shortest path then will be checked for availability of sufficient

BW to accommodate this flow, considering both the actual links used and the impact

on adjacent links due to interference. Should any link exceed their available BW

the request gets rejected. NFs then will be placed along the shortest path. The

shortest path placement places the first NF in the first node of the path that has

sufficient nodal resources. The next NF of the SG will be placed in the same node

as the previous NF if possible, otherwise it will be placed in the next node along the

shortest path with sufficient available nodal resource. This process continues until

all NFs are being placed. If any of the NFs can not be placed due to running out of

nodes with sufficient nodal resources, the request gets rejected. Figure 4.2 shows the

shortest path placement applied to the same example as the previous section. We can

see from the example that this model reduces the BW consumption in comparison to

the random placement.

Figure 4.2: Example of Shortest Path Placement
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4.3 All Shortest Path Placement

The problem with picking a single shortest path, as was done before, is that this path

may not have sufficient resources, so exploring other shortest paths may allow us to

still place a request. In the all shortest path heuristic we search for all shortest paths

between the source and destination of the request in the network and choose the one

that has maximum-minimum nodal resource to increase the probability of accepting

a request. The search for all shortest paths is performed by using a search method

similar to Breadth First Search (BFS). BFS explores the links of the graph to discover

the node that is reachable from the source node. It computes the shortest distance

(in terms of number of hops) from the source to each reachable node in the graph.

We modified BFS to start from the source and end when it reaches the destination

node. Also, in addition to the distance, we record the shortest paths themselves. In

our search for shortest paths we define an array and a matrix for each node u in the

physical network:

• Distu: An array that represents the shortest distance in terms of the number

of hops from the source node.

• Nodesu: A matrix which records nodes involved in each different shortest paths

found from source node to node u.

The initial value of Dist for all nodes is infinity, except for the source node which

is equal to 0. The initial matrix of Nodes for all nodes is empty. The search algorithm

starts traversing the physical network graph and while visiting neighbor v of node u

it compares the value of Distv with Distu + 1. If Distv is greater than Distu + 1

it means that Distv describes a path longer than the shortest path. So we decrease

Distv to Distu + 1 and assign Nodesu to Nodesv. If Distv = Distu + 1 then it means

we found another shortest path to node v. In this case Nodesv is the union of Nodesu

and Nodesv. The pseudo-code of this search algorithm is presented in Algorithm 1.

This algorithm can find all possible shortest paths for each pairs of nodes. The output

of the algorithm is Nodesd, which includes all shortest paths between the source node

s, and destination node d.
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Algorithm 1: Finding all shortest paths

Result: Nodesd that contains all shortest paths from source to destination,
and Distd set to shortest distance from source to destination

Graph G(V,E), undirected, vertices s and d ∈ V ;
s is the source node;
d is the destination;
Q is the queue data structure that has a list of the nodes that should be
visited.;
∀u ∈ V : Distu =∞;
∀u ∈ V : flagu = 0;
Dists = 0;
Q = [s];
while Q 6= ∅ do

u = Dequeue(Q);
if flagu = 0 then

for all edges (u, v) ∈ E do
if Distv > Distu + 1 then

Distv ← Distu + 1;
Nodesv ← Nodesu;

else if Distv = Distu + 1 then
Nodesv ← [Nodesv;Nodesu];

Enqueue(Q, v);

end
flagu = 1;

if u = d then
Break

end

The following example demonstrates how we update the parameters of each node

during the search for all shortest paths. As shown in Figure 4.3, we consider a network

of 6 nodes and want to find all shortest paths from node 1 to 5. In the first step,

we update the parameters of the source node’s neighbors, which are nodes 2 and 3.

Figure 4.3 shows the first step and updated parameters of the neighbors of node 1

and Figure 4.4 shows the second step, after we updated the parameters for neighbors

of node 2. In the final step, when processing node 5, Dist5 = Dist3+1. So we update

Nodes5 to the union of Nodes3 and Nodes5. Figure 4.5 shows the final step and all
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Figure 4.3: First Step

Figure 4.4: Second Step

Figure 4.5: Final Step
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shortest paths from 1 to 5 can be found in Nodes5.

We applied this all shortest path heuristic to the same example in the previous

sections and the resulting placement is shown in Figure 4.6. Between the source

and destination of the SG there are two shortest paths {1, 3, 5}, and {1, 2, 5}. The

maximum-minimum resource belongs to the second path. All NFs are placed in the

source node as the policy here is to place them in the first node that has sufficient

nodal resources.

Figure 4.6: All Shortest Path Placement Example

4.4 Fast and Cost-Efficient Placement Algorithm

(FACE)

Our next heuristic, called FACE (Fast and Cost-Efficient Placement Algorithm)

heuristic builds on the previous heuristic in choosing a shortest path. Addition-

ally, the FACE algorithm keeps a decreasing list of shortest paths based on their

maximum-minimum nodal resource. In each stage of the placement process, if the

placement was not possible for the chosen shortest path, it tries the next shortest

path in the list. The following strategy will be deployed to place the NFs along the

chosen shortest path.

In the FACE heuristic, the NFs are sorted based on the number of possible can-

didate nodes in an increasing order to give priority to the NFs that are harder to

place and have fewer candidates for their placement. A candidate node parameter

candidi is defined for each NF of the SG i and is equal to the number of nodes along

the shortest path that can be used for the placement of that specific NF. In choosing

the nodes along the shortest path we consider two parameters: a node has to provide

sufficient nodal resources, and the NFs that previously were placed. The order of the

NFs in the SG is fixed and we can not re-organize them. Furthermore, we do not
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want to have a placement that passes a physical link more than once. E.g. if the third

NF of the SG is being placed in the second node of the shortest path, subsequent

NFs in the SG can not be placed in the first node. The candidate nodes are being

chosen based on the placement of previous NFs to avoid loops and backtracking in

the placement. If there are no candidate nodes for any of the NFs at any stage of

placement, the chosen path is infeasible and the placement process will choose the

next shortest path with maximum-minimum nodal resource and repeat the process

of NF placement.

To place the chosen NF in one of the nodes along the shortest path we sort its

candidate nodes based on their index difference and choose the node with the lowest

index difference. The index of the nodes along the shortest path is equal to their

order in the shortest path e.g. the source node’s index is one. The index of a NF is

equal to its order in the SG, e.g. the index of the first NF of the SG is one and the

index of second NF is two. We compare the index of the chosen NF with the index

of the candidate nodes and choose the one with the minimum index difference with

the chosen NF. In the end, the available resources of the nodes, BW of the links, and

the list of candidate nodes for the remaining NFs will be updated.

We applied FACE heuristic to the same example as previous sections. Figure 4.7

shows the result of placement by FACE heuristic. As all of NFs had three options

for placement the algorithm started from the first NF and placed it in the node with

minimum index difference which is the source node. The second NF is placed in the

second node of the chosen shortest path as it has minimum index difference and the

third NF is placed in the third node of the chosen shortest path.

Figure 4.7: FACE Heuristic Placement

Our FACE heuristic is fast in comparison to our mathematical models and other

related heuristics that we compare it to in the next chapter. Our results presented

in Chapter 5 show that, in the exact same environment and for the exact same set
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of problems, FACE can provide a min-cost solution much faster than mathematical

models and related heuristics. However, our results also show that simpler heuristics,

such as the shortest path heuristic, is even faster than the FACE heuristic.

4.5 Joint Heuristics

Finally, our joint heuristic is another avenue that can increase the performance of any

NF placement algorithm. The joint heuristic considers the possibility that reconfig-

uration of previously placed requests might enable us to place the current request.

The joint heuristic can be combined with our mathematical models or our previously

proposed heuristics. Here we describe the joint mathematical model and the joint

heuristic combined with one of our heuristics.

4.5.1 Joint Mathematical Model

The joint heuristic can be combined with any mathematical model including our

mathematical models described in Chapter 3. The joint mathematical model uses

the same ILP described in Chapter 3 with some modifications. It considers not only

the current SG but also already placed SGs in the network. Each time a new SG

arrives, it will be added to the SGs currently deployed in the network (i.e., SGs

that were previously admitted and have not yet expired). We then solve this joint

placement problem to achieve a min-cost solution. The new solution may lead to a

reconfiguration of already placed NFs.

Figure 4.8: The Joint Request

The input of the joint optimization model is not the arriving request but the joint

request f ′ which includes all of the placed and not expired requests and the current

request connected to each other with virtual links with 0 BW demand. Figure 4.8

shows the combination of the SGs where the thick black arrows are the added virtual

links that connect SGs to form a joint request. The constraints and objective functions
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are similar to the ones described in Chapter 3. Here we describe the input parameters

but avoid repetition of the constraints and objective function as they are exactly the

same as the extended model for the wireless networks.

• Input Parameters

– Sets

∗ Nf ′ , set of NFs where i ∈ Nf ′ represents NF i in the joint request f ′

which includes all previously placed flows and the current flow.

∗ Lf ′ , set of virtual links between NFs of flow f ′, where ef ′,ij ∈ Lf ′

represents the virtual link which connects NF i to j from the joint

flow f ′.

– Constants

∗ cf ′,i, requested processing units for NF i of the joint flow f ′.

∗ mf ′,i, requested memory units for NF i of the joint flow f ′.

∗ sf ′,i, requested storage units for NF i of the joint flow f ′.

∗ bwf ′,eij , requested BW for the link that is connecting NF, i to j in the

joint flow f ′. The links that connect flows to each other have zero BW

request.

– Decision Variables

∗ xf ′,i,u, a binary variable where one means that function i from the joint

flow f ′ is placed in the physical node u.

∗ Ff ′,eij ,Euv , a binary variable which is equal to one when the virtual

link between NFs i and j of the joint flow f ′ is mapped to one or

more physical links and physical link Euv is one of them. In the case

of mapping a virtual link to multiple physical links all the related

variables must be set to one.

4.5.2 Joint All Shortest Path Heuristic

The joint heuristic combined with our mathematical model increases the computa-

tional complexity as it increases the number of NFs per joint request by considering

all placed SGs along with the arriving SG. Here we provide an alternative version of

the joint heuristic that has lower computational complexity and provides solutions



CHAPTER 4. PLACEMENT HEURISTICS 47

much faster than the joint mathematical model. The following version of the joint

heuristic can be combined with any heuristic that considers one request at a time.

Here we describe the combination of the joint heuristic and our all shortest path

heuristic as an example.

By the arrival of a request a SG will be treated the same way as in all shortest path

heuristic. If the placement was successful the algorithm will move on to place the next

arriving request. Otherwise, the joint heuristic will be applied. In the case of rejection

of a request, a set of previously placed SGs that are not expired will be considered.

The number of considered SGs can vary from two to more requests. In this step,

instead of forming a joint request, the joint heuristic changes the arrival order of the

considered SGs. It tries all permutations of the considered SGs’ arrival order until one

permutation results in the acceptance of all considered requests including the current

request. For example if we consider the current SG and the last two already placed

SGs, the number of permutations will be six. Each permutation of the order of arrival

of requests will be tried until one of them results in accepting all three requests. In a

case that none of the permutations were successful the current request gets rejected.

It should be noted that the joint heuristic algorithm can not be applied to all VNFs.

Some may provide real-time services and interrupting their service to change their

placement is not possible. For other VNFs, the cost of interrupting services and their

replacement should be compared to the gains we can achieve such as accepting more

requests. As will be shown in Chapter 5, this joint heuristic does not meet our goal

of placing SGs fast. We therefore did not investigate further to include the cost of

VNF (and network routing) reconfigurations in our heuristic.

Figure 4.9: The Joint All Shortest Path Placement

Consider the same example as the one we mentioned for the all shortest path

heuristic except here we have two SGs to place. The second SG’s nodal resource

demand is cf2 = {4, 2, 3}. The source of the second SG is node 1 and its destination

is node 3. Its BW demand is 3 units for all virtual links. If we first place the first
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SG using all shortest paths heuristic then the second SG can not be placed as the

nodal resources of nodes 1 and 3 are not enough to place the second SG and it gets

rejected. However if we change the order of the SGs and first place the second SG as

it is shown in Figure 4.9 then place the first SG, both SGs can be placed successfully.



Chapter 5

Results and Analysis

In this chapter, we evaluate the performance of our proposed mathematical models

and heuristics under different circumstances. We identify the parameters that affect

their performance and explore the effect of considering the identified parameters in

our heuristics. We implement the basic model as a way to capture the NF placement

under the assumptions of a wired network. The placement rate, placement costs, and

execution time serve as a benchmark to compare our results against. We generate

a number of multi-hop wireless topologies and place SGs based on our basic model,

extended model, and traffic-aware model in the first part. To see the impact of our

approach in bigger networks we increase the number of nodes and observe the results

as a function of network size [7].

In the second part of this chapter, we apply similar scenarios to our increasingly

complex set of heuristics and compared their performances with our mathematical

models and similar heuristics. As heuristics can provide solutions much faster than

mathematical methods we applied them to larger size networks to explore their per-

formance. We measured the execution time, acceptance rate, and placement cost

and compared it with mathematical methods and similar heuristics to identify the

heuristic that can accept the highest ratio of the requests with lowest complexity

and execution time. As mentioned earlier, the cost in our mathematical models and

heuristics is calculated the same as the objective function mentioned in Equation (2),

for wired networks and Equation (10) for wireless networks in Chapter 3. The cost is

based on the cost of consumed resources by the VNFs in the physical network that

includes the cost of total units of nodal resources used by VNFs, and the cost of total

units of bandwidth used by virtual links in the physical network.

49
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5.1 Modeling Environment

Two platforms are being used to solve the placement problems: MATLAB to imple-

ment our heuristic algorithms, and AMPL to solve the mathematical optimization

model, the alternative heuristic proposed in [31], and a heuristic we call first feasible

heuristic. In this heuristic, we run the optimization model only until we find a feasible

solution, rather than the optimal solution. AMPL is a modeling language designed to

be used for solving optimization problems such as linear and non-linear programming

problems [46]. We used AMPL to solve the optimization model and the other two

compared heuristics as it works with a wide range of solvers. We used BARON for

solving our optimization model in AMPL. BARON is a general purpose solver that

implements a branch-and-reduce algorithm for solving mixed-integer nonlinear and

linear optimization problems. Purely continuous, purely integer, and mixed-integer

nonlinear and linear problems can be solved with BARON. BARON is available un-

der the AMPL, GAMS, and other modeling languages on a variety of platforms [47].

Unlike AMPL, which is designed for solving optimization models, MATLAB allows

us to develop our heuristic algorithm for VNF placement. The wired and wireless

topologies are generated with the use of the method proposed in [48].

The nodes are randomly deployed in a square area, based on a uniform distribu-

tion. We generate ten topologies for each network size of 20, 30, 40, 60, 80, and 100

nodes, the network area grows with the number of nodes. We keep the average node

density constant, consequently, the network size ranges from 490 ∗ 490 m2 for the 20

nodes network to 690∗690 m2 for the 40 nodes network, and 1095∗1095 for 100 nodes

network [48]. Nodes in the wireless network are directly connected if their distance

is less than or equal to the transmission range of the nodes. This transmission range

is constant for all nodes and is 150 meters. We verified that all of the generated

topologies are connected. To be able to compare results between a wired and wire-

less network the wired networks’ topologies are exactly the same as the ones used

for wireless networks’ scenarios. The properties of the generated topologies, includ-

ing the average number of links for each generated topology, the average number of

neighbours for each node, the average number of total shortest paths found for each

source and destination pair, and the average number of shortest paths for all possible

source and destination pairs are described in Table 5.1. The average is among the 10

generated topologies and the length of shortest paths is based on the number of hops.
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Number of nodes 20 30 40 60 80 100

Average number of links 47.4 69.6 90.3 142.5 197.6 260.2

Average number of neighbours per node 4.7 4.6 4.5 4.7 5 5.2

Average number of shortest paths between each pair 2.3 3.2 3.5 11.2 10.4 16.3

Average length of shortest path 3.7 4.6 5.3 7.4 7.4 8

Average of maximum length of shortest path 7.1 10 11.3 6.7 17.4 17.5

Average of total number of shortest paths 443 1385 2753 19816 32942 80872

Table 5.1: Generated Topologies’ Characteristics

Scenario Topology CPU wcpu Memory wm Storage ws BW wbw

Mathematical model Randomly placed [100, 150] 1 [100, 150] 1 [100, 150] 1 [100, 150] 1

Heuristics Randomly placed [100, 150] 1 - - - - [100, 150] 1

Table 5.2: Physical Network Properties.

The parameters reflect the commonly chosen simulation setup in the literature

such as [12, 49–51]. Table 5.2 shows the available processing, memory and storage

capacity of the nodes and bandwidth of the links at the beginning of each simulation

that are uniformly distributed between 100 and 150 units in all scenarios. In later

scenarios, we increase the available BW and the nodal resource availabilities to observe

their impact on the performance of the mathematical models and heuristics. We

assumed the cost per unit of all nodal resources is one in all scenarios.

Flows arrive over time following a Poisson process with an average rate of four

flows per 100 time units. Each flow has a lifetime, exponentially distributed with

an average of µ = 1000 time units for the scenarios comparing the performance of

our mathematical models and µ = 500 for the scenarios that involve heuristics and

mathematical models. Each flow is accompanied by a Service Graph (SG), defining

the required NFs and their interconnection to handle this flow. There are 6 NFs per

request. The source and destination of each flow are being chosen randomly between

the nodes. For the mathematical models’ scenarios, the nodal resource demands

of each NF follow a uniform distribution between 5 and 25 units. The bandwidth

requirement of all links of a request is the same and chosen uniformly from between

1 and 50 units. The nodal resource demand and lifetime of the requests are slightly

higher for mathematical model scenarios as it involves models such as the basic model

that has fewer constraints than the other models and accepts more requests, all else
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Scenario Num of NFs CPU Memory Storage BW lifetime(s)

Mathematical model 6 [5, 25] [5, 25] [5, 25] [1, 50] 1000

Heuristics 6 [1, 20] - - [1, 50] 500

Table 5.3: SGs Properties.

being equal. To avoid having 100% acceptance rates at all times and be able to capture

the effect of changing parameters such as network size on the final results, we increased

the nodal resource demand of the requests and their lifetime for mathematical model

scenarios.

Table 5.3 shows the CPU, memory, and storage unit demands of each NF for

mathematical models and heuristics scenarios. In order to make it easier to analyze

and understand the performance of our heuristics, the heuristics consider only one

nodal resource. That resource can represent CPU, memory, or storage unit demands

of each NF, we have chosen to model CPU demands here.

5.2 Measurement Metrics

To measure the performance of our proposed mathematical models and heuristics,

and to compare their performance with each other, we used the following metrics.

• Acceptance ratio: The total number of accepted requests during a simulated

network lifetime of 20,000 seconds divided by the total number of requests.

• Shortest path ratio: The total number of accepted requests during a simulated

network lifetime of 20,000 seconds that are placed along their shortest path,

divided by the total number of requests.

• Average Cost: Average cost of the BW and nodal resource units used for the

deployed requests that are not expired. Please note that this includes the band-

width of links actually used by flows, as well as the bandwidth consumed on

adjacent links due to interference. The cost for nodal resources equals to the

total units of nodal resources used for deployed requests multiplied to their cost

per unit of nodal resources.
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• Average BW cost: Average cost of the BW units used for the deployed requests

that are not expired multiplied to the cost per unit of BW. Please note that this

includes the bandwidth of links actually used by flows, as well as the bandwidth

consumed on adjacent links due to interference.

• Execution time: The total time that it takes to place all arriving requests over

the simulated network lifetime of 20,000 seconds.

Each data point is the average of 10 runs, generating a new random topology and

sequence of flow arrivals each time. In addition to the average, we also plot the 95%

confidence intervals. We model/simulate 20,000 seconds, in order to reach a steady

state where the curves flatten off after initial settling due to the initially unloaded

network. The following figures represent the steady-state results over the simulated

network lifetime of 20,000 seconds.

5.3 Mathematical Model Results

In our first scenario for mathematical models, we explore the performance of our basic

and extended model for wired and wireless networks. We generate random topologies

for 20, 30, and 40 nodes networks and solve them with our basic, extended, and traffic-

aware model. Figure 5.1 shows the average acceptance ratios for wired and wireless

networks and Figure 5.2 shows the average number of physical links used for placement

of a SG. Figure 5.3 shows the average cost and average BW cost of the wired networks

solved with basic model and wireless networks solved with the extended model that

considers the effect of interference. The total of each bar represents the average cost,

the yellow/blue part of bars represents the average BW cost and the red part of

each bar is the average nodal resource cost for placing a SG. We will use the same

presentation for all average cost and average BW cost figures in the remainder of this

chapter.

Figure 5.1 and Figure 5.3 show that although the average acceptance ratio in-

creases by increasing the network size, the average cost and especially average BW

cost decreases significantly. This is mainly because the optimization method tends

to minimize the resource usage for each SG; therefore, it chooses a placement that

has fewer physical links involved. The decrease in the number of assigned physical



CHAPTER 5. RESULTS AND ANALYSIS 54

Figure 5.1: Acceptance Ratio in the Wired and Wireless Network
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Figure 5.2: Average Physical Links Used for Placement of a SG in a Wired and
Wireless Network
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links can be seen in Figure 5.2, which shows the average number of links used for

placement of each SG.

Figure 5.3: Average Cost and BW cost in the Wired and Wireless Network

The difference between the average cost of wired and wireless networks as seen in

Figure 5.3 is mainly due to BW cost, which is affected by the presence of interference

in wireless networks. However, as we can see from Figure 5.1 the difference in the

BW cost is not high enough to affect the acceptance ratio and the recorded average

acceptance ratio is similar for both wired and wireless networks. This is due to the

fact that, for the chosen arrival rate of the requests and requested resources, most of

the NFs can be placed in one or two nodes. This limits the impact of interference

on the acceptance ratio. Figure 5.2 and Figure 5.3 demonstrate that increasing the

number of nodes (and hence available nodal resources) will increase the possibility to

place a SG such that it uses fewer physical links. This then consequently lowers the

average cost and increases the acceptance ratio.
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The traffic-aware model considers a source and destination for each SG request

and, unlike the extended model, SGs can not be placed anywhere in the network.

Flows start from their source and end at their destination. The source and destination

of the flows are selected uniformly random. The bandwidth requirement of each flow,

their nodal resources demand and the properties of the physical network are all the

same as our previous scenario. For each network size, we repeated the experiment

10 times with different network topologies, averaged the acceptance ratios, shortest

path ratios, average costs, and average BW cost, and calculated the corresponding

95% CI.

Figure 5.4: Acceptance Ratio of Wireless Networks of 20, 30, and 40 Nodes for the
Extended Model with Source and Destination
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Figure 5.4 shows the average acceptance ratio and average shortest path ratio at

the same time. Each bar in Figure 5.4 represents the acceptance ratio, the blue/yellow

part of each bar represents the average shortest path ratio, and the red part of each

bar represents the ratio of the requests that are being placed along a path longer than

their shortest path. We will use the same presentation in all of our graphs that show

the average acceptance ratio and the average shortest path ratio at the same time.

Figure 5.5 shows the average cost and average BW cost. Unlike our previous scenario,

we can see a considerable difference in the average cost and average acceptance ratios

recorded for wired and wireless networks for the traffic-aware model.

Figure 5.5: Average Cost of Wireless Networks of 20, 30, and 40 Nodes for the
Extended Model with Source and Destination
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Figure 5.5 clearly demonstrates that most of the average cost in wireless networks

belongs to the BW cost and increases with increasing the number of nodes. This

is mainly due to an increase in the length of shortest path in larger networks. The

lower acceptance ratio recorded for wireless networks in Figure 5.4 is another con-

sequence of higher BW consumption in wireless networks. Figure 5.4 shows that in

wireless networks more than 90% of the accepted requests are being placed along their

shortest path. This opens an avenue for the methods that are focused on reducing

the execution time. As more than 90% of the requests are being placed along their

shortest path, reducing the search for placement of NFs to these nodes would reduce

the execution time while not eliminating the min-cost solutions. This is a factor we

considered in the design of our heuristics and also is being considered in the accessible

scope heuristic proposed in [31]. Due to the lower BW cost in wired networks, we

accept a higher ratio of the requests in such networks. In addition, a relatively larger

number of these accepted requests are placed along non-shortest paths. However, we

can see from Figure 5.4 that by increasing the network size a higher ratio of requests

are being placed along their shortest path.

In another attempt to explore the performance of our mathematical model we

keep the number of nodes constant and increase the nodal resources and available

BW of physical links. We choose the network size of 40 nodes to better observe the

effect of increasing resources on the recorded acceptance ratio and average cost. In

the first scenario, we increased the available BW of the physical link. To model

increased bandwidth availability, we increase the uniform distribution that the BW

link is chosen from. The intervals are [300, 400], [500, 600], [700, 800], [900, 1000],

[1000, 1100].

Figure 5.6 shows the average acceptance ratio, its 95% CI, and the average ratio

of the requests placed along their shortest path. Figure 5.7 shows the average cost,

its 95% CI, and the average BW cost. The x-axis for both figures are labeled by the

beginning of each BW interval. Figure 5.6 clearly shows that BW is a bottleneck in

wireless networks. Increasing the available BW will mitigate the impact of this bot-

tleneck, and increase the ratio of accepted requests. By increasing the available BW,

the mathematical model can place requests with higher BW demand that increase the

average BW cost and consequently the average cost, as can be seen from Figure 5.7.



CHAPTER 5. RESULTS AND ANALYSIS 60

Figure 5.6: Acceptance Ratio and Shortest Path Ratio of 40 Nodes Wireless Network
while Increasing Link BW
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Figure 5.7: Average Cost and Average BW Cost of 40 Nodes Wireless Network
while Increasing Link BW
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In the last scenario for our mathematical model, for a network of 40 nodes, we

increase the nodal resource by increasing the uniform distribution that the nodal

resource is chosen from. The intervals are [1000, 1500], [2000, 2500], and [3000, 3500].

Interestingly we can see from Figure 5.8 and Figure 5.9 that increasing nodal resources

does not impact the acceptance ratio, and consequently the average cost even for the

highest available nodal resources. We conclude that bandwidth is a more significant

factor in wireless networks and in the design of our heuristic we gave more priority

to BW usage.

Figure 5.8: Acceptance Ratio and Shortest Path Ratio of 40 Nodes Wireless Network
while Increasing Nodal Resources
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Figure 5.9: Average Cost and Average BW Cost of 40 Nodes Wireless Network
while Increasing Nodal Resources
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5.4 Heuristics Results

To evaluate the performance of our increasingly complex heuristics, we applied them

to different size networks and compare their performance with our traffic-aware math-

ematical model, the accessible scope heuristic proposed in [31], and the first feasible

heuristic. We used two versions of the joint all shortest path heuristic to explore

the effect of increasing the number of considered requests on the execution time and

acceptance ratio. The first version of the joint all shortest path heuristic considers

the current request and the last two requests that have been placed and the second

version considers the current request along with the last 4 placed requests. The first

feasible heuristic uses the same mathematical model as our traffic-aware model with

source and destination to find a placement for a SG. However, and different from our

optimization models, it does not have an objective function and consequently accepts

the first solution that satisfies all constraints. The first feasible heuristic shows the

performance of a mathematical model that does not search for an optimal solution

and accepts any solution that is feasible. We used AMPL and BARON as the solver

for this heuristic..

We applied our heuristics, the accessible scope heuristic, the first feasible heuristic,

and the ILP model to the same physical networks and the same sequence of requests.

We increased the number of nodes from 20, to 30, and 40 nodes for the ILP and to

60, 80, and 100 nodes for the heuristics. We did not solve the placement problem

with the mathematical model for the larger size networks as its execution time grows

exponentially. The results are divided into two parts. The first part includes the re-

sults from smaller size networks of 20, 30, and 40 nodes that includes the performance

of our mathematical model and the second part belongs to the results recorded for

larger size networks of 60, 80, and 100.

Figure 5.10 and Figure 5.11 show the average acceptance ratio and their 95% CI for

a simulated network lifetime of 20,000 s. The average execution time of each algorithm

to provide a solution for all arriving requests for a simulated network lifetime of 20,000

s and for different size networks is shown in Table 5.4. We can see from Figure 5.10
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Figure 5.10: Comparison of Acceptance Ratio’s of Heuristics and Mathematical
Model in Smaller Networks

Figure 5.11: Comparison of Acceptance Ratio’s of Heuristics in Larger Size Net-
works
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Network size 20 30 40 60 80 100

Random 18.6 19.4 19.5 65.5 24.8 322.9

Shortest path 4.1 4 5.2 4.6 4.9 16.6

All shortest path 10.3 12.1 12.7 13.2 18.7 42.4

FACE 12.8 13.3 15.5 16.5 18.5 45.8

Joint all shortest path(3requests) 9.7 10.1 12.9 16.6 36.1 37.3

Joint all shortest path(5requests) 25.4 28.2 40.9 51.5 276.3 223.4

Accessible scope 139.9 268.1 429 1648.3 5866.7 10985

First feasible heuristic 128.6 285.2 661.5 2002.5 6537.8 13125

ILP model 146.1 276 681.1 - - -

Table 5.4: Execution Times in Seconds for Networks of Different Size

and Figure 5.11 that the acceptance ratio does not grow with an increase in the size

of our network and it is fluctuating between 35% to 45%. That is mainly due to the

fact that the length of shortest path grows with network size and increases the BW

cost. Placing NFs randomly results in the highest average cost and lowest acceptance

ratio and shows that any effort in reducing a placement cost of NFs would improve

the acceptance ratio.

The accessible scope heuristic performs similar to our mathematical model and

has the best performance among all heuristics. However, its average execution time.

as shown in Table 5.4, is not much different from the mathematical model. A high

execution time for the accessible scope heuristic means that our first goal in the design

of a heuristic, providing an algorithm that can provide near-optimal solutions with

low execution time, is not being satisfied.

Our three heuristics, shortest path, all shortest path, and FACE, are successful in

providing statistically similar average acceptance ratio to the ILP model for smaller

networks and statistically similar acceptance ratios to the accessible scope heuristic

for larger networks. The advantage of our heuristics over the ILP model and accessible

scope heuristic is their execution times. As we can see in Table 5.4, for a network

of 40 nodes, the execution time of our heuristics are in the order of 10s of seconds

while the ILP and accessible scope heuristic execution times are in the order of 600

seconds. These differences become even larger for larger size networks. In terms of
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the execution time, we can see even the performance of the first feasible heuristics is

not much better than the ILP and accessible scope heuristic although it eliminates

the process of searching for an optimal solution and accepts any feasible solution. The

execution times of both the accessible scope heuristic and the first feasible heuristic

indicate that using a solver will always be a lengthy process and lowering the search

space or eliminating the process of a search for an optimal solution will not reduce

the execution time considerably.

As we described in detail in Chapter 4, progressing from the shortest path heuristic

to FACE and then the joint heuristics we added different parameters. For example,

in the shortest path heuristic we only search for one shortest path and place the

first NF in the first node of the shortest path that has sufficient nodal resources.

However, in FACE we search for all shortest paths, give priority to NFs based on

their demand, give priority to shortest paths with higher minimum nodal resources,

and in case of failure try other shortest paths. While we are including all these

parameters to increase the ratio of accepted requests, we can see from Figure 5.10

and Figure 5.11 that all three of our heuristics, namely shortest path, all shortest

path, and FACE, have similar performance in terms of average acceptance ratio.

For the more complex joint heuristics the situation gets worst and their average

acceptance ratio is lower than our heuristics specially for smaller size networks. The

recorded average acceptance ratios of our heuristics show that, other than placing

a SG along its shortest path, the other parameters do not contribute to a higher

acceptance ratio. Rather, they make the heuristic more complex and increase the

execution time. Table 5.4 shows that the shortest path heuristic can provide the

same acceptance ratio in 4.9 seconds for 80 nodes network while the execution time

for the all shortest path heuristic is 18.7 s and 18.5 s for FACE. The difference between

the execution time of our shortest path heuristic and the other two grows even more

for 100 node networks.

Figure 5.12 and Figure 5.13 show both the average cost and average BW cost with

their 95% CI for a simulated network lifetime of 20,000s. Figure 5.12 and Figure 5.13

show an increasing BW cost trend for all included heuristics and mathematical models

that is mainly due to an increase in the length of the shortest path in larger networks.

It can be seen that the average cost for the random heuristic increases the most as

there are more physical links involved in connecting the randomly placed NFs in
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Figure 5.12: Average Cost and Average BW Cost of Heuristics and Mathematical
Model in Smaller Networks

Figure 5.13: Average Cost and Average BW Cost of Heuristics in Larger Size
Networks
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larger size networks. The average cost of the accessible scope heuristic is lower than

the ILP model as it only accepts the requests that can be placed along their shortest

path. In constrast, the ILP model chooses a feasible solution with the lowest cost

that may include taking a path longer than the shortest path. The first feasible

heuristic recorded higher average cost in comparison to the ILP and the accessible

scope heuristic which is mainly due to accepting the first solution it finds that is not

necessarily a min-cost solution.

At last, we explored the performance of our heuristics for the scenario that the

number of nodes is constant and the nodal resources or links’ BW are increasing. We

chose a network with 100 nodes in order to have more shortest paths available for

each pair of nodes in comparison to smaller networks and be able to compare the

performance of our increasingly complex heuristics. We vary the uniform distribution

that the physical links’ BW is chosen from to model increased bandwidth availability.

The chosen BW intervals are [300, 400], [500, 600], [700, 800], [900, 1000], [1000,

1100]. As can be seen from Figure 5.14, the average ratio of accepted requests in-

creases as we increase the initially available links’ BW. The x-axis is labeled by the

beginning of each BW interval. We can clearly see that for the last two intervals [900,

1000], and [1000, 1100] the average acceptance ratio is one and all requests can be

placed by all heuristics except the random heuristic. High consumption of BW due

to the presence of interference makes BW a bottleneck for NF placement in wireless

networks. Increasing the available BW will mitigate the impact of this bottleneck,

and increase the ratio of accepted requests uniformly for all heuristics. Figure 5.15

shows the average cost and average BW cost for each heuristic. Figure 5.15 shows

that a high proportion of average cost belongs to average BW cost. If we increase

the bandwidth sufficiently (to at least 900 units per link), essentially all flows can be

accommodated, independent of the heuristic, as long as NFs are placed on a shortest

path between source and destination.
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Figure 5.14: Acceptance Ratio of 100 Nodes Wireless Network while Increasing BW
Resources

Figure 5.15: Average Cost and BW Cost of 100 Nodes Wireless Network while
Increasing BW Resources
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Finally, in the last scenario for a network of 100 nodes, we increase the nodal

resource by increasing the uniform distribution that the nodal resource is chosen

from. The nodal resource intervals are [1000, 1100], [2000, 2500], and [3000, 3500].

Figure 5.16 shows the acceptance ratio, and the x-axis is labeled by the beginning of

each nodal resource interval. Unlike the results shown in Figure 5.14, increasing the

nodal resource does not increase the acceptance ratio. As the acceptance rate stays

the same, the average cost and BW cost do not change as it is shown in Figure 5.17.

In comparison to our previous scenario, we can conclude that bandwidth is a more

significant factor in multi-hop wireless networks. This is similar to the results we

captured from the mathematical model as it is shown in Figure 5.6 and Figure 5.8.

We can see that the performance of all of our heuristics are similar and for a 100 nodes

network with high availability of BW or nodal resources none has any advantage

over the other methods in terms of acceptance ratio. However their execution times

vary based on their complexity and the shortest path heuristic can provide the same

performance in less time than the others.

Figure 5.16: Acceptance Ratio of 100 Nodes Wireless Network while Increasing
Nodal Resources
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Figure 5.17: Average Cost and BW Cost of 100 Nodes Wireless Network while
Increasing Nodal Resources

5.5 Summary

We have optimization models that give us the best possible answer, subject to a crite-

ria, which in our case is the placement cost. We then use these models to explore how

successful we can be in placing SGs subject to network size/topology and available

resources and what factors have an impact on the placement success (the acceptance

ratio and the overall costs). We identified the issue of scarcity of BW in wireless

multi-hop networks and its role in the average cost of placement and acceptance ra-

tio. We showed that by increasing the available BW of the network we can increase

the ratio of the accepted requests and also identified that more than 90% of requests

are being placed on their shortest path. We learned from our mathematical models

and designed a set of increasingly complex heuristics. We compared their acceptance

ratio and the overall costs with each other, our mathematical model, and two other

heuristics. Our goal was to identify the effectiveness of each considered parameter

in each of our heuristics. Our results show that the simple approach of placing SGs

along their shortest path is the only parameter that we need to consider to provide

the best results in terms of acceptance ratio at the lowest execution time. Our results

indicate that the shortest path heuristic can provide results competitive with the

accessible scope heuristic in a matter of 10 seconds while the accessible scope takes

around 10,000 seconds.



Chapter 6

Conclusion and Future Work

6.1 Summary and Conclusion

The main challenge in the use of VNFs is to optimally map the SG requests to

the physical network. We provided a mathematical model that considers a wide

range of constraints. We started with our basic model dedicated to wired networks

and improved it to our extended model that includes the effect of interference by

using the protocol model. In the next step, provided the traffic-aware model that

considers a source and destination for each arriving request. We added a set of

necessary constraints to start flows from their source and end at their destination.

The acceptance rate and the average cost of our mathematical models are evaluated

under different scenarios. For each scenario, we compared the results from wired and

wireless networks to show the effect of interference on the BW usage, average cost,

and acceptance ratio. Our results clearly indicate that interference causes an increase

in BW usage that increases the average BW cost and lowers the acceptance ratio in

comparison to wired networks. We increased nodal resources and links BW in last

scenarios for our mathematical model. The comparison between the increasing BW

and nodal resources scenarios shows the important role of BW on the acceptance

ratio. The results indicate that BW is the bottleneck and increasing it increases the

acceptance ratio while increasing the nodal resources did not change the acceptance

rate. The results also indicate that more than 90% of the requests in the traffic-aware

model for wireless networks are being placed on their shortest path.

As optimal placement methods are NP-hard and cannot be applied to large net-

works, we have to design a heuristic with lower complexity that is scalable and can

73
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reach near-optimal results. Although there exists a wide range of heuristics pro-

posed for VNF placement, none has focused on designing a simple heuristic that is

time-efficient and hence scalable. By learning from the results of our traffic-aware

mathematical model we gave priority to BW in design of our heuristics and placed

SGs on their shortest path. We explored a set of heuristics, ranging from very simple

to more complex, involving backtracking, in order to identify the simplest possible

method that can place a high number of requests in the network in a timely manner.

Our five heuristics start with the random placement that does not put any effort

into reducing the costs of placement. The shortest path heuristic searches for a

shortest path and place NFs on their shortest path to reduce BW usage. We made

it more complex in all shortest path heuristic by searching for all possible shortest

paths and sort them based on their minimum nodal resource in decreasing order. The

FACE heuristic follows the all shortest path heuristic in sorting shortest paths and

adds more complexity by sorting NFs based on their nodal resource demand and the

number of their candidates for placement. Finally, we proposed the joint heuristic

that adds another level of complexity by considering previously placed SGs along the

current SG. We compared the performance of our heuristics with our traffic-aware

mathematical model and a popular heuristic proposed in the literature.

Our results show that randomly placing NFs, as expected, produces poor results

(low acceptance rate, high costs). So some effort is warranted in placing NFs. How-

ever, and somewhat unexpected, the simple shortest path heuristic can reach similar

results as more complex heuristics. Additional steps, added to the all shortest paths

heuristic, the FACE heuristic, and the joint heuristic do not increase the number of

accepted requests. Even more complex heuristics such as the accessible scope heuris-

tic do not improve the acceptance rate. In fact, as shown in results, except the joint

heuristics all these approaches provide, statistically speaking, the same performance

as our mathematical model. However, as the recorded average execution time shows,

the simpler the heuristic, the faster its execution time will be. While the accessi-

ble scope heuristic takes more than 10 seconds to process a newly arriving request,

the shortest path heuristic can process a newly arriving flow in a few milliseconds

in a network of 100 nodes, arguing for its scalability and suitability for real-time

admission control.

We explored the effect of increasing BW and nodal resources on the performance

of each heuristic. However, we kept the request arrival rate and network density
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constant. We showed that similar to the observation from the mathematical model

increasing links’ BW can increase the acceptance ratio and in the case of having at

least 1000 units as the links’ initial BW all requests can be placed by all heuristics.

6.2 Future Work

We explored our models and heuristics under different scenarios. However, there

are additional scenarios that we did not explore and plan to explore in the future.

First, we plan to consider the impact of traffic patterns. In the provided scenarios

we assumed that the traffic is evenly distributed in the network and did not consider

having traffic hotspots. In case of having traffic hotspots, choosing between shortest

paths might not be the best solution as they might pass through the traffic hotspots.

In future work, we plan to consider the impact of traffic patterns on our model and

modify our heuristics to be effective in case of having traffic hotspots. This could be

done, for example, by considering not only the shortest path but also the shortest

possible path that does not pass the traffic hot spot. The second scenario that we

plan to apply to our models and heuristics is to increase the density of the network

topologies and explore its impact on the acceptance ratio and average cost. We are

expecting to find more shortest paths between each source and destination, however

the presence of interference can impact the shortest paths that are in vicinity of each

other.

In the third scenario, we plan to observe the acceptance rate and execution times

of our heuristic in the scenarios that parameters such as mobility are involved. As our

simple and time-efficient heuristic can provide solutions in real-time we believe it can

perform better than the more complex placement algorithms in the environment that

some of its parameters such as topology change quickly. We will more thoroughly

evaluate and compare the performance of the various heuristics as we vary other

parameters as well, resulting in networks that are more lightly or highly loaded.

In our scenarios we focused on identifying a bottleneck in the process of place-

ment of SGs and considered all resources of the same importance. We also assumed

relatively equal amounts of resources. Also we did not evaluate the trade off between

nodal costs and BW costs. In future work we can introduce weight factors for each

type of resource and vary them to study the impact of shifting from more of an em-

phasis on nodal resources and their consumption to bandwidth resources. Also we
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can change the initial available resources of the nodes and links based on an exist-

ing wireless network to evaluate the performance of our heuristics in more realistic

environment.

In our mathematical and heuristics, we avoided unrealistic assumptions such as

knowing all requests’ demands prior to the placement process, being able to change

the order of NFs in a SG, etc. However, we did not consider constraints related to

energy consumption, deployment, and maintenance cost of NFs such as the num-

ber of active nodes, or the number of availabe licenses. Going forward we want to

extend our mathematical model and heuristics to consider these constraints on the

nodal resources and energy consumption and explore their effects on NF placement,

acceptance rate, and average cost.

In the process of collecting results due to the high complexity of our non-linear

mathematical model, we could not collect results for the traffic-aware model that

considers the traffic-changing factor. In the future, we plan to dedicate more com-

putational resources to at least collect results for smaller networks and identify the

effect of traffic changing factor on BW usage and NF placement. We would then be

able to use this parameter in our heuristics and place the NFs based on their traffic

changing factor to reduce the BW usage of the whole SG.

In heuristics that involve finding all shortest paths between the source and desti-

nation of the request, the number of shortest paths can grow exponentially in some

topologies. As there are nodes and links in common between some shortest paths our

approach is to consider shortest paths that are different enough (in terms of nodes

and links in common) and have sufficient resources such as the ones that have enough

BW resources and enough nodal resources to place a NF with highest nodal resource

demand in the SG request. Also, we will identify the number of shortest paths that

should be considered and limit our search to find a specific (limited) number of short-

est paths based on the number of nodes in the network.

Our joint heuristic that considers reconfiguration of already placed SGs to accom-

modate more requests can be modified to be applicable to all kinds of VNFs. We

mentioned in Chapter 4 that the reconfiguration of some type of VNFs is not possible

as they are providing real-time services. An approach that can solve this problem

is to defer admitting requests and place multiple service requests (by bundling them

over time) instead of reconfiguring already admitted requests. However, as we showed

in our results, even when we allowed the reconfiguration of already placed requests at
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essentially zero costs, this did not improve the results in terms of acceptance ratio.

Our ILP model is NP-hard and can not be applied to large scale networks. One

avenue to reduce the complexity of the problem is to relax the ILP to a LP model

that allows for faster solution and then use known approximation approaches to solve

such a relaxed LP model to get results with known approximation ratios.
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