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Abstract

In this thesis, new adaptive OCXO frequency drift correction agorithms are
proposed for the timing module on the base transceiver stations. The recursive system
identification methods are used to replace the previous Batch Least Squares (BLYS)
method in the agorithm. Two different recursive system identification methods are
evaluated and compared, the Recursive Least Squares (RLS) method and the Kalman
Filter method.

New system models which include the digital control loop are created. Simulation
results show that the new system model has better performance than the previous model.

The Cumulative Time Error (CTE) upperbound of the timing module is analyzed.
This upperbound determines the performance bound of the timing module system. First, a
simple model structure of the OCXO frequency stability is used to investigate the CTE
upperbound. In this simple model, the temperature is linear related to the frequency
stability. Then, a refined model structure is used to investigate the CTE upperbound. In
this refined model, both temperature effect and ageing effect are considered. The control
loop is included in both ssmple and refined model structures. The simulation results show

that the CTE upperbound can be obtained analytically.
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Chapter 1. | ntroduction

1.1 Overview

Time is very important not only for the daily schedules of human beings, but also
for processing a sequence of events that happens in computers and for time-tagging
information that flows through communication systems. Clock sources are essential for
amost al electronic equipment and communication systems. Clock sources (another
name is frequency control devices) can provide precise time and frequency information
on which modern electronic equipment depends.

Quartz crystal oscillators are used as clock sources in the synchronization of
distributed systems. One such system is a cellular network in which base station
transceivers are operated within a specified time or frequency accuracy. Normal clocks
such as clocks at home usually drift compared to the actual time. That is why one must
regulate the time occasionally. The clocks in the base stations are much more accurate
than clocks at home, but they drift too. The accuracy of clocks depends on their quality,
the ambient temperature, and other environment variables. For example, atypical crystal
oscillator such as MtronPTI’s X05120 SC-cut oscillator drifts within 173 microseconds
when running for one day and the ambient temperature is within O to 70 celsius degrees
[1].

The accuracy of oscillator is crucial to the normal operation of the cellular network.
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Because GPS satellites are equipped with ultra-high accurate atomic clocks, the
oscillators on the base stations are usually locked by the GPS signals which serve as
timing reference signals and we call that the oscillators working in locked mode. This
process is just like regulating a watch by a more accurate clock. In the event the GPS
signdl is lost, we call that the oscillators working in holdover mode. The clock accuracy
of the oscillator on the base station is a function of the local environmental stimuli in
holdover mode. Generally, a DOCXO (Double Oven Controlled Crystal Oscillator) is
used in the timing module of the cellular network. The DOCXO is more accurate and
therefore more expensive than the OCXO (Oven Controlled Crystal Oscillator) and the
OCXO isnot sufficient for the normal operation of the cellular network in holdover mode.
However, the accuracy of the OCXO can be enhanced by an adaptive control module
which guarantees that the OCXO can replace the DOCXO in the timing module. In order
to improve the accuracy of the OCXO after losing the GPS signal, a system identification
algorithm is trained by the adaptive control module when the timing reference signa is
available. Accordingly, the relation between the time accuracy of the oscillator and
environmental variables can be obtained and the effects of environment variables can be
compensated. The accuracy of the oscillator can thus be enhanced to meet the needs of
the cellular network.

Figure 1.1 shows a simple block diagram of the timing module system on the base
station. First, GPS reference signals are received by the GPS signal receiver. Second, the

correction signal generating module uses the GPS signals to generate the correction
2



signal. Third, the correction signal is used to improve the accuracy of the oscillator.
Fourth, at the same time, the correction signal is used to feed the adaptive control module
which trains the system identification algorithm. Last, when GPS reference signals are
lost, the adaptive control module generates the correction signal to correct the oscillator.
The detailed block diagram of the timing module system is much more complicated than

this ssmple one and is shown in Chapter 3.

%;ﬁ. GPS satellite

S ? GPS antenna

"y

GPS signal
recelver
v
Correction signal
Generating Module Adaptive
Control
*| Module
h

qu

Correction Sign.all

Crystal Oscillator

Figure 1.1 Simple Block Diagram of the Timing Module System

The following example can make the whole timing module system easy to
3



understand. A wrist watch is regulated through a more accurate clock. One discovers that
the wrist watch drifts one minute everyday through the regulation process. Even if the
clock is lost, one still can regulate the watch and increase its accuracy. In this example,
the wrist watch is like the oscillator in the base station. The more accurate clock is like
the timing reference signal from GPS satellites. Regulating the watch through the clock is
like locking the oscillator by GPS signals. The agorithm training process is like getting
the information that the watch drifts one minute every day.

The first stage in the creation of an accurate clock model is the identification and
guantification of all significant frequency perturbing stimuli in terms of analytical
expressions. The fundamental understanding of the parameters affecting the clock drift is
paramount to determining the overall oscillator accuracy achievable by the system.

The second stage is the rationa utilization of the proper system identification
algorithms to identify the parameters which affect the accuracy of the oscillator. System
identification is a mathematical term which describes the mathematical algorithms that
build the mathematical models from measured input and output data. The mathematical
model in this context is a mathematical description of the dynamic behavior of a process
or a system in the time domain or the frequency domain [2]. The mathematical relation
between the accuracy of the oscillator and the parameters which affect the frequency drift
is an example for such physical system mathematical models. For instance, the frequency
accuracy of quartz crystal oscillators over ambient temperature can be approximated by a

guadratic function. System identification algorithms can determine the parameters of this
4



function through the environment temperature and the frequency accuracy measured.

System identification algorithms include linear, nonlinear, and hybrid identification,
according to the characteristics of the models to be estimated. The accuracy and stability
model of the clock source investigated in this thesis is a linear mathematical model.
However, because of the limitations of the instrumental resolution in the control circuit,
the model has some nonlinear characteristics. An accurate clock model can be created
through using the correct accuracy and stability model and the suitable system
identification.

Another research task is to estimate the accuracy of the enhanced oscillator in
holdover mode. For example, in locked mode, the oscillators in CDMA base transceiver
stations are required not to have atime error relative to Radio System Time (RST) greater
than +/- 1us. RST can be considered as the actual time. This target generally can be
reached because the oscillators are locked by GPS signals. When the GPS timing
reference signal is lost, the adaptive control module starts to create the correction signal
to correct the oscillator. The oscillator still drifts and the drift will get worse over time
because the adaptive control module cannot compensate the oscillator one hundred
percent accurately. There is a cumulative time error (CTE) that exists in the oscillator
relative to RST. In holdover mode, the oscillators in CDMA base transceiver stations are
required not to exceed +/- 10 us cumulative time error over an 8 hour time period relative
to RST [3]. The accuracy of the oscillator needs to be estimated in holdover mode, which

means the upperbound of the CTE needs to be estimated over a period of time in
5



holdover mode, given a specific system identification algorithm trained by the adaptive
control module. The upperbound of the CTE determines how much the oscillator can drift
relative to RST. This then determines whether or not the oscillator or the system
identification algorithm is suitable for the base station timing module. For instance, if the
upperbound of CTE over an 8 hour period in holdover mode is less than +/- 10us, the
oscillator and the system identification algorithm are suitable for the CDMA base station
timing module. If the upperbound of CTE over an 8 hour period in holdover mode is
larger than +/- 10us, which means that sometimes the CTE cannot be tolerated, the
oscillator or the system identification algorithm is not suitable for the CDMA base station
timing module. In this case, either a better system identification algorithm or a more

accurate and therefore expensive oscillator is needed.

1.2 Outline

The chapters in this thesis are organized as follows: Chapter 2 introduces
background information about the elements which affect the frequency accuracy and
stability of crystal oscillators. Crystal oscillators are major clock sources in modern
electronic systems. The main system identification algorithms are introduced in this
chapter as well, such as the Recursive Least Squares algorithm and the Kalman Filter
algorithm. Chapter 3 reviews the state-of-the-art of Adaptive Oscillator drift correction

algorithms. The timing module system in a base station is reviewed as well. The problem



statement is described in this chapter in detail. In Chapter 4, different system
identification algorithms for the creation of an accurate clock source are evaluated.
Chapter 5 addresses the CTE upperbound of clock sources in the system. A simple clock
model is created. This clock model only includes the linear temperature effect on the
oscillator accuracy. The parameter distribution of the clock model is investigated. In
Chapter 6, a more detailed clock model which combines the effect of temperature and
ageing are studied. The system identification algorithm and the CTE upperbound are
investigated for this more detailed model. Chapter 7 presents the conclusions and

proposes future work.

1.3 Contributions

The contributions of this thesis include:

e A new adaptive OCXO freguency drift correction algorithm is proposed. A
recursive system identification method is used to develop the adaptive
correction algorithm. A previous adaptive control algorithm for oscillators uses
the Batch Least Squares (BLS) method. The BLS method needs a large
memory and lots of computation. It also requires a matrix inversion
computation which is complex to conduct. The recursive system identification
method needs low memory and relatively less computation. The matrix

inversion computation is not necessary. Therefore, the recursive system



identification method is more suitable for developing the adaptive correction
algorithm.

Two main recursive system identification methods are evaluated. They are the
Recursive Least Squares (RLS) method and the Kalman Filter method. The
characteristics of these methods are investigated and the more suitable one, the
RLS method, is chosen.

A new system model is created. The simulation results show that the new
system model has better performance than the previous used model. The
maximum cumulative time error of the new system model in ssimulations is
lower than the old model.

The CTE upperbound of the oscillator enhanced by the adaptive correction
algorithm is investigated. There are no previous works to investigate the CTE
upperbound of oscillators when a specific system identification algorithm is
used to enhance oscillators. The CTE upperbound can determine the range of
applications of the enhanced oscillator. It also determines whether or not the

enhanced oscillator can replace a more expensive and more accurate oscillator.



Chapter 2: Background I nformation

In this chapter, the frequency accuracy and stability characteristics of crysta
oscillators are reviewed first. Some key factors which impact the frequency accuracy and
stability of oscillators such as temperature and ageing are reviewed. The reasons why
these factors are critical are explained. In the second section of this chapter, the main

system identification algorithms used in the thesis are introduced.

2.1 Frequency Accuracy and Stability Dependencies of
Crystal Oscillators

In the modern world, a vibrating quartz crystal is the heart of nearly all frequency
control devices. Quartz crystal oscillators provide relatively accurate time and are the
sources of relatively precise frequency. Quartz crystal oscillators are electronic circuits
which use the mechanical resonance of vibrating crystals of piezoelectric materials to
create periodically varying electrical signals. The frequency stability, low cost and small
size of quartz crystal oscillators have resulted in their ubiquitous usage as a frequency
reference in electronic equipment. Crystal oscillators as frequency sources and frequency
control components are most widely used in the time and frequency research and

production fields, such as IT Industry, Communications, Electronic Instruments, Applied



Electronic Techniques, Measurements, Aerospace Systems, Military

Table 2.1 shows the mgjor applications of Quartz Crystal Oscillators.

Industry, etc [4].

Military and Aerospace Research and Industrial Consumer Automotive
Metrology
Communications Atomic clocks Communications Watches and clocks Engine control, stereo, clock
Navigation Instruments Telecommunications Cellular and cordless Trip computer
[FF Astronomy and Mobile/cellular/portable phones, pagers
Radar geodesy radio, teleptone and Radio and hi-f
Sensors Space tracking pager equipment
Guidance systems Celestial navigation Aviation Color TV
Fuzes Marine Cable TV systems
Electronic warfare Navigation Home computers
Sonobuoys Instrumentation VCR and video camera
Computers CB and amateur radio
Digital systems Toys and games
CRT displays Pacemakers
Disk drives
Modems
Tagging/identification
Utilities

Table 2.1 Major Applications of Quartz Crystals[4]

The crystal resonator is the most important component of a crystal oscillator and the
guartz crystal is the “heart” of it. Although some other materials like ceramic resonators
have been developed, their frequency stability and accuracy cannot compare with quartz
crystals. According to different accuracy, stability and cost requirements, different types
of crystal oscillators are employed. The temperature dependence of the crystal resonance
is generally recognized as a first-order perturbation of the frequency accuracy of the
crystal oscillator. Compensation of the temperature dependence has resulted in a
classification of crystal oscillators based on the different temperature control methods,

such as SPXO (Simple Packaged Crystal Oscillator) which has no temperature
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compensation, TCXO (Temperature Compensation Crystal Oscillator) which uses analog
or digital temperature compensation circuits, OCXO (Oven Controlled Crystal Oscillator)
which uses an oven to control crystal temperature and DOCXO (Double Oven Controlled
Crystal Oscillator) which uses two temperature control ovens, one inside the other, to
further improve the stabilization of the crystal temperature relative to variations in the

ambient temperature.

2.1.1 Physical and Electrical Factors Affecting Crystal
Oscillator Frequency Stability and Accuracy

The frequency accuracy of a crystal oscillator is the offset from the specified target
frequency. The frequency stability of the oscillator is the spread of the measured
oscillator frequency around its operational frequency in a period of time. Figure 2.1
shows accuracy and stability examples for a frequency source. Factors such as
temperature, crystal ageing and retrace establish the frequency accuracy of the oscillator,
whereas reference signal noise (if the oscillator is locked to a reference), tuning port
noise, supply rail noise, and vibration establish the stability of the oscillator. With respect
to applications reliant on synchronization, random frequency perturbations with zero
mean are less significant compared to the frequency accuracy of the oscillator. The

dependence of synchronization on oscillator frequency accuracy is because time error is

11



the integral of the frequency error.

AN N—

Time Time Time Time
Stable but Not stable and Accurate Stable and

nhot accurate hot accurate EDHD T accurate
but not stable

Figure 2.1 Accuracy and Stability Examples for a Frequency Source [5]

2.1.1.1 Temperature

Temperature is a significant factor which affects the frequency of resonators.
Different crystal cuts have a different frequency-temperature characteristic. Figure 2.2
shows the frequency-temperature property of atypical AT-cut crystal resonator (here, AT,
SC, or GT represents different crystal cut methods). The term ¢ represents the cut angle.
One can see that crystals with different cut angles have different frequency-temperature

curves. Some crystal resonator temperature characteristics are listed as follows:
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=0y _ I | 0
=60 —40 —20 0

Figure 2.2 AT-cut Crystal Resonator Frequency-Temperature Properties [6]

1) The crystal cuts, in general, exhibit a cubic dependence on temperature [5].
2) In most situations, the zero temperature coefficient point can be changed through

changing the angle between crystal wafer and crystal axis.
3) In awide temperature range, like—55~ + 105°C, the relative frequency change

of AT and GT cut crystals can be limited to +2 x 10> with suitable angle processing.

21.1.2 Ageng
The crystal resonator frequency changes according to the operational time and this

13



physical phenomenon is termed ageing. A representative ageing plot is shown in Figure
2.3. In this figure, the X-axis represents time and the unit is day. The Y-axis represents
frequency accuracy and the unit is ppm (part per million). One can see that the ageing is
generally not linear. However, when the ageing effect is considered as a period of only

several hours, such as 24 hours, ageing can be considered linear approximately.

shott-tern
instability  (noise)

Fa¥
?f {ppm)
304
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L
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& &
v v

b 10 15 20 25 Time ( Day)

&
v

-
E 3

Figure 2.3 Ageing of Crystal Resonator [5]

It should be noted that although the plot is monotonic, this is not always the case
and the ageing rate can reverse sign over time. When the vibration mode of a crystal
wafer is Thickness-Shear, asin AT cut and SC cut crystals, ageing mostly results from:

1) Thermal gradient effect. This effect continues several minutes to several hours

after thermal equilibrium [6]. Figure 2.4 shows the temperature gradient effects and
14



warm-up characteristics of two OCXOs, each containing an oven which reaches the
thermal equilibrium in six minutes (Chapter “Warm-Up” in Reference [4] provides more
information about the warm-up property of oscillators). One oven contains an AT-cut
oscillator and the other oven contains an SC-cut oscillator. The frequency variation after
six minutes comes from thermal gradient effectsin Figure 2.4. One can see that an SC-cut
OCXO has much better performance than an AT-cut OCXO. One does not need to
consider the ageing rate before thermal equilibrium, because it only takes 3 to 10 minutes

for an OCXO and afew seconds for other oscillators.
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Figure 2.4 Warm-up Characteristics and Thermal Gradient Effects of AT-cut and

SC-cut Crystal Oscillators (OCXOs) [7]

2) Pressure release effect. This effect is a function of the heat process above, and

continues from 3 days to 3 months [6].
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3) The increase or decrease of the crystal polar plates mass, which is caused by gas
absorption or decomposition, continues for several weeksto several years|[6].

4) Crystal structure change caused by a defective crystal lattice, which is a long-
term effect.

In low-frequency quartz crystal resonators, when the vibration mode is face-shear,
the ageing rate is the lowest. The ageing rate is higher in the case of bending vibration
and extension vibration results in the highest ageing rate. When the vibration mode is the
same, a lower frequency and a bigger polar plate crystal experience a lower ageing rate.
Ageing effects can be divided into two time periods, the prior period and the later period.
The prior period ageing (for 1 to 2 months) has a higher ageing rate and this ageing rate
can reach up to 1 x 10~/ /month (i.e., the frequency accuracy changes by 1 x 10~/ per
month) to 1 x 10~8 /month. As for the later period, when a crystal has been operational
for 1~2 months, the ageing rate reduces to (1~3) x 1072 /month to (1~3) X

10~19/month.

2.1.1.3 Retrace

When power is removed from an oscillator for several hours, and then re-applied
again, the frequency of this oscillator stabilizes at a dightly different value. This
frequency variation error is called retrace error. It usually occurs for twenty-four or more

hours off-time followed by awarm-up time which is enough to reach thermal equilibrium.
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Retrace errors reduce after warming. The shape of the error curve is as follows: the
crystal walks back down its ageing curve when cold and then moves toward the prior
drift curve when activated. If the resonator isin its prior period, the retrace error is added
to the ageing drift, while with later period resonators the frequency looks for a new level
characteristic for alternating operation. Usually, retrace errors show less spread with SC
cut than with AT cut resonators. By careful selection of crystals, oscillators can decrease
the influence from the retrace effect which is as close as a few partsin 101° [8]. Retrace
is one of the factors that affect the frequency accuracy of OCXO. As for TCXO or other

oscillators, retrace is usually not considered a factor that significantly affects frequency

accuracy [4].
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Figure 2.5 OCXO Retrace [4]

Figure 2.5 shows how OCXO retrace influences oscillator frequency accuracy. The
X axis represents time and the Y axis represents frequency accuracy. In (a), the oscillator

was kept on continuously while the oven was cycled off and on. In (b), the oven was kept
17



on continuously while the oscillator was cycled off and on.

2.1.1.4 Other Factors

Besides the factors mentioned above, other factors which affect the frequency
accuracy of oscillators include Drive Level, Thermal Hysteresis, Frequency Pushing and
Pulling, Tuning port reference voltage drift, etc. Other factors which affect the frequency
stability of oscillators include Tuning port noise, Reference noise, Power supply noise,

Vibration-induced noise, etc [9][10].

2.1.2 Factors Comparison

Different factors affecting accuracy and stability of crystal oscillators have different
weights depending on the operating conditions of the oscillator. Temperature and ageing
drift are the most important factors which affect the accuracy of oscillators. In the case
that the thermal environment is stable, the ageing-induced frequency error may dominate
the frequency behavior of the oscillator. Alternatively if the thermal environment is
undergoing variations in a time frame that is short in comparison with the time required
for the oscillator to drift significantly with respect to the ageing rate of the crystal, then
the temperature-dependent frequency accuracy of the oscillator dominates the temporal
accuracy of the clock. Ranking of other factors is highly dependent on the working

environment of the oscillator and as such must be done on a case-by-case basis.
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Various kinds of noises are factors which affect the stability of oscillators. There are
no documents to compare which noise is the dominant factor, and thisis still based on the
specific application.

For example, one can consider an OCXO used in a wireless base station which
references the GPS signal to keep its frequency accuracy. When the GPS reference signal
is lost, the OCXO enters the “holdover” state and its accuracy drifts. Under normal
operation of the base transceiver station, the maximal cumulative time error of the OCXO
in a period of time (such as 24 hours) needs be limited and the OCXO accuracy needs to
be enhanced by voltage control circuitry. In this situation, one should focus on the factors
which affect the frequency accuracy of OCXO because the short term frequency stability
does not contribute to the cumulative time error. Temperature and ageing are the two
dominant factors. If the OCXO does not need to be frequently turned on and off, the

retrace effect is minor.

2.1.3 Parameters of Quartz Crystal Resonators

As the most important component of the crystal oscillator, quartz crystal resonators
have many technical parameters. Table 2.2 gives the characteristic parameters of atypical

5 MHz precise quartz crystal resonator.
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nominal frequency SMHz
crystal frequency difference — 5~ —13Hz
zero temperature coefficient point 55T £5C
frequency temperature coefficient (1—5) =10°%/C
quality factor (Q-factor) =2.2%10°
dynamic capacity c, 1 %10 *pF
dynamic inductance r., 8.5 H
_djﬁlallﬂc resistance Rq 110— 13060
static capacity C. _ —~ 4pF
overtone order 5 order overtone
size $19 % 45 mm?

Table 2.2 Parameters of a5 MHz Crystal Resonator [6]

Here, the nominal frequency is the frequency that the quartz crystal resonator is
designed to work at. The zero temperature coefficient point (also called the turnover point)
is the temperature at which the frequency-temperature coefficient reaches zero. The
crystal frequency difference means the difference between working frequency and crystal
series resonance frequency when the resonator is working around the zero temperature
coefficient point. The frequency temperature coefficient is the resonator freguency
accuracy for each Celsius degree variation, when the crystal works around the zero
temperature coefficient point (e.g. 50 degree to 60 degree here). The quality factor (Q-
factor) is the ratio of the frequency at which the resonator works and the rate at which it
dissipates its energy. A higher Q-factor indicates a lower rate of energy dissipation

relative to the oscillation frequency, so the oscillations die out more slowly. Dynamic
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capacity, dynamic inductance, and dynamic resistance are equivalent capacity, equivalent
inductance, and equivalent resistance of the resonators when resonators are working,
which are useful for circuit analysis. Static capacity is the capacity value of the resonator
when the resonator is not working, which is used in energy storage analysis of resonators.
The overtone order means the resonator works in overtone mode and the times of
fundamental mode frequency.

Most highly stable crystal oscillators use a thermostatic control oven to guarantee
high stability and accuracy. In athermostatic control oven, the temperature is tuned to the
zero temperature coefficient point. Table 2.3 shows the typical data for an MtronPTI’s
X05120 as an example to show the frequency accuracy over temperature achievable by

using OCXO technology. Figure 2.6 shows a block diagram of OCXO circuit.

Optional Temperature Ranges and
Frequency Stabilities (F/T)
OTR °C SC-Cut AT-Cut
0 to +50 +2x10” +2x10”
0 to +70 +2x107° +2x10°
-10to +70 +3x10” +2x10°
-30to +70 +3x107” +3x10°
-40to +70 +3x107° +3x10°
40 to +85 +3x107° +4x10°°

Table 2.3 Ranges and Their Frequency Stability of MtronPTI’s X05120 [1]
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Figure 2.6 Block Diagram of OCXO Circuit [6]

2.2 Main System ldentification Algorithms and Potter’s

Square Root Algorithm

Building mathematic models from observed input and output data is a basic factor
in science. Many mathematical algorithms have been developed in the control field for
different application areas. In this chapter, some classic system identification algorithms
used in the thesis are reviewed. They include the Recursive Least Squares method, the
Kaman Filter method, and the Recursive Prediction Error method. Potter’s Square Root

algorithm is also introduced. It serves as the auxiliary algorithm which can guarantee the
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normal operation of the system identification agorithm.

2.2.1 The Recursive Least Squares (RLS) Method

Consider alinear difference equation model below:
y@®)+ayt—-—1)+ +a,yt—m)=bult—1)+ -

+b,u(t —m) + v(t). (2.0

Here, { y(t)} is the output signal, and {u(t)} is the input signa. v(t) is the
disturbance signal, and usually it follows Gaussian white noise distribution. The model

(2.1) expresses the dynamic relation between input and output signals. It can be simply

rewritten as
y(@) = 6Tp() + v(0). (2.2)
Here,
0" = (ay ..a, by..by). (2.3)
e =(—yt-1) .—y(t—-n) ut—1) .. ut —m)). (2.4)

The observed variable y(t) can be expressed as an unknown linear combination of
the components of the observed vector ¢(t) plus noise. The objective of the system

identification algorithmsis to identify the parameter vector 6.
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For estimating the parameter vector 6, the ordinary method is to choose the estimate

by minimizing the difference y(t) — 67 ¢(t). One can write the cost function in Equation

(2.5):

Vn(0) =~ 24 [y(®) — 07 p(D)]? (2.5)

Then one can minimize V) (6) with respect to 6. Vy(6) is quadratic in 8, so it can

be minimized analytically by setting avg,g(e) = 0. The derived equation of the estimate of

6 iswritten in Equation (2.6):

L) = SR (-2 (¥(®) — 0T p(0) T (t) =0
= ILie®e" (10 =IOy

= 0= i@ e"OI I e®y(D) (2.6)

Equation (2.6) is the Batch Least Squares (BLS) method. The BLS method uses al
past input and output signals to estimate the parameter vector 8. Therefore, it needs a
large memory and a significant amount of computation. From Equation (2.6), one can see
that a matrix inversion computation is necessary. The BLS method is often used in offline

system parameter estimation.

Equation (2.6) can be written in a recursive way for online system identification
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purposes. According to [7], the term 8(t) denotes the estimate for 6 at time t. Then one

can write the derived equation of 8(t) recursively.

6()=0(t—1)+LDO[y®) - 8" - De@)], (2.79)
__ P(t—De(®)

L@®) = 1+¢T (O)P(t—1De(t)’ (2.70)
_ 4y _ Pa-De®)e" (®P(-1)

P(t)=P(t—-1) T P19 (2.7¢)

Equation (2.7) is the Recursive Least Squares estimate. The term L(t) is the gain
vector. The term P(t) represents the covariance matrix of 8(t). The expected value of
6(t) is@. According to [7], 8(t) converges to & when the training time approaches
infinity. Generally, the initial value of P(t) isP(0) = C - I, where C is a large constant
and I isthe identity matrix. Theinitial value of (t) is8(0) = 0.

In the recursive calculations, for storing only finite information of (k) for k < t,
the forgetting factor A is introduced, which is a number less than 1 but close to 1 such as

0.99999. According to [11], Equation (2.7) can be rewritten as:

6) =0(t—1D+L®[y®)—8"(t— Do®) (2.8a)
0 = et e

P(t—-Do )T (®)P(t—1)
[P(t—1) — s ]

P(t) = A+oT(OP(E—De(t)

R

(2.8¢c)

Equation (2.8) isthe basic equation used in the thesis.
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2.2.2 Potter’ s Square Root Algorithm

In Equation (2.8), P(t) is an important term, which determines the distribution of
A(t) at time t. For correctly updating P(t) and 8(t), P(t) should always be positive
definite symmetric. However, due to numerical limitations, this property of
P(t) sometimes cannot be guaranteed. Therefore, some algorithms have been devel oped
to solve this problem. Here, Potter’s Square Root algorithm is introduced. This algorithm
guarantees that the P (t) matrix remains positive definite symmetric [7].

When P(t) is positive definite symmetric, it can be decomposed as

P() = Q(®QT (D) (2.9)

Here Q(t) is anonsingular matrix. Potter’s Square Root Algorithm is based on the
factorization Equation (2.9). The matrix Q(t)is calculated in the following algorithm [7].
At theinitial timet = 0, Q(0)Q” (0) = P(0)

At timet, update Q(t — 1)by performing steps 1-5.

L f(®)=Q"(t— Do)

2. &) =2+ fT(Of ().

3. a(t) = 1/[B(&) + VB®OA®D)]
4. L(t) = Q(t — Df().
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5 QM) =[Qt -1 —a@®L®Of ®)]/JA®) (2.10)

The vector L(t) is the normalized form of the gain vector L(t). The relation

between themiis;

_ Lo
L) = 55 (2.12)

6(t) can be updated by Equation (2.12).

0(t) =0(t—1) +L(® [ﬁ((?)] (2.12)

Here, (t) isthe update residual, and it is computed in Equation (2.13).

e®) = y(@©) — 0Tt —De(t) (2.13)

Then P(t) can be calculated by Equation (2.9).

2.2.3 The Kaman Filter Method

The Kalman Filter method is widely used in state estimation. It can also be used in
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parameter estimation problems. The general Kalman Filter equations for estimating the

system stete are:
x(t+1) =F@t)x(t) +w(t) (2.14a)
y(t) = H(t)x(t) + v(t) (2.14b)

The term x(t) is the system state, and y(t) is the system output. The term F(t) is
the state transition matrix, and H(t) relates the system state to the system output. The
term w(t) is the process noise and v(t) is the measurement noise [12]. From Equation
(2.2), one can write the linear regression equation:

9(t16) = o™ ()0 (2.15)

For casting Equation (2.15) into the Kalman Filter method Equation (2.14), one can
modify Equation (2.14) to Equation (2.16):

O(t+1) =0(t) +w(t) (2.16a)

y(®) = " (©)0() + v(t) (2.16b)

One can assume:

R, (t) = Ew(®)wT(t) (2.17)

R,(t) = Ev(t)vT(t) (2.18)

Here, both w(t) and v(t) should be independent Gaussian white noise.

One can get Equation (2.16) by setting F(t) = I, H(t) = ¢ (t) and x(t) = 8(t) in
Equation (2.14).

Then the recursive parameter estimation equation of the Kalman Filter form can be

written as:
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6) =0(t—1D+LW®[y®)—8"(t— Do®) (2.19a)

— P(E-De ()

L®) = A+R2 (O +¢T (P (- () (2.19b)
_1 4y _ _PE-De®)e" ()P(-1)

PO) =3[Pt =D — o orene T R10] (2.190)

When R,(t) # 0 in (2.19c), the agorithm is tracking a time-varying parameter

system. When R, (t) = 0, the algorithm is tracking a time-invariant system.

2.2.4 The ARMAX Model and the Recursive Prediction Error
Method

One can modify the basic linear difference Equation (2.1) to Equation (2.20).

A@ Dy ® = B(@ Hu@®) + (@ De(®) (2.20)

Here, ¢! isthe backward shift operator:

qa'y®) =yt-1) (2.21)
Therefore,

A HY=1+a,g '+ +a,q™ (2.22)
B(@g Y =bigt+b,q 2+ +b,q ™ (2.23)
C@H =14+ ciqg*++cq™ (2.24)

In Equation (2.20), the disturbance term e(t) is aso modeled. This is known as the
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ARMAX model. One should notice that the general RLS method cannot be simply
applied to the ARMAX model if the precise covariance matrix P(t) is needed, because
the disturbance term C(g~1)e(t) is not independent on the last disturbance
term C(qg De(t — 1).

For solving the ARMAX model, the Recursive Prediction Error Method (RPEM)
should be applied. A simple first-order ARMAX model can be used to demonstrate how
RPEM works.

Consider the ARMAX model in Equation (2.25):

y(t) = au(t) + e(t) + be(t — 1). (2.25)

Here, e(t) is a sequence of independent white noise. The parameter is6” = (a  b).
RLS method or Kalman Filter method cannot be used directly here becausee(t — 1) is
not known.

The natural prediction of y(t) is:

y(t|8) = au(t) + bé(t — 1) (2.26)

é(t — 1) iscalculated recursively with:

é(s) = y(s) —au(s) —bé(s — 1) (2.27)

One can evaluate the prediction error

e(t]0) = y(t) — 9(t|9) (2.28)

Y(t, 0) isintroduced here, which isthe gradient of —e(t|8) with respect to 6.

From [7], one can get:

Y(t,0)+byY(t—1,0) = (u(t—1) e(t—1,0)) (2.29)
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Then the vector ¢(t) isintroduced in Equation (2.30).

p(®) = (u(t—-1) et—-1)" (2.30)
Rewrite (2.28) for £(t|0) as.

e(t) = y(t) =67 (t — Do (D). (2.31)
Rewrite (2.29) as.

P() = =b(t — Dp(t — 1) + ¢(t) (2.32)
Equation (2.32) isatypical approximation of the gradient.

The estimated parameter vector is:

Ot—1)=(@t—-1) b-1) (2.33)
The Recursive Prediction Error Method (RPEM) can be given as

(t) =0(t— 1)+ P(OyY()e(t), (2.34a)

_ 4y _ Pa-Dy @y (©)P(-1)
P(t)=P(t—-1) T OPE—1P O (2.34b)
From Equation (2.34) and the definition of e(t) and y(t), the agorithm for an
ARMAX model of arbitrary order can be constructed.

The detailed RPEM deduction process is complicated. Anyone who is interested in

this algorithm can refer to [7].
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Chapter 3: Problem Statement

Highly accurate and stabilized timing modules are important in many electrical
systems, such as wireless communication base transceiver stations. Such timing modules
are expensive, have high power consumption and a large size. Building a low cost, low
power consumption and small size timing module with the same high accuracy and
stability is an important research objective. Some researchers have developed adaptive
control algorithms for oscillators to meet the objective. [13] developed an agorithm for
performing adaptive temperature and ageing compensation of oscillators. This algorithm
is based on a Recursive Least Squares method. The performance of the algorithm is
presented by employing it to a TCXO, an OCXO, and a Rubidium oscillator. The
algorithm improves the performance of all of these oscillators in holdover mode.
However, [13] did not consider the instability problem of GPS signal and did not analyze
the characteristics of correction signal created through GPS signal. [14] and [15] used the
Kaman Filter method to develop algorithms for enhancing the oscillator stability in
holdover mode. These algorithms compensate the ageing effect of oscillators in a long
period of time. They did not compensate the temperature effect. They also did not analyze
the characteristics of correction signal. [16] used the Kalman Filter method to develop an
algorithm to compensate the ageing and temperature effect. [17] used the Batch Least

Squares method to compensate the temperature effect. Both [16] and [17] used the same
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correction signal creation model and they can meet the CDMA base station timing
requirements. However, algorithms developed from [16] and [17] assume the linear
stability dependencies of oscillators which may not be true in most situations. This thesis
is based on [17]. The system concept and hardware structure of [17] are described in
Section 3.1 in detail.

The performance bound of oscillator when the adaptive control algorithm is used is
another objective. The performance bound can determine whether the adaptive algorithm
can meet system requirements. Generally, the performance bound of the adaptive control
algorithm is represented by the cumulative time error of the oscillator. So far, there are no
papers to investigate the performance bound of oscillators using adaptive control
algorithms. Thisthesiswill try to investigate this problem.

In this chapter, a useful adaptive OCXO drift correction agorithm and related
system structure based on [17] are reviewed. Then the deficiencies of this algorithm are
demonstrated. In order to meet the actual application requirements, a more

comprehensive adaptive method is needed.

3.1 Review of an Adaptive OCXO Drift Correction
Algorithm

WiIMAX and CDMA base stations all need to be time synchronous with respect to

RST (radio system time). GPS (global positioning system) satellites which are equipped
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with ultra-high accuracy atomic clocks generally serve as these time servers. They
provide a 1 pulse per second (1 pps) signa to which the wireless base stations are time
synchronous through phase lock. This state is termed locked mode. In contrast to the
locked mode, when the base stations lose their external frequency reference, they enter
holdover mode. In the holdover mode, the frequency accuracy of the base station is
totally dependent on its timing module.

According to [3], in the locked mode, the WiMAX and CDMA base stations must
have a time offset relative to RST lesser than +1 us. In the holdover mode, relative to
RST, the CDMA base station 1pps signa must not exceed +10 us time error over an 8
hour period. A WiIMAX base station must not exceed +25 us time error over an 8 hour
period. The system design must be based on the specification above. The time error At
and the time duration T for which the frequency stability error is preserved are related to

the stability of the oscillator Af /£, through Equation (3.1) [17].

a4y (3.2)

Applying Equation (3.1) to the CDMA time error of +10 us over an 8 hour period
in holdover mode, one can get the maximum allowable frequency error of the oscillator
of +0.35 ppb (parts per billion). With the purpose of meeting this accuracy requirement
over a75 C operation temperature, a double oven crystal oscillator (DOCXO) is applied.

Due to the cost, size and power consumption limitation of the DOCXO, it is feasible to
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apply an adaptive modeling of the base station timing module during the locked mode
and use the resulting model to correct the oscillator frequency drift during holdover mode.

In [16] and [17], a single oven crystal oscillator (OCXO) is used and the Batch
Least Squares (BLS) fit algorithm is applied to compensate for the OCXO deficiencies to
meet the CDMA and WiMAX base station timing module specification in holdover mode.
Table 3.1 shows the difference between DOCXO and algorithm-enabled OCXO in the

base station. Some advantages of using OCXO are apparent from this table.

I ncumbent Algorithm Enabled
Component parameter
DOCXO OCXO
DC supply requirement +12V +5V
DC power consumption warm
9.6W 3.5W

up
Peak to peak frequency
stability over operational 0.4ppb 4ppb
temperature ppb/75°C
Ageing ppb/24hours +/-0.05ppb +/-1ppb
Dimension (L x W x H)/mm 50x 50 x 38 254x254x12.7
Cost involume 10K / USD ~$250 ~$50

Table 3.1 Incumbent DOCXO and Algorithm Enabled OCXO [17]

35



Besides the low cost of the OCXO, the smaller power consumption and small size
alow the timing module to be integrated onto the base station modem card. Using a
modem card results in large cost saving as the DOCXO has to be built on a standalone

module.

3.1.1 Timing Module System

The detailed system structure block diagram of the base station timing module is
shown in Figure 3.1.

V GPS antenna

GPS RX
module
. Y — Adaptive
Digital phase | Correction signal 5| Oscillator
detector calculator Model
x v y
Freqllleu.cy Locked| | Awverage
multiplier Mode | | correction
A
10MH=z DAC ‘0) H;ﬁ?ﬁer
OCXO  |&{ DAC |&| Step H
Temp sensor value
DAC input
switch

Figure 3.1 Detailed Block Diagram of the Timing Module System [17]

The GPS receiver module offers a 1pps reference signal, which is coming from
GPS satellites. Because all GPS satellites are equipped with ultra-high accurate rubidium

atomic clocks, this 1pps reference signal is very precise. The stability of the GPS 1pps
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signal is not that high compared to its accuracy. Typically, the GPS receivers can bring in
a GPS noise from 20ns to 30 ns rms (root mean square) jitter on the 1pps edge.

The whole digital control 1oop includes the digital phase detector, correction signal
calculator, and the adaptive oscillator model. All of these functional models are resident
on a Field Programmable Gate Array (FPGA), which includes a processor. A frequency
source which is generated from the frequency multiplier is used to count the time interval
between the rising edges of the 1pps reference signa from the GPS receiver module. A
10MHz OCXO is used to feed this frequency multiplier. The digital phase detector counts
the numbers of periods of the frequency source. According to the count value, the
correction signal is computed by the correction signal calculator. This correction signal
then is applied to a Digital to Analog Converter (DAC) to control the 10 MHz OCXO and
it is also used to feed the adaptive oscillator model which can be used when the system
loses the GPS signal. A temperature sensor is used to collect the ambient temperature.

The 10MHz OCXO is the key component of the timing module, which is locked to
the GPS reference signal through the control loop in the locked mode. In the holdover

mode, the adaptive oscillator model creates the correct signal to the OCXO.

3.1.2 Digital Control Loop

Referring to Chapter 2, the accuracy of the OCXO is dependent on many factors.

The correction signal generated by the control loop compensates for the effect of these
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factors on the accuracy of the OCXO. In this section, the control loop is introduced in

detail.

|
e o | W e A WM

GPS 1PPS signal

]
count value n

—»

g

Figure 3.2 Frequency Multiplier Output Counting GPS 1pps Signal

In order to introduce the control loop, the first step is to introduce error counts.
Figure 3.2 indicates how the frequency signal generated by the frequency multiplier is
used to count between the rising edges of the GPS 1pps signal. For example, we assume

the frequency of the frequency multiplier output is 160 MHz. Then the period of the
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output is 6.25 ns. If thereis no GPS noise and the oscillator does not have frequency drift,
the length between two adjacent rising edges of the GPS 1pps signal should be just 1
second. The number of 160 MHz clock cycles between two adjacent rising edges of the
GPS 1pps signal should be just 160,000,000. The number 160,000,000 here is the count
value. However, the count value may not be 160,000,000 because there are dways GPS
noise and frequency drift. When the OCXO has no frequency drift, the count value is
equal to the frequency of the frequency multiplier output +/- the error counts. These error
counts are generated by the GPS noise. Generally, the GPS noise has a standard deviation
from 20 ns to 30 ns in 1ppssignal.

In Equation (3.2), the term a represents the actual time interval between the rising
edges of the 1pps signal. The term [ represents the digital phase detector resolution. The
count value is represented by n. For example, f equals to 6.25 ns and the frequency
multiplier output frequency is 160 MHz. The time interval « is 1 second plus 25 ns. The
actual count valueis:

%+v=%+w=160x106+4+w (3.2

The term w represents the inherent random error in the counting and it cannot be
avoided. w is chosen from 1, -1, or 0 randomly according to different phases. Therefore,
the actual error count in this equation is 3, 4, or 5. The term w does not affect the mean

value of the error counts when there is no frequency drift and the mean count value
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should be zero.

When the OCXO has frequency drift, this drift appears as a bias on the mean count
value. A moving average filter is used by the control loop to divide the OCXO frequency
drift from the GPS noise of the receiver. The error counts are multiplied by the digital
phase detector resolution to produce the time error between the OCXO and the received
GPS 1pps signal. All time errors are integrated to create the cumulative time error (CTE).
CTE can be recursively calculated through Equation (3.3). The digital phase detector
resolution is still denoted by . The term ¢ is used to denote error counts. k represents
how many seconds the timing module has been running for. Therefore, CTE), represents
the cumulative time error when the timing module has been running for k seconds. The
term ¢, represents error counts at the k-th second. According to Equation (3.3),

CTE, must be multiples of 3.

CTEk = CTEk_l + ﬁ * & (33)

The correction signal is created by combining the CTE and a moving average of the

former correction signals.

1 ke
correct,,r = NZ't‘:kl_N C, (3.4)

Cy = correct,.s — CTE)/damp (3.5
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In Equations (3.4) and (3.5), C; denotes the correction signal at time t and C,
denotes the correction signal at time k. The term correct,.r which is the average value
of the last N correction signals provides an equilibrium point about which the CTE acts.
The term N is a large constant such as 2000. The term damp is a constant such as 150. It
is used for suppressing the GPS receiver noise. A digital to analog converter (DAC) is
used to convert the digital correction signal into an analog tuning voltage. The whole
process of determining the tuning voltage is. first, the correction signal which is digital
and expressed in ppb (parts per billion) is divided by the OCXO tuning sensitivity (Kvco),
which is expressed in ppb/volt. Therefore, the voltage which is applied to the tuning port
of the OCXO is obtained. Second, the tuning voltage is divided by the DAC resolution
which istheratio of the control voltage range to the total number of DAC steps. Then the
actual number of DAC steps is obtained, which is a binary word. The calculation of the

DAC stepsiis:

DACsteps _ fix{ correction signal } (36)

Kvco *DAC resolution

The operator fix(:) truncates the arguments in the brackets toward zero. For
example, fix(2.1) = 2 and fix(—1.6) = —1. fix(:) is used in Equation (3.6) because
DAC steps must be an integer. This DAC steps value is fed into the DAC to get the real
control voltage.

Figure 3.3 shows the block diagram of the digital control loop.
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Figure 3.3 Block Diagram of the Digital Control Loop

3.1.3  The Adaptive Control Algorithm

Although there are many factors affecting the frequency accuracy of the OCXO, the

two most important factors are temperature and ageing. When the OCXO is locked to the

GPS satellite reference signal, we refer to this as the OCXO be in a training mode. The
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temperature in the crystal oven of OCXO is limited to a small range around the turnover
point. The turnover point refers to the temperature at which the frequency-temperature
ratio is zero. The temperature is linear related to the frequency stability of the oscillator at
the turnover point, so it can be assumed that a straight line fit is applied to the
temperature and the correction signal. A Batch Least Squares (BLS) method is used to
determine the coefficients of the straight line fit [17] [18] [19]. The ageing effect is not

considered, so the OCXO model equation is:

yi=a; x;+a; +v; (3.7)

Here, y; representsthe i,;, frequency stability reading of the OCXO.

yi =2 (38)

The term x; represents the i,;, termperature sensor reading. The term a; represents
the initial offset of the frequency stability and a, represents the thermal sensitivity of the
crystal resonator frequency stability. The term v; represents the GPS receiver noise.

The term r; is used to represent the residual between the frequency stability reading
and the frequency stability prediction. The term o; is used to represent the difference

between the mean value of the y; data set and the i,;, data point.
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0, =y =Y (3.9)

s=Y, (ﬂ)2 (3.10)

The algorithm minimizes S to obtain the optimal estimation of the coefficients a,
and a;.

o; i1s used here to decrease the impact of outliers on the line fit by decreasing the
weighting on large residuals.

From Equation (3.7), it follows that the frequency stability predictionis:
y=a, x;+a (3.12)

Substituting Equation (3.11) into Equation (3.10):

(@ xitai)\2
s=Y, (—yl Gzt 1>) (3.12)
Equations (3.13) and (3.14) are obtained by setting the partial derivatives of S with

respect to the coefficients a; and a, to zero.



B =y, -2 (Lf“)) =0 (3.13)

da; o;

;752 =¥, —2x (%ﬁ) =0 (3.14)
Set:

S, = Ziaiiz (3.15)
S, = Zi% (3.16)
Sy =Yiz (3.17)
Sxx = Zl% (3.18)
Sey =X xj,'? " (3.19)
A=S,-S, —S? (3.20)

Expanding Equations (3.13) and (3.14) results in Equations (3.21) and (3.22):

i 1 i
2% +2 i +2 4,55 =0 (3.21)

—Zzixl%/l+2'a12i%+2'a22i%:0 (322)

0;

The coefficients a; and a, are obtained by substituting Equations (3.15) to (3.20)

into Equations (3.21) and (3.22).

Q= (Snyx - Sxny)/A (3.23)
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a; = (515 — 5xS,)/A (3.24)

Equations (3.9) to (3.24) for calculating a; and a, are actually the Batch Least
Squares (BLS) method which isintroduced in Section 2.2.1.
High precision OCXOs have an ageing rate of less than 1lppb per day, which

correspondsto 1.157 x 10~ ppb/sec. One can assume that the ageing effect is linear:

Af _ .
(f_o)ageing = rateggeing - time (3.25)

The cumulative time error according to ageing is obtained by integrating Equation
(3.25) with respect to time.

CTEqgeing = %rateagemg - time? (3.26)

If the holdover mode lasts for 8 hours and the ageing rate is exactly 1ppb per day,
the cumulative time error in terms of ageing would be 4.8 us. This time error can be
tolerated by the WiMAX specification of 25 us and CDMA specification of 10 us for 8-
hour holdover times. Accordingly, ageing effect is not considered in this adaptive

algorithm.

Figure 3.4 illustrates the operation of the adaptive control algorithm.
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Figure 3.4 Flow Diagram for Adaptive Control Algorithm [17]

The data buffers store the values of the sums of Equations (3.15) to (3.19), which
are periodically set to zero to prevent overflow errors. When a predetermined ambient
temperature variation is met, one can consider that enough input samples are obtained.
Then the BLS method can be considered to have converged to a sufficiently accurate
level and the calculated model coefficients are considered applicable for use during

holdover mode.
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3.1.4  Simulation of the Adaptive Control algorithm

A software test platform which is based on Matlab is developed by [17] to confirm
the correct operation of the adaptive control algorithm. Anideal OCXO model is created
which contains the linear frequency dependence on temperature and linear frequency
dependence on ageing. The ageing rate is set to 1ppb/day and the temperature sensitivity
of the OCXO frequency stability is set to 4ppb/75°C respectively. The test platform
switches between the locked mode and holdover mode. A second OCXO model which is
not enhanced by the adaptive algorithm isrun in parallel for comparing the results of the
cumulative time error and showing the impact of the algorithm.

The ambient temperature variation profile is fixed and is illustrated in Figure 3.5.
Figure 3.6 illustrates the ssimulation result of the BLS fit of the temperature model and the
correction signal data readings. The solid straight line through the data points represents
the BLS fit. Figure 3.7 graphs the cumulative time error for the uncorrected OCXO and
the corrected OCXO respectively when the models are in the locked mode for 4 hours

and then in holdover mode for 8 hours.
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Figure 3.7 CTE for the Uncorrected and Corrected OCXO

From Figure 3.7, it can be found that the algorithm provides a 10-fold improvement
in the cumulative time error for the corrected OCXO over the uncorrected OCXO. The
WiIMAX and CDMA specifications can be met with the corrected OCXO as the timing

module when the ageing rate of the oscillator is not considered.

3.2 Deficiencies of the Adaptive Control Algorithm

The adaptive control algorithm for improving frequency accuracy of the OCXO

described in the last section is very practical for the timing module of the WiMAX and
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CDMA base transceiver stations. However, this control algorithm still has some
deficiencies. First, the adaptive algorithm above uses the BLS method, which needs data
buffers to contain the parameters. Actually, a Recursive System Identification method is
more suitable for this on-line parameter estimation problem. In contrast, the BLS method
is more suitable for off-line parameter estimation problems. By using a Recursive System
Identification method, the required computation of the processor in the timing module is
decreased significantly. Many Recursive System Identification methods are developed,
and these methods are very mature, such as the Kaman Filter method and the Recursive
Least Squares method. Therefore, we have more options in developing the adaptive
control algorithm. According to the performance of these algorithms, the best one can be
chosen.

Second, the adaptive algorithm above does not consider the ageing effect on the
frequency stability of the OCXO in the timing module. In the last section, when the
holdover mode lasts for 8 hours and the ageing rate of the OCXO is 1ppb/day, the
cumulative time error with respect to the ageing effect is4.8 us. This result satisfies the
specification of the timing modules of WiMAX and CDMA base stations. However, with
the development of wireless communication technology, the requirement of the
cumulative time error of the timing module is becoming more stringent. In addition,
longer holdover periods are desirable. Therefore, the ageing effect of the OCXO should
be considered in the adaptive control algorithm.

Third, a straight line fit is applied in the adaptive agorithm. The real relation
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between the temperature and the frequency stability correction signal of the OCXO is not
linear. In fact, it is more like a quadratic function. A linear fit only satisfies the
requirement on the temperature sensitivity estimation for the OCXO. A quadratic curve
fit is applied to the temperature and correction signal data for more accurate system
identification.

Fourth, the upperbound of the cumulative time error of oscillator is another
interesting problem for some applications. The parameters predicted cannot be one
hundred percent accurate because, according to the system identification theory, the
parameter estimates converge to the real coefficients when the training time approaches
infinity. When the training time is finite, the distribution of parameter estimates can
determine the error range of the predicted values of the parameters. Applying this error
range to the timing module, the upperbound of the cumulative time error of the OCXO
enhanced by the adaptive control algorithm is determined. Many engineering applications
can apply this upperbound of the cumulative time error to determine if this adaptive
algorithm is suitable, given their specifications.

The problems stated in this section are the main research tasks and solved in the

subsequent chapters.
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Chapter 4. Training Algorithmsfor a Simple
M odel

In this chapter, the Recursive Least Squares (RLS) method is evaluated and
compared with the BLS method. Then the Kalman Filter method is evaluated and

compared with the RLS method.

4.1 Adaptive Control Algorithm with RLS Method and BLS
Method

In the last chapter, a BLS method is used to estimate the temperature sensitivity
parameter to improve the frequency stability of an OCXO. In this section, the Recursive
Least Squares method is used to develop the adaptive agorithm. For simplicity, a linear
fit is applied to the temperature and correction signal data. The ageing effect is ignored

and the initial frequency offset is zero. The OCXO model equation is of the general form:

y(t) =6 -x(t) + v(t) (4.1

Where the term y(t) is the correction signa defined in Equation (3.8), 8 is the
temperature sensitivity of the OCXO. The term x(t) represents the ambient temperature

around the OCXO and the measurement noise in the system isv(t). The task is to
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estimate the value of 6.

First, the performance of the BLS method is compared with the RLS method. The
performance of system identification methods is determined by the cumulative time error
of the OCXO. The cumulative time error is calculated through simulation and Matlab is
used as the simulation platform.

The BLS method uses Equation (2.6) to estimate the parameter and to calculate the
CTE. All past input and output data are needed to operate Equation (2.6) and no initial
values are needed.

The RLS method uses Equation (2.7) to estimate the parameter and to calculate the
CTE. The initial values of 8(t) and P(t) are needed. Referring to Section 2.2.1, we
initialize #(0) = 0 and P(0) = C - I. Here, C is a large constant and I is the identity
matrix. In this thesis, C is set to 900. The estimated parameter 8(t) is a scalar in this
simple model, and P(t) is proportional to the covariance matrix of 8(t). Hence, P(t) isa
scalar and it equals to 900 in this section. The forgetting factor A is set to 0.99999. In
each step of the recursive calculation, one only needs to update P(t) and 8(t), and the
total computation load is much lower than for the BL S method.

In order to update P(t) and 8(t) correctly in the RLS method, P(t) needs to be
positive definite symmetric in each step. This property of P(t) may be corrupted in the
recursive computations. We applied Potter’s Square Root Algorithm on the Recursive
Least Squares method to overcome this problem, as described in Section 2.2.2. In this

algorithm, by setting Q(0)Q” (0) = P(0) and only updating Q(t) in each step, we obtain
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P(t) viaEquation (4.2).
P(t) = Q()Q" (1) (4.2)
By using this method, the matrix P(t) is guaranteed to be positive definite

symmetric.
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Figure 4.1 Maximum CTE and Fifth Maximum CTE for 8 Hours Holdover with

BLS Method

The performance of the BLS method is shown in Figure 4.1 and the performance of
RLSisshown in Figure 4.2.

In Figure 4.1 and 4.2, the holdover mode time is 8 hours and the training time is
from 1 hour to 10 hours. The temperature profile which represents the input data is
presented in Figure 3.5. For each training time, the ssimulations are run 100 times. The
maximum cumulative time error and the fifth maximum cumulative time error are

recorded. The X-axis shows how many hours the algorithm is trained. The Y-axis
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represents the cumulative time error and the unit is us. The solid line represents the

maximum CTE in 100 simulations according to the different training time.
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Figure 4.2 Maximum CTE and Fifth Maximum CTE for 8 Hours Holdover with

RLS Method

For example, when the X-axis coordinate value is 5, the Y-axis value on the solid
line is approximately 1.7 in Figure 4.2, which means that when the algorithm is trained 5
hours and the holdover mode lasts for 8 hours, the maximum CTE with the RLS method
in 100 simulations is approximately 1.7 microseconds. The maximum CTE in 100
simulations can approximately represent the upperbound of CTE. The dashed line
represents the fifth maximum CTE in 100 simulations according to the different training
time. For example, when the X-axis coordinate value is 6, the Y-axis coordinate value on

the dashed line in Figure 4.1 is approximately 1.2, which means when the algorithm is
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trained 6 hours, the fifth maximum CTE with the BLS method in 100 ssimulations is
approximately 1.2 microseconds. The fifth maximum CTE in 100 simulations can
approximately represent the 95% probability CTE upperbound because there are 100
simulations. The 95% probability CTE upperbound corresponds to the 95% confidence
interval of the parameter estimate. The 95% confidence interval is an important parameter
investigated in subsequent chapters. We can see that in Figure 4.1 and Figure 4.2, there is
an obvious drop when training time is 7 hours. In theory, the maximum CTE in 100
simulations should be monotone decreasing along with training time increasing. However,
when training time is long enough, such as more than 4 hours in this example, the
simulation results of maximum CTE are not necessary to be monotone decreasing
because the CTE is low enough. These results are totally normal. Because the same
simulated input and output data are used for training BLS and RLS methods and they
produce similar parameters, Figure 4.1 and Figure 4.2 have similar maximum CTE and
95% maximum CTE plots. This situation also happens when Kalman Filter method is
used below and the similar plot is produced because the same input and output data are
still used for training Kalman Filter method.

The performance of BLS and RLS are determined by their CTE upperbound. One
can see the performances of both methods are amost identical. However, the BLS
method needs all past input and output data to estimate the parameters and needs the
matrix inversion computation which is not needed in the RLS method Therefore, alarge

memory is needed and the computation load of the BLS method is aso heavier than the
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RLS method. In the RLS method, the covariance matrix of 8(t) can be calculated
through P(t). This covariance matrix is important to calculate the analytical CTE
upperbound of the OCXO. The BLS method cannot calcul ate the covariance matrix of the
parameter estimate. Therefore, in this thesis we use the RLS method to replace the BLS

method because of the advantages of the RL S method above.

4.2 Adaptive Control Algorithm with Kalman Filter Method

Besides the Recursive Least Squares method, the Kalman Filter method is another
efficient recursive system identification method. Referring to Section 2.2.3, in addition to
initializingf(0) = 0,P(0) = 900, and A = 0.99999, which are the same as for the
Recursive Least Squares method, one also needs to know the covariance matrix R, (t) of
the process noise w(t), and the covariance matrix R, (t) of the measurement noise v(t).
For the convenience of the readers, the Kalman Filter Equations (2.16) to (2.18) are

rewritten as Equations (4.3) to (4.5).

O(t+1) =0(t) +w(t) (4.33)

y(@®) = @"(®)0(t) + v(t) (4.3b)

We assume:
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R.(t) = Ew(®)w' (t) (4.4)

R,(t) = Ev(t)vT(t) (4.5)

If R,(t) and R, (t) are known exactly, the Kalman Filter method is the best system
identification method [20]. Unfortunately, these quantities are seldom known a priori.
They are aways the design parameters in the estimation algorithm. One can choose
Ri(t) = 0and R,(t) > 0 in order to get the desired properties of the filter [21]. In this
simple application, given that the parameters are time invariant, we set the term R, (t) to
zero and set the term R, (t) to 4. The reason is that the Kalman Filter does not need an
accurate model as long as the gain vector L(t) in Equation (2.19) keeps away from zero

[20]. A setting of R, (t) = 0 and R,(t) > 0 can guarantee this requirement.
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Figure 4.3 Maximum CTE and Fifth Maximum CTE for 8 Hours Holdover with

Kaman Filter Method
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By applying the initial values and the covariance matrix of the noise into Equation
(2.19), the parameter estimates 6(t) are obtained recursively. By applying the same
settings used in Section 4.1, the performance of the Kalman Filter method is evaluated.
The maximum cumulative time error and the fifth maximum cumulative time error in the
100 simulations are recorded. These results are shown in Figure 4.3. The X-axis and Y-

axisin Figure 4.3 have the same meanings asin Figure 4.2.

4.3 Discussion

Comparing Figure 4.2 with Figure 4.3, we find that the performances of the RLS
method and the Kalman Filter method are almost identical. However, the RLS method is
simpler than the Kalman Filter method. It does not require us to set the covariance matrix
of the process noise and measurement noise. In the RLS method, the covariance matrix of
the parameter estimates determines the distribution of the parameter prediction. This
covariance matrix is obtained by calculating the product of P(t) and the variance of the
prediction error. The prediction error is the difference between the correction signa

y(t) and 8(t) - ¢ (t) and is shown in Equation (4.6).

Prediction error(t) = y(t) — 8(t) - ¢(t) (4.6)

The distribution of the parameter prediction is critica for computing the CTE
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upperbound of the OCX O analytically. This analytical result of the CTE upperbound is an
important task of the thesis. In different experiments, the oscillator may show different
cumulative time errors. Sometimes the CTE is large and sometimes it is small. When the
oscillator is manufactured, one does not know if this oscillator is suitable for the specific
application because of the random CTE. The CTE upperbound is the maximum CTE of
the time module over a period of time. The analytical CTE upperbound is the maximum
CTE analytically derived.

In the Kalman Filter method, the different settings of R;(t) and R, (t) affect the
final result of the covariance matrix of the parameter estimates. Computing the correct
covariance matrix of the parameter estimates in Kalman Filter method is more difficult
than in the RLS. Hence, computing the analytical CTE upperbound in Kalman Filter is
more difficult than in the RLS. The use of the Kalman Filter method is not as convenient
as the RLS method. In summary, the RLS method is better than the BLS method and the

Kaman Filter method in devel oping the adaptive control algorithm for the oscillator.
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Chapter 5: Modeling Temperature Effect and
The CTE Upperbound Analysis

In this chapter, the CTE upperbound of the oscillator stated in Chapter 3 is
investigated. The CTE upperbound determines the performance bound of the oscillator
and this upperbound is a function of the covariance matrix of the parameter estimates.
Only the linear frequency stability dependence on temperature is considered in this
chapter. Equation (4.1) is used as the system model in Section 5.1 and the shortcoming of
the model is described. This model cannot determine the correct covariance matrix of the
parameter estimates. Therefore, the CTE upperbound of the oscillator cannot be correctly
obtained. In Section 5.2 and 5.3, an ARMAX model is used to investigate the CTE
upperbound. The RPEM algorithm is used as the estimator method to estimate the

parameters of the ARMAX model.

5.1 Modd 1. The System Model without Control Loop

In the last chapter, Equation (4.1) is used as the system model structure and the
correction signal is used as the system output for evaluating the RLS method and the
Kaman Filter method. In this chapter, we continue using this system model to investigate

the CTE upperbound of the oscillator. For the convenience of the readers, Equation (4.1)
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is rewritten as Equation (5.1) here.

y(t) =6 -x(t) +v(t) (5.2

When a Recursive Least Squares method is applied to identify the system
parameters, the parameter estimate 8(t) obeys the Gaussian distribution [11]. Hence,
6(t) — 6 adso obeys the Gaussian distribution. The mean value of 8(t) — 6 is 0. The
covariance matrix of 8(t) — 6 is the product of P(t) in Equation (2.7c) and the variance
of the prediction error [11]. The prediction error is calculated from Equation (4.6). The
variance of the prediction error is shown in Equation (5.2) and the covariance matrix of

8(t) — @ isshown in Equation (5.3).

E ((y(t) —0() - x(t))2> _ o2 (5.2)

cov(8(t) —0) = a?P(t) (5.3)

One should notice that the P(t) investigated in this chapter is a scaar, so the
covariance matrix of 8(t) — 6 is actually equal to the variance of 8(t) — 6.

The cumulative time error comes from the deviation of 8(t) from 6. According to
the standard statistical table, when the variance of 8(t) — 6 is known, a 95% confidence
interval of 8(t) — @ can be obtained. We use o1 to represent the standard deviation

of 8(t) — 6 and then the deviation of 8(t) from 6 should be smaller than 1.96 * o1 with
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probability larger than 95%. When the deviation of 8(t) from 6 isjust equal t0 1.96 * o1,
the 95% probability CTE upperbound in holdover mode is obtained analytically through

Equation (5.4).

95% CTE upperbound = ¥¥_,1.96 * o1 * x(t) (5.4)

In Equation (5.4), t = 0 corresponds to the start of the holdover mode. k represents
the time that the holdover mode maintains. The term x(t) still represents the temperature.
Then one can use Monte Carlo simulation method to verify this analytical 95% CTE
upperbound [22]. One hundred simulations are run and the fifth maximum CTE is
recorded. The training time is set 4 hours and holdover time is set 20 hours. This fifth
maximum CTE can approximately represent the simulation result of 95% CTE
upperbound. The comparison results are shown in Figure 5.1.

In Figure 5.1, X-axis represents the time and Y-axis represents the cumulative time
error. The solid line represents the simulation result of 95% CTE upperbound. The dashed
line represents the analytical 95% CTE upperbound. One can see that the analytical CTE
upperbound has a huge discrepancy from the simulation result of CTE upperbound. The

reason for this discrepancy is described below.
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The standard deviation of 8(t) — 0 is used to determine the analyticad CTE
upperbound of the oscillator. The standard deviation is the square root of the variance
of 8(t) — 6. If this analytical variance isinvalid, it cannot be used to determine the CTE
upperbound.

The Monte Carlo method is applied to verify the validity of the variance of (t) —
6 calculated from Equation (5.3). One hundred simulations are run and the 8(t) — 6 in
each simulation is recorded. Then the variance of 8(t) — 6 from 100 simulations can be
caculated through the definition of variance. If the analytical variance, which is

calculated from Equation (5.3), is valid, it should be close to the variance calculated via
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the Monte Carlo method.

The comparison which is shown in Figure 5.2 demonstrates that the variance
calculated from the Monte Carlo method has a huge discrepancy from the variance
calculated from the system identification method. The variance of 8(t) — 6, calculated
from Equation (5.3), is much lower than the variance obtained from the Monte Carlo
method. Hence, the analytical CTE upperbound is much lower than the Monte Carlo

result of the CTE upperbound, as the comparison result shown in Figure 5.1 confirms.
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The reason that the analytical variance of 8(t) — 6 has a huge discrepancy from the
variance calculated via the Monte Carlo method is described as follows. According to [7],
the RLS method can be used validly if the prediction is unbiased. Then the plot of the
prediction error should be Gaussian white noise. If the prediction is biased, the plot of the
prediction error should be colored noise and the RLS method cannot be used validly.

Figure 5.3 shows the prediction error plot. In this figure, X-axis represents the time
which is the tota training time. Y-axis represents the prediction error which is calculated
from Equation (4.6). This plot illustrates a colored noise and indicates that the prediction
is biased. Therefore, the analytical variance calculated from Equation (5.3) is not close to

the simulation result.
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The system model structure must be modified to guarantee the prediction error is a
Gaussian white noise. The RLS method or another system identification method then can
be applied correctly and the valid analytical variance of (t) — 6 can be obtained. The
correct CTE upperbound then can be cal culated.

Looking back at Equations (3.3) to (3.5), the correction signal is not obtained from
Equation (5.1). The actual correction signal is created by a control loop and it is the
combination of the former correction signals and the CTE [16]. Therefore, it can be
assumed that the prediction error can be a Gaussian white noise and the estimate can be
unbiased when the system model structure reflects the actual creation process of
correction signal as far as possible [11]. In order to obtain the correct CTE upperbound,

the control loop should be included in the system model structure.

5.2 Model 2: Including the Control Loop in the System
Model

Referring to Section 3.1.2, the correction signal is created by the control loop which
is represented by Equations (3.3) to (3.5). For the convenience of the readers, Equations

(3.3) to (3.5) are rewritten as Equations (5.5) to (5.7) respectively.

CTE, = CTEx_1 + B * & = Y20 B * €41 (5.5
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1 —
correct,y =~ TETL y y(©) (5.6)

y(k) = correct,.s — CTE,/damp (5.7

The term CTE), represents the cumulative time error at the k-th second. The term
y(t) represents the correction signal at timet and y (k) represents the correction signal at
time k. The term B represents the digital phase detector resolution and the term
&, represents error counts at the k-th second. The term 8 * g, represents the time error at
the k,;, second. For example, the system has run for 4 hours (14400 seconds) and the
cumulative time error is 5us. Thus, k is 14400 and CTE; 4400 1S 5 us. If the time error at
the third second is 1ns, then § x &5 is 1 ns. Equation (5.5) shows that CTE), is the
integration of all time errors from the first second to the k-th second. Equation (5.5) also
shows that the time error obtained at each second and CTE);, must be multiples of 5. In
Equation (5.6), the term correct,.r isthe average value of the last N correction signals
and N should be a large constant. The term damp is a constant which serves as a
suppression of the GPS receiver noise. In the simulation, N is set to 2000 and damp is set
to 150. In Equation (5.7), y(k) represents the correction signal at the k-th second when
the timing module is locked by the GPS 1pps signal. Thus, by combining Equations (5.5)
to (5.7), Equation (5.8) is obtained.

y(k) = (ﬁ) * Xt Te—2000 Y () — (ﬁ) * CTE}, (5.8
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The time error is caused by the GPS noise and the frequency stability of the
oscillator. In this chapter, only the linear frequency stability dependence on temperature
is considered for the oscillator and the initial frequency stability is set to zero. Equation
(5.9) shows the relation between the frequency stability of the oscillator and the

temperature.

Oscillatorgy, (k) = 0y - u(k) (5.9

The term Oscillatory,,, (k) represents the oscillator frequency stability at the k-th
second. The term u(k) represents the temperature. The term 6, is the temperature
sensitivity of the oscillator frequency stability. According to Equation (3.8), Equation

(5.10) is obtained.

Oscillatorgy, (k) = Afﬂ (5.10)
0
The term Af}, represents the oscillator frequency drift at the k-th second and the
term f;, represents the nomina frequency. The time error At caused by the frequency
stability and the time duration T for which the frequency stability is maintained is related

to the oscillator stability Af/f, through Equation (5.11)
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At _of (5.12)

Oscillatorg,, (k) isonly maintained at the k-th second, so the time duration T is 1
second. Therefore, the time error At;, caused by the frequency stability at the k-th second
isequal to Oscillatorg,, (k) . Intraining mode, the oscillator stability is corrected by the
correction signal y(k — 1) at the k-th second. The actual time error measured at the k-th
second should be the summation of Oscillator,, (k), y(k — 1), and the measurement

noise. The actual time error measured is shown in Equation (5.12):

Atpeasurea (k) = Oscillatorgy, (k) + y(k—1) +v(k) —v(k — 1)

=0, - ulk) +y(k— 1) +v(k) —v(k —1) (5.12)

Theterm v(k) represents the GPS noise at the k-th second. One should have noticed
that the measurement noise in Equation (5.12) isv(k) —v(k —1). The reason is as
follows. The measurement noise of the system comes from the GPS noise jitters. The
GPS receiver receives the GPS 1 pulse per second (pps) signd. If there are no GPS noise
jitters, the distance between GPS pulses should be exactly 1 second. However, GPS
noises always exist and the distortion of the jitter has to be added into the distance
between pulses. For example, if both the first and second GPS 1 pps signals are distorted
by a +10 ns jitter, both the first and second pulse edges move +10ns. Then the distance

between two pulse edges is still 1 second. The measurement noise perceived is 0 ns. If
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thefirst 1 pps signal is distorted by a+10 nsjitter and the second 1 pps signal is distorted
by a -10 ns jitter, the first edge moves +10 ns and the second edge moves -10 ns. The
distance between two pulse edges is 1 second minus 20 ns. The measurement noise

perceived is -20 ns. Hence, the measurement noise is given by Equation (5.13).

Measurement noise(k) = v(k) —v(k — 1) (5.13)

According to Section 3.1.2, 8 * g, can represent the time error measured at the k-

th second, so Equation (5.14) is obtained.

Bxe =60 -uk)+yk—1)+vk)—vk-—-1) (5.14)

Referring to Figure 3.3, in the control loop, a DAC is used to transfer the correction
signal to a control voltage signal. This control voltage signa is fed into the oscillator
tuning port to correct the oscillator. When the DAC resolution and the digital phase
detector resolution are infinite, the ideal cumulative time error is obtained from Equation

(5.15).

Ideal CTE, = Yk23(0p - u(t + 1) + y(t) + v(t + 1) — v(t)) (5.15)

However, the DAC resolution and the digital phase detector resolution are not
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infinite. In the simulation, the DAC resolution is 0.0229 ppb. Hence, when the correct
signal is used to tune the oscillator, it must be multiples of 0.0229. The digital phase
detector resolution is set to 6.25ns. Hence, the time error measured at each second must
be multiples of 6.25. The cumulative time error must be multiples of 6.25 too. The
parameter 6, needs to be identified. In the ssimulation, 6, is set to 0.0533 and v(t) has a
mean value of zero and standard deviation of 20 ns. Thus, the cumulative time error is

obtained from Equation (5.16).

(5.16)

v(t+1)—v(£)+0g*u (t+1)+0.0229+ fix (L)
6.25 )

CTE, = 15;()1(6.25 *fix< 0.0229

In Equation (5.16), the term 6.25 fix(&) guarantees that the time error
measured at each second and the cumulative time error are multiples of 6.25ns. The
meaning of fix(:) is explained in Section 3.1.2. The term 0.0229 *fix(%)
guarantees that the correction signal working on the oscillator is in multiples of 0.0229

ppb. Combining Equations (5.8) and (5.16), the system model structure in Equation (5.17)

is obtained.

y(k) = (ﬁ) " kzl y(t) (1;0) " kZ_l{é.zs « fix[(v(t +1) —
t=k—2000 t=0

v(t) + 60 * u(t + 1) +0.0229 * fix(229)/6.25]} (5.17)
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Equation (5.17) represents the detailed mathematical form of the control loop which
is described in Section 3.1.2. However, referring to Section 2.2.1, the system model must
have a form similar to Equation (2.2) in order to use the system identification method.

Therefore, Equation (5.17) must be rearranged to Equation (5.18).

Y1(k) = (=150) * y(k) + (500 ) * TS 5000 ¥(6)

= Yk 146.25 « fix[(v(t + 1) —v(t) + 0y xu(t + 1) +

0.0229 * fix(22))/6.25]} (5.18)

The Y’ in Equation (5.18) can be removed by computing the difference between

Y1(k) and Y1(k — 1).

Y2(k) = Y1(k) = Y1(k — 1)

= 6.25 * fix[(v(k) —v(k — 1) + 64 * u(k)

k—1)

+0.0229 * fix (X2

¥,y /6.25] (5.19)

For simplicity, we introduce

B(k — 1) = 0.0229 * fix(C—2) (5.20)

0,

v(k)—v(k—1)+00*u(k)+B(k—1)]

Y2(k) = 6.25 * fix| s

= [v(k) —vk—1)+ 6, xu(k) + B(k —1)]
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v(k)—v(k—1)+0g*u(k)+B(k—1)

+6.25 * fix| o ]
—[v(k) —v(k—1) + 6y *u(k) + B(k — 1)] (5.21)
We introduce

§Y2(k) = 6.25 + fix |1 IOIED] [ (k) — vk — 1) +
0y * u(k) + B(k —1)] (5.22)
o,
Y2(k) =v(k) —v(k—1)+ 6y *xu(k) + B(k — 1) + 8Y2(k) (5.23)
We introduce Y3(k) which equals the difference between Y2(k) and B(k — 1).
Thus, Equation (5.24) is obtained.

Y3(k) =Y2(k) —B(k—1)

=v(k) —v(k—1)+ 6y *u(k) + 6Y2(k) (5.24)

CGuantization Errors / ns

Time ! hours

Figure 5.4 Quantization Error Caused by the Phase Detector Resolution
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The term §Y2(k) is the quantization error caused by the digital phase detector
resolution, which is limited between -6.25 and +6.25 in the simulation. Figure 5.4 shows
the graph of Y2 (k). The X-axis represents the training time. The Y-axis represents the
guantization error which is calculated from Equation (5.22).

In Equation (5.24), Y3(k) becomes the new system output. u(k) is till the system
input and 6, is still the parameter that needs to be identified. Equation (5.24) has similar
form and characteristics as Equation (2.2) and can therefore be analyzed using a standard
system identification method. However, Equation (5.24) and Equation (2.2) also exhibit
some differences. One of the differences is the measurement noise. In Equation (2.2), the
measurement noise is independent white noise. In Equation (5.24), the measurement
noise isv(k) — v(k —1). These measurement noises are not independent from each
other. Referring to Section 2.2.4, Equation (5.24) is an ARMAX model and should be
solved by the Recursive Prediction Error Method (RPEM). Another difference is that
Equation (5.24) contains a quantization error term §Y2(k) which can also be solved by
RPEM approximately.

A new ARMAX model is created and shown in Equation (5.25).

yYeeem (k) = axu(k) +v(k) + b*xv(k — 1) (5.25)

The term ygrppy (k) is theY3(k) in Equation (5.24). The term u(k) and v(k) are

still the temperature and the GPS receiver noise. The term a is the temperature sensitivity
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which isthe 6, in Equation (5.24). Theterm b * v(k — 1) represents theterm v(k — 1)
and the quantization error term 6Y2(k) in Equation (5.24). The parameters a and b
constitute the new parameter vector gpr),. The term @ represents the estimate of a. By
using RPEM, this ARMAX model is solved recursively and the distribution of parameter
estimates is obtained. Simulation results are shown in the next section. Section 2.2.4
described RPEM in more detail.

The Monte Carlo method can be used to verify whether using the model of
Equation (5.25) is better than using the model of Equation (5.1). The system model of
Equation (5.25) is referred to as the system model including the control loop. The term
system model without including the control loop refers to the model of Equation (5.1).
The performance of the system model can be represented by the maximum cumulative
time error in 100 smulations. Figure 5.5 shows the comparison result between the
maximum CTE when using the system model of Equation (5.1) and the maximum CTE
when using the system model of Equation (5.25). In Figure 5.5, the X-axis represents the
time and the Y-axis represents the maximum CTE in 100 simulations. Training timeis set
4 hours and holdover time is set to 20 hours.

Figure 5.5 shows that the performances of both system models are almost the same.
This comparison is still true when the training time is changed. In the next chapter, when
other factors such as ageing rate are introduced in the system model, one will see that the
performance of the model including the control loop has advantages, which means that

the model produces alower maximum CTE.
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Figure 5.5 Simple System Model Performance Comparisons with Training 4 Hours

5.3 Simulation Result of the ARMAX Model

First, the analytical result for the distribution of parameter estimate @ in one
simulation is shown in Figure 5.6. In this ssmulation, the training time is set to 2 hours.
According to [11], the parameter estimate @ should have a Gaussian distribution.

Thedistribution of @ — a has the form of

a—a € N(O,Py) (5.26)
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Figure 5.6 Distribution of Parameter Estimate a

The system parameter estimates are obtained from Equation (2.34a). The first term
of estimatesisa. The variance Py of d isthe product of P;; (t) and the variance of £(t) in
Equation (2.31). P;;(t) is the term of first row and first column of P(t) in Equation
(2.34b). £(t) is the prediction error sequence. According to the standard statistical table,

the 95% probability confidence interval of a is computed via:

a—196%,/Py <a<a+1.96x./Py (5.27)

In this simulation,
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a = 0.0533 (5.283)

a = 0.0541 (5.28b)
Py =7.523x 1077 (5.28¢)
a—1.96 /Py = 0.0523 (5.28d)
@+ 1.96 /Py = 0.0558 (5.28€)

Since the distribution of @ is known, the 95% probability upperbound of the time
error can be calculated analytically. The real parameter a is located on the 95%
probability bound (upper or lower bound) when the 95% probability upperbound of the
time error is reached. The corresponding time error is calculated through the difference
between @ and the bound & — 1.96 /Py or &+ 1.96 /Py . In either case, the
difference is1.96 * \/P_,V . This shows that the analytical time error is only related to the

variance of d.

Time error = 1.96 * /Py * temperature (5.29)

The cumulative time error is also computed through the integration of the time error

second by second. Figure 5.7 shows the anaytical result for the 95% probability

upperbound of the cumulative time error.

80



T T T T T T T T T
1 [ ' ] ' " ¥ ' ]
1 C 1 [ i L] [ i W
. [ ' ] ] L " . ]
i [ P ] ' " v i ]
. [ ' ] ] L " . ]
' [ ' ] i " P ' ]
o ¥ I [ i . [ i [
' [ ' ] ' " ¥ ' ]
[ ! [ i . [ . "
- === T -F B e e
i [ i i . [ i ]
o L 1 1 " L 1 "
' [ ' P " [ ' ]
1 ¥ 1 1 u [ " ]
' [ ' ' " v ' ]
. [ ' [ L [ . ]
' v ' ' " f ' ]
i C i i W [ i 0
1 ' ' [ ¥ ' ]
LI . L s LT E T T T S
N v ! 1 " v N ]
. [ ' [ L " . ]
i v P ' " ' ' "
o ¥ I i . [ i [
' [ ' ] ' " ¥ ' ]
N ¥ 1 [ i ] [l ' [
' ¥ ' " ' " ¥ ' i
o [ i ] i L] W i W
FESSEEOEE TEE RSN e o FESEHRES ORI Fo oy
i ¥ 1 ] [ u [ " ]
' [ ' ] P " P ' ]
4 ¥ H [ i ] [ J [
' v ' ] " i ' ]
o [ ' ] i . [ . ]
1 ¥ 1 " ' " f ' ]
i C i W i [ i W
1 ¥ 1 " 1 u v " 1
LTI LT T T T FamsBganmn ITTTT TS
. [ ' ] ] L [ . ]
' v ' . ' " ' ' ]
i L i [ [ W ¥ i [
' [ ' ] P " ¥ ' ]
i L i [ i L] [l i [
' ¥ ' " ' " i ' "
i [ i ] i L] W i ]

. [ ' ] ] L " . ]
- Hesssgssssdss = L =sas ===
' ¥ ' ] i " 1 ]

4 ¥ H [ [ ] [ J [

' v ' . ' " i '

o W ' ] i . [ . [}
1 ¥ ' . ' " f ' ]
i C i 0 i i W i 0
1 ' 1 ] 1 u v " ]
3 ¥ H " 1 H [ B ¥
1 L L H L i H L H
=F L] (] - =

Cumulative time errorius

23

15

Tin efrours

10

Training Time (first 2 hours)

Figure 5.7 Analytical Result for the 95% Upperbound of CTE
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Figure 5.8 Monte Carlo Result for the 95% Upperbound of CTE
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For verifying the CTE shown in Figure 5.7, 100 independent simulations have been
run. In each simulation, the training time is set to 2 hours and holdover time is set to 24
hours. The fifth maximum CTE in 100 repetitions can approximately serve as the Monte
Carlo result for the 95% upperbound of cumulative time error, which is shown in Figure
5.8. By comparing Figure 5.7 and 5.8, one can see the analytical CTE upperbound is very
close to the simulation result of the CTE upperbound.

Figure 5.7 and Figure 5.8 show periodic phases. From the 6! hour to the 8¢" hour,
from the 14" hour to the 16" hour, and from the 22" hour to the 24" hour, the CTE
curve almost keeps flat. The temperature profile is needed to explain this periodic phases

because the temperature is the only input data.

Termperature’ =g

0 5 10 15 20 25 a0
Timelhaurs

Figure 5.9 Temperature Profile

Figure 5.9 shows the temperature profile used in this chapter. One can see the
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temperature is 0 when the time is from the 6 hour to the 8¢ hour, from the 14" hour to
the 16" hour, and from the 22" hour to the 24" hour. Referring to Equation (5.29),
when the temperature is zero, the time error is zero. Therefore, the cumulative time error

does not increase during these times because the CTE is the integration of the time error.
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Figure 5.10 Variance Comparisons between Analytical Method and Monte Carlo

Method with ARMAX Model and RPEM Applied

Figure 5.10 shows the comparison result of another verification method. 100
independent simulations have been run and in each simulation, the variance Py is

calculated analytically. Each Py is connected with each other with the solid line. The
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parameter estimate @ is also calculated in each simulation. Viathe variance definition, the
variance of d calculated from the Monte Carlo method is obtained. It is represented by
the dot. Figure 5.10 illustrates that the analytical parameter estimate variances fluctuate

around the variance computed from the Monte Carlo method.
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Figure 5.11 Prediction Error Plot for the Model Including the Control Loop

Figure 5.11 is the plot of the prediction error £(t) computed from Equation (2.31).
The plot shows Gaussian white noise and indicates that the parameter estimation by using
RPEM is unbiased.

Figure 5.12 shows the CTE upperbound computed analytically via RPEM. The X-

axis coordinates represent the training time, varying from 1 hour to 24 hours. The Y-axis
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coordinates represent the predicted 95% probability max CTE. The holdover timeisfixed
to 24 hours. One can observe that the max CTE becomes smaller and smaller, ideally
approaching zero when the training time is arbitrarily long. However, the max cumulative
time error cannot really be zero when the timing module is working in the base station

because there are other factors affecting the accuracy of oscillator besides the temperature.

CTE Upperbound/us ||

0 5 i0 15 20 25
Training Time / hours

Figure 5.12 CTE Upperbound when Training Timeis from 1 to 24 Hours and

Holdover Timeis 24 Hours

5.4 Discussion

In this chapter, the CTE upperbound of the oscillator is investigated. This oscillator
is described in Chapter 3. The temperature is linear related to the frequency stability of

the oscillator and is the only input. First, a simple system model of the oscillator
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frequency stability is used. Equation (5.1) is the model equation. The simulation results
show that the analytical CTE upperbound calculated via this ssmple model is not close to
the Monte Carlo CTE upperbound. Anayzing the control loop, which creates the
correction signal for the oscillator, the system model structure is modified to include the
control loop in the model equation. The new system model is an ARMAX model and
RPEM is used to estimate the parameter. The analytical CTE upperbound is obtained
through the parameter estimates. The simulation results show that the analytical CTE
upperbound is very close to the Monte Carlo CTE upperbound. The performance of
applying the ARMAX model is compared with the model of Equation (5.1). Simulations

show that their performances are close.
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Chapter 6. Refined Model Including Temperature
and Ageing Effect

In the last two chapters, temperature is considered as the only factor affecting the
frequency stability of the oscillator. In this chapter, a more detailed frequency stability
dependence model is presented and used for studying the CTE upperbound of the
oscillator. The more detailed system model combines the temperature effect and the
ageing effect. In this model, temperature has a quadratic relation with the frequency

stability and there is anon-zero initia frequency stability offset in the model.

6.1 Refined Frequency Stability Dependence Model

In Chapter 5, we showed that the cumulative time error CTE), is the summation of
all time errors from the first second to the k-th second. The time error at each second is
caused by the GPS noise and the frequency stability error of the oscillator. The oscillator
frequency stability exhibits dependencies on many environmental factors. In Chapters 4
and 5, the temperature is considered as the only factor affecting the frequency stability
and a straight line fit is applied to the temperature and the frequency stability. The initial
frequency stability offset is set to zero. When the relation between the ambient
temperature and the oscillator frequency stability is close to linear, a straight line fit is
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suitable. However, in most situations, a higher order polynomial fit is more suitable than
a linear fit. In this chapter, a quadratic fit replaces the linear fit. Furthermore, if the
training time is long enough, the ageing effect on both training time and holdover timeis
not trivia. It should be included into the system model. Finally, the initia frequency
stability offset is not zero in most situations.

Hence, a more detailed oscillator frequency stability model is presented in Equation

(6.1).

Oscillatorgy, (k) =a-u?(k) +b-u(k) +c+d -k (6.1)

The term Oscillator,, (k) represents the frequency stability of the oscillator at
the k-th second. The term u(k) represents the temperature at the k-th second. The
parameters a and b represent the temperature sensitivity of the frequency stability for the
quadratic and the linear term, respectively. The parameter ¢ represents the initial
frequency stability offset and the term d represents the ageing rate of the frequency

stability. According to Equations (3.1) and (3.8),

Oscillatorgy, (k) = B = (6.2)
fo T
The term Af}, represents the frequency error at the k-th second and the term

fo represents the nominal frequency. The term At,, represents the time error caused by the
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frequency stability at the k-th second and the term 7 represents the time duration.
Actually, the time duration is 1 second at the k-th second. Thus, the time error At is
equa to Oscillatory,, (k) . Since Oscillatory,, (k) is corrected by the correction

signa y(k — 1) in training mode and the GPS noise v(k) is introduced, the total time

error, measured at the k-th second is:

Atpeasurea (k) = Oscillatorgy, (k) + y(k—1) +v(k) —v(k — 1)
=a-uw*()+b-u(k)+c+d-k +ylk—1)

+v(k) — v(k — 1) (6.3)

Equation (6.3) is equivalent to Equation (5.12), except for the different oscillator
frequency stability model. The measurement noise isv(k) — v(k — 1). The reason of
choosing v(k) — v(k — 1) rather than v(k) is explained in Section 5.2. According to
Equation (5.5), when the DAC resolution and the digital phase detector resolution are

infinite, the ideal cumulative time error is:

Ideal CTE, =Yk 3 a-v?*(t+ 1D +b-u(t+D+c+d-(t+1)+y(t)+

v(t+1) —v(t)) (6.4)

However, the DAC has a resolution of 0.0229 ppb and the digital phase detector
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resolution is 6.25 ns. The term 6.25 * fix(&) is used to guarantee that CTE, is a

multiple of 6.25 ns and the term 0.0229 * fix (%) is used to guarantee the correction

signal for the oscillator isamultiple of 0.0229 ppb. Thus, Equation (6.5) is obtained.

CTE, = YF23{6.25 = fix[(v(t + 1) —
vit) +ta*u?(t+1D)+b*u(t+1)+c+d*(t+1)
. y(@®)
+0.0229 * fix(5-5))/6.25]} (6.5)
According to Equation (5.6) and (5.7), the correction signal y(k) is the difference
between the average value of the last N correction signals and CTE, /damp. When N is

2000 and damp is 150, combining Equations (6.5) and (5.8), Equation (6.6) is obtained.

y(k) = (ﬁ) " kzl y(t) - (%) " kZ_l{é.zs « fix[(v(t +1) —
t=k—2000 t=0

vi)+axu?(t+D)+b*u(t+1D)+c+d*({t+1)

+0.0229 * fix(-22)/6.25]} (6.6)

In Equation (6.6), the parametersa, b, c and d are four parameters that need to be
identified. In the simulation, a is set to —3.1966 x 1074, b is set to 0.0533, c is set to 21
and d is set to 1.1574 x 10> ppb/s. The value of d represents the 1ppb frequency drift

per day for the ageing effect. Equation (6.6) is a more detailed model which can ssimulate
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the physical process of the control loop more precisely than Equation (5.17). In Section
5.2, Equation (5.17) is rearranged to Equation (5.24) in order to use the RPEM method.
Equation (6.6) also needs rearrangement to a suitable form similar to Equation (2.2) to
use the RPEM method.

Similar to the deduction steps from Equation (5.18) to (5.24), Equation (6.6) is

rearranged to Equation (6.7).

Y1(k) = (—150) = y(k) + (2105000) * 2t Zi—2000 Y(£)
=Yk 16.25 « fix[(v(t + 1) —v(t) +a*u?(t+ 1) +

bru(t+1)+c+dx*(t+1)+00229 * fix(22))/625]}  (6.7)

The Y in Equation (6.7) can be removed by computing the difference between

Y1(k) and Y1(k — 1).

v2(k) = Y1(k) — Y1(k — 1)
= 6.25 * fix[(v(k) —v(k — 1) + a = u?(k) + b * u(k)

¢ +d+k+0.0229 * fix(E2)) /6.25] (6.8)

For simplicity, we introduce

B(k — 1) = 0.0229 * fix(C—) (6.9)

&)’
91



v(k)—v(k—1)+a*u2(k)+b*u(k)+c+d*k+B(k—1)]
6.25

Y2(k) = 6.25 * fix|

=[wk)—vk -1 +axu?k)+b*u(k)+c+d*k+B(k—1)]

v(k)—v(k—1)+a*u2(k)+b*u(k)+c+d*k+B(k—1)]
6.25

+6.25 * fix|
—[vk) —vk—1)+axu?k) +b*ulk) +c

+d * k + B(k — 1)] (6.10)

We introduce

v(k)—v(k—1)+a*u?(k)+b*u(k)+c+d+k+B(k—1) _
6.25

8Y2(k) = 6.25 * fix | [v(k) —
vik—1)+a*xu?k)+b*ulk)+c+d*k+B(k—1)] (6.11)

o,

Y2(k) =v(k) —vk—1)+a*u?(k) +b*uk)+c+d+k+B(k—1)

+8Y2(k) (6.12)

We thus define Y3 (k) as the difference between Y2(k) and B(k — 1)
Y3(k) =Y2(k) —B(k—1)
=vk) —v(k—1)+ax*u?k)+b*u(k)

+c+dxk+6Y2(k) (6.13)

Similar to Equation (5.22) in Chapter 5, the term §Y2(k) is the quantization error
caused by the digital phase detector resolution, which is limited between -6.25 and +6.25

in the simulation.
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Equation (6.13), which is equivalent to Equation (6.6), is the system model.
Equation (6.13) is an ARMAX model except for the incluson of a quantization
error 6Y2(k). The corresponding ARMAX model structure for identifying this system is

given by Equation (6.14).

yeeem (k) = axu?(k) +b*uk) +c+d*k+v(k) +exv(k —1) (6.14)
The parameter vector is

QRPEM = [a bcd e]T (615)

Correspondingly, the parameter estimate vector of Equation (6.14) is:
~ ~ ~ T
Orpen =@ b ¢ d €] (6.16)

The value of ygppy (k) isequal to Y3(k) in Equation (6.13). Theterme * v(k — 1)
represents the term §Y2(k) — v(k — 1) in Equation (6.13). The Recursive Prediction
Error Method is used to solve Equation (6.14). The parameters a,b,c,d and e are 5
parameters that need to be identified.

In the remainder of this document, the model developed above will be referred to as
the system model including the control loop. The term system model without including
the control loop refers to the model structure of Equation (4.1). Because the model

structure of Equation (4.1) only considers the temperature effect, a multi-parameter
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model without including the control loop is created below for comparing the performance

with the model including the control loop.

y()=axx?({t)+ & *x(t) +c+dxt+v(t) (6.17)

Similar to Chapter 4, the term y(t) represents the correction signal. The term
x(t) represents the temperature. The term v(t) represents the measurement noise. The
terms a and 4 represent the temperature sensitivity for the quadratic term and linear term.
The term ¢ represents the initia frequency stability offset. The term d represents the
ageing rate. The RLS method is used to solve Equation (6.17).

The Monte Carlo method is used to verify whether using the model of Equation
(6.14) is better than using the model of Equation (6.17). The training time is set 4 hours
and the holdover time is 20 hours. One hundred simulations are run when including the
control loop in the system model and one hundred simulations are run without including
the control loop in the system model. The maximum CTE is recorded. Similar to previous
chapters, we use the maximum CTE in 100 simulations to represent the performance of
the system model. A lower maximum CTE indicates better performance of the system
model. The comparison result is shown in Figure 6.1.

In Figure 6.1, the X-axis represents the time and the Y-axis represents the maximum
CTE in 100 simulations. The dashed line represents the maximum CTE when using the

system model of Equation (6.17), which means that the system model does not include
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the control loop. The solid line represents the maximum CTE when using the system
model of Equation (6.14), which means that the system model includes the control loop.
Obvioudly, the maximum CTE of using the system model of Equation (6.17) is larger

than using the system model of Equation (6.14).
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: ] - - ;.
- H 5 H /f
QGD ................ E,................i ............... :,...............,E.l.f;f. ............
: H : '
£
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1| — fesrtsssessssassferssntsannsans — A
: . ; /-“ :
CTE upperbound : . :
: : . :
11| P Besssssssmssssaniessenenssnnenns L ET TSN

— Time'hours

Training Time (first 4 hours)

Figure 6.1 System Model Performance Comparisons with Training 4 Hours

The training time can be changed to further show the performance of the two
system models. In Figure 6.2, the training time is set 10 hours and the holdover timeis set
20 hours. The dashed line still represents the maximum CTE of using the system model
of Equation (6.17). The solid line represents the maximum CTE of using the system

model of Equation (6.14). The comparison again shows that the maximum CTE of using
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the system model of Equation (6.17) is larger than using the system model of Equation
(6.14). Both Figure 6.1 and Figure 6.2 show that including the control loop allows for the

system model to result in alower maximum CTE.

1 1
— CTE upperbound i
— — CTE upperbound (No Control Loop)
i - - f

CTE upperbound

1] 5 10 15 20 25 30
. g Time/hours

R
Training Time (first 10 hours)

Figure 6.2 System Model Performance Comparisons with Training 10 Hours

We can notice that in Figure 6.2 there is a sharp spike when training process just
begins. The reason is that a non-zero initial offset exists in the system model. Actually,
this sharp spike also exists in Figure 6.1, but we cannot see it because the Y-axis scale of
Figure 6.1 is much bigger than Figure 6.2.

The multi-parameter ARMAX model of Equation (6.14) is more complicated than

the ssimple ARMAX model of Equation (5.25) for investigating the cumulative time error.
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In Equation (5.25), the time error is determined by the variance of only one parameter
estimate . In Equation (6.14), not only the variance of the first four parameter estimates,
but also the covariance between them are important to determine the cumulative time
error. The information of the variance of the parameters and the covariance between them
are all contained in the covariance matrix of the parameter estimates vector 4. The joint
distribution information and the corresponding confidence intervals of 8 are investigated

in the next section.

6.2 Confidence Intervals of the Parameter Estimates

According to Equation (6.14), there are 5 parameters which need to be estimated.
However, there are only 4 parameters in Equation (6.13). The parameter e in Equation
(6.14) is the parameter for the noise, which does not relate to creating the correction
signal. We only need the parameter estimates @, b, ¢ and d to create the correction signal
for compensating the oscillator. Hence, in the remainder of this chapter, we set 6, =
[abcdadf=[abeé d]T. Through analyzing 8, and 8, the characteristics of the
parameter estimates can be obtained.

According to [11], a four-dimensional parameter estimates vector § has a Gaussian

distribution with mean value 8, and covariance matrix Py .
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6 € N(6y, Py) (6.18)

The covariance matrix Py comes from P(t) in Equation (2.34b). One should notice
that P(t) is a5 x5 matrix because the ARMAX model of Equation (6.14) has 5
parameters. Because we only need parameter estimates d,b,¢andd to create the
correction signal, only the first 4 rows and first 4 columns of P(t) are needed to
determine the distribution of 8. We set P4 (t) to equa the first 4 rows and first 4
columns of P(t). The covariance matrix Py is the product of P,.4(t) and the variance of
prediction error £(t) in Equation (2.31).

The parameter 8, is unknown and @ is known after the system identification process.

The distribution of 8 — 6, is given as,

6 — 6, € N(0,Py) (6.19)

For the i*" component of 8, the distribution is,

a—aeN(©,PM") (6.20)
b—b e N(©,P%?) (6.21)
¢ —ceN(©,P’Y) (6.22)

d—d e N(©,P*) (6.23)
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The term P,\gii) indicates the it" diagonal element of the covariance matrix Py. Thus
the probability distribution by which Héi) deviates from 8® can be calculated from
standard statistical tables. Since Py is the covariance matrix of the joint distribution of the
parameter estimates vector 8, the covariance and correlation between the different

components of @ are obtained. We know that
(6 —60)"Py*(8 - 6y) € x*(d) (6.24)

Equation (6.24) is a direct application of the definition of the y? distribution. The

probability of |8 — 90|12;ﬁ1 can be represented by P (|6 — 90|123_1). Hence,
N

2
pyt

P8 — 0o|°_) = P((8 — 8,) Py (6 — 6y)) = (6.25)
is x2(d) a the a level of the y?(d) distribution [11]. Equation (6.25) defines the
confidence ellipsoids in R¢. The shape of the ellipsoid is determined by Py. Figure 6.3
shows the confidence elipsoid of (8 — 6,) in the two-dimensional space, which is an
ellipse.

In Figure 6.3, the shaded area of the elipse is determined by a constant from the

a level of the y?(d) distribution.
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|6 — 9°|123161 < constant (6.26)

21 |
HEI

|
(1)
gl:l

Figure 6.3 Confidence Ellipsoid for the Joint Gaussian Distribution [11]

This constant can be obtained from the y? statistics table. For example, when the
degrees of freedom (df) of the y2distribution is 4, and « is 5%, this constant is 9.49 [23].
The degrees of freedom are the number of components in the vector 8, which are 4 for
the models in this chapter. The o represents the probability that 8 is outside the shaded
area. In this thesis, the constant is 9.49 for a 95% probability value in the shaded area,

and the confidence ellipsoid is defined in R*.
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6.3 The Eigenvector Method for Obtaining the Upperbound
of the CTE

Referring to Equation (6.1), the estimate of the frequency stability is calculated

through Equation (6.27).
yO)y=a-x*>t)+b-x@®)+¢é+d-t (6.27)
The term x(t) represents the temperature. The parameters a, b, ¢ and d represent the

parameter estimates. The term y(t) is used to denote the oscillator frequency stability.

Thus, the cumulative time error can be obtained from Equation (6.28).

CTE = | 2L, (9(t) — y(t)) | (6.28)

The 95% probability upperbound of the cumulative time error is the maximum
value of CTE calculated from Equation (6.28) subject to Equation (6.26) when the
constant in Equation (6.26) is 9.49.

maxg | XX, (9(t) — y(t))| such that (6 — GO)TP,VI (6 —6y) <9.49 (6.29)
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An eigenvector method is used to solve Equation (6.29). First, the column
vectors Z =6 — 0, and R = [¥N, x%(t) TV, x(t) N YN .7 are defined. The
problem of finding the maximum value of |ZX,(9(t) —y(t))| is equivalent to

Equation (6.30).

maxg (X1, (9(t) — y ()" = max(Z" * R)? = max(Z" * (R * R") * Z)

such that ZTPy'Z < 9.49 (6.30)

Potter’s Square root algorithm introduced in Chapter 2 can be used in RPEM to
guarantee that Py is invertible. We make PI = Py! . The generalized eigenvalue problem

of R * RT can be solved by Equation (6.31).

R*RT«V =PI+«V D (6.31)

D is a diagonal matrix with the generalized eigenvalues of R * RT on the main
diagonal. V is afull matrix whose columns are the corresponding eigenvectors of D. The
value of V and D can be solved through matrix computation.

The maximum value of the elements on D’s main diagonal can be found, which is
denoted h, and the corresponding index is denoted k. Now let v, denote the k-th column

of V, which corresponds to the maximum eigenvalue h. From Equation (6.31),
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R*RT xv, = h* Pl x v, (6.32)

Equation (6.32) multiplied by v, T on the left side gives

vl * R+ RT v, = v, T x hx Pl * v, (6.33)

Z iscaculated asfollows:

9.49
vy *PI*vy

‘v, (6.34)

Equation (6.34) guarantees that Z” * PI » Z = 9.49, because 6, which creates the

maximum time error must be on the border of the elipsoid. Thus,

max (XL, (9(t) - }’(ti)))z =max(Z" * R« RT = 7)

9.49 "sR*R 9.49
= |——— % * R % ¥ | ———— %
v, * Pl x v, Vi v, * Pl x v, Vi

9.49
- vk' *Pl*v)

*V, *R*R *v

_ 9.49
- vk' *Pl*vy

xv, *PI*v, *h =949 h (6.35)
The maximum |CTE|? = |ZX,(9(t) — y(t:l-))|2 is computed from Equation (6.35).
Therefore, the maximum cumulative time error can be obtained by extracting the root of

the maximum |CTE|? when 8 is located on the 95% probability confidence ellipsoid
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boundary. Hence, this maximum CTE can be called the analytical 95% probability CTE

upperbound.

Monts Canc Max CTE
Lipgar bl

Araksbeal G5% Probabdie,
7| CTE Upgsrtcund

Mol T 959 Probabaty
CTE Uppertcund

Training Time (first 10 hours)

Time/hours

Figure 6.4 Comparison Result between Analytical CTE Upperbound and Monte

Carlo CTE Upperbound

In order to verify the analytical result, 100 independent Monte Carlo ssimulations are
run. Training time is set 10 hours and holdover time is set 8 hours. We use the 5"
maximum CTE of 100 simulations to represent the Monte Carlo 95% probability CTE
upperbound and the maximum CTE of 100 simulations to represent the Monte Carlo
maximum CTE upperbound. Figure 6.4 compares the 95% probability analytical CTE
upperbound, Monte Carlo maximum CTE upperbound, and Monte Carlo 95% probability

CTE upperbound. We can notice that there is a sharp spike when training process starts.
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The reason is that a non-zero initial offset exists in the system model, which is the same
asFigure 6.2.

The Monte Carlo 95% probability CTE upperbound is less than the anaytical
upperbound. The analytical upperbound of the CTE actually lies between the maximum
CTE and the 95% upperbound of CTE computed from 100 Monte Carlo simulations.
When the training time and the holdover time are changed, this result still holds. The
reason is that the four parameters system identification is different from the one
parameter system identification. A 8 which is located outside the 95% probability
confidence ellipsoid does not always result in a larger CTE than all 8 in the 95%

probability confidence ellipsoid. A simple example can be used to illustrate this.

B Ga.vel

SD {(2tg Vg

x

Figure 6.5 Simple Example for Illustrating a Problem of Determining CTE

Upperbound for Multi-parameter System Model
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zZ(t) =xg "t +yy +v(t) (6.36)

Figure 6.5 shows a two-parameter system confidence ellipse and Equation (6.36)
shows the corresponding system model. The parameter 6, represents the true parameter
value. We set

6o = [xo yo]" =[1 1]" (6.37)

The parameter estimate vector is represented by 8 = [® $]” . According to
Equation (6.19), we know

6 — 6, € N(0,Py) (6.38)

6 — 6, obeys a y? distribution. Py is the covariance matrix of & — 6,. The shape of

0.0001 —0.004

the ellipse is determined by Py . We set Py = (_0 004 0.1938

) . From the
x? statistics table, for the two-parameter system, (6 — HO)TP,Vl(é — 6,) is less than 5.99
with the probability 95%. In Figure 6.5, the ellipse represents the 95% probability border.
Any point outside the ellipse resultsin
(6 -6,) Pi(8 - 6,) > 5.99 (6.39)
Any point inside the ellipse resultsin
(6-6,) Pi(8 —6,) <5.99 (6.40)
Theterm A, is one parameter estimate. We set
Ay = [x4 v4]7 =[0.9861 1.9332]7 (6.41)
A, isapoint outside the confidence ellipse because

(Ag — 0) Pyt (4g — 8y) = 6.14 > 5.99 (6.42)
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Theterm B, is another parameter estimate. We set
By = [xp vg]T =[0.98 1.98]T (6.43)
B, isapoint inside the confidence ellipse because
(By — 68,)TPy1(By — 6,) = 4.96 < 5.99 (6.44)
The absolute value of the cumulative time error is

ICTE| = |(xg — 2t + (¥o — )| (6.45)

In this example, whent < 7.67 or t > 56.44, the cumulative time error of 4, is
less than the CTE of B,. Hence, in some situations, the CTE of some point inside the 95%
probability confidence ellipsoid is larger than the CTE of the point outside the confidence
ellipsoid.

Based on the analysis above, the analytical upperbound of the cumulative time error
for 8 based on the 95% probability confidence ellipsoid is not the 95% upperbound of the
CTE for the system model. It is to be expected that this CTE is larger than the 95% CTE
upperbound and less than the maximum CTE. This is different from the single parameter
system identification. In the single parameter system model, any 8 outside the 95%
confidence interval must have a larger CTE than the parameter estimate within the 95%

confidence interval.
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6.4 Discussion

In Section 6.1, a refined system model is introduced. In this model, the oscillator
frequency stability is affected by both temperature and ageing. Temperature has a
guadratic relation with the frequency stability. Ageing has a linear relation with the
frequency stability. The initial frequency stability offset is also included in the model.
The model has 4 parameters that need to be identified. Similar to Chapter 5, the model
reflects the effect of the control loop. The model is also transformed appropriately to
apply RPEM. The performance of applying this refined model including the control loop is
compared with the model without including the control loop. Simulation results show that the
model including the control loop has a better performance.

In Section 6.2, the confidence interval for multi-parameter estimates is presented.
One can see that the confidence interval for multi-parameter estimates is different from
the single parameter estimate. The confidence interval for the single parameter estimate is
a section of a line. The confidence interval for multi-parameter estimates is an ellipsoid
in RY. The term R¢ means d -dimensional space. In this chapter, d is four, so a
confidence ellipsoid in R* isinvestigated.

In Section 6.3, an eigenvector method is presented. This method can obtain the
analytical upperbound of the cumulative time error. Simulations of 100 Monte Carlo runs
are used to obtain the max CTE and 95% probability max CTE. Figure 6.4 shows that the

analytical upperbound of the cumulative time error lies between the max CTE and 95%
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probability max CTE. Then a simple example is presented to explain the result shown by
Figure 6.5. This eigenvector method can only obtain an approximate CTE upperbound. If
the requirement for the analytical CTE upperbound is not strict, this method is suitable.
Otherwise, other more accurate methods for analytically deriving the CTE upperbound of

the oscillator need to be devel oped.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions

In this thesis, a new adaptive OCXO frequency drift correction algorithm is
proposed. This algorithm can enhance the accuracy of the OCXO. The enhanced OCXO
can replace the more expensive DOCXO in the WIMAX and CDMA base transceiver
stations. An ultra-low-cost base station timing module can be created by using this
enhanced OCXO. The recursive system identification method is used to develop the
adaptive correction algorithm. The recursive system identification method replaces the
previous Batch Least Squares method. The new adaptive algorithm shows significant
improvement for the cumulative time error of the timing module. The adaptive algorithm
can also provide the CTE upperbound of the OCXO. The CTE upperbound is an
important parameter which can determine the range of applications of the enhanced
OCXO. The timing module system in base stations and the digital control loop, which is
the core of the timing module, are reviewed for describing the adaptive algorithm.

Some system identification methods are reviewed. These methods are used to
develop the adaptive agorithm. Two different system identification methods are
evaluated. They are the recursive least squares (RLS) methods and the Kalman Filter
method. The characteristics and performance of the methods are investigated. Finally, the
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RLS method is chosen to devel op the algorithm.

The OCXO frequency stability model is created to develop the adaptive algorithm
and calculate the CTE upperbound of the OCXO. First, a simple model is used in Chapter
4. The temperature is linear related to the OCXO frequency stability in this simple model
and the digital control loop through which the correction signal is created has not been
taken into account. Figure 5.1 shows that the analytical CTE upperbound computed from
this smple model is not close to the Monte Carlo CTE upperbound. The CTE
upperbound cannot be predicted correctly because the prediction error in this model is
biased. The digital control loop isincluded in the model in Chapter 5 to guarantee that the
prediction error is unbiased. From simulation results, the CTE upperbound can be
obtained very precisely by including the control loop in the model. The performance of
using the system model including the control loop is compared with the model without
including the control loop. Simulation results show that the performances of both models
areclose.

Then, a refined model structure is created in Chapter 6. This high-level model
includes the temperature effect, the ageing effect and the initial frequency offset. The
temperature is quadratic related to the OCXO satiability and the digital control loop is
still included. The confidence ellipsoid of the parameter vector estimation is used to
determine the distribution of the parameter estimates. An eigenvector method is
developed for obtaining the CTE upperbound of the oscillator based on the confidence

ellipsoid. The performance of using the high-level system model including the control
m



loop is aso compared with the high-level model without including the control loop.
Simulation results show that the performance of the model including the control loop is

better than the model without including the control [oop.

7.2 Future Work

The contents in the last section are what are covered in this thesis. It still leaves

some problems as areas of future research.

e First, the 95% probability CTE upperbound for the detailed model is not
precise enough, which is verified by the Monte Carlo method. A bound larger
than the 95% Monte Carlo CTE upperbound is obtained because of the nature
of the parameter vector estimates distribution. In some precise application, a
more accurate upperbound of the cumulative time error may be needed.

e Second, the Monte Carlo method is used to verify the simulation results of the
adaptive frequency drift correction algorithm in the research. Actualy, the
Monte Carlo method itself can be used to obtain the upperbound of the
cumulative time error. After the timing module in the base station enters into
the holdover mode, the analytical results of the temperature sensitivity and the
ageing rate of the OCXO can be obtained. These data can be used to create a

system model and simulate the training mode and the holdover mode by using
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the same temperature and time profile as the real environment. By applying a
sufficient number of Monte Carlo ssimulations, the upperbound of the CTE with
the required precision can be obtained.

Third, all work in this thesis is conducted in a simulation environment. Matlab
Is used to simulate the oscillator stability, the temperature and the ageing, etc.
In future research, actual hardware and instruments are needed to verify the
simulation results.

Fourth, the adaptive OCXO frequency drift correction algorithm is only the
first step in the research. The timing module in the base station is working
within a large network. In the training mode, the timing module is locked by
the satellite timing signal. When the lock is interrupted, the timing module is
enhanced by the adaptive correction algorithm and provides atime reference to
other clocks which cannot be locked by the satellite timing signa in the
wireless network. The timing module enhanced by the agorithm serves as the
standard timing reference. Transmitting the timing signal in the wireless
network introduces signal delay and cause errors for the clocks. Solving the
timing signal transmission problem in the wireless network is the next step in

the research.
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