

Transport Layer Fairness and Congestion Control in Multihop Wireless Networks

Thomas Kunz and Hao Zhang

Carleton University, Ottawa, Canada

tkunz@sce.carleton.ca

Abstract
Transmission Control Protocol (TCP) is a reliable,

end-to-end transport protocol, which is widely used for

data services and is very efficient for wired networks.

However, experiments and research showed that

TCP’s congestion control algorithm performs very

poorly over Wireless Ad Hoc Networks with degraded

throughputs and severe unfairness among flows. This

paper studies TCP’s fairness and throughput issues in

Wireless Ad Hoc Access Networks, and designs an

improved congestion control algorithm based on the

characteristics of the Wireless Ad Hoc Access

Networks. The protocol is designed as extension to

DCCP (Datagram Congestion Control Protocol) with

a new congestion control component. We also

implemented this congestion control algorithm in NS2.

Simulation results show improvements on fairness and

throughput achieved by using our congestion control

algorithm.

1. Introduction
Wireless Ad Hoc Networks are multi-hop wireless

networks, consisting of mobile nodes which are free to

move about arbitrarily [4]. Frequently, Ad Hoc

network will have gateways as connection to the

Internet, which we call a Wireless Ad Hoc Access

Network. Extensive research has been conducted

concerning media access, routing and transport

protocols for such networks. Transport layer protocols,

which are specifically modified or designed for

Wireless Ad Hoc Access Networks, are the focus of

this paper. As most Ad Hoc Networks are built based

on IEEE 802.11 wireless links, the work here also

assumes that the MAC layer is an IEEE 802.11-like

random access protocol.

TCP/IP is the protocol suite that defines the Internet.

Transmission Control Protocol (TCP) is a reliable end-

to-end transport protocol widely used for data services,

which is primarily designed for wired networks and

became very efficient and robust with years of

enhancements. However, experiments and research

showed that TCP’s congestion control algorithm

performs very poorly over Wireless Ad Hoc networks

with degraded throughputs and severe unfairness

among flows [5]. Research therefore has focused on

further improving TCP to address the special

characteristics of Wireless Ad Hoc networks.

Currently, the vast majority of the traffic in the

Internet relies upon the congestion control mechanism

provided by TCP. However, applications such as

streaming video and Internet Telephony prefer

timeliness to reliability. The reliability and in-order

delivery algorithm provided by TCP often results in

arbitrary delay, and TCP’s rate control AIMD

(Additive Increase and Multiplicative Decrease)

algorithm causes very sharp bandwidth change upon

the detection of one packet loss. Consequently, such

applications often choose UDP, with either their own

congestion control mechanisms implemented on top of

it or none at all. Long-lasting UDP flows without any

congestion control mechanism present a potential threat

to the network. Also, congestion control mechanisms

are difficult to implement and may behave incorrectly.

This argues for a common base transport protocol,

which is able to provide different congestion control

algorithms to suit the needs of different applications.

This paper reviews TCP and TCP’s performance

problems in more detail in Section 2. Section 3 surveys

a range of possible solutions to improve TCP suggested

in the literature. Section 4 discusses a new congestion

control algorithm implemented within DCCP (the

Datagram Congestion Control Protocol) [8] and

presents some simulation results. The results show that

flows with the new congestion control protocol have

very good inter-flow fairness, even in scenarios where

TCP flows experience severe unfairness. At the same

time, the aggregate flow throughputs are increased as

well.

2. TCP in Multihop Wireless Networks
TCP provides a connection-oriented, reliable data

transmission. The basic idea of TCP congestion control

is that TCP senders probe the network for available

resources, and increase the transmission rate until

packet losses are detected. TCP takes packet loss as

indication of network congestion and triggers

appropriate congestion control schemes.

2.1. TCP Throughput
In [5], it is shown that, when mobile nodes are fixed,

the measured TCP throughput over IEEE 802.11 links

(nominal data rate of 2 Mbps) for a single TCP flow

decreases rapidly when the number of hops increases.

In addition, the measured throughput gets worse when

nodes are moving. As a general pattern, the throughput

decreases as the nodes’ moving speeds increase.

This throughput loss is caused by the unique

characteristics of the Wireless Ad Hoc Networks.

Wired networks have relatively low bit error rate, and

TCP treats packet errors as indication of network

congestion. In wireless transmission, bit error rates

(BER) are higher due to fading and interference within

wireless channels. Assuming that each error indicates

network congestion and triggering the congestion

control mechanism affects the throughput and link

utilization. In addition, when nodes are moving,

existing links may break, so the route between two

nodes becomes obsolete and a new route has to be

selected by the routing protocol. If the time of

establishing a new route is longer than RTO, the TCP

sender invokes congestion control and reenters the

slow start phase. Mobility may also cause network

partitions. If the TCP sender and receiver are in two

different partitions, the TCP sender invokes congestion

control and exponentially backs off the retransmission.

If the partitions last longer than several RTOs, network

inactivity could happen: even though the route has been

reestablished, the sender still needs to wait until the

RTO timer expires. Finally, TCP is based on ACKs for

correct congestion control, so timely ACK reception is

necessary for packet transmission and correct

calculation of congestion window size and RTO.

Common MANET MAC protocols such as IEEE

802.11 can result in a bunching of ACKs. Bunched

ACKs cause bursty traffic and highly variable round

trip times (RTTs). It may even cause the TCP sender

triggering the congestion control due to starvation of

ACKs.

2.2. TCP Fairness
In addition to throughput, it is also important to ensure

that access to the network by each user remains fair.

Fairness can be intuitively defined as the obtained

throughput to its fair share of the bandwidth and can be

quantified with metrics such as Jain’s Fairness Index

[6]. TCP flows experience severe unfairness in Ad Hoc

Networks. TCP’s window-based congestion control

adjusts the congestion window size every RTT. Flows

with longer RTT increase the congestion window

slower than flows with shorter RTT. At the network

routers, an unfair packet-dropping scheme, such as a

simple FIFO drop tail scheme, may cause some flows

to experience more losses than others. Medium access

at a gateway is inherently unfair when using a MAC

protocol such as IEEE 802.11. Upstream flows (from

senders to the gateway) tend to occupy the whole

media and the downstream flows (from the gateway to

receivers) almost stop transmission when multiple

upstream and downstream flows co-exist. Unfairness

between the upstream and downstream flow

throughputs is extremely high, with a ratio of up to 800

between them [10]. In a Wireless Ad Access Hoc

network, IN TCP flows (from the wired part to the

wireless part) get more bandwidth than the coexisting

OUT TCP flows (from the wireless part to the wired

part) [12]. IN flows obtain a much higher share of the

bandwidth when mixed flows exist due to exposed and

hidden node effects. TCP’s own timeout and backoff

schemes further worsen the unfairness.

In general, TCP works poorly in Wireless Ad Hoc

Networks. This is caused by the high bit error rate over

wireless links, arbitrary node mobility, as well as

TCP’s built in congestion control algorithm working

with the contention based media access of IEEE

802.11. A large amount of research has focused on

improving the throughput and fairness issues discussed

above.

3. Related Work
In this section, existing proposals to improve the

throughput and fairness problems of TCP over Mobile

Ad Hoc Network are briefly reviewed. Most proposals

focus on one of the two performance problems so the

review is organized along these two categories.

3.1 TCP Performance Improvements
[5] analyzes of the use of explicit link failure

notification (ELFN) on the performance of TCP over

Mobile Ad Hoc networks. The objective of ELFN is to

provide the TCP sender with information about link

and route failures so it can respond properly. Upon

receiving a route failure notice, the TCP sender enters a

“stand-by” state and freezes all timers. A probe packet

is sent periodically to probe the network to see if the

route has been reestablished. If an ACK is received, the

TCP sender leaves the “stand-by” state, restarts the

data transmission and resumes timers. The study shows

significant throughput increase with the use of ELFN.

But the simulation is only conducted with DSR as

routing protocol choice and a single TCP flow.

When multiple flows exist, [2] shows that this

approach cannot achieve throughput improvements,

and it even degrades the performance as the mobility

rate increases. It shows that, when the probing is

conducted by several connections, the flooding of

probe packets increases the congestion of the network.

Also when a new route is determined, the TCP sender

restarts to send at the old rate (i.e., using the old

congestion window). If this congestion window is too

big for the new connection, network congestion is

likely to happen.

TCP-Feedback [11] is a similar feedback scheme in

which the TCP sender utilizes the network layer

feedback (Route Failure Notification or RFN) from

intermediate nodes to distinguish route failure and

network congestion. After receiving an RFN, TCP

enters into the “snooze state”. In this state, TCP stops

sending packets and freezes all its variables such as

timers and cwnd size. Upon receiving a Route Re-

establishment Notification (RRN), via the routing

protocol, TCP knows the route is reestablished and

leaves the frozen state and resumes transmission using

the same variable states before the “snooze state”. In

addition, a route failure timer is used to prevent infinite

wait for RRN messages. When a route failure timer

expires, the TCP normal congestion control is invoked.

The results in [3] show that TCP-Feedback performs

significantly better than standard TCP when route

reestablishment delay grows. This is mainly due to the

reduction of the number of unnecessary packet

retransmission/timer backoffs during the route failure

interval. However, similar to the first approach, upon

route re-establishment the TCP state reflects the

conditions on the old route and not necessarily on the

new route.

The Fixed Retransmission Timeout scheme [2] is

based on the idea that a regular exponential backoff

mechanism is unnecessary, because route disconnection

should be treated as a transitory period. Fixed RTO

disables the exponential backoff after two successive

retransmissions due to expired RTO, assuming it is

caused by route failures. TCP retransmits a data packet

more frequently because the retransmit timer is fixed;

this reduces the inactive period after a route is

reestablished. In [2], significant improvement of

throughput was achieved by the use of Fixed RTO. The

article also studied the TCP selective and delayed

acknowledgments options, which could only achieve

marginal gains. As pointed out by the authors

themselves, their approach is limited to pure wireless

networks only.

In ATCP [9], to maintain compatibility with the

standard TCP/IP protocol suite, a thin layer called Ad

Hoc TCP is inserted between TCP and IP. This scheme

is different from the above three approaches where

standard TCP is modified. ATCP utilizes the ICMP

protocol and the ECN (Explicit Congestion

Notification) scheme to detect network partition and

congestion respectively. The intermediate layer ATCP

keeps track of the packets to and from the transport

layer. The feedback from intermediate nodes are used

to put the TCP sender into either a persist state,

congestion control state, or retransmit state. When a

“Destination Unreachable” ICMP message is received,

indicating route failure happened, the TCP sender

enters a “persist state” which ends when the connection

is reestablished. When three duplicate

acknowledgements are received, indicating random

errors, ATCP puts the TCP sender into “retransmit

state” and quickly retransmits the lost packets from the

TCP buffer. When an ECN message is received, which

indicates real network congestion, ATCP puts the TCP

sender into “congestion control state” and the TCP

sender invokes the normal congestion control

procedure. ATCP maintains end-to-end TCP semantics

and is transparent to all nodes. Results in [9] show

improvement of throughput under congestion, packet

loss, and network partitions.

3.2. TCP Fairness Improvements
The above schemes address TCP’s throughput

problem. Several researchers have also studied TCP

fairness. In [10], TCP unfairness among upstream and

downstream flows is demonstrated and investigated. A

gateway is used to forward traffic, and the buffer size

in the gateway plays a key role in obtaining fair sharing

of the medium among upstream and downstream flows.

[10] shows via simulation that, when equal number of

downstream and upstream flows exist, the average

throughput ratio between the upstream and downstream

flows can go up to 800. The reason is that upstream

flows’ ACKs clutter the gateway buffer and cause the

buffer to overflow. Downstream flows experience

timeouts and transmit only with a window of 0-2

packets because of the packet drops at the gateway

buffer. Upstream flows normally can reach their

maximum window size. Because of the cumulative

nature of TCP ACKs, small losses of ACKs do not

affect the window size.

The proposed solution is to advertise the available

buffer size to the sender. The gateway keeps the

number of current TCP flows in the system. If the

buffer size at the gateway is B and the number of flows

is N, then the receiver window of all the TCP flows are

set to the minimum of advertised receiver window or

[B/N] by modifying the receiver window field of ACKs

traversing the gateway. Through simulation and test

bed implementation, this proposal shows a very good

fairness, with the throughput ratio of upstream and

downstream flows being 1 in the simulation and 1.007

in the test bed. The study is based on the assumption

that all the losses happen in the gateway due to buffer

overflow and all RTTs are the same among flows.

In [12], the TCP fairness problem in a combined

wireless and wired network is investigated. The study

shows that IN flows get significant more bandwidth

than OUT flows. This unfairness is the joint result of

the MAC layer’s exposed nodes and hidden nodes

problem and TCP’s timeout and backoff schemes (see

Section 2). In a study performed on the test bed, it is

found that when the maximum congestion window size

is smaller than a certain value (8 in the test), the two

flows share the bandwidth fairly and the aggregate

throughput reaches the upper limit. The problem is that

this window size could not be preconfigured. A similar

study is conducted in a pure Ad Hoc network, and the

optimal congestion window size is found to be 1-2

packets. For connections with a long propagation

delay, such a small window size will affect the

efficiency.

To improve fairness over a combined wired and Ad

Hoc network, a non-work-conserving scheduling

algorithm working with IEEE 802.11 MAC is proposed

in [13]. In the proposal, the normal FIFO work-

conserving scheduling scheme is replaced, which treats

routing packets (generated by routing protocols) as

high priority packets over data packets (generated by

applications), and puts the high priority packets in the

queue before all data packets upon arrival. The head of

the queue is send to the MAC after knowing that the

MAC is ready to send another packet. A timer is set

after a data packet is sent to the MAC. Only after the

timer expires can the queue send another data packet.

The routing packets have high priority and dequeue

immediately after knowing that the MAC is ready. No

timer is set after a routing packet is sent. The duration

of the timer is based on the queue output rate and is the

sum of three parts: transmission delay without

contention; transmission delay based on recent queue

output (choosing from four predefined values based on

the queue output rate); and a random value uniformly

distributed from zero to the value of the second part.

The timer adds extra adaptive delay in the scheduling,

so the more aggressively a node is sending packet, the

more severely it is penalized, thereby nodes failing to

grab the medium can compete with the fast sending

nodes now.

Through simulations, [13] shows that the severe

unfairness among flows can be eliminated while the

aggregate throughput experiences a small degradation.

Also, the maximum congestion window size does not

adversely impact fairness in this scheme, so unlike the

previous schemes there is no need to pre-configure the

maximum congestion window size or to modify the

advertised receiver window.

In summary, a range of proposals have addressed

how to improve TCP throughput and to increase TCP

fairness, with varying degrees of success. However,

these approaches are all limited by their intent to keep

at least the TCP semantics unchanged, if not the TCP

implementations at each node, often resulting in

improvement in one aspect (such as throughput) while

trading off another aspect (such as fairness). Also,

some of the proposals are only applicable in pure

Wireless Ad Hoc Networks. However, we believe that

the more relevant network architecture are Wireless Ad

Hoc Access Networks. Finally, none of these proposals

will address the congestion control problem for

streaming UDP flows in such networks. In the next

section, we discuss a new transport layer protocol that

improves on both fairness and throughput (compared to

TCP), and can be suitable for both reliable data transfer

and streaming media flows.

4. Proposed Congestion Control Scheme
Datagram Congestion Control Protocol (DCCP) [8] is

a new protocol designed for applications that require

the flow-based semantics of TCP, but prefer timely

delivery to in-order delivery, or a congestion control

mechanism different from what TCP provides. DCCP

aims to be a minimal overhead and general-purpose

transport-layer protocol providing only two core

functions: The establishment, maintenance and

teardown of an unreliable packet flow, and Congestion

control of that packet flow.

The purpose of DCCP is to provide a standard way to

implement congestion control and congestion control

negotiations for special applications. Our proposed

protocol utilizes DCCP with the congestion control

mechanism specified in a new Congestion Control

Identifier (CCID). We also added an optional ACK-

based reliability layer on top of the DCCP connection,

similar to TCP’s reliability scheme. The new CCID

profile defines when acknowledgments are sent and

how to identify the true reasons of packet loss.

Additional ECN support and ELFN support is used to

provide network-detected information to the sender.

In our protocol, the sender has four states: Normal

State, Congestion State, Failure State (route change or

link failure) and Error State (transmission error). Rate-

based congestion control is used to avoid the frequent

slow starts. The most important task is to design the

rate equation for each state, which is the key for

throughput and fairness.

In the research of ATP [14], the packet queuing and

sending delay at each node is calculated and the

maximum delay is recorded in each packet. The

receiver then calculates the rate based on the delay

information and feeds it back to the sender. This

approach was studied for a standalone Wireless Ad

Hoc network without an access point or gateway

connecting to the wired networks. When cooperating

with a wired network, the relationships between the

delay and rate are different in the wired and wireless

parts, so the receiver cannot make decisions without

knowing where the maximum delay happened. Also,

intermediate nodes are working as routers, which

process packets up to the network layer. To record the

delay information at each node through the path and

later to be used at the receiver for transport layer,

additional effort is needed to make changes at the

intermediate nodes. So, the ATP approach is excluded

from our solution.

To determine the available end-to-end bandwidth,

we adopted the delay based rate estimation mechanism

in FAST TCP [7]. The sender maintains two RTT

values, one is base RTT (baseRTT), which is the

minimum recorded RTT, and the other is exponentially

averaged RTT (avgRTT). Each time the sender goes

into the failure state, the baseRTT will be reset by the

round trip time of a probe packet and its corresponding

acknowledgment, after being temporarily saved as old

baseRTT. The sending rate after the route establishment

is proportional to baseRTT/oldbaseRTT.

In the Normal State, the sender adjusts the rate

proportional to baseRTT/avgRTT. In the Congestion

State, when ECN mark without packet loss happened,

the rate adjustment is the same as in Normal State. But

when packet loss happened, the sending rate will halve.

This idea is based on FAST TCP for High-Speed

Long-Distance Networks, which showed proportional

fairness under no congestion or mild congested

situations when packet loss occurs infrequently.

In the Error State, the rate is set to β*rate, calculated

using the above equation, where β ranges from ½ to 1,

according to the error rate.

In the Failure State, probe packets are send out to

monitor the network situation. The rate of sending

probe packets can be set to one packet per RTO like in

Fixed RTO, but it should be studied further by

experiments.

A simplified DCCP with rate-based congestion

control is implemented based on the TCP

implementation in NS2. Because wireless nodes do not

support ECN and the limitation of getting network-

detected link failure in NS2, the implementation has

only two states: Congestion State and Normal State.

In the implementation, ACKs are sent back to the

sender whenever the receiver receives a packet. ACKs

have the ACK Vector option as specified in the DCCP

specification. ACK vectors contain packet reception

information (whether they are received, not received or

ECN marked). Also, the ACK Vector can be used to

return information about several packets to make sure

the sender receives information though some ACKs

may be lost. A weighted average RTT (3/4* RTT

+1/4*current RTT) is calculated using the timestamp

echo contained in the ACKs. The congestion window

size (cwnd) is adjusted accordingly using the control

equation. The function used in the simulation is:

))}*1(int)(1({
RTT

qdelay
cwndcwndcwnd −++=

In the equation, qdelay is the difference between newly

calculated weighted average RTT and baseRTT. When

cwnd is 1, the equation will increase cwnd by 1 each

RTT; when qdelay is zero, the cwnd is higher than 1,

the equation will increase by 2 packets per RTT.

A timeout timer (RTO) is set for the transmitted

packets. Since the test scenario is static, and no

movement-caused packet drops are involved, the

sender enters Congestion State whenever the timeout

timer expires. In this Congestion State, probe packets

with only headers are sent by the sender every RTO

until an ACK is received. Upon successfully receiving

an ACK, the sender resets the RTT and baseRTT, sets

the congestion window size to

cwnd*oldBaseRTT/baseRTT, and enters the Normal

State again.

Figure 1: Wireless Ad Hoc Access Network Simulated

Scenario

An alternative design is to reset the cwnd every RTT

based on the average RTTs collected and keep the

same cwnd for this RTT as in FAST TCP. This

management of cwnd is similar to the approach in TCP,

so it may provide a fairer sharing between DCCP and

TCP flows in some cases. The advantages of the first

design are that the unfairness caused by different RTTs

between flows is removed, and it may be more suitable

for the wireless situations where mobility is involved.

The test scenario used in the simulation is shown in

Figure 1 (inspired by [12]). In the simulation, data is

sent from the wired node to the wireless nodes (1 and

4) that are two hops away from the access point; or

from those wireless nodes to the wired node via the

access point. All wireless nodes are stationary in the

simulation. All data flows are 10MB FTP flows. First,

a single flow traversing a chain of nodes (4 hops) was

tested using TCP Reno, our base protocol (called

DCCP from now on), and the base protocol with an

ACK-based retransmission scheme (called Reliable

DCCP). Table 1 shows both throughput and goodput

for each protocol.

In a second set of experiments, we simulated two

flows, similar to the scenario in Figure 1. Each flow

could be either an IN flow or an OUT flow, and we

also varied the RTT for mixed flow scenarios. Table 2

shows the results for TCP as transport protocol and

Table 3 shows results for the same scenarios using the

DCCP-based protocol without reliable packet delivery.

To evaluate various alternatives, we measured the

throughput for each flow and the aggregate throughput,

and we also measured inter-flow fairness using Jain’s

fairness index. An index value of 1 indicates a perfectly

fair bandwidth allocation (i.e., each flow obtained the

same normalized bandwidth share), as we typically

assume that each flow has equal rights to the network

resources.

Compared with TCP’s congestion control, our

proposed congestion control algorithm shows improved

inter-flow fairness for all combinations of IN and OUT

flows. The aggregate throughputs are also higher, but

then again this version of DCCP does not provide

reliable data delivery. In the current Internet, TCP is

widely used, so it is also important to study the inter-

protocol fairness between DCCP flows and TCP flows.

These comparisons are summarized in Table 4.

DCCP and TCP flows share the network in a fair

manner when they are both IN flows. There is some

unfairness when there are OUT flows and the most

unfair bandwidth sharing happens when the TCP and

DCCP flows are both OUT flows. In the simulations

for mixed flows, when the TCP flow is the OUT flow,

the unfairness is also rather severe. The reason is that a

DCCP flow is more aggressive in obtaining bandwidth

compared with a TCP flow. This behavior also shows

up when TCP or DCCP flows coexist with UDP flows,

though for brevity, these results are not shown.

 Total Pkts Received Pkts Throughput Goodput

TCP 6667 6912 0.447Mbps 0.444Mbps

DCCP 6667 5871 0.829Mbps 0.829Mbps

Reliable DCCP 6667 8801 0.765Mbps 0.629Mbps

Table 1: Single Flow Performances

Throughput (Mbps) Both IN (110ms) Both OUT (110ms) IN/OUT (110ms) IN/OUT (60ms)

Flow 1 0.65 0.84 1.12 1.37

Flow 2 0.76 0.33 0.10 0.02

Sum 1.41 1.17 1.21 1.38

Jain's Fairness Index 0.994 0.840 0.585 0.514

Table 2: TCP Performance for 2 Flows: Throughputs and Fairness

Throughput (Mbps) Both IN (110ms) Both OUT (110ms) IN/OUT (110ms) IN/OUT (60ms)

Flow 1 0.85 0.87 0.97 0.93

Flow 2 0.80 0.87 0.77 0.80

Sum 1.66 1.74 1.73 1.73

Jain's Fairness Index 0.999 1.000 0.987 0.994

Table 3: DCCP Performance for 2 flows: Throughput and Fairness

Throughput (Mbps) Both IN (110ms) Both OUT (110ms) IN/OUT (DCCP IN) IN/OUT (TCP IN)

DCCP Flow 0.764 1.675 1.443 0.699

TCP Flow 0.747 0.071 0.118 0.843

Sum 1.511 1.747 1.561 1.541

Jain's Fairness Index 1.000 0.542 0.581 0.991

Table 4: DCCP/TCP Inter-flow Throughputs and Fairness

Overall, the simulation results show that DCCP flows

have good inter-flow fairness due to the modified

congestion control algorithm, which uses a rate based

window control algorithm based on the feedback from

the acknowledgments. When DCCP flows coexist with

TCP flows, DCCP flows starve the TCP flows only

when there is an OUT TCP flow, and DCCP flows

have better throughput when co-existing with UDP

flows. The results show that the proposed congestion

control algorithm is promising: flows using the

proposed congestion control algorithm share the

bandwidth almost fairly regardless of where the senders

are (i.e., whether they are IN or OUT flows). When co-

existing with TCP flows, the bandwidth sharing shows

similar fairness issues as pure TCP flows, and the

unfairness is somewhat more severe in these cases.

This implies that the TCP-friendliness of the proposed

congestion control algorithm should be further studied

and improved.

Although Datagram Congestion Control Protocol

(DCCP) is designed for applications which do not need

reliability, it has features which can be used to

implement reliable transmission based on DCCP, such

as a sequence number for each DCCP Request or

DCCP response packet, a checksum field, which uses

the same algorithm as TCP’s checksum algorithm, and

an ACK option that provides packet loss and

corruption information to DCCP senders.

Throughput (Mbps) Both IN (110ms) Both OUT (110ms) IN/OUT (110ms) IN/OUT (60ms)

Flow 1 0.71 0.75 0.72 0.84

Flow 2 0.71 0.79 0.77 0.69

Sum 1.42 1.53 1.49 1.53

Jain's Fairness Index 1.000 0.999 0.999 0.990

Table 5: Reliable DCCP Performance for 2 Flows: Throughputs and Fairness

Both DCCP and TCP are end-to-end sliding window

protocols. Data packets are transmitted in both

directions: packets are sent from the senders to the

receivers and acknowledgements are sent from the

receivers to the senders. Senders are allowed to send a

window of packets before receiving the

acknowledgment. This window starts at a constant size

and is later controlled by the congestion control

algorithms implemented in the protocols.

Acknowledgments are valid when sequence numbers of

acknowledged packets are within the range of the

current window. To implement reliable transmission

based on DCCP and provide a comparable level of

reliability as TCP does, we added the following

functions to DCCP: Buffering of received packets at

the receivers, retransmission of lost or corrupted

packets by the senders, detection and deletion of

duplicated packets at the receivers, and in-order

delivery of received packets to the application program

at the receivers.

The results for this implementation of Reliable

DCCP flows shows that they achieve better throughputs

and fairness, compared to Table 2. While TCP shows

severe unfairness when the two flows are mixed (see

Table 2), Jain’s fairness indexes in Table 5 are all close

to 1. At the same time, the aggregate throughputs of the

two flows are higher as well. Mixing TCP and Reliable

DCCP flows shows similar fairness results as the

combination of TCP and DCCP flows presented in

Table 4.

5. Conclusions and Future Work
TCP was designed for wired networks, and has

benefited from substantial research efforts over the

years. Yet it shows poor performance over multihop

wireless networks and severe inter-flow fairness

challenges, as shown in Section 2. Section 3 reviews a

number of proposals to enhance TCP, with some of the

proposed protocols showing quite promising results.

However, none of these improvements will benefit

UDP streams that are often used in streaming media-

content. Section 4 gives a high-level overview of a

congestion-control approach based on DCCP that could

be beneficial to both unreliable data streams and

reliable data transfers. Simulation results in NS2

confirm that the approach improves both fairness and

aggregate throughput, providing users with fair and

high-throughput access to the shared multihop wireless

access network.

The work presented here will be further extended in the

following areas to verify and improve the design. We

will conduct more performance runs to verify the test

results under multiple-flow scenarios. We will also add

node mobility to the simulations and study the impact

of additional loss scenarios caused by broken links

during an active flow on throughput and fairness. We

will also study and improve throughput and fairness

when mixed Reliable DCCP and TCP flows co-exist.

The core congestion control protocol can be further

optimized by tuning the rate control formula and

retransmission timer to optimize the packet sending

rate and adding new features to the implementation in

the simulation such as support of ECN, to provide

additional information for the sender to identify

network condition and to adjust the sending rate

accordingly.

Finally, we are very interested in implementing the

proposed congestion control protocol in our wireless

mesh test bed to verify the simulation results.

Acknowledgements
The authors would like to thank NSERC for its

financial support of this work.

References
[1] M. Allman, V. Paxson and W. Stevens, “TCP

Congestion Control”, RFC 2581, IETF, April 1999.

[2] V. Anantharaman and R. Sivakumar, “TCP Performance

over Mobile Ad Hoc Networks – a Quantitative Study”,

Wireless Communication and Wireless Networks, pp.

203 – 222, 2003.

[3] K. Chandran et al. “A Feedback Based Scheme For

Improving TCP Performance In Ad-Hoc Wireless

Networks”, Proc. of Int. Conf. on Distr. Comp. Systems,

pp. 472-479, Amsterdam, Netherlands, 1998.

[4] S. Corson and J. Macker, “Mobile Ad Hoc Networking

[MANET]: Routing Protocol Performance Issues and

Evaluation Considerations”, RFC 2501, IETF, Jan.

1999.

[5] G. Holland and N. Vaidya, “Analysis of TCP

Performance over Mobile Ad Hoc Networks”, Proc. 5th

ACM/IEEE Int. Conf. on Mobile Comp. and

Networking, pp. 219 – 230, Seattle, USA, 1999.

[6] R. Jain, D. Chiu, and W. Hawe, “A Quantitative

Measure of Fairness and Discrimination for Resource

Allocation in Shared Computer Systems”, Technical

Report, DEC Research Report TR-301, Digital

Equipment Corporation, Hudson MA, USA, Sept. 1984.

[7] C. Jin, D. Wei, S. H. Low, “FAST TCP: Motivation,

Architecture, Algorithms, Performance”, Proc. of the

23rd Conf. of the IEEE Communication Society, pp. 81-

94, Hong Kong, China, March 2004.

[8] E. Kohler, M. Handley and S. Floyd, “Datagram

Congestion Control Protocol (DCCP)”, RFC 4340,

IETF, March 2006.

[9] J. Liu, S, Singh, “ATCP: TCP for Mobile Ad Hoc

Networks”, IEEE Journal on Selected Areas in

Communication, 19(7):1300 – 1315, July 2001.

[10] S. Pilisof, R. Ramjee, D. Raz, “Understanding TCP

Fairness Over Wireless LAN”, Proc. of the 22nd Annual

Joint Conf. of IEEE Computer and Communications

Societies, pp. 863 – 872, April 2003.

[11] F. Wang and Y. Zhang, “Improving TCP Performance

over Mobile Ad-Hoc Networks with Out-of-Order

Detection and Response”, Proc. of 3rd ACM Int.

Symposium on Mobile Ad Hoc Networking &

Computing, pp. 217 -225, Lausanne, Switzerland, June

2002.

[12] K. Xu et al., “TCP Behavior across Multihop Wireless

Networks and the Wired Internet”, Proc. of the 5th Int.

Workshop on Wireless Mobile Multimedia, pp. 207 –

218, Seattle, USA, Sept. 2002.

[13] L. Yang et al., “Improving Fairness among TCP Flows

crossing Wireless Ad Hoc and Wired Networks”, Proc.

of the 4th ACM Int. Symposium on Mobile Ad Hoc

Networking & Computing, pp. 57 – 63, Annapolis,

USA, 2003.

[14] K. Sundaresan and V. Anantharaman, “ATP: A reliable

Transport Protocol for Ad-Hoc Networks”, IEEE

Transactions on Mobile Computing, volume 4, issue 6,

pages 588 – 603, Nov/Dec, 2005.

