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Abstract 
Transmission Control Protocol (TCP) is a reliable, 

end-to-end transport protocol, which is widely used for 

data services and is very efficient for wired networks. 

However, experiments and research showed that 

TCP’s congestion control algorithm performs very 

poorly over Wireless Ad Hoc Networks with degraded 

throughputs and severe unfairness among flows. This 

paper studies TCP’s fairness and throughput issues in 

Wireless Ad Hoc Access Networks, and designs an 

improved congestion control algorithm based on the 

characteristics of the Wireless Ad Hoc Access 

Networks. The protocol is designed as extension to 

DCCP (Datagram Congestion Control Protocol) with 

a new congestion control component. We also 

implemented this congestion control algorithm in NS2. 

Simulation results show improvements on fairness and 

throughput achieved by using our congestion control 

algorithm.  

 

1. Introduction 
Wireless Ad Hoc Networks are multi-hop wireless 

networks, consisting of mobile nodes which are free to 

move about arbitrarily [4]. Frequently, Ad Hoc 

network will have gateways as connection to the 

Internet, which we call a Wireless Ad Hoc Access 

Network. Extensive research has been conducted 

concerning media access, routing and transport 

protocols for such networks. Transport layer protocols, 

which are specifically modified or designed for 

Wireless Ad Hoc Access Networks, are the focus of 

this paper. As most Ad Hoc Networks are built based 

on IEEE 802.11 wireless links, the work here also 

assumes that the MAC layer is an IEEE 802.11-like 

random access protocol. 

TCP/IP is the protocol suite that defines the Internet. 

Transmission Control Protocol (TCP) is a reliable end-

to-end transport protocol widely used for data services, 

which is primarily designed for wired networks and 

became very efficient and robust with years of 

enhancements. However, experiments and research 

showed that TCP’s congestion control algorithm 

performs very poorly over Wireless Ad Hoc networks 

with degraded throughputs and severe unfairness 

among flows [5]. Research therefore has focused on 

further improving TCP to address the special 

characteristics of Wireless Ad Hoc networks.   

Currently, the vast majority of the traffic in the 

Internet relies upon the congestion control mechanism 

provided by TCP. However, applications such as 

streaming video and Internet Telephony prefer 

timeliness to reliability. The reliability and in-order 

delivery algorithm provided by TCP often results in 

arbitrary delay, and TCP’s rate control AIMD 

(Additive Increase and Multiplicative Decrease) 

algorithm causes very sharp bandwidth change upon 

the detection of one packet loss. Consequently, such 

applications often choose UDP, with either their own 

congestion control mechanisms implemented on top of 

it or none at all. Long-lasting UDP flows without any 

congestion control mechanism present a potential threat 

to the network. Also, congestion control mechanisms 

are difficult to implement and may behave incorrectly. 

This argues for a common base transport protocol, 

which is able to provide different congestion control 

algorithms to suit the needs of different applications.  

This paper reviews TCP and TCP’s performance 

problems in more detail in Section 2. Section 3 surveys 

a range of possible solutions to improve TCP suggested 

in the literature. Section 4 discusses a new congestion 

control algorithm implemented within DCCP (the 

Datagram Congestion Control Protocol) [8] and 

presents some simulation results. The results show that 

flows with the new congestion control protocol have 

very good inter-flow fairness, even in scenarios where 

TCP flows experience severe unfairness. At the same 

time, the aggregate flow throughputs are increased as 

well.  

 

2. TCP in Multihop Wireless Networks 
TCP provides a connection-oriented, reliable data 

transmission. The basic idea of TCP congestion control 



 

is that TCP senders probe the network for available 

resources, and increase the transmission rate until 

packet losses are detected. TCP takes packet loss as 

indication of network congestion and triggers 

appropriate congestion control schemes.  

 

2.1. TCP Throughput 
In [5], it is shown that, when mobile nodes are fixed, 

the measured TCP throughput over IEEE 802.11 links 

(nominal data rate of 2 Mbps) for a single TCP flow 

decreases rapidly when the number of hops increases. 

In addition, the measured throughput gets worse when 

nodes are moving. As a general pattern, the throughput 

decreases as the nodes’ moving speeds increase. 

This throughput loss is caused by the unique 

characteristics of the Wireless Ad Hoc Networks.  

Wired networks have relatively low bit error rate, and 

TCP treats packet errors as indication of network 

congestion. In wireless transmission, bit error rates 

(BER) are higher due to fading and interference within 

wireless channels. Assuming that each error indicates 

network congestion and triggering the congestion 

control mechanism affects the throughput and link 

utilization. In addition, when nodes are moving, 

existing links may break, so the route between two 

nodes becomes obsolete and a new route has to be 

selected by the routing protocol. If the time of 

establishing a new route is longer than RTO, the TCP 

sender invokes congestion control and reenters the 

slow start phase. Mobility may also cause network 

partitions. If the TCP sender and receiver are in two 

different partitions, the TCP sender invokes congestion 

control and exponentially backs off the retransmission. 

If the partitions last longer than several RTOs, network 

inactivity could happen: even though the route has been 

reestablished, the sender still needs to wait until the 

RTO timer expires. Finally, TCP is based on ACKs for 

correct congestion control, so timely ACK reception is 

necessary for packet transmission and correct 

calculation of congestion window size and RTO.  

Common MANET MAC protocols such as IEEE 

802.11 can result in a bunching of ACKs. Bunched 

ACKs cause bursty traffic and highly variable round 

trip times (RTTs). It may even cause the TCP sender 

triggering the congestion control due to starvation of 

ACKs.  

 

2.2. TCP Fairness 
In addition to throughput, it is also important to ensure 

that access to the network by each user remains fair. 

Fairness can be intuitively defined as the obtained 

throughput to its fair share of the bandwidth and can be 

quantified with metrics such as Jain’s Fairness Index 

[6]. TCP flows experience severe unfairness in Ad Hoc 

Networks. TCP’s window-based congestion control 

adjusts the congestion window size every RTT. Flows 

with longer RTT increase the congestion window 

slower than flows with shorter RTT. At the network 

routers, an unfair packet-dropping scheme, such as a 

simple FIFO drop tail scheme, may cause some flows 

to experience more losses than others. Medium access 

at a gateway is inherently unfair when using a MAC 

protocol such as IEEE 802.11. Upstream flows (from 

senders to the gateway) tend to occupy the whole 

media and the downstream flows (from the gateway to 

receivers) almost stop transmission when multiple 

upstream and downstream flows co-exist. Unfairness 

between the upstream and downstream flow 

throughputs is extremely high, with a ratio of up to 800 

between them [10]. In a Wireless Ad Access Hoc 

network, IN TCP flows (from the wired part to the 

wireless part) get more bandwidth than the coexisting 

OUT TCP flows (from the wireless part to the wired 

part) [12]. IN flows obtain a much higher share of the 

bandwidth when mixed flows exist due to exposed and 

hidden node effects. TCP’s own timeout and backoff 

schemes further worsen the unfairness. 

In general, TCP works poorly in Wireless Ad Hoc 

Networks. This is caused by the high bit error rate over 

wireless links, arbitrary node mobility, as well as 

TCP’s built in congestion control algorithm working 

with the contention based media access of IEEE 

802.11. A large amount of research has focused on 

improving the throughput and fairness issues discussed 

above.  

 

3. Related Work 
In this section, existing proposals to improve the 

throughput and fairness problems of TCP over Mobile 

Ad Hoc Network are briefly reviewed. Most proposals 

focus on one of the two performance problems so the 

review is organized along these two categories.  

 

3.1 TCP Performance Improvements 
[5] analyzes of the use of explicit link failure 

notification (ELFN) on the performance of TCP over 

Mobile Ad Hoc networks. The objective of ELFN is to 

provide the TCP sender with information about link 

and route failures so it can respond properly. Upon 

receiving a route failure notice, the TCP sender enters a 

“stand-by” state and freezes all timers. A probe packet 

is sent periodically to probe the network to see if the 



 

route has been reestablished. If an ACK is received, the 

TCP sender leaves the “stand-by” state, restarts the 

data transmission and resumes timers. The study shows 

significant throughput increase with the use of ELFN. 

But the simulation is only conducted with DSR as 

routing protocol choice and a single TCP flow. 

When multiple flows exist, [2] shows that this 

approach cannot achieve throughput improvements, 

and it even degrades the performance as the mobility 

rate increases. It shows that, when the probing is 

conducted by several connections, the flooding of 

probe packets increases the congestion of the network. 

Also when a new route is determined, the TCP sender 

restarts to send at the old rate (i.e., using the old 

congestion window). If this congestion window is too 

big for the new connection, network congestion is 

likely to happen.   

TCP-Feedback [11] is a similar feedback scheme in 

which the TCP sender utilizes the network layer 

feedback (Route Failure Notification or RFN) from 

intermediate nodes to distinguish route failure and 

network congestion. After receiving an RFN, TCP 

enters into the “snooze state”. In this state, TCP stops 

sending packets and freezes all its variables such as 

timers and cwnd size. Upon receiving a Route Re-

establishment Notification (RRN), via the routing 

protocol, TCP knows the route is reestablished and 

leaves the frozen state and resumes transmission using 

the same variable states before the “snooze state”. In 

addition, a route failure timer is used to prevent infinite 

wait for RRN messages. When a route failure timer 

expires, the TCP normal congestion control is invoked. 

The results in [3] show that TCP-Feedback performs 

significantly better than standard TCP when route 

reestablishment delay grows. This is mainly due to the 

reduction of the number of unnecessary packet 

retransmission/timer backoffs during the route failure 

interval. However, similar to the first approach, upon 

route re-establishment the TCP state reflects the 

conditions on the old route and not necessarily on the 

new route. 

The Fixed Retransmission Timeout scheme [2] is 

based on the idea that a regular exponential backoff 

mechanism is unnecessary, because route disconnection 

should be treated as a transitory period. Fixed RTO 

disables the exponential backoff after two successive 

retransmissions due to expired RTO, assuming it is 

caused by route failures. TCP retransmits a data packet 

more frequently because the retransmit timer is fixed; 

this reduces the inactive period after a route is 

reestablished.  In [2], significant improvement of 

throughput was achieved by the use of Fixed RTO. The 

article also studied the TCP selective and delayed 

acknowledgments options, which could only achieve 

marginal gains. As pointed out by the authors 

themselves, their approach is limited to pure wireless 

networks only. 

In ATCP [9], to maintain compatibility with the 

standard TCP/IP protocol suite, a thin layer called Ad 

Hoc TCP is inserted between TCP and IP. This scheme 

is different from the above three approaches where 

standard TCP is modified. ATCP utilizes the ICMP 

protocol and the ECN (Explicit Congestion 

Notification) scheme to detect network partition and 

congestion respectively. The intermediate layer ATCP 

keeps track of the packets to and from the transport 

layer. The feedback from intermediate nodes are used 

to put the TCP sender into either a persist state, 

congestion control state, or retransmit state. When a 

“Destination Unreachable” ICMP message is received, 

indicating route failure happened, the TCP sender 

enters a “persist state” which ends when the connection 

is reestablished. When three duplicate 

acknowledgements are received, indicating random 

errors, ATCP puts the TCP sender into “retransmit 

state” and quickly retransmits the lost packets from the 

TCP buffer. When an ECN message is received, which 

indicates real network congestion, ATCP puts the TCP 

sender into “congestion control state” and the TCP 

sender invokes the normal congestion control 

procedure. ATCP maintains end-to-end TCP semantics 

and is transparent to all nodes. Results in [9] show 

improvement of throughput under congestion, packet 

loss, and network partitions.  

 

3.2. TCP Fairness Improvements 
The above schemes address TCP’s throughput 

problem. Several researchers have also studied TCP 

fairness. In [10], TCP unfairness among upstream and 

downstream flows is demonstrated and investigated. A 

gateway is used to forward traffic, and the buffer size 

in the gateway plays a key role in obtaining fair sharing 

of the medium among upstream and downstream flows. 

[10] shows via simulation that, when equal number of 

downstream and upstream flows exist, the average 

throughput ratio between the upstream and downstream 

flows can go up to 800. The reason is that upstream 

flows’ ACKs clutter the gateway buffer and cause the 

buffer to overflow. Downstream flows experience 

timeouts and transmit only with a window of 0-2 

packets because of the packet drops at the gateway 

buffer. Upstream flows normally can reach their 



 

maximum window size. Because of the cumulative 

nature of TCP ACKs, small losses of ACKs do not 

affect the window size. 

The proposed solution is to advertise the available 

buffer size to the sender. The gateway keeps the 

number of current TCP flows in the system. If the 

buffer size at the gateway is B and the number of flows 

is N, then the receiver window of all the TCP flows are 

set to the minimum of advertised receiver window or 

[B/N] by modifying the receiver window field of ACKs 

traversing the gateway. Through simulation and test 

bed implementation, this proposal shows a very good 

fairness, with the throughput ratio of upstream and 

downstream flows being 1 in the simulation and 1.007 

in the test bed. The study is based on the assumption 

that all the losses happen in the gateway due to buffer 

overflow and all RTTs are the same among flows. 

In [12], the TCP fairness problem in a combined 

wireless and wired network is investigated. The study 

shows that IN flows get significant more bandwidth 

than OUT flows. This unfairness is the joint result of 

the MAC layer’s exposed nodes and hidden nodes 

problem and TCP’s timeout and backoff schemes (see 

Section 2). In a study performed on the test bed, it is 

found that when the maximum congestion window size 

is smaller than a certain value (8 in the test), the two 

flows share the bandwidth fairly and the aggregate 

throughput reaches the upper limit. The problem is that 

this window size could not be preconfigured. A similar 

study is conducted in a pure Ad Hoc network, and the 

optimal congestion window size is found to be 1-2 

packets. For connections with a long propagation 

delay, such a small window size will affect the 

efficiency.  

To improve fairness over a combined wired and Ad 

Hoc network, a non-work-conserving scheduling 

algorithm working with IEEE 802.11 MAC is proposed 

in [13]. In the proposal, the normal FIFO work-

conserving scheduling scheme is replaced, which treats 

routing packets (generated by routing protocols) as 

high priority packets over data packets (generated by 

applications), and puts the high priority packets in the 

queue before all data packets upon arrival. The head of 

the queue is send to the MAC after knowing that the 

MAC is ready to send another packet. A timer is set 

after a data packet is sent to the MAC. Only after the 

timer expires can the queue send another data packet. 

The routing packets have high priority and dequeue 

immediately after knowing that the MAC is ready. No 

timer is set after a routing packet is sent. The duration 

of the timer is based on the queue output rate and is the 

sum of three parts: transmission delay without 

contention; transmission delay based on recent queue 

output (choosing from four predefined values based on 

the queue output rate); and a random value uniformly 

distributed from zero to the value of the second part. 

The timer adds extra adaptive delay in the scheduling, 

so the more aggressively a node is sending packet, the 

more severely it is penalized, thereby nodes failing to 

grab the medium can compete with the fast sending 

nodes now. 

Through simulations, [13] shows that the severe 

unfairness among flows can be eliminated while the 

aggregate throughput experiences a small degradation. 

Also, the maximum congestion window size does not 

adversely impact fairness in this scheme, so unlike the 

previous schemes there is no need to pre-configure the 

maximum congestion window size or to modify the 

advertised receiver window.   

In summary, a range of proposals have addressed 

how to improve TCP throughput and to increase TCP 

fairness, with varying degrees of success. However, 

these approaches are all limited by their intent to keep 

at least the TCP semantics unchanged, if not the TCP 

implementations at each node, often resulting in 

improvement in one aspect (such as throughput) while 

trading off another aspect (such as fairness). Also, 

some of the proposals are only applicable in pure 

Wireless Ad Hoc Networks. However, we believe that 

the more relevant network architecture are Wireless Ad 

Hoc Access Networks. Finally, none of these proposals 

will address the congestion control problem for 

streaming UDP flows in such networks. In the next 

section, we discuss a new transport layer protocol that 

improves on both fairness and throughput (compared to 

TCP), and can be suitable for both reliable data transfer 

and streaming media flows.  

 

4. Proposed Congestion Control Scheme 
Datagram Congestion Control Protocol (DCCP) [8]  is 

a new protocol designed for applications that require 

the flow-based semantics of TCP, but prefer timely 

delivery to in-order delivery, or a congestion control 

mechanism different from what TCP provides. DCCP 

aims to be a minimal overhead and general-purpose 

transport-layer protocol providing only two core 

functions: The establishment, maintenance and 

teardown of an unreliable packet flow, and Congestion 

control of that packet flow. 

The purpose of DCCP is to provide a standard way to 

implement congestion control and congestion control 

negotiations for special applications. Our proposed 



 

protocol utilizes DCCP with the congestion control 

mechanism specified in a new Congestion Control 

Identifier (CCID).  We also added an optional ACK-

based reliability layer on top of the DCCP connection, 

similar to TCP’s reliability scheme. The new CCID 

profile defines when acknowledgments are sent and 

how to identify the true reasons of packet loss. 

Additional ECN support and ELFN support is used to 

provide network-detected information to the sender. 

In our protocol, the sender has four states: Normal 

State, Congestion State, Failure State (route change or 

link failure) and Error State (transmission error). Rate-

based congestion control is used to avoid the frequent 

slow starts. The most important task is to design the 

rate equation for each state, which is the key for 

throughput and fairness.  

In the research of ATP [14], the packet queuing and 

sending delay at each node is calculated and the 

maximum delay is recorded in each packet. The 

receiver then calculates the rate based on the delay 

information and feeds it back to the sender. This 

approach was studied for a standalone Wireless Ad 

Hoc network without an access point or gateway 

connecting to the wired networks. When cooperating 

with a wired network, the relationships between the 

delay and rate are different in the wired and wireless 

parts, so the receiver cannot make decisions without 

knowing where the maximum delay happened. Also, 

intermediate nodes are working as routers, which 

process packets up to the network layer. To record the 

delay information at each node through the path and 

later to be used at the receiver for transport layer, 

additional effort is needed to make changes at the 

intermediate nodes. So, the ATP approach is excluded 

from our solution.  

To determine the available end-to-end bandwidth, 

we adopted the delay based rate estimation mechanism 

in FAST TCP [7]. The sender maintains two RTT 

values, one is base RTT (baseRTT), which is the 

minimum recorded RTT, and the other is exponentially 

averaged RTT (avgRTT).  Each time the sender goes 

into the failure state, the baseRTT will be reset by the 

round trip time of a probe packet and its corresponding 

acknowledgment, after being temporarily saved as old 

baseRTT. The sending rate after the route establishment 

is proportional to baseRTT/oldbaseRTT.  

In the Normal State, the sender adjusts the rate 

proportional to baseRTT/avgRTT. In the Congestion 

State, when ECN mark without packet loss happened, 

the rate adjustment is the same as in Normal State. But 

when packet loss happened, the sending rate will halve. 

This idea is based on FAST TCP for High-Speed 

Long-Distance Networks, which showed proportional 

fairness under no congestion or mild congested 

situations when packet loss occurs infrequently.   

In the Error State, the rate is set to β*rate, calculated 

using the above equation, where β ranges from ½ to 1, 

according to the error rate.  

In the Failure State, probe packets are send out to 

monitor the network situation. The rate of sending 

probe packets can be set to one packet per RTO like in 

Fixed RTO, but it should be studied further by 

experiments.  

A simplified DCCP with rate-based congestion 

control is implemented based on the TCP 

implementation in NS2. Because wireless nodes do not 

support ECN and the limitation of getting network-

detected link failure in NS2, the implementation has 

only two states: Congestion State and Normal State. 

In the implementation, ACKs are sent back to the 

sender whenever the receiver receives a packet. ACKs 

have the ACK Vector option as specified in the DCCP 

specification. ACK vectors contain packet reception 

information (whether they are received, not received or 

ECN marked). Also, the ACK Vector can be used to 

return information about several packets to make sure 

the sender receives information though some ACKs 

may be lost. A weighted average RTT (3/4* RTT 

+1/4*current RTT) is calculated using the timestamp 

echo contained in the ACKs. The congestion window 

size (cwnd) is adjusted accordingly using the control 

equation. The function used in the simulation is: 

))}*1(int)(1({
RTT

qdelay
cwndcwndcwnd −++=

In the equation, qdelay is the difference between newly 

calculated weighted average RTT and baseRTT. When 

cwnd is 1, the equation will increase cwnd by 1 each 

RTT; when qdelay is zero, the cwnd is higher than 1, 

the equation will increase by 2 packets per RTT.  

A timeout timer (RTO) is set for the transmitted 

packets. Since the test scenario is static, and no 

movement-caused packet drops are involved, the 

sender enters Congestion State whenever the timeout 

timer expires. In this Congestion State, probe packets 

with only headers are sent by the sender every RTO 

until an ACK is received. Upon successfully receiving 

an ACK, the sender resets the RTT and baseRTT, sets 

the congestion window size to 

cwnd*oldBaseRTT/baseRTT, and enters the Normal 

State again. 



 

Figure 1: Wireless Ad Hoc Access Network Simulated 

Scenario 

 

An alternative design is to reset the cwnd every RTT 

based on the average RTTs collected and keep the 

same cwnd for this RTT as in FAST TCP. This 

management of cwnd is similar to the approach in TCP, 

so it may provide a fairer sharing between DCCP and 

TCP flows in some cases. The advantages of the first 

design are that the unfairness caused by different RTTs 

between flows is removed, and it may be more suitable 

for the wireless situations where mobility is involved.  

The test scenario used in the simulation is shown in 

Figure 1 (inspired by [12]). In the simulation, data is 

sent from the wired node to the wireless nodes (1 and 

4) that are two hops away from the access point; or 

from those wireless nodes to the wired node via the 

access point. All wireless nodes are stationary in the 

simulation. All data flows are 10MB FTP flows. First, 

a single flow traversing a chain of nodes (4 hops) was 

tested using TCP Reno, our base protocol (called 

DCCP from now on), and the base protocol with an 

ACK-based retransmission scheme (called Reliable 

DCCP). Table 1 shows both throughput and goodput 

for each protocol. 

In a second set of experiments, we simulated two 

flows, similar to the scenario in Figure 1. Each flow 

could be either an IN flow or an OUT flow, and we 

also varied the RTT for mixed flow scenarios. Table 2 

shows the results for TCP as transport protocol and 

Table 3 shows results for the same scenarios using the 

DCCP-based protocol without reliable packet delivery.  

To evaluate various alternatives, we measured the 

throughput for each flow and the aggregate throughput, 

and we also measured inter-flow fairness using Jain’s 

fairness index. An index value of 1 indicates a perfectly 

fair bandwidth allocation (i.e., each flow obtained the 

same normalized bandwidth share), as we typically 

assume that each flow has equal rights to the network 

resources. 

Compared with TCP’s congestion control, our 

proposed congestion control algorithm shows improved 

inter-flow fairness for all combinations of IN and OUT 

flows. The aggregate throughputs are also higher, but 

then again this version of DCCP does not provide 

reliable data delivery. In the current Internet, TCP is 

widely used, so it is also important to study the inter-

protocol fairness between DCCP flows and TCP flows. 

These comparisons are summarized in Table 4. 

DCCP and TCP flows share the network in a fair 

manner when they are both IN flows. There is some 

unfairness when there are OUT flows and the most 

unfair bandwidth sharing happens when the TCP and 

DCCP flows are both OUT flows. In the simulations 

for mixed flows, when the TCP flow is the OUT flow, 

the unfairness is also rather severe. The reason is that a 

DCCP flow is more aggressive in obtaining bandwidth 

compared with a TCP flow. This behavior also shows 

up when TCP or DCCP flows coexist with UDP flows, 

though for brevity, these results are not shown.

  Total Pkts Received Pkts Throughput Goodput 

TCP 6667 6912 0.447Mbps 0.444Mbps 

DCCP 6667 5871 0.829Mbps 0.829Mbps 

Reliable DCCP 6667 8801 0.765Mbps 0.629Mbps 

Table 1: Single Flow Performances 

Throughput (Mbps) Both IN (110ms) Both OUT (110ms) IN/OUT (110ms) IN/OUT (60ms) 

Flow 1 0.65 0.84 1.12 1.37 

Flow 2 0.76 0.33 0.10 0.02 

Sum 1.41 1.17 1.21 1.38 

Jain's Fairness Index 0.994 0.840 0.585 0.514 

Table 2: TCP Performance for 2 Flows: Throughputs and Fairness 



 

 

Throughput (Mbps) Both IN (110ms) Both OUT (110ms) IN/OUT (110ms) IN/OUT (60ms) 

Flow 1 0.85 0.87 0.97 0.93 

Flow 2 0.80 0.87 0.77 0.80 

Sum 1.66 1.74 1.73 1.73 

Jain's Fairness Index 0.999 1.000 0.987 0.994 

Table 3: DCCP Performance  for 2 flows: Throughput and Fairness 

Throughput (Mbps) Both IN (110ms) Both OUT (110ms) IN/OUT (DCCP IN) IN/OUT (TCP IN) 

DCCP Flow 0.764 1.675 1.443 0.699 

TCP Flow 0.747 0.071 0.118 0.843 

Sum 1.511 1.747 1.561 1.541 

Jain's Fairness Index 1.000 0.542 0.581 0.991 

Table 4: DCCP/TCP Inter-flow Throughputs and Fairness 

 

Overall, the simulation results show that DCCP flows 

have good inter-flow fairness due to the modified 

congestion control algorithm, which uses a rate based 

window control algorithm based on the feedback from 

the acknowledgments. When DCCP flows coexist with 

TCP flows, DCCP flows starve the TCP flows only 

when there is an OUT TCP flow, and DCCP flows 

have better throughput when co-existing with UDP 

flows. The results show that the proposed congestion 

control algorithm is promising: flows using the 

proposed congestion control algorithm share the 

bandwidth almost fairly regardless of where the senders 

are (i.e., whether they are IN or OUT flows). When co-

existing with TCP flows, the bandwidth sharing shows 

similar fairness issues as pure TCP flows, and the 

unfairness is somewhat more severe in these cases. 

This implies that the TCP-friendliness of the proposed 

congestion control algorithm should be further studied 

and improved. 

Although Datagram Congestion Control Protocol 

(DCCP) is designed for applications which do not need 

reliability, it has features which can be used to 

implement reliable transmission based on DCCP, such 

as a sequence number for each DCCP Request or 

DCCP response packet, a checksum field, which uses 

the same algorithm as TCP’s checksum algorithm, and 

an ACK option that provides packet loss and 

corruption information to DCCP senders. 

 

Throughput (Mbps) Both IN (110ms) Both OUT (110ms) IN/OUT (110ms) IN/OUT (60ms) 

Flow 1 0.71 0.75 0.72 0.84 

Flow 2 0.71 0.79 0.77 0.69 

Sum 1.42 1.53 1.49 1.53 

Jain's Fairness Index 1.000 0.999 0.999 0.990 

Table 5: Reliable DCCP Performance for 2 Flows: Throughputs and Fairness 

Both DCCP and TCP are end-to-end sliding window 

protocols. Data packets are transmitted in both 

directions: packets are sent from the senders to the 

receivers and acknowledgements are sent from the 

receivers to the senders. Senders are allowed to send a 

window of packets before receiving the 

acknowledgment. This window starts at a constant size 

and is later controlled by the congestion control 

algorithms implemented in the protocols. 

Acknowledgments are valid when sequence numbers of 

acknowledged packets are within the range of the 

current window. To implement reliable transmission 

based on DCCP and provide a comparable level of 

reliability as TCP does, we added the following 

functions to DCCP: Buffering of received packets at 

the receivers, retransmission of lost or corrupted 

packets by the senders, detection and deletion of 

duplicated packets at the receivers, and in-order 

delivery of received packets to the application program 

at the receivers. 

The results for this implementation of Reliable 

DCCP flows shows that they achieve better throughputs 



 

and fairness, compared to Table 2. While TCP shows 

severe unfairness when the two flows are mixed (see 

Table 2), Jain’s fairness indexes in Table 5 are all close 

to 1. At the same time, the aggregate throughputs of the 

two flows are higher as well. Mixing TCP and Reliable 

DCCP flows shows similar fairness results as the 

combination of TCP and DCCP flows presented in 

Table 4. 

 

5. Conclusions and Future Work 
TCP was designed for wired networks, and has 

benefited from substantial research efforts over the 

years. Yet it shows poor performance over multihop 

wireless networks and severe inter-flow fairness 

challenges, as shown in Section 2. Section 3 reviews a 

number of proposals to enhance TCP, with some of the 

proposed protocols showing quite promising results. 

However, none of these improvements will benefit 

UDP streams that are often used in streaming media-

content. Section 4 gives a high-level overview of a 

congestion-control approach based on DCCP that could 

be beneficial to both unreliable data streams and 

reliable data transfers. Simulation results in NS2 

confirm that the approach improves both fairness and 

aggregate throughput, providing users with fair and 

high-throughput access to the shared multihop wireless 

access network. 

The work presented here will be further extended in the 

following areas to verify and improve the design. We 

will conduct more performance runs to verify the test 

results under multiple-flow scenarios. We will also add 

node mobility to the simulations and study the impact 

of additional loss scenarios caused by broken links 

during an active flow on throughput and fairness. We 

will also study and improve throughput and fairness 

when mixed Reliable DCCP and TCP flows co-exist. 

The core congestion control protocol can be further 

optimized by tuning the rate control formula and 

retransmission timer to optimize the packet sending 

rate and adding new features to the implementation in 

the simulation such as support of ECN, to provide 

additional information for the sender to identify 

network condition and to adjust the sending rate 

accordingly. 

Finally, we are very interested in implementing the 

proposed congestion control protocol in our wireless 

mesh test bed to verify the simulation results. 
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