

Link Failure Reporting

Carleton Thomas Kunz UNIVERSITY Systems and C

Systems and Computer F

Systems and Computer Engineerin

- A neighbor of node X is considered active for a routing table entry if the neighbor sent a packet within *active_route_timeout* interval which was forwarded using that entry
 - When the next hop link in a routing table entry breaks, all active neighbors are informed
- Link failures are propagated by means of Route Error messages, which also update destination sequence numbers

43

Route Error When node X is unable to forward packet P (from node S to node D) on link (X,Y), it generates a RERR message Node X increments the destination sequence number for D cached at node X The incremented sequence number N is included in the RERR When node S receives the RERR, it initiates a new route discovery for D using destination sequence number at least as large as N When node D receives the route request with destination sequence number N, node D will set its sequence number to N, unless it is already larger than N Carleton Thomas Kunz

12 10 1	Carl C	260 8 2	Ver & Ler Y
de la comp	Pov	ver (Energy) Density	Source of Estimates
Batteries (Zin	c-Air) 1050	-1560 mWh/cm ³ (1.4 V)	Published data from manufacturers
Batteries(Lithin	im ion) 30	0 mWh/cm ³ (3 - 4 V)	Published data from manufacturers
Solar (Outdo	15 ors) 0.15	mW/cm ² - direct sun mW/cm ² - cloudy day.	Published data and testing.
Solar (Indo	.00 or) 0.57 mW/c	6 mW/cm ² - my desk :m ² - 12 in. under a 60W bulb	Testing
Vibration	s (.001 - 0.1 mW/cm ³	Simulations and Testing
Acoustic N	3E-6 mV bise 9.6E-4 mV	V/cm ² at 75 Db sound level V/cm ² at 100 Db sound level	Direct Calculations from Acoustic Theorem
Passive Hu Powere	nan I 1.8 mV	/ (Shoe inserts >> 1 cm ²)	Published Study.
Thermal Conv	ersion 0.0018	mW - 10 deg. C gradient	Published Study.
Nuclear Rea	ction	80 mW/cm ³ 1E6 mWh/cm ³	Published Data.
Fuel Cel	5	300 - 500 mW/cm ³ ~4000 mWh/cm ³	Published Data.

	1999 (Bluetooth Technology)	2004
Communication	(150nJ/bit)	(5nJ/bit)
Similarication	1.5mW*	50uW
Computation		~ 190 MOPS
ompatation		(5n I/OP)

